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ABSTRACT

Organic-rich shales, traditionally considered as source 
rocks, have recently become an ambitious goal for the oil 
and gas industry as important unconventional reservoirs. 
Understanding of the initiation and development of fractures 
in organic-rich shales is crucially important as fractures could 
drastically increase the permeability of these otherwise low-
permeable rocks. Fracturing can be induced by rapid decom-
position of organic matter caused by either natural heating, 
such as emplacement of magmatic bodies into sedimentary 
basins, or thermal methods used for enhanced oil recovery.

In this work the authors study fracture initiation and devel-
opment caused by dry pyrolysis of Kimmeridge shale, which 
is characterised with a high total organic carbon content of 
more than 20%. X-ray diffraction (XRD) analysis exhibits high 
carbonate (both calcite and dolomite) and low clay (illite) 
content. Field emission gun scanning electron microscopy 
(FEG-SEM) shows that kerogen is presented either as a load-
bearing matrix or as a filling of the primary porosity with 
pores being of micron size. Cylindrical samples of the Kim-
meridge shale are heated up to temperatures in the range of 
330–430°C. High-resolution X-ray microtomographic (micro-
CT) images are obtained. The microtomographic images are 
processed using AVIZO (Visualization Sciences Group) to 
identify and statistically characterise large kerogen-filled 
pores and pre-existing and initiated cracks. The relationship 
between the total area of fractures and the temperature expe-
rienced by the sample has been obtained. Total organic car-
bon content is determined for samples subjected to heating 
experiments. This approach enables a quantitative analysis 
of fracture initiation and development in organic-rich shales 
during heating.

KEYWORDS

Organic-rich shales, kerogen, dry pyrolysis, Kimmeridge shale, 
fractures, heating, micro-CT scanning, microstructures, total 
organic carbon.

INTRODUCTION

Recently, increased interest in unconventional resources 
has resulted in a large number of theoretical and experimental 
studies of organic-rich shales (e.g. Patrusheva et al, 2014; Far et 
al, 2013; Sayers, 2013; Yan and Han, 2013; Lucier et al, 2011; Los-
eth et al, 2011; Vanorio et al, 2008; Peters et al, 2004; Carsione, 
2001). Suarez-Rivera and Fjaer (2013) studied the coupled ef-
fects of rock deformation and pore pressure on two organic-rich 
shales, and reported poroelastic constants of 0.3–0.6 and 0.1–0.8 
for the Haynesville and Bossier shales, respectively. Such low 
values indicate that these shales are stiff and have low poros-
ity. Carcione et al (2011) theoretically studied the effects of 
kerogen fraction and partial saturation on elastic properties of 
organic-rich shales at different frequencies. Sayers (2013) used 
the database provided by Vernik and Liu (1997) to test three 
different effective medium theories. The effective field theory 
by Sevostianov et al (2005) strongly supports the experimental 
results, which show that clay and kerogen form interconnected 
matrices in which both constituents are load-bearing. 

Changes in petrophysical properties caused by heating are 
practically important for the production of oil and gas from 
low permeable shales. Zargari et al (2013) investigated elastic 
properties of Bakken shale with various maturation levels on 
samples from different depths. The samples were then subject-
ed to hydrous pyrolysis to mimic process of natural matura-
tion, and microstructures and local mechanical properties were 
compared with the same observations on the intact samples. 
The authors implied that an increase in Young’s modulus with 
maturity in naturally matured shales is related to the reduc-
tion in their TOC content. Interestingly, the samples showed 
lower Young’s moduli after the hydrous pyrolysis. The authors 
explained this seeming discrepancy with the fact (confirmed 
with SEM observations) that part of the bitumen produced dur-
ing pyrolysis was trapped in the kerogen. This bitumen lowered 
average elastic moduli as Young’s modulus of bitumen (below 
2 GPa) is lower than that of kerogen. 

Fracturing is considered to be a way to increase permeability 
of unconventional reservoirs (e.g. Lash and Engelder, 2005). Hy-
draulic fracturing is the most successful if the newly developed 
fractures connect preexisting fracture networks caused for in-
stance by maturation processes (e.g. Far et al, 2013; Lucier et al, 
2011). Pyrolysis of the kerogen in organic-rich shales partially 
mimics the maturation process and this can be used to study 
fracture networks nucleation, development and propagation 
(e.g. Kobchenko et al, 2011; Zargari et al, 2013; Panahi et al, 
2013). Kobchenko et al (2011) studied pore microstructure of 
the Green River Shale before and after pyrolysis, and Tiwari et 
al (2013) characterised pore microstructure and estimated flow 
properties of the Green River oil shale after pyrolysis. Theoreti-
cal and numerical modelling of cracks propagation and coales-
cence were provided in a number of studies (e.g. Ozkaya, 1988; 
Jin et al, 2010). 

The authors examined fracturing in the Kimmeridge or-
ganic-rich shale during heating. Results of pyrolysis of the 
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shale samples heated up to several temperatures in a range of 
330°C–430°C. The authors investigated the pore structure before 
and after heating by using high resolution microtomography. 
This paper also presents a full characterisation of the Kimmer-
idge shale before pyrolysis, including its mineralogy, distribu-
tion of the organic matter and original porosity.

ANALYTICAL TECHNIQUES AND 
EXPERIMENTAL PROCEDURES

Kimmeridge shale from the Upper Jurassic Kimmeridge Clay 
Formation is selected for this study. The Upper Jurassic Kim-
meridge Clay Formation is a suite of sediments comprised of 
clays, carbonates, bituminous shales and oil shales (William 
and Douglas, 1984). The Kimmeridge Clay Formation contains 
shales with some of the highest total organic carbon (TOC) 
contents (Curtis et al, 2012a). As rock mineralogy is crucial in 
shale evaluation and affects its brittleness (Bai et al, 2013), the 
sample studied is fully characterised by powder X-Ray Diffrac-
tion (XRD), portable X-Ray Fluorescence Spectrometry (pXRF), 
Field-Emission Gun Scanning Electron Microscopy (FEG-SEM) 
at ARRC laboratories (CSIRO, Kensington WA), and computed 
tomography scanner (Micro-CT) at the National Geosequestra-
tion Laboratory. The TOC content is determined as well.

The shale sample is crushed, mixed with ethanol and placed 
on a glass slide. Powder XRD data for the sample is obtained 
using a Bruker D4 Endeavor AXS instrument operating with Co 
radiation. The X-ray diffractogram is collected for the range of 2θ 
from 5°C to 90°C, with increment of 0.02°C and scan speed of 0.1. 
The obtained X-ray diffractogram pattern is interpreted using the 
DIFFRAC.EVA Bruker software package. The minerals present in 
the sample were identified and their percentages were estimated.

A hand sample of the shale was then analysed with a Delta 
hand-held pXRF spectrometer, with a large area SDD detector, 
integrated vacuum technology and customised 4W X-Ray tube, 
providing increased light-element sensitivity. The data are col-
lected in Geochem Ba mode, which gave a range of elements 
analysed from Mg to U. Prior to the measurement of element 
concentrations by pXRF, the instrument is calibrated using a 
metal disk. An instrument check is done prior to and after mea-
surements using standards: NIST 2702, NIST 2781, NIST 2710a, 
NIST 2711a and a SiO

2
 blank (pure quartz). Detection limits 

are estimated on the basis of reproducibility on the measure-
ments for certified reference materials (NIST standards). The 
data are reported in element wt.% or ppm for elements where 
concentration was above the detection limit.

A polished slab of the shale is chromium-coated and is stud-
ied using a Zeiss Ultra-Plus FEG-SEM coupled with a Bruker 
X-Flash EDX detector for elemental analysis. An accelerating 
voltage of 20 kV and a beam current of 3 nA was used. Back-
scattered electron images are taken and element maps are 
collected to document the distribution of chemical elements, 
carbon in particular.

Total organic content of the shale sample is measured by the 
National Measurement Institute. A number of measurements 
are done namely on an intact sample and on samples heated 
to various temperatures from 330°C to 430°C.

As for studying fractures nucleation and propagation pro-
cesses in shales during heating, two cylindrical samples of 
5 mm height and 2 mm in diameter are prepared. The experi-
mental procedure for each sample is described in details below:
1.	 To visualise pre-existing fractures, the first sample is 

scanned with an XRadia VersaXRM-500 micro-CT scanner 
with a resolution (pixel size) of 3.5 micron.

2.	 The sample is then heated in an OmegaLux LMF-3550 
furnace (Omega, Ltd.) from room temperature to 430°C at 
the rate of 8°C per minute. At the final stage of heating, the 

sample is maintained under the temperature of 430°C for 
10 minutes. Then after cooling to room temperature an-
other microtomographic image is obtained with the same 
micro-CT scanner.

3.	 The second sample is heated up from the room tempera-
ture to 330°C at the rate of 8°C per minute and then kept at 
the maximum temperature for 10 minutes. The sample is 
then cooled down and a microtomographic image of the 
sample is obtained with the same micro-CT scanner.

4.	 The step 3 is repeated for the temperatures of 370°C and 
390°C.

For better understanding of physical and chemical processes 
in shales during heating, the mass loss and the TOC content 
during heating was measured. As the samples used for the 
micro-CT imaging are too small for reliable measurements of 
the mass loss and the TOC content, another set of four samples 
of the same shale is prepared and heated up to 330°C, 370°C, 
390°C and 430°C. The weight and the TOC content of each 
sample is measured before and after heating. 

To characterise the pre-existing fractures and the fractures 
introduced as a result of heating the samples, obtained mi-
crotomograms are processed using AVIZO software (Visuali-
sation Sciences Group). The data initially come as a series of 
greyscale 2D images saved in a tagged image file format. Each 
greyscale 2D image is a set of numbers corresponding to X-ray 
densities assigned to each voxel of the scanned volume. These 
micro-CT images cannot be directly used for the analysis; they 
require pre-processing and segmentation into a mineral ma-
trix phase and a void/fracture phase. The processing routine 
started from stacking the series of 2D images together to form 
3D volumes of 700 × 700 × 1,000 voxels. Then all five volumes 
were cropped to the smaller cubes of 400 × 400 × 400 voxels 
from the center of the original microtomogram. This was done 
to avoid the effect of beam hardening on the intensity of the 
microtomogram, as well as the edge effects that could influence 
fractures characteristics on the edge of the sample as a result of 
inhomogeneous heating. 

To enhance the signal-to-noise ratio of the micro-CT images, 
a 3D Gaussian filter and a 3D median smoothing filter were ap-
plied. As a result, most of the random speckle noises are removed 
from the tomogram, whereas the important features of the origi-
nal image, such as fractures are preserved. At the next step, the 
grey-scale 3D volumes are transformed to binary ones, where 
each voxel represented mineral matrix or void space (pore or 
fracture). The routine is based on a simple threshold (histogram-
based) algorithm, which assigned labels to voxels according to 
their intensities. The threshold levels are chosen interactively 
for each of five volumes. The noise remained after the data en-
hancement algorithms results in the presence of small isolated 
objects on the labelled volumes. These objects may degrade the 
data quality and affect further statistical analysis. Thus, all the 
objects below the volume threshold of 15 voxels are excluded 
from the process. The detailed description of the image process-
ing procedure can be found in Shulakova et al (2012).

COMPOSITION AND 2D MICROSTRUCTURE

A composition and 2D microstructure of a sample from the 
Kimmeridge shale before heating is fully characterised using 
XRD, pXRF and FEG-SEM techniques. According to Curtis et al 
(2012a), shales of Kimmeridge Clay Formation have the highest 
TOC values reported in the literature. The sample studied here 
has the TOC content of 23.4% (Table 1), which is in the range 
of previously reported values of 6–49 wt.% (Curtis et al, 2012a). 
The TOC content is also measured for the shale samples heated 
up to a range of temperatures and it decreases with increasing 
temperature of pyrolysis (Table 1).
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The XRD study of the Kimmeridge shale shows that the rock 
is characterised by high carbonate content, which constituted 
around 40 % (total percentage of calcite and dolomite) and low 
illite content (~ 6%) (Table 2). Framework silicates include feld-
spars and quartz at 28%, and pyrite constitutes 1% of the total rock 
volume (Table 2). The presence of some crystalline organic com-
pound is identified. The peaks on the powder XRD pattern match 
a compound with the chemical formula of C

14
H

18
O

7
 (Fig. 1). This 

is an interesting observation because crystalline organic matter 
is not common while amorphous organic matter is the predomi-
nant type of organic matter in shales with low thermal maturity 
(Curtis et al, 2012b). 

The chemical composition of Kimmeridge shale is quite simple 
with: Si, Ca, Mg, Al, Fe and K being the major elements and having 
concentrations at percent level (Table 3). Light elements, namely 
carbon and oxygen, are not determined by portable XRF but are 
main constituents and comprise approximately 52% (Table 3). 

Minerals in the Kimmeridge shale contain elements with 
atomic numbers higher than carbon, and it is therefore possible to 
distinguish organic matter from inorganic minerals by the darker 
colour of kerogen in back-scattered electron (BSE) images. The 
sample was characterised with the FEG-SEM which allows ele-
ment mapping, documentation of rare micron-scale features in 
geologic samples and the distribution of trace elements in hetero-
geneous samples. The element mapping done on the sample of 
Kimmeridge shale shows the distribution of kerogen in the sam-
ple (Figures 2 and 3). The carbon-containing inorganic carbon-
ates (calcite and dolomite) are green on the composite-coloured 
map in Figure 2, as they contain Ca and Mg, and kerogen is red. 
The organic component of the sample acts as a groundmass and 
encapsulates grains of minerals (Figures 2 and 3). 

The Kimmeridge shale exhibits two primary porosity textures: 
organic and inorganic. There are fractures and voids or pores in 
the kerogen part of the sample (Figures 2, 4, 5, 6 and 7). Some 
primary fractures are up to 10 µm long and 0.5 µm wide (Fig. 2). 
Voids or pores in the studied sample are of the sub–micron size 
(Fig. 4) and are commonly located in the kerogen groundmass in 
close proximity or on the boundary with mineral grains (Figures 
5 and 6). From the FEG-SEM images, the authors estimate the 
organic porosity to be on the order of 6–10%. Significant inorganic 
porosity is associated with carbonates. Mineral grains often have 
crack-like fractures (Fig. 2) and pores or voids in them of up to a 
few microns in size (Fig. 7). 

3D MICROSTRUCTURE BEFORE 
AND AFTER HEATING

Slices from each of the five microtomograms obtained for 
the original sample of the Kimmeridge shale at 25°C and then 
heated to 330°C, 370°C and 390°C, and the sample heated up 
to the temperature of 430°C are shown in Figure 8. These im-
ages are obtained perpendicular to bedding plane and illustrate 
fracture nucleation and development as a result of the heating 
process. The weight loss and the TOC content of each of the 
samples before and after heating is shown in Table 4.

The intact shale (Fig. 8a) exhibits a typical layered structure 
with few fractures of the 2–5 pixel (7–18 micron) width. Due to 
insufficient resolution, it is difficult to distinguish between the 
non-organic shale constituents and kerogen, which might be 
distinguishable as darker spots due to its lower density in more 
detailed images. The growth and development of fractures re-
sulting from the increase in experienced temperature is clearly 
visible (Figures 8b and c). The developed fracture network is 
highly anisotropic as the fracture growth occurs parallel to the 
bedding plane with just a few cracks developed at an acute 
angle with the bedding. In the temperature range of 370°C–
390°C the significant increase of fracture length is observed 

(Figures 8c–d). This indicates that at this temperature range, the 
rapid growth and coalescence of fractures occur. The image of 
the sample presented in Figure 8e shows a little difference with 
the image in Figure 8d, however a lot of small black spots can 
be observed in the latter. This might imply that at temperatures 
higher than 390°C, the growth of large fractures slow down and 
new smaller fractures start to nucleate.

For statistical analysis of the number of isolated fractures, 
surface areas, shapes and all separate fractures were picked out 
within AVIZO by the method described in the section on analyt-
ical techniques and experimental procedures. Fracture volume, 
minimum and maximum size, surface area and orientation was 
determined for each sample. The total number of fractures in 
the samples that experienced different maximal temperatures 
is shown in Table 5. The number of the fractures stays nearly 
constant when the temperature increases from 25 to 330°C. 
With further temperature increase from 330°C–370 °C and 
then to 390°C, the number of fractures normalised to the 
number of fractures at room temperature drops drastically 
from 1–0.67 and to 0.43, respectively. A further temperature 
increase up to 430°C leads to a slight increase in a number of 
fractures due to the nucleation of new fractures. The surface 
areas of fractures was also analysed for each of the samples. 
The results are shown in Figure 9. It can be seen that with the 
increase of the temperature the size of the cracks increases. 
For example, while at room temperature, the size of the surface 
area of the largest fractures is ~ 40 thousand square pixels, the 
same size is about 7 times larger at 330°C and its 15 times larger 
at 430°C. The number of cracks with a particular surface area 
decreases overall with increase of the surface area. The number 
of large fractures (with the surface area above ~40 thousand 
square pixels) increases with the increase of the experienced 
temperature. The number of small fractures (with the area of 
less than ~ 8 thousand square pixels) first decreases up to the 

Measurement TOC 
% Experimental conditions

Sample 1 23.4 Room temperature

Sample 2 22.9 Heated up to 330°C

Sample 3 19.7 370°C

Sample 4 7.9 390°C

Sample 5 0.8 430°C

Sample 6 1.3 Heated up to 390°C twice

Table 1. Total organic carbon (TOC) content of the shale 
samples at room temperature and heated in the range from 
25°C–430°C.

Mineral Mineral formula Mineral %
Quartz SiO2 9.2
Pyrite FeS2 0.8

Oligoclase Na0.8Ca0.2Al1.2Si2.8O8 15.7
Microcline KAlSi3O8 3.2

Illite KAl2[AlSi3O8](OH)2 5.6
Calcite CaCO3 20.8

Dolomite CaMg(CO3)2 21.3
Total organic carbon 23.4

Table 2. Semi-quantitative mineral percentages determined by 
powder XRD and TOC content analysis.
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temperature of 390°C and then increases again in the sample 
that is heated up to 430°C.

This fracture size distribution can be explained by the fact 
that at temperatures of 330°C–390°C, the intensive growth and 
coalescence of existing fractures takes place and, therefore, the 
overall number of fractures decreases (Table 5). This growth 
also explains the decrease of the number of small fractures and 
the increase in the number of larger fractures. While the nucle-
ation of new small fractures take place slower than the growth 
of the existing ones at the temperatures of 330°C–390°C, at the 

higher temperatures of 390°C–430°C, the rapid nucleation of 
small fractures is initiated again, along with the growth of the 
number of the existing cracks and the increase of the number 
of the large cracks. The aspect ratio of fractures in the samples 
that experienced different temperatures is presented in Figure 
10. The histogram shows that most of the fractures have aspect 
ratios of 0.1–0.25 for all of the samples. The median aspect ratio 
is slightly higher for the samples that are heated up to 370°C, 
390°C and 430°C. The occurrence frequency is higher for the 
intact sample and the sample that is heated to 330°C, as the 
total number of the isolated cracks is larger in these samples. 
Approximately, the same median aspect ratio of the fractures 
in the intact sample and ones after heating can be explained by 
the abundant small cracks with an aspect ratio probably dis-
torted by the scanner resolution.

DISCUSSION

The Kimmeridge shale is characterised by one of the high-
est inorganic carbonate and total organic carbon content. High 
carbonate and low illite content suggests that the shale is brittle 
and prone to natural fractures. There are some crystalline or-
ganic components which might indicate that the shale is at least 
partially mature, as it was shown that amorphous organic mat-
ter is the predominant type in shales with low thermal maturity 
(Pacton et al, 2011). The organic porosity in the Kimmeridge 
shale was estimated to be 6–10%, which may support the hy-
pothesis that the shale is partially thermally mature (Curtis et al, 
2012b). The organic component of the sample acts as a ground-
mass and encapsulates grains of minerals, indicating that the 
organic matter may have been mobile and encapsulated these 
grains (Curtis et al, 2012b). 

The intensive growth and coalescence of existing fractures 
takes place at temperatures from 330°C–390°C. Total area of 
all the fractures can be calculated as a damage parameter D, 
which is established as the total area of fractures per unit vol-
ume (Miller et al, 1999). The dependence between D and ex-
perienced temperature shows that the fastest fracture growth 
occurred at the temperature range from 370°C–380°C (Fig. 11).

Total organic carbon content and weight loss analyses show 
that almost all kerogen is decomposed by 430°C. 
Thirty percent weight loss occurs after heating up to 430°C, with 
the initial TOC content of ca. 23% and the rest of weight loss 
being associated with the loss of intergranular and structural 

 

2θ (°)  

Figure 1. The Powder X-Ray Diffraction (powder XRD) pattern of the Kimmeridge shale. Minerals and compounds identified in the sample are presented by the following 
colours: quartz–red; oligoclase–dark blue; microcline–bright green; calcite–pink; dolomite–orange; illite–yellow; pyrite–green; and, crystalline organic phase–blue.

Element Unit Concentration
Al % 4.83
As ppm 35
Bi ppm 8
Ca % 13.47
Co ppm 8
Cu ppp 38
Fe % 1.46
K % 0.96

Mg % 4.04
Mn ppm 411
Mo ppm 17
Pb ppm 18
Rb ppm 49
S ppm 6,300

Se ppm 4
Si % 21.84
Sr ppm 759
Ti ppm 984
Y ppm 4
Zn ppm 49
Zr ppm 30

LE* % 52.77

Note: Light elements (LE) (elements with Z < 12 are not determined by portable X-Ray 
Fluorescence Spectrometry (pXRF).

Table 3. Chemical composition of the Kimmeridge shale.
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Figure 2. Element mapping using FEG-SEM for the Kimmeridge shale, showing 
carbon in red, silicon in blue and calcium in green. In this map, carbonates are green, 
silicates are blue and kerogen is red in colour. There is also a visible fracture in the 
kerogen matrix and a large void next to a carbonate grain.

 

Figure 3. The carbon element map of the same area in Figure 2, showing the 
distribution of kerogen in the sample.

 

Figure 4. FEG-SEM image of the Kimmeridge shale, showing a void measuring at 
around 1 µm in the original sample.

 

Figure 5. FEG-SEM image of the sample, showing the distribution of kerogen (dark 
grey colour) in the sample.

 

Carbonate 

Illite 

Kerogen 

Figure 6. BSE FEG-SEM image of the Kimmeridge shale displaying primary porosity 
in the kerogen.

 

Illite Illite 
Kerogen 

Carbonate 
Pyrite 

Figure 7. BSE FEG-SEM image of the Kimmeridge shale displaying inorganic 
porosity mostly associated with carbonates.

Continued next page.
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Figure 8. Micro-CT grey scale images (400 × 400 pixels2 or 1.4 × 1.4 mm2) of the Kimmeridge shale: A) the sample of the untreated shale at 25°C where tiny microcracks 
(2-5 pixels wide) are observed; B) the sample at 330°C where nucleation of fractures begins; C) at 370°C, propagation and coalescence of several fractures are observed; D) 
at 390°C, fast growth of fractures is observed; and, E) at 430°C, a little difference with previous slice (D) is observed.

# Weight (g) at room T Weight (g) after heating Weight loss (%) TOC (%)
1 0.79 330°C 0.75 5 22.9
2 0.96 370°C 0.89 7 19.7
3 0.85 390°C 0.65 24 7.9
4 1.18 430°C 0.83 30 0.8

Table 4. Weight loss and TOC content measurements after heating. 

T (°C) Absolute number of fractures Normalised number of fractures* 
25 4,525 1

330 4,227 0.93
370 3,046 0.67
390 1,947 0.43
430 2,711 0.60

* Number of fractures normalised to the initial number of fractures observed at room temperature.

Table 5. The number of isolated fractures observed in the microtomograms.

Continued from previous page.

Continued next page.
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Figure 9. Histogram of fracture surface areas. The number of large fractures (with the surface area above ~ 40 thousand square pixels) increases with the increase of the 
experienced temperature. The number of small fractures (with the area of less than ~ 8 thousand square pixels) first decreases up to the temperature of 390°C and then 
increases again in the sample that is heated up to 430°C.

 

Figure 10. Histogram of aspect ratio of fractures for each experienced temperature. Most of the fractures have aspect ratios of 0.1–0.25 for all of the samples. The median 
aspect ratio is slightly higher for the samples that are heated up to 370°C, 390°C and 430°C. The occurrence frequency is higher for the intact sample and the sample that 
is heated to 330°C, as the total number of the isolated cracks is larger in these samples.

Continued from previous page.

Continued next page.
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H
2
O. The most significant amount of kerogen is decomposed at 

the temperature range of 370°C–390°C. This fact is supported by 
the decreasing growth of fracture total area after 390°C, the TOC 
content temperature dependence and weight loss experiment. 
Such results are in a good agreement with the results presented 
by Kobchenko et al (2011).

The obtained statistical results can be used for modelling 
the effects of fracture initiation, growth on elastic properties 
and hydraulic permeability of organic-rich shales. Further 
work should be done to experimentally measure the fracture-
induced variations of elastic properties and permeability.

CONCLUSIONS

1.	 Powder XRD analysis for the Kimmeridge shale shows high 
carbonate content and low clay (illite) content, implying 
that the shale is brittle and subject to natural fractures.

2.	 The presence of crystalline organic matter is documented 
for the first time for the Kimmeridge shale.

3.	 The shale exhibits both organic and inorganic porosity. The 
pores in organic matter are either crack-like or voids and 
of micron size. The inorganic porosity is mostly associated 
with carbonates.

4.	 The growth and development of fractures under heating 
conditions starts above 300°C, with the fracture network 
developing parallel to the bedding plane with just a few 
cracks developing perpendicular to the bedding.

5.	 Existing fractures show significant growth at 330°C–390°C 
and at higher temperatures of 390°C–430°C, the rapid 
nucleation of small fractures is initiated along with the 
increasing number of the existing cracks and increasing 
number of the large ones.

6.	 The dependence between the damage parameter D and 
experienced temperature shows that the fastest fracture 
growth occurred in a narrow range of 370°C–390°C.

7.	 Almost all kerogen is decomposed by 430°C, as shown by 
the TOC content and the weight loss of the shale. 

8.	 The obtained statistical results can be used for modelling 
the effects of fracture initiation, growth on elastic proper-
ties and hydraulic permeability of organic-rich shales.
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