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ABSTRACT

Most stochastic modelling techniques assume thesipaly correlations
among the raw observations to be negligible whemifoy the variance-
covariance matrix of the GPS observations. Suchassumption may,
however, lead to significantly biased solutions.heTMinimum Norm
Quadratic Unbiased Estimation (MINQUE) method istaerative technique
that can be used to estimate spatial correlatioongnGPS measurements.
Studies by previous authors have shown that MINQidproves the
accuracy and the reliability of the ambiguity resimn, and ultimately, the
geodetic solution. However, its effect on thereation of zenith wet delay
(ZWD) is somewhat unknown. In this paper, an invetganto its impact
on ZWD, as well as heighting, is carried out using sitedadata. The
results obtained from MINQUE for an observation daw of five-days in
static mode indicate an average improvement of &8hé671% in the station
height precision when compared against elevatigheanlependent and
equal weighting models, respectively. This develept, however, did not
translate into bettefWD estimation, for which the differences between each
respective stochastic model are generally at thawllimetre level.
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1.0 INTRODUCTION

GPS data processing can be implemented via thé-dgaares (LS) principle. In the LS
process, GPS measurements are characterised Imgtaofial model and a stochastic model.
The functional model represents the mathematidatioaship among the GPS observables
and the parameters of interest, whilst the stochambdel is defined by an appropriate
covariance matrix describing the spatial and/omeral correlation among the measurements.
The functional model is usually well defined (eldgofmann-Wellenhotfet al, 2001; Leick,
2004) and is not particularly controversial. Om tither hand, stochastic modelling remains
one of the more challenging aspects in precise @RB8ioning (e.g., Wangt al, 2002), and
there does not seem to be a clear consensus on it.

In LS theory, a set of linearised GPS observaticars be defined using a Gauss Markov
model as follows:

Y =AX+v (2)
where Yis an nx1 observed-computed vectoX is a kx 1vector of unknown parameters
with A being the correspondingxk design matrixy is an nx 1residual vector, with

E(v)=0 andVar(v) = o?.

The simple form for theveightedlinear LS estimate for the unknown set of paransei€ is
given by (Johnson and Wichern, 2007):

X = (ATwA) " ATwy )

The variance property ok can be expressed via the variance-covariavi€d/ matrix:

cofX)=c, =62(aTwA)" )
g% = VW (4)
n-k

and the optimal choice for the weight matki is defined as the inverse of the variance-
covariance matrix of the model residuals (e.g., ndoh and Wichern, 2007), i.e.,

VCV =Co\v). The quantityd?, often referred to as tha posteriori unit varianceor

variance factoy is an unbiased estimate of and is an indicator of the precision of the
observations and the assigned weight maAfix

From equation (2), the choice of stochastic modedn important factor in determining the
final outcome of the LS parameter solution. LSg@3ses an attractive property in that the
residual root mean square err®®MSH is minimised. However, an inadequately defined
covariance matrix will result in LS losing its aplity property (Johnson and Wichern,
2007). Many of the existing stochastic models enpénted in GPS data processing are
simplified for practical purposes. For real-timedmatic (RTK) data processing, for
example, where results are needed almost instaoialye a wrongly chosen stochastic model
may result in faulty cycle slip detection and degraambiguity resolution success. The
quality of the parameter estimates of interesthsagreceiver coordinates, will also suffer as
a result (Fulleet al, 2005).



Han and Rizos (1995) concluded that the LS-solvadpeter estimates are always over-
optimistic when independence is assumed amonglibereations. Jiet al. (2005) reported
an offset of over 2cm in the height componentsathlthe Darwin-Tidbinbilla (3046km) and
Townsville-Tidbinbilla (1792km) 24-h baseline satuts. Subsequently, height errors will
also impact tropospheric delay estimates used irteanglogical and climatological
applications. Employing the standard stochastideh¢SSM) carries the assumption that all
raw observations have the same degree of uncestaiet, the same variance. Such an
assumption is unrealistic as studies have shownh glgatematic errors caused by the
atmosphere and multipath have varying degrees paamnon GPS signals (e.g., Barnes and
Cross, 1998). It was also demonstrated with sidistesting on the LS residuals that the
assumption of constant variances can be inappteiBaschoffet al, 2005).

The VCV can also be estimated using an elevation-angleralmt model (e.g., Kim and
Langley, 2001) and the signal-to-noise ratio moeed)., Lau and Cross, 2007). Although
these models do somewhat reflect the quality obtheerved GPS signals, correlations among
the raw measurements are again ignored. Nevesthdlge elevation-angle-dependent model
(EADM) for example, has been shown to produce b#iaropospheric estimates (e.g.,
Steigenbergeet al, 2007). Although more rigorous stochastic modglltechniques are
available, (e.g., Wangt al, 1998; Teunissen and Amiri-Simkooei, 2007), thenpkexity of
these models generally demands more processing tigkdditionally, these models have
predominantly been used to derive positional abeer ambiguity estimates, and the effects
on ZWD estimates are still relatively unknown. Thoughe anay hypothesise that better
coordinates would lead to bett&WD estimates, the significance of the impact is still
speculative.

The above issue leads to the objective of this sngation, which is to determine if the
estimation ofZWD will benefit from a more sophisticated stochastiodel, namely the
Minimum Norm Quadratic Unbiased Estimation ‘MINQUERao, 1970). MINQUE was
successfully applied in GPS data processing, whetas shown to improve short baseline
solutions, as well as ambiguity resolution (Waatal, 1998). However, it has not yet been
for the purpose afWDrecovery. In this paper, the performance of MINQIOEboth height
and ZWD estimation will be compared against conventionatisastic models, i.e., the SSM
and EADM, as well simplified MINQUE (Satirapodt al, 2002) and the non-negative
definite MINQUE (Rao and Kleffe, 1988). Descript®nf the aforementioned stochastic
models are provided next.

2.0 STOCHASTIC MODEL

2.1 Standard Stochastic M odel

The standard stochastic model (SSM) refers to ithplsst of all stochastic models. SSM is
constructed with the assumption that all zero-déffieed (as considered in this paper) GPS

observations are independent (i.e., zero correlptiod have the same variancg,.
2.2 Elevation Angle Dependent Model (EADM)

The dependence of measurement noise on sateiateln can be attributed to the receiver
antenna’s gain pattern, atmospheric refraction rnttipath (e.g., Kim and Langley, 2001).



Modelling the observational noise as a functiorthef satellite elevation can take on many
forms. One of these elevation angle-based moa@daishe general form (Wareg al, 1998):

o2 =a’+b’f(g.) (6)

where a* and b* are constant coefficients arh(ﬂ;) is the function that is defined with

respect to the zenith ang for observation . The cosine function can be utilized to define
the variances of the zero difference measuremerntgeiform (Jiret al, 2005):

o2 =a?+b’cog(6)) @)
The coefficientsa and b are simply given as 0 and 1. The raw observatemes also
assumed to be spatially and temporally uncorrelai¢ide EADMs.

2.3 Minimum Norm Quadratic Unbiased Estimation (MINQUE)

Using the Gauss-Markov model given in equation {i¢, mxm VCV matrix of Y, can be
expressed as:

> = , C :i@\/i 'Whereqzm
21

i
i=1

(8)

where{q,@,...,%}:{af,022,...,a,i,012,013,...,am(m_1)} are the VCV components to be
estimated and/,,V,,...V, are the so-calledccompanying matrice@Vanget al, 2002). The
problem here is estimating tlge unknown elements of .

The MINQUE of the linear functiong (i=12 ..,q), i.e.,p@g+p,@+..+p,g@, is the
quadratic functiorY” AY, where A is selected such that (Rao , 1971):

Tracgd ASAZ) is a minimum: subject tdX = @nd TracdAC )=1p,,i=12 ..q (9)

q
The MINQUE OfZWVi is then estimated from:
i=1

q
y'Q=> Q. Q=Y'RVRY (10)
i=1
where the vectoy is a solution of
q .
ZyiTracdRViRVj): p, =12 .9 (11)
i=1

and



R=W (W' = X (X W X) X) W, wherew =™ (12)

The symmetridR matrix can be partitioned as

R, R, - Rq
L @
Ry R, - Ry
where s is the number of epochs considered in a selectszkepsing window session.
By expressing equation (11) & = p, where
S, =TracdRVRY)) (14)
this leads toy=S™p.
Since the MINQUE ofzq:qq\/i IS
=
yQ=p'(s*)Q=p's™Q=p"p (15)
then9=(@, ., ... Q) is a solution of
S¢=Q (16)
Q can alternatively be defined as:
Q =YTRVRY = e"WVWe 17

Given an initial estimatéio), the (j +1)th approximation can be generated using the following
iterative procedure:

Ay =) 1 =01 2 - (18)

24 Simplified MINQUE

The execution of MINQUE requires a computer prooessith substantial power and
memory as the number of observations becomes larges. is mostly due to the computation
and storage of thR matrix, i.e., equation (13). The notion behind gimplified MINQUE
(Satirapodet al, 2002), which will be referred to here as SMINQUE,to reduce the
complexity of theR matrix, leading to the efficient computation of tNeNQUE process.
The proposed simplification of MINQUE disregarde tiff-diagonal block entries of tHg



matrix and gives rise to a block-diagonal matRx as its replacement in the procedure. The
R* matrix is expressed as

R, 0 - 0
0 ’ :
r=| 0 R (19)
: " . 0
0 - 0 R,
Subsequently, equation (14) can be simplified to
§ = TracdR VRV, ) (20)
r=1

whereV, is the block-diagonal element ¥f for epochr andV, =V, .

25 Non-Negative Definite MINQUE (NND-MINQUE)

If all the matricesV,,V,, .., V, are non-negative definite, an alternative itee8eheme can
be applied (Rao and Kleffe,1988),

~ Y'RVRY

Hoor =9 racdriy ) =220 (21)
Trac R¢}Vi

where the(j +1)" approximation to thé™ component ofg can be computed. The non-
negative definite MINQUE (NND_MINQUE) scheme of eqon (21) ensuresﬁ will
remain non-negative throughout the iterations ka{gpz 0. Using the NND_MINQUE is

also computationally simpler than applying equatjb8), which requires the calculation of
the S matrix. In this study, only the variances aréneated.

30 SIMULATION DATA

To test the above MINQUE methods, a set of simdlatata was processed. For a given
location, a set of observations is generated bylsitimg the satellite coordinates for a
specified session, using the Penna and StewarB)2@@rfect’ GPS orbital simulator, i.e.
with no perturbations. Therefore, for a particutaration, the exact geometric range between
the satellite and the receiver can be calculatad, the effect of different individual error
sources readily assessed.

The GPS simulation software used can perform wigighty using the standard or the EADM

models. However the user can easily incorporaterotveighting schemes if needed.
Tropospheric data, and/or any other error souraeg.,( multipath or random errors)

determined through external functions, can alsadmmmodated. In this test, tropospheric
delays were added to the Penna and Stewart (2083pf-sight- geometric ranges using

simulatedZWD (SZWD and the Niell mapping function (Niell, 1996). &I&WD values



applied were those generated from 24 hour GIPSYimer2.6 software precise point
positioning mode analyses, estimating them evenyirb together with horizontal gradients,
whilst holding fixed ‘legacy’ JPL (Jet Propulsiomlhoratory) ‘fiducial-free’ orbital and Earth
rotation products, and using the Niell mapping fiorc

SZWDvalues were generated for the HOB2 IGS statiomfi®99 to 2004.. A five-day
period in 2004 from June T5to 19" was chosen for testing as there was a |&g¢D
variability over these five days, ranging from 5Sman16mm. The elevation cut-off was
selected as 15 degrees. Weighted one-hourlyZIMs estimates were retrieved in the
analyses and compared to the simulated values,the. ZWDs, across three different
processing windows, selected as 1h, 2h and 4h)usmy the five different stochastic
methods discussed in Sections 2.1-2.5.

In discussing the results, MINQUE and SMINQUE wie referred to collectively as
(S)MINQUE. The most important aspect of this siatian analysis is that no errors were
applied to the observations besides troposphetaydee. the only present “error source” is
the variability within the simulatedWDs themselves. If the stochastic model is correctly
chosen, one would expect the coordinate correcgimates to be approximately zero and
the outputZWD estimates to be similar to the (averaged) simdlatdues for the processing
window considered.

40 RESULTS

The height component of the coordinates is the rpasitioning component that is affected
by atmospheric delay (e.g., Boek al, 2001). As such, the height estimates resultiognf
the study were closely analysed. TREISEvaluesof the height estimates resulted from the
above methods over the five-day simulation areeresl in Table 1.

Wg‘gg"" SSM EADM MINQUE SMINQUE  NND_MINQUE
1-h 5.35 3.90 1.84 1.94 8.57
2-h 2.59 1.35 0.86 0.94 2.90
4-h 1.17 0.66 0.23 0.25 1.03

Table 1 RMSE of the height estimates (mm) for HOB2r the five-day data set using different
stochastic methods.

Over the three different window sizes, both MINQEERd SMINQUE consistently produced
the smallest height offsets. The NND_MINQUE was ttorst performer over the five-day
period. This is somewhat unexpected given thatvéreance factor, (given in equation (4)),
of the linear model produced by the NND_MINQUE miodeunity. Thus theoretically, the

model should perform fairly well. Since this istrtbe case, the underlying notion here
signifies the importance of proper modelling of toerelation among the observations.

Table 2 compares the MINQUERMSE in the height component to those of the other
stochastic models. The relative improvemedRt) (of MINQUE over the other models is
calculated as follows:



RMSE - RMS
RI = & EWNQUE*100, (24)
RMSE

where
i ={SSM, EADM, SMINQUE, NND_MINQUE}

The advantage of MINQUE over the other models itpadre spatial correlation among the
raw observations is fairly substantial. The averagprovements made by MINQUE are
71%, 51%, and 76% when compared to SSM, EADM andNMINQUE, respectively.
However, the difference between MINQUE and SMINQigEarginal.

Window

Size SSM EADM MINQUE SMINQUE NND_MINQUE
1-h 66% 53% - 5% 79%
2-h 67% 36% - 9% 70%
4-h 80% 65% - 8% 78%
Table 2 Relative improvement in the height estiméte HOB2 over the five-day data set as a

result of using MINQUE.

Unexpectedly however, better height recovery dityield betterZWD estimates. Figure 1
illustrates that all models produced be#&/D estimates as the size of the processing window
increases. The EADM, however, was the best stbicha®del over all window sizes in the
recovery of the wet delay estimates. The EADM veced theZWD with a better accuracy
than SSM, MINQUE, SMINQUE and NND_MINQUE, by an aage of 23%, 20%, 20%,
and 30%, respectively.
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Figure 1 Comparison between tRMSEsof the (LS-simulatedgWD differences for HOB2

for each of the stochastic model over various @siog window sizes, for the five-
day data set considered.



When estimating the zenith wet delay, GPS obseamwatihat are closer to the zenith are more
appropriate than those at low elevations, and thexeshould have greater weights. The
EADM is reflective of this, and it may be a possil@xplanation as to why it had out-
performed (S)MINQUE. Thus, the solutions may hbheen biased in favour of the EADM,
as well as the other models where the correlatemesignored. Further investigation is
planned.

5.0 CONCLUSIONS

Changing the stochastic model affects the GPS astmof heights andWD. The results
attained with MINQUE (via the modified approachj tbe HOB2 IGS station from five-days
of simulated data in static mode indicate an awelagprovement of 51% and 71% in the
station height precision, when compared to the EARNOD SSM, respectively. This
superiority was not evident in the recovery of ®8WD In fact, EADM recovered the
SZWD better than the other models (SSM, MINQUE, SMINQUMND MINQUE) by an
average of 23%, 20%, 20% and 30%, respectivelpsacall window sizes. The dependence
of Niell (1996) mapping function on the elevatiomgée could also flatter the results of the
EADM. Nevertheless, further investigations areuresfd. Future analysis may possibly
involve independenZ WD estimates, e.g., from water vapour radiometers,usity real GPS
data.
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