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Abstract 

Cavitation is one of the main problems reducing the longevity of centrifugal pumps in 

industry today.  If the pump operation is unable to maintain operating conditions around the 

best efficiency point, it can be subject to conditions that may lead to vaporisation or flashing 

in the pipes upstream of the pump.  The implosion of these vapour bubbles in the impeller or 

volute causes damaging effects to the pump.  A new method of vibration cavitation detection 

is proposed in this paper, based on adaptive octave band analysis, principal component 

analysis and statistical metrics.  Full scale industrial pump efficiency testing data was used to 

determine the initial cavitation parameters for the analysis.  The method was then tested using 

vibration measured from a number of industry pumps used in the water industry.  Results 

were compared to knowledge known about the state of the pump, and the classification of the 

pump according to ISO 10816. 

Keywords: Condition Based Monitoring; Vibration; Cavitation; Centrifugal Pumps; Octave 

Band Analysis; Principal Component Analysis. 

 

1. Introduction 

There are 13 well defined fault modes of a pump, some of which are detectable using 

vibration monitoring.  Cavitation is found to be one of the most common fault modes 

appearing in centrifugal pumps in industry due to the inability of the end user to constantly 

maintain the minimum needed pressure in the pipelines upstream of the pump. Usually 

undetectable upon inception, its presence during normal operation of the pump are usually 

not noticed until its effects have done considerable damage to the pump, (K. K. McKee, G. 

Forbes, I. Mazhar, R. Entwistle, & I. Howard, 2011).  



This paper presents a method utilising adaptive octave band analysis techniques, 

where the octave bands are centred on the pump running speed, and statistical methods to 

determine the presence of cavitation using the measured centrifugal pump vibration velocity.  

A review of the state of the art in cavitation detection is presented in section 3.  Section 4 

then explains the theory behind the proposed method. The final sections of the paper then 

briefly describes the methodology and procedure used, and the results of case studies where 

the method has been applied to vibration data measured from industrial centrifugal pumps.  

 

2. Cavitation 

Cavitation is the formation of vapour bubbles in a moving fluid and their subsequent 

implosion within the centrifugal pump.  The effects of this fault mode may have devastating 

impacts on the centrifugal pump, such as extreme local heating, high local pressures, energy 

being released, and extensive pitting on the impeller which would render the impeller 

inoperable, (Cudina, 2003; Yedidiah, 1996).  Cavitation damage, which occurs on the low 

pressure or the visible surface of the impeller inlet vane, is accompanied by four symptoms: 

erosion via pitting of the impeller, a sharp crackling noise which is sometimes compared to 

pumping stones, high amplitude vibration, and a reduction in pumping efficiency,  (K. K. 

McKee, et al., 2011; Palgrave, 1989; Rayner, 1995). 

Pump designers attempt to avoid cavitation by taking into account the high and low 

capacities of the system when designing pumps, resulting in pumps that are most comfortable 

operating in the range of 90% to 110% of their best efficiency point (BEP) .  However, 

problems arise since the majority of centrifugal pumps are forced to operate outside of this 

region, (Forsthoffer, 2011).    

 

3. State of the Art in Cavitation Detection 

Detection of the onset of cavitation is a difficult task to achieve.  A large number of 

methods have been investigated to be able to predict and diagnose cavitation within pumps 

during operation. Despite the promising results from a number of reference works, no single 

method has been shown to be able to be deployed in all field situations. 

M. Cudina utilized microphones to detect the onset of cavitation.  Placing the 

microphones near the centrifugal pump, it was determined that a discrete frequency tone of 

half the blade pass frequency was distinct from the noise associated with the pump and thus 

was a clear indication of the onset of cavitation and its development.   In later studies, Cudina 

et al determined that this distinct frequency was a function of the pump’s design, such as the 

pump’s geometry and material used, (Černetič & Čudina, 2011; Cudina, 2003; Čudina & 

Prezelj, 2009).    The problems with this analysis are (1) it would be difficult for a technician 

to implement the detection method without knowing intricate information about the pump, 

and (2) surrounding noise from the environment could cause background noise interference in 

the signal, thus resulting in difficulty and possible inability of finding the distinct frequency 



stated by Cudina. The use of vibration analysis to determine faults have been proven to be a 

more reliable method of fault detection over audible measurements. 

Neil et al and Alfayez et al performed industrial scale tests to determine if acoustic 

emission sensors are able to detect cavitation.  Both cases were found to show the onset of 

cavitation, while only one was able to show its existence.  As a result, if acoustic emission 

sensors were to be used on a centrifugal pump, they would have to be attached on the pump 

from the factory and then observed frequently.  They cannot be placed onto a used pump that 

has an unknown condition since the sensors are only able to reliably show the onset, and not 

the development of cavitation.  In addition, although empirical evidence supports the validity 

of using acoustic emission sensors to detect incipient cavitation, limited  evidence of the 

effectiveness of this technique for a wide range of industrial environments is found, (Alfayez, 

Mba, & Dyson, 2005; Neil, Reuben, Sandford, Brown, & Steel, 1997).  This is opposed the 

proposed vibration analysis for cavitation, which can be used to detect cavitation in all its 

stages, from inception to complete development. 

Cavitation models attempt to incorporate all factors involved in an effort to predict the 

behaviour of the cavitating state.  However, despite their high accuracy, models have 

difficulties modelling the nonlinearities of cavitation as well as being insensitive to the 

operating point, (Athavale, Li, Jiang, & Singhal, 2002; Hofmann, 2001; Kallesoe, 

Cocquempot, & Izadi-Zamanabadi, 2006; Kallesoe, Izaili-Zamanabadi, Rasmussen, & 

Cocquempot, 2004; Uchiyama, 1998).  As a result, a number parameters needed to accurately 

tune the model are difficult to obtain, and thus need to be assumed when not readily 

available.  This leads to the development of inaccurate models.  The proposed method for 

detecting cavitation removes the need to determine these modelling parameters and relies 

solely on the accepted levels of vibration velocities, which can be obtained using robust 

industrial accelerometers. 

Some methods of cavitation detection utilise data other than vibration in their 

analysis.  Methods such as measuring inlet pressure fluctuations are a good indicator of 

cavitation and have been shown to be more sensitive than comparing the actual net positive 

suction head (NPSHa) to the required net positive suction head (NPSHr).  However, it is 

sometimes difficult to obtain this data due to the alterations that must be done to the pump to 

secure the instrumentation, (Franz, Acosta, Brennen, & Caughey, 1990; Jensen & Dayton, 

2000; Lee, Jung, Kim, & Kang, 2002; Rapposelli, 2002).  Other forms of analysis are able to 

use methods of non-destructive testing, such as the use of accelerometers, which attach to the 

outside of the pump without the need to alter it in any way to detect vibration.  This saves 

time in the implementation phase of the method. 

Parrondo et al created an expert system that attempted to detect the existence of six 

abnormal situations including flow rate greater than the best efficiency flow rate, lower flow 

rate, cavitation partially developed, cavitation fully developed, presence of an obstacle in the 

inlet conduit and rotational speed greater than or lower than the specified value.  Although its 

classification of the pump’s fault mode was correct on the lab tested setup, the effectiveness 

of adapting such a system to other industrial pumps was not attempted, (Parrondo, Velarde, & 



Santolaria, 1998).  Similarly, Yang et al (Yang, Lim, & Tan, 2005) created an expert system 

for fault detection for centrifugal pumps which also incorporated decision trees.  The problem 

with expert systems is that they are normally system specific.  In this case, 6 abnormal 

situations were attempted on a single system.  However, parameters change based on factors 

such as the environment, size of pump, size of motor, and load; and thus, more investigation 

is needed to create a more versatile expert system.  The proposed method for detecting 

cavitation is not limited by factors in the environment, and has been shown using 

experimental data to work on a variety of centrifugal pumps in different environmental 

conditions.  As a result, it has been demonstrated to be more versatile and robust than 

Parrondo et al’s expert system. 

Sakthivel et al and Azadeh et al created a fuzzy logic system to identify up to 19 

failure modes of a centrifugal pump.  Classification was based on statistical features of a 

vibration signal, such as mean, standard deviation and kurtosis, as well as a few other 

measurable quantities, such as flow rate, discharge pressure and temperature.  Empirical 

evidence shows moderate results of classification of the multiple faults, (Azadeh, 

Ebrahimipour, & Bavar, 2010; Sakthivel, Sugumaran, & Nair, 2010).  The difficulty 

associated with using fuzzy logic systems is the complexity in the creation of the fuzzy rules, 

which are usually done by hand, and their limits.  Despite this problem, the papers only 

provide verification for their work based on one pump each.  The method proposed has been 

tested on a number of different centrifugal pumps, which shows its robustness in industrial 

applications. 

Sakthivel et al further created a vibration based fault diagnostic system using a 

decision tree for a monoblock centrifugal pump.  It utilised 9 different statistical features 

from the data, such as standard error, standard deviation, and kurtosis, to separate the data 

and detect if one of 5 different fault conditions were present in the pump.  The faults that 

were simulated and tested for are bearing fault, seal fault, impeller fault, bearing and impeller 

fault together, and cavitation.  The C4.5 decision tree algorithm was used to create the 

decision tree for classification, and resulted in a 100% accuracy for the training data and 

99.66% accuracy for the testing data (Sakthivel, Sugumaran, & Babudevasenapati, 2010).  

Sakthivel et al had only tested their method on a single pump, and surmise that the same 

method can possibly be used in general on all pumps.  One of the largest problems with using 

decision trees is training the system.  Care must be given so as to not overtrain or under-fit 

the data.  Overtraining will result in good results, such as that given, for the training data, and 

possibly from the testing data if they all come from the same source.  However, taking the 

newly over-trained decision tree and presenting it with data from an unseen pump may result 

in poor results.  Under-fitting will produce similar results for the test case, but can also 

produce poor results for the training case as well.  The method proposed has been tested over 

a range of different sized pumps in a range of different conditions to show its robustness. 

Reasonable accuracy in cavitation detection was obtained by Wang et al who utilised 

wavelet analysis, rough sets, and partially linearized neural networks (PNN).  The system was 

able to correctly detect cavitation with an 85.1% accuracy, (H. Wang, 2010; Huaqing Wang 

& Chen, 2007, 2009).  Overall, the use of neural networks to detect cavitation has resulted in 



mixed results. Most research results have not been validated against measurements taken in 

industry, but instead use data created in a lab under ideal conditions or created under 

simulations, (Klema, Flek, Kout, & Novakova, 2005; Y. Wang, Liu Hou, Yuan Shou, Tan 

Ming, & Wang, 2009; Zouari, Sieg-Zieba, & Sidahmed, 2004).  As a result, their ability to 

perform on industrial equipment has not been verified.  The problem with using neural 

networks to detect cavitation is the complexity and time needed in training the classifier.  A 

large range of sample data, along with their known condition, is needed in order to correctly 

train the neural network to detect cavitation on a wide variety of machines and environments, 

regardless of the type of input used.  This is not always available.  The proposed method 

provides a simpler, robust way of taking less data than that needed for the neural network, to 

determine the level of cavitation.  As a result, it saves on time needed to implement by not 

needing training time, as in the case of a neural network, but rather depends on statistical 

means to determine the level of cavitation.   

A further in depth review of the state of the art of detecting cavitation has been done 

by Sloteman (Sloteman, 2007) and Ashokkumar (Ashokkumar, 2011) which covers a variety 

of methods. 

In summary, the method proposed in this paper: 

 Utilizes no invasive methods to obtain the needed data to assess the centrifugal 

pump’s health.  Rather, it utilizes accelerometers, which can be placed on the 

top and side of the bearing housing for the centrifugal pump and attached 

using an adhesive, such as bees wax, or magnets.  Hence, the implementation 

of the method in the field can easily be done by technicians. 

 Does not rely on modelling parameters; nor does it rely on any method in 

which over-training or under-training can present a problem. 

 Utilises principal component analysis and Mahalanobis distance, which have 

been found in the literature to be used separately to aid in cavitation detection 

but not together, in conjunction with an adaptive version of octave band 

analysis.   

 The combination of the three techniques (principal component analysis, 

Mahalanobis distance, and adaptive octave band analysis) allows the data to be 

visualized in a normally distributed space. 

 Takes advantage of the inherent normal distribution of the centrifugal pump’s 

fault data through the use of Mahalanobis distance as a distance metric, to set 

thresholds on classifying data.  These thresholds produce ellipsoids that define 

the boundaries between regions.  Most thresholds are created based on a 2 

class system, healthy and not-healthy, since the method utilized can either 

successfully detect incipient cavitation or fully formed cavitation well.  This 

was the scene in Cudina et al’s work (Cudina, 2003).  As a result, most 



researchers focus on a healthy pump versus a pump with fully formed 

cavitation. 

 Classifies the health of the pump not only in 3 regions (healthy / no cavitation, 

incipient cavitation, fully formed cavitation), but it also provides the user with 

values to describe the severity within that level.  This again is based on the 

Mahalanobis distance from the centre of the data. 

 Has been tested on a wide range of types and sizes of centrifugal pumps to 

show its robustness to be used in any industrial setting. 

 

4. Theory 

4.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a method that maximizes the variance among 

variables. Input variables that are utilised are independent and without the assumption of 

clusters within the data.  PCA produces a series of orthogonal principal components, which 

are a linear combination of the input variables, ordered according to the amount of spread of 

their variances, (Kim & Rattakorn, 2011; Rencher & Christensen, 2012).  PCA is often used 

as a pre-processing technique to other methods such as clustering and artificial neural 

networks, (Cui, Li, & Wang, 2008; Jolliffe, 2005).  

The goals of PCA are to (Abdi & Williams, 2010; Wold, Esbensen, & Geladi, 1987):  

1. extract the most important information from the input data 

2. compress the data set by removing non-important information 

3. reducing / simplifying the data set 

4. determine the relationships between objects 

PCA is performed on a multivariate data matrix, denoted by X, where the I rows are 

the “observations” and J columns are termed “variables”, (Wold, et al., 1987).  The 

components of the PCA are obtained from the singular variable decomposition (SVD) of X: 

 X = PΔQT  (1) 

where P is the matrix of left singular vectors of the size I x L, Q is the matrix of right 

singular vectors of the size J x L, and Δ is the diagonal matrix of singular values.  Let F be 

the I x L matrix of factor scores, which can be obtained by: 

 F = PΔ. (2) 

Factor scores are another name for the principal components, and can be interpreted as 

the projections of the observations onto the principal components. Q can then be interpreted 

in two ways.  First, it provides the coefficients of the linear combinations that are used to 

create the factor scores, known as the “loading matrix”.  It is also the projection matrix of X 



onto the principal components.  Since the product of Q and its transpose, QT, is the identity 

matrix, the equation for F can be transformed to include Q via, (Abdi & Williams, 2010): 

 F = PΔ = PΔQTQ = XQ (3) 

A geometric interpretation of PCA is best understood if X represents two variables 

whose data produces a skewed ellipse.  An example is shown in Figure 1, which represents a 

set of sample data of RMS velocity vibrations measured radially from a centrifugal pump.   

The two axes represent the RMS values from two different sections in the frequency domain, 

called octave bands.  Octave bands are explained in detail in section 4.2.   

 

Figure 1: Sample Data of RMS Velocity Vibrations of a Centrifugal Pump 

 

The first principal component provides the linear combination of both variables to 

produce the major axis of the skewed ellipse.  This axis will contain the maximum variance, 

or spread, of the data.  The second principal component provides the linear combination of 

both variables to produce the minor axis of the skewed ellipse.  This orthogonal axis will 

contain the second largest variance of the data, (Abdi & Williams, 2010). The two principal 

axes for the data shown in Figure 1 are shown in Figure 2. 
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Figure 2: Sample Data With Principal Axes 

 

Since PCA is a least squares method, outliers within the data greatly influence the 

model.  As a result, it is imperative that outliers are corrected or eliminated prior to the PC 

model being created.  Similarly, variables with little variance should be removed from the 

data set since they do not provide a lot of useful information, (Wold, et al., 1987). 

4.2 Octave Bands 

Octave bands have been used in the field of acoustics, where standards defined in 

documents such as ISO 532, divide the frequency spectrum into sections, or bands, centred 

on pre-defined central frequencies (cf), (Standardization, 1975).  This division of the 

frequency spectrum into bands aids in determining where the energy in a signal is found, 

which may lead to determining the cause of the energy.   

McKee et al have taken the concept of octave bands and adapted them to suit the need 

of rotating machinery vibration analysis, (K. K. McKee, Forbes, G., Mazhar, I., Entwistle, R. 

and Howard, I., 2012).  To do so, the central frequency of the second octave band has been 

centred on the running speed (x) of the machine in Hertz.  Subsequent octave bands have 

central frequencies that are double that of the previous ones (x, 2x, 4x, 8x, etc.) with lower 

limits and upper limits defined in the same way as that of ISO 532.  The final octave band is 

defined as that which contains the upper limit of the sampling bandwidth.  As a result, each 

octave band contains frequency information surrounding certain harmonics of the shaft speed 

of the machine.  The first octave band contains sub-harmonic information about the machine, 

(K. K. McKee, Forbes, G., Mazhar, I., Entwistle, R. and Howard, I., 2012).  A summary of 

the octave bands, their limits, and multiples of the running speeds found within them are 

found in Table 1. 
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Table 1: Limits and Running Speeds for adaptive Octave Bands 

Octave Band Lower Limit 

(𝑌 =  
𝑥

√2
) 

Upper Limit  

( 2𝑌 =  𝑥√2) 

Multiples of 

running speed (x) 

centre frequency 

1 0 Y Sub harmonic 

2 Y 2Y 1x 

3 2Y 4Y 2x 

4 4Y 8Y 4x 

5 8Y 16Y 8x 

6 16Y 32Y 16x 

7 32Y 64Y 32x 

8 64Y 128Y 64x 

9 128Y 256Y 128x 

10 256Y 512Y 256x 

 

An example of dividing the frequency spectrum into octave bands is found in Figure 

3which shows the acceleration power spectrum measured radially on a bearing taken from a 

Thompsons, Kelly & Lewis centrifugal pump, 840 kW, operating at 741 rpm.  By placing the 

octave band limits in Figure 3, the multiples of the running speed in Table 1, such as the 

running speed at 12.4 Hz and twice the running speed at 24.8 Hz, are shown as spikes at the 

centre frequencies of octave bands 2 and 3 respectively.   

 

 

Figure 3: Octave Bands Centred On Running Speed (x = 12.4 Hz) 

 

4.3 Mahalanobis Distance 

Multivariate data analysis often requires distances between two points to be 

calculated.  Two common distance measures are the Euclidean distance (ED) and the 

Mahalanobis distance (MD), both of which can be used in the original variable space and in 

the principal component space.  Although ED is the easiest to apply and most common to use, 

MD provides insight into the data that helps better explain its distribution.  MD is used in a 

variety of applications ranging from detection of outliers, selection of calibration samples 

B3 

cf: 2x 
B2 

cf:x 

B1 

sub 

Band 4 

cf: 4x 

Band 5 

cf: 8x 

Frequency Spectrum on a log-linear plot 



from measurements, choosing representatives of data sets, within clustering algorithms such 

as the k-Nearest Neighbour, as well as in discrimination techniques and class modelling 

techniques.  MD is also found in the equation for multivariate normal distributions, (Cho, 

Hong, & Ha, 2010; De Maesschalck, Jouan-Rimbaud, & Massart, 2000).  This is useful in the 

area of condition monitoring, which determines the health of a machine based on various 

methods and tools such as vibration, since it accommodates the non-linear relationships 

found within a machine.  Random vibrations obtained from machines are commonly 

classified as normal distributions due to simplifying the acceleration or velocity signal with 

indicators such as the mean, the standard deviation, and the root mean square (RMS), 

(Toyota, Niho, & Peng, 2000).   

Computation of MD is dependent on the ability to calculate the variance-covariance 

matrix.  This computation causes problems when redundant or correlated information is 

found within the data set, as commonly found in data sets with large number of variables, and 

when the number of variables exceeds the number of objects in the data sets.  Hence, MD is 

normally calculated after choosing a small number of significant original variables or 

principal components after performing PCA, (De Maesschalck, et al., 2000).   

To compute the MD, the variance-covariance matrix Cx must be computed using the 

formula (P.-C. Wang, Su, Chen, & Chen, 2011): 

 𝐶𝑥 =
1

𝑛−1
(𝑋𝑐)𝑇(𝑋𝑐) (5) 

where X is an n x p matrix containing n objects and p variables.  Xc is a column-centred data 

matrix obtained by subtracting the mean of each column from every entry in the column.  For 

the case of three variables, this equation simplifies to: 

 𝐶𝑥 = [

𝜎1
2 𝜌12𝜎1𝜎2 𝜌13𝜎1𝜎3

𝜌12𝜎1𝜎2 𝜎2
2 𝜌23𝜎2𝜎3

𝜌13𝜎1𝜎3 𝜌23𝜎2𝜎3 𝜎3
2

] (6) 

where 𝜎1
2, 𝜎2

2 , and 𝜎3
2 are the variances of the first, second, and third variables, and 𝜌12𝜎1𝜎2 

is the covariance between variable 1 and 2, 𝜌13𝜎1𝜎3 is the covariance between variable 1 and 

3, and 𝜌23𝜎2𝜎3 is the covariance between variable 2 and 3, (De Maesschalck, et al., 2000).   

 The MD for each object xi from the mean 𝒙̅ is calculated by (De Maesschalck, et al., 

2000; Fernández Pierna, Wahl, de Noord, & Massart, 2002; Zhang, Huang, Ji, & Xie, 2011): 

 𝑀𝐷𝑖 = √(𝑥𝑖 − 𝑥̅)𝐶𝑥
−1(𝑥𝑖 − 𝑥̅)𝑇 (7) 

MD can be found in the multivariate form of the normal distribution, which is given 

by the equation: 

 𝑓(𝑥𝑖) =
1

|Σ|1/2(2𝜋)𝑝/2 𝑒−
1

2
(𝑥𝑖−𝜇)Σ−1(𝑥𝑖−𝜇)𝑇

 (8) 



where Σ is the variance-covariance matrix of X and µ is the mean of the xi.  Visualized in two 

dimensions, f(xi) transforms the data into the shape of an ellipse, while in three dimensions it 

is seen as the shape of an ellipsoid.  Points with equal densities can be determined by taking 

the natural logarithm of both sides, and rearranging to obtain the squared MD: 

 𝑀𝐷𝑖
2 = (𝑥𝑖 − 𝜇)Σ−1(𝑥𝑖 − 𝜇)𝑇 = 2 𝑙𝑛 (|Σ|1/2(2𝜋)𝑝/2𝑓(𝑥𝑖)) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (9) 

This is deemed an improved distance metric than the square of the Euclidean distance since 

for normally distributed data, the ED does not take into account the correlation of the data, 

(De Maesschalck, et al., 2000). 

Comparing the multivariate form of the normal distribution with the univariate normal 

distribution, given by the equation: 

 𝑓(𝑥 ) =
1

𝜎√2𝜋
𝑒−

1

2
(

𝑥 −𝜇

𝜎
)

2

          , (10) 

where σ is the standard deviation of the population, Z is then defined as the standard normal 

random variable and is given by the equation: 

 𝑍 =  
𝑥−𝜇

𝜎
= √(

𝑥−𝜇

𝜎
)

2

              , (11) 

which resembles MD in the multivariate case: 

 𝑀𝐷𝑖
 = √(𝑥𝑖 − 𝜇)Σ−1(𝑥𝑖 − 𝜇)𝑇           . (12) 

As a result, MD can be used as the standard normal random variable for the multivariate 

normal distribution and will be used as the distance metric in the proposed method, (De 

Maesschalck, et al., 2000).   

 

5. Methodology 

Vibration monitoring has been found to be a proven method of determining fault 

modes within centrifugal pumps.  As a result, an increasing number of pump manufacturers 

have been equipping their pumps with on-board sensors to help the end-user diagnose the 

health of their pumps.  These instruments, coupled with standards such as those published by 

the International Organization of Standards (ISO), enables the end user to determine the 

overall health of the pump.  In particular for centrifugal pumps, ISO 10816 classifies the 

RMS velocity vibration of a centrifugal pump into one of four different zones.  These four 

zones (A, B, C and D) categorise the machine as either being: 

 A - newly commissioned 

 B - acceptable for long term continuous use 

 C - acceptable for short term but not long term use 

 D - inoperable   



Vibration limits for each zone are dependent on pump characteristics such as the 

power rating, location of the motor with respect to the pump, height of the motor shaft, and 

the pump’s orientation.  Although this method provides an overall indicator of the health of 

the pump, it does not provide insight into the detection of specific fault modes that are 

causing unhealthy vibrations, (Standardization, 1998, 2009).  

Methods such as data driven models (statistical methods and artificial neural 

networks), knowledge based models (expert systems and fuzzy logic systems) and physical 

models can be used in addition to the RMS velocity vibration to determine the overall health 

of the machine.  However, these methods require more information than is available to a 

technician that services the machine, as well as being costly in time and money to produce, 

(K. McKee, G. Forbes, I. Mazhar, R. Entwistle, & I. Howard, 2011).  As a result, more 

efficient and cost effective methods are needed to diagnose the health of a pump. 

McKee et al (K. K. McKee, Forbes, G., Mazhar, I., Entwistle, R., Hodkiewicz, M. and 

Howard, I., 2012) had adapted the octave band analysis to aid in discriminating between the 

causes of the deviations from a healthy to an unhealthy state.  This broadband technique 

divides the frequency domain into octave bands, which are then characterised via their RMS 

values for either the acceleration or velocity signal.  Since the number of octave bands 

obtained can be numerous, McKee et al proceeded to utilise PCA analysis to determine which 

octave bands would best be utilised to determine the existence of cavitation in the vibration 

signal.  Three octave bands were chosen and a weighted sum of the RMS values of these 

octave bands were used to create an indicator sensitive to the onset and development of 

cavitation (CSP – cavitation sensitivity parameter).  Based on their findings, octave bands 2, 

8 and 9 were found to contain characteristics that best indicate if cavitation is present within 

the vibration signal.  Octave band 2 contains vibrations from cavitation that occur at the 

running speed and octave bands 8 and 9 capture the high frequency components of the 

cavitation vibration.  A problem associated with the CSP is the setting of the threshold value 

for the onset of cavitation, which according to the data presented, may vary from 0.2 to 0.8.  

As a result a CSP based on a weighted sum of the result of three octave bands may not be 

feasible, (K. K. McKee, Forbes, G., Mazhar, I., Entwistle, R., Hodkiewicz, M. and Howard, 

I., 2012).   

The proposed method utilises the three adapted octave bands (2, 8, and 9) to 

determine the onset and existence of cavitation by different means.  Octave band analysis has 

benefits over narrowband spectrum as it is able to compare pumps of different speeds, which 

is much more difficult for a narrowband technique.  PCA will be used to transform the RMS 

velocity values from the three octave bands into principal components, which can then be 

plotted on a three dimensional scatter plot.  Mahalanobis distance is then used as a metric to 

determine how far each point is from the centre of a cluster of vibration data from healthy 

centrifugal pumps. Based on empirical data, a threshold can be set to determine if incipient 

cavitation and full cavitation has occurred. 

 

6. Experiment 



6.1 Test Data 

Data obtained for this section was taken under known ideal pump test conditions and 

were used to create threshold values for the proposed method.  These threshold values were 

then tested against other pumps running in industrial settings which were known to have or 

not have cavitation occurring.  Testing with data obtained from pumps in industrial settings 

provided validation under real world conditions, thus demonstrating its usefulness in the 

field.  

Data was initially attained from pump tests on a Gould’s 3700, 90 kW, 4 vane 

impeller, centrifugal pump which ran under a nominal speed of 2990 rpm.  The experimental 

setup is found in Figure 4.  Baseline data was obtained under close to ideal operating 

conditions for the centrifugal pump and then the pump was gradually caused to cavitate using 

a suction vacuum under a range of operating conditions on a purpose built test facility.  

Signals were recorded on 4 accelerometers and dynamic pressure transducers during this 

process.  5 sets of data were obtained, where each set contained entries showing the 

progression from a non-cavitating state to an emerging state of cavitation, and in some cases, 

a fully cavitating state.  Each dataset consisted of the four accelerometer channels, (Blagrove, 

2003): 

 Channel 1 was located radially on the non-drive end bearing 

 Channel 2 was located axially on the non-drive end bearing 

 Channel 3 was located on the Suction flange 

 Channel 4 was located on the discharge flanges 

 

 

Figure 5 shows four graphs, each a plot of the RMS Velocity Vibration values for each of the 

four channels in the dataset.  Octave band 2, 8, and 9 were used to determine the RMS 

velocity levels, which have been plotted in a 3-D configuration as shown in Figure 5.  Blue 

‘*’ points are data points declared as being vibrations from a “healthy pump”, otherwise 

known as absent of a cavitation state.   Green ‘o’ points are data points obtained during the 

cavitation incipient state.  Incipient cavitation points were determined by Hodkiewicz while 

Discharge 

Flange 

Suction Flange 

Drive End 

Bearing  

Non-Drive 

End Bearing  

Figure 4: Gould’s 3700 Pump Testing for Incipient Cavitation 



collecting data by determining when the NPSHa was less than the NPSHr, (Hodkiewicz, 

2012).   

 

Figure 5: Non-Cavitating and Incipient Cavitating Data from Hodkiewicz’s Data 

(Hodkiewicz, 2012) 

 

The data viewed in Figure 5 shows signs of being separable between the non-

cavitating and incipient cavitating data.  As a result, a set of orthogonal axes was created that 

would maximize the separation of the two types of data for clustering purposes. PCA was 

performed on the three octave bands for each channel shown in Figure 5 to determine the 

optimal set of orthogonal axes that would be able to isolate both states from one another.  The 

results of PCA are found in Figure 6.  Figure 6 shows the same data found in Figure 5 plotted 

along a new set of orthogonal axes that best separate the two types of data, first along the first 

principal component axis, then along the second, and finally along the third after the axis has 

been rotated to provide a better view of the separated data.  

 



 

Figure 6: Rotated Axis of Plotted Principal Components 

 

An ellipse has been placed around the non-cavitating data cluster in Figure 6 for all 

channels to show the possible separation of the two data clusters.  The graphs show that the 

healthy data set can lie within a defined cluster, while most of the incipient cavitation data 

would lie outside of cluster, with minimal overlap.  Although the data found in all four 

channels seemed promising to perform the next step in the analysis, only Channel 1 was 

chosen.  This is due to the fact that most data for condition monitoring purposes are collected 

radially on the bearing.  Axial bearing data is not always available, depending on which 

bearing was used for monitoring purposes.  Suction and discharge flanges are not always 

used as locations of data collection since it is surmised that vibrations found at these locations 

would be felt in the bearings.  In addition, Hodkiewicz et al had determined that the best 

location to monitor cavitation impacting on the pump impeller was at the horizontal position 

of the non-drive end bearing since it was indirectly mechanically coupled to the impeller.  

Axial bearing data had been shown to poorly reflect cavitation due to poor mechanical 

coupling with hydraulic excitation mechanisms.  An accelerometer found on the suction 

flange was also found to be a suitable position, however the discharge flange was not found 

to be a suitable position for cavitation detection, (Blagrove, 2003).  As a result, since the goal 

is to determine one position where a technician can perform data collection for cavitation, the 

Channel 1 accelerometer mounted radially on the bearing was utilised for further 

investigation in this study. 

Assuming a normal distribution for the vibration data, an ellipsoid was placed onto 

the principal component axes of Channel 1.  The variance-covariance matrix used to 

determine the shape and axes of the Gaussian multivariate normal distribution ellipsoid were 

calculated using only the healthy data. Moving incrementally by 0.05 standard deviations, it 



was found that 1.85 standard deviations produced an ellipsoid that contained no incipient 

cavitating data and 20 out of 51 healthy points outside of the ellipsoid.  This would produce a 

39.2% misclassification error.  This Gaussian ellipsoid is shown in Figure 7.  Likewise, 4 

standard deviations would include all non-cavitating data within the Gaussian ellipsoid and 

22 out of 30 incipient cavitation points inside the ellipsoid as shown in Figure 8.  This would 

produce a 73.3% misclassification error.   

 

 

Figure 7: Gaussian Ellipsoid with 1.85 Standard Deviations 

 

Figure 8: Gaussian Ellipsoid with 4 Standard Deviations 



  

Table 2 shows the number of points correctly classified as the standard deviation 

changes from 3 to 1.85.  Assuming a Gaussian multivariate normal distribution, points with a 

standard deviation of 3 or higher implies that the points are outliers to the healthy data, and 

thus are in the incipient cavitation state.   

 

Table 2: Percentage of Correct Classification Based on Standard Deviation 

Standard 

Deviation 

(σ) 

Normal 

Distribution 

(Percentage) 

No 

Cavitation 

(Out of 51 

Points) 

No 

Cavitation 

(Percentage) 

Incipient 

Cavitation 

(Out of 30 

Points) 

Incipient 

Cavitation 

(Percentage) 

3.0 99.73 48 94.12 10 33.33 

2.9 99.62 48 94.12 11 36.67 

2.8 99.48 48 94.12 11 36.67 

2.7 99.30 48 94.12 12 40.00 

2.6 99.06 48 94.12 18 60.00 

2.5 98.76 48 94.12 20 66.67 

2.4 98.36 48 94.12 22 73.33 

2.3 97.86 48 94.12 23 76.67 

2.2 97.22 48 94.12 24 80.00 

2.1 96.42 48 94.12 24 80.00 

2.0 95.45 42 82.35 25 83.33 

1.96 95.00 42 82.35 28 93.33 

1.9 94.26 32 62.75 29 96.67 

1.85 93.56 31 60.78 30 100.0 

 

Table 2 shows 4 values that are significant, which are standard deviations of 3, 2.1, 

1.96 and 1.85.  These values should be taken into account when determining the threshold 

values for cavitation.  Figure 9 shows a schematic that helps explain the importance of these 

values. 



 

Figure 9: Schematic of Thresholds for Classification (not actual values) 

(   Non Cavitation,     Incipient Cavitation)  

 

A standard deviation of 1.85 was shown to correctly classify all the incipient 

cavitation points, as shown on the right side of Figure 9.  A standard deviation of 1.96 should 

contain 95% of the healthy data, but instead correctly classifies 82.35% of the healthy data 

and 93.33% of the incipient cavitation data, as shown on the left side of Figure 9. This value 

minimizes the difference in percentage of points correctly classified in each of the categories.  

A standard deviation of 2.1 which represents 96.42% of the healthy data resembles closest to 

the actual spread of the healthy data, correctly classifying 94.12% of the healthy data and 

80% of the incipient cavitation data.  This value minimizes the difference in percentage of 

points correctly classified in each of the categories while minimizing the difference between 

the normal distribution percentage and the number of cavitation points correctly classified.   

As a result of this analysis, a conservative set of thresholds and a more liberal set of 

thresholds can be devised to determine the existence of incipient cavitation.  The conservative 

set of thresholds would ensure that all possible points of incipient cavitation are correctly 

classified, while the liberal set of thresholds would attempt to balance the amount of correctly 

classified points in each category. The value of 1.96 MD was chosen instead of 2.1 MD so as 

to err on the side of caution when classifying incipient cavitation. Hence, the data would be 

broken into three regions: No cavitation, Incipient Cavitation, Full Cavitation.  Table 3 shows 

these thresholds.  In addition, it is proposed that the severity level of the cavitation would be 

determined by the MD’s data value, where the higher MD value would equate to a more 

severe state of cavitation. 

 

MD = 1.96 

MD = 3 MD = 3 

MD = 1.85 



Table 3: Thresholds for Cavitation 

Thresholds No Cavitation Incipient 

Cavitation 

Full Cavitation 

Conservative  0 < MD <1.85 1.85 < MD < 3 MD > 3 

Liberal 0 < MD <1.96 1.96 < MD < 3 MD > 3 

 

6.2 Field Data 

 To test the thresholds and determine how well they are able to separate data from 

cavitating and non-cavitating pumps, accelerometer readings from four different industrial 

pump sets were obtained.  Three sets contained pumps that were cavitating, while one set 

contained pumps that were not cavitating.  Table 4 contains the manufacturer, type, power 

and running speed of each pump.  The Thompsons, Kelly & Lewis pumps were employed by 

Sunwater, Queensland, Australia, to pump freshwater from lakes or reservoirs to 

neighbouring towns for household and commercial use.  Two cavitating pumps were found at 

their Monduran site, pumping water out of Lake Monduran.  Four pumps with no discernible 

signs of cavitation were found at their Bocoolima site, all of the same type, pumping water 

out of the Awoonga Dam.  Even though the pumps at the Bocoolima site did not show signs 

of full cavitation, incipient cavitation may be occurring that did not provide warning signs 

that were visible to the end user.     

The ITT Flygt pump was employed by Gold Coast Water, Queensland, Australia, to 

pump sewage waste water from neighbouring towns to nearby treatment plants.  The two 

pumps at this site were known to cavitate often since the amount of incoming water varied 

throughout the day, thus not providing a constant amount of pressure on the suction side of 

the pump, (Sunwater, 2012). 

Table 4: Pumps and Conditions 

Pumps with  

No Discernible Cavitation 

(mixture of not cavitating and 

possible incipient cavitation) 

Pumps with Full Cavitation 

1. Thompsons, Kelly & Lewis 

400x450 ECSD three stage 

pump, LSE 2600 kW, 1485 

rpm 

 

1. Thompsons, Kelly & Lewis 33”/36” SDS-DV, 

840 kW, 741 rpm  

2. Thompsons, Kelly & Lewis 24”/27” SDS-DV, 

446 kW, 986 rpm   

3. ITT Flygt CT-3231, 2 Blade, 85kW, 1475 rpm 

 

All four data sets were plotted onto the two graphs, shown in 13.  Non-cavitating data 

was plotted using blue ‘*’, cavitation inception data was plotted using green ‘o’, and fully 

developed cavitation data was plotted using red ‘+’.  The left graph shows all points plotted 

with an inner ellipse of 1.85 MD and an outer ellipse of 3 MD, thus analysing the 

effectiveness of the conservative threshold values.  The right graph shows all points plotted 

with an inner ellipse of 1.96 MD and an outer ellipse of 3 MD, thus analysing the 



effectiveness of the liberal threshold values.  In total, 197 data points were obtained from 

pumps that had cavitation and 93 data points were obtained from pumps that were reported as 

not cavitating.  This last set of 93 data points may be representative of pumps that have 

incipient cavitation, which as described earlier, are currently undetectable using standard 

vibration analysis techniques for pump condition monitoring. 

 

 

Figure 10: Industrial Pump Data with Conservative and Liberal Thresholds 

 (* Non-cavitating, o Cavitation inception, + Fully Developed Cavitation)  

 

 

The results of the two plots in Figure 10 are divided into two tables.  Table 5 shows 

287 data points classified into one of three categories based on the two different types of 

thresholds.  Table 6 shows the number of points known to be misclassified according to the 

thresholds, based on what is known about the pump.  Points known to be operating with full 

cavitation but labelled as incipient cavitation, and points known to have no discernible 

cavitation but labelled as full cavitation were considered misclassified.   

 

Table 5: Classification of Industrial Centrifugal Pump Data 

 Non-Cavitating Incipient 

Cavitation 

Full Cavitation 

Conservative 64 29 194 

Liberal 76 17 194 

 

 

Conservative Thresholds Liberal Thresholds 



Table 6: Misclassification of Industrial Centrifugal Pump Data 

 Non-Cavitating Incipient 

Cavitation 

Full Cavitation 

Conservative 1 2 0 

Liberal 1 2 0 

 Table 5 shows that the two different limits on non-cavitating data caused 12 out of 93 

points to be classified in a different category. This is shown as the difference between the 

number of points classified in the non-cavitating region (76 – 64), as well as the difference in 

the number of points classified in the incipient cavitation region (29 – 17). This results in a 

13% difference in classification.  However, none of these points were falsely classified as 

having full cavitation.  Three out of the 197 points from the data known to have full 

cavitation had been classified as having incipient cavitation or non-cavitating, and are thus 

considered to be misclassified.  Thus, a 1.5% misclassification of the data occurred.  Table 7 

shows the comparison of the classification results obtained in Table 5 compared to the 

classification given by ISO 10816. 

 

Table 7: Data Points Classified by ISO 10816 

 Non-Cavitating Incipient 

Cavitation 

Full Cavitation 

Conservative A 63 

B 1 

C 0 

D 0 
 

A 28 

B 1 

C 0 

D 0 
 

A 92 

B 100 

C 9 

D 0 
 

Liberal A 75 

B 1 

C 0 

D 0 
 

A 16 

B 1 

C 0 

D 0 
 

A 92 

B 100 

C 9 

D 0 
 

 

Table 7 shows that for the non-cavitating and incipient cavitating classifications, the 

results are in agreement with what is expected from ISO 10816.  However, for those points 

known to come from a fully cavitating pump, in both cases, the results differ from what is 

expected from ISO 10816.  ISO 10816 classifies 92 of these points as coming from newly 

commissioned pumps, 100 of these points as coming from a pump that is suitable for long 

usage, and only 9 of these points as coming from a pump that is usable only in short term and 

not long term.   

As a result, it can first be concluded that cavitation can go undetected by using overall 

RMS velocity values, and thus undetected by ISO 10816.  Since the contributions of 

cavitation to the overall vibrations are small amplitude increases in the high frequency 

regions as well as amplitude increases around the running speed of the pump, the amplitude 

increase of the overall RMS velocity values may not be large enough to signify the onset and 

initial stages of cavitation.  Alterations to ISO 10816, such as implementing the use of octave 

bands and altering the limit for each octave band at each severity level of the ISO, as shown 



in previous work (K. K. McKee, Forbes, G., Mazhar, I., Entwistle, R. and Howard, I., 2012), 

would allow for better detection of the fault modes.  However, general limitations placed on 

these octave bands take into consideration the importance of increases in these frequency 

ranges, but do not take into consideration the behaviour of a specific fault mode as it appears 

in the vibration.  As a result, it is necessary to create methods that set limits based on the 

behaviour of the fault mode to detect its existence in various frequency ranges.   

Secondly, it has been shown that RMS velocity of high frequency vibrations and once 

per revolution vibrations, as found in octave bands 2, 8, and 9 are able to detect and classify 

the severity of the existence of cavitation within a centrifugal pump when thresholds are 

applied based on a multivariate normal distribution values.  The difference between utilising 

adaptive octave bands in this research, as well as in (K. K. McKee, Forbes, G., Mazhar, I., 

Entwistle, R. and Howard, I., 2012), and the normal use of octave bands is that the second 

octave band is centred around the running speed of the pump.  As a result, the upper and 

lower limits, and the centre frequencies of each octave band changes as the running speed of 

the pump changes.  This causes the octave bands to consistently have the same multiples of 

the running speed in the same octave bands regardless of the actual running speed of the 

pump, rather than octave bands only containing values of the signal at the same frequencies 

each time.  As a result, comparing and tracking changes in the behaviour of a machine 

becomes easier since statistical information would be dependent on behaviours that appear 

around multiples of the running speed of the pump.   By applying a multivariate normal 

distribution ellipsoid based on the behaviour of non-cavitating data and incipient cavitation 

data, the statistical behaviour of RMS velocity vibration in the octave bands can be utilised to 

create limits that better represent the vibration behaviour of a cavitating pump.   

Due to the simplicity and effectiveness of this method, it is recommended for 

employment into field use.  To do so, the technician would first need to download the 

processed data and its covariance matrix that was used to create the thresholds for this 

method.  From this point on, field technicians would then only have to acquire data from 

accelerometers placed radially on the bearings.  This data can easily be post processed into 

octave bands, and the RMS velocity of octave bands 2, 8 and 9 can be obtained and measured 

from the centre of the ellipse obtained followed by using MD to produce a value 

representative of the cavitation state of the pump.  This post processing of the data can be 

done on site in a matter of seconds on a velocity vibration signal of less than 1 minute 

duration.  Hence, if placed onto a laptop or handheld device, this procedure can provide a 

technician with an instantaneous evaluation of the cavitation state of the pump. 

 

7. Conclusion 

This paper has presented an approach to perform cavitation detection based on octave 

band analysis, PCA, and statistical methods.  Data sets from a 90 kW industrial pump without 

cavitation and a pump with incipient cavitation were used to create the variance-covariance 

matrix needed to obtain the parameters to treat the training dataset as a normal distribution.  



MD was used as a distance metric to determine the severity of the cavitation and set threshold 

levels to divide the data sets into 3 states – non-cavitating, incipient cavitation, and full 

cavitation.  Two types of thresholds were presented based on the trial training data to 

determine when incipient cavitation occurs.  The method was then used on data obtained 

from 8 pumps of varying sizes and operating conditions used in the water industry to classify 

their operating condition compared to their known state. The presented analysis was able to 

identify all cavitation conditions within the 8 sets of field pump data only over specifying the 

cavitation level in 1.5% of cases. This analysis would have great advantage if combined in 

the implementation of an expert system, such as an expert fault tree diagnostic system, for 

industries utilising pump infrastructure. 

7.1 Research limitations 

Although the presented analysis was shown to be very robust with the given measurements, 

two limitations still exist which if overcome would allow even greater application of the 

method. Firstly due to the use of PCA, on a small number of data points, the removal of 

outlier data points was required. This needs to be done by a knowledgeable analyst with the 

application of their judgement. Obviously the need to remove outlier data points limits the 

automation of any method and removal of this criteria would enhance its application. This 

can somewhat be alleviated with the use of a larger number of datasets. 

The next limitation which was not explored in this paper is if different fault modes would 

display similar characteristics in the fault indexes and therefore show up as pump cavitation 

when in fact it was another fault type present. This miss diagnosis of a fault type would need 

to be further investigated in future work. 

7.2 Research contributions 

This study extends the work of McKee et al (McKee, et al., 2012) and De Maesschalck et al. 

(De Maesschalck, et al., 2000) in using a reduced set of vibration characteristic measurements 

by applying PCA to spectral Octave band vibration measurements. The use of MD as a 

distance metric provides a more appropriate measure of the three dimensional PCA axes the 

data is projected onto. The results show only a 1.5% misclassification rate for the field data, 

suggesting that the above method is widely applicable and robust given the wide range of 

machine size and power ratings that was used for the research. It is believed that the 

displayed robustness in application is the strongest aspect of the presented work. Firstly, the 

robustness of this method comes from the use of the PCA selected Octave spectral based 

measurements. The selected bands, being: running speed and 8x and 9x running speed 

reinforce the knowledge that cavitation type faults contain spectral information at high 

frequencies and around the running speed. The subtle yet powerful method of setting the 

Octave band centre frequency based on the running speed is the next major contributor to the 

robustness of the presented analysis. The adaptive Octave band selection based on running 

speed allows for the generalisation of the method across different size pumps and operating 

conditions. These two initiatives in the analysis procedure culminate in a process for 

determining cavitation type faults without the need to calibrate for pump size or running 



speed, nor requires detailed knowledge of specific pump details (which are often not readily 

available to technicians). 

7.3 Research future directions 

The most needed future expansion of the work presented within this paper is to apply the 

method to a larger variety of pumps running at different operating conditions and known fault 

levels to further gain insight into how widely it can be applied and to continue to test its 

robustness.  

In terms of extending the theory of this method in future work, the integration of further 

pump performance data, such as motor current, flow rate and pressure level, along with 

vibration based measurements into the principal fault indicators would no doubt aid in the 

wider application of the procedure. It is believed that inclusion of additional pump 

performance data would help alleviate the ambiguity that can arise where other fault types 

may display similar vibration characteristics as cavitation. 

Finally, this vibration based pump cavitation diagnostic analysis needs to be integrated into a 

wider fault diagnosis expert system to realise its full potential. This would particularly require 

further work for instance in automating the weighting given to the vibration based fault 

characteristics as compared to perhaps the pump performance based indicators to give an 

overall cavitation fault detection level.  
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