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Abstract

Mobile surveillance systems play an important role to minimise security and safety threats

in high-risk or hazardous environments. Providing a mobile marine surveillance platform

with situational awareness of its environment is important for mission success. An essential

part of situational awareness is the ability to detect and subsequently track potential target

objects.

Typically, the exact type of target objects is unknown, hence detection is addressed as

a problem of finding parts of an image that stand out in relation to their surrounding

regions or are atypical to the domain. Contrary to existing saliency methods, this thesis

proposes the use of a domain specific visual attention approach for detecting potential

regions of interest in maritime imagery. For this, low-level features that are indicative

of maritime targets are identified. These features are then evaluated with respect to

their local, regional, and global significance. Together with a domain specific background

segmentation technique, the features are combined in a Bayesian classifier to direct visual

attention to potential target objects.

The maritime environment introduces challenges to the camera system: gusts, wind, swell,

or waves can cause the platform to move drastically and unpredictably. Pan-tilt-zoom

cameras that are often utilised for surveillance tasks can adjusting their orientation to

provide a stable view onto the target. However, in rough maritime environments this

requires high-speed and precise inputs. In contrast, omnidirectional cameras provide a

full spherical view, which allows the acquisition and tracking of multiple targets at the

same time. However, the target itself only occupies a small fraction of the overall view.

This thesis proposes a novel, target-centric approach for image stabilisation. A virtual

camera is extracted from the omnidirectional view for each target and is adjusted based

on the measurements of an inertial measurement unit and an image feature tracker. The

combination of these two techniques in a probabilistic framework allows for stabilisation

of rotational and translational ego-motion. Furthermore, it has the specific advantage of

being robust to loosely calibrated and synchronised hardware since the fusion of tracking



and stabilisation means that tracking uncertainty can be used to compensate for errors

in calibration and synchronisation. This then completely eliminates the need for tedious

calibration phases and the adverse effects of assembly slippage over time.

Finally, this thesis combines the visual attention and omnidirectional stabilisation frame-

works and proposes a multi view tracking system that is capable of detecting potential

target objects in the maritime domain. Although the visual attention framework per-

formed well on the benchmark datasets, the evaluation on real-world maritime imagery

produced a high number of false positives. An investigation reveals that the problem is

that benchmark data sets are unconsciously being influenced by human shot selection,

which greatly simplifies the problem of visual attention. Despite the number of false pos-

itives, the tracking approach itself is robust even if a high number of false positives are

tracked.
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Chapter 1

Introduction

In high-risk, hazardous, inaccessible, or remote areas, mobile surveillance systems play an

important role to minimise security and safety threats. They can navigate around obstacles

and follow potential target objects. When equipped with an omnidirectional camera, they

can cover a vast area and ensure full 360◦ situational awareness while minimising the need

for significant infrastructure. Fixed cameras and pan-tilt-zoom (PTZ) cameras, which have

traditionally been used for surveillance, have only limited spatial range and small fields

of view (FOV). The range of these cameras can be enhanced by using lenses with a high

zooming factor, but this then reduces the field of view further. To a certain extent, this can

be compensated for by using high resolution image sensors, although this then demands

more processing power. Especially in open outdoor areas, highly dynamic changes within

the line of sight need to be taken into account. An approach that is being investigated by

several research groups is the installation of multiple fixed and/or PTZ cameras (Javed

and Shah, 2008; Devarajan et al., 2008; Soto et al., 2009; Utsumi et al., 2009). However,

this approach is only valid as long as a target is within the field of view of the camera

network. Furthermore, obstacles blocking the line of sight of a camera are not uncommon.

To overcome these constraints, mobile platforms are needed.

One important subset of mobile platforms are maritime surveillance platforms, which can

be deployed for port surveillance or monitoring of coastal areas. However, the maritime

environment introduces additional challenges to the camera system. While any outdoor

sensor system is subject to environmental disturbances, maritime platforms face significant

and continual perturbation; gusts, wind, swell, or waves can cause the platform to move

drastically, causing severe ego-motion and consequently substantial and chaotic changes

in the camera’s view. One solution is to equip the mobile platform with an omnidirec-

tional camera to ensure that the platform will not lose sight of a target, but this will also

require neutralising the effects of ego-motion, a process called “stabilisation”. A tradi-

tional approach for stabilisation is the use of hydraulic or electro-mechanic tilt platforms

on which the camera system is mounted (Masten, 2008). The platform is tilted based on

the measurements of an accelerometer or gyroscope, contained within an Inertial Mea-

surement Unit (IMU) in order to keep the camera’s view unchanged despite the motion of
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the host platform. However, this approach typically requires highly accurate calibration

and synchronisation between the IMU and digital imaging system to ensure the IMU’s

corrections are applied to the right frames and transformed accurately to the camera’s

coordinate system. Whilst possible, such calibration requires precise assembly that must

be durable enough to prevent any physical shifting of the components which would cause

de-calibration, a difficult task in rough environments. Moreover, if translational distur-

bances are present as well, the target’s bearing will change. To compensate for this, the

translational component needs to be estimated. However, affordable IMUs, implemented

as microelectromechanical systems (MEMS), cannot measure translational motion reli-

ably due to significant errors introduced by doubling the integration of the accelerometer

readings. Digital image registration has been used to resolve this by registering features

over time, finding the optimum affine transformation that minimises the error between

features, and applying it to subsequent frames (Battiato et al., 2007; Yang et al., 2009).

With significant ego-motion, this can be computationally expensive as the search window

must be very large so as to not risk losing the target.

However, in many situations, it is not feasible to process the entire omnidirectional view,

as the actual region of interest at any one time typically only occupies a small fraction of

the overall view. Selecting a region of interest in omnidirectional video is a laborious and

even confusing task for a human operator. While a narrow field of view camera delivers

imagery analogous to the human vision system, an omnidirectional camera provides the

operator with a panoramic view of the entire scene at once. While this theoretically

is an advantage that can provide full situational awareness, the human vision system

in fact has limitations when it comes to perception beyond the typical attentive field

(Pashler, 1995, 1999), risking oversight of potentially dangerous targets. To deal with this

problem, it is important to automate this process by using early processing stages to direct

attention where further investigation is needed. An automated system that highlights and

extracts candidate regions to the operator as well as neglects insignificant parts of the

image can therefore be used to reduce the workload and increase the efficiency of a human

operator. Computer vision disciplines that are related to this are: image complexity

(Peters and Strickland, 1990), object detection (Lampert et al., 2008; Felzenszwalb et al.,

2009; Everingham et al., 2010; Alexe et al., 2010), saliency (Itti et al., 1998; Liu et al.,

2007; Achanta et al., 2009; Achanta and Süsstrunk, 2010), and visual attention (Sun and

Fisher, 2003; Hu et al., 2008; Frintrop et al., 2010). While image complexity refers to the

algorithmic complexity of detecting objects within an image, object detection is concerned

with the finding of specific objects in an image; it is typically task driven. Saliency, on the

other hand, describes areas that are distinctive within the image. Finally, visual attention

can be seen as a pre-attentive phase in a vision system. It reacts to low-level stimuli and is

used to focus further processing on a region with high response. The use of a priori scene
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knowledge and thus tuning the system for the expected scenes can be used to improve

detection accuracy.

This thesis develops a framework that consists of two parts: First, a stabilisation module

is developed that allows fusion of omnidirectional camera and IMU using a probabilistic

model that is specifically designed to achieve accurate rotational and translational sta-

bilisation despite only rough calibration and synchronisation. The framework uses IMU

measurements as an initial guess and refines the estimations using an image registration

method. This way, the two components do not need to be in a permanent configuration

but can be quickly assembled without the need to recalibrate the system. This, for ex-

ample, allows the use of hardware which is not rigidly connected in a single housing but

is easily assembled on a per mission basis. Furthermore, because the stabilisation process

puts the target in the centre of the stabilisation process, it allows for rotational and trans-

lational disturbances and allows simultaneous and independent stabilisation and tracking

of multiple targets. Secondly, a visual attention framework is developed that allows early

detection of regions of interest in maritime scenes to be tracked. The framework uses do-

main specific knowledge to improve accuracy over generic detectors. Domain knowledge is

essential for differentiating between relevant and irrelevant parts of a scene. While salient

detectors are only concerned with the presence of low-level stimuli, a task-specific descrip-

tion allows guiding visual attention towards parts of the scene and neglect regions that are

salient but irrelevant in terms of the task. The proposed framework is tuned to maritime

scenes but has the potential to be applied to any domain by selecting the appropriate

features or by retraining. The two frameworks are eventually fused and it is demonstrated

that the stabilisation and visual attention approaches have the potential to allow detection

and robust tracking of multiple objects in a real world omnivision maritime scenario that

is unfiltered by the human shot selection bias present in most saliency-style datasets.

1.1 Aims and Approach

This thesis is concerned with the research into and development of algorithms for a vision

system of an unmanned maritime surveillance platform. The system is oriented towards

the development of a target detection and tracking function in fully autonomous vehi-

cles, though it may also be used to aid a human operator in target detection and threat

evaluation. The objectives of this thesis are:

1. The development of an image stabilisation approach that allows for robust stabilisa-

tion of omnidirectional imagery in challenging maritime outdoor conditions despite
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loose calibration and synchronisation.

2. The development of an early processing stage that is capable of directing visual

attention to candidate regions of interest in maritime imagery.

3. The implementation of a multi target tracking method that utilises the proposed vi-

sual attention framework to detect and track multiple moving objects simultaneously

in omnidirectional imagery captured by a moving maritime surveillance platform.

The first aim is addressed by combining an omnidirectional camera with an IMU in a

probabilistic sensor fusion approach. From the omnidirectional camera, a region with

limited field-of-view is extracted, forming a virtual camera. Stabilisation is achieved by

continuously adjusting the orientation of the virtual camera based on measurements of the

IMU and an image feature tracker. The system is successful despite weak calibration of

the relative locations of the IMU and camera and imprecise synchronisation of IMU and

video frames.

To identify regions of interest, a visual attention framework is proposed that combines

domain specific low-level features using multiple distance measurements. The approach

is then extended using machine learning and a domain specific background segmentation

technique to further improve detection performance, and shown to outperform state-of-

the-art non-domain specific approaches for detection.

Based on the previous findings for stabilisation and visual attention, a multi-view tracking

approach is developed that uses independent virtual cameras extracted from omnidirec-

tional imagery. The system is tested on a very challenging omnidirectional video captured

from a fast-moving boat. Objects of interest (nearby boats) are automatically discov-

ered by a visual attention detector and subsequently tracked with a very high degree of

stabilisation despite the significant motion of the camera. However, findings show that

benchmark datasets to evaluate visual attention provide little indication of eventual per-

formance in real world footage, and the problem is traced to the influence of human shot

selection in the datasets.

1.2 Significance and Contribution

This thesis makes three main contributions in the field of sensor fusion and computer

vision:
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1. The use of virtual cameras for omnidirectional image stabilisation allowing multiple

target tracking using loosely calibrated and synchronised hardware.

2. The development of a domain specific visual attention framework that can be used

to detect areas that are important in terms of scene rather than image.

3. The evaluation of the proposed approaches on a community standard dataset (Liu

et al., 2007), a domain specific dataset assembled from imagery contributed by the

general public, and a very challenging real world data set.

The contributions and their significance are detailed in the following.

1.2.1 Image Stabilisation Using Virtual Cameras

When combining IMU and omnidirectional camera, both devices need to be synchronised

to ensure that measurements are taken at the same time instant. Combination also requires

calibration, that is estimating the transformation between the two devices so that measure-

ments can be converted between both coordinate systems. Existing image stabilisation

approaches that utilise IMUs to measure camera disturbance require precise (typically

hardware-based) synchronisation and rigid coupling to prevent shifting and subsequent

recalibration. Without this, the IMU is not able to measure motion at the same time

instant where the camera image was taken due to the latency between sensors. Depending

on the situation, the subsequent stabilisation process would suffer from an offset, or worse,

a “stabilisation” in the wrong direction, actually worsening the process. Furthermore, the

need for calibration is an essential disadvantage for temporary assembled units as disas-

sembling and reassembling requires recalibration every time. The sensor fusion approach

proposed in this thesis allows for robust image stabilisation without the need for precise

calibration or synchronisation.

While current approaches stabilise scenes by applying transformations to the camera im-

ages, i.e. using the camera coordinate system as the reference frame, the proposed ap-

proach puts the target at the centre of the stabilisation process. This is important for

two reasons: firstly, target-centred stabilisation allows the creation of independently sta-

bilised views for multiple targets. Secondly, and most importantly, in a scene where target

objects vary in distance from the platform, a scene based stabilisation approach will fail

as the difference in distance causes significantly different motion in the projected camera

image. This is also true if a near object is to be stabilised in front of a distant background

(parallax). Different stabilisation parameters are therefore required for different viewing
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directions or objects.

The proposed approach is significant because:

• It requires only an approximate calibration between the hardware components, mak-

ing it ideally suitable for quick assembly of components.

• Sensor drift, as well as wear and tear of the components is part of the design and does

not affect the stabilisation system, therefore does not require constant recalibration.

• It proposes the use of independent virtual cameras that allow for independent sta-

bilisation of multiple target objects.

• The use of target-centred instead of camera-centred coordinates allows stabilisation

robust to both rotation and translation.

1.2.2 Domain Specific Visual Attention

This thesis focuses on the problem of detecting regions of interest in the scene from omni-

directional views of maritime environments. Such scenes contain a variety of potentially

salient information, such as vessels, coast, or boat wake. Which of these is important

depends on the application domain that the saliency is used for. Thus generic saliency

detectors are a poor choice and in fact a goal-oriented visual attention approach is more

appropriate since saliency is a description of simple low-level features without any relation

to the domain whilst visual attention lifts the concept to a higher level and tries to address

the scene rather than the pixels. Hence, the proposed approach utilises features that are

specifically designed to respond to visual attention in the domain. This way, only regions

of the image that “stand out” with respect to the domain are detected.

The proposed approach is significant because:

• It utilises a priori scene knowledge of the maritime domain (or a domain) to detect

regions in a scene that are important in terms of visual attention rather than saliency,

an approach that cannot be made without domain specific designs, and shows that

this will outperform state-of-the-art approaches.

• It provides a visual attention framework that should be suitable to any domain

– while the presented application is trained for the maritime domain, it may be
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adapted into any domain by selecting appropriate features and/or retraining on an

adequate dataset.

1.2.3 Evaluation using Real World Data

It is essential to evaluate algorithms that are developed for outdoor scenes on real-world

data. While standard datasets are a fundamental part of quantitative evaluation and

comparison of algorithms, a good performance on a dataset does not guarantee that it

is suitable to be used in real-world conditions. Especially for omnidirectional cameras,

lighting conditions of outdoor settings are challenging as the omnidirectional camera cap-

tures all aspects of the scene. Thus, issues arise such as facing towards and away from

the sun at the same time. Furthermore, the current standard saliency dataset (Liu et al.,

2007) is assembled by researchers and is shown to be unconsciously biased due to the

human-photographer’s influence on shot selection and image choice. While it contains a

variety of object types, all objects are salient as per definition and at prominent position

in the image (see Chapter 6 for details). This greatly simplifies the problem of detection,

in contrast to a deployed autonomous system which will need to deal with data captured

at atypical locations in unforeseen circumstances where objects are likely to be small and

at random locations relative to the entire scene.

The proposed evaluation is relevant because:

• It demonstrates the effectiveness of the stabilisation framework in a challenging

outdoor environment with significant disturbances present.

• It evaluates the visual attention framework on unfiltered data, where humans have

not been able to select views or shots.

• It shows that even though training is built on an independent dataset, it is able to

successfully detect objects of interest with a strong response to those objects in real

world data without the need for retraining.

1.3 Thesis Outline

The goal of the research presented in this thesis is the development of computer vision al-

gorithms that support operators of mobile maritime surveillance platforms. The remainder

of this thesis is organised as follows:
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This chapter, Chapter 1, provided the reader with an introduction into the field, outlined

the research questions that will be addressed in this thesis, and emphasised the significance

of this thesis.

In Chapter 2 background information relevant to this thesis are discussed. Different types

of omnidirectional camera systems are derived and the concept of inertial measurement

units and their components is explained. The chapter continues with a discussion about

related work in tracking and visual attention. The chapter concludes with the introduction

of evaluation methods.

Chapter 3 deals with methods for stabilisation of omnidirectional camera systems. Related

algorithms will be described and an approach that is robust and overcomes deficiencies in

loosely calibrated systems is proposed and evaluated.

Chapter 4 is devoted to a saliency inspired attention detector, tuned for maritime scenes.

Generic algorithms are evaluated on maritime imagery. For comparison the proposed

detector is also tested on a standard dataset and it is shown that it gives comparable

results to state of the art generic detectors.

In Chapter 5 the proposed visual attention framework is extended with a further domain

specific classifier and tested on a domain specific dataset. A detector that outperforms

generic approaches in challenging maritime scenes is proposed.

The proposed frameworks for visual attention and omnidirectional image stabilisation are

combined to track multiple targets in real-world maritime environments in Chapter 6.

Chapter 7 concludes the research and outlines open research questions for future work.
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Chapter 2

Background

The scope of this thesis involves a number of different computer vision and engineering

principles. This includes camera calibration, inertial sensor systems, sensor fusion, image

stabilisation, tracking, visual attention, and machine learning. An overview of the cur-

rent state of the art in each of the respective fields and reviews of the relevant research

conducted is given in this chapter. The chapter also familiarises the reader with some

necessary mathematical and physics background.

The chapter is organised as follows: Section 2.1 introduces the notation and different

coordinate systems used in this thesis. This is followed by a description of omnidirectional

camera systems and inertial sensors in Sections 2.2 and 2.3 respectively. Section 2.4 gives

an overview of image tracking techniques, which are utilised for image stabilisation and

multi target tracking in Chapter 3 and 6 respectively. An introduction to visual attention

and an overview of related work in this area is given in Section 2.5, which is the main topic

of Chapter 4 and Chapter 5. Section 2.6 familiarises the reader with machine learning

techniques used for feature combination and classification in Chapter 5. This is followed

by a brief review of colour models in Section 2.7 and an overview of the evaluation process

in Section 2.8. The chapter concludes with a summary given in Section 2.9.

2.1 Coordinate Spaces

This thesis contains references to different coordinate systems arising from the fusion of

multiple sensors, each with their own coordinate system. Thus, this section will intro-

duce the various coordinate systems and define the notation and transformations between

coordinate systems for the rest of the thesis.
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2.1.1 Homogeneous Coordinates

Homogeneous coordinates (Ballard and Brown, 1982) allow non-linear transforms to be

carried out in a projective space using standard matrix operations. Let X = (X1, X2, X3)

be a point in R3, then the vector x̃ = (x̃1, x̃2, x̃3, λ)T with x̃1 = λX1, x̃2 = λX2,

x̃3 = λX3, where λ ∈ R and λ 6= 0 is called its homogeneous coordinate. This means that

x̃ represents a local vector to the very same point X for any λ. In other words, the point

X in R3 is actually represented by the line, x̃, in projective space, R4. While λ can be

chosen arbitrarily, typically x̃ is normalised such that λ = 1:




X1

X2

X3

1




=
1

λ




x̃1

x̃2

x̃3

λ




(2.1)

Unless stated otherwise, normalisation is assumed when referring to homogeneous coordi-

nates in the remainder of this thesis.

In the following, the notation of Craig (2005) is adopted: The orientation of a coordinate

system, {A}, with respect to another coordinate system, {B}, is denoted as the 3 × 3

rotation matrix, ABR. The 3 × 1 column-vector A
Bt is the translational offset of {A} with

respect to {B}. Both can be combined using homogeneous coordinates resulting in the

4× 4 transformation matrix A
BT as

A
BT =

(
A
BR A

Bt

0 1

)
. (2.2)

The inverse transformation is subsequently defined as

(ABT)
−1

= B
AT. (2.3)

The coordinates of a point in R3 are only valid in conjunction with a reference coordinate

system. To indicate this, the homogeneous coordinate of a point is always defined in terms

of the underlying coordinate system. If ABT is the transformation of {A} with respect to

{B}, then Ap and Bp are the homogeneous coordinates for the very same point in R3:

Ap = A
BT Bp. (2.4)
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2.1.2 Coordinate Systems

Within this thesis, a number of coordinate systems are used (Figure 2.1). The 2D position

of the mobile platform is measured by the GPS receiver. Its output is given in Earth

Coordinates as longitude and latitude. At the current position of the platform, Global

Coordinates is a sphere centred on the platform that spans a right-handed coordinate sys-

tem, which is aligned with North and the circles of latitude, effectively representing the

omnivision sphere of view. The IMU outputs the orientation of Inertial Coordinates, with

respect to Global Coordinates. The six perspective cameras of the Ladybug camera system

(see Section 2.2.4) acquire images in Perspective Camera Coordinates that are defined for

each of the cameras individually. These are then mapped into a unified Camera Coordi-

nate System with its origin in the centre of the omnidirectional camera. The alignment

between the IMU and Ladybug is denoted by the transform between Inertial Coordinates

and Camera Coordinates. Finally, for each Virtual Camera (see Section 2.1.2.6), Virtual

Camera Coordinates are defined by a transform with respect to Camera Coordinates. This

section introduces the different coordinate systems in detail and gives transformations that

allow converting between them.

G

E G

C

I

C

P5

P2

P1

P3P4

P6 V1

C

V2

(a) Earth and
Global Coordi-
nate Systems

(b) Global, Iner-
tial, and Camera
Coordinate Sys-
tems

(c) Perspective
Camera Coordi-
nate System

(d) Virtual Cam-
era Coordinate
System

Figure 2.1: Coordinate Systems

2.1.2.1 Earth Coordinate System

Exact computations on the earth’s surface can be complex. In this thesis, we are dealing

with close range distances within the line of sight (typically a couple of hundred meters),

which allows us to adopt a flat earth approximation. The vicinity of a fixed reference point

(Φ0, λ0) on the earth’s surface can be approximated using a planar projection, resulting in

a mapping where the circles of latitude and the lines of longitude are equidistant, straight
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and cross at right angles (Snyder, 1987). As the circumference of the circles is dependent

on Φ0, the length of a radian and the radius of the curvature are computed as functions of

the reference latitude as r′(Φ0) and r′′(Φ0) respectively (Snyder, 1987). For the parameters

of the equatorial radius and flattening of the earth, the World Geodetic System (WGS84)

by the US Department of Defense (2000) is used. A point (Φ , λ) at sea level altitude can

be expressed in respect to a reference point (Φ0, λ0) in {E} as

Ep =



r′(Φ0) 0

0 r′′(Φ0)

0 0




(
Φ− Φ0

λ− λ0

)
. (2.5)

Earth Coordinates are used for tracking multiple maritime objects in Chapter 6.

2.1.2.2 Global Coordinate System

The global coordinate system, {G}, is a projection of earth coordinates, (Φ, λ), onto the

unit sphere with its origin (sphere centre) at the current position of the platform. The

y-axis is aligned with the line of longitude, λ, and pointing towards North. A point in

{E}, Ep can be projected into {G} by computing its spherical angles

θ = tan−1
Ep2

Ep1
φ = cos−1

Ep3

‖Ep‖
(2.6)

and then mapping it onto the unit sphere:

Gp =




sin θ cosφ

sin θ sinφ

cos θ


 . (2.7)

This transformation will be denoted as GET in the remainder of this thesis. The stabilisation

described in Chapter 3 is based on global coordinates.

2.1.2.3 Inertial Coordinate System

The inertial coordinate system, {I}, is defined with respect to {G}. Its orientation is

measured by the IMU at every time step t, denoted as the homogeneous transformation
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G
I Tt. The point Gp in {G} can be transformed into {I} as:

Ip = I
GTt

Gp. (2.8)

Chapter 3 will show how the transform is determined at each time step t.

2.1.2.4 Camera Coordinate System

The camera coordinate system is defined with the origin in the centre of the omnidirectional

camera, i.e. the camera’s viewpoint. The transformation of {C} with respect to {I} is

denoted as C
I T. Note that this transformation is constant as the camera and IMU are

rigidly connected. An estimate is formed by observing a horizontal pattern with the

camera and gravity by the IMU in static poses (Hol et al., 2010). In contrast to Hol

et al. (2010), no subsequent optimisation is performed but a probabilistic approach is used

instead allowing the used of loosely synchronised hardware, see Chapter 3 for details. A

point in {G} can be expressed in {C} as:

Cp = C
GTt

Gp. (2.9)

2.1.2.5 Perspective Coordinate System

A perspective camera coordinate system, {Pn=1...6}, is defined for each of the six perspec-

tive cameras of the Ladybug camera system. C
Pn

T describes the transformation between

{Pn} and {C}. Remember that the origin of {C} is the shared viewpoint of all perspective

cameras. In accordance with the pinhole camera model, CPnT is also called the extrinsic

parameters of the perspective cameras. The Ladybug camera system is pre-calibrated and
C
Pn

T is provided by the manufacturer. The conversion of a point in {G} to {Pn} is given

as:

Pnp = Pn
G Tt

Gp. (2.10)

2.1.2.6 Virtual Camera Coordinate System

This thesis extracts rectangular views from the omnidirectional camera system that mim-

icks traditional pan-tilt-zoom cameras for target tracking and visualisation. These views

are referred to as a virtual camera, see Chapter 3 for further details. A virtual camera
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coordinate system, {Vn}, where n is the index of the virtual camera is defined at the centre

of each virtual camera with respect to C. VnC T describes the transformation from {C} to

the virtual camera {Vn} at time step t. {Vn} spans a right handed coordinate system on

the unit circle with the origin at the centre of the virtual camera, that is C
Vn

R ∗ (1, 0, 0)T .

A point in {G} can be expressed in {Vn} as:

Vnp = Vn
GTt

Gp. (2.11)

2.2 Omnidirectional Vision

Omnidirectional cameras overcome the restrictions of limited field of view of perspective

cameras and are able to capture an entire scene from a single viewpoint. The name

“omnidirectional vision” is used as an umbrella term for cameras with three different

types of field of view (Figure 2.2):

(a) Panoramic cameras that cover 360◦ in the horizontal but do not provide full coverage

of the top or bottom parts of the sphere.

(b) Half-spherical cameras that cover an entire hemisphere, i.e. 360◦ in the horizontal and

180◦ in the vertical.

(c) Full-spherical cameras, that cover an entire sphere, i.e. 360◦ in the horizontal and

360◦ in the vertical. The field of view of these cameras is often referred to as 720◦.

Most of these cameras, however, have a small restriction in the field of view due to

the camera mounting.

(a) Panoramic (b) Half-Spherical (c) Full-Spherical

Figure 2.2: Field of view of omnidirectional cameras.
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2.2.1 Types of Omnidirectional Cameras

Catadioptric cameras as shown in Figure 2.3(a) are widely used to create panoramic images

using a single camera (Nayar, 1997; Yagi, 1999; Svoboda and Pajdla, 2000; Geyer and

Daniilidis, 2000). A catadioptric camera consists of a curved mirror that is attached in

front of the camera. The mirror reflects the lightrays coming from all directions towards

the camera sensor. Due to the curving, catadioptric cameras have a higher resolution

in the centre of the image than in the periphery. While these cameras provide full 360◦

view in the horizontal, they only have limited field of view in the vertical due to the

mountings blocking the field of view at the poles, this type of camera can be used to

capture panoramic images.

A half-spherical view can be produced by using a single camera equipped with a wide

angle lens, e.g. fisheye lenses with a short focal length (Slater, 1996; Schneider et al.,

2009). The field of view of these systems is dependent on the optical characteristics of the

lens but cannot exceed a hemisphere as inherent to the optical principle of the lens, see

Figure 2.3(b).

Both catadioptric and wide angle cameras cannot be calibrated using the standard camera

model (Heikkila and Silven, 1997) but require non-linear calibration methods (Faugeras

et al., 2004). Further drawbacks of single camera approaches are limited image resolution

and inflexibility when it comes to different lighting conditions. This is an important issue

with omnidirectional cameras used outdoors as lighting conditions can significantly differ

depending on direction.

Another approach for creating a panoramic image is the simultaneous use of multiple

perspective cameras that are aligned around a single viewpoint as shown in Figure 2.3(c),

e.g. reported by Sato et al. (2004) or the commercially available Ladybug 2 camera system

used in this thesis. In contrast to catadioptric or wide angle lens cameras, they allow

adjustment of parameters, such as shutter speed, for each camera individually, which

is particularly important in outdoor settings, as there can be different ambient lighting

conditions in different directions. Instead of special lenses or catadioptric systems, a set

of perspective cameras that are aligned in a ring around a single point of view is used in

the Ladybug 2 enabling it to capture a full spherical view from a single viewpoint.

A related technique to create an omnidirectional image are mosaicked panoramas captured

using PTZ-cameras. Here, images are acquired using pan and tilt movements over time

(Sinha and Pollefeys, 2006). Even though these techniques allow a full omnidirectional
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field of view, they do not provide instantaneous views in all directions, they are therefore

not considered in this thesis

(a) Catadioptric (b) Wide-angle (c) Multi Camera (d) PTZ

Figure 2.3: Types of omnidirectional cameras.

2.2.2 Omnidirectional Mappings

The two most common 2D representations of omnidirectional imagery are the log-polar and

panoramic mappings (Salomon, 2006). Log-polar (Figure 2.4(a)) offers a high resolution

at the centre of the image, which decreases logarithmically towards the image borders.

It is mostly used for wide angle cameras, as these cameras provide the same resolution

characteristics due to their optics. The panoramic mapping (Figure 2.4(b)), on the other

hand, is easier to grasp for a human as the image seems less distorted. Yet in fact the

panorama representation only provides mappings near the equatorial line and becomes

inaccurate towards the poles. This is of less concern when cameras are used that only

capture a panoramic view, so a catadioptric camera with limited vertical field of view is a

reasonable choice. Figure 2.4 shows these representations.

(a) Log-polar (b) Panoramic

Figure 2.4: Types of 2D panoramic mappings

For full spherical cameras the distortions can become drastic and 3D mappings are re-

quired. There are three common types of 3D mapping (Yagi, 1999): cylinder, cube or

sphere. An obvious representation is the cylindrical mapping as shown in Figure 2.5(a).

On closer inspection, while it wraps, it is in effect a rolled up panorama and suffers from
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the same distortions as the 2D panoramic mapping. A second representation is the cubic

representation (Figure 2.5(b)), which maps the omnidirectional image onto six sides of a

cube with 90◦ separation. It has the advantage that the images on each side are rectified

and not distorted, but it does suffer from drastic distortions on the cube borders. The

third common mapping is the spherical mapping (Figure 2.5(c)), which maps the cap-

tured scene onto a unit-sphere. Because it represents the scene as it was captured, it does

not suffer from any distortions and it represents the omnidirectional image in a continu-

ous coordinate space, which is essential for the image stabilisation approach proposed in

Chapter 3. Hence this thesis utilises the spherical mapping approach.

(a) Cylindrical (b) Cubic (c) Spherical

Figure 2.5: Types of 3D panoramic mappings

2.2.3 Perspective Camera Model

The relationship between a point in 3D world coordinates (X, Y, Z) and its projection

point onto a 2D plane (u, v) for the individual cameras can be described using the Thales

theorem as

u =
X

Z
v =

Y

Z
. (2.12)

Introducing the focal length, f , as the distance between the projection plane and the

optical centre of the camera models the perspective camera:

(
u

v

)
=
f

Z

(
X

Y

)
. (2.13)

This ideal camera model does not hold in the real world; lens distortions and misalignments

of sensors, etc. need to be taken into account. This process is called rectification of the

image. The relationship between distorted (u, v) and rectified (ũ, ṽ) pixel coordinates can
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be expressed as



ũ

ṽ

1


 = K



u

v

1


 , (2.14)

where K is defined as the camera matrix (Heikkila and Silven, 1997) containing the in-

trinsic parameters of the camera.

K =



fx α fx cx

0 fy cy

0 0 1


 . (2.15)

fx and fy are the focal length in x and y directions, while α represents the rotational offset

between both axes. ( cx, cy) is the principal point of the image plane. Standard programs

are available to estimate the camera matrix, e.g. the Camera Calibration Toolbox for

Matlab (Bouguet, 2004).

2.2.4 The Ladybug Camera Model

The Ladybug camera system consists of six perspective cameras. While the cameras are

identical in construction, slight differences in manufacturing are taken into account by

calibrating each perspective camera individually, resulting in a set of intrinsic parameters,

K1,...,6, according to Equation (2.15). Equations (2.13) and (2.14) yield a projection of a

world coordinate (X, Y, Z) onto a rectified pixel coordinate (ũ, ṽ). Note that in images,

pixel coordinates are given with the origin in the upper left corner and the positive x-axis

to the right and down of the image. Then, with the image size w×h, the same coordinate

can be expressed in the right handed 3D perspective camera coordinate system as

Pnp =



ũ

−ṽ
0


+

1

2



−w
h

0


 . (2.16)

All cameras of the Ladybug 2 camera system are aligned around a single viewpoint. There-

fore, it is reasonable to select the viewpoint as the origin of a joint coordinate system. An

extrinsic calibration identifies the transformation from the perspective camera coordinate

system into a joint camera coordinate system. The Ladybug 2 camera is pre-calibrated,

and the manufacturer provides the extrinsic parameters as a translation and rotation
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between the joint coordinate system and the individual perspective cameras as in:

C
PnT =

(
C
Pn

R C
Pn
t

0 1

)
. (2.17)

A pixel coordinate (u, v) in perspective camera Pn can thus be converted into global

coordinates as

Gp = G
CT C

PnT




(
Kn 0

0 1

)



u

−v
0

0




+ 1
2




−w
h

0

0






, (2.18)

where Kn is the camera matrix and w × h is the image size of the n − th perspective

camera.

2.3 Inertial Measurement Unit

Knowing the position and orientation of a mobile platform is crucial, especially when it is

unmanned. While surfaced, a satellite aided navigation systems such as GPS can reliably

measure the position and, over time, the velocity of the platform’s vehicle. However,

in order to stabilise a camera system, accurate information about the vehicle’s precise

orientation and motion is needed. An inertial measurement unit, which can measure the

rate of turn and acceleration, can reliably estimate inter-frame motion (Lawrence, 1998;

Everett, 1995). Typically, the sensors of an IMU are only sensitive to one axis, so that three

orthogonally aligned sensors are used to provide full three dimensional orientation. IMUs

are combined sensors, comprising gyroscopes, accelerometers, and magnetometers, which

are described in detail in the following sections. The sensors are typically fused with

an Extended Kalman Filter (Maybeck, 1979), yielding the sensor orientation in global

coordinates (Corke et al., 2007), IGRt, at time step t.

2.3.1 Gyroscope

Gyroscopes of two types are commonly used: Strap-down systems make use of the con-

servation of angular momentum in a mechanical setup. Microelectromechanical based

systems (MEMS), on the other hand, make use of the Coriolis effect that is induced by
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forces acting on vibrating or oscillating structures.

A mechanical gyroscope can best be described as a disc, mounted in gimbals, that is

spinning with a constant angular velocity, ω = const. Any mass particle, mi, located on

the disc has an angular momentum of

Li = mi (ri × vi), (2.19)

where ri is the position vector of the particle with respect to the centre of the disc and vi

is its velocity vector. With vi = ωri for each particle, the overall angular momentum of

the spinning disc, L, can thus be written as

L = ω

∫
mir

2
i di. (2.20)

Because

d L

d t
= r× Fext, (2.21)

the angular momentum is preserved if no external force, Fext, is applied. Equation (2.21)

also means that if a force perpendicular to L is applied, a torque τ = d L/d t can be

observed and results in a rotation around an axis in direction of τ × L, called precission,

which is proportional to the projection of the angular velocity causing Fext. Optical or

capacitive sensors are used to measure the angular velocity or period of precession in

strap-down inertial systems.

A vibrating structure gyroscope is based on an oscillating structure, e.g. a quartz crystal.

The structure is mounted in a plane and vibrates with a frequency ω – typically defined

by the frequency of the AC voltage, VAC = V̂ sin(ωt). If a force perpendicular to the axis

of oscillation is applied, the Coriolis force causes a precession around the axis of oscillation

according to Equation (2.21). In a MEMS setup, a piezo element acts as the vibrating

structure.

MEMS gyroscopes are based on the Coriolis effect. A proof mass, m, is placed in a rotating

inertial frame with a constant angular velocity, ω. The velocity vector, v, of the mass is

perpendicular to the position vector, r, originating at the centre of the frame. Because

ω = const, only the direction, not the magnitude of v changes over time. For the proof

mass, a Coriolis force, FC , can be observed as

FC = 2mv × ω. (2.22)
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Accordingly, the Coriolis acceleration, aC is

aC = 2v × ω. (2.23)

In a MEMS vibrating structure gyroscope, a proof mass is suspended within a poly-

silicium frame and brought to oscillation. Any external force acting perpendicular to the

axis of oscillation induces a Coriolis acceleration that can be measured using changes in

the capacitive behaviour of the proof mass.

A slightly different approach is used for a MEMS wheel. Here, a micro-structure of a

classic spinning wheel is build out of a capacitive material in MEMS technology. The

wheel is rotated with a constant velocity. When an external force is applied perpendicular

to the rotation axis, the magnitude of the angular moment of the wheel, L = I × ω, does

not change because ω = const. However, the direction of L changes and the wheel keeps

its rotation axis perpendicular to the applied force. This tilting can be measured as a

change in the capacitive behaviour of the wheel.

The rotation measured by the gyroscope ω̃ = (ω̃1, ω̃2, ω̃3) can be expressed as a rotation

matrix by computing the matrix exponential on the skew symetric matrix:

R̃ = exp




0 −ω̃3 ω̃2

ω̃3 0 −ω̃1

−ω̃2 ω̃1 0


 . (2.24)

When the orientation of the sensor from the previous timestep is known, the current

orientation can be computed using R̃:

Rt = R̃ Rt−1. (2.25)

2.3.2 Accelerometer

Acceleration can be measured by determining the displacement of a proof body using the

spring equation of Hooke’s law. When a proof body is connected to a reference body

through a spring, the displacement, d, caused by a force, F, can be computed via

F = −k d, (2.26)
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where k is the spring constant. The force can be computed using the mass of the proof

body, m, and the vector of acceleration, a, as

F = ma. (2.27)

When the sensor is held static, the proof body is only subject to gravity, g, as an acceleratic

force. Solving Equations (2.26) and (2.27) for g, the gravity vector can be estimated as

g = −k dm−1. (2.28)

For use in MEMS, two types of sensors are suitable: capacitive and piezoresistive. On

a capacitive accelerometer, a conductive structure is used as a proof body such that

the displacement causes a change in the capacitive characteristics of the sensor. For

piezoresistive accelerometers, materials that change their resistivity characteristics when

strained are used. Physical strain on semiconductive material causes a change of the band

gap, which results in a change of resistivity that can be measured.

Acceleration is the second derivative of position. Thus, the change of position, ∆s, can be

formed by double integration of the measured acceleration over time:

∆s =

∫∫
at dt . (2.29)

A position estimate, st, can now be computed, when a reference position, s0, at timestep,

t0, is known:

st = s0 +

∫ t

t0

∫ t

t0

at dt . (2.30)

However, due to the errors induced by bias or drift of the sensor as well as errors due

to double integration, accelerometers need to be very precise when used for position es-

timation. Typically, the precision of inexpensive MEMS sensors is not sufficient for this

task.

2.3.3 Magnetometer

The earth’s geodynamo generates a magnetic field with the lines of force originating in the

southern and finishing in the northern hemisphere. Close to the surface, the magnetic field

is almost homogeneous. Thus, if conductive material is placed within this static magnetic
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field, B, a Hall-voltage, UH , can be measured as

UH = AH
I B

d
, (2.31)

whereAH is the Hall Coefficient and I is electric current. Using three orthogonal Hall-effect

sensors, the vector of the earth magnetic field relative to the sensor can be estimated, giving

an indication about its orientation. Note that the magnetic field varies with position, and

is subject to fluctuation. Also disturbances due to metallic objects or electric devices can

affect the measurement.

2.4 Tracking

Object tracking is the process of successive estimation of the location of a target in a video

over time (Yilmaz et al., 2006). In contrast to object detection, which is only concerned

with the localisation in a single frame, irrespective of a possible information gain from

prior frames, object tracking tries to find the transition between the states of each frame

(Figure 2.6). This allows building a model of the object trajectory, predict movement,

and reduce noise. A state space model encodes the position in the state of the model and

incorporates measurements as state updates. This way, false measurements (outliers) and

even object occlusions can be handled by the object tracker.

(a) t (b) t+1

Figure 2.6: The target object is tracked from frame t to frame t + 1 by matching single
features between frames.

Yilmaz et al. (2006) describes three classes of object trackers: 1. point trackers, 2. silhou-

ette trackers, and 3. kernel trackers. Point trackers are concerned with identifying and

tracking of individual feature points (e.g. SIFT features, (Lowe, 2004)), while silhouette

trackers make use of matching of shape description (e.g. contours, (Yilmaz et al., 2004)).

These techniques are of no concern in this thesis. Kernel trackers are appearance based.

That is they make use of a description of the appearance of the object to re-identify and

track it over frames. In this thesis the Kanade-Lucas-Tomasi (KLT) feature tracker (Shi
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and Tomasi, 1994) is employed for tracking objects and parts thereof.

2.4.1 State Space Model

If the position s of an object in the previous time step, st−1, and its velocity, ṡt, is known

then the current position, st, can be estimated using the kinematics equation as

st = st−1 + ṡt−1 + ε, (2.32)

where ε is the uncertainty of the model.

However, these states are not directly observable, since observations are themselves also

uncertain. Hence, state space models progress by utilising the kinematic equation to pre-

dict the next state and subsequently incorporate the observation to update this predicted

state estimate. Formally, the state vector, x, is defined as follows

xt =

(
st

ṡt

)
, (2.33)

with the observation vector, y, only consisting of measured position, since velocity is

usually not directly measurable.

The transition from Equation (2.32) can then be put into linear algebra form by defining

the following state space transition matrix, F,

F =

(
1 1

0 1

)
, (2.34)

which yields the following state space model description of the system

xt = Fxt−1 + ε. (2.35)

An equivalent viewpoint is to consider that the states forms a Markov chain with transi-

tion probability, P (xt|xt−1), and observation probability, P (yt|xt). This can be described

using a Kalman or Extended Kalman filter (EKF) (Kalman, 1960; Maybeck, 1979), how-

ever, as this requires the observations follow a Gaussian distribution, which is not always

met, the EKF is insufficient for typical tracking applications. An alternative that does

not have this restriction is the Particle filter.
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2.4.2 Particle Filters

Particle filters (Doucet et al., 2000) are based on sequential Monte Carlo Simulations and

are often used for tracking (Hue et al., 2002). In a particle filter a set of N samples

(particles), x
(i)
t (where i is the particle index), is used in conjunction with weights (proba-

bilities), w
(i)
t , to provide a discrete approximation of the state distribution, allowing it to

be non-Gaussian distributed.

The most common particle filter variant is the bootstrap filter (Gordon et al., 1993). The

algorithm for updating a bootstrap particle filter over time proceeds as follows: Particles

are sampled from an initial distribution of

x
(i)
1 ∼ P (x1|y1) ∀i ∈ {1, . . . , N}, (2.36)

where ∼ means “sampled from”. Each particle is then weighted according to how well it

matches the observation

w̃
(i)
1 = P (y1|x1 = x

(i)
1 ) (2.37a)

w
(i)
1 =

w̃
(i)
1∑N

j=1 w̃
(j)
1

, (2.37b)

where w̃ are the unnormalised weights and w are the final weights.

Predictions are made by sampling from the transition probability given the particle’s

current state,

x
(i)
t ∼ P (xt|xt−1 = x

(i)
t−1) ∀i ∈ {1, . . . , N}, (2.38)

Updates occur by updating the particle’s weights to reflect their fit to the new observation.

Note that particles are not actually moved during the update. The weights are updated

as follows:

w̃
(i)
t = w

(i)
t−1 · P (yt|xt = x

(i)
t ) (2.39a)

w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

. (2.39b)

The prediction and update cycle repeats as new frames arrive. One issue with the particle

filter is that of degeneration. This is where all but a few particles will eventually have
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zero weight due to only a few particles correctly predicting the next position of the object.

These zero-weight particles are in poor areas of the distribution and thus are a waste of

processing time to maintain. To solve this, the concept of resampling is used to multiply

high-weight particles and remove low-weight particles from the approximation (Doucet

et al., 2000).

2.5 Visual Attention

Not all parts of an image are relevant with respect to the overall content. Desimone and

Duncan (1995) described two phenomena in regards to attention for human vision: 1. lim-

ited processing capacity and 2. selectivity. They illustrated this with an experiment where

subjects were given a task and presented with a number of task relevant and irrelevant

objects. The authors found that the probability of identifying target objects decreases

with the number of task-relevant target objects being present, indicating that limited pro-

cessing capacity has to be split between the targets. Secondly, an increase in non-target

objects did not affect identification performance of target objects, indicating an ability

to selectively discard expected irrelevant regions of the retina image. The objective in

this thesis is to build an artificial system that imitates this behaviour and is capable of

detecting relevant and irrelevant regions within high resolution omnidirectional imagery.

Guiding visual attention to relevant regions can not only focus higher-level processing onto

relevant areas but also can relieve a human operator from monotonic and tiring scanning of

the entire image. This section explains feature based and task driven visual attention and

puts them into the context of computer vision. The section also discusses and compares

related work carried out in this research area.

2.5.1 Approaches

Humans use their sense of sight as a non-invasive sensor to obtain information about the

visual appearance, the colour, and the shapes of their surroundings. While the field of

view of the human vision system is about 120–160◦ horizontally, the central focus, the

fovea, has a field of view of only 3◦ (Goldstein, 2007). By moving the eyes the desired

scene is put in focus, while the periphery is still monitored by a pre-attentive system for

external stimulus (saccade) (Braun, 1994). Typically, the human vision system constantly

alternates between fixation and saccade. This “attentive observation of the environment”

(Pashler, 1998) can be addressed using two different processes: bottom-up and top-down

visual attention.
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Bottom-Up Visual Attention

The bottom-up process is stimulus driven: local differences in features like shape, colour,

contour, texture, size or orientation are used to identify candidate regions of interest in

an image. This is done on a pre-object level, i.e. no knowledge about the appearance

of possible objects is necessary, merely the presence (or absence) of low-level features

is evaluated and used to guide visual attention to candidate regions. Figure 2.7 shows

(a) Shape (b) Colour (c) Texture

Figure 2.7: Examples of low-level driven bottom-up visual attention. Stimuli caused by
difference in shape, colour, or texture.

examples of images containing regions that differ in shape, colour, or contour. Without

any task knowledge, the attentive region in (a) can be identified as the circle by evaluating

the difference of shape in the image. The same is valid for the red circle in (b) when

evaluating the difference in colour and the unidentified object in (c) when evaluating the

difference in texture.

Top-Down Visual Attention

Visual attention in a top-down process is described on a higher level. Instead of low-

level feature differences, specific patterns are defined that describe the potential target

object. A prominent example that can describe the constant scanning of the human

vision system for these patterns is depicted in Figure 2.8(a): the child book “Where’s

Wally?” (Handford, 1987) contains images depicting dozens of people in various scenes

with a character, “Wally”, hidden amongst them. The young reader is presented with the

task of finding Wally wearing his red-and-white jumper in each of the images. Contrary

to the bottom-up approach, a clear task is given with the description of the appearance of

the object. Without this task, it would not be possible to identify the target as evaluation

of the differences in low-level features alone would yield ambiguous results.
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(a) Where’s Wally? (b) Find all the black
horizontal or white

vertical bars

Figure 2.8: Examples of task driven top-down visual attention.

Figure 2.8(b) shows a structure with black and white bars that are horizontally and ver-

tically aligned without any recognisable pattern. A feature based bottom-up approach

would not be able to detect any areas of visual attention due to insignificant differences

in the image. Using a top-down approach that defines black horizontal and white vertical

bars as targets, however, allows searching for these patterns and guiding visual attention

to identified candidate regions.

2.5.2 Visualisation of Classifier Responses

The response of a Bayesian classifier is probabilistic, i.e. it is normalised to 0 . . . 1. For

visualisation purposes heatmaps are used in this thesis to visualise the responses of detec-

tors and classifiers. The colour ranging from blue to red indicates the value at each point

of the map. A high value translates to a high probability for the depicted class. Figure 2.9

shows a heatmap that is used to depict the spatial probability of a maritime object in an

image.

Figure 2.9: Heatmap depicting the spatial probability of a an area containing a maritime
object. The heatmap relates the magnitude to a colour ranging from blue to red.
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2.5.3 Visual Attention in Computer Vision

The concept of visual attention has been adapted by the computer vision community. Four

different, yet overlapping terms have emerged for this kind of processing within the past

few decades:

1. Image Complexity. Peters and Strickland (1990) define Image Complexity as

the “inherent difficulty of performing the task associated with it”. Their work is

placed in the domain of automatic target recognisers, in which the associated task

is assumed to be detecting the target within an image. Image complexity refers to

the complexity of detecting a target object within the image. The measurement is

a mapping indicating the complexity of an image as a monotonic probability.

2. Object Detection. Object Detection refers to the finding of foreground objects

within an image. Object detection is typically class driven (Everingham et al., 2010;

Lampert et al., 2008; Chum and Zisserman, 2007), although class independent object

detectors have been proposed that are not concerned with the exact type of the object

and only compute the probability of an object being present at a specific location

within the image (Alexe et al., 2010). Here, a measurement is given to indicate the

probability of a region or subwindow of the image containing an object.

3. Image Saliency. The Saliency Map of an image shows distinctive areas within the

image (Itti et al., 1998; Hou and Zhang, 2007; Achanta and Süsstrunk, 2010). Using

a Bayesian formulation and the assumption that distinct areas are in fact foreground

objects, the saliency map can be interpreted as a probability map that indicates the

probability of a region containing a target object.

4. Visual Attention. Visual Attention is about the detection of unknown, undefined,

or unspecified objects (or regions) within the image (Sun and Fisher, 2003; Hu

et al., 2008; Frintrop et al., 2010). In contrast to the aforementioned methods, no

assumptions are made of the specifics of the object present. Again, a map that

indicates the probability of the presence of an object is computed as the result of

the visual attention approach.

Both saliency and visual attention are concerned with the problem of finding regions

of interest in the scene. However, their exact difference is not well defined. Thus for

clarity, this thesis sets the following definitions: saliency is the problem of finding regions

that are unusual in the image. In contrast, visual attention is the problem of finding

regions that are important for the problem domain at hand. Thus this thesis defines their
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difference as being that visual attention is more task-orientated than saliency; the latter

is a purely bottom-up approach, whereas the former requires some top-down information

that characterises the problem domain and its goals.

In the early work of Itti et al. (1998), the authors proposed an attention system inspired

by the integration of multiple feature maps, as suggested by Koch and Ullman (1985), and

the neural architecture of the human vision system. Human vision is most sensitive to

contrast changes between a dense centre and a larger surrounding region (Jobson et al.,

1997). Itti et al. compute multiple Gaussian pyramidal levels of the input image and

decompose each level in colour, intensity, and orientation. They then compute the centre-

surround contrast for each feature using the across-scale difference between two levels of

the Gaussian pyramid, where the coarser scale functions as the surrounding area. The

resulting maps are normalised to a fixed range and eventually combined in a winner-take-

all neural network to compute a saliency map, indicating the most prominent saliency

regions. Itti et al. demonstrated the strength of the proposed method in 1998; however,

their method has been outperformed by recent saliency approaches. Figure 2.10 shows a

sample image and the corresponding saliency map as computed by this algorithm. The

saliency map is visualised using a heatmap that relates the magnitude to a colour ranging

from blue to red (see Section 2.5.2).

(a) Original Image (b) Saliency Map

Figure 2.10: Saliency map computed using centre-surround differences across different
scales (Itti et al., 1998).

Harel et al. (2007) proposed a bottom-up graph-based method for saliency detection,

designed to predict target fixation of the human vision system in static imagery. The

authors perform extraction of the features: colour, intensity, and orientation, as proposed

by Itti et al. (1998). However, they do not make use of the full Gaussian pyramid as

suggested by Itti et al. In a biologically plausible approach, Harel et al. then compute

the dissimilarity between the feature responses as the distance of the logarithmic ratio

between points of the image per feature. This results in a Markovian representation of each

feature channel, called activation maps by the authors. The activation maps are eventually
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normalised and combined using a graph-based approach, where the probability between

nodes is computed using the distance between the pixels. The node which is most unique

with respect to the neighbourhood can then be estimated as the node with the highest

weight in the graph. The authors compare their proposed approach to existing methods

and show that it yields a better receiver operator characteristic. However, the dissimilarity

measure used to compute the activation maps is based on global scene analysis, which

faces the problem that images with noisy or complex backgrounds may produce high local

contrast and thus yield a higher response in the activation maps. In their experimental

investigation the authors found that the detection is biased towards the centre of the

image, which actually reflects the human eye’s bias, but for the purpose of detecting

salient regions in any part of an image, is an unwanted effect.

(a) Original Image (b) Saliency Map

Figure 2.11: Uniqueness of a pixel towards the entire image is computed using a logarithmic
ratio of the features. The resulting activation maps are used to compute the saliency map
using a graph-based approach (Harel et al., 2007).

Instead of estimating salient regions by finding features that describe foreground, Hou

and Zhang (2007) took a different approach and explored the unique properties of the

background. They argue that background consists of frequently occurring features and by

suppressing them, the foreground can be emphasised. The authors took an information

theoretical approach and compute the log spectrum as the log of the amplitude of the

Fourier spectrum of a down-sampled version of the input image. Assuming that the image

background consists of mostly redundant frequency components, they then compute the

spectral residual to extract the frequency components of the foreground. The saliency

map is eventually created by mapping the spectral residual back into the spatial domain.

Hou and Zhang show that their proposed method outperforms the reference method of

Itti et al. (1998) and that it is able to find regions of unique appearance. However, the

spectral residual approach fails to detect large objects with respect to the image size

since the dominating frequencies of the object will be treated as redundant background.

Figure 2.12 shows a sample image and the corresponding saliency map as computed by

Hou and Zhang (2007).
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(a) Original Image (b) Saliency Map

Figure 2.12: Saliency map computed using the spectral residual of the full-scale and a
corresponding downsampled image following Hou and Zhang (2007).

Rosin (2009) based his parameter-free approach for salient region detection purely on

edges. The author argues that areas with strong edges are salient and therefore can be

detected by computing their density. As a first step Rosin uses the Sobel operator to

compute the edge image. From the edge image he then computes the edge magnitude

at each position and then performs a threshold decomposition. For each threshold level,

he computes the distance transform and eventually combines all distance transform maps

into the final saliency map using summation. The author compares his approach to several

other approaches, including Itti et al. (1998), Liu et al. (2007), and Ma and Zhang (2003)

and shows roughly similar performance. The obvious advantages of his proposed method

is that it is simple to compute, purely based on intensity, and is parameter free. However,

as the method’s only feature cue is edge density, it is entirely dependent on the edge

distribution within the image and will fail if a lot of strong edges are present in the

background or if the salient object has a low edge contrast. Figure 2.13 shows the saliency

map of a sample image as computed by the algorithm of Rosin (2009). In an extension,

he proposed the combining of edge detection at multiple scales and the use of opponent

colours instead of pure intensity levels and multi-scale difference of Gaussians. However,

he did note that the inclusion of colour did not increase performance.

(a) Original Image (b) Saliency Image (c) Saliency Map

Figure 2.13: Saliency image computed using threshold decomposition on the edge density
and subsequent distance transform for each threshold level. A saliency map with 8 × 8
block size computed using block integration is depicted for comparison (Rosin, 2009).
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Achanta et al. (2009) introduce a bottom-up approach for salient region detection where

they follow the concept of centre surround contrast introduced by Itti et al. (1998) and

obtain a saliency map of the input image using features of luminance and colour. As a

first step, they estimate the mean CIELAB vector of a Gaussian blurred version of the

input image. They then compute the Euclidean distance between the CIELAB vector

at each pixel and the mean CIELAB vector of the image. Their approach outputs full

resolution maps with well-defined boundaries for the salient objects. However, if the image

background is complex or objects are large with respect to the image size, the background

gets highlighted as the salient object. This is because the CIELAB mean is meant to

represent the average background. This will then be dominated by the object and so will

treat it as the background. Achanta and Süsstrunk (2010) address this issue and compute

the CIELAB mean over a maximum symmetric surrounding window rather than the entire

image, justified by the assumption that the size of the salient object is in relation to its

position in the image. The size of the window is symmetric with respect to the pixel and

is bound to a maximum by the image border for the most centre pixel. The saliency of

each pixel is then computed as the Euclidean distance between the CIELAB vector of

the pixel and the CIELAB mean of the maximum symmetric surrounding window. The

authors showed that their method outperforms the approaches proposed by Itti et al.

(1998), Ma and Zhang (2003), Harel et al. (2007), Zhang et al. (2008), and Achanta et al.

(2009) in both precision and recall performance. Figure 2.14 shows a sample image and

(a) Original image (b) Saliency Image (c) Saliency Map

Figure 2.14: Saliency image computed using the Euclidean distance between a pixel and
its mean maximum symmetric surrounding region in CIELAB space. A saliency map with
8×8 block size computed using block integration is depicted for comparison (Achanta and
Süsstrunk, 2010).

the corresponding saliency map as computed by Achanta and Süsstrunk (2010). As the

algorithm produces full resolution saliency maps, the output is scaled down to map size

using bicubic interpolation (Figure 2.14(c)).

The method proposed by Alexe et al. (2010) is not a visual attention detector per se.

In fact the authors presented it as a method for detecting generic objects in an image.

However, the result of the method is a measurement of an object being present within a

33



CHAPTER 2. BACKGROUND

given region. Instead of directly estimating the spatial location of the object within the

image, Alexe et al. randomly sample a number of windows (hundreds to thousands) and

compute the probability for each window to contain an entire object, called the objectness

of the window. They suggest that every object (regardless of its class) has either a closed

boundary, a unique appearance relative to its surrounding area, or is unique within the

entire image. They proposed the use of four different cues that respond to these properties

and combine them in a supervised machine learning approach. Following Hou and Zhang

(2007), they compute a saliency map for each colour channel in multiple scales. They

further compute the colour contrast between each window and its surrounding area in

CIELAB colour space. As a third cue, they compute the edge density in border proximity

of each window. Last but not least, they make use of the image segmentation technique

proposed by Felzenszwalb and Huttenlocher (2004) to compute superpixels of each window.

All cues are then combined in a Näıve Bayes classifier. Alexe et al. compare their method

to generic object detectors proposed by Dalal and Triggs (2005), Felzenszwalb et al. (2009),

and Lampert et al. (2008) as well as the saliency approach of Hou and Zhang (2007)

and Itti et al. (1998), showing that their method outperforms all of the aforementioned.

Figure 2.15 shows a sample image and the five windows with the highest objectness score.

(a) Original Image (b) Top Windows (c) Saliency Map

Figure 2.15: A number of random windows are sampled and an objectness score that
indicates the probability of a window containing an entire object is computed. (b) shows
the five windows with the highest score for the test image – a brighter frame indicates a
higher objectness value. The saliency map (c) is created by overlaying and normalising
1000 windows (Alexe et al., 2010).

Note that the larger boxes are correctly rated higher according to the objectness criterion

which requires the window to contain an entire object, which is true for the larger ones but

false for the smaller windows only covering parts of the surfer. However, this behaviour

is disadvantageous in terms of precision and recall for objects that are not of rectangular

shape and thus only cover parts of a bounding box. To compare this algorithm, the scores

of 1000 windows have been summed over at their respective window locations and the result

has been normalised to indicate the probability of an object as the original algorithm does

not produce a probability map. The resulting heatmap is shown in Figure 2.15(c), which

gives a reasonable indication of the presence of an interesting object.
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2.6 Machine Learning

Machine learning is a vast field of techniques that are used to estimate a relation between

input and output based on observations (Michalski et al., 1985; Michie et al., 1994). The

field consists of mostly two different approaches: unsupervised and supervised learning.

The former deals with the generation of a model that provides a best fit for a given set

of unlabelled observations – this approach is of no concern in this thesis. The purpose

of supervised learning is to estimate a relation model between known input and output

mappings. Training creates a model that then can be used to predict the class of testing

data.

In this thesis, a classifier is used as a method to classify features and to fuse features

together into a single response. The features are the observable information (input), while

the class is the target of classification (output). Although there is a very large body of

classifiers (Russell and Norvig, 2010), a Bayesian approach has been chosen as its response

is probabilistic and allows for uncertainty to be incorporated in the classifier.

One of the simplest Bayesian classifiers is Näıve Bayes, which assumes feature variables

are statistically independent. When this assumption is true, Näıve Bayes has been shown

to be a powerful classifier despite its simplicity and speed of training (Russell and Norvig,

2010). Formally, a Näıve Bayes classifier is a generative model where the class generates

the observable features, i.e. the class is causing the observations. This is initially expressed

as a joint probability of random variables, the features, Y1, Y2, . . . , Yn and the class X –

where each variable can take a particular set of values. The joint probability can then be

factorised as

P (X,Y1, Y2, . . . , YN ) = P (Y1|X,Y2, . . . , YN ) · P (Y2|X,Y3, . . . , YN ) · . . . · P (YN |X). (2.40)

This can be simplified by utilising the assumption of independence between features

P (X,Y1, Y2, . . . , YN ) =P (Y1|X) · P (Y2|X) · . . . · P (Yn|X) (2.41a)

=
N∏

n=1

P (Yn|X). (2.41b)

With discrete distributions the factors are in fact conditional probability tables that can

be easily learned from training data by counting the occurrence of each feature value with

each class and subsequently normalising to 0 . . . 1.
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Classification in Näıve Bayes is the process of inference where one evaluates the following

probability using Bayes Rule (Russell and Norvig, 2010) to calculate the probability that

a class, c, matches the observed features.

P (X = c|Y1, Y2, . . . , YN ) =
P (Y1, Y2, . . . , YN , X = c)

P (Y1, Y2, . . . , YN )
(2.42a)

=
P (Y1, Y2, . . . , YN , X = c)∑
x P (X = x, Y1, Y2, . . . , YN )

(2.42b)

=

∏N
n=1 P (Yn|X = c)

∑
x

∏N
n=1 P (Yn|X = x)

(2.42c)

Classification is a matter of calculating this for all classes and selecting the class with the

highest probability.

2.7 Colour Models

B
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(a) RGB (b) L*a*b* (c) HSV

Figure 2.16: RGB, LAB, and HSV colour space. Note that the colour models depicted
in this figure are only approximate as this thesis is printed using CMYK, while the on-
line version is rendered in RGB (making L*a*b* and HSV approximates). CMYK is a
subtractive colour model that is commonly used by the printing industry, it is not of any
interest in this thesis and is not addressed any further. The interested reader is referred
to Galer and Horvat (2005).

2.7.1 RGB/sRGB

The widely used RGB colour model (Figure 2.16(a)) is an additive model based on the

concept of primary colours (red, green, and blue), which are mixed to yield the desired

colour. The model forms a three dimensional cube with all colour components ranging

from 0–100%.
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The Ladybug camera system that is utilised in this thesis uses a BGGR sensor. For

every pixel in the image, it has four different subpixels sensitive to blue, green, green, and

red – the two subpixels for green are used to imitate the human high sensitivity to green.

Colour processing algorithms such as k-nearest neighbours, linear, or bicuibic interpolation

are used to process the independent subpixels and compute the RGB colour of the pixel.

However, a drawback of the RGB colour model is its device dependency; the same colour

values in RGB can actually produce different results on different monitors, scanners, and

cameras. Therefore, a device independent RGB model, the so-called sRGB model, has

been proposed. Typically device manufacturers provide conversion functions to convert

from RGB to sRGB colours, (Rs, Gs, Bs) = f(R,G,B), as part of a calibration process.

However, neither the RGB or sRGB model are linear and supposedly one dimensional

changes (e.g. intensity) require adjustment on all three channels. Other colour models are

therefore widely used to overcome this issue.

2.7.2 CIELAB

CIELAB, whose actual name is L∗a∗b∗ (1976), as published by the Commission Inter-

nationale de l’éclairage (CIE) in 1976, is a three dimensional colour model spanning a

manifold that is build on the concept of complementary colours (Figure 2.16(b)). L∗ is

luminance and a∗ the green-red and b∗ the blue-yellow components respectively. The aim

of the model is that the perceived difference in colours as observed by a human is reflected

in a linear difference in CIELAB space. This is achieved by using a logarithmic scale of

the red and green components in the spectral distribution.

To convert to CIELAB space, the spectral distribution (X, Y, Z) needs to be computed

first. According to the International Commission on Illumination (2004) a colour in sRGB

space (Rs, Gs, Bs) can be converted into spectral power values as



X

Y

Z


 =




0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505






Rs

Gs

Bs


 . (2.43)

The spectral power values have been empirically determined to be consistent with the

response of a cone cell in the human eye to red, green, and blue colour. Fairchild (2005)
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then computes the L∗, a∗, and b∗ channels as

L∗ = 116f

(
Y

Yn

)
− 16, (2.44a)

a∗ = 500

(
f
( X
Xn

)
− f

( Y
Yn

))
, (2.44b)

b∗ = 200

(
f
( Y
Yn

)
− f

( Z
Zn

))
, (2.44c)

with

f(ω) =




ω

1
3 ω < 0.008856,

7.787ω + 16
116 otherwise,

(2.44d)

where Xn, Yn and Zn are the normalised values of the calibrated whitepoint and computed

according to Equation 2.43. The linearity of CIELAB allows computing differences of

colour using just the Euclidean distance, making the model well suited to be used for

efficient computing of colour differences later in Chapter 4.

2.7.3 HSV

HSV, as shown in Figure 2.16(c), is a conical colour model that encodes colour in a

single channel (Hue) – in contrast to the aformentioned RGB/sRGB (three channels) and

CIELAB (two channels). The relative brightness of the primary colour is encoded in a

second channel (Saturation) and the intensity of the image given in a third channel (Value).

Gonzalez and Richard (2002) compute Hue, H, Saturation, S, and Value, V , from sRGB
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as

H =





0 Rs = Gs = Bs,

1
3π ∗ (0 + Gs−Bs

max(Rs,Gs,Bs)−min(Rs,Gs,Bs)
) max(Rs, Gs, Bs) = Rs,

1
3π ∗ (2 + Gs−Bs

max(Rs,Gs,Bs)−min(Rs,Gs,Bs)
) max(Rs, Gs, Bs) = Gs,

1
3π ∗ (4 + Gs−Bs

max(Rs,Gs,Bs)−min(Rs,Gs,Bs)
) max(Rs, Gs, Bs) = Bs,

(2.45a)

S =





0 Rs = Bs = Gs = 0,

max(Rs,Gs,Bs)−min(Rs,Gs,Bs)
max(Rs,Gs,Bs)

otherwise,
(2.45b)

V = max(Rs, Gs, Bs). (2.45c)

In this thesis, the HSV colour model is used in Chapter 5 to model the colour of sea and

sky. The assumption is that sea and sky appear in a blue base colour. Nuances are only

variation of this colour, thus only Saturation will change and Hue will remain constant.

2.8 Classification

The proposed visual attention framework is a binary classifier. For every part of a test

image, a probability value, p, indicating the presence of a maritime object is computed. If

the probability is equal to or above a threshold, p ≥ pthresh, the image part in question is

added to the set of objects P , otherwise it is treated as background. For the purposes of

evaluation, there are several standard terms and approaches when analysing the effective-

ness of a classifier. This section describes the analysis methods that will be used in this

thesis.

Confusion Matrix. The performance of the framework is evaluated by estimating the

number of correctly and incorrectly classified instances on images with known ground

truth. For evaluation, it is of interest if the classifier identifies objects correctly, but also

if it has a tendency to over-segment or miss objects. For this, the number of instances

classified as True Positives, False Positives, True Negatives, and False Negatives are com-

puted and arranged in a 2× 2 matrix, called the confusion matrix. With P as the set of

predicted maritime objects and G as the set of actual maritime objects (ground truth),

the entries of the confusion matrix are computed as:
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• True Positives (tp) are the number of Object instances correctly classified as class

Object, computed by the intersection of P and G:

tp = P ∩G, (2.46)

• False Positives (fp) are the number of Background instances incorrectly classified as

class Object, which is expressed as the relative complement of P in G:

fp = G \ P, (2.47)

• True Negatives (tn) are the number of Background instances correctly classified as

class Background. The set of True Negatives is the symmetric difference of sets G

and P :

tn = (P \G) ∪ (G \ P ), (2.48)

• False Negatives (fn) are the number of Object instances incorrectly classified as class

Background, computed as the relative complement of P in G:

fn = P \G. (2.49)

Following the notation of Kohavi and Provost (1998), Table 2.1 shows the confusion matrix

used to evaluate the proposed framework.

Predicted
Object Background

A
ct

u
al Object True Positives (tp) False Negatives (fn)

Background False Positives (fp) True Negatives (tn)

Table 2.1: Confusion matrix for the proposed framework. The matrix shows the classifi-
cation prediction for classes Object and Background.

Precision and Recall. To depict the performance of a binary classifier, it is common

to plot the True Positive Rate (tpr) over the False Positive Rate (fpr) as the Receiver

Operator Characteristics (ROC). For this, the confusion matrix is recomputed for differ-

ent threshold values, pthresh ∈ [0, 1], from the probability map. Then, tpr and fpr are
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estimated and plotted as

tpr =
tp

tp + fn
fpr =

fp

tn + fp
. (2.50)

However, especially in foreground classification tasks datasets are often imbalanced as fore-

ground (class Object) typically has fewer instances than background (class Background).

Davis and Goadrich (2006) showed that ROC plots can be “[...]overly optimistic” in these

cases. They propose to plot Precision (pre) over Recall (rec) to evaluate a classifier for

these datasets instead. Precision is a measure for accuracy of detection, that is the pro-

portion of correctly predicted objects over the set of all predicted objects. Recall, on the

other hand, is a measure of recognition. It is computed as the ratio of correctly predicted

objects over the set of actual predicted objects:

pre =
tp

tp + fp
rec =

tp

tp + fn
. (2.51)

Precision and recall are influenced mutually. If a classifier is tuned for high detection,

more false positives are detected, i.e. the precision will decrease and vice versa. A Pre-

cision/Recall plot visualises this in a curve where precision is plotted over recall by com-

puting pre and rec for different thresholds of the probability map in the same fashion as

tpr and fpr.

F-Score. The F-Score (Lewis and Gale, 1994) has been introduced to have a single value

for comparison that incorporates both the precision and recall performance of a classifier.

It is defined as

Fβ =
(β2 + 1) · pre · rec

β2 · pre + rec
, (2.52)

where β = 1 is called the F1-score with equal weights on precision and recall. Emphasis

can be given to precision by selecting β ≤ 1, or recall by selecting β ≥ 1. For evaluating

classifiers that emphasise recall, a value of β = 2, which weights recall twice as much as

precision, is commonly accepted. Hence the F-Scores used in this thesis are:

• F1-Score that combines precision and recall with equal weights:

F1 =
2 · pre · rec

pre+ rec
, (2.53)
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• F2-Score that puts more emphasis on the recall of the classifier:

F2 =
5 · pre · rec

4 · pre + rec
. (2.54)

2.9 Summary

The design and implementation of a fully autonomous vision system used for maritime

surveillance operations requires the detail understanding of the features, limitations, and

capabilities associated with each related subsystem. This facilitates the systemic and

integrated design approach that is used to ensure successful future development of the

system. This Chapter reviewed the related fields to this research and familiarised the

reader with the methods and approaches relevant to this thesis.

Section 2.1 of this chapter introduced the different coordinate systems and derived coordi-

nate transformations that will be used throughout this thesis. In particular, earth, global,

inertial, camera, virtual camera, and perspective camera coordinates have been defined.

Next, the different types of omnidirectional cameras were described in Section 2.2. The

difference between panoramic, half-spherical, and full-spherical omnidirectional cameras

was explained, the advantages of using a multi-camera system for omnidirectional vision

in combination with a 3D full-spherical mapping were shown. Following this, the perspec-

tive camera model was derived and a model for an omnidirectional camera system using

multiple perspective cameras was developed. This camera model forms the base of the

research in Chapters 3 and 6.

Section 2.3 dealt with the measurement of ego-motion using inertial sensors that will be

utilised in Chapters 3 and 6. Notably, the physical concept of gyroscopes, accelerome-

ters, and magnetometers was derived and the fusion of these sensors using an EKF was

discussed.

Object tracking and the state space model of object tracking was the topic of Section 2.4.

Different classes of object trackers were explained and the state space model of the tracking

process was derived. Then, particle filters as a technique for predicting object movements

were introduced. They are used for sensor fusion and image stabilisation in Chapters 3

and 6 of this thesis.

In Section 2.5 visual attention has been introduced and the difference between bottom-up
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and top-down attention was described. Visual attention was then put into the context of

computer vision and a clear distinction between visual attention and saliency was made.

Then, relevant related work was discussed and approaches for evaluation and comparison

of the proposed framework in Chapters 4 and 5 were presented.

Section 2.6 formally described a Bayesian Network that is utilised in Chapters 4 and 5 for

feature combination.

The chapter concluded with a review of three colour models that will be used in Chapters 4

and 5 as well as a review of evaluation methods for classifiers.
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Chapter 3

Virtual Cameras for

Omnidirectional Video

Stabilisation

The main advantage of using mobile platforms for surveillance is that they allow access

to high-risk, hazardous, or remote areas without endangering human operators. Of the

camera systems that can be mounted on a maritime platform, fixed narrow field of view

cameras are very sensitive as they can easily lose track of targets when the platform is

subject to environmental disturbances that cause the platform to move or shake. Sta-

bilisation techniques can be applied to compensate for disturbances and ensure a target

remains static in the view. A common approach is to use a pan-tilt-zoom (PTZ) camera

for image stabilisation as it would be capable of performing a counter motion to ensure

the target stays in view. However, disturbances may be sudden and require immediate

and high speed reactions from the computer (or operator) to ensure the target remains in

view. Equipping the mobile platform with an omnidirectional camera can overcome this,

as it provides a real-time full-spherical view, which will show the target regardless of the

platform’s orientation. Therefore, the use of an omnidirectional camera removes the need

for moveable mechanical platforms and performs stabilisation purely digitally (Battiato

et al., 2007; Yang et al., 2009). This is particularly important for maritime platforms given

that the environment is inherently unstable due to the rolling motion of waves.

The use of an inertial measurement unit (IMU) can assist the stabilisation process as it

measures the unpredictable ego-motion of the platform and therefore is able to reduce

the search space of feature matching in the vast omnidirectional video. Such a maritime

platform has six degrees of freedom that must be considered for stabilisation. These can

be broken down into two components: rotation and translation. While the rotational

component only changes the orientation of the camera system with respect to the global

frame, translational ego-motion causes perspective changes between the camera and global

frame. As established in Section 2.3, an IMU can reliably detect rotational changes and

therefore compute the orientation in relation to the world frame. However, its usefulness
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Figure 3.1: Full-spherical representation of omnidirectional image and extracted virtual
camera.

for handling translational errors is limited by the need to perform double integration,

where errors will very quickly add up and make the estimate unreliable. Nevertheless,

rapid disturbances are mostly rotational due to the lower inertial forces required to cause

rotation of the platform compared to translation, and these rotational motions can be

measured reliably using an IMU. This thesis proposes to utilise this to drastically reduce

the search space for a subsequent feature matching algorithm that can then be used to

compensate for the translational component of the disturbances.

Typically only a limited field of view of the omnidirectional image is required to fulfil a

surveillance task because the target only occupies a small part of the field of view. The

stabilisation process can thus be simplified by placing the target region in the centre of

the stabilisation process and only stabilising based on this part of the omnidirectional

image. The importance of such a target-centric stabilisation approach is two-fold. First,

the effects of parallax, where objects close to the camera appear to move faster than the

distant background, makes global stabilisation a difficult problem to define. Specifically,

if parts of the image are moving then there are several stabilisation alignments possible,

one for the background and one for each moving target. Moreover, parallax will also

affect the background since waves and the platform’s own wake will be closer than the

coastline, which itself will not be at a uniform distance. Second, translation of the camera

platform ensures that the background itself will shift, and this shift cannot be resolved by

rotational stabilisation of the omnidirectional view. Thus this thesis takes the approach

of target-centric stabilisation, where all targets will be independently stabilised. This is

accomplished by extracting a limited field of view around each target from the omnidi-

rectional image, effectively forming multiple virtual perspective cameras (Figure 3.1), one

for each target. Stabilisation on each target based on image and IMU sensor fusion thus

ensures each target remains static within their respective virtual views even when signif-

icant ego-motion (rotation and/or translation) is present. The virtual camera views also
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have the benefit of reducing the information load on the computer (and/or operator) as

well as limiting the demands on bandwidth and further processing.

The use of an IMU to assist in stabilising an image leads to the need for sensor fusion,

where measurements from multiple sensors are utilised together. In a sensor fusion ap-

proach, tight coupling between two sensors is a commonly accepted requirement. However,

even tightly connected assemblies will shift over time due to vibrations, shaking, or shock

on the devices. Furthermore, a tight coupling typically prevents the user from disas-

sembling and reassembling devices, which especially for mission-based setups is highly

inconvenient. Calibrated devices also imply that the devices have to be synchronised,

i.e. measurements must be taken at precisely the same time, an assumption that many

approaches to calibration and sensor fusion require as a precondition. However, synchro-

nisation is in fact a difficult engineering problem. A single manufacturer may ensure that

different devices produce similar timings whose differences are low enough to support high

precision synchronisation, but devices from different manufacturers are not likely to have

such compatibility. This reduces the ability to choose “best-of-breed” devices from spe-

cialist manufacturers and forces the consumer’s reliance on the precision of the engineering

process.

The contribution of this chapter is to alleviate the problems of precise calibration and

synchronisation by solving the calibration and synchronisation problems in combination

with tracking and stabilisation, compensating for errors and/or drift in both calibration

and synchronisation by incorporating this as an uncertainty into the stabilisation and

tracking process. For this, a vision system consisting of an omnidirectional camera that

is connected to an IMU is proposed. The system is capable of efficiently maintaining a

stabilised view towards a target by extracting a virtual camera from the omnidirectional

image. An omnidirectional camera is utilised to ensure an uninterrupted view onto the

target. Stabilisation is achieved by continuously adjusting the orientation of the virtual

camera. For this, the inertial sensor provides an estimate of the system’s ego-motion.

Image registration techniques are then used to refine the estimate and compensate for

target motion. For sensor fusion, a probabilistic model is used to allow the use of loosely

calibrated and synchronised hardware.

The remainder of this chapter is organised as follows: First, the difference between calibra-

tion and synchronisation of a sensor system is explained and issues with calibration and

synchronisation are discussed in Section 3.1; the section continues with an introduction of

the approach that is utilised to estimate an approximate calibration between the two sen-

sors. Section 3.2 is devoted to the proposed stabilisation approach, the section introduces

virtual cameras and derives point conversions between omnidirectional and virtual cam-
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eras. The section closes with the description of the stabilisation framework. Section 3.3

gives a brief overview of the utilised system with experiments conducted in Section 3.4.

The chapter concludes with a summary given in Section 3.5.

3.1 Calibration and Synchronisation

When integrating camera and IMU, knowing the transformation between the coordinate

systems in which the respective sensors perform their measurements is essential. Estimat-

ing the spatial transformation (typically offset and rotation but could also include affine

transformations) between the two coordinate systems is called calibration between the two

sensors. The result of the calibration process is a transformation, expressed in homoge-

neous coordinates as described in Section 2.1.1. Additionally, the temporal offset between

measurements is important – measurements at both sensors need to be performed at the

same time instant or, if that is not possible, the temporal offset between the measurements

needs to be estimated. This process is called the synchronisation between the two sensors.

Both procedures are described in the following.

3.1.1 Calibration

Most calibration approaches utilise a concept of Horn (1987) or Horn et al. (1988), who

proposed finding the transformation between two coordinate systems by solving the least-

squares problem of a number of measurement-tuples over both systems. Lobo and Dias

(2003) observed the direction of gravity and the image horizon in a number of poses or

made use of a turntable (Lobo and Dias, 2007) to estimate the relation between a camera

and an inertial sensor by applying Horn’s method. Recently, Mirzaei and Roumeliotis

(2008) and Hol et al. (2010) estimated the transformation between camera and inertial

coordinate systems by measuring acceleration and angular velocity while tracking image

features on a horizontally aligned pattern. These approaches assume synchronised hard-

ware, i.e. measurements of camera and IMU arrive at the same time instant.

For calibration, first, the intrinsic and extrinsic parameters of the perspective camera

must be estimated – see Section 2.2.3 for details. The extrinsic parameters describe the

transformation between the 2D image plane of the perspective camera and the global

coordinate system. For an omnidirectional camera that has all cameras arranged around

a central viewpoint, like the utilised Ladybug camera system, the perspective camera

model can be applied to estimate the extrinsic parameters for each camera separately as
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described in Section 2.2.4. This process can be executed for any of the six perspective

cameras, but will be described for the first camera, {P1}, of the Ladybug camera system.

Because Pn
C T is provided for all n = 1, . . . , 6 cameras, it is sufficient to compute P1

GT, as

the remaining can be computed as

Pn
G T = Pn

C T C
P1

T P1
GT. (3.1)

In the remainder of this chapter, only the first camera of the Ladybug camera system will

be utilised for calibration, so that for the sake of readability the coordinate system of the

this camera, {P1}, will be denoted as {P} from now on.

{C}

{G} {G’}

{I} {P}

{P}

{C}

{G} {G’}

{I}

{P}

(a) Calibration pattern (b) Image in perspective camera

Figure 3.2: Coordinate systems utilised for calibration. {G′} in (b) denotes the projection
of {G} into {P}.

Calibrating the inertial sensor and omnidirectional camera is now a means of estimating

the relative transformation between the coordinate systems {I} and {C}, i.e. estimating
I
CT. Because PCT is given and P

GT is also known as it is the result of the extrinsic calibration

of the perspective camera, the calibration process is fully described by

I
CT = I

GTt
G
PTt

P
CT. (3.2)

Note that this formulation implicitly includes a strong time dependency: both, IGTt and
G
PTt assume measurements taken at the very same time step t. However, IGTt is measured

by the IMU while G
PTt is observed by the perspective camera, thus a synchronisation

between the two sensors is a precondition for the optimisation to work (synchronisation

between two devices will be discussed in Section 3.1.2).

The pixel coordinate (u, v) in the perspective camera is denoted as the point Pp=(u, v, 0, 0)T
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in homogeneous coordinates in {P}. At the same time, this point can be described using

{I} as a base system, Ip. For n = 1, . . . , N measurements of points in {P} and {I}, Ppn
and Ipn, the relative pose can be estimated by computing the transformation, T, that

maximises (Horn et al., 1988):

N∑

n=1

1

‖Ppn‖
Ppn

[
T Ipn

]
, (3.3)

where T is in fact the desired relative pose transformation between the perspective camera,

{P}, and inertial coordinate system, {I}. I
CT can subsequently found by placing I

CT =

T into Equation (3.2).

Time-independent measurements can be taken by measuring a static pose over multiple

capture frames. That is, the camera and IMU are held static for a couple of seconds

for each measurement step. This way, both devices measure the same conditions over a

longer period of time and precise timing is not necessary. In other words, synchronisation

can be assumed in this case as the measurement time is lengthened to guarantee an

overlap, thereby eliminating the need for precision timing. The approach of Hol et al.

(2010) uses the measurements of static poses as an initial guess for initialisation of an

Extended Kalman Filter (EKF). The EKF is used to optimise the calibration parameters

by tracking a pattern and measuring the inertial motion while the assembly is moved

in a random pattern while keeping the pattern in sight of the camera. However, this

approach cannot be applied to the system developed in this thesis because it requires

precisely synchronised hardware. Unfortunately, without some type of synchronisation

(either precise or via lengthened measurements), a calibration solution cannot be found

since the optimisation of Hol et al. (2010) will not converge.

3.1.2 Synchronisation

Synchronisation of two sensors is typically treated as an engineering problem and solved

in hardware by using a trigger that is connected to both sensors. In the case of a camera

and IMU, when the trigger is fired, the image sensor of the camera starts capturing the

image. The time needed to capture the image depends mostly on the shutter speed of

the camera, which again varies with the environmental conditions. Simultaneously, the

inertial sensor starts integrating the acceleration and angular velocity. The duration of

this process is defined by the (constant) measurement intervals of the IMU.

Figure 3.3 depicts three possible scenarios of how data could arrive from different sensors
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over time. In Figure 3.3(a), both sensors are perfectly synchronised. Measurements arrive

at precisely the same time instant – this is the desired behaviour. In (b), a time lag

between measurements Yn and Zn is observable. However, the lag is a constant delay with

measurements Zn always arriving with a constant latency to their respective measurement

Yn. If this latency is known, it can be eliminated by the fusion algorithm. In (c), a non-

synchronised system is depicted. Contrary to (b), the measurements of both Y and Z

arrive at varying time intervals with no observable constant latency. Note that in (c) Z3

represents a lost measurement and is therefore missing in the diagram.

(a) Synchronised,
no latency

t

Y1 Y2 Y3 Y4 YN

Z1 Z3 Z4Z2 ZM

...

...

(b) Synchronised,
constant latency

t

Y1 Y2 Y3 Y4 YN

Z2 Z3Z1 ZMZ4

...

...

(c) Not synchro-
nised, unknown
variable latency

t

Y1 Y2 Y3 Y4 YN

Z2Z1 ZMZ5Z4

...

...

Figure 3.3: Temporal relationship between measurements of two sensors.

The Ladybug camera system, for example, has a latency that averages at 3.4 frames when

recording with 25 frames per second. There are a number of reason why the latency is not

a constant factor: the Ladybug camera system does not utilise a hardware trigger; instead

the camera can only be triggered with a software trigger. Moreover, the Ladybug camera

continuously captures images with a fixed frame rate – triggering requests the image that

is created with the next capture process. Also, the camera performs a JPEG compression

of the image before transmitting the data. The utilised JPEG compression, however, does

not have a constant run time. Furthermore, this latency does not include disk access or

computation time on the computer, which in the case of a high data rate can be significant

– see Section 3.3 for a detailed overview of the hardware utilised in this thesis. The IMU on
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the other hand only produces a small amount of data, typically less than 10kb per second,

which will be processed much faster. The discrepancy between the two devices becomes

more significant the more variation is in the latency during measurements, because this

timing cannot be measured from outside of the devices. It can in fact be delayed by

0 . . . 40ms ( 1
25fps). With disturbances that cause e.g. angular velocities of 100◦−1, this

could add up to an error increasing by up to 3.3◦ per second.

Therefore the hardware utilised in this thesis exhibits the temporal relationship as depicted

in Figure 3.3(c), and the devices cannot practicably be synchronised precisely. Hence, no

algorithms (including calibration algorithms) that assume synchronised hardware can be

applied to the hardware utilised in this thesis, since calibration optimisations such as Hol

et al. (2010) will not converge to a solution.

Thus, instead of trying to precisely estimate the latency and synchronisation between the

sensors, this thesis proposes to handle errors in synchronisation (and by extension, calibra-

tion) by modelling them with uncertainty and incorporating this as part of the stabilisation

process itself. This model will lead to a more flexible and convenient approach as it allows

loose coupling of sensors with a rough estimate of synchronisation and calibration.

3.2 Stabilisation

The stabilisation approach proposed in this thesis does not require precise calibration

or synchronisation. Instead an approximate calibration in static poses as described in

Section 3.1.1 is performed to provide a (constant) rough estimate of the transformation

between {C} and {I}, CI T. A probabilistic model is then utilised to cope with varying

time offsets and measurement uncertainties.

Instead of following a traditional image stabilisation approach and stabilising the entire

omnidirectional view, only a region of the omnidirectional image with a limited field of

view will be stabilised. Rotational movements of the camera are measured by an IMU,

which provides an initial estimate of the ego-motion of the camera. Image registration

is then used to refine these estimates. The calculated ego-motion is then used to adjust

an extract of the omnidirectional video, forming a virtual camera that is focused on the

target being tracked.
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3.2.1 Virtual Cameras

Sun et al. (2005) used a virtual camera to detect and track a person in a wide angle

panoramic video. Designed for indoor lecture halls, the camera system itself is kept static.

Mauthner et al. (2006) proposes a method for region matching in omnidirectional images.

They extract virtual perspective camera images for each detected region to avoid distor-

tions introduced by the omnidirectional image. Virtual cameras have been used to extract

regions of interest in a high-resolution football video which is convenient for watching on

small devices (Seo et al., 2007). A system that detects and tracks speakers in an office

conference call scenario was proposed by Fiala et al. (2004). They extracted perspective

views from full omnidirectional video that were then sent to the remote participant instead

of the full omnidirectional video. The extracts were automatically adjusted based on video

target tracking and target detection using beam forming on a microphone array. Onoe

et al. (1998) used a head tracker as a user input to estimate the desired viewing direction

of an operator in an omnidirectional video. They then extracted a perspective view from

the panoramic image and presented it to the user. Their proposed system also had an

automatic follow-me-mode that continuously adjusted the orientation of the perspective

view based on a background subtraction technique.

In this thesis the concept of a virtual camera as an extract of a higher resolution image

is utilised for the purpose of stabilisation. For this, the high resolution image has to

be created first allowing a continuous representation of the captured images in a single

coordinate system. Given that the intrinsic and extrinsic parameters of the six perspective

cameras of the Ladybug camera system are known, it is possible to map every pixel of

every camera onto a unit sphere free of distortion. This is a very natural representation of

the omnidirectional image as it represents the omnidirectional image as it was captured,

with the camera in the centre.

Applying Equation (2.18), a pixel coordinate (u, v) in a perspective camera, {P}, can

thus be mapped onto the unit sphere that is spanned by {C} as

Cp = C
PT




(
K 0

0 1

)



u

−v
0

0




+ 1
2




−w
h

0

0






, (3.4)

where K is the camera matrix and w×h is the image size of the perspective camera. This

mapping is performed for every pixel of every camera, yielding an omnidirectional image

mapped onto the unit sphere as depicted in Figure 3.1.
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Creating a virtual camera simply means reversing the mapping and extracting a perspec-

tive image from the unit sphere that contains the desired image. Instead of extracting

a distorted camera image by literally applying the inverse of Equation (3.4), a rectified

image should be extracted. This ensures that the image of the virtual camera contains

an image where straight lines are straight and right angles are orthonormal (orthographic

projection). The camera matrix, K, contains the parameters to compensate for the dis-

tortions of a perspective camera. By omitting this parameter in the inverse projection,

the extracted image remains rectified. This is advantageous for subsequently applying

computer vision algorithms as they typically require rectified images as input.

The actual parameters of the virtual camera are the desired field of view and the resolution

of the camera. As established, the virtual camera simulates a perspective camera model

and is thus limited to a maximum field of view of ≤ 180◦, however, this is not a real

limitation because the reason for using a virtual camera is that a limited field of view is

actually desired. Therefore one would rather extract two or three virtual cameras with

smaller fields of view instead of one camera that covers the entire view. As the coordinate

system of the sphere is continuous, no theoretical limit for the resolution exists. However,

the data (image) is built from a discrete (limited) number of pixels as implied by the

capturing camera(s) and therefore a practical limit for the resolution exists. For example,

when the perspective cameras of the omnidirectional camera system capture a field of view

of 72◦ with 1024 pixels each, it would make no sense to extract a virtual camera with a

field of view of 30◦ and a resolution of 2048 pixel. Nevertheless, extracting such a virtual

camera would be possible by interpolating the sampling from the sphere.

{C}

y
x

z

TC
Vα

{V}y

x

{V}

h

w

Figure 3.4: Parameters of a virtual camera.

A perspective camera has three physical properties: the field of view and resolution was

mentioned before, but it also has an orientation – the direction the camera “faces”. These

three parameters are also used to describe a virtual camera (Figure 3.4). The virtual
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camera therefore has:

• An orientation. This is the transformation of the virtual camera coordinate system,

{V }, with respect to the camera coordinate system, {C}, which spans the unit

sphere that contains the omnidirectional image. Note that the orientation of the

virtual camera with respect to the camera coordinate system can be changed over

time (e.g. due to tracking a moving target), hence the transformation needs to be

denoted as time-dependent, VCTt.

• A field of view, α, which is the vertical angle of the area extracted from the omnivi-

sion sphere (the horizontal angle can be calculated based on α and the aspect ratio

implied by the resolution of the virtual camera below).

• A resolution of h× w. The resolution describes the sampling interval of the virtual

camera from the sphere.

Since the virtual camera will later be used to perform target-centric stabilisation and track-

ing, it is necessary to define mappings between the omnidirectional and virtual camera,

and define how the virtual camera can “slide” over the “surface” of the omnidirectional

view as it tracks a target.

3.2.1.1 Camera to Virtual Camera Coordinates

Let Cp be a point in {C}. Then the projection of Cp in virtual camera coordinates, {V },
depends on the orientation, CVTt, as well as the resolution, h× w, and field of view, α, of

the virtual camera.

Transforming the coordinate towards the virtual camera yields

(x, y, z, 0)T = V
CTt

Cp, (3.5)

which can then be projected as pixel (u, v) into the virtual camera using orthographic

projection

u =
1

2

(
w − hx

z
tan

(α
2

)−1
)

(3.6a)

v =
h

2

(
1− y

z
tan

(α
2

)−1
)

(3.6b)

yielding Vp = (u, v, 0, 0)T .
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3.2.1.2 Virtual Camera to Camera Coordinates

A point in a virtual camera, Vp = (u, v, 0, 0)T, can subsequently be transformed into {C}
by applying the inverse transformation. Projecting the pixel coordinates onto the unit

sphere at identity yields the point (x, y, z) in 3D coordinates:

x = −(w − 2u) · (w2 + h2 · cs2 + 4x(−w + x) + 4y(−h+ y))−
1
2 , (3.7a)

y = −(h− 2v) · (w2 + h2 · cs2 + 4x(−w + x) + 4y(−h+ y))−
1
2 , (3.7b)

where cs = sin
(
α
2

)−1
. The third coordinate is subsequently computed by normalising the

coordinate onto the unit sphere,

z = −(1− x2 − y2)
1
2 . (3.7c)

Then, the computed point, (x, y, z), is rotated towards the virtual camera as

Cp = C
VTt (x, y, z, 0)T, (3.8)

yielding the point in camera coordinates.

3.2.2 Initialisation of a Virtual Camera

As a first step, an appropriate virtual camera is created with the desired target object in

the centre of the view. Let Cpt=0 be the position of the object at time step t = 0, then

the initial orientation of the virtual camera can be estimated by computing Rodrigues’

formula for the transformation of the unit vector in camera coordinates, Cp0, towards the

object’s position as

RΩ̃(β) = I3 + sinβ · Ω̃ + (1− cosβ) · Ω̃2, (3.9)

where the skew symmetric matrix, Ω̃, is defined as

Ω̃ =




0 −ω̃3 ω̃2

ω̃3 0 −ω̃1

−ω̃2 ω̃1 0


, with ω̃ = Cp0 × Cpt=0, (3.10)
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and β is the angle between Cp0 and Cp that can be computed as the cos−1 of the dot-

product.

In homogeneous notation, the initial orientation of the virtual camera can subsequently

be denoted as

V
CTt=0 =

(
RΩ̃(β) 0

0 1

)
. (3.11)

The remaining parameters for the virtual camera are the resolution and field of view.

The field of view is partly given by the size and distance of the target and the desired

oversegmentation. The resolution should be chosen with the performance of the desired

post-processing image processing algorithms in mind. Figure 3.1 shows an example of an

initialised virtual camera.

3.2.3 Feature Registration for Stabilisation

After creating the virtual camera, {V }, the stabilisation process is initialised by register-

ing features within the object’s region. As mentioned in Section 2.4, the evaluation of

image registration and tracking processes is of no concern in this thesis – instead, a well

established existing method is utilised for these purposes. For feature registration the

method of Shi and Tomasi (1994) is employed. Feature registration is performed in the

virtual camera, yielding a set of features, Vfn,t=0, where n = 1, . . . , N is the number of

features and t = 0 denotes the initial time step.

3.2.4 Problem Statement

The approach taken here for image stabilisation is to detect the target movement by

tracking the target and then instead of applying an inverse transform to the camera

image, change the orientation (parameters) of the virtual camera to adjust to the change

of scene caused by the camera’s ego-motion. In other words, stabilisation is addressed as

a problem of adjusting the orientation of the virtual camera, CV Tt, such that the observed

features remain ideally static within the virtual camera view over time, i.e.

Vfn,t+1 = Vfn,t, (3.12)
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holds for the subsequent time step, t+ 1. A feature, Vfn,t, can be expressed in {C} as

Cfn,t = C
V Tt

Vfn,t, (3.13)

therefore, Equation (3.12) can be rewritten with respect to {C} as

C
V Tt+1

Vfn,t+1 = C
V Tt

Vfn,t, (3.14)

where C
V Tt is the old and C

V Tt+1 the new orientation of the virtual camera. Note that {C}
is not stabilised and changes with respect to {G} if the camera is moved. Therefore, for

Equation (3.14) to be true, a correction term, ∆T, has to be introduced to transform C
V Tt

into C
V Tt+1 in order to satisfy Equation (3.12) if camera ego-motion is present:

C
V Tt+1 = ∆T C

V Tt, (3.15)

and subsequently

C
V Tt+1

Vfn,t+1 = ∆Tt+1
C
V Tt

Vfn,t. (3.16)

For the purpose of stabilisation, the problem comes down to estimating and applying ∆T,

which provides the orientation update of the virtual camera such that the features in t+ 1

remain at the same position as in t. Note that with no ego-motion present, ∆T will be

the identity matrix and the virtual camera will remain at the previous orientation.

3.2.5 Feature Correspondence Under Camera Motion

The features, Vfn,t, estimated in the virtual camera can be denoted in global coordinates,

{G} (Figure 3.5),

Gfn,t = G
V Tt

Vfn,t. (3.17)

Note that G
V Tt is time-varying because

G
V Tt = G

I Tt
I
CT C

VTt. (3.18)

Therefore, for a stationary target the position of the features must remain constant if

expressed in {G}, regardless of the camera’s ego-motion:

Gfn,t+1 = Gfn,t. (3.19)
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Figure 3.5: Features estimated in virtual camera and then mapped onto unit sphere.

Combining Equations (3.14)–(3.19) then yields the transition between time steps t and

t+ 1 for all features in the virtual camera as:

C
V Tt+1

Vfn,t+1 = C
I T I

GTt+1
G
I Tt

I
CT︸ ︷︷ ︸

∆T

C
V Tt

Vfn,t. (3.20)

From this, it can be seen that ∆T is comprised of different types of transformations.
G
I Tt and I

GTt+1 are measured by the IMU and denote the orientation of {I} with respect

to {G} at the respective time steps. The matrix product, (IGTt+1
G
I Tt), subsequently

expresses the change of orientation of {I}t+1 with respect to {I}t between time step t and

t + 1. The transformation between the camera and inertial sensor, CI T, and its inverse,
I
CT, are denoted as constant. However, it was established earlier in Section 3.1 that

depending on the hardware configuration these transformations comprise calibration and

synchronisation parameters that cannot be estimated precisely and could also vary over

time. This means that correction term ∆T is in fact time dependent. Hence, it has to be

split into two correction terms, one per time step, ∆Tt and ∆Tt+1. The correction term

from Equation (3.20) then becomes

∆T = ∆Tt+1
C
I T I

GTt+1
G
I Tt

I
CT ∆Tt, (3.21)

yielding the the full transition,

C
V Tt+1

Vfn,t+1 = ∆Tt+1
C
I T I

GTt+1
G
I Tt

I
CT ∆Tt

C
V Tt

Vfn,t. (3.22)
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In other words, the proposed approach is to match features between two consecutive frames

(tracking), then utilise the available knowledge of how the features moved and how the

assembly rotated in order to estimate the correction needed to provide a stabilised view

of that target. Assuming the orientation of the virtual camera, {V }, with respect to {C}
remains the same between the time steps t and t+ 1, then, given camera ego-motion, the

features in the virtual camera have to shift. Figure 3.6 shows the movement of features in

a static virtual camera over time.
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Figure 3.6: Image registration and feature matching with subsequent mapping onto unit
sphere.

If the orientation of the virtual camera is kept static over time, i.e. V
CTt+1 = V

CTt, this

requires introducing feature movement of ∆Vfn,t+1 between time steps t and t + 1 and

subsequently allows rewriting Equation (3.19) as

C
V Tt

[
Vfn,t + ∆Vfn,t+1

]
= ∆Tt+1

C
I T I

GTt+1
G
I Tt

I
CT ∆Tt

C
V Tt

Vfn,t. (3.23)

Note that the correcting factor, ∆Tt+1, represents the synchronisation and calibration

uncertainty. It will be broken down later in Equation (3.27).

Because

Vfn,t+1 = Vfn,t + ∆Vfn,t+1, (3.24)
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Equation (3.23) can be rewritten as

Vfn,t+1 = Vfn,t + V
CTt ∆Tt+1

C
I T I

GTt+1
G
I Tt

I
CT ∆Tt

C
V Tt

Vfn,t︸ ︷︷ ︸
∆Vfn,t+1

, (3.25)

which, in fact is the standard kinematics equation.

This suggests that everything comes down to a tracking problem, i.e. the parameters of

the virtual camera for time step t+1 can be computed by tracking the features from frame

t to t+ 1.

3.2.6 Stabilised Feature-Based Object Tracking

So far, features have been discussed with respect to virtual camera coordinates, {V }.
However, it is actually necessary to work in 3D global coordinates, {G}, when performing

stabilised tracking. This is because tracking must be performed in a single frame of refer-

ence and there are in fact two frames of reference active during tracking based stabilisation:

the inertial coordinate system, {I}, and the camera coordinate system, {C}, for the IMU

and camera feature registration. Thus it is convenient to transform these into a common

frame of reference, which is in fact the global coordinate system, {G}. Furthermore, this

has several advantages. Firstly, global coordinates are already semi-stabilised due to the

IMU cancelling out rotational disturbances. Secondly, it provides a continuous space, and

the tracker subsequently does not face any boundary issues and no hand over-problems

have to be addressed. If desired, the result (or even intermediate computations) can al-

ways be transferred back into virtual camera coordinates as described in Sections 3.2.1.1

and 3.2.1.2.

A particle filter is utilised on each available feature of the target object to keep dimension-

ality computationally tractable. If all N features of a given object are tracked by a single

particle filter that would imply an N dimensional state space and it is well known that

particle filters scale very poorly with dimensionality (Doucet et al., 2000), which would

quickly lead to tracking failures. Instead each feature Gfn,t is tracked independently and

later the target object’s movement is estimated by a least squares fitting of the motion of

the individual features.
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The position and velocity of each particle on the unit sphere is described by a state vector:

xt =

(
x, y, z,

dx

dt
,
dy

dt
,
dz

dt

)T
. (3.26)

The state vector is expressed in global coordinates and corresponds to Gfn,t = (x, y, z, 0)T

above. Observations, yt, are a mapping of Vfn,t into global coordinate space following

Equation (3.17) – such that they are in the same domain as xt.

The final goal of the stabilisation process is to estimate ∆Tt per time step t. ∆Tt is actu-

ally overlaid with uncertainty due to synchronisation and calibration issues as mentioned

earlier in Section 3.1. It therefore cannot be modelled directly. Its effects on the position

of the features of the virtual camera, on the other hand, can be modelled.

In a particle filter, there are two types of uncertainty: model and measurement uncertainty.

Here, the measurement uncertainty is the error introduced by inaccurate measurements

of the new position of the feature. In contrast, the model uncertainty is the transform

uncertainty due to inaccurate calibration and synchronisation. In effect, model uncertainty

in a particle filter defines how widely to search for a feature, and measurement uncertainty

defines how strictly the particles must conform to the observed measurement.

Therefore the final position error of a feature between two time steps, t and t + 1, is

a combination of the feature error (measurement uncertainty), which is small and the

transform error (model uncertainty), which is significant during a disturbance. The latter

actually consists of two pieces: the calibration and the synchronisation errors as described

in Section 3.1. As established, both of these errors cause a transformation error between

the time steps, hence, they can therefore be modelled as

∆Tt+1 = ∆TMeas
t+1 ∆TCalib

t+1 ∆TSync
t+1 . (3.27)

A standard particle filter is utilised as defined in Chapter 2. The prediction step, P (xt+1 |xt),
which transitions a particle, uses a model uncertainty defined as a zero-mean linear Gaus-

sian with variance C on the state xt =
(
x, y, z, dxdt ,

dy
dt ,

dz
dt

)T
and C is a diagonal covariance

matrix since (x, y, z) are assumed to be independent. The standard deviations of the state

vector are chosen as σ = (0.01, 0.01, 0.01, 0.005, 0.005, 0.005) – the values are quite small

since tracking is occurring on a unit sphere.

The update step of the particle filter uses an exponential measurement with the uncertainty

based on the distance between a predicted particle, x
(i)
t , and the observed new position
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yt of the feature. Specifically,

P (yt|x
(i)
t ) = λ−1 exp

(
λ ·
∥∥yt − x(i)

t

∥∥
2

)
, (3.28)

where ||2 is the l2-norm, and λ = 1.

Tracking is then a matter of initialising particles around a given feature using the model

uncertainty, then predicting the next position and updating the particle weights, w, ac-

cording to Equation 2.39a in Chapter 2. The estimated position of the feature is then the

weighted sum of the particles:

w̃
(i)
t = w

(i)
t−1 · P (yt|xt = x

(i)
t ) (3.29a)

w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

. (3.29b)

This predict-update cycle repeats for each frame.

The set of feature position estimates then is used to approximate the new position of the

entire target so as to locate the virtual camera view around the target, as described in the

next section.

3.2.7 Finding the Optimal Orientation of the Virtual Camera

Tracking provides information for time steps t and t + 1 for every n = 1, . . . , N features;
Gf t and Gf t+1 are both available from the particle filter framework. The goal now is

to compute a new orientation of the virtual camera for the next time step, CV Tt+1, that

minimises the reprojection error.

Thus, in {G}, it comes down to computing a ∆Tt+1 that minimises the cost function,

E(·), of the reprojection of all features in subsequent time steps:

E(∆T) = min
∆T

N∑

n=1

([
∆Tt+1

Gfn,t
]
− Gfn,t+1

)2
. (3.30)

It now becomes clear why tracking in {G} instead of {C} is advantageous for the proposed

system: {G} already incorporates the measurements from the IMU and therefore ∆Tt+1

is only a correction term to the already semi-stable image.

In fact, ∆Tt+1 is used to refine the orientation of the virtual camera. The optimisation
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problem can therefore be simplified to finding the optimum rotation, ∆Rt+1, following

∆Tt+1 =

(
∆Rt+1 0

0 1

)
. (3.31)

Because ∆Rt+1 is only a correction term and therefore small, it can be decomposed as

the skew-symmetric matrix:

∆Rt+1 = exp




0 −ω̃3 ω̃2

ω̃3 0 −ω̃1

−ω̃2 ω̃1 0


 . (3.32)

Therefore, the optimisation problem in Equation 3.30 can be solved by finding the skew

vector, ω̃ = (ω̃1, ω̃2, ω̃3) that minimises the reprojection error.

Typically more than three feature matches are found, allowing it to compensate for feature

shifts introduced by translational camera ego-motion and making it robust to feature

mismatching.

Figure 3.7 shows the reprojection as computed by the Newton optimisation process. For

the parameter optimisation, the initial guess of the parameter can be selected as ω̃ =

(0, 0, 0), which would yield ∆Rt+1 = I3. In subsequent steps, the previously estimated

parameters can be used.
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Figure 3.7: Feature reprojection on unit sphere and subsequent mapping into virtual
camera image.
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Finally, the orientation of the virtual camera can be updated using

G
V Tt+1 =

(
∆Rt+1 0

0 1

)
G
V Tt. (3.33)

Reversing Equation (3.31) yields

G
V Tt+1 = ∆Tt+1

G
V Tt, (3.34)

which can be broken up as

G
I Tt+1

I
CT C

V Tt+1 = ∆Tt+1
G
I Tt

I
CT C

V Tt. (3.35)

Solving for C
V Tt+1 then yields the new orientation of the stabilised virtual camera as:

C
V Tt+1 = C

I T I
GTt+1 ∆Tt+1

G
I Tt

I
CT C

V Tt. (3.36)

Note that this equation only has one correcting term while the initial stabilisation formu-

lation in Equation (3.22) had two. There, the correction terms were stated with respect to

{C}, which made it necessary to split them into t and t+ 1. However, in Equation (3.36)

the correction term is given in {G}. Formally, this means that its primary function is

to stabilise the image for movement of the features, i.e. to compensate for translational

ego-motion of the camera. However, the calibration and synchronisation uncertainties are

still part of this correction term (as discussed for Equation (3.27)).

3.3 System Hardware

This thesis utilises the Ladybug 2, an omnidirectional camera system manufactured by

Point Grey Research. The camera system consists of six individual perspective cameras

that are aligned around a single viewpoint. Each camera captures video at 1024 × 768

pixels per frame. The perspective cameras are synchronised using hardware triggers such

that the conditions laid out in Section 3.1.2 are met and the capturing behaviour of the

camera system actually conforms to Figure 3.3(a)). Furthermore, the perspective cameras

are calibrated with respect to a joint coordinate system that has the shared viewpoint as

origin – in fact {C}. The calibration transformations between the perspective coordinate

systems {Pn} and {C} are provided by the manufacturer.

For inertial measurement the MTi, manufactured by Xsens is utilised. This IMU utilises

an Extended Kalman Filter to fuse three-axis accelerometer, gyroscope, and magnetome-
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Figure 3.8: Assembly of Ladybug 2 omnidirectional camera (red with black lenses) and
MTi inertial sensor (orange).

ter measurements to compute drift-free attitude and heading information. The inertial

coordinate system, {I}, is spanned at the centre of the MTi. The output of the sensor

is given as a rotation with respect to the global coordinate system, {G}, spanned at the

current location of the inertial sensor. While the sensor provides accelerometer measure-

ments, which theoretically can be used to estimate translational movement, this is not

facilitated in this thesis due to the reasons laid out in Section 2.3.2.

While the MTi is equipped with a hardware trigger mechanism, the Ladybug 2 camera

does not possess such capabilities. In fact, as was laid out in Section 3.1, earlier in

this Chapter, only a software trigger is available on the Ladybug 2 camera. The overall

synchronisation between IMU and camera therefore follows the relationship as depicted

in Figure 3.3(c). An approximate calibration between the devices was performed, as

described in Section 3.1.1, yielding the approximate transformation between {C} and {I}
as C

I T.

The assembly is depicted in Figure 3.8.

3.4 Experiments

Experiments were conducted to demonstrate the superiority of the proposed stabilised

tracking approach by fusing the IMU and camera together in comparison to simply us-

ing either the IMU or camera registration alone. All experiments utilised the assembly

described in Section 3.2 with relatively inaccurate calibration and synchronisation hence

more sophisticated algorithms depending on tight calibration or synchronisation could not

be considered. Experiments were carried out in lab conditions and a checkerboard was
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chosen as a target object because it allows for precise error measurement. The assembly

was calibrated several months before the actual measurements were recorded and it was

taken apart and put back together a number of times in roughly but not precisely the

same alignment. No re-calibration was performed after each assembly. Thus C
I T could

actually be considered a best guess rather than a true calibration because of the potential

error. Nine sequences of 24 seconds each were recorded with full resolution omnidirec-

tional video data at 25fps and inertial data sampled at 50Hz, with different videos testing

different aspects of the stabilisation problem:

(I) three sequences with only rotational motion,

(II) three sequences with only translational motion, and

(III) three sequences with combined rotational and translational motion.

The sequences were recorded with the assembly held and moved about by hand to emulate

real-world conditions. This, on the other hand, means that some noise is present in

all sequences and particularly sequences (I) and (II) do not contain purely rotational

and translational motion as (I) also contains some rotational and (II) some translational

motion.

t = 8.0s t = 8.5s

t = 9.0s t = 9.5s

t = 10.0s t = 10.5s

Figure 3.9: Omnidirectional video with rotational motion (Sequence (I)).
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t = 12.0s t = 12.5s

t = 13.0s t = 13.5s

t = 14.0s t = 14.5s

Figure 3.10: Omnidirectional video with translational motion (Sequence (II)).

One recording of each sequence was selected representatively (called (I), (II), and (III) from

now on) and will be discussed in the following. However, the results from all sequences

were used for the quantitative results that will be shown.

Figures 3.9–3.11 show 2.5s extracts from each of the sequences. Depicted are frames in

0.5s time steps from the full raw omnidirectional video. In Figure 3.12, ground truth for

the three sequences is depicted over the full length of the recordings. The Figure shows

the orientation of the assembly with respect to the roll, pitch, and yaw axis (x, y, z) and

the position, which is measured in metres relative to the position from the beginning of

the recording. The singularity in the roll and yaw channel at 17s in (I) of Figure 3.12 is

due a full turn of the camera about the respective axis. This can also be seen in (III),

where the roll axis is flipped upside down at 14s and 15s and later the yaw axis at 16s and

18s into the recording. In recordings where rotation is present ((I) and (III)) some noise in

the position curve can be observed. This coincides with excessive changes in orientation.

The reason for this is that the assembly is fairly bulky and a hand-held sequence might

require e.g. re-grip or shift of hands if turned over.

To evaluate the performance of the proposed technique, the stabilisation error is computed

as the Euclidean distance between the centre of the virtual camera and the centre of mass
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t = 2.0s t = 2.5s

t = 3.0s t = 3.5s

t = 4.0s t = 4.5s

Figure 3.11: Omnidirectional video with combined motion (Sequence (III)).

of the checkerboard in the virtual camera. This method is plausible as the centre of the

object and the centre of the virtual camera should coincide in a perfectly stabilised virtual

camera.

Note that this measurement does not take the rotational offset into account. This restric-

tion is acceptable as the proposed algorithm is not prune to rotational error. At worst,

the non IMU stabilised vision only approach would get rated better than it really is. The

stabilisation error is subsequently mapped onto the unit sphere and converted into an

angular representation. This allows the error to be stated independent from the resolution

of the virtual camera. The error, ε, is computed as

ε =
α

h

[∥∥V
GTt

1

N

N∑

n=1

Gfn,t
∥∥2
]
, (3.37)

where α is the field of view of the virtual camera, h the vertical resolution, and V
GTt is the

orientation of the virtual camera with respect to {G} at the current time step, t.
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(a) Rotational motion only (Sequence (I)).
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(b) Translational motion only (Sequence (II)).
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(c) Combined motion (Sequence (III)).

Figure 3.12: Ground truth for Sequences (I)–(III). The absolute orientation of the assembly
in Euler Angles is shown on the left. The Figures on the right depict the translational
offset with respect to the starting position in metres.
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3.4.1 Results

The results of the experimental investigation are listed in Table 3.1. Here, the mean

stabilisation error for all stabilisation techniques is computed for each set of sequences.

Note that if the target object was unrecoverably lost, the error is computed up until that

point – this happened for the vision only approach in several recordings that contain

significant rotational ego-motion (all of sequences (I) and (III)).

(I) Rotation (II) Translation (III) Combined

IMU 6.65± 3.43 7.33± 4.64 8.71± 5.90

Vision 5.04± 3.78† 1.32± 0.69 2.58± 2.41†

Proposed Approach 1.31± 0.80 1.20± 0.63 1.31± 0.74

Table 3.1: Mean shift error in degrees. † Feature tracker of vision only approach unrecov-
erably lost the target, the mean error is computed up until the loss of the target.

Figures 3.14–3.16 show virtual camera extracts as computed by the proposed and com-

pared stabilisation algorithms for sequences (I)–(III). The frames correspond to the raw

omnidirectional video shown earlier in Figures 3.9–3.11.

The results in Table 3.1 indicate that the IMU is a reliable source for stabilising ego-

rotation. However, quick and rapid movements are not handled well by the IMU. The

plot in Figure 3.13(a) shows that the error increases over time. This is directly correlated

with the actual movement of the assembly (ground truth in Figure 3.12(a) shows an

increase in rotational velocity over time) and can be explained by the lack of precise

calibration and synchronisation. It is expected that the error will be higher with faster

ego-motion because the Ladybug camera system has an average latency of 3.4fps (see

Section 3.3), which adds up to an offset of up to 0.13s, heavily affecting the performance

in rapid ego-motion scenarios. Moreover, the IMU is not of much use for pure translational

disturbances. The error plot in Figure 3.13(b) shows that the error is directly correlated

with the translational ego-motion of the assembly as depicted in Figure 3.12(b). A similar

error behaviour can be observed for the combined motion in Figure 3.13(c). As expected,

the IMU is capable of detecting the rotational component of the ego-motion (to a certain

extent) but completely unusable for the estimation of the translational component. The

main error as shown in (c) is caused by the translational component of the ego-motion

with some overlaid noise that is caused by the missing calibration and synchronisation

between the devices.

Relevant extracts of the IMU stabilised virtual camera for Sequences (I)–(III) are depicted
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(a) Rotational motion only (Session (I))
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(b) Translational motion (Sequence (II))
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(c) Combined motion (Sequence (III))

Figure 3.13: Orientation error between the camera centre and the object’s centroid.
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in Figures 3.14(a)–3.16(a). 3.14(a) shows the stabilisation of rotational ego-motion with

the checkerboard in approximately the centre of the virtual camera. The error is caused

by missing calibration and synchronisation between camera and IMU. The translational

movement in 3.15(a) remains undetected by the IMU, the necessary horizontal compen-

sation is therefore missing, causing the checkerboard to move from the right to the left in

the virtual camera. One can see that the virtual camera shown in 3.14(a) has the correct

alignment but no compensation for the translational component of the ego-motion.

According to the mean error in Table 3.1, the vision approach outperforms the IMU

approach with all three types of ego-motion. However, this is only partially true; while

the feature tracker of the vision only approach can initially keep up with the IMU and

track the rotational component of the ego-motion, it eventually loses track, and once the

track is lost it is a permanent failure. Since the error is only computed up until the total

loss of the target, the actual performance of the vision only approach is worse than the

error implies. This behaviour can be observed for all sequences that contain rotational

ego-motion – see error plots in Figure 3.13(a) and 3.13(c). However, the feature tracker

of the vision only approach performs almost flawlessly when only translational movement

is present. The plot in 3.13(b) shows the error is under 3◦ at all times. This is expected

with movement where translation is dominant since the apparent motion of the scene is

not large.

The frames in Figure 3.14(b) show the time instants just before the feature tracker loses

track of the target. It can be seen how the error builds up over time and the checker board

drifts off. 3.15(b) shows an almost perfect stabilisation with only minor errors. However,

in Figure 3.16(b), with ego-rotation present again, the tracker still has the target in sight

after 4.5 seconds but it shows a rotational discrepancy building up which will ultimately

see it fail.

The proposed approach outperforms the other approaches in all types of ego-motion in all

test sequences. The proposed stabilisation technique has a maximum mean error of 1.31◦.

More importantly, the mean error over the different types of disturbances is consistent.

This shows that the feature tracker provides a high enough confidence to compensate for

the lack of synchronisation and calibration of the assembly. Compared to the vision only

approach that utilises the same feature tracker as the proposed approach, the proposed

approach does not drift because the uncertainty of the particle filter can be held very

small because the IMU already provides a semi-stabilised platform. This allows the search

space to be to be narrowed significantly and subsequently improves tracking and ultimately

stabilisation performance because of fewer misdetections.
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Similarly, the rotation-only sequence depicted in Figure 3.14(c) shows a very stable virtual

camera focused on the checker board. Only minimal deviations are observable. The IMU

measures the ego-rotation and the feature tracker assists with refinements compensating

for the lack of calibration and synchronisation. Therefore, a better result than the IMU

only approach is expected. The sequence in Figure 3.15(c) shows a similar performance as

for the vision only approach with the checkerboard stabilised in the centre of the virtual

camera. In 3.16(c), the proposed approach is the only method providing a satisfactory

stabilisation of the scene. As expected, the IMU estimates the rotational component of the

ego-motion and the feature tracker refines the estimate and compensates for translational

movement as well as calibration and synchronisation offsets.

3.5 Summary

This chapter proposed a stabilisation technique for omnidirectional cameras with an ap-

plication to maritime surveillance. In the maritime domain, image stabilisation is an

important aspect due to the challenging environmental conditions. Image stabilisation

of an omnidirectional camera is especially demanding because of the instantaneous full

spherical view. Issues with high resolution or parallax effects are more prominent in these

camera systems because of the high field of view. Due to potentially rapid and exces-

sive disturbances, a sensor fusion approach that utilises an inertial measurement unit in

combination with an image registration was proposed. The IMU is able to reliably detect

rotational disturbances while the image feature tracker provides a robust estimation of

translational ego-motion.

Section 3.1 of this chapter discussed the need for calibration and synchronisation between

the camera and inertial sensor. In particular, the missing synchronisation capabilities

of the utilised Ladybug 2 camera and its implications to calibration were analysed and

explained. Existing techniques were applied to provide an approximate calibration between

the two sensors.

In Section 3.2, the unit sphere was selected as a frame of reference for the omnidirectional

image. Virtual cameras that provide a limited field of view of the full spherical view

were then introduced and the mappings between sphere and virtual cameras were derived.

It was established that stabilisation of a virtual camera can actually be described as a

tracking problem. A particle filter assisted image tracker was then utilised for feature

tracking. Subsequently, optimisation techniques were utilised to fuse the estimates of the

IMU and feature tracking that minimises the reprojection error between time steps. The
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(a) IMU (b) Vision (c) Proposed Approach
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Figure 3.14: Omnidirectional video with rotational motion (Sequence (I)). The red cross
shows the centre of the centroid, the green cross indicates the centre of the virtual camera.
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(a) IMU (b) Vision (c) Proposed Approach
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Figure 3.15: Omnidirectional video with translational motion (Sequence (II)). The red
cross shows the centre of the centroid, the green cross indicates the centre of the virtual
camera.

75



CHAPTER 3. VIRTUAL CAMERAS FOR OMNIDIRECTIONAL VIDEO STABILISATION

(a) IMU (b) Vision (c) Proposed Approach
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Figure 3.16: Omnidirectional video with combined motion (Sequence (III)). The red cross
shows the centre of the centroid, the green cross indicates the centre of the virtual camera.
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use of a probabilistic tracking technique allowed loosely calibrated and unsynchronised

hardware as the measurement errors can be modelled using uncertainty of the particle

filter. A further advantage of the proposed stabilisation approach is that it only requires

an estimate for C
I T – this allows for quick assembly and disassembly of the hardware

without the need for precise alignment.

The chapter concluded with a series of experiments reported in Section 3.4. During the

experiments the calibration and synchronisation offsets between both sensors was shown

not to be an issue for the proposed approach. Even though they undoubtedly caused an

increase in tracking inaccuracy, the particle filter assured that the tracking does not fail

during fast rotations. The proposed approach has a consistent error no matter what type

of motion occurs, indicating that the proposed approach will be robust under a broad

variety of conditions and disturbances.

The experiments performed in this chapter were conducted for precise error measurement

and therefore carried out in lab conditions. An application that deals with moving targets,

which introduces challenges like the change of target appearance and parallax effects due

to large translational offsets is described in Chapter 6, later in this thesis.
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Chapter 4

Low-level Features for

Maritime Visual Attention

In the previous chapter, an image stabilisation technique that focuses on target objects

instead of stabilising entire scenes was developed. The technique enables omnidirectional

vision systems to stabilise the view on targets in the presence of significant ego-motion.

However, the proposed stabilisation process has to be initialised manually by selecting

the target objects. This chapter addresses this shortcoming by developing a framework

that automatically identifies regions of visual attention in maritime scenes. This chapter

focuses on visual attention of static imagery, an adaption to omnidirectional cameras and

video data is presented in Chapter 6.

Selective processing of regions in an image is beneficial not only for stabilisation of a view

but also desirable when complex image processing algorithms are used. Mobile platforms

are carefully optimised for minimum weight and power consumption to gain maximal

mission time and operational range, maneuverability and navigability in shallow waters,

easy access to narrow entrances and, in case of a surveillance platform, to make them hard

to detect. The use of preprocessing stages that direct attention to regions where more

complex image processing algorithms need to be performed and thereby ignore irrelevant

areas can reduce the requirements for computational resources on the platform and help to

achieve these goals. The alternative, to transmit image data to a base station and perform

all image processing tasks offline, is infeasible as transmitting high resolution image data

of an omnidirectional camera is limited not only by the range and bandwidth of the radio

link, but might also compromise missions where radio silence is desired.

Visual attention can be defined as a problem of detecting parts of an image that stand

out in relation to their surrounding regions or the entire image. The proposed framework

is positioned as a detector for visual attention tuned for maritime imagery. It consists of

multiple low-level features and feature detector cues, independently selected and assessed

to respond to specific attributes of maritime objects. Again, emphasis is put on the

target domain and the specific structure and appearance of maritime objects are taken
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into account to improve performance. However, it is important to note that the process

of feature construction and fusion is general and could easily be adapted to developing

features for other domains.

For the presented framework, the term Maritime Visual Attention will be employed since

it best describes the intent of the system. The framework outputs a map of the scene,

indicating the probability of a region that might contain maritime objects as foreground

and thus require further investigation/processing of the surveillance platform.

The proposed framework is intended to be used as an early processing stage or a prelude to

higher level processing such as object detection, therefore it has the following requirements:

1. Highlighting Objects. The framework should highlight regions that contain mar-

itime objects. Correspondingly, it should suppress areas that contain only back-

ground.

2. Detection of multiple or non-dominant objects. Saliency detectors concen-

trate on finding the most dominant object in an image. Scenes from within a harbour

or in coastal proximity may have multiple target objects in sight and candidate re-

gions might not always be dominant. Therefore, the framework needs to be able to

detect non-dominant objects and if more than one target is present, the framework

should not weigh the dominant over the non-dominant.

3. Robustness to noise. Maritime scenes potentially contain noise clutter like waves,

sunlight glare, etc. The framework should be robust to noise and treat it as back-

ground.

4. Tuned to the domain. While a generic detector is ubiquitously deployable, the

proposed system is intended for use in maritime environments. Therefore, pre-

existing knowledge about the general type of target object (not the class but the

type) or a model of the background promises to improve the performance of the

framework.

5. Recall performance. Because the framework is mission critical, it should empha-

sise recall over precision to ensure potential target objects are not missed. However,

recall should not be an exclusive aim. A manageable false alarm rate is still desirable.

This chapter is organised as follows: The following sections describe the proposed design

for the maritime visual attention framework. In Section 4.1 Gaussian pyramids are intro-

duced that ensure scale invariance of the approach. Then three different locality cues are
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introduced that are used to evaluate low level visual features with respect to local, global,

and centre-surround (from Achanta and Süsstrunk (2010)) regions in Section 4.2. Then,

a number of low level features are extracted from the input image as described in Sec-

tion 4.3. These features include responses from an edge detector, frequency components

of the image, textural measurements, and distinctiveness in colour. All aforementioned

cues result in a probability map per cue and feature. The maps are eventually combined

using a Näıve Bayes classifier in Section 4.4. The proposed framework is depicted in Fig-

ure 4.1. Section 4.5 is devoted to the experimental evaluation and quantitative comparison

to related approaches. The chapter concludes with a summary given in Section 4.6.

Preliminaries

In the following, the RGB coloured input image, J, of height h and width w, is divided in

M ×N blocks of b× b with b = 8 being the block size. The group of pixels belonging to

the block indexed by (i, j) is defined by the set, B, as

Bij =
{(

(i− 1) · b+ k
)
×
(
(j − 1) · b+ l

) ∣∣ k = 1, . . . , b and l = 1, . . . , b
}
, (4.1)

with the block indices i = 1, . . . ,M and j = 1, . . . , N .

As described in the following sections, response maps, Y, are computed for every low-level

feature, F, and locality cue, f(·), i.e. f(F)→ Y.

4.1 Scale Invariance

Target objects in maritime imagery vary in size due to the different physical size of the

actual object or the distance to the camera. However, some feature detectors prefer

objects at a certain scale (for example kernel based detectors), so scaling effects have

to be taken into account when evaluating visual attention in an image (Itti et al., 1998;

Liu et al., 2007; Alexe et al., 2010). Hence a Gaussian resolution pyramid is utilised to

provide scale-independence for feature analysis. The pyramidal representation of an image

(Burt, 1981; Ogden et al., 1985; Lindeberg, 1994; De Bonet, 1997) is created by successive

low-pass filtering and sub-sampling. For low-pass filtering the use of a Gaussian kernel

is recommended because no new structures are introduced in the sub-sampled, coarser,

image (Lindeberg, 1994).
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Naive Bayes Classification (Section 4.4)

Edges Right Angles Texture Colour

Local Center-SurroundGlobal

Low-Level Feature Extraction (Section 4.3)

Locality Cues (Section 4.2)

Gaussian Pyramidal Scales (Section 4.1)(b)

(c)

(d)

(e)

(a) Input Image

(f) Attention Map

Frequency

Figure 4.1: Maritime Visual Attention Framework. From the input image (a), a
number of pyramidal scales are created (b). Low-level features are then extracted from
every scale (c) and evaluated using three different locality cues resulting in a probability
map per scale, feature, and locality cue (d). All maps are then combined using a Näıve
Bayes approach (e), resulting in the final attention map (f).
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θ = 0

θ = 1

θ = 2

θ = 3

θ = 4

(a) Original Image (b) Gaussian Pyramids

Figure 4.2: Gaussian Pyramidal Scales. An image of scale θ = 0 (original size) is
shown in together with four levels of the Gaussian pyramid, θ = 1, . . . , 4.

The multivariate Gaussian is defined as

1

(2π)
k
2

√
‖Σ‖

e−
1
2

(x−µ)TΣ−1(x−µ). (4.2)

With x = (x, y), the two dimensional Gaussian, G(x, y), can therefore be defined by

setting k = 2. Because x and y are independent, Σ = I2 and therefore
√
‖Σ‖ = 1. This

yields the bivariate function:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (4.3)

with σ as the standard deviation of the Gaussian.

In a Gaussian pyramid, the input image is halved in height and width with every level

of the pyramid. It is therefore reasonable to approximate the Gaussian function with a

discretised Gaussian convolution kernel, G, of size 5× 5 and σ = 1.0:

G =
1

273




1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1



. (4.4)

Low-pass filtering of the RGB colour image is then performed by independently convoluting

each channel, c ∈ {R,G,B}, with the Gaussian kernel

Ĵc = G ∗ Jc, (4.5)
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where ∗ is the convolution operator.

From the image of level θ, the coarser image of level θ+1 is then computed by sub-sampling

the low-pass filtered image as

Jθ+1
c (x, y) = Ĵθc(2x, 2y) (4.6)

where Jθc is the image at level θ of the pyramid and J0
c = Jc and c ∈ {R,G,B}.

Substituting Equation (4.5) with (4.6) defines the Gaussian pyramid as

Jθ+1
c (x, y) = [G ∗ Jθc ](2x, 2y). (4.7)

A sample image with four Gaussian pyramidal levels is depicted in Figure 4.2. The maxi-

mum number of scales created in the pyramid depends on the size of the original image. As

the size of a pyramidal level is halved in height and width respectively for each scale and

the proposed framework makes use of block based measurements, a minimum pyramidal

size of four blocks is used in this thesis. This yields the set of scales, Θ, as

Θ =
{

0, 1, . . . , arg max
θ

[
min(w · 2−θ, h · 2−θ)

(!)

≥ 4 · b
]}
, (4.8)

for all scales θ ∈ Θ and channels c ∈ {R,G,B}.

The size of an image J is given as h × w, the size of the pyramidal level θ of the image,

Jθ is subsequently given as hθ × wθ with hθ = h
2θ

and wθ = w
2θ

. Figure 4.2 depicts four

pyramidal scales of a sample image.

4.1.1 Across-Scale Summation

Features will be extracted from each scale in the Gaussian pyramid independently. How-

ever, to provide scale-independent feature analysis, one must combine the various scales

together into a single unified and scale-independent feature map. The approach uses sum-

mation across two pyramidal levels of an image Iθ + Iθ+1, where θ is the finer and θ + 1

the coarser level in the pyramid. The summation is performed by expanding the coarser

image and a subsequent pixel-by-pixel summation:

Iθxy + Iθ+1
x̂ŷ , with x̂ =

⌈x
2

⌉
and ŷ =

⌈y
2

⌉
, (4.9)
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where d·e denotes the ceil -function.

Later in this chapter, summations across all scales of the Gaussian pyramid are performed

for feature response maps. This can be efficiently done by repeated expansion and sum-

mation beginning at the coarsest scale. For a response map, indicated as Y, this operation

is denoted by the ⊕ operator:

⊕

θ∈Θ

Y :=
∑

θ∈Θ

Yθ
îĵ

with î =
⌈ i

2θ

⌉
and ĵ =

⌈ j
2θ

⌉
. (4.10)

4.2 Locality Cues

(a) Local Cue (b) Global Cue (c) Centre-Surround Cue

Figure 4.3: Locality Cues. The figure shows the regions (green) that are considered
when evaluating a feature in an image block (red) by the local, global, and centre-surround
detector cue. Note that the local cue shown in (a) is actually a density measure, which
means that only the 8 × 8 block itself is considered. The centre-surround region in (c)
varies with the spatial location of the reference block, whilst in (b) always the entire image
is considered.

A detector cue is a function, f(·), that maps a low-level feature, Fθ, of pyramidal level θ to

a response map (essentially a probability map), i.e. Y = f(Fθ), where Fθ can be a feature

of any kind. The locality cues differ through the use of a different distance metric and

the respective region used to compute the probability map. Figure 4.3 shows the regions

considered for each of the cues for a sample image. The following three independent

locality cues are used to evaluate each of the low-level features and are presented in this

section:

Local Cue. The local cue, fL(·), computes a density measure of each feature, emphasis-

ing the part of the image with the highest concentration of the respective feature.

Global Cue. The global cue, fG(·), computes the piece-wise difference of a feature for

each block of the image.
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Centre-Surround Cue. The centre-surround cue, fS(·), computes the difference of a

feature to a surrounding region and is able to detect regional distinctiveness.

4.2.1 Local Cue

Visual attention is not concerned with the recognition or identification of objects or object

classes but more with the general detection of regions of interest with the objective that

these regions are indicative of objects of interest. Low-level features therefore do not

need to be critically evaluated for accuracy and precise location but can be qualitatively

assessed. The presence of a feature alone can be a sufficient indication for visual attention

at the respective position or the surrounding region. Figure 4.4 shows a maritime scene

featuring a sailing boat. Imagine an edge detector that is used to identify ships (and only

(a) Input Image (b) Edge Image (c) Edge Density (Local Cue)

Figure 4.4: Local Cue. An edge detector is applied to the input image resulting in the
edge image. From this, the edge density is computed using block-wise integration. Note
that the edge image shown in (b) and all edge images shown later in this thesis have been
inverted and contrast has been adjusted for better visualisation.

ships); common practice is to match contours from the edge image with known shapes

(Fonseca and Manjunath, 1996) or build and match descriptors from the edge histogram

that represent the object class (Dalal and Triggs, 2005). Either way, the edge image (as

the low-level feature) is used to create a high level descriptor and the object is detected

(or not) based on descriptor matches. If the actual object class is of secondary interest –

a low altitude aeroplane might be something one wants to detect in the image as well as a

ship – the region of interest can be identified by the higher density of edges in this area. In

the example, anything that would have a more complex shape than the waves and clouds

in the image would cause a higher complexity and hence density in the edge image in this

region, resulting in a higher value of visual attention and eventually highlight this region

of the image.

The proposed local detector cue, fL(·), is designed to do exactly this. It is applied to

a low-level feature response map and computes the density of the feature in question
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using block-wise integration. This allows highlighting of blocks that are dominated by the

presence of a low-level feature. The low level detector cue, fL(·) is subsequently defined

as

fLij(F
θ) :=

∑

(x,y)∈Bij

Fθ
xy, (4.11)

where (i, j) are the block indices and (x, y) indicate the pixel positions within the feature

map as defined in equation (4.1). Figure 4.3(a) shows a sample image with the block that

is used for computing the local feature cue highlighted.

4.2.2 Global Cue

While a high response to a low-level feature in a region may suggest an area of visual

attention, the exact opposite is possible as well: a high response density can be caused

by a noisy background and the absence of a feature response might be the actual region

of interest. Imagine an image depicting a rough sea with a high number of waves and

a buoy of a single colour and low texture in the centre as in Figure 4.5. Due to the

(a) Input Image (b) Edge Image

(c) Edge Density (Local Cue) (d) Edge Uniqueness (Global Cue)

Figure 4.5: Global Cue. Applying an edge detector to the input image, results in the
edge image from which the edge density is computed using the local detector cue. The
uniqueness of the edge feature is computed by the piece-wise distance of the edge density.
Note that the points of high value at the base of the buoy in (c) and (d) are not at the
very same position of the image. The local cue (c) highlights the strong border of the
body, while the global cue (d) highlights the absense of edges within the body.

number of waves, the edge image will be highly pronounced in the vicinity of waves and
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the buoy will have a well defined contour. However, the buoy itself will have no edges

present because of its smooth shape. Applying the local detector cue on the edge image

will thus highlight the background and suppress the buoy. Whether it is the presence or

absence of a feature, common for both is that the region of interest is different from the

image; in other words the region of interest has a high uniqueness compared to the rest of

the image. To compute the factor of uniqueness of a block of the image with respect to a

given feature, the difference of the feature response between the block and the rest of the

image is evaluated.

The global detector cue, fG(·), is subsequently defined as the sum of the squared distances

between each block to perform a piece-wise comparison of each block with the rest of the

image to identify regions within the image that are unique with respect to the feature:

fGij (Fθ) :=
Mθ∑

k=1

Nθ∑

l=1

∥∥∥
∑

(x,y)∈Bkl

Fθ
xy −

∑

(x,y)∈Bij

Fθ
xy

∥∥∥
2
, (4.12)

where (i, j) and (k, l) are block indices within the feature map. Figure 4.3(b) shows a

block together with the global region within a sample image.

A global measurement has been previously used to find unique objects in an image: Liu

et al. (2007) use a global measurement to identify salient objects by comparing the spatial

variance with respect to the spatial distribution of a colour. Achanta et al. (2009) find

salient regions in an image by comparing the CIELAB vector of every pixel with the image

mean vector.

4.2.3 Centre-Surround Cue

Features that are highly distinctive or features that have a unique presence (or absence)

in an image can be detected by the local or global detector cue respectively. However,

both measurements imply that at least one region of interest exists within the image – the

region with the highest feature density or the highest feature uniqueness respectively.

Figure 4.6 shows an image that depicts a relatively calm sea with two ships: a pilot boat

in the front and a cruise ship on the horizon of the image. The edge image reveals the

silhouettes of both ships. When applying the local detector cue, the pilot boat is clearly

highlighted due to the higher density of edges in this area. However, the cruise ship in the

distance, even though it has a certain structure and response in the edge image, is marked

as background. This is due to the much higher density of edges of the pilot boat, which
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(a) Input Image (b) Edge Image

(c) Local Cue (d) Global Cue (e) Centre-Surround Cue

Figure 4.6: Centre-Surround Cue. A surrounding region is extracted for each block of
the edge image, which is then used for comparison in the centre-surround cue.

suppresses the local maximum of edge density in vicinity of the cruise ship. The global

detector cue yields a similar result. It emphasises the most unique part of an image with

respect to the feature, which in this case is within the proximity of the pilot boat.

Comparing a region with a surrounding sub window instead of the entire image is more

likely to overcome this as it allows comparing parts independently. For the cruise ship

this would mean that only the edge density within the proximity of the ship is used for

comparison and the density within the area of the pilot boat would not bias the response.

Itti et al. (1998) suggested creating multiple scales of an image and compared a pixel with

the same pixel in a larger scale as the surrounding region. A centre-surround window is also

used by Liu et al. (2007). The authors compared a reference region with its annulus where

the spatial position of the centre matches the centre of the reference region and the area

of the annulus is the same area as the area of the reference region. Achanta and Süsstrunk

(2010) proposed the use of a maximum symmetric centre-surrounding sub window, which

acts as a band pass filter for the spatial frequency. They showed that adjusting the

low cut-off frequency depending on the spatial location improves detection of saliency for

pixels that are far from object borders and that varying the window size depending on

the spatial location outperforms the aforementioned techniques. Furthermore, due to the

use of a maximum symmetric centre-surrounding sub window, no annulus needs to be

evaluated. It is therefore used for the proposed centre-surround detector cue.

For a map of size M θ× N θ from the pyramidal level θ, the surrounding window of a
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reference block (i, j) is spanned by the maximum symmetric distance, mθ
i and nθj :

mθ
i = min(i,M θ − i) and nθj = min(j,N θ − j). (4.13)

The set of blocks belonging to the surrounding window for a reference block (i, j) is

subsequently defined as

Sθij =
{(

(i−mθ
i + 1, . . . , i+mθ

i − 1) × (j − nθj + 1, . . . , j + nθj − 1)
) ∣∣ mθ

i , n
θ
j

}
, (4.14)

Then, the mean, F
θ
, of a feature, Fθ, in the maximum symmetric surrounding window of

(i, j) can be computed as

F
θ
ij =

(
(2mθ

i + 1)(2nθj + 1)
)

︸ ︷︷ ︸
A=#(Sθij)

−1 ∑

(x,y)∈Sθij

Fθ
xy, (4.15)

where A is the area of the maximum symmetric surrounding window, that is also the

number of blocks in Sθij . Note that (i, j) are block indices and F
θ
ij represents a block

within the feature map of pyramidal level θ, not a pixel. The size of F
θ

is thus given

as M θ× N θ. The Euclidean distance between the features at (i, j) and the mean of its

maximum symmetric surrounding window then yields the centre-surround detector cue for

a feature, Fθ,

fSij(F
θ) :=

∥∥∥ F
θ
ij −

∑

(x,y)∈Bij

Fθ
xy

∥∥∥
2
. (4.16)

A block (i, j) is shown in Figure 4.3(c) together with the matching centre-surround window

in which the green region is defined by the limits of the image and is symmetric in width

and height about the block of interest.

4.3 Low-Level Features

This section introduces the low-level features used within the proposed visual attention

framework. The idea is to design a number of features that each respond to specific

attributes of maritime objects. Preliminary observations showed that different features

respond to different objects or parts of objects. While the response of a single feature alone

cannot detect maritime objects, a combination of features might reveal their presence. The

low-level features described in the following are used because they are simple and easy to

compute and do not require a specific format for the input image. They are independently

assessed and visualised using heatmaps. All features discussed in this section are used as
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possible candidates in this chapter – later in this thesis this approach will be extended and

a machine learning approach will be utilised to select the most relevant (see Chapter 5).

The following low-level features are presented in this section:

Edges. The density of edges is used as a measure of overall structure in parts of the

image.

Right Angles. A right angle feature sensitive to orthogonal edges is used to emphasise

regions that contain man-made structures.

Frequency. The density of high frequency components is used to identify “noisy” regions

in the image.

Texture. Texture is used to detect irregularities in areas.

Colour. Colour is used to identify regions with a unique colour compared to their sur-

roundings or the rest of the image.

For performance visualisation, the response of each of the low-level features using the

three locality cues (local, global, and centre-surround) are shown on a number of test

images. From the dataset, these images are manually selected to represent a wide range of

performance for each of the features and cues and with good and poor detection response

with respect to maritime objects. Here, a good detection response does not necessarily

mean that all objects in the image have to be detected with a near perfect performance,

but only that corresponding regions are highlighted and the background is suppressed.

In fact, as the features are designed to be used only in combination, a good detection

response is used in terms of a qualitative measure and a high recall is favoured over a high

precision for the detector.

Test images that yield a poor detection response with a feature or locality cue are also

evaluated using a different feature that yields a good detection response – note the cross-

reference under these images. This illustrates the different performance of each feature

for different images and the need to use more than one feature in combination. The

performance of the features are analysed and discussed at the end of each subsection.
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4.3.1 Edge Based Features

In computer vision, edge detectors are used to estimate structural components and separate

areas of similar intensity of an image by highlighting the separating gradient between the

areas. The presence of edges in a region of an image may indicate structured components

and thus is an important feature in the proposed framework. A number of edge detectors

have been proposed in the past (see Figure 4.7), the most notable being a combination

of the convolution of image intensity by the second-order Gaussian and zero-crossings

as proposed by Marr and Hildreth (1980) or image kernel filters like the Sobel -Operator

(Ballard and Brown, 1982).

(a) Original Image (b) Marr-Hildreth (c) Sobel

(d) Canny (e) Canny weighted with Sobel

Figure 4.7: Edge Detectors. Response of different edge detectors to a test image.

The Canny edge detector (Canny, 1986) smoothes the intensity image with a two di-

mensional Gaussian and computes the image gradient by applying the Sobel detector in

horizontal and vertical directions. Following this, a hysteresis threshold is applied to ac-

cept strong and discard weak edges. The Canny edge detector has become the de facto

standard because of its insensitivity to noise and low error rate, outperforming the afore-

mentioned techniques. It is therefore used in this thesis with a subsequent multiplication

of the edge image with the magnitude of the image gradient, yielding an edge image that

is weighted by the strength of the edges. To compute the edge image, Eθ, of the pyramidal

level θ, first the intensity image, Iθ, needs to be computed from the RGB image, Jθ. Using

the weighting factors suggested by Fairchild (2005) yields

Iθ = 0.2985 · JθR + 0.5870 · JθG + 0.1140 · JθB. (4.17)

91



CHAPTER 4. LOW-LEVEL FEATURES FOR MARITIME VISUAL ATTENTION

The image gradients, Gθ
x and Gθ

y, of each pyramidal level θ ∈ Θ are computed from the

intensity image using the Sobel operator in the vertical and horizontal directions:

Gθ
x = (1, 2, 1)T ∗

(
(1, 0,−1) ∗ Iθ

)
(4.18a)

and

Gθ
y = (1, 0,−1)T ∗

(
(1, 2, 1) ∗ Iθ

)
. (4.18b)

The edge image for the pyramidal levels θ ∈ Θ is then computed as

Eθ = Canny(Iθ) ·
√(

Gθ
x

)2
+
(
Gθ
y

)2
, (4.19)

yielding the set of edge images E =
{
Eθ | θ ∈ Θ

}
.

As mentioned before, a dense presence of edges might indicate a structured content within

the corresponding region and thus suggest the presence of man-made objects. This feature

is related to the edge density measure suggested for object detection by Alexe et al. (2010).

However, Alexe et al. compare the edge density of a window in relation to its surrounding

region to predict whether the window contains an entire object with a closed boundary –

a significant limitation given the presence of noise and texture in maritime scenes. The

proposed feature is used to predict the presence of any kind of structure. It is evaluated

using three different locality cues at multiple scales. An edge density measure is computed

using the local locality cue as

YL
E(I) := fLij(E) =

⊕

θ∈Θ

∑

(x,y)
∈Bij

Eθ
xy. (4.20a)

An evaluation based purely on edge density might highlight a noisy background if it has a

higher density of edges than the foreground object. In a highly structured image, the focus

of attention may therefore be on the area with low edge density. Hence, the dissimilarity in

edge density is used as another measure. It is computed using the edge image as an input

for the global locality cue, highlighting the region in the image that is most distinctive

compared to the rest of the image as

YG
E(I) := fGij (E) =

⊕

θ∈Θ

M∑

k=1

N∑

l=1

∥∥∥
∑

(x,y)
∈Bkl

Eθ
xy −

∑

(x,y)
∈Bij

Eθ
xy

∥∥∥
2
. (4.20b)
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The result of the global measurement, however, depends on the edge density of the rest

of the image and number of targets. As established in Section 4.2.3, the comparison with

the surrounding window will highlight the target regardless. The regional edge feature is

computed using the centre-surround cue as

YS
E(I) := fSij(E) =

⊕

θ∈Θ

∥∥∥E
θ
ij −

∑

(x,y)
∈Bij

Eθ
xy

∥∥∥
2
, (4.20c)

where E
θ
ij is the mean edge density of the window surrounding (i, j) of pyramidal level θ

as described in Section 4.2.3 and computed following Equation (4.15), where F
θ

is E
θ
.

(a) Original image (b) Edge image

(c) Local edge feature (d) Global edge feature (e) Centre-surround
edge feature

Figure 4.8: Edge feature. Evaluation of the edge feature by the local, global, and
centre-surround locality cues.

Figure 4.8 shows the responses of the edge feature for the local, global, and centre-surround

locality cues.

Preliminary Analysis

Figure 4.9 shows the response of the local, global, and centre-surround cues on the edge

feature on a number of test images. The locality cues give a good response for the test

images in (a)–(f), indicating the presence of an object in the respective region of the image.

For the test images in (b) and (d), the detector over segments, in (b) parts of the bottom

of the image are highlighted due to the highly structured waves in this part of the image,
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(c) (f) (i) also see Fig. 4.15b

Figure 4.9: Responses to edge feature. The local, global, and centre-surround detector
cues are used to evaluate the edge feature on a number of test images. The heatmaps
in (a)–(f) reveal a good response to the test images with respect to maritime objects
while heatmaps (g)–(i) expose a poor performance when using the edge feature. The
cross references for these heatmaps refer to features yielding a good performance on the
respective test images.
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while in (d) the oversegmentation is due to the high presence of edges on the pier.

The test images in (a), (b), and (d) have also been evaluated using other features yielding

a poor performance: (a) has been evaluated using the frequency feature with the centre-

surround cue (Figure 4.15(i)) but due to a lack of disparity in frequency components, only

parts of the two ships were highlighted. However, as shown in Figure 4.9(a), the density

of edges proved to be sufficient to detect the target objects. Both, (b) and (d), yielded

poor performance using the colour feature in combination with the local and the centre-

surround locality cues – as shown in Figure 4.19(g) and (h) respectively. The colour of

the sailing ships in 4.19(g) did not show enough distinctiveness from the image mean to

detect the objects. However, the number of edges on the objects allowed detection using

the global edge cue as shown in Figure 4.9(b).

With a higher density of edges on the objects than on the surrounding background region,

the test image in (d) is correctly segmented using the local edge cue, contrary to the centre-

surround colour feature, where multiple parts of the pier get highlighted as foreground

objects. Even though the test images depicted in (c), (e), and (f) show a noisy sea and

also some background (c) and textured cloud coverage ((c) and (f)), the contour of the

target objects produces well defined edges that provide enough uniqueness for the edge

feature to detect the objects.

However, the test images in (g)–(i) yield a poor response of the locality cues based on the

edge feature, the reason for the poor response is the spread out dominance of edges in

the background of the images. Note that the test images (g) and (i) are also evaluated

using the frequency feature in Figure 4.15, while (h) is tested using the colour feature in

Figure 4.19.

Right Angles

The presence of edges is a first indicator for structure or texture. However, in coastal

regions, images are likely to contain background that will respond to the edge detector,

oversegment, and thus affect detection accuracy of actual target objects. A right angle

filter is created as another low level feature, as right angles are more dominant in (man-

made) structures than in natural scenes. A kernel that is sensitive to horizontal and

vertical lines is defined and convolved with the edge image resulting in the right angle
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feature:

Rθ =
1

16




0 0 1 0 0

0 0 2 0 0

1 2 4 2 1

0 0 2 0 0

0 0 1 0 0



∗Eθ, (4.21)

where Eθ is the edge image of pyramidal level θ as computed in Equation (4.19), yielding

the set of right angle responses R =
{
Rθ | θ ∈ Θ

}
.

(a) Original Image (b) Edge Image (c) Right Angle Response

Figure 4.10: Right Angle Detector. The response of the right angle detector highlights
the parts of the edge image that have right angles and mostly horizontal or vertical lines.

The Canny edge detector results in an edge image with fine lines, i.e. edges are marked

with only one pixel in width making it ideal to be used with this filter. Because the

imagery originates from a stabilised recording platform, a kernel filter is a sufficient de-

tector as the stabilisation process ensures horizontal and vertical lines in the scene are

properly aligned in the image. However, the 5 × 5 kernel does allow some inaccuracy of

orientation. Figure 4.10 shows a sample image and the edge image as computed by the

Canny edge detector together with the response of the proposed right angle filter. One

can see that the contour of the target ship is correctly identified by the Canny edge detec-

tor (Figure 4.10(a)), however, the edges in the background have similar weighting as the

target. Figure 4.10(c) shows the result of the subsequently applied right angle detector.

Here, the horizontal components of the target ship are weighted higher than the rest of

the image. It should be noted that the detector also responds to the contours of the hills

due to the “pixel-stepping” of the diagonal. This effect is visible most at high resolution

96



CHAPTER 4. LOW-LEVEL FEATURES FOR MARITIME VISUAL ATTENTION

(e.g. pyramidal level θ = 0) and small kernel size.

Using the local locality cue, the density of the right angle feature is computed as

YL
R(I) := fLij(R) =

⊕

θ∈Θ

∑

(x,y)
∈Bij

Rθ
xy, (4.22a)

as well as a dissimilarity measure based on the global locality cue as

YG
R(I) := fGij (R) =

⊕

θ∈Θ

M∑

k=1

N∑

l=1

∥∥∥
∑

(x,y)
∈Bkl

Rθ
xy −

∑

(x,y)
∈Bij

Rθ
xy

∥∥∥
2
. (4.22b)

The centre-surround cue for the right angle feature is subsequently defined as

YS
R(I) := fSij(R) =

⊕

θ∈Θ

∥∥∥R
θ
ij −

∑

(x,y)
∈Bij

Rθ
xy

∥∥∥
2
, (4.22c)

where R
θ

is the mean edge density of the surrounding window of pyramidal level θ as

described in Section 4.2.3 and computed using Equation (4.15) where F
θ

is R
θ
.

(a) Original image (b) Right angle response

(c) Local right angle fea-
ture

(d) Global right angle
feature

(e) Centre-surround
right angle feature

Figure 4.11: Right angle feature. Evaluation of the right angle feature by the local,
global, and centre-surround locality cues.

The responses of the right angle feature for the local, global, and centre-surround locality

cues are shown in Figure 4.11.
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(c) (f) (i) also see Fig. 4.17d

Figure 4.12: Responses to right angle feature. The local, global, and centre-surround
detector cues are used to evaluate the right angle feature on a number of test images. The
heatmaps in (a)–(f) reveal a good response to the test images with respect to maritime
objects while heatmaps (g)–(i) expose a poor performance when using the right angle fea-
ture. The cross references for these heatmaps refer to features yielding a good performance
on the respective test images.
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Preliminary Analysis

The response of the three locality cues for the right angle feature is shown in Figure 4.12.

All test images contain a high density of edges, however, convolving with the right angle

kernel, yields an emphasis of the man-made structural components of the images. This

works well for the test images in (a)–(f), where the feature shows a good response with

respect to maritime objects.

The test image in (a) has a good recall performance, however the response shows that some

oversegmentation is present. This test image has also been assessed using the colour feature

in Figure 4.19(h), where it yielded a poor performance as piece-wise distance measurement

caused a highlighting of the dark parts in the left and right bottom of the image instead

of the maritime objects. The images in Figures 4.12(c), (d), and (e) all have a structured

background that is visible in the edge image. However, the subsequently applied right

angle kernel is able to distinguish between the contour of the hills and clouds and the

small ship that consists of mostly vertical elements.

However, a poor performance of the right angle feature is shown for the test images in

(g)–(i). In (g), the strong edges in the background (separation between hills and sky)

and the lack of right angles on the target object lead to a misdetection. For the test

images in (h) and (i) the detector produces mostly noise. In both images, a sharp peak

can be observed; in (h) the peak is located on the ship’s horizontal ornamental strip, in

(i), the peak is located on an building close to the right image border. All three images

are also evaluated using different features, where the segmentation yields better results –

Figure 4.15(c) and (f) show the responses of the frequency feature for the test images in

Figures 4.12(g) and (h) respectively, while (i) is evaluated using the textural feature in

Figure 4.17(d).

4.3.2 Frequency based Features

The edge feature proposed in section 4.3.1 is used to detect boundaries between areas with

different intensity, that might suggest boundaries of an object. Localised abrupt changes

in intensity cannot be reliably detected with this feature. Consider a target object in front

of a highly structured background as shown in Figure 4.13, where a tall ship is about to

pass through a bridge in London’s Upper Pool. The tall ship is highly structured, however

the background, especially the upper part of the bridge is as well. In fact, due to the high

contrast between the upper part of the bridge and the background in this region, it has
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(a) Input im-
age

(b) Canny
weighted
with Sobel

(c) Local
edge feature

(d) High-pass
filtered image

(e) Local
frequency
feature

Figure 4.13: Comparison of local edge and frequency feature. The local edge
feature is computed using the Sobel weighted Canny edge detector. The high frequency
components of the input image are shown together with the local frequency feature.

well pronounced edges, resulting in a high weighting of the Sobel weighted Canny edge

detector operator as shown in (b). The result of the local edge feature (density) is depicted

in (c). A closer inspection of the structure of the tall ship reveals that it is caused by the

rigging of the ship.

A high frequency feature is proposed to detect these noisy regions within an object.

However, while this means areas of sea with highly pronounced waves might be highlighted

by this detector, areas of sky will be suppressed since it is typical that low frequencies

dominate in those parts of the image.

The high frequency components of the input image can be computed as

Dθ = ∇2Iθ, (4.23)

where Iθ is the intensity image of pyramidal level θ and ∇2 is the Laplacian, yielding the

set of high frequency responses D =
{
Dθ | θ ∈ Θ

}
.

From this, the local locality cue that estimates the density of high frequency components

for each block (i, j) of the image can be computed as

YL
F (I) := fLij(D) =

⊕

θ∈Θ

∑

(x,y)
∈Bij

Dθ
xy. (4.24a)

The global locality cue, estimating the dissimilarity of high frequency density between
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each block of the image is subsequently defined as the piece-wise distance,

YG
F (I) := fGij (D) =

⊕

θ∈Θ

Mθ∑

k=1

Nθ∑

l=1

∥∥∥
∑

(x,y)
∈Bkl

Dθ
xy −

∑

(x,y)
∈Bij

Dθ
xy

∥∥∥
2
, (4.24b)

leaving the centre-surround cue as

YS
F (I) := fSij(D) =

⊕

θ∈Θ

∥∥∥D
θ
ij −

∑

(x,y)
∈Bij

Dθ
xy

∥∥∥
2
, (4.24c)

where D
θ
i j is the mean edge density of the window surrounding (i, j) of pyramidal level

θ as described in Section 4.2.3 and computed using Equation (4.15) where F
θ

is D
θ
.

Figure 4.15 shows the response of this detector. Figure 4.14 shows the responses of the

(a) Original image (b) Laplacian image

(c) Local frequency fea-
ture

(d) Global frequency
feature

(e) Centre-surround fre-
quency feature

Figure 4.14: Frequency feature. Evaluation of the frequency feature by the local, global,
and centre-surround locality cues.

frequency feature for the local, global, and centre-surround locality cue respectively.

Preliminary Analysis

The responses to the local, global, and centre-surround locality cues of the frequency

feature are shown in Figure 4.15. The feature shows a good response for the test images

in (a)–(f), highlighting the maritime objects. These test images are also evaluated using
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Figure 4.15: Responses to frequency feature. The local, global, and centre-surround
detector cues are used to evaluate the frequency feature on a number of test images. The
heatmaps in (a)–(f) reveal a good response to the test images with respect to maritime ob-
jects while heatmaps (g)–(i) expose a poor performance when using the frequency feature.
The cross references for these heatmaps refer to features or other detector cues yielding a
good performance on the respective test images.
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other features: the image in (d) is evaluated using the global textural feature as shown

in Figure 4.17(h), where the mast of the ship has a significantly higher response than

the rest of the object(s) so that these get suppressed in the response map. However, the

density of high frequency components in both targets allow a reliable detection using the

local cue of the frequency feature as depicted in (d). The images in (b) and (e) are both

tested using the edge feature as shown in Figure 4.9(i) and (g) respectively. While the

global frequency feature yields a reliable detection of the maritime objects in both images,

the edge feature was not able to pick up the objects due to a high number of edges in

the background. Although the global locality cue produces some noise and false positives

on the waves in the bottom part and on top of the hills in the top-right part of the test

image in Figure 4.15(b) due to the high frequency components in these areas, the overall

performance of the feature is satisfactory. The ship in (e) is detected with a high accuracy

due to the mostly low frequencies in the image.

Likewise, the centre-surround cue of the high frequency feature is able to pick up the

maritime object in (c) and (f) due to the difference of the frequency components on the

objects and their surrounding region. Both images were tested using the right angle feature

as shown in Figure 4.12(g) and (h) respectively. However, the right angle feature yielded

a poorer response due to the absence of strong vertical and horizontal edges in the images.

Note that Figure 4.15(a) and (h) depict the same test image. It is evaluated using the

same frequency feature but using different locality cues. In (h), the global locality cue

is used. Here, the high frequency component is compared to the rest of the image in a

piece-wise manner, yielding a poor detection of the oil tanker’s hull and failing to detect

the indistinct ship to its left. This poor performance is due to only small and almost

uniform differences in the frequencies such that the global locality cue could not identify a

specific region of uniqueness. When only evaluating the density as with the local locality

is enough to highlight both objects as shown in (a).

Furthermore, the local locality cue in Figure 4.15(g) yields a poor result, highlighting most

of the waves in the bottom of the test image due to their highly structured appearance

and thus high density of high frequency components in this area. The image is also tested

using the colour feature in Figure 4.19(c) yielding a good result. Due to lack of disparity in

frequency components within the surrounding region of the two ships in Figure 4.15(i), only

parts of the objects are highlighted yielding a poor overall performance; the edge feature

is also used to evaluate this image, shown in Figure 4.9(a) with satisfactory performance.
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4.3.3 Textural Features

Texture is a feature that can describe the appearance of areas in an image. Texture

can define the structure of an object in terms of “patterns” of pixel values and thus

enables identification of nuances and irregularities. Haralick et al. (1973) use second order

statistics for texture analysis by estimating the relationship between pairs of pixels within

the image. The authors use the grey level co-occurrence matrix (GLCM) to record the

number of occurrences of a specific pixel pair. The GLCM is a square matrix of size

Ng × Ng, where Ng is the number of grey levels (intensity levels) in the image. In this

thesis a quantisation of 32 grey levels is used, i.e. Ng = 32. The matrix is normalised

and considered as an array of probabilities of the pair of grey levels occurring at a specific

position in the image.

For each block (i, j) of the intensity image, Iθ, of pyramidal level θ, the spatial probability

of the respective pixel pair in direction of vector δ is computed for the grey levels c =

1, . . . , Ng and d = 1, . . . , Ng for the first and second pixel respectively as

pθδij(c, d) =
∑

(x,y)∈Bij





1, if Iθ(x, y) = c− 1 and Iθ(x+ δx, y + δy) = d− 1,

0, otherwise.
(4.25)

This yields the GLCM for each block (i, j) and direction δ,




pθδij(1, 1) pθδij(1, 2) . . . pθδij(1, Ng)

pθδij(2, 1) pθδij(2, 2) . . . pθδij(2, Ng)
...

...
. . .

...

pθδij(Ng, 1) pθδij(Ng, 2) . . . pθδij(Ng, Ng)



. (4.26)

Following Haralick et al. (1973), the GLCM for each block, (i, j), and pyramidal level,

θ, is computed for four directions, δ =
{

(−1, 0)T , (−1, 1)T , (0, 1)T , (1, 1)T
}

, which equals

orientations of 0, π4 ,
π
2 , and 3π

4 respectively. A total of 14 textural features extracted from

the GLCM are proposed by Haralick et al. (1973), however, only four are commonly used:

• The Local Contrast of a block (i, j) describes the relative grey level (intensity) dif-

ference between pixels and their neighbours in direction δ. High changes in intensity

in this direction will be picked up by a high local contrast. The local contrast is
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computed as

CCθ
δij =

∑

(c,d)

(c− d)2pθδij(c, d). (4.27a)

• The Homogeneity of a block (i, j) is a similarity measure utilising the GLCM dis-

tribution. A homogeneous block is a block with very little change in intensity, i.e.

the GLCM is close to being a diagonal matrix. The homogeneity feature is thus

computed as

HCθ
δij = 1−

∑

(c,d)

pθδij(c, d)

1 + (c− d)2
. (4.27b)

• The Energy of a block (i, j) is a measure of the entropy in the block and computed

by estimating the spread of the distribution in the GLCM. The energy of a block is

high for a constant image. The feature is therefore computed as

ECθ
δij = 1−

∑

(c,d)

pθδij(c, d)2. (4.27c)

• Correlation within a block (i, j) shows the correlation of intensity of a pixel in

direction δ compared to the reference pixel. Computing the correlation results in

a value between [−1, 1] for maximum negative or positive correlation respectively.

Therefore the absolute value is used as

XCθ
δij =

∣∣∣
∑

c,d

1

σcijσdij
(c− µcij)(d− µdij)pθδij(c, d)

∣∣∣, (4.27d)

where

µcij =
∑

c

c
∑

d

pθδij(c, d), (4.27e)

µdij =
∑

d

d
∑

c

pθδij(c, d), (4.27f)

σcij =
∑

c

(c− µcij)2
∑

d

pθδij(c, d), (4.27g)

σdij =
∑

d

(d− µdij)2
∑

c

pθδij(c, d). (4.27h)

The textural feature is computed for each pyramidal level, θ as a linear combination of

the local contrast,CCθ
δij , homogeneity,HCθ

δij , energy,ECθ
δij , and correlation,XCθ

δij , within

105



CHAPTER 4. LOW-LEVEL FEATURES FOR MARITIME VISUAL ATTENTION

a block of the intensity image for all orientations, δ,

Zθij =
∑

δ

CCθ
δij + HCθ

δij + ECθ
δij + XCθ

δij , (4.28)

yielding the set Z =
{
Zθ | θ ∈ Θ

}
containing the textural features of all Gaussian

pyramidal levels.

The local textural feature is computed by applying the local locality cue to the linear

combination of textural features as

YL
T (I) := fLij(Z) =

⊕

θ∈Θ

∑

(x,y)
∈Bij

Zθxy. (4.29a)

Utilising the global locality cue yields the global textural feature as

YG
T (I) := fGij (Z) =

⊕

θ∈Θ

Mθ∑

k=1

Nθ∑

l=1

∥∥∥
∑

(x,y)
∈Bkl

Zθxy −
∑

(x,y)
∈Bij

Zθxy

∥∥∥
2
. (4.29b)

The centre-surround textural feature is subsequently defined as

YS
T (I) := fSij(Z) =

⊕

θ∈Θ

∥∥∥Z
θ
ij −

∑

(x,y)
∈Bij

Zθxy

∥∥∥
2
, (4.29c)

where Z
θ
ij is the mean of the textural feature of the window surrounding (i, j) of pyramidal

level θ as described in Section 4.2.3 and computed following Equation (4.15), where F
θ

is

Z
θ
. The response of this detector is depicted in Figure 4.17.

The responses of the textural feature for the local, global, and centre-surround locality

cues are shown in Figure 4.16.

Preliminary Analysis

The response maps for the local, global, and centre-surround cues of the textural feature

are shown in Figure 4.17. Good responses are shown for the test images in (a)–(f). Here,

all maritime objects are detected and little noise and only few false positives are produced.

The images shown in (a) and (d) have also been tested using the edge and right angle

feature; see Figures 4.9(h) and 4.12(i) respectively. The former image has a large density

of edges in the background, not providing enough uniqueness to the maritime object
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(a) Original image (b) Textural response

(c) Local textural fea-
ture

(d) Global textural fea-
ture

(e) Centre-surround tex-
tural feature

Figure 4.16: Textural feature. Evaluation of the textural feature by the local, global,
and centre-surround locality cues.

when evaluating using the edge feature. On the other hand, Figure 4.12(i) shows a poor

response of the centre-surround cue on the right angle feature, resulting mostly in noise.

The reason being a high response of the detector at a rectangular object at the image

border, dominating the response map. However, both test images yield satisfactory results

when evaluated using the local textural feature as shown in Figures 4.17(a) and (d). The

contrast between the maritime objects and surrounding sea and sky regions is sufficient

to identify the targets in both images. This is also true for the test images in (b), (c), and

(f), where target objects are identified due to piece-wise differences in contrast between

each block of the image (b) or surrounding regions – (c) and (f) respectively.

The local and global locality cues are used to evaluate the same image using the textural

feature in (e) and (g). While the density measurement used for the local locality cue yields

a poor response, highlighting all foreground parts of the image due to the high contrast on

both the target object as well as the harbour background (g), a good response comes from

the global locality cue that is able to identify the actual maritime object in the image (e).

This is due to the piece-wise approach of the global locality cue: the piece-wise difference

reveals that due to the texture and sharp contour between the object and the background

the contrast within an object region is higher than on the structured background.

For the test images in (h) and (i) the textural feature also yields a poor performance,

failing to correctly highlight the maritime objects. In (h), the contrast in the area of the
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(c) (f) (i) also see Fig. 4.19e

Figure 4.17: Responses to textural feature. The local, global, and centre-surround
detector cues are used to evaluate the textural feature on a number of test images. The
heatmaps in (a)–(f) reveal a good response to the test images with respect to maritime
objects while heatmaps (g)–(i) expose a poor performance when using the textural feature.
The cross references for these heatmaps refer to features yielding a good performance on
the respective test images.
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mast of the ship in the centre of the image is significantly higher than in the rest of the

image, which causes the global cue to highlight only this part of the image as this is the

most unique part of the feature. The area with the highest contrast for the test image

in (i) is the part between the big ship on the right and the tug boat just to the left of

it. When compared to the surrounding region that consists of mostly plain coloured areas

with no abrupt changes, even more emphasis is put on this area. The images in (h) and

(i) are also tested using the local frequency detector (Figure 4.15(d)) and global colour

feature (Figure 4.19(e)) respectively.

4.3.4 Colour

Colour can be an effective feature to separate the object of interest out from the back-

ground (for example a bright yellow dingy surrounded by blue water). In maritime envi-

ronments, colour can be ineffective when the colour contrast between the object and the

surrounding is low due to low light condition or when dealing with camouflaged objects.

However, not all objects are expected to be camouflaged, and indeed normal shipping ves-

sels tend to stand out in stark contrast to the surrounding water specifically to reduce the

chance of accidental collisions. Generic objects are defined not to have a specific colour

and this is also true for maritime objects. The assumption of a ship being painted grey,

or a buoy painted red cannot be made. However, instead of focusing on a specific colour

or colour distribution of the target object, differences in colour are more likely to indicate

the presence of objects. Maritime scenes sometimes consists of large areas with similar

colours, e.g. sky but also large buildings or natural scenes that dominate the background.

This is in fact the fundamental observation that Achanta et al. (2009) and Achanta and

Süsstrunk (2010) exploit to perform saliency detection, to great effect. In this case, a

target object can be identified through its difference of colour compared to the rest of the

image.

Computing colour difference is preferably done in CIELAB space, where the perceptive

colour difference corresponds to the Euclidean distance between the two colour vectors

– see Chapter 2. This allows the use of local, global, and centre-surround locality cues

without the need to standardise the channels.

Let J =
{
Jθ | θ ∈ Θ

}
represent the set of all pyramidal levels, θ, of the image in CIELAB

space, then Jθxy is a three dimensional vector containing the L∗, a∗, and b∗ channels of

pyramidal level θ at pixel (x, y). As colour does not have a density property, the distance

between the image mean and the current block is used for the local locality cue. For each

block of the image (i, j), the Euclidean distance between the image mean and the mean
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CIELAB vector of the block is computed using the local locality cue as

YL
C(I) := fLij(J ) =

⊕

θ∈Θ

∥∥∥ J
θ−

∑

(x,y)∈Bij

1

b2
Jθxy

∥∥∥, (4.30a)

where b is the block size and J
θ

is the CIELAB mean of the pyramidal level θ and is

computed as

J
θ

=
1

hθ · wθ
∑

x,y

Jθxy. (4.30b)

In a colour image with multiple dominant regions of the same colour and a small size

target, the mean CIELAB vector of the image will be roughly half way between these

colours since CIELAB is designed to model perceived distances as linear distances. If a

maritime object is of approximately this colour, it will not be highlighted in the response

map, as the distance between the mean colour and the target colour will be roughly

zero. Moreover, both of the dominating background regions will get highlighted as there

is a distance between their colour and the image mean colour. Computing the sum of

the squared distances between image blocks, as suggested by the global locality cue, can

identify regions of unique colour:

YG
C (I) := fGij (J ) =

⊕

θ∈Θ

Mθ∑

k=1

Nθ∑

l=1

∥∥∥
∑

(x,y)∈Bkl

Jθxy −
∑

(x,y)∈Bij

Jθxy

∥∥∥
2
. (4.31)

In images with large objects, objects of similar colour, or complex backgrounds, comparing

against the image mean colour highlights the background as it is more unique than the

actual objects. Achanta and Süsstrunk (2010) showed that using the maximum centre-

surround windows as defined by the centre-surround locality cue can overcome this issue.

The centre-surround colour feature is subsequently defined as

YS
C(I) := fSij(J ) =

⊕

θ∈Θ

∥∥∥Jθij −
∑

(x,y)∈Sij

− 1

b2
Jθxy

∥∥∥
2
, (4.32)

where J
θ
ij is the CIELAB mean of the window surrounding (i, j) of pyramidal level θ as

described in Section 4.2.3 and computed using Equation (4.15), where F
θ

is J
θ
. Figure 4.18

shows the responses of the colour feature for the local, global, and centre-surround cues.
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(a) Original image (b) Hue channel

(c) Local colour feature (d) Global colour fea-
ture

(e) Centre-surround
colour feature

Figure 4.18: Colour feature. Evaluation of the colour feature by the local, global, and
centre-surround locality cues. Image (b) shows the hue channel of the CIELAB image,
the small box in the top left shows the mean hue of the image.

Preliminary Analysis

The response of the local, global, and centre-surround locality cues for the colour feature

is shown in Figure 4.19. The feature yields a good response for the test images in (a)–(f)

and a poor response for the images in (g)–(i) respectively.

The local locality cue is used to compute the difference of the mean colour of a block to the

mean colour of the image. The mean colour of the test image in (a) is rather dark, yielding

a highlighting of bright parts in the image, including the ship in the foreground. However,

some false positives are also detected as they have a similar colour difference. The same is

true for the images in (b) and (d), where the maritime objects are identified by the sum of

the piece-wise distances of colour between the blocks, (b), or the difference in colour to the

image mean (d). In (b), the global locality cue also misdetects a part of the coastal area in

the image due to the high difference in colour compared with the other blocks (sea and sky)

in the image. The test image in (e) has been previously evaluated using the textural feature

and the response of the centre-surround locality cue is shown in Figure 4.17(i). There, the

area between the two ships on the right side of the image had been highlighted as it stood

out with high contrast compared to the surrounding region, while the actual maritime

objects in the image have been neglected. Using the global colour locality cue, however,

all maritime objects have been correctly identified, as the difference in colour between
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(c) (f) (i) also see Fig. 4.9d

Figure 4.19: Responses to colour feature. The local, global, and centre-surround
detector cues are used to evaluate the colour feature on a number of test images. The
heatmaps in (a)–(f) reveal a good response to the test images with respect to maritime
objects while heatmaps (g)–(i) expose a poor performance when using the colour feature.
The cross references for these heatmaps refer to features or detector cues yielding a good
performance on the respective test images.

112



CHAPTER 4. LOW-LEVEL FEATURES FOR MARITIME VISUAL ATTENTION

the blocks containing the target objects and the background was sufficient. Beneficial

for this was that the two big ships on the right had a different colour as the piece-wise

comparison of image blocks favours blocks that are highly distinctive compared to others.

Thus, weighting on both ships was increased as they not only differ from the global colour

but also from each other.

The test image depicted in Figure 4.19(c) shows a good detection performance for the two

ships in the foreground due to the colour difference to their surrounding area. When eval-

uated with the local frequency locality cue the waves in the foreground were highlighted,

yielding a poor performance of the feature detector. The test image in (f) contains two

maritime objects that do not differ much in colour from the ships. However, as their sur-

rounding areas are mostly water that is distinctive in colour, the centre-surround locality

cue is able to highlight the objects.

A poor response of the detector is shown for the test images in (g)–(i). In (g) the colour

of the sailing ships is closer to the image mean than the actual background, meaning the

detector highlights the background. The ships are detected using the global edge feature

in Figure 4.9(b) as they have a higher edge density than the rest of the image.

Even though the ships in Figure 4.19(h) seem to be distinctive in colour to a human

observer, the colour feature using the global locality cue has very poor performance, failing

to highlight the presence of the ships in the image. As the global cue computes the

difference in colour between an image block and the entire image, areas that have a high

difference are highlighted. However, in this image, the colour of the sky and sea are

very different, resulting in a mean that lies somewhere in between. This yields to a high

distinctiveness of the entire image with respect to the image mean and results in a high

response for the entire image. However, as one can see in Figure 4.12(a), the ships can be

detected by evaluating the density of right angles present in the image.

The centre-surround cue used to evaluate the test image in Figure 4.19(i) fails to identify

the moored ships and highlights the pier instead. This is due to the high difference of the

dark pier compared to the surrounding areas, which are dominated by bright sky above

and the ships right on the pier. The ships are detected by the edge feature in Figure 4.9(d)

due to the higher density of edges on the target objects.
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4.4 Classification

Predicting if a block of an image contains a maritime object is a problem of binary clas-

sification: a classifier is employed to compute the probability of a block containing either

an object or background. A Näıve Bayes classifier has been selected for this task because

it allows for probabilistic inputs; see Section 2.6 for a detailed discussion. A necessary

and sufficient condition for the use of Näıve Bayes is that the input variables (features)

must be conditionally independent given the class, a requirement that can be verified by

assessing the correlation between features.

The correlation between two variables, A and B, can be computed as

ρ(A,B) =
E[(A− µA) · (B − µB)]

σAσB
, (4.33)

where E[·] is the expected value and σ is the standard deviation of the distribution.

The correlation matrix, ρ, for a set of variables, Y = {Y1, Y2, . . . , Yn}, is a n×n symmetric

matrix where the matrix entries, ρij , are the result of ρ(Yi, Yj). Figure 4.20 shows corre-

lation matrices between all previously introduced low-level features and locality cues as

input variables on two datasets – the datasets will be formally introduced in Section 4.5.1

and 4.5.2 later in this chapter. The matrices show the correlation between the entire
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(a) MSRA (b) shipspotting

Figure 4.20: Correlation of all features evaluated on the MSRA and shipspotting dataset.
For each of the five low-level features, the local, global, and centre-surround locality cues
are shown (top to bottom).

set of features and locality cues, Y =
{
YL
E , YG

E , YS
E , YL

R, YG
R , . . . ,Y

S
C

}
, in a heatmap

representation.

For the first dataset (Figure 4.20(a)), almost no correlation is observed between the fea-

tures, even within the locality cue variants of a single feature. The second dataset (Fig-
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ure 4.20(b)) also has little correlation between different features, although it exhibits some

correlation between locality cues of the same feature. Although this implies some depen-

dence, the effect of assuming independence is not severe – at worst the Näıve Bayes clas-

sifier will merely underperform since the dependencies were not considered. Furthermore,

the correlations are mainly between localities of the same feature and these dependencies

are not actually informative for classification purposes. Another finding of the correlation

analysis is that the textural feature (with any locality cue) is the most unique feature in

the set. See Section 5.2 for a discussion about the importance and influence of different

features and locality cues.

Based on the findings, all low-level features and locality cues are combined using the Näıve

Bayes approach. The resulting network is depicted in Figure 4.21. The input features are

separately normalised to Y → 0 . . . 1 and treated as probability maps. Training the Näıve

Bayes classifier is, as discussed in Chapter 2, a matter of counting the occurrence of each

feature given the known ground-truth class and normalising the resultant histogram of

feature values to produce a set of conditional probability tables (one per feature) as well

as the prior probability table of the classes. These probability tables form the parameters of

the Näıve Bayes classifier. Then when a test image is provided, features are extracted and

for each image block the probability of a maritime object, P
(
X = object |Y L

E , . . . , Y
S
C

)
,

is calculated using the learned parameters. If this probability exceeds a given threshold

then the block is classified as a maritime object – the threshold is varied to produce a

precision/recall curve to analyse the sensitivity and performance of the system.

The Bayesian classifier is trained and evaluated for each dataset using a 10 fold cross-

validation on the respective datasets.

4.5 Experiments

The proposed approach for visual attention has been evaluated on two different datasets

and compared against current state of the art saliency detectors. This section names the

work to which the proposed approach is compared to, introduces the datasets that are used

for evaluation, and gives details about the experiments conducted. The section closes with

a detailed discussion of the experimental results.

The proposed approach is compared to the following existing work:

• Achanta and Süsstrunk (2010) because it is amongst the most recent saliency detec-

115



CHAPTER 4. LOW-LEVEL FEATURES FOR MARITIME VISUAL ATTENTION

LYE

LYT

LYR

LYC

GYE

GYT

GYR

GYC

GYF

LYF

SYT

SYR

SYC

SYF

X

SYE

Centre-surround CueLocal Cue Global Cue

Figure 4.21: Bayesian network of the classifier.

tors and has been shown to be highly effective. The authors demonstrated that their

proposed method outperforms the works of Itti et al. (1998), Harel et al. (2007), and

Hou and Zhang (2007).

• Rosin (2009) due to its simple and parameterless approach which outperforms Itti

et al. (1998) and Ma and Zhang (2003), and can keep up with Liu et al. (2007).

Although Rosin recommends performing erosion to reduce the overfitting produced

by the algorithm it is evaluated based on the raw results to avoid introducing an

additional parameter that must be optimised. In any event, Rosin showed that such

an erosion would only improve performance by less than 10%.

• Alexe et al. (2010) because their objectness measure can be used to approach the

problem of visual attention in a unconventional way. The authors showed that their

approach outperforms Itti et al. (1998) and Hou and Zhang (2007).

All of the above mentioned are discussed in detail in Chapter 2.

Experiments for the maritime visual attention framework are performed on two different

datasets (Figure 4.22). The Salient Object Database (MSRA) is the community standard

test set, consisting of a variety of object classes and backgrounds. The proposed approach

is tested against this dataset to evaluate its performance for the detection of generic

objects. Additionally, experiments on domain specific imagery are desirable. However,

a dataset with a focus on maritime scenes was not publicly available. Therefore a test

set consisting of real-world maritime imagery has been compiled and published as the
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shipspotting dataset (Albrecht et al., 2011). The proposed approach for maritime visual

attention is compared to the above mentioned approaches on both datasets. For this, each

image is evaluated according to the classification criterion introduced in Section 2.8 and

the results are shown in precision/recall plots.

(a) MSRA (b) shipspotting

Figure 4.22: Sample images from MSRA and shipspotting datasets.

4.5.1 MSRA – Salient Object Database

The Salient Object Database (Liu et al., 2007), referred to as MSRA in the remainder of

this thesis, is a generic object data set consisting of a total of 25 000 images. In each

image, the dominant salient object has been annotated using a bounding box. Achanta

et al. (2009) took the tremendous effort to annotate a subset of 1 000 images at a pixel

level, outlining the shape of the salient object in each image. This thesis agrees with the

statement of those authors that comparing the shape of the object instead of a bounding

box is more realistic and allows for a better evaluation of classification accuracy. Therefore,

their subset is used for evaluation in this thesis.

4.5.1.1 Results and Discussion

The precision/recall plot shown in Figure 4.23 indicates that Achanta and Süsstrunk (2010)

and Alexe et al. (2010) outperform Rosin (2009) and the proposed approach on MSRA.

This is not altogether surprising since the dataset contains general images of both human

and natural scenes rather than specifically maritime images that the features were selected

for. A clear indication about which of the former two is the best algorithm for this dataset

cannot be given as the curves intersect and thus weighting towards precision or recall is

dependent on the field of application. Figure 4.24 shows the response to a number of
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sample images from MSRA evaluated by the detectors of Alexe et al. (2010), Achanta and

Süsstrunk (2010), and Rosin (2009) compared to ground truth and the proposed approach.
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Figure 4.23: Precision/Recall plot comparing the performance of the four evaluated algo-
rithms on the MSRA dataset.

The adapted objectness measure as proposed by Alexe et al. (2010) provides a good in-

dication for the presence of a salient object. In general, the centre part of each object is

detected with a satisfactory performance. However, the borders of the objects are mostly

feathered, not providing a sharp segmentation between object and background. This is

caused by the weighted window approach – as mentioned, Alexe et al. (2010) only com-

pute the score of a rectangular window containing an object anywhere within the window.

While a large window is weighted with a high score because it contains an object, the

actual object boundary is “fringy” due to the rectangular shape and the weight is uni-

formly distributed within the window – yielding low precision. Nevertheless, the images

in Figure 4.24(a)–(c) yield good performance with the objects correctly identified. In (d),

the bucket is weighted more important than the ape wearing it. This result actually is

debatable because it is dependent on the definition of saliency. One could argue that the

bucket, not the ape, is actually the most salient object in the image and Alexe et al. (2010)

therefore detect the correct object. This again shows the ambiguity of the definition of

saliency, where detection accuracy can be unintentionally affected by human interpreta-

tion in the ground truthing process. The objects in (e) and (f) are highlighted mostly

in the centre of the respective objects with the extremities of the player and the pike of

the building missing in the saliency maps because of their small shape. Overall, Alexe

et al. (2010) provide a good recall with respect to ground truth, detecting all objects. The

precision of the approach is acceptable, it is mostly limited by the inferior rectangular

shape of the sampled windows.

118



CHAPTER 4. LOW-LEVEL FEATURES FOR MARITIME VISUAL ATTENTION

Achanta and Süsstrunk (2010) detect the object in Figure 4.24(a) with almost perfect

accuracy. Their algorithm does not get distracted by the shadows in the corners of the

image due to the low frequency spatial cut-off in these areas. In (b), on the other hand,

the cut-off causes the highlighting of the blue flowers in the background because they are

dominant in their respective region, while the position of the actual salient object yields

a comparison of the colour difference towards the entire image. However, this difference

is not large enough, causing the blue flowers to dominate the saliency map. The colour

difference of the bird’s body in (c) picks up the saliency object by Achanta and Süsstrunk

(2010), but it can be seen that the head and the wing tips do not stand out in colour by

much, which causes these parts to be missed by the approach. The ape’s bucket and parts

of the ape’s body in (d) are highlighted by Achanta and Süsstrunk (2010) but the dominant

regions are the ape’s arms. Interestingly, the grass areas on the left side are highlighted as

well – this behaviour should be avoided with the low cut-off, but the position of the grass

seems to be at an unfortunate position, such that the rocks in the top and bottom dominate

the background of the window and cause the grass to be highlighted as salient. In (e), the

jersey of the player has dominant colour differences on the shoulder and pants, which get

highlighted. However, the player does not stand out due to the dark colours being similar

to the background. This is an unavoidable drawback of a single feature approach, causing

misdetection if the (only) feature detector fails. In (f), Achanta and Süsstrunk (2010)

again shows an almost perfect response, where it highlights the salient object including

the delicate pike on the building. The approach proposed by Achanta and Süsstrunk (2010)

is purely based on perceived colour difference and emphasises this difference. The content

of MSRA, where most salient objects stand out in colour strengthens the performance of

this approach. The spatial cut-off frequency furthermore emphasises objects in the centre

of the image.

The precision/recall plot of the approach proposed by Rosin (2009) suggests that his

method detects most of the salient objects in MSRA but oversegments the objects at the

same time. As a matter of fact, the object in Figure 4.24(a) is correctly detected because

the strong edges of the object with respect to the background yield a good response of

the detector. However, the object is overfitted – this is also the case in (b), where blos-

sum and caulis are highlighted and overfitted. A small region in the bottom left of the

image is highlighted due to the presence of text in this area resulting in a response to the

edge detector. In (c), a similar response is given, where the bird is detected but overseg-

mented. Rosin (2009) highlights the bottom part of the ape’s bucket in (d) with a high

confidence due to the strong edges present at the bucket’s thread and contrast towards

the background. The ape itself is not highlighted due to the homogeneous texture of the

coat and subsequent low edge count. However, the separating region between left arm and

body, creates a peak in the saliency map due to the very strong edge towards the visible
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background in this area. Finally, the images in (e) and (f) show good performance of the

detector. With the edge density measurement actually outperforming Alexe et al. (2010)

and Achanta and Süsstrunk (2010) that fail to highlight the extremities and torso respec-

tively. Overall, the approach proposed by Rosin (2009) shows an acceptable performance

given its simplicity. The recall performance actually outperforms all other approaches but

this stands against poor precision due to oversegmentation. The author suggests address-

ing the oversegmentation by eroding the results with a disk structure. However, this was

not performed in this comparison as it would introduce an additional parameter that has

to be optimised and is difficult to justify given the expected performance increase (Rosin,

2009). Furthermore, small objects or delicate part of objects like the pike in (f) could not

be detected if the map would be systematically eroded.

Based on the precision/recall plot, the proposed approach promises a similar detection

quality to Rosin’s edge density measure with better separation of the salient objects to-

wards the background. On initial inspection what is most striking about the heatmaps

produced by the proposed approach is that there is uniform strong response over the ob-

jects, dropping off quickly at the borders. In contrast, the compared approaches tend to

have highly variable response within a single object. Achanta and Süsstrunk (2010) pro-

pose the use of graph cuts to extract the object’s shape by using the spatial consistency

between nearby strong and weak responses. However, this requires a subsequent higher

level processing stage to usefully segment the object from the background. With the pro-

posed approach the contrast between foreground and background is already very distinct.

Interestingly, this distinctiveness is highly uniform across the object even though blocks

are processed independently from their spatial neighbours. This implies that the approach

is able to correctly identify visual attention at a small scale (blocks) and still provides a

good representation of the object at the macro scale. The object in Figure 4.24(a) is

correctly detected with the entire object uniformly highlighted. A small oversegmentation

causes the object to appear coarser and larger than it actually is. The proposed visual

attention approach identifies the shape of the blossom in (b) almost correctly, yet the deli-

cate contour of the object is oversegmented. However, the proposed approach outperforms

all other compared detectors on this image in both precision and recall. The bird in (c)

is detected but massively oversegmented. The proposed approach fails to detect the left

wingtip of the bird – facing the same issue as the other approaches. Some responses to

waves are present in the produced saliency map as well, causing false positive measure-

ments. (d) shows the saliency map of the ape and its bucket. Here, the proposed approach

fails to detect the shape of the target object while the saliency map reveals that the ob-

ject is massively oversegmented. Additionally, a number of false positives are detected

in the background around the actual object. The player in (e) is detected with a good

accuracy in both precision and recall. The proposed approach detects the entire player

120



CHAPTER 4. LOW-LEVEL FEATURES FOR MARITIME VISUAL ATTENTION

with the exception of his lower leg, which is a significant improvement on the detection

of the torso by Alexe et al. (2010), the detection of only parts of the player’s jersey by

Achanta and Süsstrunk (2010), or by the oversegmented result of Rosin (2009). Finally,

the object in (f) is correctly detected and uniformly highlighted. The proposed approach

shows an acceptable overall performance on MSRA with few misdetections in challenging

images and some oversegmentation. The Bayesian classifier allows objects to be uniformly

highlighted.

4.5.2 Shipspotting Dataset – Maritime Objects

The shipspotting Website (http://www.shipspotting.com, last accessed 2011-11-14) is a

community Website of hobby photographers that are interested in ships and maritime

scenes. Photos are categorised and images from the category Harbour Overview Images

are suitable as testing images for the proposed framework. One hundred images that

contain the desired scenery and represent the viewpoint of a mobile maritime platform

were selected. All images were downscaled to a maximum size of 512 pixels in either width

or height while preserving the aspect ratio. Annotations at pixel level were published by

Albrecht et al. (2011). Here, care was taken to follow an exact definition of saliency. As

the purpose of the proposed framework is the identification of areas of visual attention

that are of relevance for maritime surveillance or pose a possible hazard to the platform,

the following two criteria were used:

1. Object had to be of maritime nature and on the surface of the water.

2. Object is not a fixed landmark that would appear on a map or satellite image.

This, for example, excludes cranes in a cargo harbour as well as lighthouses but will include

buoys or floating platforms.

4.5.2.1 Results and Discussion

The precision/recall plot shown in Figure 4.25 demonstrates that the proposed approach

outperforms Achanta and Süsstrunk (2010), Alexe et al. (2010), and Rosin (2009) in both

precision and recall on the shipspotting dataset. Compared to MSRA, the precision of the

detector proposed by Achanta and Süsstrunk (2010) dropped drastically, while the recall

performance remained constant. This is likely explained by the much lower emphasis
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(a)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

(b)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

(c)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

Figure 4.24: Results for MSRA database (continued on next page).

122



CHAPTER 4. LOW-LEVEL FEATURES FOR MARITIME VISUAL ATTENTION

(d)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

(e)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

(f)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

Figure 4.24: Results for MSRA database (continued from previous page).
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on colour as a distinguishing attribute of maritime objects. A similar change is notable

for Alexe et al. (2010), where the precision declined more than recall performance. Due

to the randomly sampled window approach, their method is more vulnerable to reduced

object sizes that are part of the shipspotting dataset. The approach proposed by Rosin
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Figure 4.25: Precision/Recall plot comparing the performance of the four evaluated al-
gorithms on the shipspotting dataset. The presented algorithms outperforms other algo-
rithms in both precision and recall performance.

(2009) improved performance in terms of both precision and recall when evaluated on the

shipspotting dataset.

Overall, the performance of all detectors except Rosin (2009) dropped. Of these three,

the proposed approach handled the change of the dataset best with the smallest change

in precision and recall due to the low-level features specifically designed to cater for the

maritime scenes. Figure 4.26 shows the response to a number of sample images from

shipspotting, evaluated using the approaches of Alexe et al. (2010), Achanta and Süsstrunk

(2010), and Rosin (2009) compared to ground truth and the proposed approach.

The objectness measurement proposed by Alexe et al. (2010) results in a partial detection

of the maritime construction on the test image shown in Figure 4.26(a). The resulting

saliency map shows a high weighting on the centre-piece of the construction, while the

stilts and truss segments are only peripherally highlighted. The detector fails to identify

the second target on the left side. The image in (b) contains a number of sailing boats

in front of a challenging background. Instead of separating the sailing boats, Alexe et al.

(2010) highlight the entire region with an emphasis on the ships on the right side of the

image due to the more complex shapes in this area. The tugboat in (c) is the most salient

object in this image for their algorithm. While the big ship on the right is partially
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highlighted, the three ships on the left are completely discarded by this detector. Overall,

Alexe et al. (2010) are able to detect dominant objects in the dataset. Smaller objects

are combined into one or missed completely. Again, precision suffers from the window

approach that only provides uniformly distributed weights for each window.

Achanta and Süsstrunk (2010) are able to detect the maritime construction in Figure 4.26(a)

with a good response in precision for the centre-piece, the stilts, and the truss segment. Ad-

ditionally, parts of the ship on the left side are detected as well, due to colour-dissimilarity

of these areas compared to the surrounding region. The minimal colour difference between

the sailing boats and the background in (b) causes the detector to miss the target objects.

The position of the boats in the vertical centre of the image causes the centre-surround

window that is utilised to extract the surrounding region to include almost all of the grey

sky. This corresponds to the colour of the sails resulting in a low colour difference and

subsequent misdetection of the boats. On the other hand, the colour difference approach

enables Achanta and Süsstrunk (2010) to detect almost all target objects in (c), where

the tug boat in the centre is emphasised because of the big difference in colour. However,

the third ship from the left is hardly visible as the surrounding window at this position

includes all other ships of similar colour, resulting in a low dissimilarity. In contrast to

the objectness measure, Achanta and Süsstrunk (2010) have no issues with small objects

if they are distinctive in their respective regions. However, objects that are not, are likely

to be missed either partially or completely.

The edge density based detector proposed by Rosin (2009) is able to identify all objects

in the test images of Figure 4.26. In (a), the maritime structure in the centre of the

image is detected and the entire ship on the left, which was missed by Alexe et al. (2010)

and Achanta and Süsstrunk (2010), is detected. However, both targets are significantly

overfitted, with the background partly highlighted. In (b), Rosin (2009) detects a false

positive in the bottom left corner of the image. Apart from that, the saling boats are

correctly identified due to their distinct edge-separation towards the background. The

mostly uni-coloured background in (c) favours Rosin’s approach as it causes distinct edges

between the background and objects. The large ship on the right and the tugboat are

highly structured causing a high edge count and subsequently dominate the resulting

saliency map. However, the map is overlaid with false positives. As expected from the

high recall rate, the approach proposed by Rosin (2009) is able to direct attention to all

objects in the sample images. However, the objects are significantly overfitted and large

regions of false positives are detected.

The proposed approach detects the maritime platform and the ship in Figure 4.26(a).

While the platform is oversegmented slightly, the detected areas are uniformly highlighted,
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suggesting equal importance has been given to each part of the platform and ship. In (b),

the detection of the sailing ships is similar to Alexe et al. (2010) and Rosin (2009). While

Alexe et al. only detect the flock of ships on the right, Rosin and the proposed approach

also identify the sailing ship in the left part of the image. In comparison to Rosin, the

proposed approach provides a better segmentation, uniformly highlighting the detected

regions with well-defined borders. However, a high number of false positives are detected

in the bottom part of the image, where sea is present, significantly affecting the precision

of the detector in this image. All ships in (c) are detected by the proposed approach,

even though the detector oversegments the ships on the left towards the sea and sky

background significantly. Overall, the proposed approach is able to detect all maritime

objects in the sample images. While some objects are segmented with good precision,

others are overfitted and a number of false positives are created. This is mostly in regions

with a maritime background – i.e. regions of sea, which will be addressed in the next

Chapter.

4.6 Summary

The target-centric image stabilisation process presented in Chapter 3 had to be initialised

manually by selecting the target object. This shortcoming has been addressed in this chap-

ter and a visual attention framework has been proposed that can be used to automatically

identify and direct visual attention to areas of interest in maritime imagery.

The presented framework provides a method to fuse various low-level features and distance

measurements (locality cues) in a Bayesian network and compute the probability of visual

attention in a region of the image. The Bayesian formulation allows for the fusion of

multiple features such that the weaknesses of some features can be successfully offset by

the strengths of others. Thus the brittleness of using a single feature (such as Achanta and

Süsstrunk (2010) and Rosin (2009)) can be compensated for by fusing multiple features

that complement each other.

The low-level features can be of any kind, however, the presented features have been

selected with the maritime domain in mind and to respond to characteristics of maritime

objects. The selected features were introduced and positive and negative responses to

sample images were shown and discussed for each feature and cue.

Experimental evaluation showed that the proposed framework gives good response with

respect to accurate ground truth images. The framework is tested on the community
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(a)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

(b)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

(c)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

Figure 4.26: Results from shipspotting database.
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standard MSRA dataset as well as on a domain specific dataset consisting of maritime

imagery. A comparison with three different state-of-the-art detectors showed that the

approach outperforms existing techniques in the described environment.
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Chapter 5

Segmentation and Feature

Selection for Maritime Visual

Attention

The previous chapter introduced a framework that allowed fusion of domain specific low-

level features using three different locality cues. The purpose of the framework is to

be able to identify potential areas of interest in maritime imagery. It showed acceptable

performance on a standard dataset and outperformed state-of-the-art detectors on domain

specific imagery. Initial manual evaluation of the features ensured that they responded

well to maritime objects.

This chapter seeks to further improve upon the performance of the proposed framework

by introducing features extracted from more sophisticated, classifier-based detectors. An

assistive technique that is often employed to improve classification performance is the

prior segmentation into foreground and background. This chapter addresses a domain

specific background segmentation method for maritime applications via classification of

sea, sky and “other”. Although the actual recognition of the low-level characteristics is

essential to the detection of maritime objects, a prior segmentation into potential target

and non-target regions helps reduce the search space, limits the number of false positives

detected and thus increases classification accuracy. Furthermore, a feature selection pro-

cess is integrated into the visual attention framework that allows concentrating on the

most relevant features before fusion and therefore reduce computational cost for analysing

irrelevant features.

The chapter is organised as follows: a maritime specific background segmentation method

that uses colour and gradient orientation is proposed and evaluated in Section 5.1. The

features proposed in the previous chapter together with the background segmentation are

run through a feature selection process as described in Section 5.2 and eventually com-

bined using a Bayesian Network. Experiments are performed and the proposed framework

is quantitatively evaluated in Section 5.3. The chapter concludes with a summary in
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Feature Selection and Naive Bayes Classification (Section 5.2)

Naive Bayes Classifier

Right 
Angles

Frequency Texture Colour
Color Gradient

Local Center-SurroundGlobal

Low-Level Feature Extraction (Chapter 4.3)

Detector Cues (Chapter 4.2)

Sea/Sky Segmentation
(Section 5.1)

Gaussian Pyramidal Scales (Chapter 4.1)(b)

(c)

(d)

(e)

(f)

(a) Input Image

(g) Attention Map

Edges

Figure 5.1: Maritime Visual Attention Framework. From the input image (a), a
number of pyramidal scales are created (b). Low-level features are then extracted from
every scale (c) and evaluated using three different locality cues resulting in a probability
map per scale, feature, and locality cue (d). Simultaneously a sky/sea segmentation based
on colour and orientation of gradients of the input image is performed (e), also resulting
in probability maps for each of the classes. All maps are then combined using a Näıve
Bayes approach (f), resulting in the final attention map (g).
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Section 5.4.

5.1 Maritime Background Segmentation

Image segmentation is a technique that is used in computer vision to partition an image

into regions with similar appearance or context. Compared to the pixel-wise representation

of the image, the segmented representation allows a more abstract description of the image

content (Felzenszwalb and Huttenlocher, 2004; Zhang et al., 2008). While the previous

chapter introduced measurements that described the appearance of maritime objects based

on low-level features (pixel level), this section proposes a segmentation of the image into

potential target and non-target regions (foreground and background respectively) based on

a-priori scene knowledge. In maritime scenarios, the two dominant non-target regions are

sea and sky. The desired segmentation into the two non-target background regions sea and

sky as well as the potential target foreground region is shown in Figure 5.2. This section

(a) Input image (b) Desired segmentation

Figure 5.2: Sample image and desired segmentation into regions of sky (red), sea (green),
and foreground (blue).

proposes the use of a Bayes classifier that is used to detect the two classes of background

and segments the image accordingly. The classifier is trained once on a learning set and

the learned parameters are saved so that the classifier can be integrated into the proposed

visual attention framework without the need for retraining.

A number of sample tiles depicting regions of sea, sky, and random foreground are depicted

in Figure 5.3. The tiles were extracted from images from the PASCAL Visual Object

Classes (VOC) Challenge (Everingham et al., 2010). This thesis argues that the colours

of both sea and sky are distinctive within the image and can thus be used for colour

based classification. Furthermore, the image gradient of waves, even though they are

randomly occurring and of arbitrary shape, have dominant directions. Based on these

assumptions, a descriptor is created that consists of a histogram of colour and orientation

of the local gradient. While assumptions can be made for the background in maritime
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(a) Sky (b) Sea (c) Foreground

Figure 5.3: Sample images of classes sky, sea, and foreground.

scenes, this is not true for foreground. The purpose of the visual attention framework

is to detect any maritime object and a detailed description would exclude objects with

unknown appearance. The pursued approach is therefore to find an acceptable description

of background and detect potential target regions (foreground) as everything which is

not background. In the following, the colour attributes of background regions containing

portions of sea and sky are described and the unique shape characteristics of the classes are

explored. Both properties are combined in a descriptor that is computed for each block of

the image. A Bayes classifier is then utilised to compute probability maps for each of the

three classes. The maps are eventually fed into the maritime visual attention framework

as additional feature cues for feature selection and final classification as depicted in the

framework overview in Figure 5.1.

5.1.1 Colour

Amongst others, the colour feature was used in the previous section to identify potential

regions of interest by computing the Euclidean distance in CIELAB space and unique re-

gions by the perceived difference in colour. While the CIELAB model is ideally suited for

computing colour differences as the outcome of the Euclidean distance is scalar, describing

a specific colour requires at least two channels – plus an additional channel for luminance,

if desired. As established in Section 2.7, the HSV colour model also uses two channels

to encode colour information – plus an additional channel for luminance, if desired. One

channel (hue) is used to hold the base colour, while another is used to encode the relative

brightness of the primary colour (saturation). HSV is a cylindrical colour model with hue

represented as the phase around the vertical axis ranging from red (0◦) through green

(120◦), blue (240◦), and back to red (360◦). As will be demonstrated, the assumption that
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sea and sky independently consist of nuances of a unique base colour can be made. Eval-

uating only the phase of the hue-channel and neglecting saturation allows the description

of the colour of sea and sky to be based purely on their base colour, allows tolerance for

nuances, and reduces the dimensionality of the descriptor.

(a) Sky (b) Sea (c) Foreground

Figure 5.4: Hue channel of images of classes Sky, Foreground, and Sea.

5.1.1.1 Colour of Sky

The perceived colour of the sky during daylight depends on the solar spectrum and the

wavelength dependence of the scattering (Bohren and Fraser, 1985; Smith, 2005). While

the sun emits a wide spectrum of radiation, the earth’s atmosphere functions as a filter

and absorbs much of it. Yet, the atmosphere is not homogeneous and absorbs different

wavelengths differently. Furthermore the position of the sun relative to the horizon deter-

mines the distance the rays have to travel through the atmosphere and how much they

get absorbed. This is especially critical during dusk and dawn. The time of operation for

the surveillance platform, for which the vision system is designed, is during daylight time;

it is thus valid to assume the sky to appear in nuances of blue.

5.1.1.2 Colour of Sea

The absorption spectrum of water has a minimum at 410nm (violet–blue) and peaks

above 700nm (red) (Braun and Smirnov, 1993; Pope and Fry, 1997). While water in small

quantities, e.g. in a bottle or glass, is not substantially affected and appears to be clear,

133



CHAPTER 5. SEGMENTATION & FEATURE SELECTION FOR MARITIME VIS. ATTN

water in larger quantities, i.e. ocean, appears to be of blue colour. This again justifies the

assumption that a primary colour can be used to identify areas of sea in images.

5.1.1.3 Colour of Foreground

Foreground as the potential target region, on the other hand, is a class that contains

everything that is not of the aforementioned background classes. Therefore, the primary

colour of random images not containing any parts of sea or sky must be evaluated as a

negative class. This approach – to select a large set of images that represent a negative

class – is quite commonly used, such as in highly successful face detection algorithm of

Viola and Jones (2001). The idea is to choose a large variety of non-sea and non-sky

images (or sub-images) that will effectively “map out” the space of images that are not

sea or sky. Hence the set is not limited to maritime objects but contains images of any

type of scene, object or part thereof.

5.1.1.4 Analysis

Figure 5.4 shows the hue channel for the sample images of each class: sea, sky, and

foreground. The corresponding phase histogram is depicted in Figure 5.5. The histogram,

denoted as dhue, is calculated for the sample images with 20◦ separation, resulting in 18

bins for the hue-channel. As can be seen from (a) and (b), the classes sky and sea have

a dominant phase of the hue channel around 200◦–240◦, which corresponds to a primary

colour of violet–blue, as expected. While a variety of colour components are present in

class foreground, a dominance between approximately 0◦–90◦ can be observed. The reason

for this is that the majority of images from the class foreground contain natural scenes, for

which Párraga et al. (1998) found that their spectrum has a dominance for wavelengths

between 500− 600nm, which corresponds to a range between red and green or a phase of

approximately 0◦ − 120◦ in the hue channel.
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(a) Sky (b) Sea (c) Foreground

Figure 5.5: Hue histogram, dhue, visualising the distribution of the primary colour for
classes sky, sea, and foreground.
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5.1.2 Gradient

The edge feature described in the previous chapter makes use of the Canny edge detector

to obtain the edge image from the intensity image. The orientation is of no interest for

the edge feature, and the presence of edges is used only to identity possible target objects

within the image. However, as described in Section 4.3.1, waves in an image respond

well to an edge detector, as can be seen on a number of images (e.g. Figures 4.5(b),

4.6(b), 4.7(e), or 4.10(b)). What was described as noise and an unwanted characteristic

previously, will be investigated as a possible feature of the background in this section.

The local image gradient is computed from the intensity image, I, using the Sobel operator

following Equation (4.18a) and (4.18b):

Gx = (1, 2, 1)T ∗
(
(1, 0,−1) ∗ I

)
(5.1a)

and

Gy = (1, 0,−1)T ∗
(
(1, 2, 1) ∗ I

)
. (5.1b)

A map of the local gradient is then created by computing the orientation at pixel-level as

φxy = atan2 (Gy,Gx) . (5.1c)

The atan2 operator is used instead of tan−1 to compute the orientation because it maps

to a full circle, φxy → 0◦. . . 360◦, instead of φxy → −90◦· · ·+ 90◦.

(a) Sky (b) Sea (c) Foreground

Figure 5.6: For the sample images from Figure 5.3, the weighted gradient is shown as
(a)–(c) for classes Sky, Foreground, and Sea respectively.

Figure 5.6 shows the gradient for the sample images of each class: sea, sky, and foreground.
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A detailed investigation was performed using a weighted vote histogram of orientations.

For this, each sample is weighted by the magnitude of the local gradient as suggested by

Lowe (2004) and Dalal and Triggs (2005) before being added to the appropriate bin of the

histogram. This way, a gradient with a higher intensity is weighted higher than a gradient

with a lower intensity. The magnitude is computed as

ψxy =

√
(Gx)2 + (Gy)

2. (5.2)

Lowe (2004) used 36 bins with a 10◦ separation to describe local features. However as

the purpose here is not to create an identifying descriptor but to identify dominating

orientations, a separation of 20◦ is used to allow some variation. This also improves the

compactness of the descriptor size. The resulting weighted histogram is denoted as dhog.

5.1.2.1 Analysis

Figure 5.7 depicts the weighted histograms of gradients for the sample images of the three

classes. For class sea, peaks at 90◦ and 270◦ (with some variation) are observable. This

corresponds to a dominance of the gradient in the horizontal direction. The histogram
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Figure 5.7: Gradient histogram, dhog

for foreground has four well defined peaks representing horizontal and vertical edges in

the image. On closer inspection, it becomes clear that these directions are caused by the

shape of the objects. This is in accordance with the findings of the right angle detector

described in Section 4.3.1, which is based on the assumption that man-made objects have

a tendency for vertical and horizontal edges. With sky the shape of the histogram is less

clear cut and in fact does not follow a meaningful pattern. Note that the 180◦-ambiguity

is observable on the gradient histograms for classes sea and foreground (Figure 5.7(b)

and (c)) while for class sky, the gradient histogram has a slightly higher magnitude for

180◦. . . 360◦ than for 0◦. . . 180◦ (Figure 5.7(a)) due to the subtile gradient of the sky. It

is therefore important to utilise the full histogram for the descriptor.
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5.1.3 Descriptor and Classification

The hue histogram, dhue, and the weighted histogram of gradients, dhog, are separately

normalised such that dhue → 0 . . . 1 and dhog → 0 . . . 1. They are then combined in a single

descriptor with 2 · 18 = 36 dimensions as shown in Figure 5.8.

d =

(
dhue

maxdhue
,

dhog
maxdhog

)
. (5.3)

Images containing scenes of sea and sky as well as random images as negative training

samples were manually extracted from the PASCAL Visual Object Classes (VOC) Chal-

lenge (Everingham et al., 2010). Images from the VOC dataset were chosen as a learning

set so that the proposed target segmentation was trained with no relation to the global

test data. The classes were balanced in terms of having equal numbers of samples for each

class to avoid any bias and only parts of the images that contained scenes relevant to the

classes were used.

0 pi 2pi 0 pi 2pi0 pi 2pi 0 pi 2pi0 180 360o o o 0 180 360o o o
0 pi 2pi 0 pi 2pi0 pi 2pi 0 pi 2pi0 180 360o o o 0 180 360o o o

(a) Class sky (b) Class sea

0 pi 2pi 0 pi 2pi0 180 360o o o 0 180 360o o o

(c) Class foreground

Figure 5.8: Descriptors for classes sky, sea, and foreground. The descriptors consist of the
hue histogram (left) and orientation histogram (right).

Descriptors were then computed on a block basis for each image, resulting in a total of

approximately 16,000 instances per class. To be consistent with the features introduced

in the previous chapter, a block size of 8× 8 was chosen. A correlation analysis (see also

Section 4.4) of the descriptors computed for the test dataset (Figure 5.9) shows no obvious

correlation between the dimensions of the colour descriptor, dhue. The descriptor based

on the orientation of gradients, dhog, shows a minor widening of the main diagonal due

to overlaps in adjacent orientations; as well as a diamond shaped correlation covering the

bottom right 50% of the diagram which is due to the 180◦ phase equality. However, it is

not significant enough to justify discarding these dimensions. Independence of dimensions
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Figure 5.9: Correlation of the descriptor, d = (dhue, dhog).

is advantageous because it allows the use of a Näıve Bayes approach for classification (see

Section 2.6).

The structure of the Bayesian network used for the Näıve Bayes approach is depicted

in Figure 5.10. Training and evaluation of the classifier is similar to that described in

Section 4.4.

S

d1 d2 d3 d36...

Figure 5.10: Baysian network of the sea/sky classifier.

Later in this chapter, the results of the sea/sky-classifier are fed into a feature selection

process of the visual attention framework. Henceforth, the probabilities will be denoted

as Ysky, Ysea, and Yfg:

Ysea = P (S=sea | d1, d2, . . . , d36) (5.4a)

Ysky = P (S=sky | d1, d2, . . . , d36) (5.4b)

Yfg = P (S= fg | d1, d2, . . . , d36) (5.4c)

138



CHAPTER 5. SEGMENTATION & FEATURE SELECTION FOR MARITIME VIS. ATTN

Learning Set shipspotting

Sea Sky Fg Sea Sky Fg

Precision 0.906 0.780 0.842 0.852 0.738 0.691

Recall 0.806 0.923 0.786 0.551 0.964 0.620

F1-Score 0.853 0.846 0.813 0.670 0.837 0.653

F2-Score 0.824 0.890 0.797 0.593 0.908 0.633

Table 5.1: Performance of the sea/sky classifier.

5.1.4 Evaluation

The proposed sea/sky-classifier is intended to be trained just once and then be applied to

any dataset of interest. It is first evaluated on the learning set using cross-validation and

then tested on the shipspotting dataset. The learning set, extracted from the PASCAL

VOC dataset, is divided into ten sets for ten-fold cross-validation with each set containing

90% training and 10% testing data, while the shipspotting dataset is used for testing only.

Following the evaluation criterion defined in Section 2.8, the values for precision, recall, and

F-Scores are then computed for each class and dataset, see Table 5.1. A precision/recall

plot compiled per class and dataset is depicted in Figure 5.11.

The classifier faces an average drop of performance of approximately 25% for class sea

and 20% for class foreground when evaluated on the shipspotting dataset. The overall

performance for class sky, however, remains constant. In fact, the precision of the clas-

sifier dropped from 0.780 to 0.738 for this class but the recall increased from 0.923 to

0.964, which yields a decrease in F1 and increase in the recall emphasised F2-score. The

precision/recall plot in Figure 5.11 shows an almost identical curve for sky (green). This

consistency in performance on unseen test data is not surprising as the descriptor com-

puted for class sky (Figure 5.8(a)) shows a very distinct peak for a single primary colour

and high variance in orientation, allowing for accurate classification. This is due to the

unique primary colour of sky as discussed earlier in this chapter.

The primary colour of class sea is slightly more diverse compared to sky (Figure 5.5(a) and

(b)), yielding a lower precision for classification on the shipspotting dataset. While the

gradient of this class has a unique shape on the learning set (Figure 5.7(b)) due to dominant

horizontal lines in waves. However, horizontal lines are also observed in images of class

foreground (Figure 5.7(c)). This is especially the case for images from the shipspotting

dataset as established earlier in Section 4.3.1, where a detector sensitive to horizontal and

vertical lines was employed to detect man-made objects. Overall, precision of class sea

dropped only slightly, indicating that regions classified as sea in the shipspotting dataset
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are indeed of the predicted class. The recall rate of this class, however, dropped from

0.806 to 0.551, indicating that not all parts of sea in that dataset were actually detected

as sea. On closer inspection it becomes clear that this is due to the higher variation of

images in this class in the shipspotting dataset. However, because class sea did not suffer

any loss in precision, parts that are misclassified are therefore classified as foreground at

worst.
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(a) Learning Set (b) shipspotting dataset

Figure 5.11: Precision/Recall plot of the Sea/Sky Classifier.

When evaluating the sea/sky classifier for class foreground on the shipspotting dataset,

the drop in recall and precision is not as severe as for class sea. The recall of foreground

dopped from 0.786 to 0.620, indicating that less areas of foreground are actually detected

compared to the learning set. On the same issue, the drop in precision from 0.842 to

0.691 indicates that the accuracy for the detected areas in the shipspotting dataset is

lower than on the learning set. As mentioned in the previous paragraph, the performance

for class sky remained almost constant, concluding that regions of sea get classified as

foreground and vice versa. One difference between sea and foreground is the shape of the

weighted edge histogram (Figure 5.7 (b) and(c)). While class sea has clear peaks at 90◦

and 270◦, the edges for foreground are more diverse. A closer inspection of the images in

shipspotting reveals that some images actually show flat sea without the presence of any

edges – no images of this type are in the learning set, yielding a misdetection. However, it

is not practical to train the classifier on images with no waves as it would mean learning

a histogram of an edge image with very weak edges, which would not contribute to the

descriptor.

Overall, the results of the sea/sky classifier on the shipspotting dataset are satisfactory

given that it is pre-trained on an separate learning set. The classifier is intended to
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be used as supplementary to the visual attention framework, which allows variations in

performance as it does for all other features as well.

Original Image Class Sky Class Sea Class Foreground

(a)

(b)

(c)

(d)

(e)

Figure 5.12: Probability maps for classes sky, sea, and foreground as produced by the
sea/sky classifier, indicating good classification results on sample images from shipspotting
dataset.

Classification results for sample images from the shipspotting dataset are depicted in Fig-

ure 5.12. The image in (a) shows a good overall classifier performance. Some parts of sea

get classified as sky however. This happens only close to the horizon where there are no

edges observable due to the distance towards the waves. The detector therefore does not

have any edge information for these blocks and classifies based on colour, where the pri-

mary colour of sea and sky is similar (Compare Figure 5.5(a) and (b)). Class Foreground

in this image is correctly detected. The classifier shows a good performance for class sky

for the image in (b). The masts in the image are correctly discarded from class sky. How-

ever, they get misclassified as sea instead of being assigned to class foreground. The rest
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of the image is correctly classified. (c) shows an image which is almost entirely correctly

classified. Class sky is, except some few scattered blocks, detected correctly. Foreground

is correctly classified including the delicate cranes. In image (d), class sky is assigned a

number of false positives on the mountain on the left side of the image. Again, parts

of sea in the horizon region get classified as sky due to missing edges. Apart from this,

detection towards class sea is accurate and performance of class foreground is satisfactory

– except for the mountain as mentioned earlier. (e) yields a good result of the detector

with sky correctly classified as sky with only a minor number of false positives within sea.

Foreground is correctly detected where only some coastal objects in the far distant are

missed. Sea is correctly detected except some parts of the masts and antennas of the ships

getting classified as sea due to the strong presence of horizontal edges in this structure.

5.2 Feature Selection and Classification

The low-level features introduced in Chapter 4 were designed empirically. Therefore this

chapter will perform a formal assessment of their contributing strength because they can

contain redundant or conflicting information given the class. The Information Gain Crite-

rion (InfoGain) can be used to estimate the contributing factor of a feature in classification

tasks (Kullback and Leibler, 1951; Russell and Norvig, 2010). Estimating the contributing

factor allows the ranking of the features and the disregarding of irrelevant features.

The InfoGain criterion makes use of entropy as introduced by Shannon and Weaver (1962).

Let Y = {Y1, Y2, . . . , YN} be a random set of length N with P (Yn) representing the

probability of each set member Yn, then the entropy, H, of the set is defined as

H(Y ) = −
N∑

n=1

P (Yn) logP (Yn). (5.5)

InfoGain is then defined as the logarithmic ratio of the entropy of the set member Yk to

the entire set,

IG(Yk) = log
H(Y )

H(Yk)
, (5.6)

which can be interpreted as the gained information with respect to the specific set member.

Table 5.2 ranks all features using the InfoGain criterion. No strong prevalence for a specific

low-feature or locality cue is observable, but on closer inspection it can be seen that three

of the top four features are edge based features, suggesting the importance of edges for
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visual attention. This corroborates the findings of Rosin (2009) and Alexe et al. (2010),

which are based entirely or partly on edge density using either a local or a regional density

measure (as discussed in Chapter 2) – their measurements correspond approximately to

YL
E and YS

E respectively.

Another notable finding of the InfoGain ranking is that the centre-surround colour feature,

YS
C , which is the foundation of the saliency approach proposed by Achanta and Süsstrunk

(2010) (see Chapter 2 for a detailed discussion), is clearly outperformed by other features.

At first, this finding is contrary to the results reported by Achanta and Süsstrunk (2010)

and estimated in Section 4.5 of this thesis, where their approach outperforms all other

compared algorithms on the MSRA database. However, when comparing sample images

of both dataset (e.g. Figure 4.22), it becomes clear that the shipspotting dataset has less

variety in colour than the MSRA dataset, for which their algorithm was designed.

# Gain Feature

1. 0.163 YG
E Global Edge Feature

2. 0.149 YG
R Global Right Angle Feature

3. 0.149 YL
F Local Frequency Feature

4. 0.146 YL
E Local Edge Feature

5. 0.141 YL
T Local Textural Feature

6. 0.127 YS
E Centre-surround Edge Feature

7. 0.127 YS
F Centre-surround Frequency Feature

8. 0.122 Yfg Segmentation: Foreground

9. 0.120 YS
C Centre-surround Colour Feature

10. 0.104 YS
T Centre-surround Textural Feature

11. 0.101 YL
R Local Right Angle Feature

12. 0.086 YG
F Global Frequency Feature

13. 0.084 YS
R Centre-surround Right Angle Feature

14. 0.080 Ysky Segmentation: Sky

15. 0.077 YL
T Local Textural Feature

16. 0.031 YG
C Global Colour Feature

17. 0.020 YL
C Local Colour Feature

18. 0.003 Ysea Segmentation: Sea

Table 5.2: Features ranked by InfoGain criterion for the shipspotting dataset.

Note that the result for classification into sea or sky with respect to class sea is expected,

as the specific sea and sky features are used in a three-class classification problem and

therefore redundant because Ysea = 1−Yfg −Ysky.

To estimate the optimum number of features, a learning curve is plotted using the F2
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Figure 5.13: Learning curve showing the performance of the framework given features used
for classification from the ranking (see Table 5.2). The curve shows that the performance
peaks when using the first nine features.

measure for all the features to carefully select the optimal number of features needed for

classification. This is important to achieve best performance while minimising the risk of

overfitting the classifier. The F2 measurement is chosen as it combines precision and recall

but puts more emphasis on recall than precision as that is what the classifier should be

optimised for. From the learning curve depicted in Figure 5.13, a peak can be observed

when using the first nine features. Using more than the first nine features does not increase

the classification accuracy based on the F2 measure. The used features are listed in the

top part of Table 5.2.

Based on the feature selection process, an updated Bayesian network is created for Näıve

Bayes classification using the best nine features as depicted in Figure 5.14.

Centre-surround CueLocal CueGlobal Cue

GYE
GYR

LYF
LYE

LYT
SYE

SYF
SYC

FGY

Segmentation

X

Figure 5.14: Näıve Bayes Network used for classification.
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Note that Yfg is actually the probability P (S = fg | d1, d2, . . . , dN ) from Equation (5.4a).

In other words, the probability is reinterpreted as a continuously valued feature. Whilst it

would have been possible to integrate the entire sea/sky Baysian classifier as a sub network

underneath X, feature selection analysis indicated that the probability information for

classes sea and sky is of less use than foreground. Hence, in the interest of a simpler

network, Yfg is treated as a feature by itself.

The learning and evaluation process of the Näıve Bayes classifier is as described in Sec-

tion 4.4 and 5.1.3.

5.3 Experiments

The proposed approach is compared to the same algorithms as in Chapter 4 (repeated

here for the sake of completeness), as well as the approach proposed in Chapter 4:

• Achanta and Süsstrunk (2010) because it is amongst the most recent saliency detec-

tors and has been shown to be highly effective. The authors demonstrated that their

proposed method outperforms the works of Itti et al. (1998), Harel et al. (2007), and

Hou and Zhang (2007).

• Rosin (2009) due to its simple and parameterless approach which outperforms Itti

et al. (1998) and Ma and Zhang (2003), and can keep up with Liu et al. (2007).

Although Rosin recommends performing erosion to reduce the overfitting produced

by the algorithm, it is evaluated based on the raw results to avoid introducing an

additional parameter that must be optimised.

• Alexe et al. (2010) because their objectness measure can be used to approach the

problem of visual attention in a unconventional way. The authors showed that their

approach outperforms Itti et al. (1998) and Hou and Zhang (2007).

• the earlier version of the framework as proposed in Chapter 4.

The resulting maps are normalised to range from 0 . . . 1 and evaluated according to the clas-

sification criterion introduced in Section 2.8 and the results are shown in precision/recall

plots.

The precision/recall plot in Figure 5.15 shows that the proposed approach outperforms

all other methods, including the earlier version proposed in Chapter 4 in both precision
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Figure 5.15: Precision/Recall plot comparing the performance of the four evaluated al-
gorithms. The presented algorithms outperforms other algorithms in both precision and
recall performance.

and recall. The methods of Achanta and Süsstrunk (2010), Rosin (2009), and Alexe

et al. (2010) remain unchanged. The difference between the proposed version for visual

attention and the earlier version is the incorporation of a sea/sky classifier for background

segmentation as well as the selective use of the available features in the Baysian network.

The evaluation is performed on the same shipspotting dataset as in Chapter 4, responses

to sample images are depicted in Figure 5.16. Evaluation on MSRA was purposely omitted

due to the domain specific nature of the proposed background segmentation technique,

which makes tests on a generic dataset not feasible.

The objectness measure proposed by Alexe et al. (2010) yields a consistent detection of

most objects in the test set. While their approach typically puts emphasis on the dominant

object in the image due to the uniform window approach, it correctly separates multiple

objects in some images. In Figure 5.16(a), Alexe et al. (2010) detect the dominant ship

on the right with a good recall and acceptable precision. Merely the delicate shape of

the superstructure is not correctly highlighted. However, the smaller ship on the left

side is weighted much lower than the ship on the right. In fact, the weighting of this

area and the connecting region of false positives have almost the same weight. The false

positives are caused by the window approach: if a sampled window covers both objects,

it yields a high objectness measure. But due to the uniform distribution of weights, the

entire window and subsequently the empty space between the ships gets highlighted as

well. The images in (b) and (c) have been discussed earlier in Chapter 4 when they

were compared in Figure 4.26(b) and (c). In (d), the oversegmentation by Alexe et al.

(2010) is not as severe. However, not all parts of the two ships are equally weighted. The
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superstructure of the ship on the left is not highlighted, so is the bow of the ship on the

right. The image in (e) reveals a different problem of the approach. Small objects such

as the boat right of the cruise ship are not easily detected. Interestingly the boat on

the left is detected, even though no apparent difference between the two boats compared

to their respective surrounding region is observable. The entire horizon is highlighted as

well, for the same reasons as established for (a). The multitude of ships in (f) challenges

the window approach. Because the probability of a window containing multiple objects

is much higher, more windows get assigned a high objectness measure, which again gets

uniformly distributed over the entire window region, yielding a drastic oversegmentation

of the image.

A variable performance is produced by the approaches proposed by Achanta and Süsstrunk

(2010) on the shipspotting dataset. In (a), both ships are reliably detected with acceptable

performance and no false positives. The saliency map, however, is undersegmented and

the borders of the objects are not highlighted. The performance of Achanta and Süsstrunk

(2010) in the images depicted in (b) and (c) has been discussed in Section 4.5.2.1. In (d),

the ship on the left is not detected and only the aft of the ship on the right is highlighted.

Failure to detect the ship on the left is due to insignificant difference between the ship

and the surrounding window mean, which is made up of half sky and half sea, pushing

the mean colour vector towards the colour of the target object. The red ship on the right

has a significantly different colour than the rest of the image. However, only parts of it

get highlighted by Achanta and Süsstrunk (2010). This is due to the low cut-off of the

surrounding window at this position of the image. When comparing the bow of the ship,

the window includes almost the entire ship, shifting the mean colour vector of the window

towards the colour of the ship. The area subsequently does not get highlighted. The

images in (e) and (f) are challenging for Achanta and Süsstrunk (2010) as the targets do

not differ by much in perceived colour. Only the small boat right of the ship in (e) is

detected as the most salient object of the image. Achanta and Süsstrunk (2010) generates

mostly noise for the rest of these two images.

The edge density measure proposed by Rosin (2009) is a reliable detector on the shipspot-

ting dataset. Almost all objects are detected even though the detector oversegments

significantly. Erosion techniques that were suggested as a possible solution to this issue by

the author were not performed as target objects in the shipspotting dataset are typically

very small. A systematical erosion of the result map would risk the detection of small

objects and delicate parts thereof. In (a), both ships are detected by Rosin (2009), how-

ever, the ship on the right side is weighted higher than the one on the left. The detector

oversegments but no false positives are detected elsewhere in the image. The images in (b)

and (c) have been discussed earlier in Section 4.5.2.1. Rosin (2009) detects the two ships
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in (d) with equal weight and does not emphasise one over the other. Only the borders

and the hull of the ships that do not have a strong presence of edges are less highlighted

than the rest of the targets. In (e), Rosin (2009) highlights four components in the image.

While the lighthouse in the left of the image is a false positive given the definition of

maritime visual attention, Rosin (2009) is the only detector – including the proposed one

– that is able to detect all targets in this image. The uni-coloured background yields a

strong contrast towards the two small boats favouring the edge based approach. While

a number of the ships are detected, a high region of false positives are generated in (f).

In this particular image, eroding the resulting map might have reduced the false positive

rate but also puts at risk the detection of the ships that are very small in size.

The proposed detector for maritime visual attention builds upon the approach described

in Chapter 4. The response map of the detector highlights both ships in (a) uniformly

and with equal weight. The recall of the detector is very good, only it oversegments

slightly towards the bottom for the ship on the right and does not detect the correct

contour of the superstructure. However, no false positives are detected in the image

resulting in a good overall performance. The image in (b) was previously evaluated by the

approach proposed in Chapter 4 – see Figure 4.26(b) and Section 4.5.2.1 for a discussion.

There, the sailing boats were detected; however, the image was oversegmented with a high

number of false positive regions, mostly at the bottom of the image, where sea is present.

The proposed detector correctly discarded these regions using the incorporated sea/sky

detector, resulting in a map with good precision and no false positives. Some of the smaller

sailing boats are joined into one object however. The image in (c) has been evaluated

previously with the approach proposed in Chapter 4 as well. Figure 4.26(c) shows that the

detector yielded acceptable recall, detecting all objects – with the exception of a small part

in the centre of the big ship on the right side of the image. However, the attention image

was overlaid with a significant number of false positive regions. Furthermore, the detector

failed to separate the individual ships. The image in (b) on the other hand, shows the

three ships on the left separated as individual objects. A number of false positive regions

in the bottom of the image that were present in Figure 4.26(c) have also been eliminated

due to the sea/sky detector in the proposed approach. The image in (d) shows good recall

performance detecting both ships while slightly overfitting the targets. The targets are,

however, uniformly highlighted. In (e) the proposed approach detects the cruise ship and

the boat to its right. However, the small boat on the left side of the cruise ship is not

detected. Instead, the lighthouse on the left side of the image is highlighted, which as

mentioned earlier is not a target given the definition of maritime visual attention and has

to be treated as a false positive. Almost all ships in (f) are detected by the proposed

detector. Some targets that are close together are joined in the resulting attention map.

While the targets are slightly oversegmented in the joined map, no false positive objects
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are detected.

5.4 Summary

This chapter extended the maritime visual attention framework developed in the pre-

vious chapter by integrating a sea/sky classifier into the visual attention detection and

eliminating features that play a minimal role in detection accuracy.

The chapter began with a discussion about image background segmentation and its us-

ability to improve classifier performance by reducing the number of false positives. It was

established that the dominant background in maritime scenarios is sea and sky. Based

on this, a three class classifier that computes the probability of each block of the image

belonging to classes sea, sky, or foreground was then proposed. The classifier makes use

of the dominant primary colour of sea and sky – information available from the hue chan-

nel of the HSV colour model. It further utilises a histogram of orientations built from a

weighted edge image, used to detect the dominating horizontal orientation of waves for

class sea. The classifier was trained on publicly available images containing only parts of

sea, sky, as well as random images for class foreground. The performance of the sea/sky

classifier was evaluated using cross-validation. It was then shown that it can be applied

to the shipspotting dataset with satisfactory performance without the need for retraining,

which is important as it enables the classifier to be used on unseen data. The results of the

classifier were then used as additional features in the maritime visual attention framework.

Next, the need for a feature selection process was introduced to reduce the complexity

of the framework and to avoid conflicting information incorporated in the framework.

The InfoGain criterion was employed to rank the input features of the framework. The

performance of the framework given the ranked features was then plotted as a learning

curve to utilise the optimal number of features for the framework.

Interestingly, colour was found to be a fairly weak feature. This is a seeming contradiction

with the highly successful colour-based approach proposed by Achanta and Süsstrunk

(2010) but can be explained by the fact that the maritime dataset is markedly less colourful

than standard saliency datasets. In fact, Rosin (2009) also comes to a similar conclusion

that colour features are more limited in their applicability for general purpose saliency.

The chapter concluded with an experimental evaluation of the extended framework for

maritime visual attention on the shipspotting dataset and it was shown that it outperforms
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(a)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

(b)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

(c)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

Figure 5.16: Results for shipspotting (continued on next page).
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(d)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

(e)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

(f)
Original Image Ground truth Proposed Approach

Alexe et al. (2010) Achanta and Süsstrunk (2010) Rosin (2009)

Figure 5.16: Results for shipspotting (continued from previous page).
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related approaches as well as the approach developed earlier in Chapter 4 in both precision

and recall.
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Chapter 6

Real World Target Detection

and Tracking

In Chapter 3, a target-centric stabilisation technique for omnidirectional cameras was

proposed. The technique utilises the extraction of virtual cameras from the full spherical

view and adjusts the parameters of these virtual cameras to achieve stabilisation with

respect to a target object. An inertial measurement unit (IMU) was utilised to provide

an initial guess for the ego-motion of the camera system. A probabilistic feature tracking

approach was then applied to track a target object and ultimately adjust the parameters

of the virtual camera to achieve stabilisation. It was shown that the approach is robust

to loose calibration and inconsistent synchronisation of the hardware components.

However, Chapter 3 only evaluated the performance of the stabilisation approach on a

simple stationary target under lab conditions. Therefore, no changes in appearance due to

target movement (orientation changes) or lighting changes had to be considered. Moreover,

the stabilisation process had to be initialised manually – a shortcoming that the visual

attention frameworks of Chapters 4 and 5 seek to address. With the maritime domain in

mind, a visual attention framework that detects areas of interest in maritime imagery was

proposed in these chapters. It was shown that the approach outperforms generic saliency

detectors in domain specific scenes.

This chapter combines the two aforementioned concepts to present a system that is capa-

ble of detecting and tracking multiple target objects independently and simultaneously.

For detection and initialisation, the visual attention framework presented in Chapter 5

is employed. Then, the stabilisation technique presented in Chapter 3 is utilised and a

stabilised virtual camera is created from the omnidirectional view for each detected object.

The system is applied to the problem of stabilised tracking of nearby objects in omnidi-

rectional views on a real moving maritime platform. In addition to the platform’s forward

motion due to propulsion, the platform is also subject to significant and unpredictable

motions and disturbances due to the speed through the waves – challenging conditions

that have been discussed in Chapters 1 and 3.
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This chapter begins with an analysis of the benchmark datasets used in Chapters 4 and

5, in order to explore why the shipspotting dataset was significantly more difficult for

state-of-art detectors to correctly find objects and identify regions of interest. It will be

shown that these datasets in fact have almost certainly been unintentionally influenced

by human shot selection and the algorithms are tending to reflect these selection methods

rather than provide unbiased true object detection.

The finding motivates the need to evaluate the proposed visual attention framework on

genuine imagery that has no possibility of unintentional human interference in order to

provide a true test of the ability of the computational algorithm to find objects of interest

autonomously in a real world deployed situation. Omnidirectional cameras are ideal for

this purpose as they capture the entire scene without any selective choices of the field of

view that a human photographer would have. Subsequently, the following challenges are

considered: Firstly, the omnidirectional camera captures the full scene, even sections of the

environment that are destructive to vision (and ultimately computer vision algorithms),

such as direct exposure of the sun or its reflective glare on the water. Secondly, a full

spherical view means that objects become easily very small relative to the overall image

size, which is in contrast to saliency datasets where objects are always significant in the

image.

In order to fit with the domain of application, the camera system was mounted on a small

boat and a video sequence was recorded. Detection of visual attention was performed on

the extracted omnidirectional video. It is important to note that the framework is trained

only on the shipspotting dataset introduced in Chapters 4 and 5. Furthermore, the sea/sky

detector introduced as a part of the extended visual attention framework has not been

re-trained. Specifically, the whole proposed visual attention framework is used verbatim

and applied to a far more challenging scene.

Detection then provides potential targets to be tracked, and stabilised tracking is initialised

from this. Tracking is then performed for the duration of the video to show the ability of the

system to track multiple targets simultaneously whilst stabilising all targets independently

within their fields of view. This allows for tracking of different target movements and

compensates for any parallax effects – issues that are significant in the scenes since targets

are significantly closer than background objects.

Finally, the difficulties in detecting relevant regions of interest are highlighted and the

adequacy of the proposed approach as well as state-of-the-art algorithms for this task are

discussed.
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The remainder of this chapter is organised as follows: In Section 6.1, a statistical analysis

of the datasets utilised in Chapters 4 and 5 is performed, motivated by the different

performance of the detectors on the two datasets. Then, the specific challenges introduced

by the use of omnidirectional video recorded in maritime scenes are discussed in Section 6.2.

The chapter continues with an evaluation of the proposed visual attention framework on

omnidirectional imagery and a subsequent use of the results to initialise the tracking part

of the proposed stabilisation framework. The chapter concludes with a summary given in

Section 6.3.

6.1 Analysis of Benchmark Datasets

The proposed visual attention framework was compared to several other approaches in

Chapter 4 using a publicly available benchmark dataset, MSRA. Furthermore, tests on

a domain-specific dataset (shipspotting) that has been compiled for the purposes of this

thesis, have been performed in Chapter 4 and 5. A difference between the two was that all

algorithms performed poorer on shipspotting than MSRA, except Rosin’s that performed

marginally better. However, MSRA is a dataset with a high variety of object classes

and backgrounds whereas shipspotting contains a very low variety of backgrounds and

significant similarities between foreground objects since they are mostly maritime vessels.

Thus shipspotting should have been a lesser challenge to the algorithms tested but in fact

the reverse is true.

To resolve this contradiction, a closer look was taken at the overall characteristics of the

two datasets. Specifically, the ground truth was analysed to examine the placements and

properties of the objects in the scene. Note that the ground-truth data for both datasets

are at the pixel level rather that the conventional approach using bounding boxes, i.e.

defined by the outer boundary of the object. As mentioned in Chapter 4, this produces

the actual shape of the objects and provides a more realistic measure. Analysis on the

datasets was performed as follows:

Object Placement. To gain statistics on the overall placement of objects in the images,

the average across all ground truths was taken to produce an image that indicates

the average occurrence of an object at each pixel. This will indicate the diversity of

placement of objects and uncover any favoured positions. In effect, it is a probability

map of the likelihood that a given pixel will be part of an object. Thus, highly diverse

placement should provide a uniform distribution across all pixels whereas strongly

favoured positions should result in peaks at those positions. Since images are not
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all of the same resolution or aspect ratio, ground-truth images were resized to the

average image resolution of each data set: 323 × 369 for MSRA and 359 × 510 for

shipspotting.

Object Count. Another important statistic describing the challenge in a saliency dataset

relates to the number of salient objects in an image. Early saliency approaches

tended to focus on finding the single most salient objects, e.g. Itti et al. (1998). This

limitation has largely been overcome as the proposed algorithms shows. However, it

follows that a more challenging dataset will contain more objects per image. Thus

the average count of objects per image is also examined.

Relative Size of Objects. Of crucial importance to the application that this thesis ad-

dresses is the need to find objects that are small relative to the overall size of the

captured image. This arises due to the use of an omnidirectional image that has

very high resolution and therefore target objects, whilst well-described and with sig-

nificant numbers of pixels themselves, are in fact only a very small portion of the

overall image. This is both because of the distance to objects as well as the high

resolution and the full spherical field of view.

6.1.1 Placement Analysis of MSRA

The ground truth maps of MSRA are averaged and the result is shown as a heatmap

in Figure 6.1. The heatmap reveals a curious phenomenon: specifically, it is clear that

objects in MSRA tend to be clustered around the centre of the images. The symmetry

and regularity of the average ground truth image is striking – it indicates that human shot

selection has had a major influence on the dataset, choosing shots that roughly centre the

object in every image. Due to the variety of objects and number of images, this ends up

being a circular pattern.

In light of the regularity of the ground truths, it raises the possibility of producing the

simplest possible saliency detector and evaluating it on the dataset: a detector that simply

“detects” a single fixed area of every image. Due to the circular nature of Figure 6.1, a

circle with the origin at the centre of the image was chosen and a precision/recall plot is

produced by varying the radius of the circle from a single pixel through to the full size

of the image. This “näıve detector” should be viewed in two lights: first as a baseline

performance for saliency algorithms, and second as a measure of the challenge that a

dataset provides.

The resulting precision/recall plot is depicted in Figure 6.2 alongside the precision/recall
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Figure 6.1: Average object placement in the MSRA dataset.
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Figure 6.2: Precision/recall plot of the näıve detector on the MSRA dataset.
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results from the other algorithms from Chapter 4. Indubitably, the näıve detector performs

quite well given its simplicity. Note that Rosin (2009) actually performs worse than

the näıve detector. However, lower performance for this detector is in terms of weaker

precision and it is already known that the precision of the approach can be improved via

Rosin’s suggestion to erode the final map result. Thus it is probable that the results can

be markedly improved with such erosion on MSRA given the effectiveness of the näıve

detector.

6.1.2 Placement Analysis of Shipspotting

The ground truth data of the shipspotting dataset was processed in the same fashion as for

MSRA. Figure 6.3 shows the average placement of objects in a heatmap representation.

Note that the peaks in the heatmap are much more diverse and far less regular than

MSRA and that a horizontal spread can be observed, which occurs due to the horizon and

maritime objects being on the sea surface. However, the horizontal spread away from the

centre is fairly uniform – indicating that objects tend to be distributed randomly along the

horizon, probably due to amateur photographers seeking to juxtapose multiple maritime

objects in a single image, hence objects are often on both sides of the image.

Figure 6.3: Average object placement in the shipspotting dataset.

Based on these observations, the parameters for the näıve detector were adapted to suit

this dataset. Instead of a circular shape, a rectangle with a 1:3 aspect ratio was selected as

a detector shape (other ratios were tested but were slightly less effective). The rectangle

was placed in the centre of the image and its size was varied from 1 pixel to the full size

of the image to produce a precision/recall plot. Figure 6.4 shows the performance of the

näıve detector alongside the results from Chapters 4 and 5.

The precision/recall plot in Figure 6.4 reveals that the performance of the näıve detec-
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Figure 6.4: Precision/recall plot of the näıve detector on the shipspotting dataset.

tor on the shipspotting dataset is much lower than on MSRA. Specifically, the precision

performance almost halved, indicating that the näıve detector produced much more false

positives compared to MSRA. Note that all algorithms yield better performance than this

baseline detector on the shipspotting dataset. This implies that the dataset is providing a

more genuine indication of the performance of saliency detection since position is far less

consistent.

6.1.3 Analysis of Object Count

From the ground truth data of the MSRA and shipspotting datasets, the number of objects

in each image were counted using the connected component technique. The resulting

histograms are shown in Figure 6.5. Note that the histogram of MSRA is very narrow

and dense compared to shipspotting. This indicates that the shipspotting dataset has

a higher variety and is much more diverse than MSRA. In fact, more than 95% of the

images in MSRA only contain a single object, compared to less than 20% for shipspotting.

Furthermore, more than 80% of the images in the shipspotting dataset contains at least

two objects. The average number of objects in MSRA is only 1.18 compared to 3.04 in

the shipspotting dataset (see Table 6.1). Moreover, the standard deviation of shipspotting

is almost twice as high indicating a higher variation of object counts.

159



CHAPTER 6. REAL WORLD TARGET DETECTION AND TRACKING

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

Number of objects per image

O
cc

ur
en

ce
s

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

Number of objects per image

O
cc

ur
en

ce
s

(a) MSRA (b) shipspotting

Figure 6.5: Number of objects per image in the MSRA and shipspotting datasets.

6.1.4 Analysis of Object Size

For each image of the MSRA and shipspotting datasets, the sizes of the contained objects

were computed using the ground truth data. The sizes were then converted into a ratio

with respect to the image size, where a value of 1 represents an object that covers the

entire image. Figure 6.6 shows a histogram of the computed object sizes for each dataset.

For the MSRA dataset, the histogram shows a high variation of the object sizes up to 40%
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Figure 6.6: Relative Size of objects in the MSRA and shipspotting datasets.

of the image size, while most of the objects of the shipspotting dataset are smaller than 5%

and hardly any objects are larger than 10% of the image. This is an important finding as

the ultimate aim of the proposed vision system is the deployment on an omnidirectional

camera, where target objects are expected to be very small due to the large field of view

of the camera. In fact, in an omnidirectional image of 2048×1024 pixels, an object size of

16.88% (as with MSRA) would relate to a pixel area of roughly 350 000 – an edge length

of more than 590×590 in the case of an object with a square shape. In an omnidirectional

image this would cover a field of view of almost 30◦. Given that the distance to a target

object in an outdoor setting is typically large, the physical size of the object would have

to be enormous in order to match the properties of the MSRA dataset. In comparison,
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the average size of an object of the shipspotting dataset would relate to a square object

with an edge length of 270 × 270 pixels or 13◦ of the field of view. Although this is still

quite large given the real footage examined later in this chapter, it is nevertheless far more

realistic.

MSRA shipspotting

Average image size [pixel] 119 317± 14 579 183 016± 19 395

Average number of objects in image 1.18± 0.90 3.04± 1.69

Average relative size of object [%] 16.88± 0.11 2.25± 0.03

Table 6.1: Average statistics of the MSRA and shipspotting datasets.

6.1.5 Summary of Analysis

With respect to the domain of application, the dataset analysis revealed that both the

MSRA and shipspotting datasets are far from being representative for real world scenarios.

In terms of object placement, MSRA cannot be seen as a dataset with a high diversity as

the objects are prominently placed in the centre of the images. The shipspotting dataset

provides a higher variety. While most of the spreading is in the horizontal direction, this

is actually feasible because in a panoramic image, maritime objects such as ships would

be distributed mostly along the horizon.

The analysis of the number of objects in an image revealed that MSRA is mostly concerned

with detecting a single object. In actual outdoor settings, this constraint or assumption

is violated as these images (especially when using an omnidirectional camera) will contain

many more objects. With almost thrice the number of objects, shipspotting shows a higher

variety but even this is still relatively low given that busy maritime scenes such as ports

could easily contain a dozen or more vessels moving around.

For the object size, the MSRA dataset showed a high variation indicating that a large

number of differently sized objects are present in the dataset, while the shipspotting dataset

only contains small objects with less variation in their size. The object sizes of images

from shipspotting are much smaller, which would correspond better to real-world scenarios,

especially when using an omnidirectional camera.
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6.2 Visual Attention and Stabilisation in Omnidirectional

Video

The stabilisation framework presented in Chapter 3 was developed for an omnidirectional

camera system with the application of a maritime surveillance platform in mind. The

ultimate task of the platform is to detect and track target objects, therefore a visual at-

tention system that directs attention towards maritime objects was proposed in Chapter 4

and further extended in Chapter 5 to be utilised for detection of potential objects. This

section now presents the combination of the two systems and evaluates the performance of

the proposed system as a multi target detector and tracker in a maritime outdoor setting.

As discussed in Section 6.1, datasets utilised for evaluation of the visual attention frame-

work have shortcomings for their stated purpose with respect to the problem domain of

this thesis. In fact, MSRA only shows significantly sized objects at prominent positions

within the image and although the shipspotting dataset provides more realistic imagery

for this domain, it still contains objects that are difficult to overlook in the scene. In

contrast, in an omnidirectional image, there is no centre of the image and objects will be

much smaller compared to the overall size of the image. Hence, it is important to test

detection in omnidirectional imagery.

Once detected, a target object needs to be observed and tracked by the camera system. On

a moving platform, with significant ego-motion the conventional approach is to stabilise the

image first and initialise and run an object tracker on the stabilised image. As discussed

in Chapter 3, stabilisation is essential to reduce the search space of the feature tracker.

Zhou et al. (2010) pointed out that tracking in spherical omnidirectional video is a difficult

task and proposed using a cubic panorama representation, where the full omnidirectional

view is projected on the inside of a cube, resulting in six independent images with a field

of view of 90◦ each. They constructed epipolar lines across the sides of the cubes to

handle the hand over of a target from one image to an adjacent one. This thesis argues

that the proposed approach of using virtual cameras by dynamically extracting regions of

interest from the continuous full spherical representation of the omnidirectional image not

only overcomes the aforementioned hand over problem but also, as a general approach,

allows for arbitrary movement of both target and camera and can subsequently be applied

without prior stabilisation.

The proposed approach makes use of an image feature tracker for stabilisation by tracking

the object and computing the optimal inverse orientation of a virtual camera to focus the
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view onto the target. As demonstrated in Chapter 3 this allows for reliably stabilising the

view towards a target object despite the presence of significant ego-motion and parallax.

This also means that the very same system can be used for stabilisation when both camera

ego-motion and target motion are present.

The major issue facing tracking is a change of appearance in the target when it changes

its orientation with respect to the camera. However, this is a standard tracking problem

and has been investigated by a number or researchers – see Yilmaz et al. (2006) for an

overview. In this thesis the approach proposed by Shi and Tomasi (1994) was utilised and

correctly matched feature descriptors were updated and new features computed within the

target region if the matching quality dropped below a certain threshold.

One of the reasons to choose an omnidirectional camera over a pan-tilt-zoom (PTZ) camera

in this thesis was that it allows for simultaneous views in all directions. It is therefore easily

possible to simultaneously extract multiple regions of interest from the omnidirectional

camera, effectively creating multiple independent virtual cameras. The clear advantage

of the independence of these cameras is that the feature tracker can run independently

within each camera as well, therefore problems with overlapping targets are minimised

(since each view tracks its own set of features) and no combinatorial multi-target-tracking

issues such as track coalescence have to be solved.

6.2.1 Experiments

To evaluate the capability of the system to track multiple targets, an omnidirectional video

was captured from a moving small power boat. The camera was mounted near the rear of

the boat on a pole approximately two metres above the deck. The boat was then driven at

speed around an ocean port near the coast. The video contains two target objects (both

boats) with these targets at different distances and moving with different speeds, which

introduces more challenges due to parallax effects. The visual attention detector from

Chapter 5 was employed on the first frame of the omnidirectional video to produce a set

of candidate regions of interest for initialising the tracker. A set of tracks was initialised

from these regions and each region tracked over the duration of the video (1600 frames).

It is important to note that the visual attention framework (including the sea/sky detector)

is using the training data gathered from the shipspotting dataset. It is not re-trained on

the scene but applied verbatim.
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6.2.1.1 Visual Attention

Processing of omnidirectional video in outdoor environments is challenging because of the

distortions introduced by sunlight. As discussed earlier, especially in maritime scenes,

this plays an important role because of the reflective characteristics of the water and

subsequent glare. An initial manual inspection of the image revealed strong distortions

in the form of Moire patterns in the image, therefore a median filter was applied to all

images before processing.

From the omnidirectional view, the first frame was extracted (Figure 6.7(a), (b) shows the

ground truth). In (a), the front of the boat can be seen in the bottom half of the image on

the left side. The wake can be seen towards the right of the image. Challenges revealed

for the omnidirectional input image are:

• The target objects in the image are extremely small compared to the overall image

size (as can be seen by the size of the black blobs in Figure 6.7(b).

• A significant region of the image (the upper half) is occupied by complex cloud

formations. Almost all of these clouds appear in a very bright light due to sun glare.

• Reflections of the sunlight in the water are strongly visible on the left and right side

of the image (glare).

• The surveillance platform is partly visible in the image (bottom left of image).

• A region of the image is filled with the wake caused by the surveillance platform

itself (right side of image).

Accordingly, even a human has difficulty correctly identifying the targets of interest in

the scene. The image was evaluated by running all saliency algorithms from Chapter 5 on

it, including the proposed detector. Figure 6.7(c)–(f) show the responses of Achanta and

Süsstrunk (2010), Alexe et al. (2010), Rosin (2009), and the proposed approach respec-

tively. Clearly, it can be seen that the responses are an overreaction to what is required –

all detectors find significant areas of interest despite the ground truth’s sparsity. However,

after the analysis of MSRA and shipspotting in Section 6.1, the results are not completely

unexpected.

The response of the detector proposed by Achanta and Süsstrunk (2010) is shown in

Figure 6.7(a). Due to the maximum symmetric window approach of their detector, the

clouds and glare on both sides of the image is suppressed as the window are only comparing
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(a) Input image

(b) Ground truth

(c) Achanta and Süsstrunk (2010)

(d) Alexe et al. (2010)

(e) Rosin (2009)

(f) Proposed Approach

Figure 6.7: Visual Attention on the omnidirectional image
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within this region. The highest response of the detector can be seen on the surveillance

platform itself, where the detector highlights parts of the dashboard and of the boat.

Whilst this is undoubtedly a salient region in the general sense, the approach almost

completely misses the actual targets themselves.

The method proposed by Alexe et al. (2010) shows a high objectness measure and subse-

quently a high probability for the surveillance platform to be a target object. A second

peak is observable on the wake that is caused by the platform. Furthermore it high-

lights a cloud formation as potentially relevant. However, the detector highlights the area

between wake and surveillance platform, which includes the target objects as well, even

though the weighting is lower than with the platform indicating that the detector does

not find anything of high interest in that intervening region.

The approach of Rosin (2009), based on edge density, also highlights the surveillance

platform and the wake in the right part of the image. However, the two target objects

themselves are actually being picked up quite well. More importantly, the target ships are

detected as relatively separate objects. However, the confidence is not very high compared

to the rest of the image so that segmenting them from the background could be a difficult

task.

The proposed approach tends to produce the lowest raw number of false positive blocks,

rejecting a lot of the sky as background. However, the complex cloud formations remain

due to unexpected colours. Furthermore, the horizon line is detected as a potential target

due to the high contrast towards the glare on the left and right side of the image. As with

the other approaches, the maritime platform and wake are strongly detected. However, the

targets themselves are also strongly detected and separable from the rest. Unfortunately,

the detector also tends to produce many fractured smaller detections, making it difficult

to determine what is an object and what is noise – particularly given that the smaller

target vessel is only a couple of 8×8 blocks in size. These false positives and fracturing

would make automatic initialisation a very difficult task.

6.2.1.2 Initialisation of Tracks

Table 6.2 shows the precision and recall of the various algorithms with a threshold of

0.5. Note that the precision is very low in all cases. Figure 6.8 shows the output of

the algorithms with their optimal respective threshold (tailored for this image). Note

that with a threshold of 0.5, the edge density based approach proposed by Rosin (2009)

produces a map that entirely covers both target objects yielding a recall value of 1. The
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map has the potential to clearly separate the smaller vessel but combines the larger vessel

with the wake. In contrast, Achanta and Süsstrunk (2010) and Alexe et al. (2010) produce

segmentations that in no way could be used to initialise a tracker on the target objects.

Precision Recall

Achanta and Süsstrunk (2010) 8.43 · 10−5 6.72 · 10−3

Alexe et al. (2010) 7.79 · 10−3 0.31

Rosin (2009) 4.33 · 10−3 1

Proposed Approach 8.80 · 10−3 0.93

Table 6.2: Precision/Recall values for the various algorithms for the omnidirectional input
image.

The proposed approach can manage to fully separate both targets from their surround-

ings, however there are also many small false positives (as well as the large blobs for the

surveillance platform on the left and its wake on the right). Hence no approach could

feasibly be used to initialise tracking automatically. However, the proposed approach at

least does not undersegment and if fractured detection of objects such as clouds and the

wake could be combined whilst not merging with the actual targets, initialisation would

be a feasible prospect – false positives would be tracked, but so too would the true targets.

Unfortunately, such a merging operation is complex and beyond the scope of this thesis.

Hence to gain an understanding of ability of the tracker to work in such a complex scene

under conditions of many false positives, a set of 16 initial tracks were manually extracted

based on heuristically clustering the responses into components. Thus in addition to the

blobs describing the target vessels, the surveillance platform and wake are false positives

as are several sections of the clouds.

6.2.2 Multi Target Tracking

The stabilisation framework proposed in Chapter 3 had only been tested in an indoor

environment. Now, the omnidirectional video recorded by the maritime platform is used.

It is important to note that one of the key achievements of the proposed stabilisation

framework is that it does not require precise calibration and synchronisation. Therefore, no

re-calibration of the camera and IMU has been performed prior to running the experiments.

In fact, the timespan between calibration and recording of this footage was more than one

year and the assembly has been taken apart and reassembled a number of times in between.
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(a) Achanta and Süsstrunk (2010)

(b) Alexe et al. (2010)

(c) Rosin (2009)

(d) Proposed Approach

Figure 6.8: Optimal visual attention maps.
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Given the manual detections, a number of virtual cameras are extracted from the omnidi-

rectional view with the 16 targets (both actual and false positive targets) centred in the

respective views using the initialisation procedure described in Section 3.2.2. Tracking

then proceeds independently for each target in its respective virtual camera, using the

algorithm described in Chapter 3. Results of tracking are depicted in Figure 6.9, showing

example frames every 4 seconds. The figures show the tracks within the omnidirectional

view at the bottom and the stabilised views of the two true targets at the top of each

figure. True target positions are highlighted in red and green in the omnidirectional view

whereas false positives are shown in blue. Note that the true targets are tracked very well,

despite the fact that they eventually recede very far away from the camera. Furthermore,

stabilisation of the targets is good, with the horizon uniformly located and rarely tilted

significantly. Tracking succeeds stably despite occasionally overlapping with false positive

virtual cameras, demonstrating that the feature-based tracker is not diverted by other,

independent, tracks. Not shown explicitly is how the false positive tracks behave – these

tend either to stay relatively fixed or, in the case of the wake, move with the flow of the

water.

(a) Target 1 (red) – moving

(b) Target 2 (green) – stationary

Table 6.3: Trajectory of the platform (yellow) and position of the two target objects.

For visualisation purposes, the maritime platform has been equipped with a GPS, record-

ing position data in the earth coordinate system, {E}. Figure 6.3 shows the trajectory of

the platform (yellow) with the starting position indicated by the yellow pin. At each time

step, the orientation of the virtual cameras with respect to the global coordinate system,
Vn
G Tt, where n = {1, 2}, was used to compute the projection of the target objects onto the

unit sphere of the global coordinate system that is spanned at the current location of the

maritime platform, see Section 2.1.2.1 and 2.1.2.2 for details. The projection was then
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used to plot rays originating at the current position towards the target objects. Due to the

projection onto the unit sphere no depth information is available. However, it can be seen

that the rays intersect at the position of the boats. In case of target one (Figure 6.3(a)),

the intersections actually form a line indicating that the target was moving. This quali-

tatively demonstrates that the various transformations, mapping, and tracking works well

if good initialisation (correctly detecting objects using visual attention) is realised. For

the moving target (red), the predicted position varies whereas for the stationary target,

all the projected rays approximately converge to the same location as expected.

In terms of performance, the tracker runs in near-real-time with no optimisation of the

C++ code, despite tracking 16 individual targets. This is largely due to the efficiency of

the Lucas-Kanade tracker (Shi and Tomasi, 1994) and the linear scaling of the particle

filter. Tests show that scaling with number of targets is roughly linear. However, the

initial detection itself is quite slow and could not be performed for every frame – new

detection runs could only be performed every few seconds (exact expected performance of

detection is difficult to define since much of the detection code was written in Matlab and

runs in batch rather than online).

In all, the stabilised tracking is quite robust. Although only a limited evaluation (on one

video) has been performed and generalisations are thus difficult to make, the tracking

results indicate that robust automated tracking should be an achievable goal in a real-

world omnidirectional scenario. The main issue remains the problem of initialising the

tracker with reasonable starting estimates – if the false positives in the detection phase

can be greatly reduced, then subsequent tracking should be a feasible prospect.

6.3 Summary

This chapter presented an application that deployed the image stabilisation technique

proposed in Chapter 3 and the visual attention framework proposed in Chapters 4 and 5

in a real-world setting. Specifically, the omnidirectional camera system was utilised on a

maritime platform and utilised to capture full spherical omnidirectional imagery. As ex-

pected, the platform was subject to significant motion disturbances, demanding the use of

a stabilisation technique. The proposed stabilisation technique required manual initialisa-

tion. This shortcoming has been addressed by applying the visual attention framework to

the omnidirectional imagery and subsequently stabilising the image on attentive regions.

The chapter began with an analysis of the datasets that were used for evaluation in the
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Figure 6.9: Frames 1–800 (left to right, top to bottom) showing the raw omnidirectional
view together with two extracted virtual cameras fixed on targets (red and green). The
omnidirectional view also shows a number of false positives being tracked by other virtual
cameras (continued on next page)

.
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Figure 6.9: Frames 900–1600 (left to right, top to bottom) showing the raw omnidirectional
view together with two extracted virtual cameras fixed on targets (red and green). The
omnidirectional view also shows a number of false positives being tracked by other virtual
cameras (continued from previous page).
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previous chapters. Specifically, these datasets were analysed for object placement, count

and relative size of objects. It was found that the MSRA saliency dataset is insufficient to

reflect real-world conditions with respect to the maritime domain. Subsequently, shipspot-

ting, the dataset that was compiled for the purposes of this thesis, was found to provide

better testing environment as it better represented the situation that would occur in a

real world maritime environment.

In the following section, experiments on actual maritime omnidirectional imagery showed

that the proposed visual attention framework cannot be deployed on the camera system

in a real maritime environment despite the promising results from the dataset as shown in

Chapters 4 and 5, as the visual attention framework produces to many false positives in

the high resolution omnidirectional image. However, an encouraging aspect of the results

is that in particular two objects of most importance were detected even though they were

very small and moving.

From the optimal thresholded visual attention map, the dominant components were used

to initialise the tracking algorithm provided by the stabilisation framework. It was shown

that the subsequent stabilisation using the virtual camera approach is very effective in

challenging conditions both on targets and background blobs.
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Chapter 7

Conclusion

The use of a maritime surveillance platform allows coverage in hazardous and hostile

environments without the need to put people to risk. This thesis dealt with the computer

vision aspects of the platform. The camera system is designed to aid the operator in

the first instance, and later act autonomously. In particular, this thesis explored the

challenging outdoor conditions of the maritime domain and proposed an image stabilisation

technique that allows for stabilised tracking of target objects. Furthermore, a visual

attention framework was proposed that is capable of directing attention towards regions of

interest with respect to the maritime domain. Subsequently, a novel tracking method was

presented that is capable of tracking multiple targets simultaneously in omnidirectional

imagery by using one virtual camera for each target.

In Chapter 3, the combination of an omnidirectional camera and an IMU using a proba-

bilistic sensor fusion approach was proposed. A probabilistic model was utilised to allow

for loose calibration and synchronisation of the hardware components. This allows for dy-

namic and quick assembly of off-the-shelf equipment without the need for re-calibration.

The advantage of an omnidirectional camera is apparent as it allows for an instantaneous

full spherical view, which is essential for full situational awareness. However, for closer

inspection of a target object only a small field of view is required, therefore the use of

a virtual camera was proposed that extracts a limited field of view from the omnidirec-

tional image. The virtual camera is then used to provide a target-centric stabilisation by

adjusting the virtual camera according to the platform’s ego-motion. For this, the mea-

surements of the IMU and an image feature tracker were combined. Experiments showed

that the framework provides robust stabilisation towards a target object while the camera

is subjected to significant rotational and translational disturbances.

The virtual cameras for image stabilisation have to be initialised manually, a shortcoming

that was addressed in Chapter 4. In this chapter, a visual attention framework was

proposed that is capable of directing attention to areas of interest. For this purposes,

multiple multi-scale low-level features such as edges, texture, and colour information were

extracted and evaluated using local, regional, and global distance measurements (locality
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CHAPTER 7. CONCLUSION

cues). These features and locality cues were extensively explored individually to determine

their characteristics before being considered in combination. The features were eventually

fed into a Bayesian classifier to compute probability maps that indicate the presence of

a maritime object. The visual attention framework was subsequently evaluated using a

standard dataset (MSRA) and later a dataset with maritime imagery that was compiled

for the purposes of this thesis (shipspotting). The approach was compared to related

detectors and was found to give reasonable results on the generic dataset and outperform

existing approaches on the shipspotting dataset.

In Chapter 5, the proposed visual attention framework was further improved by making

use of domain specific knowledge of the background. Here, the dominant background in a

maritime environment (sea and sky) was examined in terms of colour and edge orientation

and it was found that both sea and sky mostly consist of the same primary colour that

can be expressed in Hue coordinates. Furthermore, the shape of waves was found to

be sufficiently different due to dominant horizontal directions and was able to provide a

reliable cue for detection. A sea/sky detector was proposed and fused into the existing

visual attention framework. A subsequent feature selection analysis provided information

about the importance of each feature and allowed the reduction of the feature space

without compromising classification accuracy. The improved detector was evaluated using

the shipspotting dataset and found to outperform generic approaches.

Chapter 6 began with an analysis of the evaluation datasets. In Chapter 4, it was found

that the evaluated generic saliency detectors performed worse on domain specific dataset

(shipspotting) than on the generic MSRA dataset. Both datasets were examined for place-

ment of the objects within the image, count of objects, and the relative size of an object

in an image. It was found that MSRA is in fact a dataset with limited diversity in terms

of these properties. The shipspotting dataset, on the other hand, provided a more chal-

lenging task due to its higher variety in object placement, higher amount of object counts

per image, and much smaller objects. The chapter continued with the deployment of the

camera system on a maritime platform in real-world conditions. It was shown that de-

spite the performance of the visual attention framework on the two benchmark datasets,

the omnidirectional image is far more challenging and no detectors were able to produce

reasonable results, with many false positive being detected by all methods. However, the

experimental investigation revealed that the proposed framework was the only approach

able to successfully detect and isolate the target maritime objects in the omnidirectional

view and with fewer false positives. The subsequent multi target tracking was found to be

very effective even in challenging conditions due to the sensor fused stabilisation frame-

work. However, due to the high number of false positives generated by the visual attention

framework, it cannot be seen as a sufficient means for target detection in omnidirectional
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imagery of the maritime domain and requires further investigation and refinement.

7.1 Future Work

The stabilisation framework developed in Chapter 3 uses a virtual camera to keep a target

object in view regardless of the ego-motion of the camera. The virtual camera has three

parameters: the orientation with respect to the camera coordinate system, the field of view,

and the resolution. While Chapters 4 and 5 proposed a visual attention framework that has

the potential to provide an auto-initialisation of the orientation of the virtual camera, the

field of view and resolution were manually selected for the experiments conducted in this

thesis. However, depending on the situation, an intelligent selection of these parameters

could be performed based on confidence maps that not only can be used to estimate the

location of a region of interest but also their spatial extent. This information can be used

to compute the optimum field of view of the virtual camera. As can be seen in Figure 6.9

in the previous chapter, the target objects were far away by the end of the recording. An

adaptive change of the field of view could make the field of view narrower if a target moves

away and broaden the view if the target moves towards the camera, allowing the target

to appear at the same size in the image at all times.

The main deficiency of the proposed visual attention framework is the high number of

false positives generated in the omnidirectional view. Compared to Chapter 4, it was

possible to increase the accuracy of the framework by incorporating a sea/sky detector in

Chapter 5. However, when applied to real-world omnidirectional imagery, a high number of

false positives were generated in typical background regions. Therefore the integration of

domain specific knowledge of the background is required. With the results from Chapter 6

in mind, typical areas containing false positives were the wake caused by the platform itself,

the sun and the glare it causes, and complex cloud constructs. Building detectors that

specifically find the presence of such phenomena would greatly reduce the false positive

rate.

The tracking approach selected in Chapter 6 was sufficient for its intended purpose. How-

ever, in case of major occlusions which can easily happen in areas with high traffic (for

busy environments such as ports), the integration of a dedicated multi-target tracking

approach to handle coalescence is favourable.

Finally, motivated by the analysis of the MSRA and shipspotting datasets, the compila-

tion of more goal directed datasets is desired, and in particular, the compilation of an
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omnidirectional maritime imagery dataset is recommended.
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