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Abstract  7 

Silicic-dominated large igneous provinces (SLIP) represent vast amounts of magma (≥105 km3) 8 

erupted onto the Earth’s surface or injected into the crust over short time spans, and are important 9 

components of the continental crust. The conditions of formation and evolution of these large 10 

magmatic provinces and their magma chambers is still poorly constrained. In this contribution, we 11 

examine cathodoluminescence textures and trace element (Al, Ti, Fe) zoning of quartz in a 12 

Mesoproterozoic SLIP, the Gawler Range Volcanics (GRV), South Australia. We describe intra-13 

granular textures such as truncation of growth textures and reverse zoning (rimwards increase of 14 

Ti content). These characteristics of quartz, together with remelting of already crystallised portions 15 

of the magma chamber (felsic enclaves), suggest a complex history of crystallisation and 16 

resorption, and fluctuating magma temperature. Titanium-in-quartz geothermometry indicates that 17 

adjacent quartz zones record temperature variations (ΔT) up to 70°C in volcanic units. We also 18 

report contrasting (non-correlatable) zoning patterns among quartz crystals, each indicating 19 

different crystallisation conditions. The juxtaposition of quartz crystals with contrasting zoning 20 

patterns are consistent with a dynamic regime (convection, stirring, overturning) of the GRV 21 

magma chamber. These results point to pulsating magmatic conditions, compatible with a non-22 

linear evolution of the GRV magma chamber. Heat, necessary to explain both intra-granular and 23 

infra-granular textural variations, may have been provided in different pulses by underplating of 24 

mafic magma.  25 
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1. Introduction  29 

Crystal zoning and other disequilibrium textures (mineral rims, resorption textures) are evidence of 30 

the occurrence of crystal-melt reactions, and have been used to gain insight into the history of a 31 

magma (e.g. Anderson, 1976, 1984; Ginibre et al., 2002). Crystal zoning of different mineral 32 

species represents a response to changing conditions, and the succession of growth zones 33 

defines a “crystal stratigraphy” (Wiebe, 1968) which yields information on the relative timing of 34 

magmatic processes. For example, such textures have been used to infer processes of magma 35 

mixing and crustal contamination – considered to occur in the formation and evolution of many 36 

intermediate and felsic magmas – even where mixing is complete (hybridisation) or where the 37 

magmas involved were similar in composition (e.g. Davidson et al., 2007; Shane et al., 2008; 38 



 2 

Streck, 2008; Tepley et al., 2000).  39 

In silicate magmas, quartz is stable under a wide range of compositions and P-T conditions. 40 

Despite its abundance, it has not been commonly used as a source of petrological information 41 

because quartz has a single end-member composition, and does not readjust its stoichiometric 42 

substitutions with changing P-T-X conditions during crystallisation. However, a wealth of 43 

information can be recorded in a variety of characteristics of quartz, including habit, non-44 

stoichiometric substitutions in growth zones, inclusions and coronas (e.g. Müller et al., 2003, 2005; 45 

Peppard et al., 2001; Sato, 1975; Smith et al., 2010; Wark et al., 2007). The main advantages of 46 

quartz in comparison with other minerals are its chemical stability and physical strength. In ancient 47 

and altered rocks, quartz may be the only well preserved mineral.  48 

A point of longstanding discussion in the study of silicic-dominated large igneous provinces (SLIP) 49 

is the nature of crustal magma storage, including magma chamber geometry and dynamics, and 50 

residence time of crystals before eruption. Recent studies have proposed complex models 51 

involving zoned magma chambers with variable melt to solid ratio and non-continuous (“waxing 52 

and waning”) production of melt (Hildreth, 1981; Lipman et al., 1997; Hildreth, 2004; Charlier et al., 53 

2005). Addition of heat and new magma from the mantle can result in “rejuvenation” of the magma 54 

chamber (e.g. Hildreth and Wilson, 2007), causing temperature increase, magma mixing, and 55 

remelting of crystal mush (largely solid marginal portions of plutons). These variations in magma 56 

composition and temperature are potentially recorded by zoned crystals (e.g. Streck, 2008; 57 

Vazquez and Reid, 2002).  58 

This study is focussed on the characterisation of quartz populations in the Mesoproterozoic Gawler 59 

Range Volcanics of South Australia on the basis of texture, cathodoluminescence, and trace 60 

element content. The study involves a wide array of quartz occurrences in different, but genetically 61 

associated, volcanic and intrusive rocks (lavas, ignimbrites, shallow and deeper intrusions) to 62 

assess the implications of the characteristics of quartz for the magma dynamics in this large 63 

igneous province.  64 

2. Geological setting 65 

The Gawler Range Volcanics (GRV) and co-magmatic Hiltaba Suite (HS) granite represent a 66 

silicic-dominated large igneous province (the Gawler SLIP) with an outcrop extent of more than 25 67 

000 km2 and a total estimated volume of 100 000 km3 (Fig. 1). Although less common than their 68 

mafic counterparts, SLIP are being increasingly recognised worldwide. Examples are the Sierra 69 

Madre Occidental of Mexico (Bryan and Ernst, 2008; Cameron et al., 1980; Ferrari et al., 2002), 70 

the Trans-Pecos volcanic field of the USA (Henry et al., 1988), the Chon-Aike Province of South 71 

America and Antarctica (Pankhurst et al., 1998, 2000; Riley et al., 2001) the Snake River Plain of 72 

the USA (Branney et al., 2008), and the Whitsunday Volcanic Province of Australia (Bryan, 2007; 73 

Bryan et al., 2000). The GRV include several medium- to large-volume (tens to several hundreds 74 

of km3) felsic lavas and ignimbrites (Allen et al., 2008; Blissett et al., 1993) and minor mafic and 75 

intermediate units. The Gawler SLIP was emplaced in an intracontinental setting, during the 76 
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Laurentian supercontinent assembly (Allen and McPhie, 2002; Allen et al., 2008; Betts and Giles, 77 

2006; Blissett et al., 1993; Creaser, 1995; Giles, 1988) and is coeval with the 1.3 – 1.6 Ga 78 

anorogenic magmatic event throughout Laurentia and Baltica (Anderson and Morrison, 2005; 79 

Rämö and Haapala, 1995). U-Pb zircon dating of the volcanic units has yielded a narrow age 80 

range of 1591-1592 Ma (Creaser, 1995; Creaser and Cooper, 1993; Fanning et al., 1988), 81 

whereas ages of the HS granites range from 1583±7 to 1598±2 Ma (Flint, 1993). The Gawler SLIP 82 

is associated with a major metallogenic event that affected most of the Gawler Craton (Budd and 83 

Fraser, 2004; Fraser et al., 2007; Skirrow et al., 2007; 2002) (Fig. 1).  84 

The GRV have been subdivided into lower and upper sequences (Blissett et al., 1993). The lower 85 

GRV consist of thick (up to 3 km) successions, erupted from several discrete volcanic centres. 86 

Evenly porphyritic felsic lavas are interbedded with ignimbrites and very minor volcanogenic 87 

sedimentary facies. Several units have been intruded by felsic porphyritic dykes. The Chitanilga 88 

Volcanic Complex at Kokatha (Blissett, 1975, 1977a, 1977b; Branch, 1978; Stewart, 1994) and 89 

Glyde Hill Volcanic Complex at Lake Everard (Blissett, 1975, 1977a, 1977b; Ferris, 2003; Giles, 90 

1977) are the two best exposed parts of the lower GRV and are the subject of this study. The 91 

upper GRV are composed of three large-volume (>500 km3) evenly porphyritic felsic lavas (Allen 92 

and McPhie, 2002; Allen et al., 2008; McPhie et al., 2008). The GRV are essentially undeformed 93 

and unmetamorphosed and primary textures are well preserved, in spite of the moderate, although 94 

widespread alteration of feldspar. The GRV sequence is cross-cut by numerous porphyritic, 95 

rhyolite and, less abundant andesite, dykes. These dykes are up to 100 m wide and 10-20 km 96 

long, and mostly trend northwest to north-northeast (Blissett et al., 1993). The Moonamby Dyke 97 

Suite (Giles, 1977) includes quartz-feldspar-phyric dykes that intruded the lower GRV at Lake 98 

Everard. The Hiltaba Suite includes large batholiths and smaller intrusions of granite and minor 99 

quartz monzodiorite and quartz monzonite (Flint, 1993). Typical of much of the Hiltaba Suite is 100 

medium-grained, locally porphyritic pink granite composed of quartz, alkali-feldspar, minor 101 

plagioclase, biotite, apatite and fluorite.  102 

3. Methods and analytical techniques  103 

Whole-rock analysis 104 

Samples were crushed in a WC mill for X-ray fluorescence (XRF) and inductively coupled plasma 105 

mass spectrometry (ICP-MS) whole-rock analysis at the University of Tasmania. Major and some 106 

trace elements (V, Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, and La) were measured by XRF, trace 107 

elements were analysed by ICP-MS. Samples were digested in HF/H2SO4 with the PicoTrace high 108 

pressure digestion equipment and analysed with an Agilent 4500 ICP-MS. XRF analyses were 109 

made on a Philips PW1480 X-ray Fluorescence Spectrometer. Detection limits for trace elements 110 

in ICP-MS are ≤0.01 ppm (REE) and ≤0.5 ppm for other elements, except As (5 ppm). Comparison 111 

of XRF and ICP-MS trace element data indicates a good correlation between the two methods, the 112 

difference being <20 % for all elements analysed by both methods, except Ba. 113 

 114 
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Scanning electron microscope cathodoluminescence (SEM-CL) imaging 115 

Cathodoluminescence (CL) images were obtained with a FEI Quanta 600 scanning electron 116 

microscope (SEM) operated at 10 kV and equipped with a Gatan PanaCLF CL detector. All CL 117 

images are polychromatic (including all wavelengths) 8 bit bitmap (grey scale values in the range 118 

0-255). Core-to-rim CL intensity profiles were obtained by measuring the local grey value in an 119 

area approximately 20 X 20 µm. CL profiles were obtained in areas free of healed fractures, 120 

inclusions and surface irregularities. 121 

 122 

Quartz trace element analysis 123 

Trace element concentrations in quartz were determined by a Cameca SX-100, 5 detector-124 

equipped electron microprobe operating at 15 kV and 200 nA, 5 µm beam diameter and 720 s 125 

counting time. Analyses were performed for Al, Ti and Fe along core-to-rim traverses. Corundum, 126 

hematite and rutile were used as standard minerals. In order to test the repeatability of the 127 

measurements, each traverse was repeated in two closely spaced parallel lines. Detection limits, 128 

calculated from counting statistics, are: Al 9 ppm, Ti 14 ppm, Fe 23 ppm; standard deviations are: 129 

Al 8 ppm, Ti 12 ppm, Fe 19 ppm.  130 

4. Sample description (Table 1) 131 

4.1 Volcanic units 132 

Three evenly quartz-phyric volcanic units (Wheepool Rhyolite, Waurea Pyroclastics and Lake 133 

Gairdner Rhyolite) are present in the Glyde Hill and Chitanilga Volcanic Complexes of the lower 134 

GRV. Quartz occurs as subhedral (bipyramidal) to anhedral (round and embayed) crystals or as 135 

angular fragments, up to 2 mm in size.  136 

The Wheepool Rhyolite (samples GH06, 23, 24c, 59) includes massive or flow-banded 137 

porphyritic lavas. Phenocrysts (~10 vol.%) comprise euhedral to subhedral plagioclase (albite) 138 

and K-feldspar (perthite), and minor (≤1 vol.%) subhedral to anhedral quartz, mostly ≤1 mm in 139 

diameter. The microcrystalline to micropoikilitic groundmass (<10 to 50 µm) is mainly composed 140 

of quartz, K-feldspar and albite (Fig. 2a).  141 

The Lake Gairdner Rhyolite (samples GH51, 87) contains massive to eutaxitic, fiamme-bearing 142 

ignimbrite with quartz, K-feldspar (perthite) and plagioclase (albite) crystals and crystal 143 

fragments (≤2 mm, ~20 vol.%), and minor lithic fragments in a fine grained, eutaxitic-textured 144 

matrix. Quartz crystals are sub- to euhedral (bipyramidal). The matrix is mainly composed of 145 

platy and cuspate devitrified glass shards, <0.5 mm in size.  146 

The Waurea Pyroclastics (samples GH13, 95) include several different pyroclastic facies that 147 

vary in grain size, composition and texture. The observed samples are from one of these facies, 148 

composed of violet to pale grey, relatively poorly-sorted crystal tuff. It contains quartz as a major 149 

component (5-10 vol.%), other than K-feldspar, minor plagioclase (albite), and lithic fragments 150 

(<5 vol.%). Quartz occurs as anhedral (round to lobate) to subhedral crystals and angular crystal 151 

fragments, ≤1-2 mm in diameter, and is present as separate crystals or included in lithic 152 
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fragments. The matrix is fine grained (≤0.3 mm) and mainly composed of devitrified glass 153 

shards.  154 

4.2 Dykes  155 

The Glyde Hill Volcanic Complex is intruded by the Moonamby Dyke Suite (samples GH15, 70, 156 

70B, 92). The dykes are up to tens of metres wide, show mostly homogeneous texture and 157 

contain medium- to coarse-grained phenocrysts (≤30 mm) of K-feldspar, quartz and minor sodic 158 

plagioclase (Fig. 2b). The quartzo-feldspathic groundmass is microcrystalline (grain size ≤50 µm) 159 

to poikilitic. Quartz phenocrysts are anhedral and deeply embayed (or “vermicular”).  160 

4.3 Hiltaba Suite granite 161 

The Hiltaba Suite (samples GH37, 38) at Kokatha consists of leucocratic, equigranular to seriate 162 

granite, mainly composed of quartz, K-feldspar, plagioclase and biotite. The granite is medium to 163 

coarse-grained (≤10 mm, sample GH37), and locally finer grained (≤a few mm, sample GH38). 164 

Quartz and K-feldspar show mutual inclusion relationships and intergrowth (granophyric) 165 

textures are also present.  166 

4.4 Felsic enclaves 167 

Enclaves of granite (sample GH29, 32) included in some of the volcanic units are centimetres to 168 

several metres in size, and unfoliated. They contain mm-scale crystals of K-feldspar and 169 

amoeboid quartz, separated by a microcrystalline quartz +K-feldspar +albite groundmass (Fig. 170 

2c). Feldspar phenocrysts are surrounded by a granophyric rim, up to 0.5 mm thick, formed by 171 

an intergrowth of K-feldspar and quartz crystals oriented perpendicular to the margins of 172 

phenocrysts (Fig. 2d). These intergrowths make up 10-20 vol.% of the groundmass. The 173 

enclaves occur in several felsic lava units and have round and gradational margins with the host 174 

rock. Around the enclaves, the host rock contains scattered anhedral quartz and K-feldspar 175 

crystals.  176 

4.5 Geochemistry 177 

The Gawler SLIP has a wide SiO2 compositional range (Fig. 3, Table 2; Giles, 1988); with a 178 

sharp predominance of felsic rocks (> 90% in outcrop, Allen et al., 2008). The rocks are 179 

characterised by high K2O (up to 7-8 wt.%), are calc-alkalic to alkali-calcic in the modified alkali-180 

lime plot (Frost et al., 2001), and are metaluminous to mildly peraluminous (aluminium saturation 181 

index ≤1.1-1.2). Locally higher aluminium saturation index values are interpreted as due to 182 

alteration. Rare earth elements, Y, and Zr increase with silica and peak at ~70 wt.% SiO2. Other 183 

high field strength elements (Nb, Ta, and Th) and Rb increase even in the most silica-rich 184 

compositions. All samples used in this study plot in the rhyolite field in the total alkalis vs silica 185 

diagram (Fig. 3). Primitive mantle-normalised plots (Fig. 3) have similar trends with Ba, Sr, Ti, P, 186 

and Eu negative spikes, and slightly decreasing rare earth element distributions (LaN/YbN = 187 

12±3.5, n = 12).  188 

5. Intra-granular textures and zoning of quartz  189 



 6 

5.1 Quartz cathodoluminescence  190 

CL images can highlight cryptic intra-granular textures, undetectable in both optical and back-191 

scattered electron (BSE) microscopy. These textures include: 1) growth-related textures (growth 192 

zones), twinning, grain shapes and growth modes (e.g. D'Lemos et al., 1997); 2) resorption-193 

related textures, indicated by intersection relationships between growth surfaces 194 

(“unconformity”); 3) healed brittle deformation structures. Other than being an intrinsic 195 

characteristic of each mineral, CL is strongly dependent on defects in the crystal lattice, 196 

particularly point defects induced by trace element substitutions, or “activators”. Therefore, CL 197 

can be used as a proxy for trace element distribution (e.g. Müller et al., 2000; Perny et al., 1992; 198 

Watt et al., 1997).  199 

CL textures are referred to as primary and secondary, in reference to textures formed during and 200 

after crystallisation, respectively. Among primary textures, oscillatory and step zones are defined 201 

by similarity with compositional zones in plagioclase (Sibley et al., 1976; Watt et al., 1997). 202 

Oscillatory zones are periodic, small-scale (µm-scale) and small-amplitude variations in CL and 203 

are considered to be due to slow, diffusion-controlled crystallisation under conditions of low 204 

oversaturation (Bottinga et al., 1966; Shore and Fowler, 1996; Sibley et al., 1976). These 205 

conditions are possible in a relatively static magma which preserves diffusive boundary layers at 206 

the crystal-liquid interface (Allègre et al., 1981; Sibley et al., 1976). Thus, oscillatory zones are 207 

interpreted to be the result of local self-organisation of trace elements at the interface between 208 

melt and crystal. Conversely, step zones are defined as wide, non-periodic and larger-scale 209 

(≥tens of µm) variations in CL intensity. Unlike oscillatory zones, step zones are interpreted to be 210 

due to “external” or “extrinsic” factors independent of local crystallisation and reflect variations in 211 

intensive parameters (P, T) and magma composition caused by processes such as crystal 212 

settling, magma convection, mixing, and reservoir replenishment (Shore and Fowler, 1996).  213 

The most common secondary textures are healed fractures, healed radial cracks around melt 214 

and fluid inclusions, and modifications (“smudging”) of primary zones due to redistribution of 215 

lattice defects (e.g. Boiron et al., 1992; Götze et al., 2005; Müller et al., 2010).  216 

Comparison of CL images allows groups of crystals with similar zoning patterns to be identified; 217 

zones can be correlated among crystals in the same group. The classification of CL textures is 218 

subjective. The following classification criteria have been adopted: presence of step zones and 219 

oscillatory zones, intersection between CL textures, CL intensity and shape of step zone 220 

margins. Crystals from each unit show one or more CL zoning patterns.  221 

 222 

5.1.1 Volcanic units (samples GH06, 23, 59, 13, 95, 51, 87)  223 

Comparison of approximately 120 grains reveals three main CL step zones (1-3, Fig. 4). 224 

Observed crystals consist of one (2, 3) or two zones (1, 3; 2, 3). Zone (1) is CL-dark, 225 

homogeneous or progressively darker towards the rim, and locally oscillatory zoned. Zone (1) 226 

occurs as anhedral crystal cores rimmed by zone (3). The contact between zones (1) and (3) 227 
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discordantly truncates internal growth (oscillatory) zones. Zone (2) is CL-bright and oscillatory 228 

zoned. Zone (2) has round margins and either occurs as cores discordantly surrounded by zone 229 

(3) or forms the whole crystal. Zone (3) is relatively CL-bright, oscillatory zoned, and has 230 

euhedral to subhedral concordant margins. Zones (1) and (2) were not found in contact. Crystals 231 

apparently formed by zone (3) only (Fig. 4c, g) may be artefacts of sectioning. Oscillatory zones 232 

in zones (1), (2), and (3) are mostly planar and parallel, indicating that the crystals maintained 233 

euhedral shapes throughout most of their growth. In addition to zones (1) to (3), thin (<100 µm), 234 

irregular-bordered bright rims are locally present around phenocrysts (Fig. 4a). These rims have 235 

similar CL characteristics to the groundmass quartz.  236 

 237 

5.1.2 Dykes (samples GH15, 70, 70B, 92)  238 

Approximately 120 CL images of more than 70 quartz grains from three different dykes of the 239 

Moonamby Dyke Suite were compared. Unlike in the volcanic units, the main step zones are 240 

similar and can be correlated between crystals in each dyke, although significant differences can 241 

be seen among different dykes (Fig. 5). Step zones are evident in two of the dykes and are 242 

superimposed by planar (euhedral) to irregular and convoluted oscillatory zones (Fig. 5a-d). 243 

Numerous quartz grains have lobate growth surfaces (oscillatory zones). Some lobes extend 244 

outwards and define embayments at the grain margin or have been overgrown, resulting in the 245 

formation of melt inclusions (Fig. 5c, d).  246 

In dyke 1 (samples GH70, 70B), three main CL step zones, separated by sharp boundaries, can 247 

be distinguished (core, mantle, rim; Fig. 5a-c). The core is bright and anhedral and has lobate 248 

margins. The core is surrounded by a CL-dark mantle, in which oscillatory zones overall 249 

decrease in luminescence towards the rim. Both the core-mantle and the mantle-rim boundaries 250 

discordantly truncate the internal textures. In a few cases, the mantle-rim boundary cuts through 251 

the mantle and into the core (Fig. 5b). The rim is relatively bright and homogeneous. In addition 252 

to these three step zones, phenocrysts are locally overgrown by a bright, thin (<20 µm), and 253 

homogeneous external layer of quartz. This layer has similar characteristics to the 254 

microcrystalline groundmass quartz.  255 

In dyke 2 (GH15), two or three broadly concentric step zones (Fig. 5d) are separated by 256 

transitional contacts. Wavy or lobate growth surfaces (oscillatory zones) are mainly limited to 257 

discrete intervals, mostly occurring in the rim and, occasionally, in the core. Minor truncations 258 

surfaces, not associated with abrupt CL changes, occur within different step zones.  259 

In dyke 3 (sample GH92), phenocrysts show weakly contrasted oscillatory zones without step 260 

zones. The “smudging” of oscillatory zones makes the relationship between habit and growth 261 

textures unclear (Fig. 5e).  262 

 263 

5.1.3 Hiltaba Suite granite (sample GH37)  264 

Comparison of 15 quartz grains shows a weakly contrasted CL emission with rather irregular 265 
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distribution. Two zoning patterns were distinguished. The first pattern (Fig. 6a) has two nearly 266 

concentric step zones (core and rim). The core is bright and homogeneous; the rim is oscillatory 267 

zoned and becomes progressively darker towards the grain margin. The core-rim boundary is 268 

gradational. The core does not show internal textures, whereas the rim contains weakly 269 

contrasted oscillatory zones. The anhedral grain margins cut across the oscillatory zones in the 270 

rim. The second pattern is characterised by a weakly contrasted to homogeneous, non-271 

concentric luminescence. The growth zones are weakly defined and do not allow detailed 272 

characterisation (Fig. 6b).  273 

 274 

5.1.4 Felsic Enclaves (samples GH29, 32)  275 

In felsic enclaves, quartz crystals are characterised by weakly contrasted zones without step 276 

zones. Weakly contrasted oscillatory zones are cross-cut by the grain margin (Fig. 6c). In some 277 

crystals, CL textures are “smudged” and no concentric zones were observed. A thin CL-bright 278 

overgrowth, showing similar characteristics to the groundmass, discontinuously rims the quartz 279 

phenocrysts.  280 

 281 

5.1.5 Secondary textures  282 

Healed fractures are clearly distinguishable in CL as low emission (dark grey-black) bands, up to 283 

a few tens of µm wide. In the granite and some of the dykes, healed cracks form a dense 284 

network throughout quartz crystals. Trails of fluid inclusions are aligned along fracture traces. 285 

Weakly luminescent areas, characterised by irregular shape and sharp margins, are present in 286 

several samples (Fig. 5e, 6b-c). These areas are not spatially related (discordant) to the primary 287 

concentric zones and appear to be at least partially related to fractures and grain boundaries. 288 

Apparently similar textures were reported by (D'Lemos et al., 1997; Van den Kerkhof and Hein, 289 

2001).  290 

5.2 Quartz trace element content  291 

Trace element concentrations in different CL zones were determined in core-to-rim microprobe 292 

profiles (Fig. 7, Table 3). The different CL zones are characterised by different trace element 293 

contents (Fig. 8). The total range in Ti concentration is approximately 20 to 130 ppm and Ti 294 

abundance shows a positive correlation with CL intensity (Fig. 7, 8). The correlation between Ti 295 

concentration and the blue ~420-nm CL emission has been found in other studies (e.g. Müller et 296 

al., 2002) This is a prominent emission that dominates panchromatic images, and justifies the 297 

use of CL brightness as a proxy for Ti distribution (e.g. Müller et al., 2005; Wark and Watson, 298 

2006). Iron content is in the range 10-330 ppm; Al is in the range 100-680 ppm and in places it is 299 

above 3000 ppm. Aluminium and Fe abundances are not correlated with CL, and no clear 300 

correlation was found between trace elements. Abundances of Ti in adjacent analyses along 301 

parallel traverses are very similar, the differences being comparable with, or less than, analytical 302 

error. Iron abundances are also similar in adjacent analyses. Conversely, Al content locally is 303 
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significantly different, in the order of several tens to hundreds of ppm. Such differences may be 304 

due to the presence of microinclusions or surface contamination introduced during the polishing 305 

process with alumina powder.  306 

6. Discussion  307 

6.1 Crystallisation history of quartz recorded by crystal stratigraphy  308 

When interpreting compositional zones of crystals, comparisons are made on core-to-rim profiles 309 

and between crystals or crystal populations. When analysing single profiles, stepped profiles, 310 

commonly associated with dissolution and indicating compositional breaks, are contrasted with 311 

smooth profiles, indicating gradual changes of intensive parameters or composition. When 312 

comparing zones of different crystals, the following combinations can be envisaged: 1) crystal 313 

cores and rims are similar (correlatable), 2) cores are similar, but rims are different, 3) cores are 314 

different, but rims are different, and 4) cores and rims are different (e.g. Wallace and Bergantz, 315 

2005).  316 

Planar and parallel CL growth zones (Fig. 4) indicate that the crystals were euhedral and their 317 

facets remained parallel during crystallisation. Wavy and lobate CL growth zones (Fig. 5c, d) 318 

indicate that growth was “disturbed” and the crystals did not maintain a euhedral habit 319 

throughout. Lobes preserved at the crystal margin define embayments, and are especially 320 

abundant in dykes in the lower GRV. Deeply embayed (“vermicular”) quartz has been reported in 321 

other shallow intrusions (e.g. Chang and Meinert, 2004). Embayments have been mostly 322 

interpreted as evidence of resorption resulting from temperature increase, depressurisation or 323 

compositional variations (magma mixing) (e.g. Bachmann et al., 2002; Nekvasil, 1991). 324 

However, the fact that some embayments reflect CL growth textures, rather than truncating 325 

them, indicates that resorption is not always responsible, as also suggested by other studies 326 

(e.g. Lowenstern, 1995; Müller et al., 2000).  327 

Growth-related irregular or lobate textures may be due to a physical impediment such as a 328 

mineral of fluid phase stuck on the surface of the quartz crystal (Fig. 4e). However, in most 329 

cases shown in this study, no impediment is apparent (Fig. 5). During growth in the magma, 330 

crystals can depart from a flat geometry and develop bulges, depending on the degree of 331 

undercooling (oversaturation; MacLellan and Trembath, 1991). These “topographic” highs on the 332 

crystal surface will grow preferentially because of their higher degree of exposure to the 333 

elements necessary for crystallisation. Therefore, small irregularities in the surface, once 334 

created, may be enhanced by further crystallisation and evolve into wavy and lobate textures.  335 

Although quartz embayments are not always due to resorption, there are other indicators of 336 

quartz resorption. Discordance between CL growth zones and grain margins (Fig. 4, 6c) indicate 337 

that quartz phenocrysts underwent multiple resorption episodes, implying that the magma shifted 338 

between silica-saturated and silica-undersaturated conditions.  339 

6.2 Evidence for temperature increase  340 
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Assuming equilibrium crystallisation, trace element uptake of quartz is controlled by 1) magma 341 

composition, and 2) trace elements’ quartz-melt distribution coefficients (KQtz/melt = CQtz/Cmelt), in 342 

their turn influenced by the intensive parameters (P, T) and bulk melt composition. Therefore, 343 

progressive changes in trace element content of quartz may be expected as a consequence of 344 

normal compositional and thermal evolution, even in a magma crystallising as a closed system. 345 

Titanium content, in particular, is controlled by the equilibration temperature of quartz (Ti-in-346 

quartz “TitaniQ” geothermometer; Wark and Watson, 2006) according to the equation:  347 

T(K) = -3765/[log(XTi/aTi)-5.69],  348 

where XTi is the content of Ti in quartz in ppm, and aTi is the activity of Ti in the coexisting melt.  349 

This relationship between Ti content and crystallisation temperature, and the correlation between 350 

CL intensity and Ti content (Fig. 7, 8) allow CL characteristics of each quartz grain to be used as 351 

an indicator of the crystallisation history of quartz.  352 

Although the geothermometer was calibrated in Ti-saturated conditions (in the presence of 353 

rutile), it can also be applied to rutile-free magmas, provided that the activity of Ti is known. Most 354 

rhyolitic magmas are Ti-undersaturated, and aTi is typically in the interval 0.5-1 (e.g. Hayden 355 

and Watson, 2007; Wiebe et al., 2007). In the lower GRV, Ti oxide occurs 1) as an exsolution 356 

phase in Fe-Ti oxide; 2) in late-crystallised ‘pockets’ of minerals, together with zircon and apatite; 357 

and 3) as anhedral grains interstitial between groundmass crystals. Therefore, Ti oxide is not 358 

considered in equilibrium with the melt, implying aTi <1. Under these conditions, application of 359 

the geothermometer for aTi = 1 would give underestimated (minimum) temperatures.  360 

Titanium activity can be estimated based on experimental work (Hayden and Watson, 2007) if an 361 

independent estimate of temperature is available. The zircon saturation model (Watson and 362 

Harrison, 1983) can be applied to felsic whole-rock samples and quartz-hosted melt inclusions 363 

(Agangi et al., under revision) to estimate magmatic temperatures (Table 2). We calculated Ti 364 

saturation concentration (ppm) using the model of Hayden and Watson (2007) at zircon 365 

saturation temperatures, and then obtained Ti activity by assuming Henrian behaviour, or aTi = 366 

Ti(measured)/Ti(saturation). This calculation yields average activity values of aTi ~0.60 (Fig. 9, 367 

Table 2).  368 

Temperature estimates based on zircon saturation of the magma and on Ti content of quartz 369 

(Wark and Watson, 2006) overlap only partially (Fig. 9). Such mismatch of T estimates may be 370 

partially due to sampling bias (differences within and between units), and to the effect of 371 

pressure on Ti intake of quartz (Thomas et al., 2010). Further uncertainty can be added by the 372 

effect of F on the solubility of zircon (Keppler, 1993).  373 

Despite the uncertainty in the application of the method, abrupt variations of Ti concentration in 374 

quartz crystals (step zones) are not consistent with a continuous compositional and thermal 375 

evolution of the magma. They reflect discrete events, and require sudden changes in the 376 

crystallisation conditions.  377 

Although aTi has a profound influence on the estimates of crystallisation temperature, it only has 378 
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a minor effect on the temperature difference between zones (∆T, Fig. 10). Some quartz 379 

phenocrysts show bright CL rims around dark cores (e.g. Fig. 4a, e). These luminescent rims 380 

cross-cut internal growth zones and are associated with a rimwards increase in Ti content 381 

(reverse zoning). Under the assumption of constant pressure and aTi during crystallisation (the 382 

latter condition is achieved if TiO2 was buffered by the crystallisation of Fe-Ti oxide), and 383 

assuming a value of aTi = 0.5, the measured Ti increase corresponds to a core-rim temperature 384 

increase of up to +70°C for the volcanic units (zones 1 to 3, Table 3). In the Moonamby Dyke 385 

Suite, core-mantle and mantle-rim maximum ∆T can be estimated in -150°C and +110°C, 386 

respectively. Temperature differences between quartz zones of >100°C have been reported 387 

previously (Smith et al., 2010; Wark et al., 2007).  388 

Trace element diffusion profiles can be used to estimate residence time of crystals at high 389 

temperature (diffusion clock; Chakraborty, 2008). The largest Ti gradient measured between 390 

step zones is ~60 ppm over short distances of ≤10-20 µm (analyses 2-3, grain 70-14 line 1, 391 

Table 3). Assuming an initial step-like profile and considering Ti diffusivity in quartz (in the order 392 

of 10-22 m2/s at 800°C; Cherniak et al., 2007), this gradient implies short residence time at high 393 

temperature (≤102-103 years) after crystallisation. Thus, the volcanic units and the dykes 394 

experienced rapid cooling by eruption and shallow emplacement shortly after quartz 395 

crystallisation, which prevented diffusion of Ti and allowed preservation of CL zones. Sharp CL 396 

zones and Ti gradients in volcanic units and dykes contrast with granite samples. We interpret 397 

the “smudged” CL zones of granite quartz as the result of slow cooling of these rocks.  398 

6.3 Coexisting quartz populations with different crystallisation histories: magma chamber 399 

dynamics 400 

One of the most prominent characteristics emerging from the study of quartz in the volcanic units 401 

of the lower GRV is the coexistence, in the same unit and even in the same sample, of crystal 402 

populations showing contrasting zoning patterns and trace element content (Fig. 4, 8). This 403 

observation suggests that quartz crystals formed under different conditions and were later 404 

mixed, and therefore implies a dynamic regime in the magma chamber (Fig. 11). In the volcanic 405 

units, CL-dark low-Ti (zone 1) and bright high-Ti (zone 2) quartz must have crystallised 406 

separately. Subsequently, quartz crystals underwent partial resorption (truncation of growth 407 

zones), either independently or after being juxtaposed. Finally, some of the resorbed crystals of 408 

quartz (1) and (2) underwent Si-(over)saturated conditions and crystallisation was resumed 409 

(zone 3).  410 

The question can be asked whether these quartz populations were carried by melts with different 411 

origins and compositions that mixed in the lower GRV magma chamber. Resorption and 412 

disequilibrium textures have been widely used as evidence for magma mixing and crustal 413 

assimilation (e.g. Streck, 2008). Reverse zoning in quartz has been interpreted as evidence for 414 

an increase in either Ti and/or crystallisation temperature due to the injection of mafic magma 415 

into the magma chamber (Müller et al., 2005; Shane et al., 2008; Wark et al., 2007; Wark and 416 
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Watson, 2006; Wiebe et al., 2007).  417 

Magma mixing and open-system processes have been shown to be common place in many 418 

felsic magmas on the basis of isotopic data showing crystal-melt disequilibrium (e.g. Charlier et 419 

al., 2007; Davidson et al., 2007; Martin et al., 2010), and injection of mafic magma at the base of 420 

felsic intrusions has been proven on the basis of field relationships (e.g. Turnbull et al., 2010; 421 

Wiebe et al., 2004). Basalt and basaltic andesite cropping out in the lower GRV (Blissett et al., 422 

1993) and mafic igneous inclusions described in the upper GRV (Allen et al., 2003; Stewart, 423 

1994), together with considerable variations of crystallisation temperatures between quartz 424 

zones, suggest the involvement of mafic magmas. On the other hand, mixing with a more mafic 425 

magma would cause an increase in Ca-femic components, and this would be expected to be 426 

reflected on the Fe content of quartz. This is not apparent from the microprobe analyses of 427 

quartz as Fe content does not correlate with Ti (Fig. 8). Therefore, although the data presented 428 

cannot give conclusive evidence of open-system processes in the GRV, mixing of mafic magma 429 

may have occurred in the rocks described here.  430 

As an explanation for these features, we propose re-heating and convective stirring and 431 

overturning of the magma chamber (self-mixing; Couch et al., 2001). According to this model, 432 

hot mafic magma is intruded at the base of a silicic crystal-rich magma chamber; heat transfer 433 

forms a layer of hot and buoyant silicic magma that becomes unstable and rises in plumes. The 434 

rising plumes cause convection in the magma chamber, accounting for the coexistence of 435 

phenocrysts with different crystallisation histories. The temperature increase – possibly 436 

accompanied by magma contamination – explains resorption textures and the reverse zoning.  437 

In contrast to the volcanic units, quartz zones and textures can be correlated among crystals 438 

within single dykes. This relationship implies common crystallisation conditions and shared 439 

crystallisation history, and indicates that quartz in dykes crystallised in a relatively stable, non-440 

convecting portion of the magma, possibly roughly in situ (in the dykes).  441 

One implication of this textural and compositional difference between extrusive and shallow 442 

intrusive units is that the dykes cannot be the “feeders” of the volcanic units. They may have fed 443 

units that are not any longer preserved in the area, or may represent injections of magma that 444 

never reached the surface.  445 

Modern models of felsic igneous systems agree on the fact that magma chambers are mostly 446 

composed of largely solid crystal mush with interstitial melt (e.g. Bachmann and Bergantz, 447 

2008), mostly incapable of bulk flow (Vigneresse et al., 1996). Large crustal intrusions are 448 

assembled incrementally, via successive injections of magma and do not exist as large volumes 449 

of molten rock at one time (Glazner et al., 2004; Lipman, 2007). Geophysical studies and drilling 450 

campaigns have failed to identify large pools of molten rock underneath volcanic systems 451 

(Detrick et al., 1990). Popular models of felsic magma chambers propose a zoned structure with 452 

largely solid margins, an intermediate crystal mush, and a melt-rich core-top (Hildreth, 2004; 453 

Hildreth and Wilson, 2007). Boundaries between these zones shift inwards and outwards, or 454 



 13 

“wax and wane”, according to the thermal regime (Bachmann et al., 2002).  455 

The mechanism proposed for the lower GRV is only apparently in conflict with existing models. 456 

In fact, mixing of crystal populations does not need the entire magma chamber to be largely 457 

molten at one time, and may occur locally in hotter volumes of magma located at the top or core 458 

of the chamber or in hot, rising plumes. A similar mechanism has been also applied to large 459 

felsic magma chambers to explain contrasting mineral textures (e.g. Fish Canyon Tuff; 460 

Bachmann et al., 2002).  461 

6.4 Felsic enclaves: melting of a plutonic precursor  462 

The felsic enclaves have similar mineralogical, textural, and compositional characteristics, in 463 

terms of both major and trace elements (Fig. 3), to the Hiltaba Suite granite and the GRV. 464 

Therefore, these enclaves are interpreted to be the product of partial re-melting of an early-465 

crystallised portion of the GRV-HS magma, followed by a rapid cooling. Evidence of partial 466 

melting includes anhedral and lobate textures of quartz and K-feldspar, truncation of growth 467 

zones in quartz, and the presence of fine-grained groundmass (Fig. 6c). Rapid crystallisation of 468 

the partial melt is indicated by the granophyric rims (quenching coronas) on K-feldspar and the 469 

microcrystalline groundmass (Fig. 2c, d). Granophyric rims indicate eutectic growth of quartz and 470 

K-feldspar under conditions of moderate-high oversaturation (MacLellan and Trembath, 1991), 471 

most likely during eruption of the host lavas. Growth under conditions of high-oversaturation 472 

(quenching) may result from cooling at the surface and/or from increase of solidus temperature 473 

due to decompression. Similar textures in the Fish Canyon Tuff and the Alid volcanic field have 474 

been explained by rapid depressurisation and devolatilisation (Lipman et al., 1997; Lowenstern 475 

et al., 1997). Similar enclaves have been found in the upper GRV (Allen et al., 2003; Garner and 476 

McPhie, 1999), suggesting that the process of re-melting of granite continued during the second 477 

stage of the volcanic history of the province. Processes of re-melting of mostly or completely 478 

solid portions of the earlier granitoid magma and recycling of crystals have been inferred for 479 

other intermediate to silicic magmas (e.g. Bachmann et al., 2002, 2007; Charlier et al., 2005; 480 

Murphy et al., 2000).  481 

7. Conclusions  482 

Succession of quartz zones (step zones) with different compositions and textures (“crystal 483 

stratigraphy”) records information on the crystallisation history. Primary (syn-crystallisation) CL 484 

textures in quartz are better preserved in rapidly cooled volcanic units and dykes of the lower 485 

GRV than in slowly cooled granite samples. Preservation of sharp Ti profiles suggests short 486 

residence time of quartz crystals at high temperature: eruption (or shallow emplacement of 487 

dykes) occurred shortly (102-103 years) after quartz crystallisation.  488 

Different degrees of complexity can be observed in primary CL textures of quartz phenocryst. 489 

The simplest case occurs in the dykes, where zones can be correlated among quartz 490 

phenocrysts. The homogeneity of quartz populations in single dykes is interpreted as evidence 491 
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that quartz crystals shared the same crystallisation history and probably crystallised largely after 492 

isolation of these small magma batches in intrusions. Embayments are common in quartz in the 493 

dykes and are mirrored by CL textures, suggesting that, in many cases, embayments had a 494 

primary (growth-related, rather than resorption-related) origin. 495 

In the volcanic units, multiple quartz populations coexist in the same sample. Each of these 496 

populations records a complex history of crystallisation and resorption events. The volcanic units 497 

tapped a larger part of the magma characterised by a dynamic regime, which resulted in 498 

juxtaposition of different quartz populations, each with different crystallisation histories. 499 

Geothermometric estimates based on Ti content of quartz zones suggest significant differences 500 

of quartz crystallisation temperatures (ΔT up to 70°C in volcanic units) between adjacent zones.  501 

Alternating events of crystallisation and resorption (truncation of growth textures), reverse zoning 502 

(rimwards increase in Ti content) of quartz, and melting of already crystallised portions of the 503 

magma chamber (felsic enclaves) are consistent with non-monotonous thermal evolution of the 504 

GRV-HS magma and suggest the occurrence of different thermal “pulses”.  505 

The described textural and microchemical features are best explained by re-heating and 506 

convective stirring of the magma chamber (self-mixing; Couch et al., 2001). Heat input 507 

represented both the “engine” for convection and the cause of re-melting of previously 508 

crystallised magma, and was possibly supplied by underplating of mafic magma. Open-system 509 

processes (injection of mafic magma and mixing with the felsic magma) may have played a role.  510 
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Fig. 1. Interpreted geology of the Gawler Craton (after Daly et al., 1998; Betts and 
Giles, 2006, Hand et al., 2007). Inset shows the location of the Gawler Craton. 

Fig. 2. Sample textures in the lower GRV. a Wheepool Rhyolite (sample GH23, GR 
0517647-6488394). b Moonamby Dyke Suite (sample GH15, GR 0509965-6502023). 
c, d Felsic enclave (sample GH29, GR 0 524305-6495515). The enclave was 
included in the Whyeela Dacite (host not shown). d Granophyric rim around K-
feldspar crystal in felsic enclave. All photomicrographs are in plane polarised 
transmitted light. GR: Grid reference GDA94. Abbreviations: Ab albite, Kfs K-
feldspar, Qtz quartz. 

Fig. 3. Whole-rock composition of the Gawler SLIP. Major oxides recalculated to 
100% anhydrous and plotted as wt.%, trace elements as ppm. MALI: modified alkali-
lime index, Na2O+K2O-CaO (Frost et al., 2001); ASI: alumina saturation index, 
Al/(Na+K+Ca), mol. Normalising values in primitive mantle-normalised plots after Sun 
and McDonough (1989). Small symbols in Harker diagrams: data from Giles (1988); 
Stewart (1994); Ferris (2001); PIRSA (2006). (*) From Agangi et al. (2010). 

Fig. 4. Cathodoluminescence textures in the volcanic units of the lower GRV. a, b 
Quartz in the Wheepool Rhyolite (sample GH23). A thin bright overgrowth is locally 
present (arrowed). c, d Fractured crystals in the Waurea Pyroclastics (sample GH13, 
GR 0515415-6501451). e-g Quartz in the Lake Gairdner Rhyolite (sample GH51, GR 
0524145-6542610). A sulfide grain constituted a mechanical growth impediment for 
the quartz crystal (e). For e-g growth textures are highlighted. Zones (1), (2) and (3) 

were not found together in the same grain. Growth textures (oscillatory zones) are 
parallel to subhedral grain margins in zone (3), except where fractured (top of f), but 
are truncated by round zone boundaries or grain margins in zones (1) and (2). 

Fig. 5. Cathodoluminescence textures in dykes of the lower GRV. a Round mantle-
rim boundary truncates the internal growth textures (arrowed). b The core is 
surrounded by a discontinuous mantle. c, d Disturbances of growth (wavy CL zones) 
coincide with melt inclusions or embayments. e Smudged CL; the crystal is crossed 
by CL-dark areas related to healed cracks (arrowed). a-c sample GH70 (GR 
0491376-6490439); d sample GH15; e sample GH92 (GR 0486550-6489826). 

Fig. 6. Cathodoluminescence textures in the Hiltaba Suite granite (a, b) and felsic 
enclaves in the lower GRV (c). a “Smudged” CL zones, Hiltaba Suite (sample GH37, 
GR 0517317-6546439). b Dark homogeneous areas with sharp borders are partly 
related to cracks (sample GH37). c Quartz grain from a felsic enclave in the Whyeela 
Dacite showing weak oscillatory zones (dashed lines) cross-cut by grain margin, dark 
lobate areas associated with fractures, and a thin discontinuous bright rim (sample 
GH29). 

Fig. 7. Trace element concentrations in zones of quartz phenocrysts of the 
Moonamby Dyke Suite (a) and Lake Gairdner Rhyolite (b) compared with CL 
intensity. Titanium values show good correlation with CL emission. Trace element 
compositions are average analyses of parallel traverses and are expressed as ppm, 
CL as panchromatic 0-255 grey scale. 

Fig. 8. Trace element composition and CL relative intensity of quartz in the volcanic 
units and the Moonamby Dyke Suite. Elements as ppm, CL as 0-255 grey scale. 
Standard deviation for Al less than symbol size. LGR Lake Gairdner Rhyolite, WP 
Waurea Pyroclastics, (1)-(3) quartz zones (see text). 

Fig. 9. Quartz crystallisation temperature (TitaniQ geothermometer; Wark and 
Watson, 2006) compared with rutile solubility model (Hayden and Watson, 2007). 
Quartz crystallisation temperature modelled Ti activity aTi = 0.6 in the melt. Whole-
rock and melt inclusion data from Table 3. 



Fig. 10. Influence of Ti activity (aTi) on Ti-in-quartz geothermometry (TitaniQ 
geothermometer, Wark and Watson, 2006). Ti activity has significant influence on 
estimates of crystallisation temperature (a), but only minor influence on ∆T between 
crystal zones (b). Moonamby Dyke Suite, sample GH70, quartz grain 70-10. 

Fig. 11. Conceptual model for the crystallisation of quartz in the lower GRV magma 
chamber. 
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 Quartz trace elements and cathodoluminescence as a record of magmatic 
conditions 

 Ti-in-quartz geothermometry indicates large T variations between quartz zones 

 Resorption textures and reverse zoning indicate pulsating temperature conditions 



Table 1: Textural and compositional characteristics of selected quartz-bearing units in the lower GRV
Unit Wheepool 

Rhyolite

Lake Gairdner 

Rhyolite

Waurea 

Pyroclastics

Yantea Rhyolite-

dacite

Whyeela Dacite Moonamby Dyke 

Suite

Hiltaba Suite

Locality Lake Everard Kokatha Lake Everard Lake Everard Lake Everard Lake Everard Kokatha

Emplacement mode lava ignimbrite ignimbrite lava lava shallow intrusion intrusion

Texture porphyritic massive-eutaxitic massive-eutaxitic porphyritic porphyritic porphyritic equigranular-

seriate

Max grain size ≤5 mm ≤2 mm ≤2 mm ≤5 mm ≤2 mm ≤3 cm ≤10 mm

Phenocrysts/ crystals Ab, Kfs, Qtz  Qtz, Kfs, Ab Kfs, Qtz, Ab Ab, ±Qtz Ab, ±Qtz Qtz, Ab, Kfs

Groundmass/matrix Qtz, Kfs, Ab Kfs, Qtz, Fe ox Qtz, Kfs Ab, Kfs, Qtz Ab, Kfs, Qtz Qtz, Ab, Kfs

Accessory minerals Ap, Zrn, Fe-Ti ox, 

±REE-F-Cb, 

±Mnz, ±Ti ox

Ttn, Zrn, Fe-Ti ox Fe ox, Ti ox, Fl, 

Zrn

Fe ox, Ap, Zrn, Ti 

ox, ±REE-F-Cb

Fe-Ti ox, Ap, Fl, 

Zrn

Fe ox, Ti ox, Fl, 

Ap, Zrn, REE-F-

Cb

Fe ox, Fl, Zrn, Ap

Groundmass/matrix 

texture

microcrystalline 

(< 50 µm)

vitriclastic (≤ 500 

µm)

vitriclastic (≤ 300 

µm)

microcrystalline-

micropoikilitic (≤ 

50 µm)

microcrystalline-

granophyric (≤ 50 

µm)

microcrystalline 

(≤ 100 µm), 

poikilitic Qtz

–

Phenocryst abundance/ 

crystal proportion

10% 20% <20% 10% <10% 20-30% –

Quartz abundance ≤1% (phenocryst) 10% (crystal) 5-10% (crystal) <1% (uneven 

distribution)

<1% (uneven 

distribution)

5-10% 

(phenocryst)

20-30%

Felsic enclaves    X X  

Qtz, Kfs, Ab, Bt

Abbreviations: Ab albite, Am amphibole, Ap apatite, Bt biotite, Cb carbonate, Cpx clinopyroxene, Fl fluorite, Kfs K-feldspar, 

Mag magnetite, Mnz monazite, ox oxide, Qtz quartz, Ttn titanite, Zrn zircon. 



Table 2. Whole-rock and average melt inclusion compositions

Sample GH06 GH13 GH51 GH15* GH70* GH37

Unit

detectio

n limits

Wheepool 

Rhyolite

Waurea

Pyroclastic

s

Lake 

Gairdner 

Rhyolite

Moonamby 

Dyke Suite

Moonamby 

Dyke Suite

Hiltaba 

Suite

SiO2 (wt.%) 78.16 74.85 75.67 75.60 75.16 76.25

TiO2 0.29 0.12 0.19 0.16 0.23 0.15

Al2O3 11.23 11.93 12.10 11.88 12.19 12.12

Fe2O3 1.24 2.10 2.20 1.56 2.03 1.21

MnO 0.03 0.03 0.11 0.06 0.01 0.02

MgO 0.53 0.83 0.24 0.44 0.34 0.23

CaO 0.11 0.17 0.46 0.69 0.14 0.60

Na2O 3.47 1.04 1.87 2.54 2.93 2.91

K2O 4.00 5.68 6.61 5.95 5.63 5.83

P2O5 0.04 0.02 0.02 0.02 0.05 0.03

BaO 0.12 0.03 0.19 0.07 0.19 0.10

loss( inc S-) 0.97 2.81 0.44 1.37 1.00 0.50

Cl

F

S <0.01 <0.01 <0.01 <0.01 0.01 <0.01

Total 100.19 99.62 100.10 100.34 99.90 99.95

Li (ppm) 0.016 9.99 14.46 5.74 12.99 7.56 10.69

Be 0.008 2.00 2.41 2.30 4.35 3.64 3.27

B

Sc 0.038 4.63 3.31 6.10 3.43 4.05 2.69

Ti 1.203 1805.33 766.69 1259.09 985.65 1509.00 930.95

V (XRF) 1.5 14.10 5.70 4.40 1.50 8.60 2.00

Cr (XRF) 1 2 2 4 2 3 1

Mn 0.410 230.66 203.42 930.83 457.51 100.51 171.85

Ni (XRF) 1 4 3 4 5 5 4

Cu (XRF) 1 1 3 6 2 2 4

Zn (XRF) 1 29 43 49 37 28 23

Ga 0.025 10.63 13.56 17.25 15.29 14.91 16.71

As 5 <5 10.36 <5 <5 <5 <5

Rb 0.044 117.36 211.03 226.47 312.05 271.64 266.91

Sr (XRF) 1 51 31 50 31 78 71

Y 0.005 33.68 29.24 26.22 60.37 44.09 35.00

Zr 0.035 299.49 138.58 292.85 231.02 232.69 161.66

Nb (XRF) 1 19 22 14 22 20 16

Mo 0.023 0.14 0.54 0.66 1.11 0.46 0.82

Ag 0.010 0.03 0.05 0.10 0.04 0.05 0.08

Cd 0.024 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23

Sn 0.011 2.87 2.50 2.63 7.21 4.19 2.94

Sb 0.053 0.21 0.54 <0.06 0.44 0.11 0.21

Te 0.091 <0.37 <0.37 <0.37 <0.37 <0.37 <0.37

Cs 0.004 1.27 3.33 4.23 3.47 2.38 3.67

Ba (XRF) 4 584 199 1067 175 983 568

La 2 39.80 40.41 66.98 111.97 79.90 58.57

Ce 0.012 130.97 71.51 131.76 202.50 164.71 98.74

Pr 0.002 10.99 8.05 14.59 23.62 17.63 11.87

Nd 0.009 43.26 27.67 51.47 79.99 58.78 41.65

Sm 0.007 8.85 4.76 8.21 13.70 9.89 7.12

Eu 0.002 1.00 0.52 1.14 0.33 0.87 0.85

Gd 0.006 7.04 4.20 6.33 10.96 8.09 6.37

Tb 0.001 1.08 0.76 0.93 1.73 1.33 1.03



Dy 0.004 6.12 4.85 5.13 10.14 7.80 6.08

Ho 0.001 1.23 1.02 0.98 2.05 1.56 1.21

Er 0.003 3.79 3.28 2.90 6.21 4.90 3.65

Tm 0.003 0.57 0.53 0.42 0.94 0.76 0.55

Yb 0.003 3.66 3.58 2.63 5.97 5.05 3.46

Lu 0.003 0.57 0.56 0.40 0.91 0.78 0.53

Hf 0.004 8.40 5.59 7.87 8.21 7.59 5.54

Ta 0.002 1.51 1.28 1.29 2.50 2.35 2.26

Tl 0.010 0.64 1.01 1.12 1.43 1.25 1.40

Pb (XRF) 1.5 10 11 42 7 8 37

Bi 0.010 0.16 0.01 0.12 0.06 0.09 0.67

Th 0.002 17.82 21.78 19.35 47.07 45.68 27.09

U 0.002 2.69 1.31 3.84 9.17 2.47 1.75

Zrn sat T(°C)** 858 809 852 820 829 787

aTi 0.63 0.45 0.45 0.48 0.68 0.66

Major elements by XRF, trace elements by ICP-MS, except where XRF is indicated, melt inclusion data (EPMA and LA-ICP-MS) from Agangi et al. (under revision)

* from Agangi et al. (2010)

** Zircon saturation temperature (Watson and Harrison, 1983)
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3.22 4.11 3.33 3.88

6.08 4.86 5.25 6.15

0.02 <dl <dl <dl
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3.40 9.63 8.02 10.10

456 62 2 115

83.29 86.87 17.56 46.74

163.53 191.05 36.04 104.08

18.46 17.88 3.03 10.39

67.47 65.89 9.25 36.11

12.37 10.31 1.86 6.78

0.87 0.39 <dl 0.60

10.05 10.16 1.29 5.84

1.53 1.43 0.38 0.98



8.26 9.10 2.19 5.71

1.57 1.86 0.47 1.12

4.50 5.70 2.15 3.56

0.66 0.89 0.34 0.59

4.09 5.51 2.75 3.84

0.62 0.85 0.29 0.59

6.77 7.17 5.14 5.40

2.84 1.76 1.62 1.64

1.31

21 46 41 41

0.01

40.86 43.04 19.08 26.69

0.93 10.32 5.33 6.76

802 801 771 774

0.66 0.69 0.68 1.03

Major elements by XRF, trace elements by ICP-MS, except where XRF is indicated, melt inclusion data (EPMA and LA-ICP-MS) from Agangi et al. (under revision)



Table 3. Quartz trace element analyses (EPMA, ppm) and crystallisation temperatures

Quartz grain

analysis # 

(centre-

rim) Unit Al Fe Ti

CL 

relative 

intensity

Quartz 

zone

T, °C 

(aTi=1)

Qtz 13-13 line1 1 WP 3347 123 111 136 2 760

2 WP 167 25 105 141 2 753

3 WP 125 25 104 150 2 752

4 WP 174 30 101 158 2 748

5 WP 232 39 75 152 3 714

Qtz 13-13 line2 1 WP 186 23 95 136 2 741

2 WP 166 34 106 141 2 754

3 WP 122 9 98 150 2 745

4 WP 183 28 94 158 2 740

5 WP 151 57 79 152 3 719

Qtz 13-6 line1 1 WP 173 17 90 132 2 734

2 WP 180 33 104 153 2 752

3 WP 154 17 87 142 2 730

4 WP 142 26 89 133 2 733

5 WP 152 42 89 143 2 733

Qtz 13-6 line2 1 WP 192 29 89 132 2 733

2 WP 182 27 113 153 2 762

3 WP 176 21 96 142 2 742

4 WP 295 24 83 133 2 725

5 WP 164 53 94 143 2 740

Qtz 51-9 line1 1 LGR 174 80 90 145 2 734

2 LGR 264 72 96 163 2 742

3 LGR 163 49 83 158 2 725

4 LGR 245 93 86 167 2 729

5 LGR 685 284 83 178 2 725

Qtz 51-9 line2 1 LGR 182 79 75 145 2 714

2 LGR 176 49 105 163 2 753

3 LGR 187 49 86 158 2 729

4 LGR 177 62 77 167 2 716

5 LGR 493 326 88 178 2 732

Qtz 51-4 line1 1 LGR 102 16 61 113 1 691

2 LGR 132 22 52 93 1 674

3 LGR 114 38 50 102 1 670

4 LGR 157 31 92 161 3 737

5 LGR 171 31 58 153 3 685

Qtz 51-4 line2 1 LGR 113 38 69 113 1 704

2 LGR 140 12 50 93 1 670

3 LGR 136 43 51 102 1 672

4 LGR 129 39 62 161 3 693

5 LGR 132 46 72 153 3 709

Qtz 70-14 line1 1 MDS 278 33 98 171 core 745

2 MDS 158 12 78 138 core 718

3 MDS 107 21 21 79 mantle 588

4 MDS 133 30 60 134 rim 689

5 MDS 120 32 58 133 rim 685

Qtz 70-14 line2 1 MDS 171 15 105 171 core 753

2 MDS 152 24 74 138 core 712

3 MDS 132 19 26 79 mantle 607

4 MDS 144 29 61 134 rim 691

5 MDS 149 45 60 133 rim 689

Qtz 70-10 line1 1 MDS 193 22 126 205 core 776

2 MDS 364 33 79 187 core 719



3 MDS 138 23 54 135 mantle 678

4 MDS 176 48 66 163 rim 699

5 MDS 171 80 47 150 rim 664

Qtz 70-10 line2 1 MDS 215 43 120 205 core 769

2 MDS 163 27 95 187 core 741

3 MDS 142 21 49 135 mantle 668

4 MDS 184 50 66 163 rim 699

5 MDS 186 94 51 150 rim 672

Avg 716

Max 776

Min 588

WP: Waurea Pyroclastics, LGR: Lake Gairdner Rhyolite, MDS: Moonamby Dyke Suite



T, °C 

(aTi=0.6)

T, °C 

(aTi=0.5)

827 853

819 845

818 843

814 839

774 798

805 830

820 846

809 835

804 829

781 805

798 823

818 843

794 818

797 821

797 821

797 821

829 855

807 832

787 812

804 829

798 823

807 832

787 812

792 816

787 812

774 798

819 845

792 816

778 802

795 820

749 771

730 752

725 747

801 826

743 765

764 787

725 747

728 749

751 773

769 793

809 835

779 803

634 652

747 769

743 765

819 845

773 796

655 674

749 771

747 769

845 872

781 805



734 756

758 781

718 739

838 864

805 830

723 744

758 781

728 749

778 801

845 872

634 652




