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A b s t r a c t  

Formation’s properties can be estimated indirectly using joint 
analysis of compressional and shear wave velocities. Shear wave data is 
not usually acquired during well logging, which is most likely for cost 
saving purposes. Even if shear data is available, the logging programs 
provide only sparsely sampled one-dimensional measurements: this in-
formation is inadequate to estimate reservoir rock properties. Thus, if the 
shear wave data can be obtained using seismic methods, the results can 
be used across the field to estimate reservoir properties. The aim of this 
paper is to use seismic attributes for prediction of shear wave velocity in 
a field located in southern part of Iran. Independent component analysis 
(ICA) was used to select the most relevant attributes to shear velocity 
data. Considering the nonlinear relationship between seismic attributes 
and shear wave velocity, multi-layer feed forward neural network was 
used for prediction of shear wave velocity and promising results were 
presented.  

Keywords: shear wave velocity, seismic attributes, regression analysis, 
independent component analysis, multi-layer feed forward neural net-
work. 
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1. INTRODUCTION 
Compressional and shear wave velocities (Vp and Vs) are essential parame-
ters for hydrocarbon reservoir evaluation including lithology indication, po-
rosity calculation, identification of reservoir-fluids, estimation of perme-
ability, fracture evaluation and geophysical/geomechanical studies (Singh et 
al. 2012). This indicates the importance of acquiring both compression and 
shear sonic data. These parameters are obtained directly from core analysis 
in laboratory or dipole sonic imager (DSI) tools run during well logging. The 
direct measurements using core samples in the lab cannot provide continued 
information about the interval of interest since few core samples are taken at 
few depths due to cost and technical difficulties associated with sampling. 
DSI tool is also an expensive logging tool which is not usually run during 
well logging. Attempts have been made to find alternative methods for shear 
wave velocity estimation. Many researchers have tried to predict Vs from 
well log data (e.g., Castagna et al. 1993, Gassmann 1951, Greenberg and 
Castagna 1992, Eberhart-Phillips et al. 1989, Krief et al. 1990, Picket 1963, 
Rezaee and Applegate 1997). For example, Wantland (1964) assumed a 
Poisson’s ratio for reservoir rocks and estimated shear wave velocities. 
However, the Poisson’s ratio is changing in a wide range in practice; hence 
the accuracy of estimated shear sonic data is questionable (Carroll 1969). 
Another approach is to measure Vs using pulse transmission techniques ap-
plied on core samples in laboratory (Birch 1960, Christensen 1974, Kern 
1982, Burlini and Fountain 1993, Ji and Salisbury 1993, Watanabe et al. 
2007). However, few lab data is available for Vs measurements comparing to 
those of Vp (Ji et al. 2002). This is due mainly to the difficulties of Vs meas-
urements at low pressures, as transmission of shear wave through the sample 
requires a firm contact between the transducers and the end surfaces of the 
specimen. Since variations of shear wave velocity are related to the rock 
type, mechanical properties and loading conditions, the laboratory measure-
ments cannot ideally simulate downhole field conditions (e.g., state of in situ 
stresses and fluid content). In addition, the information obtained is not very 
reliable statistically since limited core samples are taken for mechanical lab 
experiments. Another approach is to use empirical correlations reported dur-
ing last decades to estimate shear wave velocity from rock physical proper-
ties (Castagna et al. 1993, Brocher 2005, 2008, Ameen et al. 2009, Yasar 
and Erdogan 2004). However, these correlations have been developed based 
on data collected from a certain area or field so their applications for a dif-
ferent field should be exercised carefully. In addition to this, it should also 
be mentioned that these correlations are based on 1D data obtained from 
petrophysical logs run in a well, so is not a good representative of rock prop-
erties in the entire field, which should be based on 3D models. 
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Seismic data recorded during seismic exploration can carry information 
about various geological, petrophysical, and geotechnical features. This sug-
gests that formation’s physical and mechanical properties can be estimated 
using seismic data and calibrated against log data which are more reliable. 
Using seismic data allows interpolation and extrapolation between and be-
yond sparse well data. Seismic attributes, extracted from seismic traces 
through different mathematical methods, reflect intrinsic characteristics of 
seismic information. Seismic attributes are more sensitive to change in for-
mation parameters and can be used to predict geologic information since 
spatial changes of rocks’ properties result in changes of seismic attributes 
which reflect geometry, kinematics, dynamics, and statistical characteristics 
of seismic information (Chen and Sidney 1997, Schmitt 1999, Hart and 
Balch 2000, Neves et al. 2004, Walker et al. 2005). As a broad generaliza-
tion, time-dependent attributes provide structural information, whereas am-
plitude-derived attributes provide stratigraphic and reservoir information 
(Brown 1996). Frequency derived attributes are not yet well understood but 
there is a widespread optimism that they will provide additional useful reser-
voir information. Most attributes are derived from the normal stacked and 
migrated seismic data but variations of amplitude as a function of angle of 
incidence (and hence source to receiver offset) provides a further source of 
information (Chen and Sidney 1997). 

The aim of this paper is to use seismic attributes of a 2D seismic data be-
longing to an offshore field located in southern part of Iran in order to pre-
dict shear wave velocity.  

2. SEISMIC  ATTRIBUTES 
During the 1970s and 1980s, the most commonly used attributes in petro-
leum exploration were amplitude-based instantaneous ones. However, in the 
1990s, seismic attribute technology has dramatically advanced in several di-
rections from single-trace instantaneous attribute to more complex multi-
trace seismic event attribute extractions. With increasing growth of seismic 
attributes over the past decades, researchers attempted to classify them into 
various categories to highlight their goals and applications. For instance, 
Sheriff (2002) in his encyclopedic dictionary of geophysics has provided 153 
lines to attributes, complex trace analysis, and hydrocarbon indicators, plus 
a full-page figure of complex trace analysis. Cosentino (2001) listed charac-
teristics that can be identified by attributes, such as structures (e.g., horizon 
depth, reservoir thickness, and faults), internal architectures (heterogeneity), 
petrophysical properties (e.g., porosity and permeability), and hydrocarbon 
properties (e.g., production, thermodynamics, etc.). Taner et al. (1994) have 
divided attributes into two general categories: geometrical and physical ones. 
According to them, the objective of geometrical attributes is to enhance the 
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visibility of the geometrical characteristics of seismic data. Physical attrib-
utes are related to physical parameters of the subsurface and can be used for 
identification of lithology. Brown (2004) classified attributes using a tree 
structure with time, amplitude, frequency, and attenuation as the main 
branches, which further branch out into post-stack and pre-stack categories. 
He indicated that time attributes provide information on structure, whereas 
amplitude attributes provide information on stratigraphy and reservoir. Chen 
and Sidney (1997) provided a classification based on wave kinematic/  
dynamic categories and geologic reservoir feature categories. Barnes (1997) 
developed a classification of complex-trace attributes depending on the rela-
tionship among different attributes and seismic data. Liner et al. (2004) clas-
sified seismic attributes into general and specific categories. General 
attributes measure geometric, kinematic, dynamic, or statistical features de-
rived from seismic data. They included reflector amplitude, reflector time, 
reflector dip and azimuth, complex amplitude and frequency, generalized 
Hilbert attribute, illumination, edge detection/coherence, amplitude versus 
offset (AVO), and spectral decomposition. These general attributes are based 
on either physical or morphological characteristics of the data tied to lithol-
ogy or geology and are therefore generally applicable from basin to basin 
around the world (Meldahl et al. 2001).  

In this paper, seismic attributes are classified into the four distinct cate-
gories:  

1) Qualitative attributes, such as coherency and perhaps instantaneous 
phase or instantaneous frequency, which are promising for highlighting spa-
tial patterns such as faults or facies changes. However, it is difficult to relate 
these attributes directly to a logged reservoir property like porosity or thick-
ness, and thus these attributes are not normally used to quantify reservoir 
properties.  

2) Quantitative attributes, such as zero phase amplitude, relative imped-
ance and absolute impedance which are the most useful attributes for quanti-
tative reservoir characterization. 

3) Interval attributes are used to quantify a window of seismic data usu-
ally containing more than one peak or trough. Most seismic attributes fall in-
to this category. Examples of interval attributes are the number of zero 
crossings, average energy, and dominant frequency. These attributes are fre-
quently used when reservoir seismic reflections are so discontinuous that it is 
impossible to pick the same peak or trough on all traces. An interval attribute 
is analogous to a well log cross section with a number of thin, discontinuous 
sands that cannot be correlated with any certainty.  

4) AVO attributes are those that are generated using a reflection’s pre-
stack amplitudes. Examples of pre-stack attributes are AVO gradient, AVO 
intercept, near amplitude, and far amplitude. The 3D pre-stack attributes 
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have only become available recently with the advance of pre-stack time mi-
grations. Pre-stack attributes have a lot of promises, but are beyond the 
scope of this paper to be presented in details. 

3. THE  OFFSHORE  FIELD  AND  AVAILABLE  DATA 
The analysis in this paper is based on the data from an offshore field which 
is located at 90 km distance from Kharg Island, South Iran. The field is a 
NE-SW trending, elongated anticline, with dimensions of approximately 
100 km2 in Burgan formation. The structure has a pronounced southern cul-
mination and is faulted along its crest. A significant crestal collapse is pre-
sent over the northern culmination that has a lower structural relief than the 
southern one. Uncertainty related to the depth of the flanks of the structure 
exists due to a lack of velocity data. The faults do not extend across the en-
tire structure, and reservoir continuity and connectivity is expected to be 
maintained within the oil column resulting in a field wide common oil water 
contact (OWC) and pressure regime. The minor displacement along the 
faults combined with the high sand content limit the potential for the devel-
opment of fault seals. However, an uncertainty exists on the sealing potential 
of individual faults. Some faults may seal and most faults are expected to 
form partial flow barriers resulting in tortuous flow paths across faults. The 
 

Fig. 1. The 2D seismic data as well as two wells used for seismic attribute extraction 
and modeling. 
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Fig. 2. Sonic compression and shear transit time (in British unite), density, and po-
rosity logs corresponding to well NR-20. Colour version of this figure is available in 
electronic edition only. 
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Fig. 3. Sonic compression and shear transit time (in British unite), density, and po-
rosity logs corresponding to well NR-16. Colour version of this figure is available in 
electronic edition only. 
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reservoir is heterogeneous and has uncertainties related to the actual location 
and correlatability of the good quality sands. Seismic and well log data be-
longing to this field were used in this study. 

The studied area underwent a seismic survey over an area of about 
200 km2. The two released final volumes (Spike and Gapped Deconvolution) 
showed high quality data. For the purpose of this study, a specific post-
migration reprocessing was performed on seismic data. The spike 
deconvolution, spectral whitening, stratigraphic deconvolution, and notch 
dimensional spatial filter in the frequency domain were applied to improve 
the vertical resolution and to attenuate the acquisition footprint. Figure 1 
shows 2D seismic line as well as the two wells used for the purpose of this 
study.  

Two wells in this field, known as NR-16 and NR-20, were used for this 
study. Both wells contain shear and compression wave velocity data together 
with porosity and density logs. Well log datasets were considered to study 
the quantitative relationships between acoustic and litho-petrophysical prop-
erties and to support seismic lithology activities (both inversion and calibra-
tion). At the same time, a set of acoustic and petrophysical curves, including 
the generated synthetic seismograms, were used to correlate well and seismic 
information. Figures 2 and 3, respectively, present the available well logs 
corresponding to these two wells which were used in this study. 

In this paper, the seismic attributes used to construct the shear wave 
model were extracted from stacking trace of borehole-side seismic traces by 
considering a specific neighborhood distance. In the first place, the time-
depth correspondence relationship between seismic and well log data must 
be determined using acoustic log data of a drilled well to calibrate horizons 
accurately. With the exception of instantaneous attributes, choosing the size 
of time-limited moving window has a significant impact on calculating at-
tributes. Practical attempts indicated that an appropriate size range for time 
window is 1100-1400 ms. 

4. SEISMIC  ATTRIBUTES  SELECTION 
A good seismic attribute is either directly sensitive to the desired geological 
property of the formations or allows us to define the structural environment 
to infer features of interest. In this paper, the challenge was to select the 
most relevant attributes as well as an appropriate integration technique to 
model shear wave velocity using seismic data. The three most common pre-
diction methods used in industry today are regression, geostatistics, and neu-
ral networks. Each method requires making an inference (prediction) from 
the seismic attribute(s) based on its relationship to much sparser information 
measured at well locations. In this paper, regression and neural networks 
methods were used to predict shear wave velocity using seismic attributes. 



R. GHOLAMI  et al. 
 

826

The basic data integration process used in this paper to integrate seismic at-
tributes for modeling shear wave velocity is divided into four steps (Uden et 
al. 2003): 

1) Calibration: well data provides high-resolution, depth related local in-
formation, whereas seismic data provide spatially dense, but vertically lower 
resolution, time related information. Calibration is the first and most critical 
step in the process and the data must be calibrated both vertically and later-
ally. 

2) Selection of seismic attribute(s): the primary objective is to identify 
those attribute(s) that works best as a predictor for the reservoir property of 
interest. However, care must be taken when choosing the seismic attribute, 
because it is not unusual to find spurious or false correlations that do not re-
flect any physical basis for the relationship. The probability of finding a false 
correlation increases with the number of seismic attributes and is inversely 
proportional to the number of data control points (i.e., number of wells se-
lected for modeling). 

3) Prediction: the areal distribution of the variable of interest is mapped 
by integrating the well data and the seismic attribute. The prediction step is 
typically done by either linear or non-linear regression models, neural net-
works, or using a geostatistical methods. 

4) Cross-validation: this is the systematic removal of wells, one-by-one, 
and re-estimating their values based on the model selected. Cross-validation 
is not always performed, but it does provide a means to validate the contri-
bution of the secondary information to improve the prediction.  

Considering the above steps, after calibration and quality control of the 
wells and seismic data, 35 attributes were extracted from seismic data in-
cluding instantaneous amplitude, instantaneous phase, instantaneous fre-
quency, root mean square amplitude, average and dominant frequency, 
amplitude weighted frequency, chaos, amplitude envelope, concentrated cor-
relation value, derivative, etc. (Todoeschuck and Jensen 1988, Turcotte 
1989, Walden and Hosken 1985, Zeng et al. 1995). Table 1 lists the seismic 
attributes extracted from seismic data in present study. Figure 4 shows four 
of these attributes used to build the shear wave velocity log.  

According to Chao et al. (2009), attributes combination which are sensi-
tive and relevant to given problems must be selected to improve efficiency, 
accuracy, and precision of prediction. In this study, to select the most rele-
vant attributes combination appropriate for predicting shear wave velocity as 
well as building a 2D shear wave model, independent component analysis 
(ICA) was employed.  

ICA is a dimensionality reduction technique used to transform the data 
and reveal the most relevant features of any type of system (Comon 1994). 
ICA  is a technique  for extracting  a smaller set of variables with less redun- 
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Table 1  

Seismic attributes extracted from seismic data in current study 

Number Seismic attributes 

1 Integrated absolute amplitude 
2 Root–mean–square amplitude 
3 Reflection intensity 
4 Average frequency 
5 Instantaneous amplitude 
6 Instantaneous frequency  
7 Instantaneous phase 
8 Instantaneous quality 
9 Instantaneous square amplitude 

10 Weighted instantaneous frequency 
11 Energy of reflection strength 
12 Polarity of reflection strength 
13 Time  
14 Trace gradient 
15 Frequency bandwidth of amplitude spectrum 
16 Apparent polarity 
17 Cosine instantaneous phase 
18 Quadrature amplitude 
19 Autocorrelation function 
20 Derivative 
21 Amplitude weighted cosine phase 
22 Average energy 
23 Concentrated correlation value 
24 Quadrature trace 
25 Apparent polarity 
26 Dominant frequency 
27 Energy of assigned bandwidth 
28 Frequency of cumulative energy 
29 Autoregressive coefficients of five order 
30 Amplitude weighted frequency 
31 Amplitude weighted phase 
32 Chaos 
33 Amplitude envelope  
34 Reflection acoustic impedance 
35 Second derivative 
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dancy from high-dimensional data sets to retain as much of the information 
as possible (Lee 1998). Determination of linear combinations of variables, 
feature extraction, dimensionality reduction, visualization of multidimen-
sional data, and identification of underlying variables are of the most impor-
tant abilities of ICA (Hyvärinen 1999a). This method decorrelates the input 
signals and reduces higher-order statistical dependencies (Hyvärinen 1999b).  

 
Fig. 4. Continued on next page. 
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(c) 

 

 

 

 

 

 

 

 

(d) 

Fig. 4. Four extracted attributes: root mean square amplitude (a), amplitude 
weighted cosine phase (b), instantaneous quality (c), and chaos (d). Colour version 
of this figure is available in electronic edition only. 

Although our hypothesis is that the technique may have utility to multiat-
tributes selection analysis, it is not clear whether the ICA algorithm can be
used in analysis like this since it rests upon the determination of a non-linear
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optimization function that separates sources in the input (Hyvärinen and Oja 
2000). Since the algorithm of ICA has been extensively presented in the lit-
eratures, we brought the theoretical background of the technique in the Ap-
pendix section. 

Thus, ICA technique was used in the first step to determine the most ap-
propriate attributes among 35 extracted attributes (see Table 1). Correlation 
matrix, scree plot, and rotated matrix were obtained after analysis as they are 
often used to represent the output of such analysis. The results obtained re-
vealed that extracted seismic attributes can be categorized into four compo-
nents, while component 1 contains the attributes of interest related to shear 
wave velocity log. Table 2 gives the rotated matrix obtained after applying 
the ICA.  

Given in Table 2, the 27 attributes in component 1 have possibly un-
known relationship with shear wave velocity logs. This means that perhaps 
these 27 attributes can be used in predicting the shear wave velocity log as 
well as making a model of shear wave using seismic data. To model the 
shear wave log using these attributes, a multivariate regression analysis was 
used. This method is an extension of the linear regression analysis incorpo-
rating additional independent variables in the predictive equation (Khademi 
et al. 2010). Applying regression analysis indicated that using the 27 attrib-
utes, the shear wave data can be predicted with a correlation coefficient of 
0.66 and an average error of 61.76 μs/f. Figure 5 shows the original and 
modeled shear wave velocity log obtained using regression analysis. As 
shown in this figure, the modeled log is not as good as it is expected. Fig-
ure 6 shows the performance of regression analysis in prediction of shear 
wave log of well NR-20 using 27 attributes. 

According to published works in this area of research, possible explana-
tion for having a weak correlation is spurious correlations of seismic attrib-
utes (Sheriff 2002, Barnes 2000). As a matter of fact, as we generated more 
seismic attributes, there is a greater chance of observing at least one large 
spurious (false) correlation value. Kalkomey (1997) discussed the potential 
risks when using seismic attributes as predictors for reservoir properties and 
illustrated the impact of spurious correlations. According to him, the proba-
bility of a spurious correlation depends solely on R (i.e., the magnitude of 
the spurious sample correlation) and n, the number of well measurements, 
based on the assumption of random sampling. The problem of spurious cor-
relations is only enhanced when more than one attribute are considered at 
a time. Because many attributes contain the same information, it is important 
to select independent attributes for multivariate analysis. Barnes (2000) ad-
vised that independent attributes should be used for reservoir identification 
and characterization.  Kalkomey (1997)  argued  the use those attributes  that 
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Table 2  
Rotated component matrix showing the number of components extracted using ICA 

Locus 
no. Seismic attributes Compo-

nent 1 
Compo-
nent 2 

Compo-
nent 3 

Compo-
nent 4 

1 Integrated absolute amplitude 0.73 0.130 0.040 0.240 
2 Root–mean–square amplitude 0.71 0.032 –0.012 0.300 
3 Reflection intensity 0.62 0.090 0.170 –0.040 
4 Average frequency 0.66 –0.120 0.160 0.070 
5 Instantaneous amplitude 0.77 0.016 –0.420 0.201 
 Instantaneous frequency  0.18 0.025 0.618 0.110 
 Instantaneous phase 0.12 0.110 0.020 0.770 
 Instantaneous quality 0.11 0.110 –0.160 0.830 
6 Instantaneous square amplitude 0.70 –0.010 0.270 0.102 
7 Weighted instantaneous frequency 0.59 0.090 –0.160 0.190 
8 Energy of reflection strength 0.67 –0.150 0.250 0.030 
9 Polarity of reflection strength 0.61 0.120 –0.013 0.040 

10 Time  0.77 –0.210 0.330 0.210 
 Trace gradient –0.25 0.845 0.070 0.120 

 Frequency bandwidth of amplitude  
   spectrum –0.17 0.040 –0.180 0.660 

11 Apparent polarity 0.63 0.220 0.240 0.060 
12 Cosine instantaneous phase 0.71 0.310 –0.210 0.023 
13 Quadrature amplitude 0.74 –0.090 0.120 0.270 
14 Autocorrelation function 0.60 0.250 –0.014 0.032 
15 Derivative 0.55 0.120 0.200 0.220 
16 Amplitude weighted cosine phase 0.57 0.060 –0.160 0.150 
 Average energy 0.22 0.180 0.854 –0.290 
 Concentrated correlation value –0.17 0.790 –0.013 0.034 

17 Quadrature trace 0.68 –0.020 0.250 0.045 
18 Apparent polarity 0.77 0.110 0.310 –0.210 
19 Dominant frequency 0.65 0.110 –0.340 0.044 
20 Energy of assigned bandwidth 0.69 0.260 –0.140 0.055 
21 Frequency of cumulative energy 0.79 0.080 0.340 –0.440 

 Autoregressive coefficients  
   of five order –0.13 0.010 0.190 0.861 

22 Amplitude weighted frequency 0.71 0.250 0.170 0.120 
23 Amplitude weighted phase 0.58 0.012 –0.090 0.220 
24 Chaos 0.57 0.018 0.300 –0.170 
25 Amplitude envelope  0.78 –0.210 0.270 0.010 
26 Reflection acoustic impedance 0.74 –0.110 0.260 0.013 
27 Second derivative 0.65 0.012 –0.070 0.280 

 Shear wave velocity log data 0.70 –0.220 0.188 0.098 

Explanations: Bolded are all the components having high correlation with shear 
wave velocity log. 
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Fig. 5. Correlation between actual and predicted shear wave velocity obtained by 
first step regression analysis. 

are indicator of physical properties or features of interest in a reservoir simi-
lar to the one we study here. Sheriff (2002) suggested using each attribute 
for capturing only one type of physical property, which can then be com-
bined intelligently using geostatistics, neural networks or other multiattribute 
analysis tools.  

Amplitude, phase, and frequency are fundamental parameters of seismic 
wavelet and from these few all other attributes are derived, either singly or in 
combinations, and many of the new attributes duplicate each other because 
of the nature of the computations. For example, bi-variate scatter plots of 
various attributes in this study revealed that amplitude weighted cosine of 
phase and second derivatives, amplitude envelope and amplitude weighted  
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Fig. 6. Comparison of original and modeled S-velocity log obtained using regression 
analysis. Colour version of this figure is available in electronic edition only. 
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Fig. 7. These plots show the high correlation between the attributes already selected 
by ICA.  

frequency, derivative and quadrature trace, amplitude weighted phase and 
derivative,  RMS  amplitude  and  energy   of  reflection  strength,  amplitude 
weighted phase and instantaneous phase, amplitude weighted cosine phase 
and cosine instantaneous phase, average frequency and time, amplitude 
weighted phase and quadrature trace have a high correlation with each other 
and contain the same information. Thus, one of these attribute should be dis-
carded from regression analysis since independent attributes need to be se-
lected. Figure 7 represents those attributes which showed to have a high 
correlation with each other.  

After selecting independent attributes, the number of attributes was re-
duced to 17.  Figure 8 shows some of the independent attributes selected  for 
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Fig. 8. Independent attributes selected for regression analysis. 

the second regression analysis. As shown in this figure, only attributes with 
low correlation coefficient (i.e., independent) were selected for subsequent 
analysis. Considering these independent attributes, regression analysis was 
performed for the second time. The results revealed that independent attrib-
utes increased the correlation coefficient to 0.77 and decreased the average 
error to 45.23 μs/f. Figure 9 shows the correlation coefficient and error of 
utilizing 17 independent attributes. The improvement gained is, however, in-
adequate, so further analysis was required accordingly. To achieve this, the 
use of independent attributes followed by a robust neural network technique 
in order to combine multiple attributes in a meaningful manner was exer-
cised in the next step of this study. 
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Fig. 9. Correlation between actual and predicted shear wave velocity obtained after 
second step regression analysis using 17 independent attributes. 

5. ARTIFICIAL  NEURAL  NETWORK  
The goal of artificial neural network (ANN) is developing a mathematical 
model in order to design an intelligent information processing system for 
classification or regression analysis (McCulloch and Pitts 1943). An adap-
tive neural network consists of a number of nodes connected through direc-
tional links, all or part of the nodes are adaptive which means the output of 
these nodes depends on modifiable parameters belonging to these nods. 

Van der Baan and Jutten (2000) and Poulton (2002) have discussed the 
theory of neural networks and its applications in geophysical studies. Alt-
hough neural network theory dates back to the mid-twentieth century, its ap-
plications to geophysics are relatively recent with the earliest papers date 
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back to the late 1980’s and early 1990’s. The authors of early studies fo-
cused entirely on the application of multi-layer perceptron (MLP) neural 
network in first break picking and trace editing of seismic data (McCormack 
1990, Upham and Carey 1991). More recent applications of neural networks 
in geophysics have one thing in common: they have become almost exclu-
sively associated with the term “seismic attributes”. A review of seismic at-
tributes and their uses was given by Sheline (2005). The use of seismic 
attributes in neural network applications allows us to build the multidimen-
sionality needed for the successful application of neural network technology. 
However, as pointed out by Sheline (2005), one should understand the geo-
physical implication of each attribute. The application of supervised attribute 
analysis for the prediction of reservoir parameters using the probabilistic 
neural network, general regression neural network, and radial basis function 
network has been shown by Hampson et al. (2001) and Russell et al. (2003). 
In this paper, multi-layer feed forward network (MLFN) is used to predict 
shear wave velocity log using seismic attributes. In the following sections, a 
brief description of the principles and structures of this network is firstly 
presented and then its application to map seismic attributes for shear wave 
velocity modeling is shown. 

5.1  Multi-layer feed forward neural network (MLFN) 
Multi-layer feed forward network (MLFN) is the classic neural network re-
ferred to as multi-layer perceptron (MLP). Supervised learning using the 
perceptron model was first presented by Rosenblatt (1958). It has the capa-
bility of solving nonlinear problems but its final answer is dependent on the 
initial guess of the weights. The first layer in the MLP is referred to as the 
input layer, the second layer as the hidden layer, and the third layer as the 
output layer. Between input and output layer, one or more hidden layers are 
possible but it is common to use one hidden layer with optimal number of 
nodes. Any function with a finite collection of points and any function that is 
continuous and bounded can be solved with 3 layers. The 3-layer model can 
handle many functions that do not have these criteria (Masters 1993). In the 
case of prediction using seismic attributes, the input to the MLFN is a vector 
of M attributes value  1 2[ , ,..., ],T

j j j Mjx x x x=  where  j = 1, …, N,  is the num-
ber of seismic samples. The output of the weighting and summation in first 
layer can be written as: 

 (1) (1) (1)

0

, 1,2,..., .
M

T
kj ki ij j

i

y w x W x k K
=

= = =∑  (1) 

The input to the single perceptron in layer 3 can be written as: 
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 (2) (2) (1) (2) (1)

0

, 1,2,..., ,
k

T
j ki kj j j

k

y w z w z j N
=

= = =∑  (2) 

where (1)
kjz  is nonlinear function that imposes to the output of layer 1; one of 

the most commonly used functions in MLFN is logistic function (Eq. 3) in 
which the output is constrained between –1 and +1. 

 1( ) logist( ) .
1 exp( )

f x x
x

= =
+ −

 (3) 

The final output for MLFN can be written as: 

 ( )( )(2) (2) (2) (1) (1) .T T
j jz f w f w x=  (4) 

Weight of the network is computed using error back propagation algo-
rithm in which errors are back propagated through the network and used to 
improve the fit between the actual output and the training value.  

5.2  Implementation of MLFN in this study 
As it was mentioned, a multi-layer feed forward network (MLFN) was used 
to predict shear wave velocity log using seismic attributes. The network used 
for this study was a multi-layer neural network with one hidden layer of 
sigmoid function containing 30 neurons and an output layer containing only 
one neuron with pureline function. Multiple layers of neurons with nonlinear 
transfer functions allow the network to learn nonlinear relationships between 
the inputs (i.e., seismic attributes) and output vector (i.e., shear wave veloc-
ity log). Selection of weighting function for the attributes was done auto-
matically by giving an initial guess of 0.5 and updating the weight through 
inversion process to reach the minimum error. The shear wave velocity log 
of well NR-20 was used for training the network, whereas the shear wave 
log of well NR-16 was considered to test the results of the trained network. 
The result of the training process using the above constructed MLFN is 
shown in Fig. 10. 

As shown in Fig. 10, MLFN is able to predict shear wave velocity with 
correlation coefficient of 0.98 and an error of approximately 22 μs/f. The re-
sults indicate the capability of this network in prediction process. However, 
the performance of this network yet needs to be validated through testing 
step. Therefore, the constructed network was tested using shear wave veloci-
ty log data of well NR-16 in order to show the efficiency of the network in 
prediction of unseen data. Figure 11 shows the correlation coefficient be-
tween the actual and predicted shear wave data of MLFN during testing step. 
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Fig. 10. Training of the MLFN using 17 attributes selected by ICA and regression 
analysis. 

As shown in Fig. 11, the neural network built through training step is a 
high performance network which can be used to predict shear wave velocity 
log. Figure 12 shows the results of applying trained MLFN to predict shear 
wave velocity log corresponding to well NR-16. 

As depicted in Fig. 11, the MLFN built during this study is able to pro-
vide a good estimation of unseen data for well NR-16. Therefore, this net-
work can be utilized to build a 2D model of shear wave velocity data. 
Figure 13 shows the results presented by MLFN analysis after using this 
network to predict the shear wave velocity through the entire seismic data. 
Although the result shown in Fig. 13 is not as good as real processing of 
shear wave data  carried out  by employing  3-component  geophones,  it can 
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Fig. 11. Testing of the MLFN using 17 attributes selected ICA and regression analy-
sis. 

provide insight into the variation of shear wave through the earth while  
1-component geophones are used for acquisition which is the most likely 
case in many hydrocarbon fields. The methodology presented in this paper 
can be used as asset for making 2D or 3D modeling of various properties of 
hydrocarbon reservoirs. 

6. CONCLUSIONS 
In this paper, attempts were made to show the applications of seismic attrib-
utes in prediction of shear wave velocity. It was shown that to select relevant 
attribute, a feature extraction method like independent component analysis 
(ICA) can be useful as long as the independency of extracted attributes is 
taken  into consideration.  Nonlinear relationship  between  seismic attributes  
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Fig. 12. Application of the trained MLFN to predict shear velocity log for well  
NR-16. Colour version of this figure is available in electronic edition only. 



R. GHOLAMI  et al. 
 

842

Fig. 13. The 2D model of shear wave velocity on the seismic data constructed from 
the MLFN analysis. Colour version of this figure is available in electronic edition 
only. 

and property of interest was shown to be another point that should be taken 
into consideration. A high performance algorithm such as neural network 
can be used to solve the problem of nonlinearity of seismic attributes. The 
results presented indicated that multi-layer feed forward neural network 
(MLFN) can be a good network to map seismic attributes and providing a 
2D model for shear wave velocity. The use of this 2D model may be en-
hanced by a better and robust algorithm like support vector machine. Finally, 
it was discussed that the model presented by the MLFN analysis should be 
assessed as it can provide insight into the variation of shear wave velocity in 
the subsurface layers. 

A p p e n d i x  

Independent component analysis algorithm 

Independent component analysis of the random vector x is defined as the 
process of finding a linear transform  S = Wx  such that W is a linear trans-
formation and the components si are as independent as possible. They maxi-
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mize a function  F(s1, ..., sm)  that provides a measure of independence (Hy-
värinen 1999a). The individual component si is independent when its prob-
ability distribution factorizes (when there is no mutual information between 
them) and can be written as 

 ( ) ( ) .
i

i

s s i
s

f s f s=∏   (A1) 

The approach used to minimize the mutual information involves maxim-
izing the joint entropy H[g(s)]. This is accomplished using a stochastic gra-
dient ascent method, termed infomax. If the non-linear function g is the 
cumulative density function of the independent components si, then this 
method also minimizes the mutual information. The procedure of transform-
ing data in higher dimension has shown in Fig. A1. 

Notice that the nonlinear function g has chosen without knowing the cu-
mulative density functions of the independent components. In case of a 
mismatch, it is possible that the algorithm does not converge to a solution 
(Bell and Sejnowski 1997). A set of non-linear functions has been tested and 
it has been found that super Gaussian probability distribution functions con-
verge to an ICA solution when the joint entropy is maximized. The optimiza-
tion step in obtaining the independent components relies on changing the 
weights according to the entropy gradient that can be expressed as: 

 
ln( ) ,

JH yW E
W W

⎡∂ ⎤∂
Δ ∝ = ⎢ ⎥∂ ∂⎣ ⎦

 (A2) 

where E is the expected value,  [ ]1( )... ( ) T
ny g s g s=   and J  is the absolute 

value of the determinant of the Jacobian matrix of the transformation from x 
to y. From this formula, ΔW can be calculated using the equation 

 1

( )

( ) .
( )

T T

g s
sW W x

g s
−

∂⎛ ⎞
⎜ ⎟∂Δ = + ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (A3) 

 

Fig. A1. Mechanism of data transformation based on the ICA algorithm. 

X 

 
W 

(Linear transformation) S g y 
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Equation A3 is involved in the matrix inversion, and hence an alternative 
formulation is preferred involving only simple matrix multiplication and ad-
dition. This formulation is written as (Bell and Sejnowski 1997, Lee 1998):  

 1

( ) ( )
( ) ( ) .

( ) ( )
T T T T T

g s g s
H y s sW W W W x W W W s W

W g s g s
−

⎛ ∂ ⎞ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂Δ ∝ = + = +⎜ ⎟⎜ ⎟ ⎜ ⎟

∂ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (A4) 
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