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Formation Control of Multiple Elliptical Agents with
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Abstract

This paper presents a design of cooperative controllers that force a group of N mobile agents with an elliptical shape and with
limited sensing ranges to perform a desired formation. The controllers guarantee no collisions between any agents in the group.
The desired formation can be stabilized at feasible reference trajectories with bounded time derivatives. The formation control
design is based on an algebraic separation condition between ellipses, Lyapunov’s method, and smooth or p-times differentiable
step functions. These functions are introduced and incorporated into novel potential functions to solve the collision avoidance
problem without the need of switchings under the agents’ limited sensing ranges.
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1. Introduction

Various methods have been proposed for formation control
of multiple agents. Here, three popular methods are briefly
mentioned. The leader-follower method (e.g., Wang (1991),
Das et al. (2002), Hu and Feng (2010)) uses several agents as
leaders and others as followers. This method is easy to un-
derstand and ensures formation maintenance if the leaders are
disturbed. However, the desired formation cannot be main-
tained if followers are perturbed unless a formation feedback
is implemented, Egerstedt and Hu (2001). The behavioral
method (e.g., Balch and Arkin (1998), Jonathan et al. (2003)),
where each agent locally reacts to actions of its neighbors, is
suitable for decentralized control but is difficult in control de-
sign and stability analysis since group behavior cannot explic-
itly be defined. The virtual structure method (e.g., Ogren et al.
(2004), Tanner and Kumar (2005), Do (2007)) treats all agents
as a single entity. This method is amenable to mathematical
analysis but is difficult to deal with time-varying formation
structure.

Research works on formation control usually utilize one or
more of the above methods in a centralized or a decentralized
manner. Centralized strategies (e.g., Rimon and Koditschek
(1992), Egerstedt and Hu (2001)) use a single controller that
generates collision free trajectories in the workspace. These
strategies guarantee a complete solution but require high com-
putational power and are not robust. Decentralized schemes
(e.g., Stipanovic et al. (2004), Olfati-Saber (2006), Dimarog-
onas et al. (2006), Do (2007), Hussein and Stipanovic (2007),
Hussein and Bloch (2008)) require less computational effort
but have difficulties in controlling critical points, especially
when collision avoidance between the agents is a must.

In the above works, the agent is considered as a single point
or has a circular/spherical shape. In practice, many agents
have a long and narrow shape. Fitting these agents to circular
disks results in a problem of the large conservative area. Let us
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look at an example of fitting a rectangular agent with a width
of W and a length of L to an elliptical disk with semi-axes of
a and b, and a circular disk with a radius of rc as shown Fig.1.
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Figure 1: Fitting a rectangular agent
to an ellipse and a circle

A calculation shows that a =√
2

2 W, b =
√

2
2 L, and rc =

1
2

√
W2 + L2. Therefore, the

conservative area Acon de-
fined as the difference be-
tween the areas enclosed by
the circle and the ellipse is
given by Acon = πr2

c − πab =
π
4 (L − W)2. This calcula-
tion indicates that it is much
more efficient to use an el-
lipse to bound an agent with a long and narrow shape for for-
mation control. The above illustration motivates contributions
of this paper.

This paper continues the author’s previous work in Do
(2007) to study a problem of designing a formation tracking
system for multiple agents with an elliptical shape and limited
sensing ranges. In comparison with the work in Do (2007),
the formation control design and stability analysis for ellipti-
cal agents are far more complicated due to two folds. The first
difficulty is that a collision avoidance condition for elliptical
agents depends on both position and orientation of the agents
in a complex manner. The second difficulty is that the tracking
issue causes difficulties in designing a cooperative controller
to guarantee negative definite of derivative of a proper poten-
tial function. To solve the aforementioned formation problem,
a condition, which is applicable for formation control, for col-
lision avoidance between the agents is derived, see Lemma
2.1. New potential functions are then proposed for the con-
trol design, see Section 4. Lyapunov’s method and Chetaev’s
Theorem are used for the stability analysis, see Appendix B.

Due to the aforementioned difficulties in the formation con-
trol design and stability analysis, the agents considered in this
paper are assumed to be fully actuated. Theoretical develop-
ment in this paper sets a foundation, which can be used to
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design a formation control system for various agents with a
long and narrow shape in practice. For such an application,
the reader is referred to Do (2011), where a combination of
the development in this paper and several control techniques
in Do and Pan (2009) and Do (2010) is presented to design a
formation control system for multiple underactuated surface
ships with an elliptical shape.

2. Preliminaries

2.1. Separation condition between two elliptical disks
In Choi et al. (2006), the authors proposed a collision-

detection algorithm for two elliptical disks based on the dis-
criminant of their characteristic third-order polynomial. How-
ever, calculation of the discriminant is too complicated for an
application in formation control. This is because coefficients
of the characteristic polynomial are complex expressions of a
product of the fourth order of the position and the eighth or-
der of cosine and sine of heading angles of the two elliptical
disks. The condition, for which the two elliptical disks’ dis-
criminant is positive, can be embedded in a potential function
for a formation control design despite of the discriminant’s
complexity, but it is problematic in stability analysis of the
resulting closed loop system. It does not seem to be able to
prove that undesired critical points of the closed loop system
are saddle/unstable.

We here present a simpler condition for separation of two
elliptical disks. This condition will be used as a condition for
collision avoidance in the control design later. As such, we
consider two elliptical disks i and j shown in Fig. 2, where
(xi, yi) denote the position of the center Oi and ϕi is the head-
ing angle of the disk i. These notations are similar for the disk
j. Moreover, (ai, bi) and (a j, b j) denote the semi-axes of the
disks i and j, respectively.
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Figure 2: An agent’s shape and its coordinates with respect to the earth-fixed
frame OXY

Lemma 2.1. Consider two elliptical disks i and j with the
heading angles of ϕi and ϕ j centered at (xi, yi) and (x j, y j),
respectively. Let

∆i j =
1
2


 κi j x̂i j

κi j + â2
j

2

+

 κi jŷi j

κi j + b̂2
j

2

− 1

 , (1)

where κi j is the largest solution of the following equation â j x̂i j

κi j + â2
j

2

+

 b̂ jŷi j

κi j + b̂2
j

2

− 1 = 0, (2)

and

â j =
1
√

Ta
, b̂ j =

1
√

Tb
,[

x̂i j

ŷi j

]
=

[ − 1
ai

cos(αi j) − 1
bi

sin(αi j)
1
ai

sin(αi j) − 1
bi

cos(αi j)

]
p̄i j,

αi j = 2 arctan
 2(T11T12 + T21T22)

T 2
11 + T 2

21 − T 2
12 − T 2

22

 ,
(3)

with

Ta = (T 2
11 + T 2

21) cos2(αi j) + (T11T12 + T21T22)×
sin(2αi j) + (T 2

12 + T 2
22) sin2(αi j),

Tb = (T 2
11 + T 2

21) sin2(αi j) − (T11T12 + T21T22)×
sin(2αi j) + (T 2

12 + T 2
22) cos2(αi j),

T11 =
ai
a j

cos(ϕi j), T12 = − bi
a j

sin(ϕi j),
T21 =

ai
b j

sin(ϕi j), T22 =
bi
b j

cos(ϕi j),

xi j = xi − x j, yi j = yi − y j, ϕi j = ϕi − ϕ j,

[x̄i j, ȳi j]T = Ri[xi j, yi j]T ,
(4)

where Ri = −R−1(ϕi) with R(•) the rotational matrix. The two
elliptical disks are externally separated if

∆i j ≥ δi j, (5)

with δi j being a positive constant.

Proof. See Appendix A.

2.2. p-times differentiable functions
This section presents a construction of p-times differen-

tiable or smooth step functions. These functions are to be
embedded into a potential function to avoid discontinuities in
the control law due to the agents’ limited sensing ranges.

Definition 2.1. A scalar function h(x, a, b) is said to be a p-
times differentiable step function if it possesses the properties:

1) h(x, a, b) = 0, ∀ − ∞ < x ≤ a,

2) h(x, a, b) = 1, ∀ b ≤ x < ∞,
3) 0 < h(x, a, b) < 1, ∀ x ∈ (a, b),
4) h(x, a, b) is p times differentiable,

(6)

where p is a positive integer, x ∈ R, and a and b are constants
such that a < b. Moreover, if the function h(x, a, b) is infinite
times differentiable with respect to x, then it is said to be a
smooth step function.

Lemma 2.2. Let the scalar function h(x, a, b) be defined as

h(x, a, b) =

∫ x
a f (τ − a) f (b − τ)dτ∫ b
a f (τ − a) f (b − τ)dτ

, (7)

with a and b being constants such that a < b, and the function
f (y) being defined as follows

f (y) = 0 if y ≤ 0, and f (y) = g(y) if y > 0, (8)

where the function g(y) has the following properties

a) g(τ − a)g(b − τ) > 0, ∀τ ∈ (a, b),
b) g(y) is p − times differentiable,

c) lim
y→0+

∂kg(y)
∂yk = 0, k = 1, . . . , p − 1,

(9)
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with p being a positive integer. Then h(x, a, b) is a p-times
differentiable step function. Moreover, if g(y) in (8) is replaced
by g(y) = e−1/y then h(x, a, b) is a smooth step function.

Proof. See Do (2009).

3. Problem statement

3.1. Agent dynamics
As mentioned before this paper mainly focuses on difficul-

ties caused by the elliptical shape of the agents in the forma-
tion control, we therefore assume that each elliptical agent i
has the dynamics:

q̇i = ui, (10)

for all i ∈ N with N the set of all agents in the group. The
vector ui = [uxi uyi uϕi]T denotes the control input, the vector
qi = [xi yi ϕi]T denotes position and orientation of the agent
i, see Fig. 2.
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Figure 3: Formation setup.

3.2. Formation control objective
We first impose the following assumption on the communi-

cation and initial conditions between the agents in the group.

Assumption 3.1.
1) All the reference trajectories, qid(sid) =

[xid(sid) yid(sid) ϕid(sid)]T , i ∈ N with sid the parameter
of qid(sid), satisfy the condition:

∆i jd ≥ δi jd, (11)

where δi jd is a positive constant. The function ∆i jd is given in
(1) with qi and q j replaced by qid and q jd, respectively, and
sid = s jd. Moreover, ∥q̇id∥ is bounded for bounded |ṡid |, and
∥qid − q jd∥ is also bounded for bounded |sid | and |s jd |.

2) The agents i and j have circular communication areas,
which are centered at Oi and O j, and have radii of Ri and R j,
see Fig. 3. The radii Ri and R j satisfy the condition:

∆m
i jR ≥ δi jR, (12)

where δi jR is a positive constant. The term ∆m
i jR is the min-

imum value of ∆i j when the agents i and j are within their
communication range, i.e.,

∆m
i jR = inf(∆i j) s.t.

{
ϕi j ∈ R,
x̄2

i j + ȳ2
i j ≥ min(R2

i ,R
2
j ),

(13)

for all (i, j) ∈ N and j , i.
3) The agent i broadcasts qi and qid in its communication

area, and can receive q j and q jd broadcasted by other agents
j, j ∈ N, j , i in the group if the points O j of these agents are
in the communication area of the agent i.

4) At the initial time t0 ≥ 0, all the agents are sufficiently
far away from each other, i.e., the following condition holds:

∆i j(t0) ≥ δi j0, (14)

where δi j0 is a positive constant, and ∆i j(t0) is given in (1)
evaluated at qi = qi(t0) and q j = q j(t0).

Remark 3.1. Items 2) and 3) in Assumption 3.1 specify the
way each agent communicates with other agents within its
communication range. In Fig. 3, the agents i and i − 1 are
communicating with each other since the points Oi−1 and Oi

are in the communication areas of the agents i and i − 1, re-
spectively. The agents i and i + 1 are not communicating with
each other. In Item 2), the condition (12) holds if there exists
a positive constant, ϱi, sufficiently large such that

Ri ≥ ϱi +max(ai + a j, bi + b j, ai + b j, a j + bi), (15)

for all (i, j) ∈ N and j , i. Moreover, the constant ∆m
i jR is

to be determined numerically. In Item 4), we have abused
the notation of ∆i j(xi j(t0), yi j(t0), ϕi j(t0), ϕi(t0)) as ∆i j(t0) for
simplicity of presentation.

Formation Control Objective 3.1. Under Assumption 3.1,
for each agent i design ui such that qi tracks qid while avoids
collision with all other agents in the group. In addition, sid

and ṡid of qid are to approach the common reference trajectory
parameter sod and its rate ṡod. Specifically, we will design ui

such that

lim
t→∞
χie(t) = 0, ∆i j(t) ≥ δi j, (16)

where χie(t) =
((

qi(t)− qid(t)
)
,
(
sid(t)− sod(t)

)
,
(
ṡid(t)− ṡod(t)

))
,

for all (i, j) ∈ N, i , j, and t ≥ t0 ≥ 0, where δi j is a positive
constant.

4. Formation Control Design

4.1. Potential Function

A potential function consists of the goal function γ and the
collision avoidance function β as follows:

φ = γ + β, (17)

where γ and β are specified below.
The goal function γ is designed such that it puts penalty on

the tracking errors between the reference and actual trajecto-
ries of all the agents. This function is chosen as follows:

γ =

N∑
i=1

γi, (18)

where

γi =
k1x

2
(xi − xid)2 +

k1y

2
(yi − yid)2 +

k2

2
(ϕi − ϕid)2, (19)

with k1x, k1y and k2 being positive constants.
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The collision function β prevents collision between the
agents when they are inside their communication ranges. This
function is chosen as follows:

β =

N−1∑
i=1

N∑
j=i+1

βi j. (20)

The function βi j is a function of ∆i j, where ∆i j is given in (1),
and has the following properties for all (i, j) ∈ N and i , j:

1) βi j = 0, β′i j = 0, β′′i j = 0 if ∆i j ≥ min(δi jd, δi jR),

2) βi j > 0, β′i j < 0 if 0 < ∆i j < min(δi jd, δi jR),

3) βi j = ∞, β′i j = ∞ if ∆i j = 0,

4) βi j ≤ µ1,
∥∥∥β′i j

∥∥∥ ≤ µ2,
∥∥∥β′′i j

∥∥∥ ≤ µ3 if 0 < ∆i j ≤ ∆M
i jR,

5) β′i j − β′i j

∣∣∣
∆i j=∆i jc

≤ −µ4 if 0 < ∆i j < ∆i jc ≤ ∆M
i jR,

6) βi j is at least twice differentiable if ∆i j > 0,

(21)

where β′i j =
∂βi j

∂∆i j
; β′′i j =

∂2βi j

∂∆2
i j

; µ1, . . . , µ4 are positive constants;

and ∆M
i jR is the maximum value of ∆i j when the agents i and j,

for all (i, j) ∈ N, j , j, are in their communication range, i.e.,

∆M
i jR = sup(∆i j) s.t.

{
ϕi j ∈ R,
x̄2

i j + ȳ2
i j ≤ max(R2

i ,R
2
j).

(22)

Remark 4.1. Properties 1) - 3) imply that the function β is
positive definite when the agents are in their communication
areas, is equal to zero when all the agents are at their desired
location, and is equal to infinity when a collision between any
agents occurs. Moreover, Property 1) and the function γ en-
sures that the function φ attains the (unique) minimum value
of zero when all the agents track their reference trajectories
perfectly. Properties 3) and 4) are used to prove stability of
the closed loop system. Property 5) allows us to use control
design and stability analysis methods for continuous systems
to handle the collision avoidance problem under the agents’
limited communication ranges.

The p-times differentiable step function allows us to find
many functions that satisfy all properties in (21). As an exam-
ple, we use the following function βi j in the rest of the paper:

βi j =
1 − hi j

(
∆i j, ai j, bi j

)
∆2

i j

, (23)

where hi j
(
∆i j, ai j, bi j

)
is a p-times differentiable step function

defined in Definition 2.1 with p ≥ 2 and g(y) = yp. The
constants ai j and bi j are chosen such that

0 < ai j < bi j ≤ min(δi jd, δi jR) − µi j, (24)

where δi jd and δi jR are given in (11) and (12), and µi j is a
positive constant less than min(δi jd, δi jR).

4.2. Control Design
Let us define the following vectors

pi = [xi yi]T , pi j = pi − pj,

pid = [xid yid]T , pi jd = pid − pjd,
(25)

for all (i, j) ∈ N and j , i. With (25), we can write the expres-
sion of ∆i j in (1) as follows:

∆i j = 0.5
(
∥Qi j pi j∥2 − 1

)
, (26)

where the matrix Qi j is given by

Qi j =


κi j cos(αi j)

ai(κi j + â2
j )

κi j sin(αi j)

bi(κi j + â2
j )

−
κi j sin(αi j)

ai(κi j + b̂2
j )

κi j cos(αi j)

bi(κi j + b̂2
j )

 R−1(ϕi). (27)

With (25), we can see that ∆i j is a differentiable function of
pi j, ϕi j and ϕi. Substituting the goal function γ with γi given
in (19) and the collision function β in (20) into (17) results in

φ =
1
2

N∑
i=1

(pi−pid)T K1(pi−pid)+
k2

2

N∑
i=1

(ϕi−ϕid)2+

N−1∑
i=1

N∑
j=i+1

βi j,

(28)
where K1 = diag(k1x, k1y). To calculate φ̇ for designing ui, we
first calculate κ̇i j from (2) as follows:

κ̇i j = −
(
∂Fi j

∂κi j

)−1 (∂Fi j

∂pi j

)T

ṗi j +
∂Fi j

∂ϕi j
ϕ̇i j +

∂Fi j

∂ϕi
ϕ̇i

 , (29)

where it is noted that ∂Fi j

∂κi j
is always nonzero, see Appendix A,

and

Fi j =

 â j x̂i j

κi j + â2
j

2

+

 b̂ jŷi j

κi j + b̂2
j

2

. (30)

Now differentiating both sides of (28) along the solutions
of (10) and using (29) results in

φ̇ =

N∑
i=1

[
K1(pi − pid) −

i−1∑
j=1

β′jiG ji pji +

N∑
j=i+1

β′i jGi j pi j

]T

×
[

uxi − ẋid

uyi − ẏid

]
+

N∑
i=1

[
k2(ϕi − ϕid) −

i−1∑
j=1

β′jiH ji

+

N∑
j=i+1

(
β′i j(Hi j + Li j)

)]
(uϕi − ϕ̇id) +

N∑
i=1

Φid ṡid,

(31)

where we have used ṗi− ṗj = ( ṗi− ṗid)−( ṗj− ṗjd)+( ṗid− ṗjd),
ϕ̇i = (ϕ̇i − ϕ̇id) + ϕ̇id, and

Gi j =

QT
i j

Qi j −
∂Qi j

∂κi j
pi j

(
∂Fi j

∂κi j

)−1 (
∂Fi j

∂pi j

)T T

,

Hi j = pT
i jQ

T
i j

∂Qi j

∂ϕi j
pi j −

∂Qi j

∂κi j
pi j

(
∂Fi j

∂κi j

)−1 ∂Fi j

∂ϕi j

 ,
Li j = pT

i jQ
T
i j

∂Qi j

∂ϕi
pi j −

∂Qi j

∂κi j
pi j

(
∂Fi j

∂κi j

)−1 ∂Fi j

∂ϕi

 ,
Φid =

[
−

i−1∑
j=1

β′jiG ji pji +

N∑
j=i+1

β′i jGi j pi j

]T [
x′id
y′id

]
+

[
−

i−1∑
j=1

β′jiH ji +

N∑
j=i+1

β′i j(Hi j + Li j)
]
ϕ′id,

(32)

with x′id =
∂xid

∂sid
, y′id =

∂yid

∂sid
, and ϕ′id =

∂ϕid

∂sid
.

Remark 4.2. A direct calculation of elements of the matrix
Gi j in (32) from (27) and (30) shows that the matrix Gi j is
positive definite for all pi j ∈ R2, ϕi j ∈ R and ϕi ∈ R as long
as ∆i j > 0. The inequality ∆i j > 0 is to be guaranteed by our
control design later.
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From (31), we choose the control input vector ui as follows:[
uxi

uyi

]
= −C1

[
Ωxi

Ωyi

]
+

[
ẋid

ẏid

]
,

uϕi = −c2Ωϕi + ϕ̇id,

(33)

where C1 is a 2 × 2 positive definite diagonal matrix, c2 is a
positive constant, and[
Ωxi

Ωyi

]
= K1(pi − pid) −

i−1∑
j=1

β′jiG ji pji +

N∑
j=i+1

β′i jGi j pi j,

Ωϕi = k2(ϕi − ϕid) −
i−1∑
j=1

β′jiH ji +

N∑
j=i+1

β′i j(Hi j + Li j).

(34)

However, the term Φid ṡid in (31) seems to be troublesome be-
cause q̇id is nonzero in general since we are solving the for-
mation tracking control problem. To get around this problem,
we will design an update law ṡid such that Φid ṡid = 0 holds for
all time and that sid and ṡid asymptotically tend to sod and ṡod.
As such, we utilize the p-times differentiable step function to
design an update law ṡid as follows:

ṡid = h
(
∆i j, ai jd, bi jd

)
(−kid(sid − sod) + ṡod), (35)

where kid is a positive constant, and sid(t0) = sod(t0). The
function h

(
∆i j, ai jd, bi jd

)
is a p-times differentiable step func-

tion with p ≥ 1. The constants ai jd and bi jd are chosen as:

min(δi jd, δi jR) − µi j ≤ ai jd < bi jd < min(δi jd, δi jR), (36)

where δi jd, δi jR, and µi j are given in (11), (12), and (24), re-
spectively. Using properties of the p times differentiable step
function, the choice of the constants ai j, bi j, ai jd and bi jd in
(24) and (36) results in h′

(
∆i j, ai j, bi j

)
h
(
∆i j, ai jd, bi jd

)
= 0 and(

1 − h
(
∆i j, ai j, bi j

))
h
(
∆i j, ai jd, bi jd

)
= 0. These equalities im-

ply that Φid ṡid = 0 holds as long as ∆i j > 0, which is to
be guaranteed by our control design. Moreover, the choice
of the constants ai jd and bi jd in (36) ensures that the func-
tion h

(
∆i j, ai jd, bi jd

)
approaches 1 whenever ∆i j approaches

min(δi jd, δi jR). This means that sid and ṡid are to approach sod

and ṡod as required. The inequality ∆i j ≥ min(δi jd, δi jR) > 0
will be guaranteed by our designed control input vector ui in
(33). This will be shown in the proof of the main result.

Remark 4.3. 1) The control vector ui = [uxi uyi uϕi]T in (33)
of the agent i is differentiable and depends on only its own
state and reference trajectory, and the states of other agents
j in the communication range of the agent i due to Properties
1) and 6) of βi j in (21).

2) The update law ṡid in (35) for qid ensures that when the
collision avoidance is active, the reference trajectory qid is
not updated. This implies that the control law ui gives priority
to the collision avoidance mission or the reference trajectory
tracking mission whenever which mission is more important.

Substituting the control law ui in (33) and the update law
ṡid in (35) into (31) results in

φ̇ = −
N∑

i=1

([
Ωxi Ωyi

]
C1

[
Ωxi

Ωyi

]
+ c2Ω

2
ϕi

)
. (37)

Substituting (33) into (10) results in the closed loop system

ṗi = −C1

[
Ωxi

Ωyi

]
+

[
ẋid

ẏid

]
,

ϕ̇i = −c2Ωϕi + ϕ̇id,

(38)

for all i ∈ N. We now present the main result of our paper.

Theorem 4.1. Under Assumption 3.1, the control input vec-
tor ui = [uxi uyi uϕi]T in (33) and the update law ṡid for qid

in (35) for the agent i solve the formation control objective.
In particular, no collisions between any agents can occur for
all t ≥ t0 ≥ 0, the closed loop system (38) is forward com-
plete, and the trajectory qi of the agent i tracks its reference
trajectory qid asymptotically, for all i = 1, . . . ,N.

Proof. See Appendix B.
In comparison with the work on formation control of point

agents (e.g., Ogren et al. (2004), Tanner and Kumar (2005),
Do (2007)), the proposed formation control design for ellip-
tical agents in this paper is substantially involved due to the
followings:

1) While a collision avoidance condition for point agents
is as simple as positivity of the relative distance between the
agents, the condition for collision avoidance between ellipti-
cal agents is more complicated. This condition depends on
both relative distance between the elliptical agents and orien-
tation of each agent in a complex manner, see Lemma 2.1.

2) While a potential function for formation control design
of point agents is a function of only the relative distance be-
tween agents, the potential function for designing a formation
controller for elliptical agents must be a function of both rel-
ative distance between the elliptical agents and orientation of
each agent, see (28) with βi j being satisfied all the proper-
ties listed in (21). Moreover, the relative distance between the
agents and orientation of each agent are nonlinearly coupled
in the potential function.

3) Nonlinear couplings of the relative distance between the
agents and orientation of each agent in the potential function
requires a careful design of an update law for the reference
trajectory’s parameter for each agent, see (35), to make the
derivative of the potential function negative definite.

4) Dependence of the potential function for formation con-
trol design of elliptical agents on both the relative distance be-
tween the agents and orientation of each agent results in more
equilibrium points of the resulting closed loop system (38).
Therefore, proof of asymptotic stability of only the desired
equilibrium point, where the tracking errors are zero, and in-
stability of all other equilibrium points is harder than proof of
these results for point agents, see Appendix B.4.

5. Simulation results

We use 15 elliptical agents with ai = 4, bi = 1, and
Ri = 8. The initial conditions are qi(0) = [Ro sin( 2π(i−1)

Ro
+

π), Ro cos( 2π(i−1)
Ro
+ π), 2π + rand(•)]T with Ro = 10 for

i = 1, ..., 5 and Ro = 20 for i = 6, ..., 15, and rand(•) a
random number between 0 and 1. The control parameters
are chosen as: C1 = 104diag(1,1), K1 = C−1

1 , c2 = 104,
k2 = 1/c2. We carry out a straight-line formation by choosing
qid = [sid,

−3N
2 + 3i, 0]T with sid(0) = 0, i.e., all the agents

are to be put in a vertical stack then move horizontally. We
choose sod = 10t and ṡod = 10. The parameters ai j and bi j of
βi j in (23) are chosen as ai j = 0 and bi j = 0.5. The param-
eters ai jd and bi jd in h

(
∆i j, ai jd, bi jd

)
, see (35), are chosen as

ai jd = 0.6 and bi jd = 0.85. A calculation shows that the above
initial conditions, qid and the control parameters satisfy all the
conditions (11), (14), (15), (24), and (36).
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Simulation results are plotted in Fig. 4 and Fig. 5. The
representative distance ∆∗i j =

(∏
j∈N j,i ∆i j

)1/26 is plotted in
the first sub-figure of Fig.5. The tracking errors xe = [x1 −
x1d, ..., xi− xid, ..., xN − xNd]T , ye = [y1−y1d, ..., yi−yid, ..., yN −
yNd]T , and ϕe = [ϕ1−ϕ1d, ..., ϕi−ϕid, ..., ϕN−ϕNd]T are plotted
in the second, third and fourth sub-figure of Fig.5. It is clearly
seen from Fig.4 and Fig.5 that there is no collision between
any agents as indicated by ∆∗i j > 0 for all i = 1, ..., 15. More-
over, all the agents track their reference trajectories nicely
even though they have to move complicatedly to avoid collide
with each other. In Fig.4, several snapshots of the position and
orientation of all agents are plotted.
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Figure 4: Snapshots of the agents’ position and orientation.

6. Conclusions

This paper has presented a method to design a formation
control system for elliptical agents. The tools used for the
success of the formation control design were a separation con-
dition between ellipses, p-times differentiable step functions,
and potential functions. An extension of the proposed for-
mation control design in this paper and those controllers de-
signed for single underactuated ships in Do and Pan (2009) to
provide to a formation control system for a group of underac-
tuated ships is under consideration.
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Figure 5: Representative ∆∗i j and tracking errors.

Appendix A. Proof of Lemma 2.1

From Fig. 2, the boundaries of the disks i and j (equa-
tions of points wib and w jb) coordinated in the frame OiXiYi

attached to the disk i can be described by

Ei : x2
ib/a

2
i + y2

ib/b
2
i = 1,

E j :
[

x jb

y jb

]
=

[
x̄i j

ȳi j

]
+ R−1(ϕi j)

[
a j cos(θ j)
b j sin(θ j)

]
,

(A.1)

where x̄i j, ȳi j, ϕi j are defined in (4), and θ j ∈ [0, 2π] is an
auxiliary angle. The ideas to prove Lemma 2.1 are as follows.
We first transform the two ellipses i and j to a circle and an
ellipse. We then calculate the distance between these circle
and ellipse.

1) Transformation of ellipses: We use the following coor-
dinate transformation:[

x̂ib

ŷib

]
= R−1(αi j)

[
(xib − x̄i j)/ai

(yib − ȳi j)/bi

]
,[

x̂ jb

ŷ jb

]
= R−1(αi j)

[
(x jb − x̄i j)/ai

(y jb − ȳi j)/bi

]
,

(A.2)

where αi j is given in (3). With the coordinate changes (A.2),
the ellipses i and j are transformed to:

Ci :
(
x̂ib − x̂i j

)2
+

(
x̂ib − ŷi j

)2
= 1,

E j : x̂2
jb/â

2
j + ŷ2

jb/b̂
2
j = 1,

(A.3)

where x̂i j and ŷi j are given in (3). Now, the ellipse Ei has been
transformed to the unit circle Ci centered at (x̂i j, ŷi j) while the
ellipse E j has become another ellipse centered at the origin
and with semi-axes being â j and b̂ j given in (3).

2) Distance ∆i j: We now calculate the distance from the
center of the unit circle described by the first equation in (A.3),
i.e., from the point (x̂i j, ŷi j) to the ellipse described by the sec-
ond equation in (A.3). The closest point (x̂ jb, ŷ jb) on the el-
lipse to the point (x̂i j, ŷi j) must occur so that (x̂i j− x̂ jb, ŷi j− ŷ jb)
is normal to the ellipse. An outward pointing ellipse normal
is 1

2∇
((

x̂ jb/â j
)2
+

(
ŷ jb/b̂ j

)2 − 1
)
=

(
x̂ jb/â2

j , ŷ jb/b̂2
j
)
. Therefore,

the orthogonality condition is

(x̂i j − x̂ jb, ŷi j − ŷ jb) = κi j

(
x̂ jb/â2

j , ŷ jb/b̂2
j

)
, (A.4)

where κi j is the largest root of the second equation in (A.3) and
(A.4), i.e., the equation (2). We must take κi j as the largest root
of the equation (2) so as to have the closest point (x̂ jb, ŷ jb) on
the ellipse (the second equation of (A.3)) to the point (x̂i j, ŷi j).
We may restrict our attention to x̂i j ≥ 0 and ŷi j ≥ 0. Points in
other quadrants may be handled by symmetry. Also by sym-
metry, if (x̂i j, ŷi j) is in the first quadrant, the closest ellipse
point (x̂ jb, ŷ jb) is in the first quadrant. As such, we consider
x̂i j ≥ 0 and ŷi j ≥ 0. From (A.4) we have

x̂ jb =
â2

j x̂i j

κi j + â2
j

, ŷ jb =
b̂2

j ŷi j

κi j + b̂2
j

. (A.5)

From the symmetry of the ellipse the closest point (x̂ jb, ŷ jb)
should be in the first quadrant, so we need x̂ jb ≥ 0 and ŷ jb ≥ 0
with a note that x̂i j and ŷi j are not equal to zero simultaneously.
These constraints force κi j > −â2

j and κi j > −b̂2
j , i.e., the total

constraint is κi j > −min(â2
j , b̂

2
j ). Substituting (A.5) into the

second equation in (A.3) results in (2). Now the distance from
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the point (x̂i j, ŷi j) to the closet point (x̂ jb, ŷ jb) on the ellipse
described by the second equation in (A.3) is di j =

√
2∆i j + 1−

1 where ∆i j is given in (1). Therefore, two ellipses i and j are
separated if di j > 0, i.e., the condition (5) must hold.

3) Domain containing the largest solution of equation (2):
We here specify the domain, on which the equation (2) has
the largest root. As such, from (2), we define F(κi j) =( â j x̂i j

κi j+â2
j

)2
+

( b̂ j ŷi j

κi j+b̂2
j

)2
− 1. Observing that for any point (x̂i j, ŷi j)

with x̂i j ≥ 0 and ŷi j ≥ 0 but x̂i j and ŷi j are not equal to zero

simultaneously, we have ∂F(κi j)
∂κi j

< 0 and ∂
2F(κi j)
∂κ2i j

> 0 for κi j ∈
(−min(â2

j , b̂
2
j ),∞). Moreover, we note that the limits of F(κi j)

as κi j tends to −min(â2
j , b̂

2
j ) from the right and as κi j tends to

∞ are limκi j→−min(â2
j ,b̂

2
j )
+ F(κi j) = ∞ and limκi j→∞ F(κi j) = −1.

These limits mean that F(κi j) is a decreasing function for κi j ∈
(−min(â2

j , b̂
2
j ),∞). Hence, the equation (2) has the largest root

on the domain (−min(â2
j , b̂

2
j ),∞). Proof of Lemma 2.1 is com-

pleted. �

Appendix B. Proof of Theorem 4.1

Appendix B.1. Proof of no collisions
It is seen from (37) that φ(t) ≤ φ(t0), ∀t ≥ t0 ≥ 0, where

φ(t) =
∑N

i=1 γi(t) +
∑N−1

i=1
∑N

j=i+1 βi j(t), φ(t0) is φ(t) with t re-
placed by t0, γi and βi j are given in (19) and (23), respectively.
By Assumption 3.1, and Property 4) of βi j, φ(t0) is bounded.
Hence, φ(t) must be also bounded. As a result, βi j(∆i j(t)) must
be bounded, i.e., ∆i j(t) must be larger than some positive con-
stant depending on the initial conditions denoted by δi j for all
t ≥ t0 ≥ 0. This implies from Lemma 2.1 that there are no
collisions between any agents for all t ≥ t0 ≥ 0. Boundedness
of φ(t) also implies that of (qi(t) − qid(t)) for all t ≥ t0 ≥ 0.
Therefore, the closed loop system (38) is forward complete.

Appendix B.2. Equilibrium set
We use Lemma 2 in Do (2007) to find the equilibrium set,

which the trajectories of the closed loop system (38) tend to.
Integrating both sides of (37) gives

∫ ∞
0 ω(t)dt ≤ φ(t0), where

ω(t) =
∑N

i=1

([
Ωxi(t) Ωyi(t)

]
C1

[
Ωxi(t)
Ωyi(t)

]
+ c2Ω

2
ϕi(t)

)
. The

function ω(t) is scalar, nonnegative and differentiable. The
derivative of ω(t) along the solutions of the closed loop sys-
tem (38) using Properties 2) and 5) of the function βi j in (21)
satisfies

∣∣∣ dω(t)
dt

∣∣∣ ≤ Mω(t) with M a positive constant. There-
fore Lemma 2 in Do (2007) results in limt→∞ ω(t) = 0, which
means from the expression of ω(t) that

lim
t→∞

(
Ωxi(t),Ωyi(t),Ωϕi(t)

)
= 0. (B.1)

Hence the trajectory qi of the agent i asymptotically con-
verges to the equilibrium set, Ξ, in which Ωxi(t) = 0,
Ωyi(t) = 0, and Ωϕi(t) = 0. From the expression of Ωxi(t),
Ωyi(t), and Ωϕi(t) in (34), the limits (B.1) imply that q(t) =
[qT

1 (t) qT
2 (t), . . . , qT

N(t)]T can tend to qd = [qT
1d qT

2d, . . . , q
T
Nd]T

with qid = [xid yid ϕid]T , since β′i j(t) = 0 at qi = qid and
q j = q jd, for all (i, j) ∈ N and i , j, (see Property 1) of
βi j), or tend to a vector denoted by qc = [qT

1c qT
2c, . . . , q

T
Nc]T

with qic = [xic yic ϕic]T as the time goes to infinity, i.e., the
equilibrium points can be qd or qc. The vector qc is such that

Ωxic = 0, Ωyic = 0, Ωϕic = 0, (B.2)

where Ωxic = Ωxi|q=qc , Ωyic = Ωyi|q=qc , and Ωϕic = Ωϕi|q=qc ,
for all i ∈ N. Since we have already proved that the trajectory
q can approach either the set of desired equilibrium points de-
noted by qd or the set of undesired equilibrium points denoted
by qc ’almost globally’. The term ’almost globally’ refers to
the fact that the agents start from a set that includes the con-
dition (14) and that does not coincide at any point with the set
of the undesired point qc. Hence, we need to prove that qd is
locally asymptotically stable and that qc is locally unstable.

Appendix B.3. Proof of qd being asymptotically stable
Linearizing the closed loop system (38) near qd gives

ṗi = −C1

(
K1(pi − pid)

)
+ ṗid,

ϕ̇i = −c2
(
k2(ϕi(t) − ϕid(t))

)
+ ϕ̇id,

(B.3)

for all i ∈ N, where we have used β′i j|q=qd = 0 and β′′i j|q=qd = 0,
see Property 1) of the function βi j in (21). Local asymp-
totic stability of the equilibrium qd follows from (B.3) since
the first time derivative of the function Vd =

1
2
∑N

i=1
[
(pi −

pid)T (pi − pid) + (ϕi − ϕid)2] along the solutions of (B.3) satis-
fies V̇d ≤ −2 min(λmin(C1K1), c2)Vd, where λmin(C1K1) is the
minimum eigenvalue of C1K1.

Appendix B.4. Proof of qc being unstable
Substituting (B.2) into the closed loop system (38) gives

ṗi = −C1

([
Ωxi

Ωyi

]
−

[
Ωxic

Ωyic

])
+ ṗid,

ϕ̇i = −c2

(
Ωϕi −Ωϕic

)
+ ϕ̇id,

(B.4)

for all i ∈ N. We now investigate stability of (B.4) at qc.
Let N∗ be the set of the agents such that if the agents i and j

belong to the set N∗ then ∆i j(pi j, ϕi j, ϕi) < min(δi jd, δi jR), and
N∗ be the size of the set N∗. For those agents in the set N∗,
the collision avoidance is active. Therefore, q̇id = 0, for all
i ∈ N∗, see Item 2) in Remark 4.3. Now, from (B.2) we have∑

(i, j)∈N∗ pT
i jc[Ωxic, Ωyic]T = 0, which can be expanded using

(B.2) and (34) as follows:∑
(i, j)∈N∗

pT
i jc

(
K1 + N∗β′i jcGi jc

)
pi jc =

∑
(i, j)∈N∗

pT
i jcK1 pi jd. (B.5)

Since we have proved that ∥pi jc∥ is bounded and
∥pi jd∥ is bounded by assumption, (B.5) indicates that
limλmax(K1)→0(∥Qi jc pi jc∥) = ∞ with λmax(K1) the maximum
eigenvalue of K1. This means that we can choose a control
gain matrix K1 such that the matrix K1 + N∗β′i jcGi jc is
negative definite for some (i, j) with i , j. Let N∗∗ ⊂ N∗ be
a nonempty set such that for all (i, j) ∈ N∗∗, i , j, the matrix
K1 + N∗β′i jcGi jc is negative definite. Since N∗∗ ⊂ N∗, we have
q̇id = 0, for all i ∈ N∗∗.

To investigate stability of (B.4) at qc, we consider the fol-
lowing function for the agents belong to N∗∗:

V̄∗∗c =
1
2

∑
(i, j)∈N∗∗

(pi j − pi jc)T C−1
1 (pi j − pi jc) +

1
2c2

N∗∗∑
i=1

(ϕi − ϕic)2

(B.6)
whose derivative along the solutions of (B.4) is

˙̄V∗∗c = −
∑

(i, j)∈N∗∗
Wi jc −

N∗∗∑
i=1

U1i − N∗∗
∑

(i, j)∈N∗∗
U2i j, (B.7)
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where

Wi jc = (pi j − pi jc)T
(
K1 + N∗∗β′i jcGi jc

)
(pi j − pi jc),

U1i = (ϕi − ϕic)
[
k2(ϕi − ϕic) −

i−1∑
j=1

β′jiH ji +

N∗∗∑
j=i+1

β′i j×

(Hi j + Li j) −
(
−

i−1∑
j=1

β′jicH jic +

N∗∗∑
j=i+1

β′i jc(Hi jc + Li jc)
)]
,

U2i j = (pi j − pi jc)T
(
β′i jGi j − β′i jcGi jc

)
pi j

(B.8)

with β′i jc = β
′
i j

∣∣∣
q=qc

, Gi jc = Gi j

∣∣∣
q=qc

, pi jc = pi j

∣∣∣
q=qc

, H′i jc =

H′i j

∣∣∣
q=qc

, and L′i jc = L′i j

∣∣∣
q=qc

. We now define a set Ψ such that

Ψ =
{(

pi j, ϕi
) ∈ Br

∣∣∣U1 ≤ 0 and U2 ≤ 0, ∀(i, j) ∈ N∗∗, i , j,
(B.9)

where U1 =
∑N∗∗

i=1 U1i and U2 =
∑

(i, j)∈N∗∗ U2i j.
In this set, we have

˙̄V∗∗c ≥ −
∑

(i, j)∈N∗∗
Wi jc. (B.10)

We need to show that the set Ψ is nonempty. For the con-
dition U1i ≤ 0, we can always find ϕi as a function of qic, pi j,
ϕi j and ϕi for all (i, j) ∈ N∗∗ and i , j such that U1i ≤ 0.
An example is ϕi = ϕic for all i ∈ N∗∗. For the condition
U2i j ≤ 0, we first note that the matrix Gi j is positive definite
for all pi j ∈ R2, ϕi j ∈ R and ϕi ∈ R such that ∆i j > 0, for
all (i, j) ∈ N∗∗ and i , j, see Remark 4.2. Second, we note
from Properties 2) and 3) of the function βi j in (21) that β′i j is
negative and is equal to infinity when ∆i j = 0.
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Figure B.6: An unstable set.

Now, let us choose a con-
tact point Ôi jb, see Fig. B.6,
between the agent i and
the agent j belonging to
the set N∗∗, i.e., the point
where ∆i j = 0 such that
the distance from Ôi jb to
the point Ôi jc at (X̂i jc, Ŷi jc)
where (X̂i jc, Ŷi jc) := Qi jc pi jc

is smallest. In Fig. B.6, the
Ôi jX̂i j and Ôi jŶi j axes rep-
resents the first and second
elements of Qi j pi j, respec-
tively. Let the ball B∗i j be centered at Ôi jb and have the radius
r̂i jbc of the distance from the center Ôi jb to the point Ôi jc. By
construction, if

(
pi j, ϕi

) ∈ B∗i j with ϕi being satisfied the con-

dition U1i ≤ 0, the matrix Si j :=
(
Q−T

i j (β′i jGi j − β′i jcGi jc)Q−1
i j

)
is negative definite. On the other hand, let B∗∗i j be the set such
that if (pi j, ϕi) ∈ B∗∗i j then [Qi j(pi j − pi jc)]T Qi j pi j is positive,
see Fig. B.6 for an illustration. Let B♢i j = B∗i j

∩
B∗∗i j . We can

see that B♢i j is nonempty if the radius r̂i jbc is greater than 1
because the distance between the point Ôi j and the point Ôi jb

equals 1. In order to have the radius r̂i jbc > 1, we need the
distance d̂i joc from the point Ôi j and the point Ôi jc larger than
2.

We now show that d̂i joc > 2 by choosing K1 with λmax(K1)
sufficiently small. As such, from (B.2) we can again see that
limλmax(K1)→0(∥Qi jc pi jc∥) = ∞. This means that the set B♢i j
is nonempty for an appropriate K1. Since the matrix Si j is
negative definite for

(
pi j, ϕi

) ∈ B∗i j with ϕi being satisfied the

condition U1i ≤ 0, there exists a nonempty subset B♢♢i j of B♢i j
such that if

(
pi j, ϕi

) ∈ B♢♢i j with ϕi being satisfied the condi-
tion U1i ≤ 0 the condition U2i j ≤ 0 holds. Hence, the set Ψ
is nonempty and given by Ψ =

∩
(i, j)∈N∗∗ B♢♢i j . Since we have

already proved that the matrix K1 +N∗β′i jcGi jc is negative def-

inite, the function V̄∗∗c in (B.6), its derivative ˙̄V∗∗c in (B.10)
together with the nonempty set Ψ imply that qc is unstable by
Chetaev’s Theorem (Theorem 4.3 in Khalil (2002)). �
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