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Abstract 

The paper uses the “membrane hypothesis” to formulate the confining behavior of fiber 

reinforced polymer (FRP) confined rectangular columns. A model was developed to calculate 

the strength of FRP confined rectangular concrete columns. The model was verified using a 

database of 190 FRP confined rectangular concrete columns. The database covers unconfined 

concrete strength between 18.3 MPa and 55.2 MPa and specimens with dimensions ranging 

from 79 mm to 305 mm and 100 mm to 305 mm for short and long sides, respectively. The 

performance of the proposed model shows a very good correlation with the experimental 

results. In addition, the strain distribution of FRP around the circumference of the rectangular 

sections was examined to propose an equation for predicting the actual rupture strain of FRP. 

The minimum corner radius of the sections is also recommended to achieve sufficient 

confinement. 

CE Database subject headings: Fiber Reinforced Polymer; Confinement; Concrete columns; 

Reinforced concrete, Strain distribution. 

Keywords: Rectangular columns; Square columns; Membrane hypothesis.  
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Introduction 

Fiber Reinforced Polymers (FRP) have been commonly used to strengthen existing reinforced 

concrete (RC) columns. This use of FRP has been proven to increase the strength, stiffness 

and ductility of the strengthened columns. The use of FRP in industry has required design 

guidelines for these applications. Many strength models for FRP confined concrete columns, 

therefore, were proposed to simulate the behavior of confined concrete columns (Spoelstra 

and Monti 1999; Chaallal et al. 2003a; Lam and Teng 2003a; Harajli et al. 2006; Wu and 

Wang 2009; Cui and Sheikh 2010; Lee et al. 2010; Wu and Zhou 2010; Yazici and Hadi 

2012). Most of the existing models based on Richart et al. (1928) are for circular sections 

causing uniform confining pressure, which can be estimated based on the strength and 

thickness of the FRP and the diameter of the sections. 

Meanwhile, there are far fewer models for FRP confined rectangular columns as compared to 

circular columns (Lam and Teng 2003b; Wu and Wang 2009; Toutanji et al. 2010; Wu and 

Wei 2010; Wu and Zhou 2010). The confining pressure of a FRP confined rectangular 

column around its perimeter is not uniform. This non-uniform confining pressure leads to 

many difficulties to formulate the pressure distribution by a mechanical solution. Most of the 

existing models for rectangular sections are quite similar to circular sections except that a 

shape factor is introduced to account for the non-uniform confinement. In addition, the 

equivalent confining pressure in such cases is calculated based on mechanism analysis of 

circular sections. The differences between these models are the shape factor and the definition 

of the equivalent diameter of the rectangular sections. Therefore, analyzing the mechanism of 

FRP confined rectangular columns at the corners to create a model is an interesting concern of 

the research society. This study introduces an approach to propose a model by focusing on the 

stress concentration at the corners of the sections. 
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This study firstly adopts the “membrane hypothesis” to analyze the behaviors of FRP at the 

corners of the rectangular sections. The confining pressure of the confined columns at the 

middle of the sides and at the corners of the sections is then examined. Next, the confining 

pressure at the corners of the section is estimated from the tensile properties of FRP and the 

corner radius. A model is proposed to estimate the strength of the confined columns, which 

was evaluated by a database from the literature. 

Confining mechanism 

Confining pressure of shell structures 

FRP jacket used in confined concrete columns could be analyzed as a cylindrical shell 

structure subjected to hydrostatic pressure. In general the loads are carried in shell structures 

by a combination of “stretching” and “bending” action. But sometimes it seems clear that the 

bending effects are rather small when the shell structure is thin enough for eligibility of 

“membrane hypothesis”. For such cases, the equilibrium of an infinitesimal section of the 

cylindrical shell structure was analyzed by Calladine (1983) as shown in Fig. 1a. The tension 

force of the shell structure is calculated as follows: 

T rp         (1) 

where T is the tension force in the hoop direction of the shell structure, r is the radius of the 

infinitesimal section, and p is the hydrostatic pressure applied on the structure. 

This solution is also applicable for a rectangular prism with rounded corners and confined 

with FRP. The applicability of this solution is for thin shells which could be expected when 

the ratio of the round corner (r) and the nominal jacket thickness (t) is greater than 20 (r/t > 

20) (Calladine 1983). It is assumed that when an axial load is applied on a FRP confined 

rectangular concrete column, the confining pressure concentrates only at the corners of the 

section. The confining pressure at middle of the section sides is rather small, which could be 
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negligible. For simplicity, the term “rectangular columns” in this study is used for rectangular 

columns with round corners. 

Confining pressure of FRP confined rectangular concrete columns 

When a FRP confined rectangular concrete column is subjected to an axial load, the concrete 

laterally expands and is confined by the FRP. The tension force of the jacket at the rupture 

state is calculated as follows: 

fe f fef E        (2) 

where ffe is the actual tensile stress of FRP, Ef is the elastic modulus of FRP, and fe is the 

actual strain of FRP at rupture. 

Substituting Eq. 2 into Eq. 1, the confining pressure of the FRP confined rectangular concrete 

column at the corners is identical to that for a circular section, and is calculated as follows: 

f fe
l

nt E
f

r
       (3) 

where fl is the nominal confining pressure of the confined column, t is the nominal thickness 

of FRP, n is the number of FRP layers, and r is the corner radius. 

It is assumed that the radius of the curvature at middle of the section sides (as the column is 

bulging under an axial load) is much greater than that at the corners. As a result from Eq. 3, 

the confining pressure of the column at the middle of the sides is rather small and could be 

negligible. Therefore, the appropriate confining stress of a FRP confined rectangular column 

should be at the corners. Bakis et al. (2002) similarly concluded that the confining stress is 

transmitted to the concrete at the four corners of the section. The actual rupture strain of FRP 

at the corners of the columns should be considered and recorded, which was recommended by 

Wang et al. (2012) as well. Also, Csuka and Kollár (2012) analytically proved that the 

distribution of the confining pressure of the FRP confined square columns is concentrated at 

the section corners, as shown in Fig. 1b. 

Journal of Composites for Construction. Submitted March 20, 2013; accepted June 24, 2013; 
        posted ahead of print June 26, 2013. doi:10.1061/(ASCE)CC.1943-5614.0000407

Copyright 2013 by the American Society of Civil Engineers

J. Compos. Constr. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

W
O

L
L

O
N

G
O

N
G

 o
n 

06
/2

5/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

5 

 

Experimental Behavior of FRP confined rectangular columns 

Test database 

The number of specimens for an acceptable database was investigated before collating data of 

tested specimens. Table 1 summarizes the number of specimens of a few published models 

from the literature. Several experimental studies have been conducted on FRP confined 

rectangular or square concrete columns by researchers over the past few decades. This study 

collated a test database of 190 FRP confined rectangular concrete columns, as shown in Table 

2, reported by Rochette and Labossière (2000), Shehata et al. (2002), Lam and Teng (2003b), 

Ilki and Kumbasar (2003), Masia et al. (2004), Harajli et al. (2006), Rousakis et al. (2007), 

Al-Salloum (2007), Wang and Wu (2008), Tao et al. (2008), Wu and Wei (2010), and Wang 

et al. (2012). The database covers unconfined concrete compressive strength between 18.3 

MPa and 55.2 MPa. Different types of FRP were tested in the above experiments, namely 

carbon FRP (CFRP), aramid FRP (AFRP), and glass FRP (GFRP). The majority of specimens 

were plain concrete except reinforced specimens reported by Harajli et al. (2006) and Wang et 

al. (2012). The effect of reinforcing bars in confining the concrete was deducted when 

calculating the FRP confined concrete strength. The dimensions of the specimens range from 

79 mm to 305 mm and 100 mm to 305 mm for shorter sides and longer sides, respectively. 

The aspect ratio of the specimens ranged from 1 to 2.7, among which: 1 (138 specimens), 1.3 

(16 specimens), 1.5 (12 specimens), 1.7 (12 specimens), 2 (6 specimens), and 2.7 (6 

specimens). 

In the above studies, reported FRP hoop strains were the average values from strain gages at 

the critical regions, or were taken to be the same as lateral strains deduced from measurement 

of linear variable differential transformers (LVDTs) at the midheight of specimens. Only the 

hoop strains measured by strain gages were utilized in creating a model for estimating the 
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actual rupture strain of FRP. Other strains deduced from the LVDTs are average values and 

do not represent the hoop strains at the critical points. The FRP hoop strains of those 

specimens were excluded from the database while other results still were used in the 

verification. 

For most specimens, the physical properties of FRP were determined from flat coupon tensile 

tests by the researchers themselves with the exception of those by Masia et al. (2004), Harajli 

et al. (2006), and Rousakis et al. (2007). However, the FRP properties provided by 

manufacturers in these studies are quite similar to the tensile properties of FRP tested by the 

other researchers. Those test results also fit very well with the selected models so that they 

were included in this database. 

Failure modes and distribution of FRP strain 

The specimens in Table 2 failed suddenly by tensile rupture of FRP wrap within the 

midheight region. The rupture position was experimentally confirmed at or near the corners of 

the sections (Rochette and Labossière 2000; Chaallal et al. 2003b; Wang et al. 2012; Hadi et 

al. 2013). Thus the mechanism of the FRP confined rectangular columns should focus on the 

FRP hoop strain at the corners. 

It is clear that the distribution of FRP hoop strain is not uniform around the perimeter of the 

columns. The rupture of FRP always happens at the corner regions so that the hoop strain of 

FRP was expected to have the highest value at these zones. A few studies investigated the 

FRP hoop strain at middle of the sides and at the corners. Interestingly, the FRP hoop strain at 

middle of the sides is always greater than at the corners (Rochette and Labossière 2000; Smith 

et al. 2010; Wang et al. 2012). As a result, the mean value of all the hoop strains (including 

the strains at middle of the sides and at the corners) overestimates the rupture strain and the 
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confinement effectiveness of FRP. In addition, the confinement is assumed to be available at 

the high curvature locations (e.g., corners of the sections) as presented in Eq. 1. Confinement 

is, therefore, only appropriate at the corners of the sections. For convenience, the phrase 

“rupture strain of FRP” stands for the rupture strain of FRP at the corners of the sections. 

Rupture strain of FRP in rectangular sections 

Wang and Wu (2008) conducted experiments to investigate the effect of corner radius on the 

rupture strain of FRP. They showed that when the radius of the corners increases, the rupture 

strain of FRP generally increases. An investigation was also conducted in the database 

reported in this study to yield the same result. It is assumed that the FRP rupture strain is 

dependent on the ratio of the corner radius and the side length, which could be 2r/b or 2r/h. In 

addition, Wu and Wei (2010) investigated the effects of the aspect ratio (h/b) on the rupture 

strain of FRP. They depicted that when the aspect ratio (h/b) ranged from 1 to 2, the FRP 

rupture strains at corners of rectangular sections were identical or close together. It means that 

the FRP rupture strain maintained at a certain value as tested columns had different long side 

length of sections but same short side length of section and material properties (unconfined 

concrete strength, number of FRP layers, and corners radius). In such cases, these columns 

had the same ratio of the corner radius and the short side length (2r/b). Therefore, this study 

assumed that the actual rupture strain of FRP is a function of the ratio of the corner radius and 

the shorter side length (2r/b).  

Furthermore, an investigation was conducted on the database to show the dependence of the 

actual rupture strain of FRP on the confinement stiffness ratios Rs (Rochette and Labossière 

2000; Wang and Wu 2008; Wang et al. 2012). The confinement stiffness ratio (Rs) was 

defined by Teng et al. (2009) as follows: 
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'

2 f
s

co

co

ntE
R

f
D

       (4) 

 where fco
’ is the unconfined concrete strength (in MPa), co is its corresponding strain, and D 

is the diameter of circular sections. 

As this study deals with rectangular sections, the above equation was modified by replacing 

D/2 with r, which is the corner radius of rectangular sections as follows: 

'

f
s

co

co

ntE
R

f
r

       (5) 

In order to use Eq. 5, when the value of co was not specified by the database, it was 

calculated as follows (Tasdemir et al. 1998): 

' 2 ' 6
co ( 0.067 29.9 1053)10co cof f

    (6) 

In conclusion, it is assumed that the actual rupture strain of FRP is a function of the ratio of 

the corner radius and the shorter side length (2r/b), and the confinement stiffness ratio (Rs). 

Fig. 2 shows the relationship between the FRP strain efficiency factor (k ), which is the ratio 

of the actual rupture strain of FRP and the ultimate strain of FRP from flat coupon tensile 

tests, and the factor A defined as follows: 

2

s

r
A

bR
       (7) 

where b is the shorter side length of the column section. According to the linear regression 

analysis, the following value of the FRP strain efficiency factor (k ) was obtained for FRP 

confined rectangular columns: 

0.5 0.0642 lnk A       (8) 
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In order to generate Eq. 8, the rupture strain of FRP at the corners of sections needs to be 

reported. Only a few specimens in Table 2 reported the FRP rupture strain at the corners of 

sections. Thus, the database used to generate Eq. 8 is smaller than the database used to verify 

the proposed model. Based on Fig. 2, the FRP strain efficiency factor varied between 0.4 and 

0.7. It is conservatively recommended that the FRP strain efficiency factor is neither less than 

0.4 nor greater than 0.7. 

The proposed model 

The equation for confined concrete strength 

As mentioned above, the confining pressure of a FRP confined rectangular column is not 

uniform around the perimeter of the sections. Thus the FRP confinement herein is only to 

account for confinement effect at the corners. The corner effect ratio (kc) introduced by Pham 

and Hadi (2013) was utilized to calculate the effective confining pressure (fl,e). The corner 

effect ratio is the ratio of the total length of four round corners and the circumference of the 

section as follows: 

,l e l cf f k        (9) 

4c

r
k

b h r
       (10) 

Where the nominal confining pressure (fl) was calculated from Eq. 3, and b and h are 

respectively the short and long sides of the column section. 

The experimental stress-strain curves show two typical types including ascending and 

descending branches. In most cases, a FRP confined concrete column is expected to provide 

an ascending type curve which exhibits the well-known bilinear shape. This curve ends with 

the rupture of the confining jacket at the ultimate point defined by the compressive strength 
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fcc
’ and the ultimate axial strain cc. Based on the results of the ascending type specimens in 

the database, the relationship between the normalized compressive strength and the 

normalized confining pressure is linear as shown in Fig. 3. The following equation formulates 

the above linear relationship as follows: 

'
,

' '0.68 3.91 l ecc

co co

ff
f f

       (11) 

In brief, Eq. 11 was used to calculate the compressive strength of confined concrete for 

specimens which have sufficient confinement. In such cases, the effective confining pressure 

(fl,e) of specimens needs to be greater than a certain value estimated from Eq. 12. 

The minimum amount of FRP for sufficient confinement 

A FRP confined concrete column exhibits the ascending type curve is defined as the sufficient 

confinement.  In such a case, a significant improvement of the compressive strength and strain 

of a FRP confined concrete column could be expected. Otherwise, FRP confined concrete 

with a stress-strain curve of the descending type illustrates a concrete stress at the ultimate 

strain below the compressive strength of unconfined concrete. It is obvious that a confined 

column needs a minimum amount of FRP to obtain the sufficient confinement. Fig. 4 shows 

the relationship between the normalized compressive strength and the normalized effective 

confining pressure. From Fig. 4, in order to avoid the descending type specimens, the 

normalized effective confining pressure should not be less than 0.15 as follows: 

,
' 0.15l e

co

f

f
       (12) 

Briefly, the proposed model is summarized by the following steps: (1) the FRP strain 

efficiency factor (k ) is estimated using Eq. 8; (2) the effective confining pressure (fl,e) is 
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calculated using Eqs. 9-10; and (3) the compressive strength of confined concrete (fcc
’) is 

computed as recommended in Eq. 11. 

Verification of the proposed model 

The model performance was tested by using three statistical indicators: the mean square error 

(MSE), the average absolute error (AAE), and the standard deviation (SD) as determined by 

Eqs. 13 - 15. 

2

1

exp
( )

exp

N
i i

i

pre

MSE
N

      (13) 

1

exp
exp

N
i i

i

pre

AAE
N

      (14)  

2

1 exp exp

1

N
avgi

i avg

prepre

SD
N

      (15) 

where pre is the model predictions, exp is the experimental results, the subscript “avg” means 

the average value, and N is the total number of the test data. In general, the mean square error 

shows the errors to be more significant compared to the average absolute error so that it was 

used to emphasize the precision of the selected models. 

Fig. 5 shows 104 data points (ascending type specimens) in order to assess the performance of 

the existing models and the proposed model. Five existing models were studied in this 

verification (Chaallal et al. 2003a; Lam and Teng 2003b; Wu and Wang 2009; Toutanji et al. 

2010; Wu and Wei 2010). The comparison between the predictions and the test results in Fig. 

5 shows the improvement of the selected models in calculating strength of FRP confined 

rectangular columns for a decade. Among the presented models, the proposed model has the 
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highest general correlation (R2 = 89%) for a linear trend between the predictions and the test 

results. In addition, the error of the models was statistically verified and presented in Fig. 6. 

Although the establishment of the proposed model was based on the database of the ascending 

type specimens, the proposed model was also validated with the full database (including the 

descending type specimens) to verify its applicability to the descending type specimens. Fig. 

7 illustrates that the proposed model predicts very well the compressive strength of FRP 

confined rectangular columns for both the ascending and the descending types of specimens 

(190 data points). The linear trend between the predictions and the test results has the general 

correlation factor of 0.82 (R2 = 82%), which is a small decrease compared to Fig. 5. 

As mentioned above, the behavior of the FRP jacket comply with the “membrane hypothesis” 

where the ratio of the round corners (r) and the nominal jacket thickness (t) should be greater 

than 20 (r/t > 20). Meanwhile, four specimens had the dimensions of 152 x 203 mm2 and the 

corner radius of 5 mm (Rochette and Labossière 2000). These specimens were wrapped with 

a number of FRP layers to have a thickness of 1.2, 2.4, 3.6, and 4.8 mm (the r/t ratios ranges 

between 4.2 and 1), respectively. Two specimens presented in the Al-Sallaum’s study (2007) 

also had a corner radius of 5 mm (the r/t ratio was 4.2). Therefore, the predictions of the 

proposed model on the strength of six specimens are not accurate (fcc(pre)
’/fcc(exp)

’ ≈ 0.75). It is 

recommended that FRP confined rectangular columns should be round to have a ratio of r/t 

greater than 20). 

Conclusions 

A model was proposed to calculate the strength of FRP confined rectangular columns. The 

predictions of the proposed model fit very well with the experimental results. The study 

addresses the approach to analyze the mechanism of FRP confined rectangular columns, the 
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actual rupture strain of FRP at corners of specimens, and the minimum amount of FRP to 

obtain sufficient confinement. The findings presented in this paper are summarized as follows:  

1. The “membrane hypothesis” was utilized to analyze the behavior of FRP confined 

rectangular columns. The confining pressure of confined columns is concentrated at the 

corners of the section only. In order to comply with the “membrane hypothesis”, the corner 

of the sections should be rounded to have a radius being at least twenty times greater than 

the nominal FRP thickness. 

2. The corner effect ratio (kc) was accounted for the effects of the non-uniform confining 

pressure around rectangular sections. It was used to distribute equally the confining 

pressure at corners of rectangular sections to the whole circumference of the sections. 

3. The actual rupture strain of FRP at corners of the sections depends on the ratio of the 

corner radius and the length of the shorter side, the confinement stiffness ratio as presented 

in Eq. 5. An equation was proposed to calculate the actual rupture strain of FRP. 

4. The limit of FRP amount to obtain sufficient confinement was proposed. This limit is 

based not only on the ratio of the corner radius and the length of the shorter side but also 

the confinement stiffness ratio. 

Finally, this paper used the “membrane hypothesis” to formulate the confining behaviors of 

FRP confined rectangular columns. This approach analyzes directly the behavior of confined 

square sections without conversion from equivalent circular sections to create a model for 

rectangular sections. The proposed model results in good correlation with experimental results. 
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Notations 

A  = factor defined in Eq. 7; 

b  = short side of column sections; 

D  = diameter of circular sections; 

Ef  = elastic modulus of FRP; 

ff  = tensile strength of FRP; 

ffe  = actual tensile stress of FRP; 

fl  = nominal confining pressure of a column; 

fl,e  = effective confining pressure of a column; 

fco
’  = unconfined concrete strength; 

fcc
’  = confined concrete strength; 

h  = long side of column sections; 

kc  = corner effect ratio; 

ks  = shape factor; 

k FRP strain efficiency factor; 

n  = number of FRP layers; 

N  = total number of the test data; 

p  = hydrostatic pressure applied in a shell structure; 

r  = corner radius of a section; 

Rs  = confinement stiffness ratio; 

t  = nominal thickness of FRP; 

T  = tension force in a shell structure; 

fe  = actual strain of FRP at rupture; 

cc = ultimate axial strain of confined concrete; and 

co  = axial strain of the unconfined concrete at the maximum stress. 
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Table 1. Summary of published models 

Authors Year 
Square 

specimens 

Rectangular 

specimens 

Total number 

of specimens 

Challal et al. 2003a 19 - 19 

Lam and Teng 2003b 60 10 70 

Al-Salloum 2007 16 - 16 

Youssef et al. 2007 - 38 38 

Wu and Wang 2009 170 - 170 

Wu and Wei 2010 22 60 82 

Toutanji et al. 2010 59 - 59 

The proposed model - 138 52 190 
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Table 2. Test results of FRP confined rectangular specimens 

No. Note1
 

Specimens Concrete FRP 
b h r f 'co Type2 No. of 

layers 
t ff fu Ef fe f 'cc 

mm mm mm MPa mm MPa % GPa % MPa 
Rochette and Labossière (2000) 

1 A 152 152 38 42.0 C 3 0.30 1265 1.50 83 0.71 47.5 
2 A 152 152 25 43.9 C 4 0.30 1265 1.50 83 0.59 50.9 
3 D 152 152 25 43.9 C 5 0.30 1265 1.50 83 0.51 47.9 
4 A 152 152 25 35.8 C 4 0.30 1265 1.50 83 0.70 52.3 
5 A 152 152 25 35.8 C 5 0.30 1265 1.50 83 0.65 57.6 
6 A 152 152 38 35.8 C 4 0.30 1265 1.50 83 0.89 59.4 
7 A 152 152 38 35.8 C 5 0.30 1265 1.50 83 0.86 68.7 
8 D 152 203 5 43.0 A 3 0.42 230 1.69 14 0.79 50.7 
9 D 152 203 5 43.0 A 6 0.42 230 1.69 14 1.30 51.6 
10 D 152 203 5 43.0 A 9 0.42 230 1.69 14 1.48 53.8 
11 D 152 203 5 43.0 A 12 0.42 230 1.69 14 0.90 54.2 
12 D 152 203 25 43.0 A 3 0.42 230 1.69 14 1.12 51.2 
13 D 152 203 25 43.0 A 6 0.42 230 1.69 14 1.27 51.2 
14 D 152 203 25 43.0 A 9 0.42 230 1.69 14 0.94 53.3 
15 A 152 203 25 43.0 A 12 0.42 230 1.69 14 1.04 55.0 
16 D 152 203 38 43.0 A 6 0.42 230 1.69 14 1.05 50.7 
17 A 152 203 38 43.0 A 9 0.42 230 1.69 14 0.97 52.9 

Harajli et al. (2006) 
18 A 132 132 15 18.3 C 1 0.13 3500 1.50 230 - 28.9 
19 A 132 132 15 18.3 C 2 0.13 3500 1.50 230 - 40.0 
20 A 132 132 15 18.3 C 3 0.13 3500 1.50 230 - 43.1 
21 A 132 132 15 18.3 C 1 0.13 3500 1.50 230 - 25.4 
22 A 132 132 15 18.3 C 2 0.13 3500 1.50 230 - 36.8 
23 A 132 132 15 18.3 C 3 0.13 3500 1.50 230 - 47.0 
24 A 102 176 15 18.3 C 1 0.13 3500 1.50 230 - 23.5 
25 A 102 176 15 18.3 C 2 0.13 3500 1.50 230 - 31.0 
26 A 102 176 15 18.3 C 3 0.13 3500 1.50 230 - 36.5 
27 A 102 176 15 18.3 C 1 0.13 3500 1.50 230 - 21.5 
28 A 102 176 15 18.3 C 2 0.13 3500 1.50 230 - 27.8 
29 A 102 176 15 18.3 C 3 0.13 3500 1.50 230 - 36.4 
30 D 79 214 15 18.3 C 1 0.13 3500 1.50 230 - 27.8 
31 D 79 214 15 18.3 C 2 0.13 3500 1.50 230 - 28.4 
32 D 79 214 15 18.3 C 3 0.13 3500 1.50 230 - 30.4 
33 D 79 214 15 18.3 C 1 0.13 3500 1.50 230 - 18.5 
34 A 79 214 15 18.3 C 2 0.13 3500 1.50 230 - 22.0 
35 A 79 214 15 18.3 C 3 0.13 3500 1.50 230 - 28.9 
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No. Note1 
Specimens Concrete FRP 

b h r f 'co Type2 No. of 
layers 

t ff fu Ef fe f 'cc 
mm mm mm MPa mm MPa % GPa % MPa 

Rousakis et al. (2007) 
36 D 200 200 30 33.0 C 1 0.12 3720 1.55 240 - 38.4 
37 A 200 200 30 33.0 C 3 0.12 3720 1.55 240 - 45.9 
38 A 200 200 30 33.0 C 5 0.12 3720 1.55 240 - 55.6 
39 D 200 200 30 33.0 G 3 0.14 1820 2.80 65 - 42.6 
40 A 200 200 30 33.0 G 6 0.14 1820 2.80 65 - 44.4 
41 A 200 200 30 33.0 G 9 0.14 1820 2.80 65 - 51.9 
42 D 200 200 30 34.0 C 1 0.12 3720 1.55 240 - 42.2 
43 D 200 200 30 34.0 C 3 0.12 3720 1.55 240 - 45.2 
44 A 200 200 30 34.0 C 5 0.12 3720 1.55 240 - 54.6 
45 D 200 200 30 38.0 G 6 0.14 1820 2.80 65 - 52.8 
46 D 200 200 30 38.0 G 9 0.14 1820 2.80 65 - 59.8 
47 D 200 200 30 40.0 G 6 0.14 1820 2.80 65 - 54.2 
48 D 200 200 30 40.0 G 9 0.14 1820 2.80 65 - 59.5 

Lam and Teng (2003b) 
49 D 150 150 15 33.7 C 1 0.17 4519 1.76 257 - 35.0 
50 A 150 150 25 33.7 C 1 0.17 4519 1.76 257 - 39.4 
51 A 150 150 15 33.7 C 2 0.17 4519 1.76 257 - 50.4 
52 A 150 150 25 33.7 C 2 0.17 4519 1.76 257 - 61.9 
53 A 150 150 15 24.0 C 3 0.17 4519 1.76 257 - 61.6 
54 A 150 150 25 24.0 C 3 0.17 4519 1.76 257 - 66.0 

Masia et al. (2004) 
55 A 100 100 25 25.5 C 2 0.13 3500 1.50 230 - 55.9 
56 A 100 100 25 22.8 C 2 0.13 3500 1.50 230 - 48.7 
57 A 100 100 25 25.1 C 2 0.13 3500 1.50 230 - 45.7 
58 A 100 100 25 23.8 C 2 0.13 3500 1.50 230 - 50.7 
59 A 100 100 25 21.7 C 2 0.13 3500 1.50 230 - 56.2 
60 A 125 125 25 23.7 C 2 0.13 3500 1.50 230 - 45.0 
61 A 125 125 25 22.9 C 2 0.13 3500 1.50 230 - 39.9 
62 A 125 125 25 25.7 C 2 0.13 3500 1.50 230 - 42.1 
63 A 125 125 25 25.5 C 2 0.13 3500 1.50 230 - 35.5 
64 A 125 125 25 24.3 C 2 0.13 3500 1.50 230 - 40.2 
65 A 150 150 25 24.5 C 2 0.13 3500 1.50 230 - 35.7 
66 A 150 150 25 21.3 C 2 0.13 3500 1.50 230 - 36.2 
67 A 150 150 25 24.8 C 2 0.13 3500 1.50 230 - 36.6 
68 A 150 150 25 23.6 C 2 0.13 3500 1.50 230 - 36.5 
69 A 150 150 25 25.3 C 2 0.13 3500 1.50 230 - 36.0 

  

Table 2. Test results of FRP confined rectangular specimens (Cont.) 
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No. Note1 
Specimens Concrete FRP 

b h r f 'co Type2 No. of 
layers 

t ff fu Ef fe f 'cc 
mm mm mm MPa mm MPa % GPa % MPa 

Wang and Wu (2008) 
70 D 150 150 15 32.9 C 1 0.17 4364 1.99 219 1.39 38.8 
71 D 150 150 15 32.2 C 1 0.17 4364 1.99 219 1.39 31.0 
72 D 150 150 15 30.7 C 1 0.17 4364 1.99 219 1.39 30.8 
73 A 150 150 15 32.9 C 2 0.17 4364 1.99 219 1.16 40.5 
74 A 150 150 15 32.2 C 2 0.17 4364 1.99 219 1.16 43.6 
75 A 150 150 15 30.7 C 2 0.17 4364 1.99 219 1.16 42.4 
76 A 150 150 30 32.6 C 1 0.17 4364 1.99 219 1.11 43.4 
77 A 150 150 30 31.1 C 1 0.17 4364 1.99 219 1.11 38.8 
78 A 150 150 30 33.1 C 1 0.17 4364 1.99 219 1.11 37.1 
79 A 150 150 30 32.6 C 2 0.17 4364 1.99 219 1.28 58.1 
80 A 150 150 30 31.1 C 2 0.17 4364 1.99 219 1.28 57.5 
81 A 150 150 30 33.1 C 2 0.17 4364 1.99 219 1.28 53.8 
82 A 150 150 45 30.1 C 1 0.17 4364 1.99 219 1.27 48.3 
83 A 150 150 45 32.6 C 1 0.17 4364 1.99 219 1.27 42.1 
84 A 150 150 45 29.3 C 1 0.17 4364 1.99 219 1.27 40.8 
85 A 150 150 45 30.1 C 2 0.17 4364 1.99 219 1.68 64.6 
86 A 150 150 45 32.6 C 2 0.17 4364 1.99 219 1.68 69.4 
87 A 150 150 45 29.3 C 2 0.17 4364 1.99 219 1.68 70.1 
88 A 150 150 60 30.9 C 1 0.17 4364 1.99 219 1.37 50.9 
89 A 150 150 60 31.1 C 1 0.17 4364 1.99 219 1.37 51.7 
90 A 150 150 60 33.5 C 1 0.17 4364 1.99 219 1.37 47.3 
91 A 150 150 60 30.9 C 2 0.17 4364 1.99 219 1.75 81.1 
92 A 150 150 60 31.1 C 2 0.17 4364 1.99 219 1.75 73.6 
93 A 150 150 60 33.5 C 2 0.17 4364 1.99 219 1.75 82.1 
94 D 150 150 15 54.7 C 1 0.17 3788 1.92 226 1.01 55.0 
95 D 150 150 15 55.2 C 1 0.17 3788 1.92 226 1.01 56.1 
96 D 150 150 15 52.5 C 1 0.17 3788 1.92 226 1.01 56.2 
97 D 150 150 15 54.7 C 2 0.17 3788 1.92 226 0.62 59.6 
98 D 150 150 15 55.2 C 2 0.17 3788 1.92 226 0.62 59.6 
99 D 150 150 15 52.5 C 2 0.17 3788 1.92 226 0.62 59.0 
100 D 150 150 30 53.5 C 1 0.17 3788 1.92 226 1.10 56.2 
101 D 150 150 30 53.1 C 1 0.17 3788 1.92 226 1.10 55.5 
102 D 150 150 30 49.4 C 1 0.17 3788 1.92 226 1.10 56.0 
103 D 150 150 30 53.5 C 2 0.17 3788 1.92 226 1.17 65.2 
104 D 150 150 30 53.1 C 2 0.17 3788 1.92 226 1.17 61.4 
105 D 150 150 30 49.4 C 2 0.17 3788 1.92 226 1.17 62.5 
106 D 150 150 45 53.2 C 1 0.17 3788 1.92 226 1.34 56.4 
107 D 150 150 45 51.5 C 1 0.17 3788 1.92 226 1.34 58.4 
108 D 150 150 45 53.3 C 1 0.17 3788 1.92 226 1.34 57.9 
  

Table 2. Test results of FRP confined rectangular specimens (Cont.) 
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No. Note1 
Specimens Concrete FRP 

b h r f 'co Type2 No. of 
layers 

t ff fu Ef fe f 'cc 
mm mm mm MPa mm MPa % GPa % MPa 

Wang and Wu (2008) 
109 A 150 150 45 53.2 C 2 0.17 3788 1.92 226 1.27 81.3 
110 A 150 150 45 51.5 C 2 0.17 3788 1.92 226 1.27 78.8 
111 A 150 150 45 53.3 C 2 0.17 3788 1.92 226 1.27 80.9 
112 A 150 150 60 53.9 C 1 0.17 3788 1.92 226 1.39 62.4 
113 A 150 150 60 52.0 C 1 0.17 3788 1.92 226 1.39 62.7 
114 A 150 150 60 52.3 C 1 0.17 3788 1.92 226 1.39 62.8 
115 A 150 150 60 53.9 C 2 0.17 3788 1.92 226 1.38 87.9 
116 A 150 150 60 52.0 C 2 0.17 3788 1.92 226 1.38 90.9 
117 A 150 150 60 52.3 C 2 0.17 3788 1.92 226 1.38 90.4 

Wu and Wei (2010) 
118 A 150 150 30 35.3 C 1 0.17 4192 1.84 229 1.84 40.5 
119 A 150 150 30 35.3 C 1 0.17 4192 1.84 229 1.84 40.7 
120 A 150 150 30 35.3 C 1 0.17 4192 1.84 229 1.84 42.5 
121 A 150 150 30 35.3 C 2 0.17 4192 1.84 229 1.21 59.2 
122 A 150 150 30 35.3 C 2 0.17 4192 1.84 229 1.21 59.6 
123 A 150 150 30 35.3 C 2 0.17 4192 1.84 229 1.21 62.3 
124 D 150 188 30 35.3 C 1 0.17 4192 1.84 229 1.46 38.0 
125 D 150 188 30 35.3 C 1 0.17 4192 1.84 229 1.46 38.9 
126 D 150 188 30 35.3 C 1 0.17 4192 1.84 229 1.46 39.4 
127 A 150 188 30 35.3 C 2 0.17 4192 1.84 229 1.33 48.8 
128 A 150 188 30 35.3 C 2 0.17 4192 1.84 229 1.33 51.9 
129 A 150 188 30 35.3 C 2 0.17 4192 1.84 229 1.33 53.3 
130 D 150 225 30 35.3 C 1 0.17 4192 1.84 229 1.58 37.6 
131 D 150 225 30 35.3 C 1 0.17 4192 1.84 229 1.58 35.6 
132 D 150 225 30 35.3 C 1 0.17 4192 1.84 229 1.58 39.2 
133 A 150 225 30 35.3 C 2 0.17 4192 1.84 229 1.44 43.0 
134 A 150 225 30 35.3 C 2 0.17 4192 1.84 229 1.44 45.2 
135 A 150 225 30 35.3 C 2 0.17 4192 1.84 229 1.44 43.4 
136 D 150 260 30 35.3 C 1 0.17 4192 1.84 229 1.31 35.2 
137 D 150 260 30 35.3 C 1 0.17 4192 1.84 229 1.31 37.8 
138 D 150 260 30 35.3 C 1 0.17 4192 1.84 229 1.31 37.6 
139 D 150 260 30 35.3 C 2 0.17 4192 1.84 229 1.72 38.9 
140 D 150 260 30 35.3 C 2 0.17 4192 1.84 229 1.72 41.4 
141 D 150 260 30 35.3 C 2 0.17 4192 1.84 229 1.72 41.3 
142 D 150 300 30 35.3 C 1 0.17 4192 1.84 229 1.15 36.6 
143 D 150 300 30 35.3 C 1 0.17 4192 1.84 229 1.15 37.7 
144 D 150 300 30 35.3 C 1 0.17 4192 1.84 229 1.15 38.0 
145 D 150 300 30 35.3 C 2 0.17 4192 1.84 229 1.37 38.6 
  

Table 2. Test results of FRP confined rectangular specimens (Cont.) 
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No. Note1 
Specimens Concrete FRP 

b h r f 'co Type2 No. of 
layers 

t ff fu Ef fe f 'cc 
mm mm mm MPa mm MPa % GPa % MPa 

Wu and Wei (2010) 
146 D 150 300 30 35.3 C 2 0.17 4192 1.84 229 1.37 39.1 
147 D 150 300 30 35.3 C 2 0.17 4192 1.84 229 1.37 39.3 

Wang et al. (2012) 
148 D 305 305 30 25.5 C 1 0.17 4340 1.81 240 0.88 17.2 
149 D 305 305 30 25.5 C 2 0.17 4340 1.81 240 0.70 24.4 
150 D 305 305 30 25.5 C 1 0.17 4340 1.81 240 0.37 19.4 
151 D 305 305 30 25.5 C 2 0.17 4340 1.81 240 0.28 26.0 
152 D 305 305 30 25.5 C 3 0.17 4340 1.81 240 0.60 29.2 
153 D 305 305 30 25.5 C 1 0.17 4340 1.81 240 - 24.9 
154 D 305 305 30 25.5 C 2 0.17 4340 1.81 240 0.33 26.2 
155 D 305 305 30 25.5 C 3 0.17 4340 1.81 240 1.24 31.1 
156 D 204 305 20 25.5 C 1 0.17 4340 1.81 240 0.86 25.0 
157 A 204 305 20 25.5 C 2 0.17 4340 1.81 240 0.62 31.4 
158 D 204 305 20 25.5 C 1 0.17 4340 1.81 240 - 29.7 
159 A 204 305 20 25.5 C 2 0.17 4340 1.81 240 - 35.3 
160 D 204 305 20 25.5 C 1 0.17 4340 1.81 240 - 26.9 
161 A 204 305 20 25.5 C 2 0.17 4340 1.81 240 1.42 36.1 

Shehata et al. (2002) 
162 D 150 150 10 23.7 C 1 0.17 3550 1.50 235 - 27.4 
163 D 150 150 10 23.7 C 2 0.17 3550 1.50 235 - 36.5 
164 D 150 150 10 29.5 C 1 0.17 3550 1.50 235 - 40.4 
165 D 150 150 10 29.5 C 2 0.17 3550 1.50 235 - 43.7 

Ilki and Kumbasar (2003) 
166 D 250 250 40 32.8 C 1 0.17 3430 1.50 230 - 32.7 
167 D 250 250 40 32.8 C 1 0.17 3430 1.50 230 - 32.3 
168 A 250 250 40 32.8 C 3 0.17 3430 1.50 230 - 41.4 
169 A 250 250 40 32.8 C 3 0.17 3430 1.50 230 - 40.6 
170 A 250 250 40 32.8 C 5 0.17 3430 1.50 230 - 56.7 
171 A 250 250 40 32.8 C 5 0.17 3430 1.50 230 - 53.6 

Al-salloum (2007) 
172 D 150 150 5 28.7 C 1 1.20 935 1.25 75 - 41.2 
173 D 150 150 5 30.9 C 1 1.20 935 1.25 75 - 42.5 
174 A 150 150 25 31.8 C 1 1.20 935 1.25 75 - 48.3 
175 A 150 150 25 28.5 C 1 1.20 935 1.25 75 - 45.6 
176 A 150 150 38 27.7 C 1 1.20 935 1.25 75 - 57.0 
177 A 150 150 38 30.3 C 1 1.20 935 1.25 75 - 55.0 
178 A 150 150 50 26.7 C 1 1.20 935 1.25 75 - 61.7 
179 A 150 150 50 28.3 C 1 1.20 935 1.25 75 - 63.7 
  

Table 2. Test results of FRP confined rectangular specimens (Cont.) 
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No. Note1 
Specimens Concrete FRP 

b h r f 'co Type2 No. of 
layers 

t ff fu Ef fe f 'cc 
mm mm mm MPa mm MPa % GPa % MPa 

Tao et al. (2008) 
180 A 150 150 20 22.0 C 1 0.17 4470 1.87 239 - 33.5 
181 A 150 150 20 22.0 C 2 0.17 4470 1.87 239 - 49.6 
182 A 150 150 20 19.5 C 2 0.17 4470 1.87 239 - 47.2 
183 A 150 150 35 22.0 C 2 0.17 4470 1.87 239 - 64.8 
184 A 150 150 35 19.5 C 2 0.17 4470 1.87 239 - 58.7 
185 A 150 150 50 22.0 C 2 0.17 4470 1.87 239 - 76.6 
186 A 150 150 50 19.5 C 2 0.17 4470 1.87 239 - 63.6 
187 D 150 150 20 49.5 C 1 0.17 4470 1.87 239 - 54.2 
188 A 150 150 20 49.5 C 2 0.17 4470 1.87 239 - 61.4 
189 A 150 150 35 49.5 C 2 0.17 4470 1.87 239 - 84.9 
190 A 150 150 50 49.5 C 2 0.17 4470 1.87 239 - 86.1 
1 Note: “A” and “D” stand for ascending and descending branches of stress-strain diagrams, respectively. 

2 Types of FRP: “C”, “A”, and “G” stand for carbon FRP, aramid FRP, and glass FRP, respectively.  

Table 2. Test results of FRP confined rectangular specimens (Cont.) 

Accepted Manuscript 
Not Copyedited

Journal of Composites for Construction. Submitted March 20, 2013; accepted June 24, 2013; 
        posted ahead of print June 26, 2013. doi:10.1061/(ASCE)CC.1943-5614.0000407

Copyright 2013 by the American Society of Civil Engineers

J. Compos. Constr. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

W
O

L
L

O
N

G
O

N
G

 o
n 

06
/2

5/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Accepted Manuscript 
Not Copyedited

Journal of Composites for Construction. Submitted March 20, 2013; accepted June 24, 2013; 
        posted ahead of print June 26, 2013. doi:10.1061/(ASCE)CC.1943-5614.0000407

Copyright 2013 by the American Society of Civil Engineers

J. Compos. Constr. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

W
O

L
L

O
N

G
O

N
G

 o
n 

06
/2

5/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



y = 0.5 + 0.0642ln(A)
R² = 0.6543

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30

Ef
fic

ie
nc

y 
st

ra
in

 fa
ct

or
 k

ε

A = 2r/(bRs)

Accepted Manuscript 
Not Copyedited

Journal of Composites for Construction. Submitted March 20, 2013; accepted June 24, 2013; 
        posted ahead of print June 26, 2013. doi:10.1061/(ASCE)CC.1943-5614.0000407

Copyright 2013 by the American Society of Civil Engineers

J. Compos. Constr. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

W
O

L
L

O
N

G
O

N
G

 o
n 

06
/2

5/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



y = 0.68 + 3.91( fl,e / fco
')

R² = 0.7913

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5

f cc
' / 

f co
'

fl,e / fco
'

Accepted Manuscript 
Not Copyedited

Journal of Composites for Construction. Submitted March 20, 2013; accepted June 24, 2013; 
        posted ahead of print June 26, 2013. doi:10.1061/(ASCE)CC.1943-5614.0000407

Copyright 2013 by the American Society of Civil Engineers

J. Compos. Constr. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

W
O

L
L

O
N

G
O

N
G

 o
n 

06
/2

5/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

f cc
' /

f co
'

fl,e  / fco'

Ascending type specimens

Descending type specimens

Threshold value 
for sufficient 
confinement

Accepted Manuscript 
Not Copyedited

Journal of Composites for Construction. Submitted March 20, 2013; accepted June 24, 2013; 
        posted ahead of print June 26, 2013. doi:10.1061/(ASCE)CC.1943-5614.0000407

Copyright 2013 by the American Society of Civil Engineers

J. Compos. Constr. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

W
O

L
L

O
N

G
O

N
G

 o
n 

06
/2

5/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



0

20

40

60

80

100

0 20 40 60 80 100

Wu and Wang (2009)
104 data points

0

20

40

60

80

100

0 20 40 60 80 100

Proposed model
104 data points

0

20

40

60

80

100

0 20 40 60 80 100

Lam and Teng (2003b)
104 data points

0

20

40

60

80

100

0 20 40 60 80 100

Toutanji et al. (2010)
104 data points

0

20

40

60

80

100

0 20 40 60 80 100

Chaallal et al. (2003a)
104 data points

0

20

40

60

80

100

0 20 40 60 80 100

Wu and Wei (2010)
104 data points

f cc
' (

Th
eo

re
tic

al
, M

Pa
)

fcc' (Experimental, MPa)

A
cc

ep
te

d 
M

an
us

cr
ip

t 
N

ot
 C

op
ye

di
te

d

Journal of Composites for Construction. Submitted March 20, 2013; accepted June 24, 2013; 
        posted ahead of print June 26, 2013. doi:10.1061/(ASCE)CC.1943-5614.0000407

Copyright 2013 by the American Society of Civil Engineers

J. Compos. Constr. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

W
O

L
L

O
N

G
O

N
G

 o
n 

06
/2

5/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



18.7

12.5
10.6

9.0 9.7
8.6

14.5
13.2 13.7

10.6

12.5
11.0

5.1

2.4 1.7 1.2 1.5 1.1

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

AAE (%)

SD (%)

MSE (%)

Er
ro

r o
f t

he
 se

le
ct

ed
 m

od
el

s (
%

)

A
cc

ep
te

d 
M

an
us

cr
ip

t 
N

ot
 C

op
ye

di
te

d

Journal of Composites for Construction. Submitted March 20, 2013; accepted June 24, 2013; 
        posted ahead of print June 26, 2013. doi:10.1061/(ASCE)CC.1943-5614.0000407

Copyright 2013 by the American Society of Civil Engineers

J. Compos. Constr. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

W
O

L
L

O
N

G
O

N
G

 o
n 

06
/2

5/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



0

20

40

60

80

100

0 20 40 60 80 100

Th
eo

re
tic

al
 f c

c' 
(M

Pa
)

Experimental fcc' (MPa)

Proposed model
190 data points

A
cc

ep
te

d 
M

an
us

cr
ip

t 
N

ot
 C

op
ye

di
te

d

Journal of Composites for Construction. Submitted March 20, 2013; accepted June 24, 2013; 
        posted ahead of print June 26, 2013. doi:10.1061/(ASCE)CC.1943-5614.0000407

Copyright 2013 by the American Society of Civil Engineers

J. Compos. Constr. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

W
O

L
L

O
N

G
O

N
G

 o
n 

06
/2

5/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.




