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ABSTRACT

This thesis focuses on the Paleoproterozoic to Late Paleozoic basement
evolution of the metamorphic rocks scattered in the NW Fujian Province, the
NE Cathaysia Block the southeastern area of South China. Field observation,
systematic sampling and petrographic investigation combined with of whole
rock geochemistry, zircon U-Pb, Lu-Hf isotopes, trace elements, amphibole
and biotite “°Ar/*’Ar analyses and mineral chemistry study were applied in
this project to determine the nature, ages and relations of the leucosomes,
felsic paragneiss and mafic metamorphic rocks in study area and their

implications to the reconstruction of the Precambrian Rodina Supercontinent.

Following conclusions are made:

1. Based on this study, according to their metamorphism and deformation
characteristics, the metamorphic rock series in the study area can be divided
into two types, moderately to strongly metamorphosed rock series that
experienced ductile deformation and moderately metamorphosed rock series
that have experienced ductile deformations. New La-ICPMS U-Pb zircon ages
presented here and in previous study suggest that the original litho-
stratigraphy should be abandoned and the terminology “Complex” should be
used instead of “Group” and “Formation” for the high grade metamorphic
rock series in northwestern Fujian, where the protoliths were strongly

reworked by Early Paleozoic tectono-thermal events.

2. Obvious zircon U-Pb age peaks of ~1800 Ma suggest that the protoliths of
the Cathaysia Block be comparable to the basements of North America rather
than those of Eastern India and East Antarctica. Although the peaks of ~1800
Ma are also present in Western Australia, their '"°Hf/'”"Hf ratios (0.280706 -
0.281510) are apparently lower than those of zircons from SW Cathaysia



(0.281515 - 0.282098) and from this study (0.281232 - 0.282213, NE
Cathaysia). Besides, detrital zircons in Cathaysia and NW Yangtze indicate
significant juvenile input during Paleo- to Mesoproterozoic according to the
zircon Hf isotopes, which are distinctly different from Western Australia.
These evidences suggest that the basement of the Cathaysia share similarities
with that of North America, lending support for the Rodinia configuration
proposed by Li et al. (2008), in which Cathaysia was next to western

Laurentia before and during the late Mesoproterozoic assembly of Rodinia.

3. The protoliths of the felsic paragneiss in the NW Fujian area are immature
sediments, consisting of greywacke, arkose and lithic arenite compositions.
The significant input of the paragneiss protolith was dominantly formed by
several magmatic events during Neoproterozoic (820 = 6 Ma, 780 +£ 6 Ma, 776
+ 6 Ma, 758 £ 3 Ma, 740 £ 8 Ma and 722 + 9 Ma), probably deposited not
early than middle Neoproterozoic (~680 Ma). Many metamorphic rocks
contain 0.99 - 0.72 Ga detrital magmatic zircons, which are interpreted as
reflecting the tectono-thermal events related to the assembly and break-up of

the Rodinia supercontinent during the Neoproterozoic.

4. In this study, new La-ICPMS U-Pb anatectic zircon data from the NW
Fujian area suggest that the strong and widespread tectono-thermal events
were related to the orogeny probably having started during the Middle
Cambrian and lasted until the Middle Devonian, consisting of at least three
main episodes (~473 Ma, ~445 Ma, ~423 Ma), with major orogeny events
(including syn- to post-orogenic melting) constrained between ~473 Ma and
~407 Ma in the NE Cathaysia, and between ~468 Ma and ~415 Ma in the SW
Cathaysia. The age peaks in the Cathaysia Block (ca. 488, 471, 455, 440 and
415 Ma) are within the age range of the Qinling-Tongbai-Dabie orogen during
512 - 406 Ma. This suggests a possible linkage or interaction of the two

orogens.

il



5. The duration of the “Caledonian” orogeny in the NW Fujian area was no
shorter than ~50 Myr, starting at ~473 Ma (~Early Ordovician) or earlier, and
terminating at ~423 Ma (~Middle Silurian) or later. The “Caledonian”
orogenic event in the Cathaysia Block was likely due to an intracontinental
collision rather than the subduction of oceanic crust or arc-continental
collision. Considering the inhomogeneous cooling paths for the Tianjingping,
the Jiaoxi and Mayuan complexes, and different time restraint of the
widespread anatectic and magmatic events occurred in different places, the
“Caledonian” tectono-thermal events in the Cathaysia Block might vary

between different segments of the orogen.
KEY WORDS: Zircon U-Pb age, Hf isotope, geochemistry, “*Ar/’Ar

analyses, the Cathaysia Block, South China, Rodinia Supercontinent,

Caledonian orogeny
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Chapter 1 Introduction

Continental blocks form through crustal growth events, terrane or continental
collisions, and tectonic modifications. The Asian continent formed predominantly
through progressive amalgamation of continental blocks during the Phanerozoict*),
and could become the centre of a future supercontinent Amasial”!. The tectonic
events leading to the formation of Asia are part of the global tectonic system,
including the formation and breakup of supercontinents of Pangaea (ca. 320 - 170
Ma[s]), Gondwanaland (650 - 500 Ma assembly, 320 Ma merger in Pangea and 185 -
100 Ma breakup'®), Rodinia (ca. 1100 - 750 Ma'""!), and Columbia (ca. 2.0 - 1.2
Ga!'> ")) East Asia, as one of the tectonically most mobile areas in the current

world, may thus hold more clues about the geological history of the dynamic Earth.

East Asia contains three major Precambrian cratonic blocks, the North China, Tarim
and the South China Blocks. They and other various allochthonous crustal fragments
of East Asia have been brought into close juxtaposition by geological convergent
plate tectonic processes. The South China Block, which is the largest one of all East
Asian blocks and has played a key role during the amalgamation and evolution of
continental Southeast Asia, could probably maintain abundant geological records
during its existence (Figure 1.1).

This thesis focuses on the Paleoproterozoic to Late Mesozoic basement evolution of
the metamorphic rocks scattered in the northwestern Fujian Province, southeastern
area of South China (116.1° - 120.4° E, 23.8° - 28.3° N, Figure 1.2). The Province is
bordered by Zhejiang Province to the north and by Jiangxi and Guangdong Provinces
to the west. And to the south-east of the Province is the East China Sea.
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Figure 1.1 A schematic map showing the major tectonic units in East Asia

AL, Alashan Terrane; NCB, North China Block; HI, Himalaya; IC, Indochina Block; KL, Kunlun
Terrane; LS, Lhasa Block; QD, Qaidam Terrane; QDOB, Qinling-Dabie Orogenic Belt; QT, Qiangtang;
SI, Sibumasu Block; SG, Songpan-Ganzi Accretionary Complex; WB, West Burma; Modified after [3].
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Figure 1.2 Location of the study area in Fujian province, south-east China.
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§ 1.1 A summary of major tectonic events of Yangtze and
Cathaysia blocks, South China

The South China Block is bounded to the north by the Qinling-Dabie orogenic belt,
to the northwest the Longmenshan Fault, to the southwest the Red River Fault, and
to the southeast the continental slope of the East and the South China Seas (Figure
1.3). It is a composite terrane with Yangtze Block accepted as the northwestern
portion. However, the composition of the southeastern portion of South China Block
still remains controversial.

18 0) Shanghai
2.95-2.90 Ga /S ~ N —30°N
30°N - Yangtze o g
Taibei
@\
2 Hongkong
—120°N
20°N |—
Hainan Island
lli°E 12(i°E

’ Crystaline ~ Sibao
basement ~—~ orogen
Figure 1.3 Tectonic framework of the South China Block

1-Kongling complex; 2-Danzhu granitic gneiss; 3-Sanzhishu granitic gneiss; 4-Tianjingping

amphibolites; 5-Baoban complex (modified after [20]).
Grabau®!! firstly suggested that the metamorphic rock series widespread in
southeastern South China overlain unconformably by late Palacozoic strata formed
from Archaean to Proterozoic, and named the coastal region as the “Cathaysia
Paleocontinent”, which has held worldwide geologists®™ interests since the 1980s.
Alternatively, some authors’*>*) suggested that the southeastern South China Block
be a Caledonian fold belt developed over a miogeosyncline, due to the strong imprint
of the Ordovician-Silurian orogenesis on thick sedimentary-volcanic successions in
the region. Hsii et al. 2+ proposed a coastal terrane called Huanan Block being
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separated from Yangtze by a Mesozoic suture, recognizing the widespread Mesozoic
thrusting in southeastern South China. With a new round of investigations being
carried out since the 1990s, more systematic and reliable geochronology,
geochemistry, and basin history data have been collected to revise the tectonic
models. The “Cathaysia Block” has presently been referred to as the description of
the coastal region of the southeastern South China, probably including part of the
continent “sinking” in the East and South China seas (Figure 1.3), other than a
concept of the paleocontinent. Furthermore, a Neoproterozoic (Grenville) age suture
named the Sibao Orogen was recognized between the Yangtze and Cathaysia

2
terranes[

271 (Figure 1.3), considering no reliable record for active margins in
interior continent since the end of the Neoproterozoic and coherent distribution of
sedimentary facies in South China across the proposed Mesozoic sutures since at

least the Devonian!®®.

A time-space diagram (Figure 1.4) is presented to illustrate the major tectonic events
up to Late Mesozoic that shaped the South China Block as we know it today.
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Figure 1.4 A schematic diagram illustrating the timing of the major tectonic events in South
China up until late-Mesozoic.

1.1.1 Basement compositions formed before 1.0 Ga

The Yangtze Block is widely accepted as a coherent craton with the presence of an
old core consisting of trondhjemitic gneiss and amphibolite in Kongling area of its
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northern part (1 in Fig 1.3), which yielded SHRIMP U-Pb magmatic zircon ages of
ca. 2.95 - 2.90 Ga'***! and experienced ca. 2.75 Ga high-grade metamorphism, and
1.9 - 1.8 Ga granitic intrusions®™. Some older detrital zircons obtained from the
pelite are dated between 3.28 and 2.87 Ma!®’. It may consist of Archacan basement

widespread beneath Proterozoic upper-crustal rocks'".

Pre-Neoproterozoic aged rocks are rarely found in the Cathaysia Block. Achaean
ages from Cathaysia are only recorded in inherited zircon cores and detrital zircons,
and there is still no report of Achaean rocks hitherto. SHRIMP U-Pb geochronology
studies on detrital zircons shows minor Eoarchaean (ca. 3.8 Ga), Paleo- to
Mesoarchaecan (3.3 - 3.0 Ga) from late Neoproterozoic sediments in the
Nanling-Yunkai area” and the oldest detrital zircons are ca. 3.8 Ga in the Wuyishan
area”). And the oldest known crystalline rocks are recognized in the northeastern
Cathaysia, consisting of the ca. 1.8 Ga Danzhu® (2 in Figure 1.3) and Sanzhishu!*"
(3 in Figure 1.3) granitic gneisses in southwestern Zhejiang Province, and the ca. 1.8
Ga Tiajingping metabasalts which has experienced amphibolite facies metamorphism
in northwestern Fujian Province (4 in Figure 1.3, In addition, granodiorites in the
Baoban Complex are dated at ca. 1.43 Ga in the Hainan Island, southern Cathaysia
(5 in Figure 1307 3 The high-grade (upper amphibolite facies) metamorphic
basement rocks in the northeastern Cathaysia were regarded as part of the
Precambrian crystalline basement of Cathaysia. However, recent geochronological
work shows these rock series are probably Neoproterozoic to early Paleozoic in
age® " (this study see description and discussion in Chapter 5 and 6).

1.1.2 The Meso-Neoproterozoic events and the relationship with
Rodinia

The Meso-Neoproterozoic was the most active period of continental growth for the
South China Block!?"?* ¥ The rocks during Late Meso- and Early Neoproterozoic
are commonly metamorphosed to greenschist facies, and are tightly folded and
eroded prior to the deposition of volcaniclastic rocks younger than 820 Ma. In
eastern Sibao Orogen, the Shuangxiwu arc volcanic rocks yielded SHRIMP U-Pb

(201 Adakitic granite in Gan-Wan arc/ophiolitic belt was

39-40

zircon age of ca. 900 Ma
dated ca. 970 Ma, indicating an active subduction then>*, Amphibolite from
blueschists from the same area gave an Ar/Ar age of ca. 900 Ma?”. In the western
Sibao Orogen, granitic gneiss found in Sichuan Province was dated using SHRIMP
U-Pb zircion method at 1007+14 Ma and siliciclastic rocks at the same locality have
their youngest detrital zircon grains dated at ca. 1000 Ma. And the younger age limit
for the orogeny is probably suggested by a 857+13 Ma granodiorite in southern

Sichuan Province. In this case, the formation of the Sibao Orogen from ca 1000 -
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900 Ma was caused by the collision of the Yangtze and Cathaysia blocs, which made
the South China Block come to its present size and shape.

Neoproterozoic anorogenic magmatic rocks dated at ca. 830 - 750 Ma are

widespread in South China®* **"]

including pre-rifting granitoids and rift-related
volcanic rocks and mafic-ultramafic sills/dykes widespread in the Yangtze craton.
Mineralogical, petrographic and geochemical characteristics of the granitoids
indicate that they are S-type and I-type. However, they were formed during a short
period of 825 - 820 Ma, such as the 819 = 8 Ma Ershan K-rich granitoids in Yunnan,
the 819 + 9 Ma Jiuling cordierite-bearing granitoids in northern Jiangxi, the 823 + 8§
Ma Xuncun cordierite-bearing granitoids in southern Anhui®!, the 819 + 8 Ma
Bendong Granite, the 824 + 4 Ma Granite and the 826 + 10 Ma Sanfang Granite in
north Guangxi[43], and the 819 + 7 Ma Huanling Pluton in Hubei Province!™ (F igure
1.5). And their Sm—Nd isotopic data suggest that all were generated by partial
melting of various crustal rocks without appreciable involvement of new
mantle-derived magmas!*”!. The rift-related volcanic rocks include the 817 + 5Ma
Tiechuanshan bimodal basalte-dacite/rhyolite in Hannan area at the northwestern
47 the 803 + 12 Ma Suxiong bimodal basalt-dacite/rhyolite in the western
] and volcanic rocks along the southern to southeastern margin, such as the

margin
margin[44
819 =+ 11 Ma Yingyangguan spilite-keratophyre[49], the 814 + 12 Ma Changshuipu
dacitic agglomerate”, the 797 + 11 Ma Hongchicun-Shangshu bimodal
basalt-rhyolite[46], and the 818 + 12 Ma Taoyuan bimodal basalt-rhyolite””. Besides,
the rift-related mafic-ultramafic sills/dykes occurred both around and inside the
Yangtze Block, including the 788 + 2 Ma Jiabang dolerite sills in southeastern
Guizhou™, the 770 + 3 Ma®! /806 + 3 Mal*”! Huangling mafic dike swarm in Hubei,

and the 761 + 8 Ma mafic-ultramafic dykes in north Guangxi™*.

A recent study on the Mamianshan rift-related bimodal volcanic rocks in
northwestern Fujian area, Cathaysia Block, which are dominantly transitional to
mildly alkaline basalts and subordinate alkaline rhyolite, give an eruption age of 818
+ 9 Ma.
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Figure 1.5 Simplified map showing the distribution of the Neoproterozoic granitoids in
South China Block, modified after [20, 45].

The abundance of Meso-Neoproterozoic aged rocks in South China has led many
geologists to examine its involvement in the formation and breakup of a late
Mesoproterozoic supercontinent, firstly proposed by Valentine and Moores™, later
termed Rodinia®®, which was composed of almost all Precambrian cartons. The
Grenville-aged or Grenvillian orogenic events occurred between 1300 Ma and 900
Ma all over the world, including Antarctica, Australia, Baltica, the southern margin
of Laurentia, North and South China and plenty of other continents!” 1% 3
(Figure 1.6). With the accumulation of the geological and paleomagnetic evidences,
more and more authors have accepted the Rodinia hypothesis and proposed their

continental reconstructions!’ 1% 36-57- 39-611.
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Figure 1.6 Paleogeographic reconstructions of Rodinia.
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CMG, Coates Land-Maudheim-Grunehogna Province; E, Ellsworth-Whitmore Montain.

It is suggested that the fragmentation of Rodinia occurred in two distinct periods; the
first one during 820 - 750 Ma and the second on between 600 and 550 Ma''®!. The
820-750 Ma event separated Australia from western Laurentia

The major magmatic and rifting events in the South China Block from late
Mesoproterozoic to earliest Neoproterozoic (= 900 Ma) may reflect the dynamic

changes in tectonic environment between the assembly of Rodinia, and breakup of
the supercontinent during two phases of ca. 850 - 825 Ma and 750 - 700 Ma. Based
on stratigraphic correlations, paleomagnetic and geochronology results Li et al 7%
proposed South China was located in a central position between Australia-East
Antarctica and Laurentia in Rodinia during the late Mesoproterozoic to Early
Neoproterozoic in their “missing-link” model (Figure 1.7), in which the Cathaysia
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Block is suggested to act as an extension of Laurentia from ca. 1800 Ma, having no
connection between Australia-East Antarctica, Yangtze craton until 1100 - 900 Ma.
This central position within Rodinia is also suggested as a site of rifting that led to
the Neoproterozoic (ca. 820 - 750 Ma) break up of Rodinia'*® ®*!. This reconstruction
was supported by later paleomagnetic studies!'!). However, Jiang et al.!*!

the stratigraphic comparisons suggest that the SCB may have been linked to

argued that

northwestern India in Neoproterozoic time and was probably separated from India
and moved toward northwestern Australia in the early Cambria. Recently,
paleomagnetic data have indicated that the SCB may have been connected with
northwestern Australia and remote northeastern India during latest Neoproterzoic
and early Paleozoic times'®). Alternatively, Yu et al.”? considered that the late
Neoproterozoic sediments, from which ~3.8 Ga, 3.3 - 3.0 Ga, ~2.5 Ga, ~1.0 Ga and
0.70 - 0.54 Ga zircon populations were discovered, may have originated mainly from
Eastern India-East Antarctica and thus suggested that the South China Block was
linked with the Eastern India - East Antarctica continents in the Late Neoproterozoic
(Figure 1.8). It seems that the location of the SCB relative to other microcontinents
in Rodinia is still a contentious issue.

B=Belt basin

BC=British Columbia

C=Cathaysia

M=Mackenzie Mt.

M NC=NW Canada
T=W. Tasmania

BC Y=Yangtze

Australia

Laurentia

Antarctica T

Sibao /
Orogen Hainan
Island /
Mojavia Yavapai
Mazatzal

Ca. 1. 4Ga magmatic provinces

Grenvillian metamorphism

Rivers from the Sibao Orogen

Interpreted forland basions IMI

T
i

Figure 1.7 The “missing link” model for possible position of South China in Rodinia,
modified after [27].
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Western Yangtze Albany-Fraser Belt/Musgrave

Eastern Ghats
(1000-936Ma)  Block (1000-936 Ma)

(990-950 Ma)

""" (990-950 Ma) .-
Paleozoic Antactica it

mobile belts
(600-500 Ma)

Maud Province (1300-1070 Ma)

Windmill Islands/Bunger Hills
Namaqua-Natal Province (1130-1070 Ma) (1300-1050 Ma)

Pre-Grenvill cratons l:l Grenville-age mobile belts
:l Pan-African mobile belts I:I Detritus transport direction

Figure 1.8 Paleoposition of the South China Block, modified after [32].

The heavy dotted line with “?” in the South China Block denotes a proposed Grenville belt; the wavy
lines with “?” between India and SCB indicate possible connection between the Eastern Ghats in India
and the western part of the Yangtze Block; SC, South China; NPCMs, northern Prince Charles
Mountains.

However, because all these Neoproterozoic igneous rocks occurred mostly around
the Yangtze Block, with some showing arc-like geochemical fetures, and a ~1.0 Ga
ophiolite suite occurred in the southeastern Yangtze Block!®, Zhou et al.l""]
consided that active continental margins existed around the Yangtze Block during the
early Neoproterozoic, and the collision between the Yangtze and Cathaysia blocks
did not start until ca. 800 Ma.

1.1.3 The Ordovician-Silurian “Caledonian” events and the

relationship with Gandwanaland

It is suggested that continental rifting in South China ceased during ca 750 - 730
Ma*”, and the Nanhua Rift represented a failed rift from the late Neoproterozoic to

carliest Palaeozoic®®.

These are supported by the sediments from Late
Neoproterozoic to early Ordovician ages, which are dominantly carbonates, shales
and some cherty units on the Yangtze side of the Nanhua Basin, whereas clastic
marine deposits dominate the Cathaysia side of the basin. From ~450 Ma to ~400 Ma,
the area of the Cathaysia Block was inverted into a Caledonian fold-thrust belt, with

the Nanhua basin in front of it?2> 7! (Figure 1.9).

It is proposed that the Caledonian Orogeny represents the closure of a large
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inter-continental ocean basin!™”, requiring the consumption of considerable oceanic
crust. However, although it is unclear if any oceanic crust was developed in the
Nanhua Basin, there is not any post-Neoproterozoic arc or ophiolitic complexes
having been reported between the Yangtze and Cathaysia blocks so far. Besides, an
open ocean environment is not supported by the Sinian to early Paleozoic
sedimentary facies in this regionm]. Recent study shows the Nanhua Basin had
evolved into a foreland-basin similar to the Appalachian basin, based on the
investigation of the Kbentonite, black-shale, and associated flysch deposition within
South China near the Ordovician—Silurian transition, which can be regarded as distal,
foreland responses to the continuous northwestward collision and accretion of the
Cathaysia Block to the Yangtze Block!™! (Figure 1.9).

North China /=

()i,, /r
Il]
&

30N |- Yangtze i N A | .
B el o

8-14 ¢
P

20°N }— —20°N
15 Hainan Island
Ilirli lZ(i°E

Foreland basin Caledonian orogen

/ Suture G@ Caledonian granitoids

Figure 1.9 Schematic diagram showing the location of the Caledonian Orogen, related
granitoids and foreland basin in South China, modified after [20, 73-74]; Numbers
represent the dated granitoids listed in Table 1.1.

The Caledonian Orogeny in South China during the Early-Middle Paleozoic (542.0 -
359.2 Ma) was a strong tectonothermal event accompanied by intensive folding and
ductile shearing deformation of the Sinian to early Paleozoic successions, the
extensive granitic magmatism and the regional angular unconformity.

The thick Sinian to early Paleozoic sediments in the Cathaysia Block were generally
involved into an intensive folding deformation and ductile slipping rheology
including thrust and strike-slip deformation and were metamorphosed to
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lower-greenschist facies. The peak period of deformation was during 420 Ma and
400 Ma'™. At the same time, a violent granitic magmatism started all over the
Cathaysia Block, forming numerous peraluminous S-type and rare I-type granites
aging from 507 to 370 Mal’**¥. The S-type granites formed a bit later (400 - 430 Ma)
than the I-type (460 - 430 Ma, e.g. Cizhu granodiorite[79]; 4 in Figurel.9 and Table
1.1), and composed more than 90% of all the Caledonian granites, including both
in-situ/semi-in-situ gneissic granite batholiths and homogeneous granite batholiths.
Large-scale S-type granitoids were formed mainly by multiple intrusions (e.g.
Wanyangshan-Zhuguangshan and Wugongshan complex granitic batholiths), mostly
consisted of biotite monzinitic granite; whereas small-scale ones were formed once
comprising granodiorites, monzonitic granites, quartz monzonitic granites and biotite
granites (for detail information including the localities, ages and analytical methods
of these granitoids, see Figure 1.9 and Table 1.1). Synchronously, migmatization of
the Precambrian metamorphic rocks developed widely within the Cathaysia Block,
e.g. ca. 470 Ma migmatic granite in the Wuyishan area'™!, 394 - 449 Ma migmatites

[84]

in Yunkai area™", 447 Ma Tianjingping leucogranodiorite of migmatites in

(85 448 Ma Baiyunshan migmatic augen gneisse and

northwestern Fujian Province
412 Ma Chendong nebulitic migmatitic granite near Guangzhou City[86]. Most of the
Caledonian granites and migmatites exhibit low eng(?) values of -18.4 to -2.1, high
(87Sr/86Sr)i values of 0.7071 to 0.7287, and old Nd model ages very similar to those
of the surrounding Precambrian metamorphic basement rocks. Hence they were

mostly derived from partial melting of thickened continental crust!®”,

After the violent granitic magmatism and migmatization, the whole South China
Caledonian fold belt was overlain unconformably by the Late Devonian
conglomerate and coarse sandstone, indicating the termination of folding and
orogeny. From the Late Devonian, a united paleogeographic and sedimentary
environment occurred really in the South China Block. Hence, the
Ordovician-Silurian orogeny probably reflected the final phase of accretion between
the Yangtze and the Cathaysia blocks.

From the global viewpoint, the tectonic evolution of South China during the

Early-Middle Paleozoic has been marked by the break up and dispersion of
89]

eee

Gondwanaland™®®. The main stable ,.core” of Lower Palaeozoic Gondwanaland!
comprised a supercontinent including Africa, South America, Arabia, the Indian
subcontinent, Antarctica and Australia (Figure. 1.10). Iberia and Armorica in the
West, and South China and other terranes in the East are faunally contiguous to
various parts of that core.

[2-3, 90]

According to the faunal distribution, the biogeographic and the paleomagnetic
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data”!], the South China Block had been located along the Great India - Australia
region of the Gondwanaland margin during the Early-Middle Paleozoi. After the

Early Devonian, South China was separated from Gondwanaland, and remained in a

low latitude position thousands of kilometers away from the East Gondwanaland at

21 which are indicated by available biogeography[2'3],

[93-94]

the southern polar region
litho-facies and paleomagnetic evidences.

The start of the Caledonian orogeny in South China may resulted from the major
clockwise rotation of the Gondwanaland supercontinent, the opening of the
Paleo-Tethys during Early to Middle Paleozoic and the closure of the late
Neoproterozoic-Paleozoic Nanhua Rift basin which separated the Cathaysia and
Yangtze blocks'””!. However, models for the formation of the orogen remain
debeating[zg].

Table 1.1 The zircon U-Pb dating data of Caledonian granitoids in the Cathaysia Block

No. Locality Rock Age (Ma) Method S](?l?;ze
1 Guzhai Granodiorite 507+ 17 La-ICPMS [76]
428+ 1
2 Wugongshan Granodiorite - TIMS [78]
462+ 2
3 Yigian Granite 445+ 6 La-ICPMS [79]
4 Cizhu Granodiorite 432+ 2 La-ICPMS [79]
5 Sanbiao Bt Granite 422+ 11 La-ICPMS [79]
6  Shidong Bt Granite 461+ 35 SHRIMP [80]
7  Guangping Bt Granite 444+ 6 SHRIMP [80]
8  Yunkai Bt Monzonitic Granite 467+ 10 SHRIMP [81]
9  Yunkai Granite 465+ 10 SHRIMP [81]
10  Yunkai Charnockite 435+ 11 SHRIMP [81]
11 Yunkai Gt-Bt Monzonitic Granite 413+ 8 SHRIMP [81]
12 Yunkai Foliated Granite 41+ 5 La-ICPMS [82]
13 Yunkai Granitic Gneiss 430+ 5 La-ICPMS [82]
14 Yunkai Bt Orthogneiss 27+4 La-ICPMS [82]
15 Baoban Anatectic Granite 370+ 4 SHRIMP [77]

§ 1.2 Previous Work in the NE Cathaysia Block

The Precambrian metamorphic basement rocks in the north were previously divided
into two major units, Paleo-Mesoproterozoic unit and Neoproterozoic unit, due to the
different metamorphic degrees and inaccurate dating data®®®”. The rocks
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experienced upper amphibolite facies metamorphism and migmatizaion were
assigned to the Paleo-Mesoproterozoic unit including Tianjingping “Formation” and
Mayuan “Group” in Fujian Province and Badu “Group” in Zhejiang Province,
whereas others metamorphosed to greenschist-lower-aphibolite facies were attributed
to the Neoproterozoic unit, composing Mamianshan and Wanquan “Group” in Fujian
Province and Longquan “Group” in Zhejiang Province. Since the oldest known
crystalline rocks were recognized in the Badu “Group” (1.8 Ga Danzhu'*” and
Sanzhishul*" orthogneisses) and the Tianjingping “Formaiton” (1.8 Ga metabasalts),
they could be treated as Paleoproterozoic products. However, recent geochronology
research for the metamorphic series in Fujian Province shows that the rocks in
Mayan “Group” are Neoproterozic rift successions deposited not earlier than 800 Ma,
and the Mamianshan and Wanquan “Groups” were formed during the
Neoproterozoic from 751 Ma to 728 Ma'*?
strong metamorphism, deformation and anatexis, the original lithostratigraphy and

], Considering these rocks experienced

the previous “Group” and “Formation” terminology should be abandoned. The
names of each metamorphic unit hereinafter are referred to as “Complex”.

Nd isotopic studies of many granitic and sedimentary rocks indicate that the
Palaeoproterozoic (2.2 - 1.7 Ga) was an important period of formation and accretion
of continental crust in the Cathaysia Block!”*'®) main part of the Tianjingping
Complex. The other suite is composed principally of fine-grained biotite gneiss and
amphibolite, the protoliths of which are intermediate to felsic volcano-sedimentary
rocks and basic volcanic rocks. They are poorly exposed, and mainly occur near
Tianjingping, southwest of Jianning. A 2682 + 148 Ma Sm-Nd whole-rock isochron
age for amphibolite is the main evidence used to propose that the Tianjingping
Formation formed in the Neoarchean''”". However, Li® obtained a zircon age of
1766 = 19 Ma from the same amphibolites and interpreted this as formation age for
the Tianjingping Complex. The amphibolite is LREE-enriched with highly positive
end(?) values and a mean crustal residence model age (7pm) of 1.77 Ga'"". The
Mayuan Complex is widespread in Fujian area (Figure 1.10) and has been
extensively modified by anatexis. The metamorphic temperature and pressure
conditions were 570 - 680 °C and 4.3 - 7.0 kbar!' "', or 590 - 625 °C and 4.2 - 4.5
kbart'®!. The Mamianshan and Wanquan Complexes in northwestern Fujian and the
neighboring Longquan Group in southwestern Zhejiang, shows a northeast-trending
distribution (Figure 1.10), which is roughly parallel to the Neoproterozoic Nanhua

rift basin!®’

. The Mamianshan Complex underwent intense deformation and was
metamorphosed to upper-greenschist to lower-amphibolitefacies at pressures of 3 -

4.5 kbar and temperatures of 530 - 600 o,
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Figure 1.10 Simplified geologic map of the Precambrian metamorphic rocks in Fujian and
Zhejiang Provices.

§ 1.3 Aims and Objectives

The metamorphic basement rocks of the Cathaysia Block were chosen as the
research project because it may hold some key information for understanding the
geodynamic evolution of a long duration from Paleoproterozoic to Late Mesozoic.
These include the ~2.7 - ~1.8 Ga inherited zircons from leucogranite and metabasite

that may be sourced from other continent (e.g. Laurentia2**"

, or India and East
Antarctica[32]) during the evolvement of the Columbia Supercontinent, the ~1000 -
~700 Ma magmatic activities that were probably related to the assembly and breakup
of Rodinia, the records of the magmatic metamorphism and anatexis extensively
developed from ~500 Ma to ~430 Ma when it was located along the margin of
Gondwanaland, and the metamorphic and resetting information from ~240 Ma to
150 Ma which may be caused by the closure of the Paleo-Tethys and the subduction

of the Pacific plate during the assembly of Pangea.

The major objectives of this thesis are to:

1. Establish the T-t conditions of the metamorphic rocks and the lithosphere
growth history of the major metamorphic complexes in northeastern
Cathaysia Block, South China,

2. Propose a testable hypothesis on the basement evolution of the northeastern
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Cathaysia Block,
3. Discuss the major tectonothermal events in the Paleozoic in relation to global

tectonic evolution.

§ 1.4 Approaches

The methods employed during this project are outlined below:

< Structural and lithological mapping was carried out during three field
seasons in Fujian and Zhejiang Provinces. Samples were collected from key
areas for petrology, geochemistry and geochronology studies;

<> The field data and published data were collated and presented in a GIS
format to allow spatial analyses and map preparation;

< Whole rock geochemical analyses were performed on the gneisses,
amphibloltes, and leocosomes;

< Geochronology research were carried out for U-Pb analyses of zircon,
titanite, monazite and *’Ar/”Ar analyses of hornblende, biotite and
muscovite;

< Hf isotopic analyses for zircon grains compiled with the trace element
analyses;

<> Mineral chemistry analyses for garnet, biotite, muscovite, hornblende,

plagioclase, sillimanite, and monazite.

§ 1.5 Thesis Structure

An outline of each chapter is presented as follow:
Chapter 1, the introduction chapter (current chapter), presents a broad background
about the historical geology of the South China building on precursors“work.

Chapter 2 provides an overview of regional geology based on the field observations
and previous geochronology data in the study area.

Chapter 3 gives analytical background information regarding the methodology

employed in this study.

Chapter 4 and 5, which form the main part of this thesis, focus on the whole rock
geochemical characteristics, the geochronological framework, and the geochemical
and Hf isotopic features of zircons, and the T-t paths establishment for two adjacent
complex units, the Tianjingping Complex, the Jiaoxi and Mayuan complexes, the
northeastern Cathaysia Block. The geochemistry analyses are based on an extensive
investigation into various samples, consisting metabasite, metasedimentary rocks and
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migmatites formed by anatexis. The geochronology data were obtained from
different minerals, including zircon, monazite, titanite, hornblende and biotite. And
the geochemical and Hf isotopic features of zircons record the lithosphere evolution
history of the study area.

Chapter 6 uses all the data in combination to propose a testable hypothesis on the
basement evolution of the northeastern Cathaysia Block, and to discuss the major
tectonothermal events in Paleozoic in relation to global tectonic evolution.
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Chapter 2 Regional geology and sampling

Precambrian metamorphic basement rocks in Fujian Province have a total exposure
of about 15000 km? mainly in the north and northwestern part of the province,
which has been subdivided into western and eastern regions according to different
working teams (Figure 2.1). They are mostly layered metamorphic terranes, with the
major protoliths being sedimentary and volcano-sedimentary rock series with
scarcely exposed metamorphosed and deformed intrusions. The metamorphic rocks
have previously been divided into the Archaean or Palaeoproterozoic Tianjingping
“Formation”, the Palaeoproterozoic Mayuan “Group”, and the Neoproterozoic
Wanquan “Group”, Mamianshan “Group” and Jiaoxi “Formation”. They are mostly
not in direct contact, or in fault contact with each other™® and their detailed features
will be discussed later (Table 2.1, Figure 2.1).
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Figure 2.1 Geological sketch map of the northwest Fujian Province (modified after
references [37, 106]; the boundary lines of western and eastern regions are not geological
boundaries); Rock samples from the sampling localities are listed in APPENDIX A.
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Table 2.1 A previous subdivision of Precambrian rocks in northwestern Fujian Province
(modified after reference [106])

Western Region Eastern Region

Xiafeng “Formation”
728 + 8 Mal*

Wanquan Huanatan “Formation” Mamianshan Dongyan “Formation”
“Group” g “Group” 818 + 9 Mal*”

Daling “Formation”
751 + 7 Mal®

Longbeixi “Formation”

Dutan “Formation”

Dikou “Formation” younger than

[33]
Mayuan e OB
“Group”
Dajinshan “Formation” Dajinshan “Formation”
Tianjingping “Formation” 1766 + 19 Mal®®
728 + 8 Ma, protolith age; - - - - - - , fault contact; ...... , unknown contact; ——stratigraphic contact

their detailed features will be discussed later

Based on this study, according to their metamorphism and deformation
characteristics, the metamorphic rock series in the study area can be divided into two
types:

(1) Moderately to strongly metamorphosed rock series that experienced ductile
deformation, as exampled by the Tianjingping and Mayuan Complexes. In these
rock units granitic and quartzofeldspathic veins and folds are “open” with more
variable geometry (Figure 2.2). Such rock units have undergone amphibolite
facies metamorphism and migmatization.

(2) Moderately metamorphosed rock series that have experienced ductile
deformations, such as the Mamianshan and Wanquan Complexes, in which
there are quartz veins of variable widths (Figure 2.3). Such rock units have
dominatingly undergone upper greenschist facies metamorphism, but locally up
to lower amphibolite facies metamorphism.
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a. Photo ofthe Mayuan Cmplex b. Photo of the Tianjingping Complex
at location No. 65 at location No. 125

Figure 2.2 Granitic and quartzofeldspathic veins and ductile folds in high grade

metamorphic rocks. Location numbers are shown in Figure 2.4 and 2.6.

FE il

a. Photo of the angquan Complex
at location No. 51 at location No. 119

Figure 2.3 Quartz veins and regular folds in low-grade metamorphic rocks. The axes of the
folds are parallel to the gneissosity. Location numbers are shown in Figure 2.1 and 2.12.

8 2.1 The Tianjingping Complex

The oldest metamorphic rocks of the region, the Tianjingping Complex, have an
exposure of about 840 km?, mainly in the Jianning and Guangze areas (Figure 2.1).
Figure 2.4 shows the detailed geological features of the Tianjingping Complex and
the sampling locality numbers.

It consists predominantly of graphite-bearing sillimanite-garnet-mica schist,
sillimanite-plagioclase-mica schist, sillimanite-bearing biotite-plagioclase gneiss,
fine-grained biotite-plagioclase gneiss, fine-grained garnet-bearing biotite gneiss and
hornblende-biotite gneiss with mica schist, gneiss and amphibolite enclaves. Their
protolith is a suite of volcanic flysch that has undergone amphibolite facies
metamorphism and local modification by anatexis, forming leucosomes of different
sizes and resulting in their strong plastic deformation and migmatization (Figure
2.5).
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Figure 2.4 Geological map of the Tianjingping Complex, modified after the Geological Map
of Fujian Province!™. Rock samples from the sampling localities are listed in APPENDIX A.
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a. Pegmatite (P) intruding into hornblende b. Banded migmatite with amphibolite and
gneis enclavs (No. 125)

c. Lentoibiamphibolite enclave in migmatite d. Layered amphibolite in migmatite
(No. 125) (No. 39)

Figure 2.5 Field features of the Tianjingping Complex. Location humbers are shown in
Figure 2.4.

The Tianjingping Complex was previously considered to be of late Archean age
based on a whole rock Sm-Nd isochron age of 2682 + 148 Ma for amphibolite in the
nearby Yijiawan district™™. However, Li et al.**! considered the Sm-Nd isochron a
likely “pseudo-isochron”, and concluded that the protolith formed in the
Paleoproterozoic, based on a SHRIMP U-Pb zircon isotopic age of 1766 + 19 Ma
they obtained from amphibolite exposed in the Tianjingping area. The amphibolite
displays geochemical characteristics of enriched LREE, highly positive eng(t) values
and a mean crustal residence model age (Tpm) of the Tianjingping Complex™®?.
Recently, Wan et al.®® analyzed detrital zircons from fine-grained biotite gneiss of
the Tianjingping Complex and obtained SHRIMP U-Pb isotopic ages of 2.79-1.76
Ga for the magmatic cores of zircons and an age of 446 - 425 Ma from the
metamorphic rims. It suggests that the Tianjingping Complex was possibly formed
no earlier than 1.76 Ga and was reworked in the Paleozoic.

§ 2.2 The Mayuan Complex

The Mayuan Complex forms the main part of the metamorphic series and has an
exposure of approximately 5370 km? (Figure 2.1). It is previously divided into the
Dajinshan and Nanshan “Formations” in the western region, the Dajinshan and
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Dikou “Formations” in the eastern region (Table 2.1).

2.2.1 The Dajinshan “Formation”

The Dajinshan “Formation” is composed mainly of amphibolite facies
graphite-bearing sillimanite—garnet-biotite schist, fine-grained biotite-plagioclase
gneiss with amphibolite layers and small amounts of quartzite and marble. Figure 2.6
shows the western Mayuan Complex located northwest of Jianyang. The rocks have
been extensively modified by anatexis, with portion of granitic melt in migmatite
increasing from the east to the west (Figure 2.7). Previously estimated metamorphic
temperatures and pressures range from 570 °C to 680 °C and 4.3 kbar to 7.0
kbar™®1%! or from 590 °C to 625 °C and 4.2 kbar to 4.5 kbar 1%,
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b. Irregular folds of quartzofeldspathic veins in
migmatite (No. 65)
e ‘.."_'-‘v .
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a. Fine-grained biotite gneiss with a small
amount of quartzofeldspathic veins (No. 66)

ke e S A, :
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and irregular folds (No. 65) migmatite (No. 65)

Figure 2.7 Field features of the Dajinshan “Formation”. Location humbers are shown in
Figure 2.6.

2.2.2 The Nanshan and Dikou “Formations”

The Nanshan “Formation” is exposed mainly in the Jianyang area (Figure 2.1). It
consists predominantly of fine-grained biotite gneiss and biotite—quartz schist and
has experienced strong deformation and anatexis with Quartzofeldspathic veins and
folds (Figure 2.8). The Complex is interpreted to have been derived mainly from
sedimentary rocks with small amounts of volcano-sedimentary rocks.

The Dikou “Formation” is distributed mainly in the Dikou area (Figure 2.9). It
consists predominantly of fine-grained amphibolite facies garnet and
sillimanite-bearing biotite gneiss, migmatic biotite gneiss, schist and quartzite, the
protoliths of which are sedimentary rocks. Irregular folds of quartzofeldspathic veins
are widely developed in the migmatic biotite gneiss (Figure 2.10). The Dikou
“Formation” was previously considered to have formed during the Paleoproterozoic
because of its high-grade metamorphism, deformation and migmatization!®!.
However, based on the SHRIMP U-Pb zircon study, the Dikou “Formation” is
determined to be formed later than 0.8 Gal*®l.
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a. Tight folds of quartzofeldspathic veins b. Irregular folds of quartzofeldspathic veins

Figure 2.8 Field features of the Nanshan “Formation” (No. 10). Location numbers are
shown in Figure 2.1.
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Figure 2.9 Geological map of the Tianjingping Complex, modified after the Geological Map
of Fujian Province™:; Rock samples from the sampling localities are listed in APPENDIX A.
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. i o w21 £
a. Migmatic biotite gneiss with b. Irregular folds of quartzofeldspathic
quartzofeldspathic veins (No. 53) veins in migmatite (No. 56)

Figure 2.10 Field features of the Dikou “Formation”. Location numbers are shown in
Figure 2.9.

§ 2.3 The Jiaoxi “Formation”

The Jiaoxi “Formation” is mainly exposed ca. 8.5 km southwest of the Huangkeng
Town along ductile faults (Figure 2.6). It consists predominantly of banded biotite
gneiss and hornblende gneiss with interlayers of biotite-quartz schist. The protoliths
were intermediate to felsic volcano-sedimentary and sedimentary rocks™. The
metamorphic minerals, including biotite, garnet, sillimanite and kyanite, suggest an
amphibolite-facies metamorphism. They have generally experienced migmatization
and intense ductile deformation (Figure 2.11).

These rocks were previously regarded as of Meso- to Palaeoproterozoic ages
according to four 2’Pb/?°Pb ages of 1500 - 1890 Ma zircons from the paragneiss®*®®.
Recent geochronology studies revealed abundant 1040 - 800 Ma detrital zircons
from fine-grained biotite gneiss in the Jiaoxi “Formation”, implying that the
protoliths were deposited no earlier than 0.8 Gal**!.

a. Irregular folds of quartzofeldspathic b. Pegmatite vein intruding into migmatitic
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veins in migmatite (No. 59) biotite gneiss (No. 61)

c. Granitic and quartzofeldspathic veins and d. A lager amount of granitic leucosome in
irregular folds (No. 61) migmatite (No. 61)

Figure 2.11 Field features of the Jiaoxi Complex.

§ 2.4 The Wanquan Complex

The Wanquan Complex is widespread in the Wanquan and Taining areas with ductile
fault contact to the Jiaoxi “Formation” (Figure 2.12). It is previously divided, in
ascending order, into the Dutan, Huangtan and Xiafeng “Formations”. Their
protoliths are a suite of marine facies volcano-sedimentary series that were
metamorphosed to upper greenschist-facies and locally lower amphibolite-facies.

The Dutan “Formation” consists predominantly of fine-grained biotite gneiss and
mica-quartz schist, and their protoliths are dominantly sedimentary rocks with some
intermediate to felsic volcanic rocks. The Huangtan “Formation” is mainly
composed of fine-grained biotite-albite gneiss, fine-grained biotite two-feldspar
gneiss and quartz veins. The protoliths are mainly Na-rich intermediate to felsic
volcanic rocks with intercalations of sedimentary rocks. The Xiafeng “Formation”
consists chiefly of micaceous schist, locally containing graphite, intercalated with
small amounts of fine-grained quartzo-feldspathic gneiss. Its protoliths were
sedimentary and intermediate to felsic volcano-sedimentary rocks. All rocks of the
Wanquan formation are intensively deformed and the folds axes are parallel to the
gneissosity or schistosity (Figure 2.13).

Conventional U-Pb zircon dating of intermediate to felsic metavolcanic rocks of the
Wangquan Complex yielded ages of 1320 - 1050 Mal*%!. But latest SHRIMP U-Pb
zircon study yielded a weighted mean “®Pb/*®U age of 728 + 8 Ma, indicating the
formation age of the original volcanic rock in the Xiafeng “Formation”®®.
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117°00'E 117°20'E

Taining

26950'N GG

26°40"°N 26°40'N

117°00°E N7°20'E

- Indosinian Granitoid - Caledonian Granitoid |Z| Fault
- Wanquan Complex - Jiaoxi Complex Sampling locality

Figure 2.12 Geological map of the western Wanquan Complex, modified after the
Geological Map of Fujian Province™; Rock samples from the sampling localities are listed
in APPENDIX A.

a. Deformed quartz veins in paragneiss (No. 121) b. Quartz veins in paragneiss (No. 121)
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c. The axes of thefls are parallel to the d. The axes of the folds are parallel to the
gneissosity (No. 50) gneissosity (No. 49)

Figure 2.13 Field features of the Wanquan Complex.
8§ 2.5 The Mamianshan Complex

The Mamianshan Complex is well exposed along the Zhenghe-Jianou-Dongyan and
Longbeixi-Youxi-Anxi areas, showing a northeast-trending distribution, and was
formerly subdivided, from bottom to top, into the Daling, Dongyan and Longbeixi
“Formations” (Figure 2.9, Figure 2.14 and Table 2.1).
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The Daling “Formation” consists predominantly of fine-grained gneiss (Figure 2.14
a, b, c) and several micaceous- and quartz-schist with the meta-keratophyric volcanic
rocks and marbles (Figure 2.14 d).

c. The axes of the folded quartz veins parallel d. Marble with pelitic layers (No. 13)
to the gneissosity (N0.120)

Figure 2.15 Field features of the Mamianshan Complex.

The Dongyan “Formation” is composed of actinolite schist, amphibolite, biotite
gneiss, mica-bearing quartz schist and marble. Their protoliths are spilite,
quartz-keratophyre and sediments such as marls and carbonates. The Longbeixi
“Formation” consists dominantly of micaceous schist and quartzite which have
sedimentary protoliths with some marble lens. The metamorphic grade of the
Mamianshan Complex rocks reached upper greenschist- to amphibolite-facies, and
the metamorphic temperatures and pressures estimated were 530 - 600 °C and 3 - 4.5
kbarl'®1%4 or 459-612 °C and 5.6-7.7 kbar™®!. Four phases of deformation have
been identified™™ ). A conventional U-Pb zircon age of 1100 + 19 Ma was
obtained for a metamorphosed quartz-keratophyre of the Daling “Formation”*%-1%]
but a SHRIMP zircon U-Pb age of 818 + 9 Ma (MSWD = 1.1) has recently been
reported for magmatic zircon from felsic metavolcanic rocks of the Dongyan
“Formation”®"),
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a. Outcrop of the greenschist (No. 15) b. Quartz and calcite veins in greenschist (No. 69)

Figure 2.16 Field features of the greenschist in the Mamianshan Complex.

The Mamianshan Complex is similar in many cases to the Wanquan Complex, with
both dominated by Na-rich volcano-sedimentary rocks. However, in the Wanquan
Complex basic metavolcanic rocks are not found, and quartzite and marble are also
limited. The lithological boundaries in theWanquan Complex are oriented in an EW
direction whereas those in the Mamianshan Complex are oriented in an NNE
direction.

Comparing the components and the field characteristics of these complexes, the
Tianjingping, Mayuan and Jiaoxi Complexes have experienced higher-degree
metamorphism, anatexis, migmatization and strong deformation, with
quarzofelsdparic veins or leucogranites inside, whilst the Wanquan and Mamianshan
Complexes have been metamorphosed to a lower degree, with quartz veins and
regular folds. The intensity of the anatexis increases from southeast to the northwest.
Since the Jiaoxi and Mayuan complexes almost share similar ages for their youngest
detrital zircons (Table 2.1), they could be amalgamated as a single unit. Because the
protolith of Mamianshan Complex could have been deposit earlier than that of
Wanquan Complex, they should remain separated, although they have semblable
features.

§ 2.6 Field Sampling

Samples for this study were collected in the study area during 3 field seasons of 2005
and 2006. They include schist, gneiss, metabasite and leucogranitoid from all the
five complexes (sample names and GPS are listed in APPENDIX A). Field
observations include Global Positioning System (GPS) readings of sites and attitudes
of rocks structures and rock types. Sample locations were recorded with a hand held
Garmin eTrex Legend Mapping Handheld GPS. Samples sites include commercial
quarries, small excavations for local village uses, road cuts, natural outcrops at ridge
tops, riverbeds, and excavated material from adits. At each site a single of block up
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to ~3 kg was collected with the aid of sledgehammers and geopicks. All the rock
samples were cleaned and weathered surfaces were completely removed by hammer
and rock saw. Thin-sections were made for each sample.
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Chapter 3 Methodology

§ 3.1 Whole Rock Geochemistry

Forty-nine samples were analyzed by X-ray fluorescence (XRF) for major elements.
These rock samples were also analyzed for the full suite of rare earth elements (REE)
and selected trace elements using an Inductively Coupled Plasma Mass Spectrometry
(ICP-MS).

3.1.1 Sample preparation

Each sample consists 150 - 300 g of about washed whole rock, trimmed of any
stained or weathered surfaces, and crushed using a jaw crusher into chips of smaller
than ~2 cm. And the resulting chips were then cleaned on a 2mm mesh using tap
water, which ensured that small grains and surficial dust were removed prior to
crushing in the mill. Dried sample fragments were put into a tungsten bowl Tema
mill and ground for several seconds. After that, the sample was sieved over 74 pm
sieve. The portion of sample not passing the sieve was put back into the mill,
together with next amount of sample. The entire sample was reduced to powder by
repeating the procedure until the whole sample passed through the sieve. About 100
g of homogeneous sample powder was set aside for geochemistry. Between samples,
all apparatus were brushed, washed firstly in water and then in acetone, and finally
cleaned using a self contamination run of the next sample to be crushed.

3.1.2 Analysis of major elements through XRF

Major elements of rock samples were analyzed using an X-ray Fluorescence (XRF)
(PANalytical, Holland) at the Huadong Mineral Resources Supervision and Testing
Center, Ministry of Land and Resources Research, Nanjing, China. The samples
were prepared as 40 mm fused beads using the PANalytical Per]’X 3 fusion machine.
The beads were prepared in a 4:1 dilution using 2.5 g of sample and 10 g of Li,B4O7
Flux.

Major element oxide contents (SiO,, AlL,Os, FeO, Fe,O3;, CaO, MgO, NayO, K0,
TiO,, MnO, and P,Os) were obtained by comparing peak positions and intensities to
traces of geological standards. All major element oxide contents for these replicates
were within 0.5% (absolute) of the first analysis. Approximately 10 g of each sample
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was weighed into a porcelain crucible and heated at 1000 °C for 10 h in a muffle
furnace to measured the loss on ignition (LOI). A critical check on the quality of
XRF analyses is that the sum of major element oxides and LOI is 100 + 5%.

3.1.3 Analysis of trace and rare earth elements through ICP-MS

Inductively coupled plasma mass spectroscopy (ICP-MS) is capable of trace
multielement analysis, often at the part per trillion level. A schematic representation
of an ICP-MS system is displayed in Figure 3.1. Trace elements of the samples were
analyzed using an Agilent 7500a ICP-MS (Agilent, USA) at the State Key
Laboratory of Geological Processes and Mineral Resources, China University of
Geosciences (Wuhan), where the following sample preparation technique was used;
(1) Crushed sample powders were dried in an oven at a temperature of 105 °C for 12
hours. (2) 50 mg of each sample was digested in a Teflon bomb with a 2.0 ml
mixture of subboiling distilled superpure HF and HNO; (1:1), and heated for 48
hours at a temperature of 190 °C. (3) After digestion, the sample was evaporated to
incipient dryness at a temperature of 115 °C, refluxed with 3 ml HNO3, and heated
again to incipient dryness. (4) The sample was re-dissolved using 2-3 ml HNO;
(30%) and heated for 12 hours at a temperature of 190 °C. (5) After cooled, the
solution was diluted with a mixture of HF (0.1%) and HNO3 (2%) to a final dilution
factor of 1:1500.

Each analysis of trace elements consisted of a 60 second uptake, 90 second analysis,
and 60 second washout sequence, with two scans per second over the range of
elements. 19 channels per atomic mass unit were used to do the registration; during
dwell time of 320 ms. Standards were introduced with concentration of 1, 2, 5, 10
and 20 ppb. Internal Rh and Ir standards were applied for internal drift correction.
Two international standard reference samples, AGV-2, BCR-2, BHVO-2, G-2, and
GSR-1 were used to monitor accuracy and precision.

For the analysis of trace elements through ICP-MS, the digested rock sample (liquid)
was introduced by way of a nebulizer, which aspirated the sample with high velocity
carrier gas of argon, forming a fine mist, into hot plasma. The aerosol then passed
into a spray chamber where larger droplets were removed via a drain. Droplets small
enough produced by this process were vaporized in the plasma torch. Temperature
inside the plasma reached to 6000 ~ 10000 K, with pressure up to ~760 Torr,
stripping the atoms of their valence electrons rapidly. The positively charged ions
were accelerated to a set of apertures into an interface region, which enables
extraction of the ions without compromising the high vacuum (10™ Pa) in the mass
spectrometer. Once the ions were in the mass spectrometer chamber, they were
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focused by an electromagnetic lens system and directed down the mass analyzer.
Ions with specific mass-to-charge rations (m/z) were transmitted sequentially to the
ion detection system, while ions with lower or higher m/z ratios have different
trajectories and were lost. The detector consisted of combined electron multiplier and
low gain analog detector, one of which was selected depending on the ion-beam

intensity.
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Figure 3.1 Schematic of ICP-MS main processes (modified after [110-111]).

§ 3.2 Geochronology

3.2.1 Mineral separation

Mineral separation of zircon, titanite, and part of hornblende, biotite and muscovite
was processed in the Academe of Regional Geological Survey, Langfang, China.
Firstly, fresh rock samples (1 - 3 kg) were crushed to grain sizes of < 245 um, using
a steel jaw crusher, and then were ground down to 74 pm using a percussion mill.
Between samples, all apparatus were brushed, washed firstly in water and then in
acetone, and finally cleaned using a self contamination run of the next sample to be
crushed. Then the minerals were separated by a combination of Wilfley-table
washing, heavy liquid separation (1,1,2,2-tetrabromoethane and diiodomethane),

magnetic separation and hand-picking.

3.2.2 Cathodoluminescence imaging of zircon

Selected zircon grains from the least magnetic fractions were different in shapes and
colors with high transparency and few inclusions. They were set in 2-part epoxy
resin along with a portion of standards. Epoxy mounts were then cut back to half the
thickness of the mounted minerals and hand polished. To remove the contamination
of the mounts, a three stage ultrasonic cleaning process was used.
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Cathodoluminescence (CL) imaging of zircons prior to ion-microprobe analysis are
used to reveal the interior structures of the minerals, such as core/rim, and zoning
structures, which are commonly related to different ages. These ages may be used to
interpret the magmatic, metamorphic or anatectic history a zircon or a titanite has
undergone. All CL images of zircons in the LA-ICP-MS mounts were acquired using
a Mono CL3 + (Gatan, USA) attached to a scanning electron microscope (Quanta
400 FEG) at the State Key Laboratory of Continental Dynamics, Northwest
University, Xi’an, China. Operating conditions of the SEM used an accelerating
voltage of 12 kV, with a spot size of 6 and a primary beam current 20.

Core/rim structures are common to many of the samples. Brightness of CL response,
usually inversely associated with the trace elements content such as U, REE and Th

. 112-11
etc. of zircon | 3l

, vary greatly between samples, and often even within a single
grain. Where U content between individual zones in a single grain varies
significantly, adequate contrast often cannot be resolved within the capabilities of the
machine. Consequently, the common practice of post imaging manipulation of zircon
images has in some cases been employed to remove noise and enhance the visible
structures within the raw grayscale images. For the titanite with higher U and Th

contents, BSE images were taken for this purpose.

Obtained images were directly saved as digital files and were printed out for
selection of analytical points during analyses. The sites were marked and labeled

during the ion microprobe analytical sessions.

3.2.3 Laser Ablation Microprobe ICP-MS U-Pb analyses

Zircon U-Pb dating and trace element analyses were carried out at the La-ICP-MS
Lab in the State Key Laboratory of Geological Processes and Mineral Resources,
China University of Geosciences (Wuhan), using an Agilent 7500a ICP-MS (Agilent,
USA) coupled with a GeoLas 2005 laser-ablation system (DUV 193 nm ArF-excimer
laser) (MicroLas, Germany). A schematic representation of an ICP-MS system is
given in Figure 3.2. A spot size of 32 um with a repetition rate of 8 Hz was applied
to all analyses. Helium was used as the carrier gas to enhance transport efficiency of
ablated material. Standard zircon 91500 was used for external calibration. NIST610
was used for external calibration of element contents and *°Si was used for internal
calibration. For details of the analytical processes and parameters of the equipment
see reference [116]. Pb isotopic data, U-Pb surface ages and the U-Th-Pb contents of
the zircon spot analyses were processed using the GLITTER software (Version 4.0).

ISOPLOT software!''"! was used for calculating weighted zircon ages (1o error) and
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a concordia plot.
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Figure 3.2 Schematic of La-ICP-MS main processes (modified after [110]).

3.2.4 YAr/*Ar Analyses for hornblende and biotite

K-bearing minerals used for YA’ Ar dating each possess a characteristic narrow
thermal closure interval, termed the closure temperature, below which argon is
retained within the mineral lattice ("', All hornblende and biotite from samples (see
Table3.1) were carefully handpicked under a binocular microscope to avoid
impurities or inclusions such as quartz or microcline.

Table 3.1 Samples for *’Ar/*° Ar analyses

Mineral Sample
114-1, 114-2, 29-2, 109-4, 88-13, 61-3, 39-1, 82-2,
Homblende 15-2, 69-1, 86-5, 122-1, 125-4
Biotite 101-2, 109-3, 65-2, 31-7, 43-1, 86-5, 122-1, 125-4

HF leaching for hornblende

After hand-picking to greater than 99% purity and weighing, hornblende samples

were processed by HF leaching, when the following preparation technique was used.

(1) Putting sample into a small beaker using deionized H,O;

(2) Moving excess water into a second beaker;

(3) Putting HF (5%) into the beaker with sample;

(4) Leaching the sample for 45 s by laying the beaker in an ultrasonic;

(5) Adding H;O to dilute HF before remove all the liquid from the beaker to a large
beaker carefully;

(6) Repeating step (5) for three times;

(7) Putting H,O into the beaker and washing the samples using an ultrasonic for one
minute, then removing all the liquid to the large beaker carefully;

(8) Repeating step (7) twice;
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(9) Transferring the sample back to the petri dish using methanol;
(10)Removing methanol from prei dish;

(11)Rinsing one large and two small beakers;

(12)Next sample, repeating steps above;

(13)Drying all the samples under a heat lamp.

“Ar/ *¥Ar analytical procedure

Samples for *’Ar/*’Ar analyses were packaged into aluminium foil containers. The
packages were Cd-shielded and irradiated for 90 h in position 5C (i.e. in the high
flux area and receiving flux from all directions), in the McMaster University Reactor,
Hamilton, Canada, along with the neutron flux monitor Biotite standard Tinto B
(K-Ar age = 409.24 = 0.71 Ma). K,SOy4 salts were used for determining correction
factors for K-produced *Ar. Correction factors for interfering reactions are as follow:
C°Ar AN = 2.54 (+ 0.09%<107% (PArf7Ane = 6.51 (= 03D)x107* 1P
(“Ar’Ar)k = 0.0010 (£ 0.0005).

Analyses of hornblende, biotite, and muscovite from samples (see Table 3.2 for
sample list) were carried out at the Western Australian Argon Isotope Facility, John
de Laeter Centre, Curtin University of Technology. Argon data were collected by
infrared laser step-heating of single and multiple grains (see individual sample
description for details). Irradiated mineral samples were loaded into an ultra-high
vacuum laser chamber and baked to 120 °C overnight to remove adsorbed
atmospheric argon from the samples and chamber walls. Prior to analysis, the
dimensions of each grain were measured using the calibrated stage system.

A 110 W Spectron Laser Systems continuous-wave neodymium—yttrium—
aluminium—garnet (CW-Nd-YAG) laser (A = 1064 nm), fitted with a TEMOO
aperture, was used to step-heat each sample at increasing laser power (9.9-10.1 A).
The gases released were purified using three SAES AP10 getter pumps to remove all
active gases (i.e. COy, H2O, Ha, N3, O», and CH4). The remaining noble gases were
equilibrated into a high-sensitivity mass spectrometer (MAP 215-50) fitted with a
Balzers SEV 217 multiplier, operated at a mass-resolution of 600. System blanks
were measured between every two unknowns, and the unknowns were corrected
using the unweighted mean of the bracketing blank determinations. Mean 5 min
extraction system blanks obtained during data collection were: *’Ar = 6.5 x 10" cm’,
YAr=28.6x10" cm’, *Ar=8.1x 10" ecm’, 37Ar= 1.1 x 10 " cm’ and Ar = 4.5
x 10 cm’ at standard temperature and pressure. Data were corrected for
mass-spectrometer discrimination and nuclear interference reactions. *Ar/*Ar ages

were calculated using the decay constant recommended by reference [120].
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§ 3.3 Mineral Chemistry

Selected uncovered and polished thin sections of sample rocks were carbon coated.
Hornblende, biotite, plagioclase, sillimanite and garnet mineral assemblages were
circled using a STAEDTLER Lumocolor permanent marker pen, which contains ink
showing up with electron imaging. They were analyzed for major element
compositions (SiOz, TiO2, Al,O3, FeO, MnO, MgO, CaO, Na,0, K,0) using a JEOL
JSM-6400 Scanning Microscope equipped with a Wavelength-dispersive X-ray
Detector (WDS) and MORAN SCIENTIFIC WDS SOFTWARE at the Center for
Microscopy, Characterisation & Analysis in University of Western Australia.

For electron microprobe analyses, the following steps were carried out.

Step 1 Loading the sample and getting an image

The thin-section sample was secured on the holder with appropriate standards by
using carbon tape which also provided electrical conductivity. After the sample was
loaded, the air in the specimen chamber was pumped out until the pressure fell below
107 torr. Then required accelerating voltage was chosen and the brightness, contrast,
focus and correct astigmatism were adjusted to obtain the best Secondary Electrons
(SE) and Backscattered Electrons (BSE) images.

Step 2 Storing rough locations for all standards and sample analysis areas using the
Deben Stage Controller

A highest Speed Level (level 3) was used and the X and Y coordinates were
controlled by a joystick to find analysis areas of necessary standards or sample using
the Deben Stage Controller. Store the rough locations which could be recalled when
analyzing.

Step 3 Inserting the optical microscope, focusing the reflected light image of the
sample, focusing the electron image of the sample, and marking the position of the
beam on the monitor screen

When the optical microscope was inserted, the field of view would be reduced, and
the signal received by the SE detector would be compromised. This would have
some detrimental effects on normal SEM operation. Thus, before inserting the
optical microscope we performed imaging, stored and recorded positions of
standards and samples. After the optical microscope being inserted, the TV monitor
and the DC power box were turned on. Both the reflected light image and the
secondary electron image were focused. The position of the beam on the monitor
was marked while the electron beam was focused to a point (x 300,000) on the
wollastonite standard (a cathodoluminescent mineral).

Step 4 Standardizing on standards and analyzing samples using the Moran
Scientific WDS software

The Moran Scientific WDS software was started and “Wavelength Dispersive
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Analyser” was selected. The analysis file “15sil masa.wds” was loaded. To
standardise on all silicate standards, 15 kV of accelerating voltage and 20 nA of
beam current were set. The counting times for upper background, peak and lower
background were set to 10, 40 and 10 seconds respectively (suggested value).The
elements Na, Mg, Al, Si, Mn, Fe, K, Ca, and Ti were standardised using standard
minerals including albite, olivine, garnet, pyroxene, apatite, orthoclase, wollastonite
and rutile. Then the selected minerals (hornblende, plagioclase, biotite, muscovite,
garnet, sillimanite, monazite, etc) were analyzed.

Step 5 Routine WDS analysis and multi-piont automated WDS analysis.

When the samples were analyzed using routine WDS analysis, operating conditions
were checked to be identical to those used for standardization (15 kV of accelerating
voltage and 20 nA of beam current). The elements to analyze were selected and the
relevant analysis file was saved. The number of oxygens for the structural formula
was entered for each mineral (see Table 3.3 below).

Table 3.3 the number of oxygens in the structural formula of minerals

Mineral Olivine Pyroxene Plagioclase Garnet Biotite Muscovite Hornblende

No. of O 4 6 8 12 22 22 23

For large mineral grains and night sessions, multi-point automated WDS analysis is
sometimes could be used. Firstly, we moved the stage to find the first analysis
position and focused both optical microscope and secondary electron image. Then
the backslash from the drives was removed by pressing bklsh button on the stage
controller to make sure that the stage returned to the desired location and that the
image remained in focus. After that, the coordinates and the number of oxygens for
the structural formula (see Table 3.4) were saved to the run table. Other analysis
points were added following the same procedure. They could be analyzed together
by selecting Multi-Point Analyse in the WDS CONTROL window.

§ 3.4 Hi-isotope Geochemistry

Zircon Hf isotope analyses reported in this thesis were carried out in situ using a Nu
Plasma HR MC-ICP-MS (Nu Instruments Ltd., UK) coupled with a GeoLas 2005
laser-ablation system, at the State Key Laboratory of Continental Dynamics,
Northwest University, Xi’an. The laser system delivers a beam of 213 nm UV light
from a frequency-quintupled Nd:YAG laser. Most analyses were carried out with a
beam diameter of 44 pum, a repetition rate of 10 Hz, and energies of 0.6 - 1.3
mJ/pulse. This resulted in total Hf signals of (1 - 6) x 10" A, depending on
conditions and the Hf contents. Typical ablation times were 30 - 120 s, resulting in



PhD thesis: The metamorphic series evolution in the NE Cathaysia, South China 45

pits 20 - 60 um deep. Ar was used as carrier gas for transporting the ablated sample
from the laser-ablation cell via a mixing chamber to the ICP-MS torch. The Nu
Plasma MC-ICP-MS system features a unique geometry witha fixed detector array
of 12 Faraday cups, and three ion counters. Beams are directed into the collectors by
varying the dispersion of the instrument using an electrostatic zoom lens. For this
work masses 172, 175, 176, 177, 178, 179 and 180 were analyzed simultaneously in
Faraday cups; and all analyses were carried outin static-collection mode. Data were
normalized to '"Hf/'""Hf = 0.7325, using an exponential correction for mass bias.
Initial setup of the instrument was performed using a 1 ppm solution of JMC475 Hf,
spiked with 80 ppb Yb, which typically yielded a total Hf beam of (10 - 14) x 10" A,
The laser-ablation analyses were carried out using the Nu Plasma time-resolved
analysis software, in which the signal for each mass and eachratio is displayed as a
function of time during the analysis. This allows the more stable portions of the
ablation to be selected for analysis, before the data are processed to give the final
results. The selected interval is divided into 40 replicates for the calculation of the
standard error. Background was collected on peak for 45 s before ablation began.

A correction of the isobaric interferences of '°Lu and '"*Ybon '"°Hf is required for
the measurement of accurate '/ Hf/'”’Hf ratios in zircon. This correction is relatively
straightforward for the Nu Plasma, because the mass bias of the instrument is
independent of mass over the mass range considered here!'?'. Interference of '"°Lu
on '"°Hf was corrected by measuring the intensity of an interference-free Ly
isotope and also a recommended '"°Lu/'”’Lu ratio of 0.02669""** to calculate
8L u/"""HE. Similarly, the interference of '°Yb on '"°Hf was corrected by measuring
an interference-free '*Yb isotope and using a "y b/"*Yb ratio of 0.5886!"*! to
calculate '"°Yb/!"Hf. Zircon 91500 was used as the reference standard, with a
recommended '°Hf/'""Hf ratio of 0.282295 + 0.000027 (n = 33, 115). A decay
constant for '"°Lu of 1.865 x 107" year'1 (124 the present-day chondritic ratios of
"H£/HE = 0.282772 and "°Lu/'"Hf = 0.0332 U"*! were adopted to calculate epr
values. Single-stage model ages (7pm) were calculated by reference to depleted
mantle with a present-day "eH{/THE ratio of 0.28325 and '"°Lu/'"’Hf ratio of
0.0384!1%°], Two-stage model ages (7 om”/Tom™") were calculated with an assumed
8L u/"""Hf ratio of 0.0093 for the average upper continental crust!*”.. All zircons
analyzed in this study have much lower oy b/ THE.
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Chapter 4 Ordovician-Silurian
migmatization and partial melting of
Precambrian crustal and mantle materials
in the Tianjingping Complex

§ 4.1 Petrography

Twenty-six rock samples were collected from the Tianjingping Complex (for
sampling localities see Figure 2.4 and Table 2.2), including ten leucosome samples,
nine felsic gneiss samples and seven mafic gneiss samples. Textures of leucosome
are massive, granoblastic and medium grained, commonly with a mineral
assemblage of biotite + plagioclase + quartz + K-feldspar = muscovite, and minor
apatite, zircon and opaque minerals (Figure 4.1). Felsic gneiss samples are grey in
color and massive, and usually have gneissic structure and a mineral assemblage of
biotite + plagioclase + quartz £ amphibole = garnet, with minor apatite, zircon,
titanite and opaque minerals (Figure 4.2). They range from ultrabasic to acid rocks
with the increase of quartz content. Samples of biotite-amphibole-plagioclase
gneisses are dark green and massive, with the mineral assemblage of amphibole +
plagioclase + quartz + biotite and minor titanite, which are more or less oriented to a
certain direction (Figure 4.3).

Figure 4.1 Typical granoblastic texture of leucosome (sample 125-5) under both (a) plane
polarized and (b) cross polarized light. The composition is dominated by quartz (Qtz),
plagioclase (P1) and K-feldspar (Kf), with lesser amounts of biotite (Bt) and muscovite
(Mus).
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Figure 4.2 Typical gneissic structure of garnet-amphibole-biotite gneiss (sample 34-4)
under both (a) plane polarized and (b) cross polarized light. The composition is dominated
by plagioclase (Pl, altered to clay mineral) and quartz (Qtz), with lesser amounts of biotite
(Bt), amphibole (Amp) and minor garnet (Gt) and opaque minerals.

Figure 4.3 Typical biotite-amphibole-plagioclase gneiss with oriented minerals (sample
31-7) under both (a) plane polarized and (b) cross polarized light. The composition is
dominated by biotite (Bt), amphibole (Amp), plagioclase (PI, partly altered) and quartz

(Qtz).

§ 4.2 Geochronological analyses

4.2.1 Zircon U-Pb ages

Samples selected for determining the formation time of the leucosomes and mafic
gneiss rocks, and the time limit for the deposition of the meta-sediments were
collected from two places, Min-Gan boundary area (samples 125-1, 125-2, 125-4)
and Luomadi area (samples 34-4 and 39-1).

1) Samples from the Min-Gan boundary area

Age of leucogranodiorite (sample 125-1)

Sample 125-1 is a medium-grained (grain size 2 - 3 mm) intermediate rock,
containing biotite, plagioclase, quartz, and minor apatite, zircon and opaque minerals.

Its sampling locality is shown in Figure 2.4. Most of the zircon grains are elongated
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prismatic almost euhedral and colorless crystals up to 100-350 pum in length with
length/width ratios from 2:1 to 6:1. CL images reveal that most grains are strongly
zoned (Figure 4.4a) showing the characteristics of magmatic genesis. Concordia
diagrams for twenty-three zircon U-Pb analyses are displayed in Figure 4.4b, and the
U-PDb analytical results are listed in APPENDIX B. The Th contents and U contents
of the zircons are 10 to 1954 ppm and 253 to 3251 ppm, respectively and show an
obvious positive correlation. Th/U ratios are from 0.02 to 0.61 and mostly higher
than 0.1, which indicates that majority of the zircon grains are of igneous origin with
few metamorphic ones. All the analytical data plot on or near the concordia (Figure
4.4b). Besides one grain produces an age of 471 = 4 Ma, the rest of them yield a
range of *°Pb/**U ages between 450 and 436 Ma, with a weighted mean **°Pb/>*U
age of 445 + 3 Ma (95% conf., MSWD = 1.15) (Figure 4.4b).

‘/Weighted mean age\
444.6 + 2.7 Ma
95% conf.

0.076

0.074

206
238

0.070

box heights are 20

0.62 0.66

0.068
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0.50 0.54 0.58
207Pb/235U

Figure 4.4 Cathodoluminescence (CL) images (a) and LA-ICP-MS U-Pb isotopes (b) of
zircon grains in sample 125-1. Numbers and letters in circles (such as 6, 2t and 2H) in
picture (a) represent analysis spots for U-Pb, Trace elements and Hf isotopes, respectively.
The data are listed in APPENDIXES B, C and D.

Age of paragneiss (sample 125-2)

Sample 125-2 is a grey and medium-grained (grain size 1 - 2 mm) acid rock,
containing biotite (partly altered to chlorite), plagioclase (partly altered), quartz, and
minor accessory minerals, e.g. apatite, zircon and opaque minerals (Figure 4.1). Its
sampling location is the same as sample 125-1. Zircon grains are most commonly
subhedral to euhedral, with some grain fragments and elongated prismatic crystals up
to 200 um in length. Under plain polarized light, zircon grains of 125-2 are colorless
to pale brown. Under CL imaging, the zircon grains display various internal
structures. The elongated prismatic grains display fine scale oscillatory zonation. The
smaller grains often show core/rim structure. Most cores are brighter, indicating
lower thorium and uranium contents (Rubatto and Gebauer, 2000). Additionally,
broad darker rims with fine oscillatory zonation are developed and occasionally
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incursive into cores, forming embayments (Figure 4.5a).

Concordia diagrams for thirty-one zircon U-Pb analyses are displayed in Figure 4.5b,
and the U-Pb analytical results are listed in APPENDIX B. Most of the Th/U ratios
for sample 125-2 zircon analytic spots are between 0.17 and 1.28, besides four data
from <0.01 to 0.05. There is a great variation in the ppm values for both Th and U
contents, from about 1 to 999 ppm and 68 to 2104 ppm, respectively (APPENDIX B).
Most of the analytical data plot on or near the concordia (Figure 4.5b). They
produced a range of **Pb/***U ages between 2280 and 440 Ma. The analytic spots of
zircon cores yielded two clusters of older ages, 2.28 - 1.60 Ga and 780 - 729 Ma
(with one age of 992 Ma). Two populations are identified from the ages between 780
and 729 Ma, with weighted average ages of 740 + 8 Ma (95% conf., MSWD = 1.5)
and 776 £ 6 Ma (95% conf., MSWD = 0.41), respectively (Figure 4.5c, 4.6). The
data from rims or single magmatic grains always show younger ages, from 450 to
440 Ma, with a weighted average age of 445 + 3 Ma (95% conf., MSWD = 0.75)
(Figure 4.5c, 4.6). These three populations are also shown as principal peaks in the
probability histogram (Figure 4.7). This indicates that the protolith of the paragneiss
has been strongly reworked by later thermal events.
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Figure 4.5 Typical cathodoluminescence (CL) images (a) and LA-ICP-MS zircon U-Pb
isotopes concordia diagram (b) of zircon grains in sample 125-2. Numbers and letters in
circles (such as 6, 3t and 5H) in picture (a) represent analysis spots for U-Pb, Trace
elements and Hf isotopes, respectively. The data are listed in APPENDIX B, C and D. The
weighted average ages of three populations (c) are 740 = 8 Ma, 776 £ 6 Ma and 445 £ 4 Ma
(shown in Figure 4.6)
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Figure 4.6 Histogram of weighted average zircon ages of three populations in sample
125-2.
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Figure 4.7 Probability histogram for U-Pb analyses from sample 125-2. Principle
concordant age peaks are at ca. 445, 740 and 776 Ma. ***Pb/>**U ages are used for analyses
younger than 1000 Ma, and *"Pb/**°Pb ages for the others. The number of grains between
400 and 800 Ma are indicated.

Age of biotite-amphibole-plagioclase gneiss 125-4
Sample 125-4 is a dark green massive and medium-grained (grain size 0.1-0.5 mm)
basic rock, consisting of biotite, amphibole, plagioclase, quartz, and minor titanite,
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zircon and some opaque minerals. Its sampling location is the same as sample 125-1.
Zircon grains are most commonly subhedral to eueuhedral, with some grain
fragments and elongated prismatic crystals up to 200 pm in length. Under plain
polarized light, zircon grains of 125-4 are colorless to pale brown. Under CL
imaging, the zircon grains are dark and some of them display complicated internal
structures (Figure 4.8a), indicating higher Th and U contents and a possible

fluid-present formation/recrystallization environment!'?*,

Concordia diagrams for 19 zircon U-Pb analyses are displayed in Figure 4.8b, and
the U-Pb analytical results are listed in APPENDIX B. Th/U ratios for sample 125-4
zircon analytic spots varies in a wide range, from < 0.01 to 1.46. Both the Th and U
contents of zircon grains are generally higher than other samples, and also show a
huge variation, from less than 1 (0.67) to 17685 ppm and 327 to 13826 ppm,
respectively (APPENDIX B). The zircon grains yielded a variant range of °°Pb/***U
ages from 478 to 443 Ma. In the analytical data, all but one are no greater than 15%
discordance and form two *°°Pb/***U age populations (Figure 4.8b), with weighted
average ages of 448 + 3 Ma (95% conf., MSWD = 0.57) and 473 = 4 Ma (95% conf.,
MSWD = 0.26), respectively (Figure 4.9), which are also shown in the population
probability histogram (Figure 4.10). The zircon grains containing lower Th/U ratios
(< 0.04) generally produce younger ages from 451 to 443 Ma, whereas ones
consisting of higher Th/U ratios (> 0.7) yield both younger and older ages (Figure
4.11), which indicate that fluid-present metamorphism probably occurred at the latest
period in the formation process of this rock and some analyses reflect partially
recrystallized zircons with incompletely re-set U and Pb isotope compositions.
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Figure 4.8 Typical cathodoluminescence (CL) images (a) and LA-ICP-MS zircon U-Pb
isotopes concordia diagram (b) of zircon grains in sample 125-4. Numbers in circles (such
as 1) in picture (a) represent analysis spots for U-Pb in APPENDIX B.
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Figure 4.9 Histogram of weighted average ages of two zircon age populations in sample
125-4.
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Figure 4.10 Probability histogram for <10% discordant U-Pb analyses from sample 125-4.
The probability distribution plots (in light grey) include ages with >10% discordance.
Principle concordant age peaks are at ca. 448 and 473 Ma. The number of grains >10%
discordant are indicated.
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Figure 4.11 **Pb/**U age vs. Th/U ratio plot for zircons from sample 125-4. The plot
illustrates the large spread of ages and Th/U ratios that indicate some analyses on partially
recrystallized zircon with incompletely re-set U and Pb isotope compositions.

2) Samples from the Luomadi area

Age of paragneiss 34-4

Sample 34-4 is a dark brown massive and fine-grained (grain size 0.1 - 0.5 mm) acid
rock with gneissosity, containing biotite (partly altered to chlorite), plagioclase
(altered), quartz, and minor apatite, zircon and opaque minerals (Figure 4.2). Its
sampling locality is shown in Figure 2.4. Zircon grains are most commonly
subhedral to rounded, with some grain fragments crystals shorter than 100 pum in
length. Under plain polarized light, zircon grains of 34-4 are colorless to pale brown.
Under CL imaging, three internal structure types of zircon grains could be identified.
The subhedral prismatic grains display moderately well developed oscillatory zoning,
with broad secondary sector zoning overprinting the oscillatory zoning. The rounded
grains often show core/rim structure. Small cores of different sizes are surrounded by
rims of fine oscillatory zoning or broad sector zoning then to unzoned quite thin rims.
Big cores without zoning are always surrounded by very thin rims with fine
oscillatory zoning (Figure 4.12a).

Concordia diagrams for thirty-four zircon U-Pb analyses are displayed in Figure
4.11b, and the U-Pb analytical results are listed in APPENDIX B. The Th/U values
from 34-4 zircon analyses are fairly high, ranging from 0.26 to 2.44. Both Th and U
contents are also relatively high, from 54 to 5657 ppm and 98 to 3768 ppm,
respectively (APPENDIX B). Most of the analytical data plot on or near the
concordia (Figure 4.12b) and yielded a range of **°Pb/***U ages between 675 and
2702 Ma. The main analytic age data are between 675 - 849 Ma, with several older
inherited ages from 1115 - 2702 Ma. During young ages, two large and one small
populations are displayed (Figure 4.12b). The larger populations (including 22 grains)
yield two weighted average ages of 820 + 6 Ma (95% conf., MSWD = 0.26) and 780
+ 6 Ma (95% conf.,, MSWD = 0.77), and the other 4 grains produce a mean age of
679 = 10 Ma (95% conf.,, MSWD = 0.12) (Figure 4.13). This suggests that the
significant input of the paragneiss protolith was dominantly formed by two
magmatic events during Neoproterozoic (Figure 4.14). Although the very thin rims
with fine oscillatory zoning are too narrow to analyze, they indicate that the protolith
has been strongly reworked by later thermal events.
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Figure 4.12 Typical cathodoluminescence (CL) images (a) and LA-ICP-MS zircon U-Pb
isotopes concordia diagram (b) of zircon grains in sample 34-4. Numbers and letters in

circles (such as 1, 11H) in picture (a) represent analysis spots for U-Pb, Hf isotopes in
APPENDIXES B and D.
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Figure 4.13 Histogram of weighted average ages of three main zircon age populations in
sample 34-4.
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Figure 4.14 Probability histogram for the analyses of sample 34-4. Principle age peaks are
at ca. 679 Ma, 781 Ma and 820 Ma.

Age of biotite-amphibole-plagioclase gneiss 39-1

Sample 39-1 is a massive and medium-grained (grain size 0.8-1.5 mm) basic rock,
consisting of amphibole, biotite, plagioclase, quartz, and minor accessory minerals
of titanite, zircon and opaque minerals. Its sampling location is shown on Figure 2.4.
The zircon grains are either stunted or elongated prismatic almost euhedral and
colorless crystals up to 100 - 300 um in length with length/width ratios from 2:1 to
7:1. CL images reveal that most grains have core/rim structure, with strongly zoned
cores surrounded by unzoned thin rims cutting their oscillatory zonation (Figure
4.15a). Some of the rims are occasionally incursive into cores, forming embayments

(Figure 4.15a). Since the rims are too narrow, only 26 zircon cores were analyzed.

Concordia diagrams for zircon U-Pb analyses of sample 39-1 are displayed in
Figure 4.13b, and the U-Pb analytical results are listed in APPENDIX B. The Th
contents and U contents of the zircons are 20 to 545 ppm and 46 to 654 ppm,
respectively and show a positive correlation. Th/U ratios are quite high, ranging
from 0.75 to 2.27, which indicates that the zircon cores are of igneous origin[lzg].
Most of the analytical data are concordant (Figure 4.15b) and yielded a range of
fairly close *"°Pb/***U ages between 448 and 441 Ma with a weighted average age

of 444 + 3 Ma (95% conf., MSWD = 0.13).
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Figure 4.15 Cathodoluminescence (CL) images (a) and LA-ICPMS U-Pb isotopes (b) of
zircon grains in sample 39-1. Numbers and letters in circles (such as 2, 3t and 1H) represent
analysis spots for U-Pb, trace elements and Hf isotopes, respectively. The data are listed in
APPENDIXES B, C and D.

§ 4.2.2 Zircon rare earth elements (REE) geochemistry

As shown in the APPENDIX C and Figure 4.16, almost all zircons yield similar
REE distributions, although there are slight differences between the ones from
felsic and mafic metamorphic rocks. The REE patterns are characterized by strong
fractionation in both light REE (LREE) and heavy REE (HREE), with relatively
smooth increases in Chondrite-normalized abundances from La to Lu, punctuated
by excess Ce and Eu depletion. The intermediate and heavy REE patterns are
comparability with typical magmatic zircons "'*"*°!. The “abnormities” appear in
two samples, 125-2 and 34-4. For 125-2, spots 03t, 05t and 06t yielded same ages
within error (446 + 12, 440 + 4 and 441 + 4 Ma, respectively, APPENDIX B), but
show different REE patterns from others. Spots 125-2-03t and 125-2-06t, showing
a magmatic feature under the CL imaging (Figure 4.16a), with lower HREE than
other older zircons, might suggest a slightly change of the mineral compositions in
the host rocks, i.e. these zircons crystallized simultaneously with some minerals
containing higher HREE. But it is still hard to explain why the spot 125-2-05 with
the same age displays a different REE distribution. The analytic spot data 34-4-03t
(818 = 9 Ma), display enrichments of LREE contents, different from others. This
probably indicates that some small phosphatic inclusions with higher LREE
contents are present within the analytical spot, since the Th and U contents of it
are not relatively much higher compared with the other studied spots (Whitehouse
and Kamber, 2002; Wu and Zheng, 2004).
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The size of the Ce anomaly is given by Ce/Ce* (0Ce), where Ce is the
chondrite-normalised Ce concentration and Ce* is the average of the
chondrite-normalised La and Pr concentrations. Strongly positive Ce anomalies
are found in all analyzed spots (6Ce = 1 - 311). The Eu anomaly is calculated as
Eu/Eu* (J0Eu), where Eu is the chondrite-normalised Eu value and Eu* is the
average of the chondrite-normalised Sm and Gd concentrations. Zircons from
felsic samples (125-1, 125-2, 34-4) display more pronounced Eu negative
anomalies (0Eu = 0.05 - 0.25) whereas weaker or absent Eu negative anomalies
(0Eu = 0.38 - 1.71) from mafic samples (125-4, 39-1) (Figure 4.16), which is in
agreement with the REE distributions of the host rocks
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Figure 4.16 Chondritenormalized REE distributions of the zircon grains from from the
samples (a) 125-1, (b) 125-2, (c) 34-4, (d) 125-4 and (e) 39-1 in the Tianjingping Complex.
Positive Ce anomalies are shown in all analyzed grains. Negative Eu anomalies are strong
in felsic samples and weak or absent in mafic samples.

(would be shown later). Furthermore, as shown in the 0Eu vs. 6Ce diagram, two
groups of zircon grains could be identified depending on the host rocks or forming
environment, from felsic and mafic samples, respectively (Figure 4.17). Thus Hf
isotopes of the zircon grains from the Tianjingping Complex could be studied as
two different types.
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Figure 4.17 6Eu and 8Ce correlations for zircons from different rock types

4.2.3 Hafnium (Hf) isotopes in zircon

The '"°Lu/'"""Hf ratio of zircon is usually very low (< 0.0005), which means that
time-integrated changes to the '"°Hf/'"Hf ratio as a result of in situ decay of '"°Lu
proceed at virtually negligible rates. Therefore, zircon effectively preserves the
initial "°Hf/'""Hf ratio, providing an enduring record of the Hf isotopic composition
of their source environment at the time of crystallization. This ratio can then be used
to determine either a Hf model age or an initial gy value.

Lu-Hf isotopic compositions are sensitive tracers in mantle and crustal processes!'*®
131 for more Hf is partitioned into the melts than Lu during mantle melting. As time

goes on, the '"°Hf/'""Hf in the mantle would evolve to higher values than in crust.
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Hence, the '"°Hf/'""Hf and the &y values can provide information about magma
source and sediment provenance. Generally, high values of '"*Hf/'"Hf (or &ys >> 0,
Hf model age close to crystallization age) suggest ,,juvenile” mantle input, either
directly via mantle-derived mafic melts, or by remelting of young, mantle-derived
mafic lower crust. Low values of "°Hf/'""Hf (or ggr << 0, Hf model age >>
crystallization age) indicate crustal reworking or contamination. Thus the former
existence of old crust may be detected both directly if old detrital zircons are found
and indirectly if younger detrital zircons with old Hf isotope signatures are present.

Leucogranodiorite 125-1

In-situ Lu-Hf isotope analyses were carried out alongside U-Pb dating on 12 zircons
for sample 125-1. The '"°Hf/'""Hf ratios of the zircon grains range from 0.282121 to
0.282224. Calculated from the age of 445 Ma (471 Ma for spot 125-1-02t), The eyd?)
values are from -13.3 to -9.7, indicative for recycled continental crust. Since the eyf?)
values are all negative, more realistic Hf model ages (Tpm'C, estimated by
upper/felsic crust '"°Lu/'""Hf value of 0.015) are calculated. Tpy"C values of 1728 to
1911 Ma (with a weighted mean of 1828 + 39 Ma, Figure 4.18) imply a protolith
derived from late Paleoproterozoic crust.
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Figure 4.18 Histogram of probability and weighted average upper curst Hf model age
(1828 + 39 Ma) for sample 125-1.

Weighted mean = 1828 + 39 Ma
95% conf. MSWD = 0.80, n = 11

Felsic Paragneiss 125-2

For sample 125-2, in-situ Lu-Hf isotopes of 14 zircon grains were analyzed beside
the U-Pb dating spots. The '"°Hf/'""Hf ratios of the zircons lie between 0.281408 and
0.282203, calculated from different age populations of 445, 740, 776, 1832, 2013
and 2254 Ma according to the U-Pb dating spots. The younger zircons (445, 740 and
776 Ma) have obviously higher '"°Hf/'”"Hf ratios than the older ones (> 1830 Ma),
suggesting that the younger zircons contained more radiogenic Hf, and were
probably crystallized in an environment when high HREE and Lu/Hf ratio minerals
were decomposed and recrystallized. The e&y(f) values ranging from -16.7 to

-1.9, except one inherited zircon with an age of 2254 Ma having a positive &u(?)
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value of +4.6 (spot 125-2-11H), implying that their protolith may be derived from
ancient crust or enriched mantle, with some additional depleted mantle materials. Hf
model ages (7Tpm) calculated for grain 125-2-10H Ma is 2422 + 265 Ma. For the
grains with negative eng(f) values, upper crust Hf model ages (Tpm"*) are calculated.
Tom"C values exhibit two populations (Figure 4.19), one main peak from 1698 to
1978 Ma (with a 5 grains weighted mean age of 1816 + 64 Ma), and the other from
2011 to 2764 Ma. It suggests protoliths were mostly derived from late
Paleoproterozoic crust including some materials from early Paleoproterozoic to
Archean crust and mantle.
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Figure 4.19 Probability histogram for the one grain of Tpy (2422 Ma) and T, DMUC of sample
125-2. Principle age peak is at ca. 1840 Ma.

Biotite-amphibole gneiss 125-4

In-situ Lu-Hf isotopes of 11 zircon grains were analyzed alongside the U-Pb dating
spots for sample 125-4. The CH{/"""Hf ratios of the zircons range from 0.282014 to
0.282734, calculated from the age of 473 Ma. The &ug(f) values are from -16.6 to
+7.1, suggesting that the protolith of the rocks was derived from ancient crust or
enriched mantle, with additional depleted mantle materials. The spots with positive
eur(f) values have slightly higher '"°Hf/'”’Hf ratios than ones with negative,
suggesting that the mantle materials may contained higher radiogenic Hf content. Hf
model ages (7pwm) are calculated for zircon grains with positive epg(f) values, ranging
from 853 to 1121 Ma (Figure 4.20). For the grains with negative eyg«(f) values, lower
crust Hf model ages (Tpnm™C, for mafic rocks) are calculated from 1880 to 3332 Ma
(Figure 4.19). These imply younger mantle materials, possibly derived during late
Mesoproterozoic to early Neoproterozic, were mixed with more ancient crust
materials.
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Figure 4.20 Probability histogram for the Ty of sample 125-4. Tpy (<1200 Ma) and T DMLC
(>1200 Ma) are presented for zircon grains with positive and negative eyff) values,
respectively.

Felsic Paragneiss 34-4

For sample 34-4, in-situ Lu-Hf isotopes of 17 zircon grains were analyzed beside the
U-Pb dating spots. The '"°Hf/'""Hf ratios of the zircons lie between 0.281943 and
0.282085, calculated from different age populations of 781, 820, 1208, 1833 Ma and
single age data of 849 and 2696 Ma based on the U-Pb dating spots. The younger
zircons (< 1300 Ma) have slightly higher '"°Hf/'""Hf ratios than the older ones (>
1800 Ma), suggesting that the younger zircons contained more radiogenic Hf. The
euf(t) values ranging from -24.0 to -1.4, implying that their protolith may be derived
from ancient crust or enriched mantle. For the grains with negative euyq(¢) values,
upper curst Hf model ages (Tpm' ") are calculated from 1874 to 3133 Ma (Figure
4.21). It suggests a protolith were mostly derived from crust materials older than late

Paleoproterozoic.
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Figure 4.21 Probability histogram for the Tpy"© of sample 34-4.

Amphibole-plagioclase gneiss 39-1
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For sample 39-1, in-situ Lu-Hf isotopes analyses of 16 zircon grains were carried out
alongside the U-Pb dating spots. The '"°Hf/'""Hf ratios of the zircons lie between
0.282086 and 0.282408, calculated from the age of 444 Ma. The &udf) values are
from -14.8 to -3.3, suggesting that the protolith of the rocks was derived from
ancient crust. Since the zircon eyg(¢) values of the mafic sample 39-1 are all negative,
lower crust Hf model ages (77 DMLC) are calculated. Tpyn-C values of 2125 to 3153 Ma
(Figure 4.22) imply a protolith derived from crust materials formed during Archean

to Paleoproterozoic.
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Figure 4.22 Probability histogram for the TpyC of sample 39-1.

In sum, most of zircon grains analyzed contain high Th/U (0.13 - 2.44, n = 118)
including all dated ages from ~2700 to ~440 Ma. The zircons with lower Th/U (>
0.06, n = 15) are always dated to be 440 - 451 Ma. Zircon grains selected from
leocosome and metamafic samples (sample 125-1, 125-4 and 39-1) yield younger
ages between 436 and 478 Ma, whereas those from paragneisses produce much
wider range of ages from 681 to 2696 Ma. All these zircons could be divided into
two types, one of which is from felsic samples and the other is from mafic samples,
according to their REE patterns and trace element characteristics. The Hf model ages
calculated for these zircons vary a lot in all the samples, ranging from ~853 to ~3613
Ma. Generally, zircon Hf model ages for mafic samples are slightly older than those
for felsic samples, except the ones with positive gug(¢) values (0.2 - 7.1, Tpm = 853 -
1121 Ma).

4.2.4 Amphibole and biotite **Ar/*’Ar thermochronology

The goal of the *°Ar/*’Ar thermochronology study part is to constrain the cooling
and exhumation history of the high-grade metamorphic rocks of the Tianjingping
Complex. Using different K-bearing mineral phases such as amphibole, muscovite,
biotite, and K-feldspar, with different argon closure temperatures, the *’Ar/*’Ar

thermo- chronologic method allows the reconstruction of temperature-time curves,
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which are an important guide in deciphering the exhumation history. In this study,
because of the alteration of K-feldspar and lack of muscovite, only fresh amphibole
and biotite were analyzed. Amphibole grains and biotite flakes were separated from
amphibole-plagioclase gneiss boudins likely derived from mafic intrusives
transposed and disrupted in the migmatite. Two biotite samples (125-4, 31-7) from
the Min-Gan boundary area and one amphibole sample (39-1) from the Luomadi
area were analyzed. The locations of these samples are shown in Figure 2.4

1) Samples from the Min-Gan boundary area

Age of biotite-amphibole-plagioclase gneiss 125-4

A biotite cleavage flake (690 x 380 um) separated from sample 125-4 (Figure 4.23a)
produced a concordant weighted mean plateau age of 370.1 + 3.0 Ma (20, MSWD =
1.29, probability of fit = 0.26, including J-error), which were defined by seven
consecutive gas fractions comprising 86% of released *’Ar (Figure 4.23b &
Appendix E). The two lowest temperature steps exhibit younger apparent ages, but
together represent only 14% of the *’Ar released. The plateau age is considered to

represent the timing of cooling through the closure temperature for argon diffusion in
biotite (ca. 300 °C, Grove and Harrison 1996).

370.12 +2.95 Ma
MSWD =1.29,p= 0.26

10 20 30 40 50 60 70 80 90 100
Cumulative **Ar Released (%)

Figure 4.23 Photomicrograph of sample 125-4 (a) and associated biotite (b) *’Ar/*’Ar age

spectrum. Mineral abbreviations biotite (Bt), amphibole (Amp), plagioclase (Pl), quartz
(Qtz).

Age of biotite-amphibole-plagioclase gneiss 31-7

A biotite (470 x 390 um) from sample 31-7 (Figure 4.24a) yielded a flat age
spectrum with a total fusion age of 384.1 £ 3.6 Ma (20) and a weighted mean plateau
age of 391.8 = 3.8 Ma (26, MSWD = 0.91, probability of fit = 0.47, including
J-error), which were established by six successive gas fractions incorporating 84% of
released *’Ar (Figure 4.24b & Appendix E). The first two steps show younger
apparent ages. The plateau age is considered to reflect the time of biotite cooling
through ca. 300 °C!"*?],
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Figure 4.24 Photomicrograph of sample 31-7 (a) and associated biotite (b) PAr° Ar age
spectrum. Mineral abbreviations biotite (Bt), amphibole (Amp), plagioclase (Pl), quartz
(Qtz).

2) Samples from the Luomadi area

Age of amphibole-plagioclase gneiss 39-1

Multiple amphibole grains (filled in a Nb package with size of 3467 x 2761 um, 3mg)
extracted from sample 39-1 (Figure 4.25a) yielded a more discordant age spectrum
with apparent ages generally fluctuant with increasing temperature (Figure 4.25b),
for a total fusion age of ~473 Ma with no geological meaning (Appendix E). The
amphibole from this sample exhibits a complicated variation, suggesting that the

discordance might be related to the inclusions of older events.
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Figure 4.25 Photomicrograph of sample 39-1 (a) and associated biotite (b) *Ar/*’Ar age

spectrum. Mineral abbreviations biotite (Bt), amphibole (Amp), plagioclase (Pl), quartz

(Qtz).
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§ 4.3 Whole rock geochemical analysis

The samples from the Tianjingping Complex for the geochemical analysis are

classified into three types: leucosome, metamafic rocks and paragneiss.

4.3.1 Geochemistry features of leucosome

Major and trace elemental compositions of ten homogeneous leucosome samples
from the Tianjingping Complex are listed in APPENDIX F. The leucosome samples
have variable compositions with SiO, contents of 57.38 - 72.89%, K,O + Na,O
contents from 5.20 to 10.83%. All the samples, except two (34-1, 125-5), have a
range of Rittman index (J) between 1.2 and 3.0 and thus belong to the calc-alkaline
series. All samples but one are in the peraluminous field in the A/CNK-A/NK
diagram (Figure 4.26a), with A/CNK from 0.97 to 1.11. All the samples plot in the

granite and granodiorite fields in the An-Ab-Or diagram (Figure 4.26b).
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Figure 4.26 (a) A/NK-A/CNK diagram!"**! and (b) molecular normative An-Ab-Or
diagram[m] for leucosome from the Tianjingping area.

Samples 125-1 and 125-2, from which zircons for this study were collected, are in
the granodiorite and granite fields, respectively. The samples have a range of total
REE contents between 73 and 258 ppm. Chondrite-normalized REE patterns (Figure
4.27a) show that the samples are enriched in LREEs relative to HREEs
(LREE/HREE = 2.15 to 20.94) and have a weak negative Eu anomaly (6Eu = 0.48 to
1.19). Both REE patterns and spidergrams (Figure 4.27b) for the leucosome are
comparable with those of middle to upper continental crust, for example by showing
enrichment of Rb, Th, K and LREEs and relative depletion of HFSEs (Ba, Nb, Ta, Sr,
Zr, Hf, Ti, ect.) and HREE:s.
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Figure 4.27 (a) Chondrite-normalized REE compositoinal patterns and (b) primitive
mantle-normalized trace patterns for leucosomes from the Tianjingping area. Chondrite,
MORB, upper and middle crust values are from references ['*>"*7),

4.3.2 Geochemistry features of meta-mafic rocks

Seven metamafic rock samples from the Tianjingping area were analyzed in this study,
and their major and trace elemental compositions are listed in APPENDIX F.
Petrographic features indicated that these mafic rocks underwent varying degrees of
alteration, consistent with their relatively high LOI (loss of ignition) values ranging
from 0.28 to 7.60%. Therefore, the alteration effects on chemical compositions of
these rocks need to be evaluated. Zirconium in mafic rocks is generally considered to
be the most immobile during low- to medium-grade except severe
seafloor-hydrothermal alteration!**'**). A number of elements of different
geochemical behaviors, including Ce, Y, TiO,, Nb, V, Th, Ba, Sr and Rb, are plotted
against Zr (Figure 4.28) to evaluate their mobility during alteration. Among the
studied mafic rocks, sample 43-1 has the lowest LOI value (0.28%), suggesting
insignificant alteration effect on their geochemical composition. The rare earth
elements (REE) are tightly correlated with Zr, and the high-field-strength elements
(HFSE such as Ti and Nb) increase with increasing Zr, despite slightly scattered
samples, indicating that these elements are essentially immobile during alteration. On
the contrary, alkaline (e.g. Rb), alkaline earth elements (e.g. Sr and Ba), siderophile
(e.g. V) elements and Th are more or less scattered around, implying varying degrees
of mobility during the alteration. Thus, only the immobile elements are used for rock

classification and further petrogenetic discussions.

These mafic rocks have low SiO; (42.67 - 55.54%), high MgO (4.39 - 10.56%) and
total alkalis (Na,O + K,O = 3.82 - 5.86%) (APPENDIX F). On the Zr/TiO; vs. Nb/Y
diagram''*"!, all samples plot into the subalkaline basalt filed (Figure 4.29a). On the
TFeO/MgO versus SiO, plots!™! (Figure 4.29b), they plot into different fields.
Samples 31-5, 31-7 and 41-3 (Group Al) exhibit typical tholeiitic composition,
whereas samples 39-1, 39-2, 125-3 and 125-4 (Group A2) show calc-alkaline features.

All the mafic rocks are highly evolved in compositions with Mg# ranging from 14 to
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57. The samples have a range of total REE contents between 62 and 250 ppm.

The two groups of the metamafic rocks have distinctly different REE and trace
elements characteristics, although the Chondrite-normalized REE patterns (Figure
4.30a) show that all the samples are slightly enriched in LREEs relative to HREEs
(LREE/HREE = 4.35 to 7.03) and almost have no Eu anomaly (6Eu = 0.85 to 1.06).
Group Al samples are significantly higher in total REE contents and total trace
elements than those of Group A2. The primitive mantle-normalized spidergrams of
Group Al are characterized by moderate enrichments in most trace elements (Figure
4.30b), with slight depletions in Nb and Ta relative to La and Th, in P relative to Pr
and Nd, in Zr and Hf relative to Nd and Sm, and in Ti relative to Eu and Gd, except
the enrichment in Nb and Ta of sample 41-3 and in Ti of sample 31-7. In contrast,
Group A2 samples exhibit a greater depletion in Nb and Ta relative to La and Th, in
P relative to Pr and Nd and in Ti relative to Eu and Gd.
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Figure 4.28 Plots of Ce, Y, TiO,, Nb, V, Th, Ba, Sr, and Rb vs. Zr to evaluate the mobility of
these elements of different geochemical behavior during alteration.
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Figure 4.29 (a) Zr/TiO, vs. Nb/Y diagram classification'**! and (b) TFeO/MgO vs. SiO,
[141

plots'*"! for the metamafic rocks in the Tianjingping Complex.
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Figure 4.30 (a) Chondrite-normalized REE compositoinal patterns and (b) primitive
mantle-normalized trace element distribution diagrams for metamafic rocks from the
Tianjingping Complex. Chondrite and Primitive Mantle values are from reference !'*>! (not
including Rb, Ba, U, K, Pb, Sr).

4.3.3 Geochemistry features of paragneiss

Major and trace elemental compositions of nine paragneiss samples from the
Tianjingping Complex are listed in APPENDIX F. These rocks have variable SiO,
(61.79 - 67.87%), Al,O3 (12.26 - 17.23%) and NayO (0.59 - 4.85%), relatively high
K,0 (2.22 - 4.05%) and low MgO (1.35 - 3.51%). These samples are plotted in (Na
+ Ca) / (Na + Ca + K) versus Si/ (Si + Al) (atomic proportions) in Figure 4.31 which
defines compositional fields for various sedimentary rocks!'*!. Most of the
paragneiss samples plot in greywacke area with a few arkose and lithic arenite
compositions, and two of them plot on the boundary line of graywacke and mudstone.
These two samples (31-4 and 31-8) are intermediate rocks with biotite completely
altered to chlorite which may slightly modified their initial compositions.

The samples have a relatively large variable range of total REE contents from 119 to
369 ppm. Chondrite-normalized REE patterns (Figure 4.32a) show that the samples
are enriched in LREEs relative to HREEs (LREE / HREE = 7.26 - 12.96) and display
well-developed negative Eu-anomalies (0Eu = 0.41 - 0.73). Primitive mantle-
normalized spidergrams (Figure 4.32b) show obvious negative anomalies of Nb, Ta
and Ti for all the samples, but slightly negative Zr- and Hf- anomalies and positive
Sm-anomalies for three samples (31-10 from Min-Gan area, 34-4 from Luomadi area
and 41-1 from Tianjingping area). The close similarity among the paragneiss
samples from three areas in the Tianjingping Complex in both REE patterns and

spidergrams attests similar sedimentary sources for the protoliths.
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Figure 4.31 Atomic proportions of (Na + Ca) / (Na + Ca + K) vs. Si / (Si + A)!"* for
protoliths of paragneiss samples. Abbreviations: TJP = Tianjingping area; MG = Min-Gan
areca; LMD = Luomadi area
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L Figure 4.32 (a) Chondrite-normalized JREE compositoinal patterns and (b) primitive

mantle-normalized trace element distribution diagrams for paragneiss rocks from the
Tianjingping Complex. Chondrite and primitive mantle values are from reference '**! (not
including Rb, Ba, U, K, Pb, Sr). Abbreviations: MG = Min-Gan area; LMD = Luomadi
area; TJP = Tianjingping area

In zircon, the titanium content is dependent on the temperature of its crystallization,
thus can be used as geothermometer. Titanium-in-zircon (hereafter called

[144-145]

Ti-in-zircon) thermometer provide a link between the chronologic and

geochemical information preserved in zircon.

The contents of trace element *’Ti were analyzed when detect trace elements in
zircon grains. In the Tianjingping Complex, *Ti contents of zircon grains are similar
from either mafic (4-27 ppm) or felsic (3-38 ppm) samples (APPENDIX C). Then
the formula Log (Tizircon) = (6.01 £ 0.03) — (5080 % 30) / [T (K) / ariop]!"** 147 is
used to calculate the mean crystallization temperature of these zircons. The
thermometer was calibrated under rutile-saturated conditions (artio, = 1). Since there
are no rutile discovered in those samples, the ideal equation is adjust to reflect ario, =
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0.6!"* appropriate for titanite and titanomagnetite saturation, as follows: T (°C) =
(5080 + 30) / [(6.01 £ 0.03) — Log (Tizircon / 0.6)] — 273. The calculated
crystallization temperatures for zircons with ages of about 450 to 440 Ma ranged
from 608 °C to 779 °C (APPENDIX C), which is consistent with the upper

amphibolite facies metamorphism or anatexis as defined by petrologic observations.

§ 4.4 Pressure-Temperature conditions estimation of the
Tianjingping Complex

4.4.1 Ti-in-zircon geothermometer

In zircon, the titanium content is dependent on the temperature of its crystallization,
thus can be used as geothermometer. Titanium-in-zircon (hereafter called

[144-145]

Ti-in-zircon) thermometer provide a link between the chronologic and

geochemical information preserved in zircon.

The contents of trace element **Ti were analyzed when detect trace elements in
zircon grains. In the Tianjingping Complex, *Ti contents of zircon grains are similar
from either mafic (4 - 27 ppm) or felsic (3 - 38 ppm) samples (APPENDIX C). Then
the formula Log (Tizircon) = (6.01 £ 0.03) — (5080 + 30) / [T (K) / agiop]!"** 4147 is
used to calculate the mean crystallization temperature of these zircons. The
thermometer was calibrated under rutile-saturated conditions (ario, = 1). Since there
are no rutile discovered in those samples, the ideal equation is adjust to reflect atio, =
0.6"'**, appropriate for titanite and titanomagnetite saturation, as follows: T (°C) =
(5080 + 30) / [(6.01 £ 0.03) — Log (Tiixcon / 0.6)] — 273. The calculated
crystallization temperatures for zircons with ages of about 450 to 440 Ma ranged
from 608 °C to 779 °C (APPENDIX C), which is consistent with the upper

amphibolite facies metamorphism or anatexis as defined by petrologic observations.

4.4.2 Mineral assemblages geothermobarometer

In the Tianjingping Complex, three samples (paragneiss 34-4 and biotite-
amphibole-plagioclase gneiss 125-4 and amphibole-plagioclase gneiss 39-1) have
been selected for pressure-temperature analyses. Since plagioclase grains are almost
altered to clay minerals in sample 125-4, no reasonable result can be calculated.
Following touched mineral assemblages are found for microprobe analysis: biotite +
garnet and amphibole + garnet in sample 34-4 (Figure 4.33a) and amphibole +
plagioclase in sample 39-1 (Figure 4.33b). For each sample, analytical spots close to
each other are matched as pairs to calculate the pressure-temperature conditions.
Because of the lack of plagioclase in sample 34-4 and most of which has been
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altered, pressure was hardly calculated.

Figure 4.33 Typical mineral assemblages in sample 34-4 (a) and 39-1 (b) under plane
polarized (a) and cross polarized (b) light. (a) amphibole + garnet, biotite + garnet; (b)
amphibole + plagioclase; Red dots stand for analytical spots. Abbreviations: Gt = garnet, P1
= plagioclase, Amp = amphibole, Bt = biotite, Qtz = quartz.

In sample 34-4, four garnet grains surrounded by biotite and amphibole are found,
and totally 26 spots are selected for analyses including 14, 7 and 5 spots for garnet,
amphibole and biotite, respectively. Garnet grains are less than 300 pum in length,
pale pink, anhedral crystals with tiny quartz inclusions and similar in element
content without obvious zoning. Based on the EPMA data, slightly different Mg#
values (Mg / (Mg+Fe)) between 0.082 and 0.099, and four garnet end members (Xaim
=53.7% - 58.0%, Xpyr = 9.0% - 11.4%, Xgros = 16.2% - 21.1% and Xgps = 14.5% -
19.3%) are calculated (APPENDIX G). Amphibole grains are much smaller either in
matrix or touched by garnet, commonly less than 200 pm in length and 50 pm in
width (Figure 4.2, 4.33). They can be easily observed by their obvious poly chroism,
dark green-pale yellow. According to the EMPA data of amphiboles, Mg# values
slightly vary from 0.396 to 0.442 (APPENDIX G). The obtained temperature data
from the garnet-biotite grains are slightly higher, varying from 645 to 765 °C (mean
T = 696 °C), whereas results from garnet-amphibole are lower between 469 and 529
°C (mean T =498 °C).

In sample 39-1, 9 spots are selected for both amphibole and plagioclase. Amphibole
grains are lager than the ones in sample 34-4, generally from 50 to 500 in length
(Figure 4.24, 4.33). According to the EMPA data of amphiboles, Mg # values
slightly vary from 0.462 to 0.481 (APPENDIX G). Both pressure and temperature
could be calculated by the Amp-P1 geothermobarometer. Yielded pressure results are
quite high, 8 - 14 kbar (mean P = 11 kbar), and the temperature data ranging from
722 to 799 °C (mean T = 757 °C).
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§ 4.5 Discussions on the Tianjingping Complex

4.5.1 Depositional ages of protoliths and reworking

The Tianjingping Complex has been believed as the oldest metamorphic rock series
in the NE Cathaysia Block since early 1990s from the viewpoint of geochronology
study[® 35 101-102

features of zircons from both felsic and mafic gneiss, protliths of the Tianjingping

] According to the U-Pb ages combined with the Hf isotopic

Complex are evidently multi-sources formed in different periods. As shown in
Figure 4.34, the majority of the zircons have Th/U > 0.4, characteristic of an igneous
origint!14 148,

Fiftiy-five zircon grains with Precambrian ages (~2700 - ~740 Ma) have been
identified, all of which are from paragneiss samples, and one of them is dated as old
as Archean age (2696 + 7 Ma, Spot 34-4-07t). The oscillatory zoning, together with
high Th/U ratios of 0.26 - 2.44, suggests that these zircons are of igneous origin. The
youngest cluster of these zircons is at ~680 Ma (Figure 4.34), suggesting a maximum
depositional age no older than middle Neoproterozoic.

Among the zircons from felsic samples, 42 of the 43 grains measured for Hf isotopes
have negative gyff) values in the range from -24.0 to -1.5 and the other one has
positive gui(f) value of +4.6. The zircon with positive gudf) value yields Tpm of 2.42
Ga, suggesting juvenile crustal additions during early Paleoproterozoic. The zircon
grains with negative gi(f) values produce Tpy C varying from 3.13 to 1.70 Ga,
indicating that their source rocks are recycled ancient continental crust materials
formed from Neoarchean to late Paleoproterozoic.

10
L i ®
1 E % " -
C o o &N o
o } = ° . 'g'
< i 8" + 1251
= : = 125-2
0.1 4 125-4
s [ §
C ° 34-4
§ x 39-1
*
001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
Age (Ma)




PhD thesis: The metamorphic series evolution in the NE Cathaysia, South China 75

Figure 4.34 Plots of Th/U ratios vs. U-Pb ages of all concordant zircons in the Tianjingping
Complex

For the zircons from mafic samples, 27 grains are measured for Hf isotopes and 22
of them have negative gyf(f) values between -16.6 to -0.3 and the other five have
positive gur(f) value ranging from +0.3 to +7.1. All the five grains with positive guq(?)
values are from sample 125-4, and yields Tpu between 1121 to 853 Ma, implying
depleted mantle materials input during late Mesoproterozoic to early Neoproterozoic.
The zircon grains with negative gu«(f) values produce Tpy'C varying from 3.33 to
1.88 Ga, suggesting that their source rocks are recycled ancient crust materials
formed during Paleoarchean to late Paleoproterozoic, slightly earlier than the
protoliths of felsic rocks.

Typical metamorphic Th/U ratios (< 0.1) occur sporadically only for the youngest
zircons of ~440 - ~451 Ma old (Figure 4.35), indicating metamorphism possibly
occurred later. Thus, considering all the concordant U-Pb zircon ages with either
high or low Th/U ratios from the Tianjingping Complex, the main peaks of most
samples in the Min-Gan boundary or Luomadi areas are 445 + 3 Ma (125-1), 445 + 4
Ma (125-2), 448 + 3 Ma (125-4) and 444 + 3 Ma (39-1), which are consistent within

error, implying a widespread anatectic reworking during Late Ordovician.
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Figure 4.35 U-Pb age histograms (a), euff) vs. U-Pb ages (b), crustal model age
histograms (c) of zircons from typical felsic and mafic samples in the Tianjingping
Complex

Although the rocks in the Tianjingping Complex are represented by high-grade
gneisses or migmatites, the chemical signatures are regular and consistent, showing
that the migmatization did not produce major alteration, especially in the immobile
trace elements and REE patterns. The metamafic rocks are identified as subalkaline
basalt including both tholeiitic and calc-alkaline compositions (Figure 4.29). The
felsic paragneiss samples are ploted in the fields of arkose, lithic arenite and
greywacke (Figure 4.31), which are immature sedimentations. Therefore,
sedimentary-volcanic series probably developed during late Neoproterozoic. After
that, a wide range of migmatization and anataxis occurred from Late Ordovician to
Early Silurian, around ~440 - ~451 Ma. As Figure 4.26 shown, almost all the
leucosomes in the Tianjingping Complex are peraluminous, varying along the
tendency in granodiorite field from higher to lower content of anorthite, then towards
granite with high content of orthoclase and the lowest content of anorthite.
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4.5.2 Cooling history of the Tianjingping Complex

Based on the U-Pb zircon, **Ar/*’ Ar amphibole and biotite ages dated in this study,
as well as the temperature range of thermochronometers and themobarometers, the
T-t path of the Tianjingping Complex could be established (Figure 4.36).

The crystalline temperatures range calculated for zircons from Samples 125-1, 125-2,
125-4 and 39-1, which are dated from ~450 - ~441 Ma, is ~648 - ~837 °C
(APPENDIX C). This would be the max temperature of migmatization or anatexis.
The calculated temperature data from the garnet-biotite and garnet-amphibole
geothermometers vary from 645 to 765 °C (mean T = 696 °C) and 469 to 529 °C
(mean T = 498 °C), respectively (Figure 4.36). Since the last two steps of the
“Ar/*’ Ar amphibole age for sample 39-1 are the youngest ones (~430 Ma), the real
amphibole age of 39-1 should be no older than ~430 Ma. Because both samples 39-1
and 34-4 were collected from Luomadi area, the cooling history for the two samples
should be comparable. Although the metamorphic rims of the zircons in sample 34-4
are hardly detected, the biotite-garnet assemblages were probably formed between
~450 and ~430 Ma, and the amphibole-garnet assemblages could grew at the same
time (~430 Ma) when amphibole in sample 39-1 reached its closure temperature
(450 - 525 °C!'*). Finally, *°Ar/*°Ar biotite ages obtained from sample 31-7 and
125-4 are 392 and 370 Ma, respectively, and the temperature decreased to the
closure temperature of biotite (about 300 + 50 °C!*%).

On the basis of above chronological data with corresponding closure or metamorphic
tepratures, an estimated cooling T-t path in the range of ~800 - ~300 °C for the
Tianjingping Complex can be obtained. As illustrated in Figure 4.35, it is significant
that a rapid cooling occurred during ~450 and ~392 Ma, and then a relative
isothermal stage from ~392 to ~370 Ma.
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Figure 4.36 Cooling trace of the Tianjingping Complex according to geochronology and
temperature calculation; Ti-in-zircon, Bt-Gt and Amp-Gt stand for the geothermometer,
Amp and Bt stand for the *°’Ar-"’ Ar analyses of samples 39-1, 31-7 and 125-4, respectively.
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Chapter 5 Reworking of the Precambrian
crustal components in the Jiaoxi and
Mayuan complexes

§ 5.1 Petrography

Twenty-nine rock samples were collected from the Jiaoxi and Mayuan complexes
(for sampling localities see Figures 2.1, 2.6 and 2.9 and Table 2.2), including two
leocosome samples, twenty-four felsic paragneiss samples and three mafic samples.
The leucosome samples are massive with a porphyritic texture. The phenocrysts are
mainly K-feldspar (0.5 - 1.2 mm, partly altered) and quartz (0.5 - 0.8 mm). The
matrix is composed of plagioclase, quartz and K-feldspar, with minor accessory
minerals (Figure 5.1). Felsic paragneiss samples are grey in color and consist of
biotite + plagioclase + quartz = amphibole + garnet + sillimanite = muscovite, with
minor epidote, apatite, zircon, titanite and opaque minerals (Figure 5.2). Their
compositions range from intermediate to acid, s with an increase in the quartz
content. Mafic gneiss samples are dark green and massive, granoblastic, with the
mineral assemblage of amphibole + plagioclase + quartz and minor titanite (Figure
5.3).

Matrix

| S
LTS

Figure 5.1 Typical porphyric texture of leucosome (sample 59-2) under both (a) plane
polarized and (b) cross polarized light. The phenocrysts are mainly K-feldspar (Kf, partly
altered) and quartz (Qtz), with lesser amounts of biotite (Bt, partly altered to chlorite).
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Figure 5.2 Typical gneissic structure of muscovite-bearing biotite-plagioclase gneiss
(sample 65-2) under both (a) plane polarized and (b) cross polarized light. The
composition is dominated by quartz (Qtz), biotite (Bt) and plagioclase (Pl), with lesser
amounts of muscovite (Mus) and opaque minerals.

; -_‘:«:Q?’.::‘ i '.;\}@;*

Figure 5.3 Typical amphibolite (sample 61-3) under both (a) plane polarized and (b) cross
polarized light. The composition is dominated by amphibole (Amp), plagioclase (Pl, partly
altered) and quartz (Qtz).

§ 5.2 Geochronology

5.2.1 Zircon U-Pb ages

Three samples from the Mayuan and Jiaoxi Complexes were selected for
determining the ages of the amphibole-plagioclase gneiss (sample 61-3), the upper
age limit for the deposition of the meta-sediments, and time of their reworking
(samples 59-1 and 65-1).

1) Meta-sedimentary samples

Fine-grained biotite-plagioclase gneiss (sample 59-1)

Sample 59-1 is a dark grey, fine-grained (grain sizes 0.1 - 0.5 mm) felsic gneiss. It
consists of biotite (5%), plagioclase (28%, altered), quartz (65%), and minor apatite,
zircon and opaque minerals. Zircon grains are up to 150 pm in length, generally
subhedral, with some crystal fragments shorter than 50 pm, and are colorless to pale
brown under plane polarized light. Representative CL images of the zircon grains are
shown in Figure 5.4a, and they commonly display core/rim structures. The rims
generally show fine oscillatory zonation whereas the cores do not. Some grains are

[114]

brighter in CL images, indicating lower thorium and uranium contents' . In

addition, many grains show sponge-like structures (e.g. Spot 6t in Figure 5.4a),

indicating that they had experienced fluid-rich conditions!**.

Figure 5.4b shows the concordia diagram of thirty-nine LA-ICP-MS zircon U-Pb
analyses, with the analytical results listed in APPENDIX B. The Th/U ratios are
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variable, ranging from 0.17 to 2.66, but most higher than 0.40. Th and U contents are
4 - 1614 ppm and 22 - 1456 ppm, respectively (APPENDIX B). Since the rims with
fine oscillatory zoning are too narrow to analyze, all the ages are from the cores or
single grains. Most of the analytical data plot on or near the concordia (Figure 5.4b)
and yield a range of ages between 718 and 2360 Ma (**Pb/>**U ages are used for
analyses younger than 1000 Ma, and 207pp/2%ph ages for the others) with the main
age population between 840 and 718 Ma (Figure 5.5). This suggests that there was a
significant sedimentary input of Neoproterozoic materials, with rare
Paleoproterozoic material, indicating the ~1.8 Ga ages are found to be more common
in the South China Block other than being restricted to the North China Block. The
two main Neoproterozoic populations gave mean ages of 722 = 9 (95% conf.,
MSWD = 0.17) and 758 + 3 Ma (95% conf., MSWD = 0.17), respectively (Figure
5.4c, 5.5). The youngest age of 722 + 9 Ma provides the upper age limit for the
deposition of the protolith of the paragneiss.

Although the thin rims with fine oscillatory zoning were too narrow to analyze, they
indicate that the protolith of sample 59-1 has been strongly reworked by later
tectono-thermal events, when the sedimentary protolith was converted into a
paragneiss.
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Figure 5.4 (a) Typical CL images and(b) Tera-Wasserburg concordia diagram of zircon
grains in sample 59-1 (Laser ICPMS U-Pb analyses). Numbers and letters in circles (such
as 1, 6H and 4t) in (a) represent analytical spots for U-Pb, trace elements and Hf isotopes
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(see data in APPENDICES B, C and D, respectively). The main age population is 758 + 3
Ma (c)
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Figure 5.5 Probability histogram of U-Pb ages from sample 59-1. The principal age peak is
at 758 Ma.

Biotite-plagioclase gneiss (sample 65-1)

Sample 65-1 is a dark brown, massive and medium-grained (grain sizes 2 - 3 mm)
intermediate rock, consisting of biotite, plagioclase (partly altered), quartz, and
minor sillimanite, apatite, zircon and opaque minerals. Zircon grains are commonly
subhedral to euhedual, most of which are 50 - 200 pm in length, with length/width
ratios between 1:1 and 6:1. The internal structures, as revealed by CL imaging,
normally display core/rim structures, although no rim was formed on several
elongated prismatic crystals (Figure 5.6a). Fine oscillatory zonation is present in the
rims around older (>720 Ma) cores, but not on younger (<450 Ma) cores. In addition,
some cores are locally penetrated by the rims, forming embayments (Figure 5.6a).

Thirty-one zircon U-Pb analyses are plotted on a Tera-Wasserburg concordia
diagram (Figure 5.6b), and the analytical results are listed in APPENDIX B. Th/U
ratios for zircons from sample 65-1 vary over a wide range, from 0.03 to 1.97, all but
one analysis are higher than 0.1. The Th and U contents also show great variations,
from 24 to 7972 ppm and 196 to 4045 ppm, respectively (APPENDIX B). Almost all
the analytical data are concordant, although two grains have greater than 10%
discordance (89% and 87%). The population shows an age range from 420 - 1382
Ma (**Pb/**U ages are used for analyses younger than 1000 Ma, and 27pp/2%%ph
ages for the others), which include four discrete populations of ~420 Ma, 440- 450
Ma, 724 - 904 Ma and 1114 - 1397 Ma. The two youngest populations have weighted
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mean ages of 423 £ 3 (95% conf., MSWD = 0.93) and 445 + 2 Ma (95% conf.,
MSWD = 0.99), respectively (Figure 5.6c, 5.6d, 5.7a). Generally, the Th/U ratios for
the spots with ages older than 720 Ma are below 1.1 (0.03 - 1.08), and for the
youngest population are relatively high (0.11 - 1.97) (Figure 5.7b). This indicates
that the protolith of the paragneiss was probably formed no older than ca. 724 Ma,
and has experienced significant reworking during two thermal events

(migmatization), one in the Late Ordovician and the other in the Silurian.
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Figure 5.6. (a) Typical CL images and (b) Tera-Wasserburg concordia diagram of zircon
grains in sample 65-1 (LA ICP-MS U-Pb analyses). Numbers and letters in circles (such as
1 and 1H) in (a) represent analysis spots for U-Pb and Hf isotopes (the data are listed in
APPENDICES B and D, respectively). The two youngest populations in (b) have weighted
mean ages of 423 + 3 (c) and 445 + 2 Ma (d), respectively
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Figure 5.7 (a) Probability histogram of U-Pb ages; ***Pb/***U ages are used for analyses
<1000 Ma, and *”’Pb/**Pb ages >1000 Ma. (b) Th/U ratio vs. age plot for zircons from
sample 65-1. The plot shows a large spread of ages and Th/U ratios and almost all zircons
(except one) older than 700 Ma have Th/U ratios lower than 1.0.

Amphibolie (sample 61-3)

Sample 61-3 is a medium-grained (grain sizes 0.8 - 1.5 mm) meta-basic rock,
consisting of amphibole (40%), plagioclase (50%), quartz (5%), and accessory
titanite, zircon and opaque minerals. The zircon grains are prismatic, near euhedral,
colorless, up to 100 - 200 pum in length with length/width ratios of 2:1 to 7:1. CL
images reveal that most grains have core/rim structures, with strongly planar and
oscillatory zoned cores surrounded by thin unzoned rims that may transgress the
zones (Figure 5.8a). A total of 32 analyses were undertaken on the zircon cores, the
rims being too narrow to analyze. The Th and U contents of the zircons vary between
3 and 5099 ppm and 196 and 7584 ppm, respectively, with a positive correlation.
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Th/U ratios are between 0.02 and 0.75, but mostly higher than 0.16, indicating that
the majority of the zircon grains are of possible igneous origin. All but one analysis

plot on concordia (Figure 5.8b) and yield a range of 200pp/ 28y ages between 440 and
453 Ma, with a weighted mean age of 445 + 2 Ma (95% conf., MSWD = 1.2) (Figure
5.8b).

0.081F
b ! Weighted mean age)
0.079f 445.4 + 1.6 Ma
L 95% conf.
0.077F MSWD =1.2,n=31 )
0.075F
206
Pb |
238U 0.073:
0.071F i 470.| |
0.069} 450 !!"l” NNIR ! |||!I.!
- oA
0.067F
L 410, box heights are 20
006K A 'l A 'l A i i A
0.4 0.6 0.8 1.0
207Pb/ 235U

Figure 5.8. (a) Cathodoluminescence (CL) images and (b) LA-ICP-MS U-Pb isotopes of
zircon grains in sample 61-3. Numbers and letters in circles (such as 1, 1H) represent
analysis spots of U-Pb and Hf isotopes, respectively. The data are listed in APPENDICES
Band D

5.2.3 Zircon REE geochemistry

As shown in the APPENDIX C and Figure 5.9, most zircons show similar REE
distributions, with slight differences between the felsic and mafic rocks. Similar to
samples from the Tianjingping Complex, the REE patterns are characterized by
strong fractionation in both light REE (LREE) and heavy REE (HREE), with
relatively smooth increases in chondrite-normalized abundances from La to Lu,
punctuated by excess Ce and Eu depletion. The intermediate and heavy REE patterns
are comparability with typical magmatic zircons'* ! Anomalous analyses
65-1-04t and 65-1-06t in sample 65-1 have **’Pb/***U ages of 440 + 6 and 448 + 4
(APPENDIX B), respectively, the same as the main zircon population with a mean
age 445 £ 2 Ma within error (Figure 5.7), but show lower HREE contents than the
others, which are dated as 1218 - 1382 Ma. It suggests that a simultaneous
crystallization of garnet might occurred with the later metamorphism/anatexis other
than in the middle Mesoproterozoic, when the gneiss protolithes formed. Analytical
spot 59-1-08t (759 + 8 Ma) in sample 59-1 displays greater enrichment of LREE.
This probably indicates that some small phosphatic inclusions with higher LREE
contents were present at the analytical site, since the Th and U contents are relatively
lower compared with the other spots'** *?1. Strong positive Ce anomalies are found
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in all analyzed sites (0Ce =2 - 212).

Zircons from mafic sample 61-3 display weaker Eu negative anomalies (0Eu = 0.38 -
1.71) than those of the felsic paragneiss samples 59-1 and 65-1 (Figure 5.9). In the
0Ce vs. oEu diagram for all three samples, the felsic samples overlap with mafic
sample (Figure 5.10). It is probable that some of the zircon spots analyzed in 59-1
are strongly influenced by fluids, such as spots 2t, 5t, 6t and 7t, which results in their
ploting near mafic samples. The same two younger zircons in Sample 65-1 (65-1-04t
and 65-1-06t) for the trace elements analyses also show different 6Ce-0Eu features

(Figure 5.10).
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Figure 5.9 Chondrite-normalized REE distributions of the zircon grains from (a) 59-1, (b)
65-1 and (c) 61-3 in the Jiaoxi and Mayuan complexes. Positive Ce anomalies are shown in
all analyzed grains. Negative Eu anomalies are strongly developed in felsic samples and
weaker in the mafic sample.
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Figure 5.10.6Ce vs. 8Eu plot for zircons from the Jiaoxi and Mayuan complexes

5.2.3 Zircon Hf isotopes

Paragneiss 59-1

For sample 59-1, in-situ Lu-Hf isotopes of 15 zircon grains were analyzed
simultaneous with the U-Pb data collection. The '"*Hf/'""Hf ratios of the zircons fall
between 0.281326 and 0.2822215, calculated from two different age populations of
722 and 758 Ma and single age data of 1668 and 1843 Ma according to the U-Pb
results. The younger zircons (< 760 Ma) have slightly higher '"°Hf/'”’Hf ratios than
the older ones (> 1600 Ma), suggesting that the former contained more radiogenic Hf.
The enr(f) values ranging from -14.2 to -3.8, implying that the protolith consists of
recycled old crust. Since all the grains gave negative epf(f) values, two-stage Hf
model ages (7 DMUC) were calculated and range from 1678 to 2929 Ma (Figure 5.11),
suggesting the protolith was mostly derived from crust materials no younger than

late Paleoproterozoic.
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Figure 5.11 Probability histogram of Ty ages for sample 59-1.
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Paragneiss 65-1

In-situ Lu-Hf isotopes of 14 zircon grains from sample 65-1 were analyzed at the
same time as the U-Pb data collection. The '"°Hf/'""Hf ratios are generally higher
than from paragneiss sample 59-1, ranging from 0.281943 to 0.282442. The
eH £/ TTHS ratios were calculated using different age populations of 445, 825 and
1326 Ma and single ages of 889 and 1374 Ma, on the basis of the U-Pb results. The
anr(?) values are mostly in the range of -20.6 to -1.9, with four high positive values
between +5.5 and +17.8, implying that the protolith may have been derived from a
mixture of ancient crust or enriched mantle, with some addition of depleted mantle
materials. Hf model ages (7pm) for zircon grains with positive ep(¢) values range
between 1152 and 1595 Ma (Figure 5.12). For the grains with negative ep(¢) values,
two-stage Hf model ages (7; DM C) spread from 1330 to 2278 Ma (Figure 5.12). This
indicates that during the late Mesoproterozoic, mantle materials were added into
early to middle Mesoproterozoic crust.
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Figure 5.12 Probability histogram of Tpy and 7 DMUC ages for sample 65-1. The grey boxes
and dashed curves are Tpy whereas the open boxes and solid lines are 7 DMUC

Amphibole-plagioclase gneiss 61-3

In-situ Lu-Hf isotopes analyses of 16 zircon grains separated from amphibole-
plagioclase gneiss sample 61-3 were measured along with the U-Pb analyses. The
176H{/177HT ratios of the zircons range from 0.281944 to 0.282511, calculated for
the age of 445 Ma. Most of the gu(¢) values are between —20.0 and —0.6, except for
one positive value of 0.2 (spot 61-3-04H), suggesting that the protolith of the sample
was derived from old crustal materials with some mantle input. For all the analytical
spots, two-stage Hf model ages (Tpm™") were calculated and values show a large
variation of between 1818 Ma and 3613 Ma (Figure 5.13), in which the youngest age
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(1818 Ma) is from spot 61-3-04H (7pm = 1057 Ma). This implies a protolith derived
from crustal materials formed during the Archean to Paleoproterozoic, with some
input of mantle material during the Paleoproterozoic.
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Figure 5.13 Probability histogram of Tpy™ ages for sample 61-3.

5.2.4 Amphibole and biotite ‘“*’Ar/*’Ar thermochronology

Three samples (61-3, 65-2 and 122-1) from the Jiaoxi and Mayuan complexes were
selected for amphibole and biotite **Ar/*’Ar geochronology. The locations of these
samples are shown in Figure 2.9. Amphibole and biotite separated from the two
mafic rocks (61-3 and 122-1) yielded satisfactory plateau ages, but biotite from the
felsic gneiss (65-2) produced no plateau age.

1) Sample from the Jiaoxi Complex

Amphibole-plagioclase gneiss 61-3

Multiple amphibole grains (3 mg) were selected from sample 61-3 (Figure 5.14a)
and were filled in a package (described in Chapter 3.2.4) with a size of 4088 x 3242
um. They yielded a weighted mean mini-plateau age of 380.9 = 2.3 Ma (26, MSWD
= 0.8, probability of fit = 0.52, including J-error), defined by five consecutive gas
fractions comprising 63% of the released *°Ar (Figure 5.14b and APPENDIX E). The
lowest temperature steps exhibit younger apparent ages, but together represent only
25% of the *Ar released. The plateau age 1s considered to represent the timing of
cooling through the closure temperature for argon diffusion in amphibole (ca. 450 -
525 oCl¥)y,
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Figure 5.14 (a) Photomicrograph of sample 61-3 in plane light and (b) associated
amphibole “’Ar/*’Ar age spectrum. Mineral abbreviations: amphibole (Amp), plagioclase

(P1), quartz (Qtz).

2) Samples from the Mayuan Complex

Biotite-amphibole-plagioclase gneiss 122-1

Multiple amphibole grains (3 mg, package size 4330 x 3122 um) and a biotite flake
(440 x 380 pum) were separated from sample 122-1 (Figure 5.15a). The amphibole
grains yielded a discordant age spectrum with apparent ages varying with increasing
temperature (Figure 5.15b): no age could be obtained. The biotite yielded a weighted
mean plateau age of 152.1 + 1.8 (26, MSWD = (.76, probability of fit = 0.66,
including J-error), which was established by ten successive gas fractions
incorporating 89% of the released *’Ar (Figure 5.15¢ and APPENDIX E). The first
two steps show older apparent ages. The plateau age is considered to reflect the time
of biotite cooling through ca. 300 oct, Considering the Ar ispotopic age of the
biotite flake, the complicated variation of the amphibole Ar isotopic pattern from this
sample might indicate incomplete reworking by younger thermal events.

—

210 J===

0 10 20 30 40 50 60 70 80 90 100
Cumulative *Ar Released (%)




PhD thesis: The metamorphic series evolution in the NE Cathaysia, South China 91

250

c
© 200
g2 152.06  1.78 Ma
B’ MSWD =0.76, p= 0.66
g’ i
150 AL—A_A—U:‘:D:L

100

0 10 20 30 40 50 60 70 80 90 100

Cumulative *Ar Released (%)
Figure 5.15 (a) Photomicrograph of sample 122-1 in plane polarised light, (b) associated
amphibole and (c) biotite *’Ar/’Ar age spectra. Mineral abbreviations biotite (Bt),
amphibole (Amp), plagioclase (P1), quartz (Qtz).

Biotite-plagioclase gneiss 65-2

A biotite flake (630 x 420 pum) separated from sample 65-2 (Figure 5.16a) was
analyzed. With increasing laser power, it produced decreasing ages from ~295 Ma to
~243 Ma. In the last three steps, the age increased again to about 274 Ma. No plateau
age could be obtained from this sample.
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Figure 5.16 (a) Photomicrograph of sample 65-2 in plane polarized light and (b)associated
biotite **Ar/*’Ar age spectrum. Mineral abbreviations biotite (Bt), plagioclase (P1), quartz

(Qtz).

§ 5.3 Whole-rock geochemical analyses

5.3.1 Geochemistry of the metamafic rocks

Since meta-mafic rocks are rare in the Jiaoxi and Mayuan complexes, only three
samples were analyzed in this study, and their major and trace element compositions
are listed in APPENDIX F. Petrographic features indicate that these rocks underwent
varying degrees of alteration, consistent with their relatively high LOI (loss of
ignition) values of 5.95 - 9.91%. So the alteration effects on chemical compositions
of these rocks also need to be evaluated, as for samples analyzed from the
Tianjingping Complex. Only the immobile elements are therefore used for rock
classification and further petrogenetic discussions.
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The mafic rocks have low SiO, (48.62 - 58.70%), relatively high MgO (2.78 - 5.81%)
and total alkalis (Na,O + K,O =4.99 - 6.42%) (APPENDIX F). On the Zr/TiO; vs.
Nb/Y diagram of Pearce (1996), all samples plot in the subalkaline basalt field
(Figure 5.17a). On the Jensen diagram[153] (Figure 5.17b), they plot in the
calc-alkaline field. All the mafic rocks are highly evolved in composition with low
Mg# ranging from 15 to 17. The samples have a range of total REE contents between
127 and 236 ppm. Their REE and trace element characteristics are similar, showing
strong enrichment in LREESs relative to HREEs (LREE/HREE = 6.71 to 8.41) in the
chondrite-normalized REE patterns (Figure 5.18a) and with negligible Eu anomalies
(0Eu = 0.74 to 1.00). The primitive mantle-normalized spidergrams of these rocks
are characterized by moderate enrichments in most trace elements (Figure 5.18b),
with slight depletions in Nb and Ta relative to La and Th, in P relative to Pr and Nd,
in Zr and Hf relative to Nd and Sm, and in Ti relative to Eu and Gd.
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Figure 5.17 (a) Zt/TiO vs. Nb/Y classification diagram!'*”! and (b) Jensen diagram''>*! for
the meta-mafic rocks in the Jiaoxi and Mayuan complexes.
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Figure 5.18 (a) Chondrite-normalized REE patterns and (b) primitive mantle-normalized
trace element distribution diagrams for meta-mafic rocks in the Jiaoxi and Mayuan
complexes. Chondrite and Primitive Mantle values are from reference [** (excluding Rb,
Ba, U, K, Pb, Sr).
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5.3.2 Geochemical characteristics of the paragneisses

Major and trace element compositions of nine paragneiss samples from the Jiaoxi
and Mayuan complexes are listed in APPENDIX F. These rocks have variable SiO;
(63.84 - 78.90%), Al,O3 (9.61 - 17.00%) and relatively high Na,O (1.30 - 7.09%),
K20 (1.65 - 4.54%) and low MgO (0.86 - 2.68%). In a Si/ (Si + Al) versus (Na + Ca)
/ (Na + Ca + K) plot (atomic proportions; Figure 5.19) that defines compositional

31 "all the samples from the Jiaoxi Complex

fields for various sedimentary rocks!
plot in the greywacke field and the samples from the Mayuan Complex fall into a

greater range including the arkose and the lithic arenite fields.

The samples have a range of total REE contents between 161 and 510 ppm.
Chondrite-normalized REE patterns (Figure 5.20a) show that the samples are
enriched in LREEs relative to HREEs (LREE / HREE = 6.32 - 30.59) and display
well- developed negative Eu-anomalies (0Eu = 0.24 - 0.97). Primitive
mantle-normalized spidergrams (Figure 5.20b) show negative anomalies of Nb, Ta
and Ti for all the samples, but weak negative Zr and Hf anomalies and positive
Sm-anomalies in three samples. The close similarity among the paragneiss samples
from three areas in the Jiaoxi and Mayuan complexes in both REE patterns and
spidergrams attests to similar sedimentary sources for the protoliths.
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Figure 5.19 The atomic proportion of Si/ (Si+ Al) vs. (Na + Ca) / (Na + Ca + K) showing
likely protoliths for the paragneiss samplest'**.
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Figure 5.20 (a) Chondrite-normalized REE patterns and (b) primitive mantle-normalized
trace element distribution diagrams for paragneisses from the Jiaoxi and Mayuan
complexes. Chondrite and primitive mantle values are from reference ['*.

§ 5.4 Estimation of Pressure-temperature conditions in the
Jiaoxi and Mayuan complexes

5.4.1 Ti-in-zircon geothermometer

“Ti was analyzed in zircon grains in order to determine the zircon crystallization
temperatures. The *Ti contents in the Jiaoxi and Mayuan complex zircons are
broadly similar (5 - 19 ppm), except for four grains where *Ti = 31 - 127 ppm
(APPENDIX C). The formula T (°C) = (5080 + 30) / [(6.01 + 0.03) — Log (Tizrcon /
0.6)] — 273" 161971 a5 used to calculate the mean crystallization temperature of
these zircons. Since there are four groups of ages, the calculated crystallization
temperatures were related to this age subdivision. The temperatures ranged from 639
to 744 °C for zircons with ages of 452 - 440 Ma, from 700 to 792 °C for zircons with
ages of 795 - 756 Ma, 731 to 788 °C for zircons with ages of 1218 - 1389 Ma, and as
high as 950 °C for a zircon with the age of 1843 Ma (APPENDIX C; Figure 5.21).
The very high temperature of the zircon with the age of 1843 Ma may contain the
Paleoproterozoic information about adjacent blocks which would be the provenance
of the sedimentary protoliths. The temperatures for the youngest zircon group are
consistent with upper amphibolite facies metamorphism or anatexis as defined by
petrologic observations.
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Figure $.21 Crystallization temperature vs. age diagram for zircons from the Jjiaoxi and
Mayuan complexes.
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5.4.2 Mineral assemblage geothermobarometer

In the Jiaoxi and Mayuan complexes, three samples (paragneisses 65-2 and 66-3 and
amphibole-plagioclase gneiss 61-3) were selected for pressure-temperature analyses.
The following contiguous mineral assemblages were subjected to microprobe
analysis: biotite + muscovite in samples 65-2 and 66-3 (Figure 5.22a) and amphibole
+ plagioclase in sample 61-3 (Figure 5.22b). For each sample, analytical spots close
to each other were matched as pairs for calculating the pressure-temperature
conditions. Because of the lack of suitable plagioclase in samples 65-2 and 66-3
(most were altered), pressure estimation was not possible for these samples.

0.2 mm
—

Figure 5.22 Typical mineral assemblages in (a) sample 61-3 with amphibole + plagioclase,
in plane polarized light and (b) sample 66-3 with biotite + muscovite, in cross polarized
light. Abbreviations: P1 = plagioclase, Amp = amphibole, Bt = biotite, Qtz = quartz.

In sample 61-3, 14 sites were selected for the analyses of both amphibole and
plagioclase. Amphibole grains are generally 50 to 500 in length (Figure 5.3, 5.22a).
EMPA data for the amphiboles revealed slightly variable Mg # values of between
0.308 and 0.409 (APPENDIX G). Pressure and temperature estimations using the
Amp-P1 geothermobarometer yielded a pressure range of 3 - 11 kbar (mean P = 6
kbar), and a temperature range of 700 to 783 °C (mean T = 746 °C).

In samples 65-2 and 66-3, 8 sites on the biotite and muscovite assemblages were
selected for each sample. According to the EMPA data (APPENDIX G), Mg# values
of biotite and muscovite for sample 65-2 are 0.413 - 0.467 and 0.469 - 0.513
respectively, which are slightly higher than those for sample 66-3, which range from
0.369 to 0.408 and from 0.454 to 0.474, respectively. The temperature calculated by
the biotite-muscovite assemblages[154] from samples 65-2 and 66-3 are similar: 339 -

347 °C (mean T =343 °C) and 339 - 344 °C (mean T = 341 °C), respectively.
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§ 5.5 Discussion of the Jiaoxi and Mayuan complexes

5.5.1 Depositional ages of protoliths and their reworking

The metamorphic rocks of the Jiaoxi and Mayuan complexes have been considered
to be younger than the Tianjingping Complex, with deposition age of the protoliths
being no older than 0.8 Ga based on the latest geochronological study*!. As shown
in Figure 5.23, the majority of the zircons have Th/U > 0.4, characteristic of an
igneous origin (Rubatto and Gebauer, 2000; Hanchar and Hoskin, 2003), whereas
most zircons with Th/U ratios less than 0.1 yield younger ages.

Sixty-seven zircon grains, including fifteen grains from leucosomes (Liu, 2009) and
fifty-two grains from mafic and felsic gneisses with Precambrian ages (~2425 - ~718
Ma) have been identified. Most of the zircon grains show oscillatory zoning and
relatively high Th/U ratios of 0.12 - 2.66 (with only sixteen analyses < 0.1),
suggesting an igneous origin for most zircons. The youngest cluster of inherited
zircons/cores is at ~722 Ma (Figure 5.24), suggesting a maximum depositional age
no older than middle Neoproterozoic.

Among the zircons from felsic samples, including the leucosomes, 46 of 51 grains
measured for Hf isotopes have negative eur(¢) values in the range from -27.2 to -1.9
and the other five grains yield positive eus(f) value from 0 to +17.8. Tpm model ages
of ~1.15 - ~1.60 Ga were recorded by the zircons with positive guq(¢) value and 1.89
Ga for the zircon with eus(f) = 0, suggesting some juvenile crustal additions during
the Mesoproterozoic and early Paleoproterozoic. The zircon grains with negative
anr(?) values record T DM C varying from 3.08 to 1.33 Ga, indicating that their source
rocks were recycled ancient continental crustal materials formed from the
Neoarchean to middle Mesoproterozoic.

For zircons from mafic sample 61-3, 15 grains are measured for Hf isotopes and
almost all of them yield negative gur(¢) values between -20.0 to -0.6, although one
grain has a positive gpg(f) value of +0.2 = 0.4. The zircon grains have 7 DM ranging
from 3.61 to 1.82 Ga, suggesting that their source rocks are recycled ancient crustal
materials formed during the Paleoarchean to late Paleoproterozoic, slightly earlier
than the protoliths of the felsic rocks.

Overall, typical metamorphic Th/U ratios (< 0.1) mostly occur in the youngest
zircons, with ages of ~412 - ~448 Ma (leucosomes) and ~441 - ~447 Ma (gneiss). A
few zircons with ages of ~817, ~822 (leucosomes) and ~825 (paragneiss) Ma (Figure
5.23) also record values <0.1, indicating that metamorphism possibly occurred in the
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source area at ~820 Ma. Considering the concordant U-Pb zircon ages of gneiss
samples 61-3 (mafic) and 65-1 (felsic) with both high and low Th/U ratios, but their
main age peaks are both 445 + 2 Ma, which is consistent within these of the
Tianjingping Complex. It is most likely that as in the Tianjingping Complex,
anatectic reworking also occurred in the Jiaoxi and Mayuan complexes during the
Late Ordovician. The zircons from leucosome samples yield a weighted mean age of
437 + 5 Mal">, younger than the main peak age from the gneiss samples, indicating
that the leucosomes probably formed slightly later than the main anatectic event.
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Figure 5.23 Plots of Th/U ratios vs. U-Pb ages of concordant zircons in the Jiaoxi and Mayuan

complexes; Samples 59-1, 61-3 and 65-1 are gneisses; samples 65-3 and 122-2 are leucosomes in

the Mayuan Complex!'>

Although the rocks of the Jiaoxi and Mayuan complexes are typically high-grade
gneisses or migmatites, their chemical signatures are consistent, indicating that
migmatization did not produce major alteration, especially with respect to the
immobile trace and REE elements. The meta-mafic rocks are identified as
subalkaline basalts with calc-alkaline compositions (Figure 5.17, 5.18). The felsic
paragneiss samples plot in the fields of arkose, lithic arenite and greywacke, (Figure
5.19), which are immature sediments, similar to the protoliths of the Tianjingping
Complex (Figure 4.30). Therefore, it is interpreted that late Neoproterozoic
sedimentary-volcanic series were also the protoliths of the Jiaoxi and Mayuan

complexes. A major migmatization and anatectic event occurred between the Late
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Ordovician and the Early Silurian, to form leucosomes and granites.

determined

peraluminous, plotting in the granite field but with variable contents of orthoclase;

one sample falls in the tonalite field.

(1531 almost all the leucosomes in the Jiaoxi and Mayuan complexes are
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Figure 5.24 (a) U-Pb age histograms, (b) euf(#) vs. U-Pb ages, and (c) crustal model age
histograms of zircons from typical felsic and mafic samples in the Jiaoxi and Mayuan

complexes

5.5.1 Cooling history of the Jiaoxi and Mayuan complexes

Based on the U-Pb zircon ages, together with the **Ar/*’Ar amphibole and biotite
ages obtained during this study, as well as the temperature data provided by the
thermochronometers and themobarometers, the T-t path of the Jiaoxi and Mayuan

complexes can be established (Figure 5.25).
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The crystallization temperature ranges calculated for zircons from the mafic and
felsic gneisses (samples 61-3 and 65-1), with ages of ~452 - ~440 Ma, is 639 - 744
°C, which are slightly lower than for samples from the Tianjingping Complex
(APPENDIX C). As for zircons from the leucosomes (samples 65-3 and 122-2),
which are dated at ~448 - ~410 Ma (Liu, 2009), the temperatures are calculated at
~598 - ~874 °C (APPENDIX C). This indicates that the leucosomes in the Mayuan
Complex were probably developed slightly later as temperature increased. The
calculated pressure and temperature from the amphibole-plagioclase
geothermobarometer are 3 - 11 kbar (mean P = 6 kbar) and 700 - 783 °C (mean T =
746 °C). Since the *Ar/*’Ar amphibole age of sample 61-3 is ~381 Ma and the Ar

149], the time taken for the

closure temperature of amphibole is about 450 - 525 ol
temperature to drop below ca. 700 - 783 °C and for the amphibole-plagioclase
assemblage to reach equilibrium should be approximately 65 Ma, i.e. before ~381

Ma but younger than the U-Pb zircon age of ca. 445 Ma for sample 61-3.

The *Ar/* Ar biotite age of sample 122-1 is ~152 Ma, which might record the later
activation/reactivation of the fault near the sampling site. It might be the reason for
the decreasing ages in each step of the biotite YA/ Ar analysis of sample 65-2,
which was collected in the same area as sample 122-1, near the shear zone. Thus
~290 Ma, which is the oldest age with the initial four steps of analysis (44% of
released *’Ar), would be closer to the thermal event recorded by biotite in sample
65-2 (biotite closure temperature is about 300 + 50 °Ct*®ly (Figure 5.25). Therefore,
the estimated time at which the calculated temperature of ~339 - ~347 °C (mean T =
~342 °C; biotite-muscovite geothermometer in samples 65-2 and 66-3) was recorded
would be between ~381 Ma and ~290 Ma (Figure 5.25).

On the basis of the above chronological data with corresponding closure or
metamorphic tepratures, an estimated cooling T-t path in the range of ~850 - ~250 °C
for the Jiaoxi and Mayuan complexes has been obtained (Figure 5.25). It is
significant that relatively rapid cooling occurred between ~445 and ~330 Ma,
followed by a more isothermal stage between ~330 and ~300 Ma.
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Figure 5.25 Cooling ages of the rocks from the Jiaoxi and Mayuan complexes, based on
geochronology and temperature calculations. Ti-in-zircon, Amp-Pl and Bt-Mus stand for the
geothermometers, Amp and Bt are the minerals used in the *’Ar-*’Ar analyses of samples 61-3

and 65-2, respectively.
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Chapter 6 Tectonic interpretation

§ 6.1 Provenance of the sedimentary protoliths

As discussed in Chapters 4 and 5, abundant inherited zircons with Precambrian ages
are found in leucosome and paragneiss samples, and these results are used for
estimating the depositional ages and for analysing the provenance of their
sedimentary protoliths. The youngest cluster of inherited zircons found in the studied
rocks are dated at ~680 Ma (Figure 4.34), with oscillatory zoning and Th/U ratios of
0.26 - 0.69. They suggest an igneous origin for these young zircons and a maximum
deposition age of ca. 680 Ma for the protolith of the Tianjingping Complex.

Determination of the provenance of the sedimentary protolithes for the paragneisses
of the Tianjingping, Jiaoxi and Mayuan complexes will help to understand the
tectonic evolution of Precambrian NE Cathaysia Block. Figure 6.1a shows a relative
probability plot based on 206pp/H¥U (< 1.0 Ga) and *’Pb/**Pb (>1.0 Ga) zircon ages
for 127 inherited zircons analysed during this study (the Tianjingping, Jiaoxi and
Mayuan complexes), which can be compared with the age histogram of Precambrian
magmatic and metamorphic zircon ages from rocks in northeastern Cathaysia (Figure
6.1b), southwestern Cathaysia (Figure 6.1c), the Yangtze Block (Figure 6.1d), and
Laurentia (Figure 6.1e, f).

Although the detrital zircons from this study exhibit a broad age spectrum, they
cluster at three major populations of 1850 - 1727 Ma (11 spots), 1416 - 1327 Ma (12
spots) and 922 - 677 Ma (81 spots), with several minor populations or singular ages
of ~2700 Ma, ~2440 Ma, ~2300 Ma, ~2030 Ma, ~1580 Ma, ~1200 Ma and ~1050
Ma (Figure 6.1a). The main age peaks of ~1850 Ma and ~800 - ~750 Ma are
consistent with crustal ages of igneous™* ">’ meta-sedimentary rocks"*! and river
1581 from the NE Cathaysia Block. Besides, the age population of ~1420 -

~1210 Ma, which however were not detected by previous study in NE Cathaysia, are

sands

consistent with major crustal growth events during Mesoproterozoic in SW

[27. 32, 39, 158] (Figure 6.1c¢) and the Yangtze Block (Jiangnan Orogen“59],

Cathaysia
Kongling[3 1 Western margin[léo], Figure 6.1d). One zircon grain as old as 2696 + 7
Ma indicates that Archean components may present in the NW Fujian area. Differing
from the previous investigation in the NE Cathaysia, the absence of zircons

population of ~2500 Ma or zircons > 2700 Ma in this study is probably due to the
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low number of analyzed spots. Therefore, the basement rocks in NE and SW

Cathaysia are consistent according to the Precambrian zircon age data.

Obvious zircon age peaks of ~1800 Ma suggest that the protoliths be comparable to
the basements of North America (Figure 6.1e, f) rather than those of Eastern India
and East Antarctica®> '°'"'%, Although zircon age peaks of ~1800 Ma are present in
Western Australial®> '**1% their "°Hf/'’Hf ratios (0.280706 - 0.2815 10)[164] are
apparently lower than those of zircons from SW Cathaysia (0.281515 - 0.282098)"*%!
and from this study (0.281232 - 0.282213, NE Cathaysia) (Figure 6.2). Besides,
analyses of Hf isotope in zircons from this study, SW Cathaysia and Yangtze show
different crustal growth episodes from that in Western Australia. For example, in
Western Australia, model ages (7pm) of the zircons having positive eus(f) values
(+0.2 - +14.7) are ~3800 Ma, ~ 3300 Ma, ~3200 - 2700 Ma, ~2400 Ma, ~1300 - 820
Ma, but there is a gap between ~2400 ma and 1300 Mal'**. There is no such a gap in
data from detrital zircons from Yangtze (Kongling[m, west margin[mo]), SW
Cathaysiam] and NE Cathaysia (APPENDIC D). Thus, detrital zircons in Cathaysia
and NW Yangtze indicate significant juvenile input during Paleo- to
Mesoproterozoic, which are distinctly different from Western Australia. So the

(32]

Rodinia reconstruction'”~, in which Western Australia, India and East Antarctica are

adjacent to South China, is not supported by these results.

On the other hand, abundant zircons with positive eur(f) values (+0.1 - +14.7) and

Paleo- to Mesoproterozoic model ages (~2250 - 1310 Ma) have been found in

[166-1671  \which supports the relation between Laurentia

]

southwestern North America
and Cathaysia. Therefore, the Rodinia conﬁguration[59 , in which Cathaysia was next
to western Laurentia before and during the late Mesoproterozoic assembly of

Rodinia, is more consistent zircon U-Pb ages and Hf isotopic evidence.
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§ 6.2 Crustal reworking of the Cathaysia
Block during the “Caledonian” events between
Early Ordovician and Early Devonian

The high-grade metamorphic rocks exposed in the NE Cathaysia have been believed
to be Proterozoic due to the lack of reliable geochronological constraints on the
metamorphic/anatectic and magmatic events!'®> ' In this study, new La-ICPMS
U-Pb anatectic zircon data from the NW Fujian area (Table 6.1) suggest that the
tectonothermal events occurred during Ordovician and Silurian, consisting of at least
three main episodes (~473 Ma, ~445 Ma, ~423 Ma). It indicates that the duration
of the orogeny in the NW Fujian area was no shorter than ~50 Myr, starting at ~473
Ma (~Early Ordovician) or earlier, and terminating at ~423 Ma (~Middle Silurian) or
later. Considering the age data of granitoids as mentioned in Chapter 1.1.3 and
earlier geological observations, the orogeny may have started during the Middle
Cambrian and lasted until the Middle Devonian, with major orogeny events
(including syn- to post-orogenic melting) constrained between ~473 Ma and ~407
Ma in the NE Cathaysia, and between ~468 Ma and ~415 Ma in the SW Cathaysia
(Figure 6.3).

Most of the “Caledonian” granitoids in the Cathaysia Block are S-type, the magma
of which were derived from partial melting of the continental crust. A few of the
granites show characteristics of I-type granitoids, with the magma containing mantle
materials’®®> 13> 11800 There is no evidence for large-scale “Caledonian” I-type
granitoids related to plate subduction, or synchronous island arc-type volcanic rocks
in the study area. As shown by the Hf isotope results, the protoliths of the mafic
gneisses were basaltic rocks with mantle input that formed no later than
Neoproterozoic (Figure 4.34, 5.24), although their anatectic zircon U-Pb ages are
during the “Caledonian” orogeny. Combined with the low eng(?) values of —18.4 to
—2.1 and high (87Sr/86Sr)i values of 0.7071 to 0.7287 for most “Caledonian”

[87. 1801 ¢ appears that the “Caledonian” orogenic event in the Cathaysia

granitoids
Block was likely due to an intracontinental collision rather than the subduction of

oceanic crust or arc-continental collision.

Comparing  with the Paleozoic magmatic zircon ages from the
Qinling-Tongbai-Dabie orogen along the northern margin of the South China
Block!"®"""*7 the age peaks in the Cathaysia Block (ca. 488, 471, 455, 440 and 415
Ma) are within the age range of the Qinling-Tongbai-Dabie orogen (Figure 6.3). This
suggests a possible linkage or interaction of the two orogens.
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Table 6.1 La-ICPMS anatectic zircon U-Pb data of metamorphic rocks in NW Fujian area

Sample No. Rock Age (Ma) Number Complex
471+ 4 1 T
125-1 leucosome 445+ 3 ” Tianjingping
125-2 felsic gneiss 445+ 4 8 Tianjingping
. 448+ 3 14 T
125-4 mafic gneiss 473+ 4 7 Tianjingping
39-1 mafic gneiss 444+ 3 26 Tianjingping
. . 445+ 2 13
65-1 felsic gneiss 42343 4 Mayuan
61-3 mafic gneiss 445+ 2 31 Mayuan

I s 1

| ! NE | |

SIW : Cathaysia | I

n=127 !

Cathaysia : : : !

o I

_.Z‘ n764 1 . | i

—- I ! | : |
= : (

® [ ! . ' :

Q 1 1 ! |

o ! ' : l

o I 1 I [

1 1 2

S ! ' [ ! ;

'c:“- 4 Qinling, Dabie 1

— ; and Tongbai !

) : n=207 .

o ; |

I

I

I

I

I

I

1

|

) 1

| 1

| |
| | | I )

L L L 1 1 L | 1 1 L l 1 L L 1 L L L I L L L L L L

380 400 420 440 460 480 500 520
t (Ma)

Figure 6.3 Relative probability plots for Paleozoic zircon **Pb/***U ages from the NE and
SW Cathaysia, and the Qingling-Tongbai-Dabie Orogen. Data with < 10% discordance are
used here. Data sources for age comparison are: references > ') and this study for NE
Cathaysia; "*" *! for SW Cathaysia; ' '8 '8187] for the Qingling-Tongbai-Dabie Orogen.

In the cooling paths discussed in Chapters 4 and 5 (Figure 4.35 and 5.25), the
temperature of the Tianjingping Complex might have already dropped below the Ar
closure temperature of biotite (about 300 £ 50 octh 6]) by ca. 392 Ma (Figure 4.23),
whereas the temperature of the Jiaoxi and Mayuan complexes just dropped below the
closure temperature of amphibole (about 450 - 525 °C[149]) at ca. 381 Ma (Figure
5.14). However, magmatic events were still occurring in Hainan, which is located in
SW Cathaysia, at ca. 370 Mal””. This indicates not only the longevity of the
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“Caledonian” tectono-thermal events (over 50 Mys), but also the localization of the

events and their inhomogeneous cooling rates.

§ 6.3 Conclusions

(1) New La-ICPMS U-Pb zircon ages presented here and in previous study suggest
that the original litho-stratigraphy should be abandoned and the terminology
“Complex” should be used instead of “Group” and “Formation” for the high grade
metamorphic rock series in northwestern Fujian, where the protoliths were strongly
reworked by Early Paleozoic tectono-thermal events.

(2) Zircon U-Pb ages and Hf isotopic evidence suggest that the bmasement of the

[166-167, 176

Cathaysia share similarities with that of North America 1) lending support

for the Rodinia configuration proposed by Li et al.l’’,

(3) The protoliths of the felsic paragneiss in the NW Fujian area are immature
sediments, probably deposited not early than middle Neoproterozoic (~680 Ma).
Many metamorphic rocks contain 0.99 - 0.72 Ga detrital zircons, which are
interpreted as reflecting the tectono-thermal events related to the assembly and

break-up of the Rodinia supercontinent during the Neoproterozoic[27].

(4) The intense and widespread Palacozoic tectono-thermal events in Cathaysia
between 504 Ma and 408 Mal** ** 5155 (and this study) were probably related to

those occurred in the Qinling-Tongbai-Dabie orogen during 512 - 406 Mal 8187,

(5) The “Caledonian” tectono-thermal events in the Cathaysia Block lasted over 50
Mys, but vary between different segments of the orogen.

§ 6.4 Suggestions for future work

To further advance our understanding of the nature and tectonic history of the NE
Cathaysia Block, the following aspects of research are recommended.

(1) There is a need for geochronological studies on the of the zircon rims from the
plagioclase-amphibole gneisses. The narrow rims show no zoning structure and
likely recorded metamorphic events either during the “Caledonian” orogeny, or
during later events.

(2) A systematic geochronological, petrological and geochemical study of the Early-
Middle Paleozoic granites in the region will help to define the relationship between
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the igneous activity and the anatexis events in the NE Cathaysia Block as reported in
this study.

(3) More detailed U-Pb and Lu-Hf isotopic research on the inherited zircons/cores in
the metamorphic rocks are necessary for studying the evolving history of the
Cathaysia Block during the Neoproterozoic, and its possible connection to other
continents through comparisons with the isotopic characteristics of zircons from
continental blocks like Western Australia, India, East Antarctica and North America.

(4) There is a need for systematic and more in-depth investigations of the meta-
morphic P-T-t of the region.
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APPENDIX A: List of samples collected in this study

Minerals for

1\5131;51; Sample Name Geochronology
Zr Hb Bt
The Tianjingping Complex
31-1 Leucogranite
31-2 Leucogranite
31-3 Leucogranite
31-4 Chl-P1 gneiss
31-5 Bt-P1 gneiss
31-6 Bt-Hb-P1 gneiss X
31-6-1 Qu_artzofelsdparic
vein
31-7 Bi-Hb-P1 gneiss
31-8 Chl-P1 gneiss
31-9 Leucogranite
31-10 Bi-PI gneiss
34.1 S;lhalrtzofelsdparic
34-3 Bi-PI gneiss
34-4 Hb-PI gneiss X
35-1 Bi-PI gneiss
38 Leucogranodiorite
39-1 Amphibolite X
39-2 Amphibolite
39-4 Amphibolite
40-2 Bi-PI gneiss
41-1 ;Zi;grained Bi-Pl
41-3 PI-Hb gneiss
125-1 Leucogranite X
125-2 Leucogranite X
125-3 Hb-Bi-P1 gneiss
125-4 Bi-PI gneiss X X
125-5 Leucogranite
The Mayuan Complex
53 Bi-Pl gneiss
54 Mica gneiss
55 Bi gneiss
56-2 Bi gneiss
57-2 Mica gneiss
59-4 Bi-Pl gneiss
50.5 Seugnzofelsdparic
65-1 Bi-Pl gneiss X
65-2 Bi-P1 gneiss
65-3 Granitic vein
Gt-bearin
6541 G MicaPl gneiss
Gt-bearin
65-4-2 Sill-Micangl gneiss
65-5 Bi-Pl gneiss
66-2 Bi-P1 gneiss
Numper SRl Name o ey

P

T

GPS

N 26°53'18.6" E 116°35'14.0"
N 26°53'18.6" E 116°35'14.0"
N 26°53'18.6" E 116°35'14.0"
N 26°53'18.6" E 116°35'14.0"
N 26°53'18.6" E 116°35'14.0"
N 26°53'18.6" E 116°35'14.0"

N26°53'18.6" E 116°35'14.0"

N 26°53'18.6" E 116°35'14.0"
N 26°53'18.6" E 116°35'14.0"
N26°53'18.6" E 116°35'14.0"

N 26°53'18.6" E 116°35'14.0"
N 26°52'13.0" E 116°42'27.2"

N 26°52'13.0" E 116°42"27.2"
N26°52'13.0" E 116°42'27.2"
N26°52'22.7" E 116°42'37.5"
N 26°54'27.8" E 116°44'46.7"
N 26°54'23.3" E 116°44'52.3"
N 26°54'23.3" E 116°44'52.3"
N 26°54'23.3" E 116°44'52.3"
N 26°4022.2" E 116°42'41.0"

N 26°40'38.0" E 116°43'11.8"

N26°40'38.0" E 116°43'11.8"
N 26°53'12.1" E 116°35'05.0"
N 26°53'12.1" E 116°35'05.0"
N26°53'12.1" E 116°35'05.0"
N26°53'12.1" E 116°35'05.0"
N 26°53"12.1" E 116°35'05.0"

N 26°46'07.4" E 118°29'47.4"
N 26°45'49.1" E 118°29'10.9"
N 26°45'19.5" E 118°28'13.8"
N 26°45'15.6" E 118°27'24.1"
N 26°44'52.1" E 118°26'04.5"
N 27°33'50.6" E 117°38'30.0"

N 27°33'50.6" E 117°38'30.0"

N 27°27'27.77" E 117°45'37.4"
N 27°27'27.7" E 117°45'37.4"
N 27°27'27.7" E 117°45'37.4"

N 27°27'27.77" E 117°45'37.4"

N 27°27'27.7" E 117°45'37.4"

N 27°27'27.77" E 117°45'37.4"
N 27°24'21.2" E 117°49'36.5"

GPS
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The Mayuan Complex

66-3 Bi-Pl gneiss
117-2 Gneiss
122-1 Bi-PI gneiss
1222 ‘(/)eu;lrtzo felsdparic
122-3 Bi-PI gneiss
134-1 Granitic gneiss
134-2 Granitic gneiss
135 Mica gneiss

The Jiaoxi Complex
Fine-grained  Bi-P1

59-1 .
gneiss

59-2 Leocogranite

59-3 Fine?—grained Bi-Pl
gneiss

60-1 PI gneiss

61-1 Fine.—grained Bi-P1
gneiss

61-2 Amphibolite

61-3 Hb-P1 gneiss

61-4 Leocogranite

The Mamianshan Complex
Fine-grained  Bi-Pl

Zr Hb Bt
X X

X

X

X X

1-6 gneiss
15-1 Hb schist
15-2 Qtz-Hb schist
16-1 Mica-Qtz schist
18-1 Hb schist
19-2 Greenschist
58-2 Mica-Qtz schist
69-1 Hb schist
69-2 Hb schist
69-2 Hb schist
71-1 Bi granite
119-1 lgrllrggframed Bi-P1
124-1 Mico-Qtz schist
124-2 Bi schist
124-3 Mica schist
126-1 Ms-Qtz schist
126-4 Qtz schist
126-5 Greenschist
127-1 Greenschist
127-2 Ms-Qtz schist
128-1 lg/ln};li(s)gitic Gt-bearing
131 Greenschist
132 Ms-Qtz schist
The Wanquan Complex
43-1 Bi-PI gneiss
Fine-grained
45-2 Chl-Ep-Ms-Kf-P1
gneiss
Sample Sample Name
Number

Minerals for
Geochronology

N 27°24'21.2" E 117°49'36.5"
N 27°52'23.5" E 118°46"29.8"
N27°28'01.1" E 117°36'22.1"

N27°2801.1" E 117°36"22.1"

N27°28'01.1" E 117°36'22.1"
N 27°42'25.8" E 118°47'49.2"
N 27°42"25.8" E 118°47'49.2"
N 27°4029.0" E 118°49'28.4"

N 27°33'50.6" E 117°38'30.0"
N 27°33'50.6" E 117°3830.0"
N 27°33'50.6" E 117°38'30.0"
N 27°32'02.7" E 117°38'33.4"
N 27°32'02.7" E 117°38'33.4"

N 27°32'02.7" E 117°38'33.4"
N 27°32'02.7" E 117°38'33.4"
N 27°32'02.7" E 117°38'33.4"

N 27°23'27.0" E 118°59'26.7"

N 27°20'43.4" E 118°43'32.8"
N 27°20'43.4" E 118°43'32.9"
N 27°20'43.4" E 118°43'32.9"
N 27°28'43.4" E 118°45'32.1"
N 27°2226.7" E 118°54'30.8"
N 26°43'22.0" E 117°23'02.9"
N 27°20'43.4" E 118°43'32.9"
N 27°20'43.4" E 118°43'32.9"
N 27°20'43.4" E 118°43'32.9"
N 27°23'27.0" E 118°59'26.7"

N 27°27'11.6" E 118°21'48.2"

N26°55'11.5" E 117°00'01.6"
N26°55'11.5" E 117°00'01.6"
N 26°55'11.5" E 117°00'01.6"
N 26°44'55.4" E 118°24'12.9"
N 26°44'55.4" E 118°24'12.9"
N 26°44'55.4" E 118°24'12.9"
N 26°43'24.0" E 118°22'55.1"
N 26°43'24.0" E 118°22'55.1"

N 27°02'14.3" E 118°14'17.0"

N 27°12'29.5" E 118°40'47.2"
N27°19'47.7" E 118°42'23.0"

N 26°35'35.9" E 117°09'41.1"

N 26°35'55.3" E 117°09'47.1"

GPS
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Zr Hb Bt
The Wanquan Complex
Fine-grained
46-1 Chl-Ep-Ms-Kf-P1 N 26°36'56.0" E 117°09'35.7"
gneiss
47-1 Fine-grained Mica-Pl N 26°37'37.9" E 117°10'30.9"
gneiss
48-2 Bi-PI gneiss N 26°39'40.9" E 117°11'17.5"
49 Bi-Ep-Pl gneiss N 26°39'59.9" E 117°14'25.7"
50 Ep-Ms-Pl gneiss N 26°39'44.1" E 117°14'49.1"
51 Ep-Ms-Pl gneiss N 26°42/03.3" E 117°17'26.4"
62-1 Finegrained ~ Bi-Pl N 27°29'47.6" E 117°39'50.1"
gneiss
64-1 Bi-P1 gneiss N 27°28'13.0" E 117°43'16.4"
64-2 Gt-bearing Bi-P1 X X N27°2809.0" E 117°43'26.9"
gneiss
64-3 Fine-grained  Bi-Pl N 27°29'12.5" E 117°43'15.9"
gneiss
121-1 Fine-grained N 27°28'11.4" E 117°43'33.2"

Bi-Pl gneiss
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tope data
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U-Pb
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APPENDIX D: LA-ICP-MS zircon Hf isotope data

Isotopic ratio Hf model age (Ma)
Spot No. t Ma) ex(0) epdlt) 20 frume -
176Hf/l77Hf 20 175Lu/177Hf 20 TDM 20 TDML

© 20 T 20
125-1-01H 0.282186 0.000032 0.001723  0.000108 471 -20.7 -109 1.1 -095 1533 091 1808 142 - -
125-1-02H 0.282219 0.000028 0.000551 0.000062 445 -195 99 1 -098 1441 77 1739 124 - -
125-1-03H 0.282141 0.000038 0.001657 0.000028 445 -22.3 -13 1.3 -095 1594 108 1895 168 - -
125-1-04H 0.282205 0.000038  0.00047  0.000036 445 20 -104 13 -0.99 1457 105 1763 169 - -
125-1-05H 0.282224 0.000034 0.000446 0.000024 445 -194 97 12 -099 1430 94 1728 151 - -
125-1-06H 0.282145 0.000026 0.000631 0.000026 445 =222 -12.6 09 -098 1546 72 1872 115 - -
125-1-07H 0.282159 0.000022 0.000471  0.000096 445 21,7 -12 0.8 -099 1520 60 1845 98 - -
125-1-08H 0.282155 0.000028 0.002121 0.000092 445 -21.8 -127 1 -094 1594 80 1876 124 - -
125-1-09H 0.282162  0.00004  0.000786  0.00005 445 216 -12 14 -098 1529 111 1844 177 - -
125-1-10H 0.282199 0.000028 0.001569  0.00048 445 203 -109 1 -095 1508 79 1790 124 - -
125-1-11H 0.282132 0.000026 0.000188  0.000008 445  -22.6 -129 0.9 -099 1546 71 1889 115 - -
125-1-12H 0.282121 0.000034  0.000321 0.000015 445 23 -133 1.2 -099 1566 93 1911 151 - -
125-2-01H 0.282146 0.000032  0.001587  0.00004 616  -22.1 92 1.1 -095 1584 91 1839 142 - -
125-2-02H 0.282045  0.00004 0.001168 0.000026 616  -25.7 -12.6 14 -096 1707 112 2011 177 - -
125-2-03H 0.281856 0.000034 0.001065 0.000052 776 -324 -158 1.2 -097 1965 94 2300 150 - -
125-2-04H 0.281408 0.00003  0.000589 0.000012 1832 -482 -82 1.1 -098 2550 81 2764 131 - -
125-2-05H 0.282046  0.00004 0.00132  0.000102 740 -25.7  -10 14 -096 1713 112 1978 177 - -
125-2-06H 0.282178  0.00004  0.000585 0.0002 445 221 -114 14 -098 1498 110 1812 177 - -
125-2-07H 0.282173  0.000028 0.001102  0.000046 445 212 -11.7 1 -097 1526 78 1829 124 - -
125-2-08H 0.282139 0.000032 0.001056 0.000046 776 224 58 1.1 -097 1571 89 1796 142 - -
125-2-09H 0.282027 0.000034  0.00054  0.000064 445 -26.3 -16.7 1.2 -098 1704 93 2082 150 - -
125-2-10H 0.281498 0.000098 0.000487 0.000038 2254 -45 46 35 -099 2422 265 2472 427 - -
125-2-11H 0.282141 0.000034 0.001332  0.000052 445 =223 -129 1.2 -096 1580 96 1890 151 - -
125-2-12H 0.281456  0.00003  0.000172  0.000004 2013 -46.5 -19 1.1 -0.99 2459 80 2598 131 - -
125-2-13H 0.282152  0.000036 0.001924  0.00024 7716 219 -58 13 -0.94 1590 103 1795 159 - -
125-2-14H 0.282203 0.000042 0.001339 0.000052 740  -20.1 -45 1.5 -096 1493 118 1698 186 - -

125-4-01H  0.28229  0.00001  0.001641 0.000031 473  -17.1 -7.2 04 -095 1383 29 - - 2493 46
125-4-02H 0.282437 0.000014 0.003061 0.000014 473  -11.8 -24 0.5 -091 1219 43 - - 2067 65
125-4-03H  0.282103  0.000017  0.001247  0.00002 473 -23.7 -13.7 0.6 -096 1631 48 - - 3072 76
125-4-04H  0.282543  0.000011 0.003941  0.00002 473 -8.1 1.1 04 -0.88 1090 35 - - 1757 51
125-4-05H  0.28252  0.00001  0.005721 0.000012 473 -89 -03 04 -0.83 1185 32 - - 1880 45
125-4-06H 0.282203  0.000007  0.000292  0.000005 473  -20.1 -9.8 0.2 -0.99 1454 19 - - 2731 31
125-4-07H 0.282014  0.000008 0.000518 0.000004 473  -26.8 -16.6 03 -0.98 1722 22 - - 3332 35
125-4-08H 0.282734  0.000014  0.006203  0.000013 473 -1.3 71 05 -081 853 47 - - 1212 65
125-4-09H 0.282613 0.000014 0.005674  0.000014 473 -5.6 3 0.5 -0.83 1034 46 - - 1583 65
125-4-10H 0.282521  0.000013  0.00388  0.000028 473 -8.9 03 05 -0.88 1121 41 - - 1824 60
125-4-11H  0.282665 0.000015  0.004799  0.000012 473 -3.8 51 05 -086 926 46 - - 1392 66

34-4-01H  0.281943  0.000009 0.000799 0.000007 781 -293 -125 03 -098 1833 26 2138 41 - -
34-4-02H  0.281551  0.00001 0.00014 ~ 0.000001 1833 -432 -25 04 -1 2330 26 2486 43 - -
34-4-03H  0.281993  0.000013  0.001328 0.000003 781 -27.5 -11 05 -096 1788 37 2062 S8 - -
34-4-04H  0.281596 0.000013  0.000783  0.000001 820 -41.6 -24 05 -098 2308 35 2741 56 - -
34-4-05H  0.281978 0.000009 0.000411 0.000002 1208 -28.1 -1.7 03 -0.99 1766 25 1935 40 - -
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Isotopic ratio Hf model age (Ma)
Spot No. t Ma) &4(0) ent) 20 frumr
e 'me 20 7°Lw/''Hf 20 Tom 20 Tpy

V¢ 20 T 20
34-4-06H 0.281476  0.00001  0.000979 0.000003 1833 -458 -62 0.4 -097 2483 28 2668 45 - -
34-4-07H  0.281783 0.000012 0.000657 0.000005 849  -35 -16.6 04 -0.98 2044 32 2398 51 - -
34-4-08H 028177  0.00001  0.000721 0.000002 820 -354 -17.8 04 -098 2066 27 2431 44 - -
34-4-09H 0.281418 0.000013 0.000793 0.000002 1833 -479 -81 05 -098 2551 36 2760 57 - -
34-4-10H 0.281744 0.000011 0.001505 0.000006 781 -364 -199 04 -095 2145 31 2509 48 - -
34-4-11H  0.282015 0.000012 0.001059 0.000013 781 -268 -10.1 04 -097 1745 34 2017 55 - -
34-4-12H 0.281076  0.00001 0.001103 0.000007 2697 -60 -14 04 -097 3038 28 3133 44 - -
34-4-13H  0.281896  0.00001 0.001239 0.000009 820  -31 -13.6 03 -096 1919 27 2222 43 - -
34-4-14H  0.281584 0.000008 0.000986 0.000009 1833  -42  -24 03 -097 2336 23 2480 37 - -
34-4-15H  0.281992  0.00001  0.000449 0.000002 781 -27.6 -10.6 03 -0.99 1748 26 2041 42 - -
34-4-16H  0.281909 0.000009 0.001436  0.000004 781 -30.5 -141 03 -096 1911 26 2215 42 - -
34-4-17H  0.282085 0.000013 0.000402 0.000001 781 -243 -7.3 05 -099 1619 37 1874 60 - -

39-1-01H  0.282272  0.000013  0.000638  0.000002 444  -17.7 -8.1 0.5 -098 1372 36 - - 2560 58
39-1-01H  0.282206 0.000013  0.000638  0.000002 444 -20 -104 04 -098 1462 35 - - 2766 56
39-1-01H  0.282386 0.000015 0.001192  0.000011 444  -13.7 -43 0.5 -096 1232 41 - - 2214 65
39-1-02H  0.282394 0.000016  0.001091  0.000001 444  -13.4 -39 0.5 -097 1217 44 - - 2186 69
39-1-03H  0.282253  0.00001  0.000652  0.000005 444  -183 -88 0.3 -098 1397 26 - - 2618 43
39-1-04H  0.282316 0.000011 0.000917 0.000011 444  -l6.1 -6.6 04 -097 1320 30 - - 2427 48
39-1-05H  0.282408 0.000014  0.000462  0.000001 444  -129 -33 0.5 -099 1177 39 - - 2125 63
39-1-06H  0.282289 0.000008 0.000675 0.000002 444  -17.1 -7.5 03 -098 1349 23 - - 2507 37
39-1-07H  0.282287 0.000009  0.0009  0.000008 444  -17.2 -7.7 03 -097 1360 26 - - 2519 41
39-1-08H  0.282375  0.00001  0.000836  0.000002 444 -14 -45 03 -097 1235 27 - - 2239 43
39-1-09H  0.282305 0.000011 0.000688 0.000001 444  -16.5 -69 04 -098 1327 29 - - 2455 47
39-1-10H  0.282322  0.000011  0.000719 0 444 -159 -64 04 -098 1305 30 - - 2404 48
39-1-11H  0.282086 0.000016  0.000898 0.000002 444  -243 -148 0.6 -097 1639 44 - - 3153 71
39-1-11H  0.282229 0.000017 0.000746  0.000003 444  -192 -9.7 0.6 -098 1435 48 - - 2699 76
39-1-12H  0.282233  0.000011 0.000698 0.000005 444  -19.1 -95 04 -098 1428 31 - - 2684 50
39-1-12H  0.282369 0.000014  0.000764  0.000004 444  -142 -47 0.5 -098 1240 38 - - 2254 6l
61-3-0lH  0.281944 0.000014 0.001547 0.000035 445 -293 -20 0.5 -095 1868 39 - - 3613 6l
61-3-02H  0.282397  0.00001  0.003371  0.000016 445 -13.3 -45 04 -09 1290 30 - - 2234 44
61-3-03H  0.282498  0.00001  0.002229  0.000055 445 97 06 03 -093 1104 28 - - 1884 43
61-3-04H  0.282511  0.00001  0.001243  0.000012 445 9.2 02 04 -096 1057 29 - - 1818 46
61-3-05H  0.282484  0.000009 0.002764 0.000023 445 -102 -1.2 03 -092 1140 28 - - 1942 42
61-3-06H  0.282373  0.000014  0.002563  0.000046 445  -14.1 -51 0.5 -092 1297 40 - - 2290 6l
61-3-07H  0.282316 0.000007  0.000307  0.000003 445 -l6.1 -6.5 0.2 -099 1299 19 - - 2411 31
61-3-08H  0.282278 0.000009 0.001043  0.000007 445  -17.5 -8 03 -097 1378 25 - - 2550 41
61-3-09H  0.282134 0.000009 0.000504 0.000005 445 -22.5 -129 0.3 -098 1556 24 - - 2988 39
61-3-10H  0.282245 0.000009 0.001372  0.000026 445 -18.6 -92 03 -096 1435 25 - - 2660 39
61-3-11H  0.282222  0.000009 0.001104 0.000013 445 -194 -10 0.3 -0.97 1458 26 - - 2727 41
61-3-12H  0.282202 0.000007  0.000514 0.000011 445  -202 -105 0.3 -0.98 1463 21 - - 2776 33
61-3-13H  0.282389 0.000011 0.001953  0.000009 445  -13.5 -43 04 -094 1252 33 - - 2222 50
61-3-14H  0.282252  0.000009  0.000903  0.000016 445 -184 -89 0.3 -097 1408 26 - - 2628 41
61-3-15H  0.282432  0.000011  0.00143  0.000028 445 -12 -27 04 -096 1174 30 - - 2073 47

59-1-01H  0.282215 0.000011 0.001545 0.000007 758 -19.7 -3.8° 04 -095 1485 31 1678 48 - -
59-1-02H  0.282127 0.000007 0.001787  0.000021 758  -22.8 -7 03 -0.95 1620 21 1842 32 - -
59-1-03H  0.282154  0.00001  0.001302  0.000002 758 -21.9 -58 0.3 -0.96 1561 28 1781 44 - -
59-1-04H  0.282181 0.000013 0.003015 0.000014 758 -209 -57 0.5 -091 1596 39 1777 59 - -
59-1-05H  0.282185 0.000013  0.002097 0.000015 758  -20.8 -5.1 0.5 -0.94 1551 37 1746 57 - -
59-1-06H  0.282137 0.000009 0.002845 0.000006 722 -225 -79 03 -091 1653 25 1858 39 - -
59-1-07H  0.282164 0.000008  0.00171 ~ 0.000006 758  -21.5 -56 03 -095 1564 23 1773 36 - -
59-1-08H  0.28136  0.000009 0.000747 0.000004 1843 -499 -98 03 -0.98 2625 23 2854 38 - -
59-1-09H  0.281326 0.000008 0.000071  0.000001 1668 -51.1 -142 03 -1 2626 21 2929 35 - -
59-1-10H  0.281949  0.00001  0.000654 0.000004 758 -29.1 -12.7 04 -0.98 1817 28 2130 45 - -
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Isotopic ratio ‘ Hf model age (Ma)
Spot No. t (Ma) £(0) eplt) 20 Srumr -
"ug'Hf 20 Lo/'Hf 20 Tom 20 Tpy

C 20 Tpu© 20
59-1-11H  0.282054  0.00001  0.001203  0.000002 758 -254 93 04 -096 1697 28 1958 44 - -
59-1-12H  0.281928  0.00001  0.001165 0.000009 758 -29.9 -138 0.3 -096 1871 27 2181 43 - -
59-1-13H  0.282052  0.00001 0.00114  0.000006 722  -255 -10.1 03 -0.97 1697 27 1970 43 - -
59-1-14H  0.282019 0.000014 0.001266 0.000006 758 -26.6 -10.6 0.5 -096 1749 38 2021 60 - -
59-1-15H  0.282072  0.000011 0.001996  0.000004 758  -24.7 -9 04 -094 1707 32 1944 50 - -
65-1-01H  0.282147 0.000009 0.000526 0.000006 904  -22.1 -24 03 -098 1539 23 1729 38 - -
65-1-02H  0.282428  0.00001  0.000579 0.000002 1374 -12.1 17.8 0.3 -098 1152 27 1086 43 - -
65-1-03H  0.282266  0.00001  0.000055 0.000001 445 -179 -8.1 03 -1 1359 27 1648 44 - -
65-1-04H  0.282035 0.000009 0.000983  0.000004 889 -26.1 -7 03 -097 1714 24 1948 39 - -
65-1-05H  0.282296  0.000009  0.000032 0 445 -16.8  -7.1 03 -1 1317 24 1594 39 - -
65-1-06H 0.281914 0.000012 0.000126 0.000003 445 =303 -206 04 -1 1840 32 2278 53 - -
65-1-07H  0.282124  0.00001 0.00109  0.000002 1326 -22.9 55 04 -097 1595 29 1670 46 - -
65-1-08H  0.282213 0.000012  0.000632 0.000005 1326 -19.8 9.1 04 -098 1452 32 1489 52 - -
65-1-09H  0.282031 0.000011 0.000044 0.000001 445 =262 -164 04 -1 1677 31 2068 50 - -
65-1-10H  0.282185 0.000013 0.001632 0.000012 1326  -20.7 72 05 -095 1531 37 1584 58 - -
65-1-11H  0.2819%4 0.00001  0.000317  0.000001 825 -294 -114 04 -099 1814 27 2118 44 - -
65-1-12H  0.282311 0.000012  0.000032 0 445 -163  -65 04 -1 1297 32 1567 53 - -
65-1-13H  0.282442  0.000011  0.000029 0 445 -11.7 -19 04 -1 1117 30 1330 48 - -
65-1-14H  0.282435 0.000014  0.00014  0.000001 445 -119 -22 05 -1 1130 37 1344 60 - -
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APPENDIX F: Whole rock

geochemistry analytical data

Leucogranotoid in the Tianjingping Complex

Samples

31-1

Major elements (%)

SiO,
TiO,
AL O3
Fe O3
FeO
MgO
MnO
CaO
Na,O
K0
P,05
LOI
Total
TFeO
Na,0+K,0
K,0/Na,O

(Na,0+K,0)
ALO3

0
A/CNK
A/NK

72.20
0.37
14.09
1.14
1.55
0.79
0.07
1.77
3.64
333
0.05
0.52
99.52
2.58
6.97
0.60

0.68

1.7
1.10
1.47

Trace elements (ppm)

Sc
v
Rb

Eu

Samples

6.38
37.4
122
675
17.9
3.21
8.33
1.15
224
210
6.45
68.1
479
93.6
10.9
383
6.95
1.09
31-1

31-2

72.73
0.19
14.50
0.30
0.87
0.54
0.04
1.42
3.43
4.72
0.09
0.81
99.78
1.14
8.15
091

2.2
1.09
1.35

3.73
14.5
155

1122
16.0
3.98
6.03
0.77
232

86.3
2.67
73.7
383
76.4
9.07
325
6.40

31-2

31-3

60.40
1.22
17.57
2.82
3.50
2.47
0.10
4.83
2.79
2.55
0.26
0.84
99.35
6.04
5.34
0.60

0.42

1.6
1.09
2.39

18.1
95.0
157
904
16.0

14.9
0.94
381
258
7.01
319
55.1
111
13.0
474
8.31
1.84
31-3

31-6-1

65.69
0.58
14.29
0.96
2.53
2.87
0.18
3.61
1.17
4.03
0.17
3.37
99.45
3.39
5.20
227

0.44

1.2

227

8.83
41.0
343

1334
10.2
2.86
214
3.89
116

284

8.22
40.8
39.6
82.6
103
39.6
7.69
1.43

31-6-1

70.14
0.28
14.08
0.32
1.75
0.83
0.07
1.45
3.49
5.60
0.11
1.66
99.78
2.04
9.09
1.06

3.0
0.97
1.19

6.74
26.7
151
967
15.8
3.67
13.9
0.87
211
177
5.27
47.6
453
100
10.2
36.6
7.05
1.16
31-9

72.89
0.05
14.41
0.03
0.25
0.18
0.00
0.51
221
8.62
0.10
0.42
99.77
0.28
10.83
2.57

57.38
1.47
16.73
4.13
435
271
0.16
4.88
3.08
2.61
0.19
1.44
99.78
8.07
5.69
0.56

0.47

23
1.00
2.12

18.0
182
165
620
4.63
1.40
10.6
0.69
365
109
3.04
31.9
19.2
443
6.00
25.1
5.43
1.32
38

125-1

62.54
0.77
16.51
0.86
3.11
1.71
0.09
3.61
3.18
2.95
0.18
432
99.83
3.88
6.13
0.61

1.9
1.10
1.96

14.3
58.6
191
391
14.5
7.84
14.0
2.78
302
131
3.35
60.9
36.6
78.1
8.43
322
6.91
1.27
125-1

125-2

68.61
0.30
14.93
0.83
2.51
0.97
0.12
1.99
3.94
4.23
0.20

99.77
3.26
8.17
0.71

0.74

2.6
1.02
1.35

7.20
35.7
123
945
12.1
2.19
5.87
0.99
222
212
6.10

542
116
11.9
41.0
7.08
1.09
125-2

125-5

68.41
0.31
15.30
0.52
1.98
0.89
0.09
1.67
3.75
5.59
0.14
1.13
99.78
245
9.34
0.98

34
1.00
1.25

6.22
325
143
1242
12.1
4.48
8.07
1.04
202
217
5.99
11.3
56.0
115

39.5
6.40
1.13
125-5
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Trace elements (ppm)
Gd 6.76 6.62 6.97 6.75 6.16 3.34 545 6.49 5.06 433
Tb 1.25 1.31 1.05 1.11 1.07 0.81 0.91 1.26 0.69 0.56
Dy 8.90 942 5.79 6.77 7.33 6.17 5.56 9.25 3.67 2.83
Ho 2.16 2.30 1.12 1.42 1.62 1.37 1.18 2.15 0.60 0.46
Er 7.12 7.52 3.07 4.26 5.28 4.42 3.24 7.21 1.54 1.15
Tm 1.20 1.25 0.45 0.70 0.76 0.76 0.50 1.07 0.25 0.16
Yb 8.38 8.70 2.96 5.00 5.47 5.45 3.16 7.41 2.20 1.25
Lu 1.25 1.27 0.43 0.78 0.79 0.82 0.48 0.96 0.32 0.21
>REE 236 202 258 208 229 73 122 199 245 240
2ZLREE
SHREE 5.37 427 10.82 6.77 7.04 2.15 495 4.56 16.11 2094
SEu 0.48 0.54 0.72 0.59 0.52 1.19 0.74 0.57 0.53 0.62
Paragneiss in the Tianjingping Complex
Samples 31-4 31-6 31-8 31-10 34-3 34-4 35-1 40-2 41-1
Major elements (%)
SiO, 63.77 6478 6275  66.81 61.79 67.05 6747 65.78 67.87
TiO, 0.63 0.7 0.94 0.48 0.75 0.57 0.75 0.6 0.69
AL O3 17.23 1595  16.65 14.2 15.64 12.88 15.03 1541 12.26
Fe O3 1.56 0.71 1.72 0.83 0.47 0.58 0.77 2.12 0.62
FeO 3.57 3.2 4.15 3.5 5.29 4.96 4.23 2.6 5.69
MgO 1.35 2.8 1.74 2.02 3.51 2.8 2.07 1.86 3.5
MnO 0.06 0.15 0.08 0.1 0.1 0.2 0.09 0.08 0.11
CaO 1.55 3.8 1.51 1.77 3.04 4.03 2.2 1.63 1.55
Na,O 4.85 2.55 3.85 2.61 2.13 0.59 3.42 4.45 2.18
K,O 2.22 2.88 2.77 3.8 4.05 3.13 2.65 3.63 2.42
P,05 0.19 0.15 0.2 0.34 0.16 0.12 0.09 0.15 0.08
LOI 2.46 1.66 3.08 3.31 2.89 2.89 0.63 1.02 2.66
Total 9944 9933 9944  99.77  99.82 99.8 99.4 99.33  99.63
ﬁ 0.77 0.78 0.77 0.81 0.78 0.82 0.80 0.79 0.83
(_I(\I%)Ia 0.72 0.66 0.63 0.50 0.53 0.56 0.65 0.60 0.58
Trace elements (ppm)
Sc 12.7 11.6 15.1 11.3 15.4 11.1 13.8 10.2 25.7
A% 83.4 54.5 76.2 47.3 94.6 65.6 83.5 66.8 98.5
Rb 186 234 228 278 220 136 162 91.2 63.2
Ba 121 1303 281 348 483 1438 529 1466 1838
Th 10.5 13.1 8.04 19.1 15.3 10.3 16.3 11.4 242
U 2.09 3.50 1.58 2.62 3.01 1.91 3.26 1.12 7.95
Nb 18.1 20.4 17.6 14.3 16.5 11.8 18.4 14.4 16.5
Ta 0.89 2.08 0.84 0.91 1.21 0.78 1.40 0.55 1.01
Sr 171 179 162 168 174 301 275 147 110
Zr 193 346 177 156 206 145 244 251 188
Hf 5.47 9.68 4.82 4.04 5.46 3.82 7.29 6.91 4.94
Y 18.2 383 234 46.3 314 36.7 26.1 23.4 274
La 38.4 52.0 24.8 77.8 44.4 38.2 52.8 522 44.1
Ce 73.0 103 48.7 168 89.0 78.4 103 97.7 105
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Samples 31-4 31-6 31-8 31-10 34-3 34-4 35-1 40-2 41-1
Trace elements (ppm)
Pr 8.57 11.0 5.79 17.5 10.1 9.13 11.8 11.2 10.0
Nd 30.9 44.5 21.2 62.5 36.9 35.0 41.6 38.8 36.4
Sm 5.25 8.52 3.99 11.9 7.32 8.04 7.12 6.33 7.89
Eu 0.83 1.61 0.75 1.42 1.15 1.82 1.30 1.31 1.52
Gd 4.38 7.13 3.81 8.40 5.78 6.76 5.68 4.97 6.31
Tb 0.64 1.30 0.65 1.31 0.89 1.06 0.86 0.74 1.01
Dy 3.49 7.02 4.02 7.89 5.39 6.33 4.84 4.17 5.94
Ho 0.65 1.42 0.84 1.72 1.17 1.25 0.93 0.82 1.20
Er 1.75 4.05 2.39 4.56 3.09 3.04 2.60 2.31 3.02
Tm 0.25 0.61 0.33 0.67 0.42 0.41 0.41 0.34 0.45
Yb 1.72 4.03 2.14 4.51 2.79 2.59 2.73 2.30 2.95
Lu 0.24 0.65 0.30 0.72 0.45 0.38 0.42 0.36 0.48
>REE 170 247 120 369 209 192 236 224 226
2LREE
11.95 8.44 7.26 11.40 9.45 7.82 11.77  12.96 9.58
>HREE
J0Eu 0.52 0.61 0.58 0.41 0.52 0.73 0.60 0.69 0.64
Metamafic rocks in the Tianjingping Complex
Samples 31-5 31-7 39-1 39-2 41-3 125-3 125-4
Major elements (%)
SiO, 4799 42,67 51.87 54.89 46.93 55.54 52.32
TiO, 3.98 5.61 0.68 0.84 4.06 0.41 0.39
AL O3 1424 1380 19.54 14.99 12.93 12.71 12.02
Fe,0; 9.15 15.86 1.97 2.10 4.42 0.99 1.33
FeO 6.90 2.60 4.90 6.25 13.10 5.09 4.86
MgO 4.39 5.12 5.73 6.30 3.58 9.00 10.56
MnO 0.24 0.22 0.13 0.25 0.24 0.16 0.15
CaO 3.82 5.22 8.58 7.65 8.29 4.96 5.51
Na,O 1.78 1.39 2.81 2.45 2.84 0.49 0.34
K,O 4.08 4.22 1.55 1.37 1.05 5.17 4.56
P,0s 0.81 0.67 0.11 0.22 0.68 0.08 0.06
LOI 1.59 1.94 1.25 2.09 0.28 5.11 7.60
Total 98.97 99.32  99.12 99.40 98.40 99.71 99.70
TFeO 15.14  16.87 6.67 8.14 17.08 5.98 6.06
Mgt 18 19 40 37 14 54 57
Trace elements (ppm)
Sc 22.2 39.8 243 23.0 31.3 14.9 36.2
v 199 323 141 140 223 123 135
Rb 342 322 66.5 75.3 17.1 318 331
Ba 2297 662 293 702 265 348 347
Th 3.71 2.56 1.82 7.54 3.29 4.20 3.54
U 3.18 1.64 0.46 3.27 0.60 1.57 1.51
Nb 27.9 21.1 5.64 10.6 40.9 6.07 5.35
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Ta 1.89 1.43 0.32 0.75 2.56 0.45 0.56
Samples 31-5 31-7 39-1 39-2 41-3 125-3 125-4
Trace elements (ppm)
Sr 212 209 454 219 441 59.5 754
Zr 320 213 73.2 99.1 275 75.1 66.9
Hf 8.15 5.76 1.94 2.78 7.41 2.02 1.89
Y 55.8 44.6 15.7 254 69.7 144 12.8
La 41.7 29.5 12.3 194 36.4 14.9 12.2
Ce 91.1 66.9 26.0 41.1 82.4 30.2 24.9
Pr 12.5 9.14 3.07 4.82 10.1 3.48 2.89
Nd 532 39.5 12.6 20.8 48.1 13.0 10.5
Sm 114 8.80 2.67 4.92 11.9 2.91 2.39
Eu 3.53 2.71 0.85 1.66 3.35 0.85 0.68
Gd 11.1 8.74 2.43 4.52 11.8 2.51 2.05
Tb 1.75 1.40 0.45 0.80 2.18 0.40 0.33
Dy 9.92 8.21 2.66 4.23 12.2 2.44 2.11
Ho 1.92 1.55 0.56 0.87 2.47 0.54 0.47
Er 5.22 4.34 1.63 2.48 6.89 1.47 1.33
Tm 0.77 0.64 0.25 0.39 1.05 0.22 0.20
Yb 5.25 4.26 1.59 2.51 6.68 1.48 1.46
Lu 0.79 0.64 0.25 0.38 1.00 0.24 0.23
>REE 250 186 67 109 236 75 62
> LREE/ZHREE 5.82 5.26 5.85 5.73 4.35 7.03 6.55
SEu 0.95 0.94 1.01 1.06 0.85 0.94 0.91
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Paragneiss in the Jiaoxi and Mayuan complexes
Sample No.  59-1 59-3 60-1 61-1 10-1 7-1 81 65-2 65-5 66-2 66-3 122-3 134-1 134-2 135 53 54 55 56-2

Major elements (%)

Sio, 68.05 70.64 66.84 69.27 67.13 68.62 65.6 758 789 6579 63.8 64 67.12 68.36 68.8 73.89 68.85 72.82 64.97
TiO, 047 032 068 043 076 0.72 0.87 055 043 054 1.08 0.77 0.6 0.69 047 056 082 0.64 0.79
AlLO, 1544 1434 1414 1473 1435 1451 151 103 9.61 17 146 153 1406 14.05 14 11.87 1341 11.6 14.66
Fe,05 164 132 175 129 073 047 247 019 0.12 021 049 0.7 035 03 028 1 133 091 147
FeO .75 1.07 212 1.6 445 332 405 395 277 32 62 488 479 421 3.6 3 415 32 53
MgO 1.04 092 106 092 177 125 198 13 086 1.68 2.15 245 209 151 146 16 245 172 2.68
MnO 0.07 0.06 0.08 0.06 0.12 008 0.17 0.1 0.09 0.03 007 01 006 0.06 0.04 006 0.11 0.06 0.18
CaO 299 205 149 223 24 143 268 181 248 444 249 342 174 163 1.02 256 1.19 127 2.02
Na,O 484 464 7.09 47 1.3 231 298 245 132 348 264 308 21 24 257 262 1.67 223 323
K,0 262 379 319 3.87 336 545 236 189 1.72 193 3.65 3.03 347 46 45 165 39 346 195
P,05 0.11 0.09 0.5 0.11 021 0.15 0.18 0.09 0.08 0.18 005 022 0.11 024 0.15 008 0.17 0.17 0.19
LOI 053 0.17 085 024 279 12 081 146 15 106 257 1.78 328 1.7 289 064 13 143 1.7
Total 99.55 99.41 99.44 9945 99.37 99.51 99.2 99.9 99.88 99.54 99.8 99.8 99.77 99.75 99.8 99.53 99.35 99.51 99.14

Si/(Si+Al) 08 081 081 081 081 081 079 0.87 088 0.77 0.79 0.79 0.81 081 0.81 085 082 0.85 0.8

(Nat+Ca)

0.72  0.61 0.7 0.61 049 038 0.68 0.66 0.66 0.78 0.55 0.65 0.49 044 041 0.73 039 047 0.7
(Nat+Ca+K)
Sc 781 6.3 115 735 11.8 9.18 142 79 6.55 538 207 158 114 109 8.62 124 139 9.74 134
v 43.1 277 556 428 914 642 111 48.6 403 56.1 102 150 67.7 489 43 53 96.2 662 872
Rb 802 103 872 989 193 243 123 84.6 773 135 154 192 142 191 152 126 205 133 115
Ba 1379 1131 1439 1315 759 808 567 291 158 535 486 540 768 816 902 862 462 920 314
Th 143 174 808 11.1 127 219 142 125 11.6 11.5 451 16.1 248 223 451 30.1 195 21.1 234
U 1.89 129 086 0.73 235 45 259 239 209 092 3.18 087 259 249 55 289 3.63 33 411
Nb 13.6 173 104 109 154 155 142 952 926 697 19.6 121 112 133 11 304 195 122 164
Ta 0.87 096 055 064 1.17 137 1.03 08 072 037 085 0.7 055 0.64 092 192 1.8 1.07 132
Sr 314 238 244 323 228 149 407 234 247 318 116 231 190 185 223 137 95 168 183
Zr 299 234 258 219 205 238 265 200 163 204 442 121 183 178 205 256 307 288 290
Hf 844 742 6.73 626 595 74 743 573 46 471 127 34 51 493 599 801 9.19 855 871
Y 283 292 254 18 269 293 28.6 19.7 18 73 63.7 134 23 285 232 558 397 29.8 365
La 645 53 464 432 412 456 61.7 409 373 535 103 443 554 50.1 623 472 452 418 50
Ce 115 105 874 84.1 837 987 114 846 72.8 951 224 948 119 110 143 977 929 843 99.6
Pr 13.1 121 9.1 9.7 9.83 12,1 129 851 7.56 9.65 247 10.1 12,6 123 156 11.7 112 983 11.8
Nd 453 419 36.1 34 368 458 457 30.1 261 32 919 385 459 466 58 422 418 359 432
Sm 7.17 7.03 631 563 647 896 733 497 449 4.17 185 6.74 811 851 101 936 821 6.66 8.04
Eu 122 0.89 1.8 129 121 1.17 1.69 0.89 0.74 1.06 134 148 128 129 127 09 123 123 131
Gd 562 5.65 477 447 555 7.83 6.12 405 3.62 279 145 535 574 6.14 658 9.04 729 577 692
Tb 085 088 08 065 086 1.17 091 0.6 053 032 202 063 076 091 09 156 1.19 091 1.09
Dy 489 51 429 3.5 488 591 506 351 3.18 1.51 11 3.12 438 523 484 939 7 524 638
Ho 1.01 1.02 0.89 067 092 1.01 098 072 0.63 0.26 233 0.54 0.83 1.01 086 191 137 1.05 129
Er 282 281 259 1.72 248 255 278 209 1.88 0.68 7.53 133 249 292 221 515 374 298 358
Tm 047 045 04 025 036 037 041 029 027 0.1 111 015 034 038 025 077 057 047 0.57
Yb 29 288 259 145 248 232 279 216 191 064 7.72 0.83 239 254 146 457 3.69 3.03 3.6
Lu 045 046 041 024 038 033 041 03 026 0.1 1.14 0.12 035 037 021 067 055 046 0.56
Y REE 918 753 737 761 670 665 976 646 598 740 1135 584 664 648 772 710 683 697 76l
TLREE 227 196 239 2.8 217 1.67 251 234 25 26 1.1 172 144 146 141 159 176 224 196
5 HREE

J0Eu 542 639 366 46 537 6.68 471 543 567 4.04 8.63 506 563 559 6.07 737 602 54 576
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Metamafic rocks in the Jiaoxi and Mayuan complexes
Samples 61-2 61-3 122-1
Major elements (%)
SiO, 58.70 53.07 48.62
TiO, 0.74 0.86 1.33
AL O3 17.84 17.18 17.74
Fe,04 2.83 3.35 2.78
FeO 3.40 4.94 7.41
MgO 2.78 4.40 5.81
MnO 0.13 0.21 0.21
CaO 6.71 7.37 8.44
Na,O 4.94 4.94 1.62
K,0 0.89 1.48 3.37
P,05 0.13 0.21 0.34
LOI 0.23 1.85 2.06
Total 99.32 99.86 99.73
TFeO 5.95 7.96 9.91
Mgt 27 30 31
Trace elements (ppm)
Sc 17.0 15.6 29.3
v 98.3 184 259
Rb 24.7 40.7 144
Ba 546 192 653
Th 7.89 6.35 6.83
U 2.12 2.28 1.54
Nb 8.94 12.0 124
Ta 0.60 0.59 0.55
Sr 265 323 291
Zr 132 110 113
Hf 3.73 2.81 3.04
Y 20.9 27.8 42.8
La 29.2 24.1 36.6
Ce 50.9 54.9 91.3
Pr 5.68 6.90 124
Nd 22.0 27.0 51.8
Sm 4.29 5.99 12.0
Eu 1.09 1.78 2.62
Gd 3.64 4.52 8.98
Tb 0.65 0.77 1.35
Dy 3.64 4.68 8.06
Ho 0.73 1.08 1.71
Er 2.13 2.92 4.33
Tm 0.32 0.44 0.62
Yb 2.06 3.06 4.04
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Lu 0.31 0.51 0.60
2REE 127 139 236
>LREE/>HREE 8.41 6.71 6.96
SEu 0.28 0.34 0.25
Leucogranotoid in the Jiaoxi and Mayuan complexes
Samples 59-2 61-4 59-5 65-3
Major elements (%)
SiO, 73.70 69.53 69.15 71.49
TiO, 0.10 0.30 0.02 0.16
ALOs 13.68 14.64 15.44 15.09
Fe,0; 0.01 0.76 0.10 0.10
FeO 0.92 1.72 0.71 1.65
MgO 0.02 0.07 0.01 0.03
MnO 0.25 0.83 0.08 0.53
CaO 1.54 2.01 1.91 2.14
Na,O 4.05 3.95 4.06 3.73
K,0 5.01 4.68 5.54 3.88
P,05 0.04 0.09 0.03 0.07
LOI 0.34 1.20 2.90 1.06
Total 99.65 99.78 99.85 99.83
TFeO 0.93 2.40 0.80 1.74
Na,0+K,0 9.06 8.63 9.60 7.61
K,0/Na,0 0.82 0.78 0.90 0.69
(Na,0+K,0)/ AL,0O4 0.88 0.79 0.82 0.69
0 2.7 2.8 3.5 2.0
A/CNK 0.92 0.96 0.95 1.06
A/NK 1.13 1.26 1.22 1.46
Trace elements (ppm)
Sc 2.51 6.03 1.03 4.38
\Y% 13.8 28.5 3.29 144
Rb 109 115 140 80.3
Ba 1805 1290 2157 1589
Th 11.6 9.68 0.091 4.39
U 0.67 0.78 0.030 1.84
Nb 3.41 4.57 0.26 4.01
Ta 0.20 0.14 0.016 0.47
Sr 297 280 392 440
Zr 134 163 0.54 77.5
Hf 431 4.55 0.023 2.83
Y 9.86 6.74 0.71 7.16
La 48.2 43.1 2.29 14.8
Ce 94.4 92.5 3.86 30.9
Pr 10.7 9.39 0.38 3.34
Nd 36.9 33.0 1.28 11.9
Sm 5.50 5.27 0.20 2.32
Eu 1.19 1.13 0.47 1.89
Gd 3.60 3.49 0.14 1.70
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Tb 0.46 0.40 0.019 0.24

Dy 2.16 1.75 0.11 1.27

Ho 0.37 0.28 0.018 0.25

Er 0.93 0.69 0.069 0.81
Samples 59-2 61-4 59-5 65-3

Trace elements (ppm)

Tm 0.14 0.082 0.010 0.12

Yb 0.84 0.51 0.070 0.97

Lu 0.13 0.098 0.011 0.14

>REE 205 192 9 71

> LREE/YHREE 22.81 25.27 18.99 11.85
SEu 0.26 0.26 2.77 0.94

A/CNK = molar Al,0;/(CaO+Na,0+K,0), A/NK=molar Al,05/(Na,0+K,0),
S Eu=2(Eu),/(Sm+Gd),, 5= w% (Na,0+K,0)*/(Si0,-43) (%), Eu=2(Eu),/(Sm+Gd),.
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APPENDIX G: Mineral geochemistry analytical data

Mafic Sample P (kbar) error (kbar) T (°C) error (°C)

39-1 13.7 0.1 798.7 10.0

1 12.2 0.1 774.9 8.6

2 14.0 0.1 796.2 4.9

3 9.1 0.0 737.4 2.5

4 9.6 0.0 733.0 4.7

5 10.8 0.0 749.9 7.5

6 10.3 0.0 744.3 2.0

7 8.1 0.0 722.1 1.0
Average 10.5 0.0 756.8 6.6
61-3 6.3 0.1 753.6 8.3

1 11.5 0.0 783.8 89.4

2 3.3 0.1 700.3 40.1

3 4.2 0.0 745.8 24.8

Average 6.3 0.0 745.9 40.6
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Sample
61-3 61-3 61-3 61-3 61-3 61-3 61-3 61-3 61-3 61-3 61-3 61-3
No.
Mineral Amp Amp Amp Amp Amp Amp Pl Pl Pl Pl Pl Pl
Analysis
1A-1 1A-2 1A-3 2A-1 2A-2 2A-3 1P-1 1P-2 1P-3 2P-1 2P-2 2P-3
No.
SiO, 42.24 5948 41.66 41.69 50.03 41.69 60 583 6091 63.16 58.8 59
TiO, 0.64 0.06 089 063 0.12 088 001 0 0.01 0 0.02 0.02
Al,O5 10.32 2229 9.74 992 1.66 9.62 233 23.6 19.52 2091 229 229
FeO 1799 1.09 16.85 16.65 16.88 17.09 0.17 0.16 0.06 0.12 0.14 0.23
MgO 10.19 049 1037 10.61 11.7 10.36 0.01 0 0.03 0.01 0 0.0l
MnO 0.63 0.06 0.6 0.55 0.7 058 0.05 0.05 0.06 0.05 0.06 0.04
CaO 12.43 573 11.88 11.76 12.11 11.79 571 6.34 173 289 58 5.72
Na,O 1.18 793 1.18 121 0.16 127 825 7.55 445 9.07 8 8.02
K,O 1.1 0.2 1.19 1.16 0.13 123 0.1 026 7.52 0.25 0.15 0.12
Total 96.74 97.32 9435 94.18 93.49 94.51 97.6 96.3 94.29 96.44 959 96.1
Si 635 272 644 643 771 644 273 27 291 288 272 2.73
Ti 0.07 0 0.1 0.07 0.01 0.1 0 0 0 0 0 0
Al 1.83 1.2 1.77 1.8 0.3 1.75 125 129 1.1 1.12 125 1.25
Fe** 1.26 0 148 139 194 1.52 0 0 0 0 0 0
Fe** 1 0.04 069 076 024 0.69 0.01 0.01 0 0 0.01 0.01
Mg 228 0.03 239 244 2,69 239 0 0 0 0 0 0
Mn 0.08 0 0.08 0.07 0.09 0.08 0 0 0 0 0 0
Ca 2 028 197 194 2 1.95 0.28 0.31 0.09 0.14 0.29 0.28
Na 035 07 035 036 005 038 073 068 041 08 0.72 0.72
K 021 0.01 023 023 0.03 024 0.01 002 046 0.01 0.01 0.01
Total 15.44 5 15.52 1551 15.05 1554 5 5 498 497 5 5
Mg/(Mg+Fe) 0.362 0.308 0.381 0.389 0.409 0.377 - - - - - -
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Sample
34-4 34-4 34-4 344 34-4 34-4 34-4 34-4 34-4 34-4 34-4 34-4 344
No.

Mineral Bt Bt Bt Bt Amp Amp Amp Amp Amp Amp Amp Amp Amp
Analysis
No 3B-9 3B-11 4B-8 4B-5 1A-1 1A-3 2A-4 3A-6 3A-7 3A-8 5A-3 5A-4 5A-5
SiO, 34.66 3547 3478 3331 47.64 4721 47.1 48.8 47.65 48.28 47.8 46.9 46.82
TiO, 229 241 186 206 055 053 048 04 052 043 052 057 054
Al20; 16.08 1538 16.61 1638 7.81 805 7.75 697 782 7.1 798 8.07 7.38
Cr,04 0.08 0.05 006 007 014 006 01 0 0.03 0.04 008 007 0.11
FeO 19.46 19.04 20.66 20.04 16.41 1648 16.1 155 16.14 1575 16.5 16.9 16.65
MnO 027 038 026 033 076 087 074 0.84 0.83 09 0.78 0.75 0.76
MgO 11.03 1074 11.77 11.22 11.56 1133 11.3 123 11.63 11.85 11.5 11.1 11.07
CaO 02 007 0.05 0.11 11.23 1142 119 11.3 11.54 11.28 114 11.6 11.15
Na,O 0.05 0.06 0.07 006 059 0.67 0.63 0.55 0.59 0.57 0.65 0.63 0.62
K,0 817 947 1799 715 03 03 029 029 032 03 028 04 031
NiO 0.05 0 001 0.02 0.01 01 0.09 005 0.09 002 0.01 0.04 0.05
P,0; 0.12 0 0.07 011 0.05 0.01 0 006 0 006 006 001 0.05
Total 92.46 93.07 94.18 90.85 97.04 97.03 96.5 97 97.14 96.55 97.5 97 95.52

Si 273 278 269 267 704 698 7 718 7.02 7.16 7.02 695 7.05
Ti 0.14 0.14 0.11 0.12 006 0.06 0.05 0.04 0.06 0.05 0.06 0.06 0.06
Al 149 142 152 155 136 14 136 121 136 124 138 141 131
Cr 0 0 0 0 0.02 0.01 001 O 0 0 0.01 0.01 0.01
Fe** 1.28 125 134 134 165 158 153 1.62 1.58 1.66 1.63 1.62 1.7
Fe** 0 0 0 0 037 045 046 028 041 029 039 047 0.39
Mg 129 126 136 134 255 25 25 269 256 262 251 244 248
Mn 002 0.03 0.02 0.02 009 011 009 01 01 011 0.1 009 0.1
Ca 0.02 0.01 0 001 178 181 19 179 182 179 18 185 1.8
Na 0.01 0.01 o0.01 o0.01 017 0.19 0.18 016 0.17 0.16 0.19 0.18 0.18
K 082 095 079 0.73 006 0.06 0.05 0.05 0.06 0.06 0.05 0.08 0.06
Total 7.8 784 784 7.8 1514 15.15 152 15.1 15.14 15.14 152 152 15.15

Mg/(Mg+Fe) 036 036 036 036 041 041 041 044 042 043 041 04 04
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