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Abstract.  Two available strength data sets of single-walled and multi-walled carbon nanotubes are 

analysed, and the effects of sample sizes on their tensile strengths are investigated. A minimum 

information criterion is applied to determine the optimal strength distribution. The results show that, 

in contrast to a two-parameter Weibull distribution, lognormal distribution seems to be a more 

suitable choice. A simple extrapolation of classical Weibull statistics to nanoscales may result in 

overestimation on the tensile strength of carbon nanotubes. 

Introduction 

Carbon exists in various polymorphic forms such as graphite and diamond. Carbon nanotubes are a 

new form of carbon that consists of graphite sheets, rolled into hollow tubes and capped with C60 

fullerene hemispheres on both ends. In general, there are two types of carbon nanotubes: 

single-walled carbon nanotubes (SWCNTs) with diameters of 0.5−2 nm and multiple-walled carbon 

nanotubes (MWCNTs) with diameters of 2−50 nm [1-3]. These nanotubes have unique and promising 

physico-mechanical properties such as low density, superior electrical/thermal conductivity, 

extremely strong stiffness and strength, and in addition, small but relatively ductile with fracture 

strain of ~5%. Combined with huge aspect (length-to-diameter) ratios, carbon nanotubes are 

considered as an ideal reinforcer in composite materials [3]. It is not surprising that the strength of 

carbon nanotubes has been of great interest; however, their values have remained elusive both 

experimentally and theoretically.  

The small size and special microstrucure of carbon nanotubes make them entirely different from 

carbon fibres. It is known that the scattered strengths of carbon fibres with diameters on the scale of 

micrometres can be well described in terms of Weibull statistics [4,5]. As materials or specimens 

approach nanoscales, however, the principal assumptions such as continuum in linear elastic fracture 

mechanics are unsuitable [6,7]. Similar problems also appear in statistical analysis by using classical 

Weibull statistics because there are only a few rather than numerous defects in nanostructured 

materials such as carbon nanotubes. In addition, nano-defects are completely different from those like 

cracks in continuum mechanics. Thus, the effectiveness of Weibull statistics at nanoscales is often in 

question and there is still no consensus on its validity [8-11]. The recent work showed that, just based 

on post-mortem data analysis, it seems difficult to identify the feasibility of Weibull statistics at 

micro- and nano-scales, and a simple extrapolation may result in overestimation on the strength of a 

tested material, or more seriously, a misunderstanding on its intrinsic fracture mechanism [12,13]. In 

other words, to correctly estimate the strength of carbon nanotubes as well as other nanostructured 

materials, a critical statistical analysis on their strength data obtained from tests is needed. 

In this paper, two available data sets for the tensile strengths of SWCNTs and MWCNTs are 

comprehensively analysed. The influences of specimen sizes such as lengths and/or diameters of 

SWCNTs and MWCNTs on their tensile strengths are investigated. In order to determine the optimal 

distribution for a given experimental data set, a simple method in terms of a minimum information 

criterion is applied. Finally, a fundamental question on the nature of nano-defects in carbon nanotubes 

is discussed. 
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Strength Data of Carbon Nanotubes 

Early measurements on the tensile strength of carbon nanotubes were done indirectly through their 

composites, which led to an unexpected low tensile strength of ∼1.2 GPa [14]. With advances in 

instrumentation and technique, a more direct strength measurement on carbon nanotubes has been 

possible in recent years, and a few strength data sets have been obtained [8,9,15-17]. Table 1 lists two 

strength data sets of SWCNTs and MWCNTs, measured with a “nanostressing stage” located within a 

scanning electron microscope [16,17]. Also listed are geometric sizes such as diameters and lengths 

of carbon nanotubes. In Table 1, the breaking strength σe was calculated by considering all SWCNTs 

in a rope to be carrying the applied load, and the breaking strength σp was calculated by considering 

only nanotubes in the perimeter of the rope to be carrying the applied load. Further analysis showed 

that σp gives a more reasonable result for SWCNTs [16]. As to MWCNTs, the out shell was proven to 

be carrying the applied load [17]. 

 

Table 1. Experimental results of the tensile strengths of SWCNTs and MWCNTs and their geometric 

sizes [16,17], where Ds  and Dm indicate the diameter of the rope of SWCNTs and the outer diameter 

of MWCNTs, respectively. 

 

SWCNTs MWCNTs 

Sample Diameter 

Ds (nm) 

Strength 

σe (GPa) 

Strength 

σp (GPa) 

Diameter 

Dm (nm) 

Length 

L (µm) 

Strength 

σs (GPa) 

  1 20 11 33 28.0   4.10 11 

  2 40   9 52 28.0   6.40 12 

  3 21   4 13 19.0   3.03 18 

  4 38   8 48 31.0   1.10 18 

  5 35   8 43 28.0   5.70 19 

  6 27 11 45 19.0   6.50 20 

  7 39   5 32 18.5   4.61 20 

  8 34   3 16 33.0 10.99 21 

  9 41   6 37 28.0   3.60 24 

10 23   5 17 36.0   1.80 24 

11 34   5 29 29.0   5.70 26 

12 23   7 23 13.0   2.92 28 

13 23   4 15 40.0   3.50 34 

14 19   7 22 22.0   6.67 35 

15 23   7 25 24.0   1.04 37 

16    24.0   2.33 37 

17    22.0   6.04 39 

18    20.0   8.20 43 

19    20.0   6.87 63 

 

The mean values of the tensile strengths (σp and σs) of SWCNTs and MWCNTs in Table 1 are 30 

GPa and 28 GPa, respectively. These values approximately lie on the same order of magnitudes with 

the theoretically predicted strength of E/10 = 100 GPa, where E is Young’s modulus of carbon 

nanotubes which is equal to that of graphite in-plane (∼1000 GPa) [7-9]. In contrast to carbon fibers, 

there seems no obvious tendency of the strengths of carbon nanotubes that vary with their diameters 

or lengths although the scattered values were observed. The potential reasons for the discrepancy of 

measured strengths of carbon nanotubes from their theoretical value will be the focus in the following 

statistical analysis. 
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Statistical Analysis 

Based on the weakest link model and a simple empirical function, the probability of failure Pf for a 

specimen of volume V under uniaxial stress σ can be expressed as 
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where V0 is a reference volume; σ0 and m are a normalized stress and the Weilbull modulus, 

respectively [4,5]. Given that the defect density is independent of the size of a specimen, the number 

of defects in the specimen (or the probability of containing a critical defect) is proportional to its 

volume. That is, the strength of a specimen decreases with increasing its size. According to Eq. (1), 

we have 
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where V1 and V2 are the effective volumes of two specimens, and in general, σ(V) ∼ V
−1/m

, where V is 

an effective volume or length (diameter). This provides us an alternative method to check the 

feasibility of classical Weibull statistics at nanoscales [12,13]. Relative to directly fitting Eq. (1) to 

the strength data of carbon nanotubes, the latter is more intuitive and easier to carry out. For example, 

in the case of SWCNTs under a tensile load, strengths (either σe or σp) versus their diameters Ds are 

shown in Fig. 1(a). Similarly, the dependence of the strengths of MWCNTs under a (nearly) uniform 

tension on their effective volumes is shown in Fig. 1(b). Here, the effective volumes of MWCNTs 

were calculated by V = πDmLt, where Dm, L, and t (∼ 0.34 nm) are its outer diameter, length, and 

thickness, respectively. From Fig. 1, it is obvious that there is no size effect in both SWCNTs and 

MWCNTs as expected. In other words, the Weibull distribution cannot well describe the nature of the 

tensile strengths of carbon nanotubes. The similar conclusion was obtained in [10] by using the linear 

regression of Eq. (1) to these strength data. 

 

 
 

Fig. 1.  (a) Tensile strengths of SWCNTs versus their diameters and (b) tensile strengths of MWCNTs 

versus their effective volumes, where solid and dashed lines indicate their arithmetic mean strengths, 

6.7 GPa, 30 GPa for SWCNTs, and 28 GPa for MWCNTs, respectively. 

 

However, it is worth noting that, for the sake of simplicity, the size influence of carbon nanotubes 

on their strengths is usually ignored in the statistical analysis as did in recent studies [8,9]. It seems to 
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be a reasonable approximation considering the difference of diameters or lengths in 15 SWCNTs and 

19 MWCNTs is less than one order of magnitude and also the scatter of strength data as shown in Fig. 

1. Thus, Eq. (1) may be simplified and rewritten as 
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Fitting the strength data by using the maximum likelihood method, we had two parameters: σ0 = 

7.47 GPa, m = 3.08 (measured by σe); σ0 = 33.89 GPa, m = 2.67 (measured by σp) for SWCNTs, and 

σ0 = 31.48 GPa, m = 2.40 for MWCNTs. As shown in Fig. 2, it is of interest to see that Eq. (2) fits all 

the data sets well. Additionally, a small Weibull modulus (∼ 3) was obtained. As we know, the smaller 

the Weibull modulus, the wider variability is their tensile strengths. Intuitively, this seems consistent 

with what is shown in Fig. 1, however, the conclusion about the size effect of strengths is just opposite 

to the assumption introduced in Eq. (2).  

In view of the strength statistics, a two-parameter Weibull distribution in Eq. (3) should be 

considered as an empirical one on an equal footing with other possible candidates such as normal and 

lognormal distributions [4,18]. Next, additional analysis on the strength data of carbon nanotubes will 

be done in order to have a better understanding on physical implications of the scattered strength data, 

as shown in Fig. 1. For a normal distribution, its probability density function, pf(σ) = dPf(σ)/dσ, is 
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where µ and α are the mean value and standard deviation, respectively. Similarly, for a lognormal 

distribution, its probability density function can be obtained just by replacing σ in Eq. (4) with lnσ, 

but µ and α in a lognormal distribution indicate the geometric mean value and standard deviation, 

respectively. Here, a major difference lies in the effect of independent factors that are additive or 

multiplicative. The two parameters in normal and lognormal distributions can be easily determined by 

using the maximum likelihood method [12]. 

 

 
 

Fig. 2.  Weibull distributions in a log-log plot of ln[1 − F(σ)]
−1

 versus σ, where the calculated 

Weibull moduli are 3.08 and 2.67 for SWCNTs measured by σp and σp, and 2.40 for MWCNTs, 

respectively.  
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To determine which distribution fits these strength data sets better, a minimum (or Akaike) 

information criterion (AIC) is used, which is defined as, kL 2ˆln2AIC +−= , where L̂ln  is the 

maximum log-likelihood of a given model (or distribution) and k is the number of independent 

parameters to be fitted in the model [19]. This provides a useful measure of the relative effectiveness 

of models with various parameters [20,21]. In typical cases, the difference between two distributions 

which would be significant at around the 5% confidence level corresponds to the difference in AIC 

values of around 1.5−2. 

Results and Discussion 

Table 2 lists the AIC values obtained by fitting three (i.e., Weibull, normal, and lognormal) 

distributions to the strength data sets of carbon nanotubes in Table 1. The results show that, in the case 

of MWCNTs, a lognormal distribution fits the data better than a Weibull distribution because the 

difference of their AIC values is substantial, that is, ∆AIC = |AICln − AICw| > 2. But, in the case of 

SWCNTs, the differences between their AIC values are not large enough to distinguish which 

distribution is better. Considering the unrealistic assumption (i.e. size effect) implied in Eq. (3) and 

the unphysical assumption in a normal distribution (where a negative strength can be chosen), it 

seems that, in all the three data sets, a lognormal distribution is an optimal choice. 

 

Table 2. AIC values calculated by using Weibull, normal, and lognormal distributions, where N is the 

number of samples. 

 

Sample N AICw AICn AICln ∆AIC 

SWCNTs (σe) 15   71.78   72.24   71.46 −0.32 

  SWCNTs (σp) 15 120.90 121.89 120.96   0.06 

MWCNTs (σs) 19 151.21 153.10 148.74 −2.47 

 

According to the above analysis, we can give a new explanation on the scatter of tensile strengths 

of carbon nanotudes. An optimal lognormal distribution implies that there be some characteristic 

values such as mean strengths in quasi-perfect carbon nanotubes (see Fig. 1). The value of a mean 

strength is dependent on the collective (multiplicative) interaction of independent (or quantized) 

factors (not limited to flaws in a traditional sense) rather than a critical one like crack that triggers the 

failure as supposed in classical Weibull statistics [22,23]. Recently, nanoscale Weibull statistics, a 

modification of classical Weibull statistics, was proposed by Pugno and Rouff [10] in terms of their 

early work on quantized fracture mechanics [7]. In nanoscale Weibull statistics, a similar formula as 

Eq. (3) was derived, however, the stress σ is a mean value rather than an individual one in a classic 

Weibull distribution [24]. This is consistent with our numerical analysis. That is, there seems to be a 

new kind of sensitiveness of strengths to flaws at nanoscales, and more generally, the strength of a 

nanostructured material may be insensitive to its critical defect [25,26]. 

Summary 

Two available strength data sets of carbon nanotubes have been investigated. A minimum information 

criterion can be applied to determine the optimal strength distribution for a given strength data set. 

The results show that an uncritical extension of classic Weibull statistics may cause overestimation on 

the intrinsic strength of a small scale material, and even a misunderstanding on its underlying fracture 

mechanism. Further statistical analysis indicates that a lognormal distribution is optimal, and there is 

a characteristic strength in carbon nanotubes. Finally, it is worth noting that these conclusions are just 

based on post-mortem data analysis. Thus, more work is needed to check their universality to 

materials at nanoscales. 
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