Ninety million years of orogenesis, 250 million years of quiescence and further orogenesis with no change in PT: Significance for the role of deformation in porphyroblast growth

A A SHAH^{1,2,*} and T H BELL¹

¹School of Earth and Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia. ²Earth Observatory of Singapore, Nanyang Technological University, Singapore. *Corresponding author. e-mail: afroz@ntu.edu.sg

In situ dating of monazite grains preserved as inclusions within foliations defining FIAs (foliation inflection/intersection axes preserved within porphyroblasts) contained within garnet, staurolite, andalusite and cordierite porphyroblasts provides a chronology of ages that matches the FIA succession for the Big Thompson region of the northern Colorado Rocky Mountains. FIA sets 1, 2 and 3 trending NE–SW, E–W and SE–NW were formed at 1760.5 \pm 9.7, 1719.7 \pm 6.4 and 1674 \pm 11 Ma, respectively. For three samples where garnet first grew during just one of each of these FIAs, the intersection of Ca, Mg, and Fe isopleths in their cores indicate that these rocks never got above 4 kbars throughout the Colorado Orogeny. Furthermore, they remained around approximately the same depth for ~250 million years to the onset of the younger Berthoud Orogeny at 1415 \pm 16 Ma when the pressure decreased slightly as porphyroblasts formed with inclusion trails preserving FIA set 4 trending NNE–SSW. No porphyroblast growth occurred during the intervening ~250 million years of quiescence, even though the PT did not change over this period. This confirms microstructural evidence gathered over the past 25 years that crenulation deformation at the scale of a porphyroblast is required for reactions to re-initiate and enable further growth.

1. Introduction

In multiply deformed and metamorphosed rocks, foliations in the matrix, especially schistosity parallel to compositional layering, have generally undergone long and complex histories (e.g., Ham and Bell 2004). Different relics of this history can be left in strain shadows or portions where later deformation partitioning was less pervasive and if not decoded carefully will lead to erroneous or ambiguous results (e.g., Spiess and Bell 1996). Each new deformation tends to erase developing or earlier-formed structures through decrenulation of developing crenulation cleavage and rotation of relics of earlier-formed foliations into parallelism with the compositional layering (e.g., Bell *et al.* 2003). Deformation partitioning strongly affects such kinds of processes from regional (Cihan and Parsons 2005) to porphyroblastic scales (Bell and Bruce 2007) and makes it difficult to correlate them from one region to another. It is primarily because a mixture of ages will always be present within matrix of such rocks and gets even worst if deformation partitioning was intense. The inclusion trails preserved within porphyroblasts are remnants of earlier matrix events. These are

Keywords. FIAs; porphyroblast; monazite; garnet; staurolite.

J. Earth Syst. Sci. **121**, No. 6, December 2012, pp. 1365–1399 © Indian Academy of Sciences

generally isolated from the matrix phases and act as robust candidates for studying deformation and metamorphic processes. Such quantitative research has greatly increased our understanding of complex inclusion trail relationships, which otherwise could not be interpreted or were misleading (e.g., Ham and Bell 2004).

Accurate measurement of the foliation inflection/ intersection axes preserved within different porphyroblastic phases (FIAs) has made it possible to decode lengthy and complex histories of deformation and metamorphism in orogens around the world (e.g., Bell *et al.* 2004). More than 10 years of research and data have already been published using this technique from tectonically complex regions around the world (e.g., Bell *et al.* 1998, 2003, 2005; Bell and Chen 2002; Cihan 2004; Kim and Bell 2005; Sayab 2005, 2006; Bell and Bruce 2007; Sanislav 2010; Sanislav and Shah 2010; Ali 2010; Sanislav and Bell 2011).

The integration of detailed microstructural studies and FIA data with garnet isopleth thermobarometry/MnNCKFMASH pseudosection construction can provide complete pressure-temperaturetime deformational trajectories of an area (e.g., Kim and Bell 2005; Cihan et al. 2006; Sayab 2006; Ali 2010). Such an approach significantly improves our understanding of large-scale orogenic processes. But the absolute timing of these events remains a fundamental tool for decoding and interpreting the tectonic evolution of the region. Geometrically and texturally controlled dating methods are critical for constraining the ages of deformed and metamorphosed sediments and their textures and foliations (e.g., Williams and Jercinovic 2002). In pelites and psammites, monazite is commonly present at amphibolite facies (Dahl *et al.* 2005) and it has been dated in migmatites and granulites (e.g., Kelly *et al.* 2006). It is considered as a typical mineral of choice for *in* situ geochronology in such rocks (Dahl et al. 2005; Williams $et \ al. \ 2007$).

Absolute dating of monazite grains applying high precission electron microprobe U-Th-Pb techniques (EPMA) was used to correlate different metamorphic and deformational events (e.g., Montel et al. 1996; Dahl et al. 2005) because the bulk of the monazite grains analysed were smaller in size. Dating of monazite inclusions within different FIA sets (Bell and Welch 2002; Ali 2010; Sanislav 2010; Sanislav and Shah 2010) provides a robust tool for understanding and unravelling lengthy and complex orogenic histories. Integration of FIAs with this approach provides a strong basis for studying the complex pressure-temperature-time-deformation (PT-t-D) paths that rocks appear to have followed. This paper reports the results obtained from adapting

Figure 1. Regional map of the Colorado Frontal Range showing the Precambrian rocks and the location of the study area (box shows area of figure 2). BCSZ: Buckhorn Creek shear zone, CB: Cheyenne belt, ISRSZ: Idaho Springs-Ralston shear zone, MMSZ: Moose Mountain shear zone, SGSZ: Skin Gulch shear zone (modified after Cavosie and Selverstone 2003).

this approach to the rocks collected in and around the Big Thompson region of Colorado (figures 1 and 2).

2. Regional geology and tectonics

The rocks exposed in the Big Thomson Canyon region, Colorado, USA, are mainly metasediments and granitoids (figure 2). Condie and Martel (1983) suggested that the metasediments represent mature sediments deposited in a forearc setting. Reed *et al.* (1987) argued that they were possibly deposited in a back-arc setting between two ~ 1.8 and 1.7 Ma magmatic arc systems. Recent detrital zircon ages suggest a maximum age of 1758+26 Ma for deposition of the Big Thompson sequence (Selverstone et al. 2000). These sediments were repeatedly deformed, metamorphosed and intruded by various plutons (e.g., Braddock and Cole 1979; Selverstone *et al.* 1997; Sims *et al.* 2003) during the Colorado (~ 1700 Ma) and Berthoud $(\sim 1400 \text{ Ma})$ orogenies (Tweto 1987; Nyman *et al.* 1994; Karlstrom et al. 1997). The rocks show an increase in metamorphic grade towards the west and north and three stages of folding and cleavage development (Cavosie and Selverstone 2003).

Figure 2. Detailed geological map of the study area and the sample locations. White circles show the location of samples used for monazite dating (geological map modified after Cavosie and Selverstone 2003).

The first deformation/metamorphism occurred before 1750 Ma and resulted in large-scale isoclinal folds (F1) and a regional axial cleavage S1. The second and third stages of folding (F2) and F3) occurred around 1750 Ma ago, when these rocks were intruded by the Boulder Creek granodiorite and related rocks. Only one period of metamorphism has been associated with these events (M1) during which garnet and staurolite grew. The second metamorphic event (M2), which was stronger than the first, resulted in the formation of up to sillimanite grade mineral assemblages (Sims et al. 2003), though metamorphic conditions were very heterogeneous throughout these episodes. A number of areas recorded an entire transition in metamorphic grade from the chlorite zone to the onset of migmatization during the Colorado orogeny (Braddock and Cole 1979; Selverstone *et al.* 1997).

3. Methods

3.1 FIA measurements

Hayward (1990) and Bell et al. (1995, 1998) described a technique for analysing the geometries of inclusion trails within porphyroblasts. It involves measurement of the FIA, which is achieved by cutting a minimum of eight vertically oriented thin sections around the compass from each rock sample to locate the switch in inclusion trail asymmetry (clockwise or anticlockwise) within the porphyroblasts (figure 3a and b). Where the FIA trends vary from the core to the rim of the porphyroblasts, a relative timing and thus an FIA succession can be established (Bell et al. 1998). The accumulated error associated with determining the trend of the FIA in each rock is random, and is estimated to be ± 8 in both situations when one uses a COCLAR compass (see Bell et al. 1998).

4. Results

4.1 FIA data

A total of 67 oriented samples were examined for the present research. 800 oriented thin sections were prepared and a total of 138 FIA and pseudo-FIA trends were determined (table 1, figure 2). These measurements were achieved by cutting a minimum of eight vertically oriented thin sections around the compass from each rock sample (figure 3) and then locating the switch in inclusion trail asymmetry (clockwise or anticlockwise) within the porphyroblasts (e.g., Bell *et al.* 1998).

Figure 3. (a) Sketch illustrating the method developed by Bell *et al.* (1995, 1998) by which the trend of an FIA is measured. This technique uses the change in asymmetries of inclusion trails in a porphyroblast, when viewed in a consistent direction for successive striking vertical thin sections, to locate the FIA. The inclusion trail asymmetry changes between 0° and 40° . Thin section orientation is marked as single barbed arrow. The eyeball and grey arrow indicates the direction in which the sections are viewed. (b) The 3-D sketch illustrates a succession of foliations, as they would be preserved within a vertical slice through a porphyroblast, which define a single FIA trend.

Garnet, staurolite, andalusite and cordierite porphyroblasts preserve earlier foliations as inclusion trails. These foliations are most commonly straight with curvature at their extremities (e.g., figure 4a). Porphyroblast inclusion trails are commonly truncated (e.g., figure 4a) by the matrix foliations but some are not (e.g., figure 4b). A relative timing and thus an FIA succession can be established from samples preserving an FIA trend that varies from core to the rim of the porphyroblast (e.g., Bell *et al.* 1998). All FIA measurements are plotted on rose diagram and are shown in figure 5(a). A total of 64 and 53 FIAs were measured in garnet and staurolite porphyroblasts respectively (figure 5b and c).

Table 1. Samples collected in and around Big Thompson Canyon region of northern Front Range, Colorado (shown in figure 2), the geological formations from which they were taken, their latitude and longitude values and the FIA trends measured in them.

				Garnet single		9		Staurolite single		Cordierite single		Andalusite single
Sample	Easting	Northing	FM	FIA	pFIA	Core	Rım	FIA	pFIA	FIA	pFIA	FIA
C16	Ν			15								
C18A	Ν			15								
C18B	Ν			15	130							
C19A	Ν			15	135							
C35	477206	4484713	XKS	55				25				
C37	477144	4484332	XBS	140				30				
C38	477712	4484329	XKS					15				
C39	477339	4483694	XKS	90				20				
C40	475828	4483433	XKS	85	50			135				
C41	476404	4483291	XKS					30				
C42	476752	4483561	XKS	55				25				
C43	475001	4483553	XKS	50				80				
C44	474752	4484140	XKS	80				15	130			
C45	475338	4484548	XKS	85				140				
C47A	476418	4485315	XKS	140				25				
C48	475216	4485600	XKS					135				
C49	474307	4486810	XKS					90		120		
C50	473290	4486411	XKS					135		25		25
C51A	473670	4485437	XKS	130								
C51B	473670	4485437	XKS	55						125		
C52	474484	4485910	\mathbf{XQS}			50	85			25		
C54C	476858	4474303	\mathbf{XQS}	25				25				
C55A	474470	4475194	\mathbf{XQS}	55								
C55B	474470	4475194	\mathbf{XQS}	40				15				
C56A	475827	4474568	\mathbf{XQS}	45				125				
C60B	475036	4475308	\mathbf{XQS}					85				
C64	473360	4477763	XKS	85	40			125				
C65A	472961	4477978	\mathbf{XQS}	55				130	80			
C66	473717	4479430	\mathbf{XQS}	50				120	40			
C67	473793	4480256	\mathbf{XQS}			85	130					
C68A	476612	4477904	XKS					120				
C68B	476612	4477904	XKS	90	50							
C69	477142	4476720	\mathbf{XQS}			130	25					
C70	477433	4475714	\mathbf{XQS}	85								
C75	470687	4480815	XBS					85	60			
C76	469767	4480350	\mathbf{XQS}			85	135			25		125
C77	469104	4480353	\mathbf{XQS}								120	
C78A	470822	4479966	\mathbf{XQS}	45				25		115		
C78B	470822	4479966	\mathbf{XQS}	85	50			130		130		
C80	474017	4478095	XKS					85				
C81	474505	4478748	\mathbf{XQS}	145				15				
C82	475584	4476971	\mathbf{XQS}	125				30				
C83	475634	4477975	XKS	80				135				
C84	474792	4477824	XKS	85				130				
C85	475463	4479506	XQS	90				30				
C86	476096	4479964	XQS	125	50							
C88	476418	4481613	XQS	55				25				
C92A	472011	4477468	XKS	130								
C93A	472642	4479207	XQS	55				30				
C96A	475043	4479775	XQS	85				130				
C96B	475043	4479775	\mathbf{XQS}			55	135					

Table 1. (Continued)

Sample	Easting	Northing	$_{\rm FM}$	Garnet single FIA	pFIA	Core	Rim	Staurolite single FIA	pFIA	Cordierite single FIA	pFIA	Andalusite single FIA
C98A	473791	4482058	XBS					55		25		
C98A	473791	4482058	XBS	55				90		30		
C101	470677	4478975	XKS	15	85					30		
C107B	471172	4481971	XKS	50				30		30		
C108	470558	4478720	XKS	50				85		20		
C110	471694	4482963	XKS	25					120			20
C111	472000	4483403	XKS					25	55			
C117B	474053	4483669	XKS	55				80		35		
C121	475042	4482626	XQS	85								
C122	475531	4482644	XBS					130				
C126	475980	4483996	XKS	55				120				
C130	472840	4484427	XKS					50				25
C133	472811	4485927	XKS					85	55			
C134A	472679	4485070	XKS	60				90				
C135B	472295	4484694	XKS	55				80				130
C138B	469858	4485392	XKS					65				135

XQS = Quartzofeldspathic mica schist, XKS = Knotted mica schist, XBS = Porphyroblastic biotite schist, N = No information available about the geographic coordinates.

The combined FIA trend data for garnet and staurolite is shown in figure 5(d). The other porphyroblastic phases in which FIAs were measured were and alusite and cordierite, with seven measurements in the former and 14 in the latter. Their trends are given in table 1 and are shown on a rose diagram in figure 5(e and f). A few samples maintain differentiated crenulation cleavages that have been overgrown by the porphyroblasts where the asymmetry of the crenulated cleavage can be determined. The crenulated cleavages consist of quartz and ilmenite grains, while the differentiated crenulation cleavages predominantly contain ilmenite grains. The intersection between the crenulated and crenulation cleavages can be determined, when viewed in three dimensions, and is called a pseudo-FIA (pseudo-FIA). The actual FIA is formed during porphyroblast growth and these samples are defined by the curvature of the differentiated crenulation cleavage. All measured trends were plotted on a rose diagram as shown in figure 5.

4.2 Dating of FIA sets

To determine the age of the four FIA sets measured in the area, 30 samples were selected for monazite dating. Polished thin sections were made for use in the JEOL JXA-8300 Superprobe. Only 11 samples out of the 30 selected contained monazite grains large enough for precise age calculations. Detailed pre-dating maps were produced from each polished thin section to accurately locate monazite grain and their textural setting. The analytical procedure is outlined in table 2. The samples were analysed with a 1–2 micron meter diameter beam at 15 kv and 200 nA. The collimators were opened to a maximum (3 mm) and the PHA settings were optimized as well. In all these measurements, πrz matrix corrections were performed using standard Pb, U, Th, and Y concentrations in combination with the preset values for other elements (P 33.3, La 14.5, Ce 26, Pr 2.6, Nd 10.3, Sm 1.5, Gd 1.48, Dv 0.82, Si 0.25, Ca 0.55 wt.% oxides). Interference corrections of Th and Y on Pb $M\alpha$ and Th on U M β were executed as in Pyle *et al.* (2002). An internal standard monazite from Manangotry in Madagascar of 545 ± 2 Ma (Paquette *et al.* 1984) was analysed three times before and after each analytical session. Chemical ages were calculated as described in Montel et al. (1996). Geologically significant age information can be derived by assuming low amounts of common Pb (e.g., Parrish 1990; Gaidies *et al.* 2008) and slow diffusion rates for Th, U and Pb in monazite (Cherniak et al. 2004). The samples were chosen based on FIA set and the grains were isolated and clustered according to their age, textural setting and whether any chemical zonation was present (Cihan et al. 2006). This would potentially reduce any error and make the age information reliable (Montel *et al.* 1996; Pyle et al. 2005; Gaidies et al. 2008). Dates and errors were determined by mean age with standard errors at 95% confidence level for a cluster of spots analysis within a single age domain or grain. Ages were

Figure 4. Representative photomicrographs and line diagrams of vertical thin sections of different samples illustrating variation in inclusion trail geometry, truncation and continuity with the matrix foliation. (**a**, **b**) Garnet porphyroblast preserves an oblique foliation that curves clockwise to sub-vertical (S_i). (**c**, **d**) Garnet porphyroblast preserves a sub-horizontal foliation (S_i) truncated and curved by a sub-vertical with an anti-clockwise asymmetry. (**e**, **f**) Staurolite porphyroblast preserves a sub-horizontal foliation (S_i) that is truncated with that in the matrix and has an anti-clockwise curvature. (**g**, **h**) Staurolite porphyroblast with inclusion trails completely truncated by those within the matrix. A slightly anti-clockwise curvature was observed in the rim or from the porphyroblast into the matrix in these porphyroblasts. Sample numbers, strikes and way up of the vertical thin sections are shown in the upper left corner (thick single barbed arrow). PPL: plane polarized light; XPL: cross polarized light, S_e : external foliation, S_i : Internal foliation, S_i : staurolite, Bt: biotite, Grt: garnet (after Shah 2009).

Figure 5. (a) Equal area rose plot of all FIA trends measured from garnet, staurolite, and alusite and cordierite. Four peaks occur at 25° , 55° , 85° and 135° . (b) Garnet FIAs (c) staurolite FIAs, (d) garnet plus staurolite FIAs, (e) and alusite FIAs, and (f) cordierite FIAs.

then calculated for all the grain populations analyzed and plotted using software Isoplot (Ludwig 1998). Three samples contained monazite grains big enough to extract valuable age information in garnet porphyroblasts. Six contained suitable monazite grains in staurolite porphyroblasts. Two contained suitable monazite grains in andalusite plus cordierite.

4.3 Dating of foliations within porphyroblasts

Unless otherwise stated, monazite inclusions lie with the foliation defining the FIA set for that mineral phase. All rocks contain biotite, muscovite, plagioclase and quartz with accessory phases ilmenite and apatite. Quartz and apatite and rarely muscovite, biotite, chlorite inclusions are always present within both garnet and staurolite porphyroblasts. Monazite is always present within staurolite but not necessarily in garnet phases.

4.3.1 Sample C117

Garnet (FIA set 1) and staurolite (FIA set 2) inclusion trails are always truncated by the matrix

Element	X-ray	Crystal- spectrometer	Peak time (s)	Background time (s)	Standard
Р	Ka	TAP	20	10	Ce phosphate
Pb	Ma	$\rm PETJ^{b}$	180	90	PbSiO3a ^a
La	La	LIFH	10	5	La phospahte
U	Mb	PETJ	180	90	$\operatorname{Uranium}^{\mathrm{a}}$
Th	Ma	PETJ	90	45	$\mathrm{ThO2^{c}}$
Υ	La	TAP	60	30	Yttrium phosphate ^d
Ce	La	LIFH	10	5	Ce phosphate
Ca	Ka	PETJ	20	10	Wollastonite
Si	Ka	TAP	20	10	PbSiO3
Pr	Lb	LIFH	20	10	Pr phosphate
S	Ka	PETJ	30	15	BaSO4
Nd	Lb	LIFH	10	5	Nd phosphate
Sm	Lb	LIFH	40	20	Sm phospahte
Gd	Lb	LIFH	40	20	Gd phospahte
Dy	Lb	LIFH	40	20	DY phospate

Table 2. Analytical set-up for monazite analyses on the JEOL JXA-8200, Electron Probe Micro Analyzer (EPMA) at the Advanced Analytical Centre, JCU Townsville, Australia.

^aAstimex, ^bSealed Xe detectors, ^cTaylor, ^dPb-free synthetic from J. Pyle (Rennselaer Polytechnic Institute, USA).

Table 3. Summary of ages derived from monazites preserved within the porphyroblasts and the matrix phases of abovementioned samples (staurolite data from Sanislav and Shah 2010).

			Porphyroblast					Matrix		
		Textural	Age and	Total no.	No. of		Textural	Age and	Total no.	No. of
	Sample	setting	error	of spots	monazites	Sample	setting	error	of spots	monazites
FIA 1	C117B	Grt M1	1756 ± 22	17	2	C75	Bt $M1$	1664 ± 38	7	1
	C75	St $M2$	1765 ± 23	16	1	C75	Bt $M2$	1762 ± 35	7	1
	C84	Grt M3	1762 ± 21	24	1	C43	Mu M3	1724 ± 37	7	1
	C77	Crd M4	1760 ± 18	24	1	C108	$\mathrm{Mt}^{\mathrm{a}} \mathrm{M4}$	1675 ± 24	10	1
	C51B	Crd M5	1762 ± 32	12	1	C77	Bt $M5$	1677 ± 19	17	1
						C51B	Mt M6	1685 ± 29	9	1
FIA 2	C43	St M6	1724 ± 19	14	1	C84	${\rm Mt}^{\rm a}~{\rm M7}$	1729 ± 23	26	1
	C65A	St M7, 8, 9	1717.6 ± 9.5	53	3	C83	Mu M8	1723 ± 34	7	1
	C108	St M10, 11	1721 ± 14	37	2	C110	Mu M9	1438 ± 30	7	1
	C77	Crd M12	1726 ± 18	22	1	C65	Bt M10 $$	1665 ± 23	10	1
	C75	St $M13$	1712 ± 25	10	1	C65	Bt M11	1742 ± 29	8	1
						C65	Mt^{a} M11	1668 ± 48	6	1
FIA 3	C83	St $M14$	1681 ± 27	10	1					
	C51A	Grt $M15$	1666 ± 26	10	1	$^{\mathrm{a}}\mathrm{Mt} = 1$	Matrix			
	C77	And M16	1678 ± 17	20	1					
	C84	St $M17$	1683 ± 36	6	1					
	C65	St $M18$	1665 ± 24	10	1					
FIA 4	C51 B	Crd M19	1414 ± 23	13	1					
	C77	Crd M20	1410 ± 26	10	1					
	C110	And M21	1432 ± 39	5	1					

foliation. Extra minor phases include zircon and xenotine. Two monazite inclusions within garnet have given a mean age spread of 1756 ± 22 Ma (see tables 3 and 4; figure 6).

4.3.2 Sample C84

Garnet and staurolite inclusion trails are always truncated by the matrix foliation. Extra accessory

	Error		69	78	80	84	110	108	116	67	78	83	94	102	92	66	107	124	125	77	77	82	79	92	88	95	102	109	111	118	121	118	124	127	125	128
	Age		1772	1736	1755	1757	1796	1728	1762	1722	1773	1748	1738	1753	1723	1744	1795	1839	1786	1759	1742	1738	1711	1758	1809	1780	1758	1777	1773	1804	1764	1776	1749	1765	1772	1749
igned to FIA set 1.	$\operatorname{Sample}^{\mathrm{a}}$		C117B Grt M1 1	C117B Grt M1 2	C117B Grt M1 3	C117B Grt M1 4	C117B Grt M1 5	C117B Grt M1 6	C117B Grt M1 7	C117B Grt M1 8	C117B Grt M1 9	C117B Grt M1 10	C117B Grt M1 11	C117B Grt M1 12	C117B Grt M1 13	C117B Grt M1 14	C117B Grt M1 15	C117B Grt M1 16	C117B Grt M1 17	C84 Grt M3 1	C84 Grt M3 2	C84 Grt M3 3	C84 Grt M3 4	C84 Grt M3 5	C84 Grt M3 6	C84 Grt M3 7	C84 Grt M3 8	C84 Grt M3 9	C84 Grt M3 10	C84 Grt M3 11	C84 Grt M3 12	C84 Grt M3 13	C84 Grt M3 14	C84 Grt M3 15	C84 Grt M3 16	C84 Grt M3 17
amples al	Total		100.637	100.537	100.948	100.778	101.116	100.747	100.918	100.945	101.368	100.328	100.974	100.818	99.852	100.461	101.101	101.080	101.235	100.313	100.657	100.024	100.442	99.827	100.688	99.771	100.641	100.101	100.529	99.608	100.970	99.832	100.452	100.218	100.391	100.655
ases of so	$\rm Dy_2O_3$		0.507	0.475	0.381	0.417	0.360	0.444	0.441	0.515	0.744	0.621	0.693	0.709	0.647	0.629	0.643	0.655	0.552	0.539	0.642	0.675	0.621	0.481	0.696	0.602	0.624	0.511	0.565	0.499	0.588	0.543	0.587	0.552	0.582	0.636
uatrix ph	$\mathrm{Gd}_2\mathrm{O}_3$		1.990	1.833	2.029	1.912	2.000	1.863	1.863	2.255	2.216	2.069	2.294	2.235	1.922	2.069	2.127	2.059	1.912	1.539	1.559	1.735	1.686	1.598	1.696	1.696	1.706	1.549	1.539	1.559	1.559	1.578	1.529	1.608	1.578	1.559
sts and n	$\mathrm{Sm}_2\mathrm{O}_3$		1.971	1.951	2.078	2.029	2.108	2.000	2.000	2.088	2.000	2.029	2.147	2.088	1.980	2.010	2.069	2.059	1.990	1.902	1.902	2.039	1.971	2.000	2.039	2.039	2.020	1.931	1.990	2.010	1.971	1.971	1.990	2.020	2.029	1.990
phyrobla	$\mathrm{Nd}_{2}\mathrm{O}_{3}$		11.971	11.971	12.294	12.137	12.618	12.382	12.608	11.882	11.882	12.216	12.275	12.480	12.225	12.363	12.265	12.314	12.569	12.196	12.265	12.206	12.265	11.990	12.265	12.333	12.578	12.265	12.539	12.284	12.500	12.422	12.441	12.647	12.716	12.608
hin por	SO_3		0.000	0.008	0.020	0.008	0.008	0.017	0.006	0.016	0.012	0.012	0.000	0.008	0.011	0.005	0.012	0.010	0.027	0.000	0.006	0.012	0.000	0.013	0.001	0.005	0.002	0.006	0.007	0.015	0.012	0.004	0.005	0.022	0.019	0.000
ved wit	Pr_2O_3		3.176	3.157	3.147	3.265	3.284	3.314	3.392	3.069	3.069	3.186	3.206	3.275	3.265	3.324	3.294	3.363	3.392	3.216	3.245	3.265	3.235	3.265	3.304	3.314	3.412	3.275	3.382	3.314	3.324	3.392	3.392	3.392	3.402	3.431
, preser	SiO_2		0.185	0.234	0.201	0.147	0.143	0.128	0.105	0.338	0.227	0.179	0.192	0.137	0.169	0.145	0.172	0.115	0.114	0.272	0.292	0.243	0.189	0.180	0.226	0.139	0.205	0.207	0.177	0.111	0.115	0.162	0.092	0.127	0.110	0.108
grains	CaO		1.055	0.935	0.909	0.821	0.625	0.620	0.591	1.124	0.946	0.791	0.744	0.670	0.692	0.657	0.622	0.564	0.508	0.886	0.878	0.808	0.828	0.692	0.741	0.645	0.655	0.596	0.601	0.523	0.519	0.487	0.491	0.499	0.486	0.484
on a zite	Ce_2O_3		28.098	28.745	28.559	28.980	29.608	29.980	29.990	27.706	28.255	28.667	29.039	29.127	29.127	29.206	29.422	29.931	30.255	28.245	28.373	28.118	28.647	28.882	28.637	28.735	29.225	29.304	29.696	29.569	30.098	29.627	29.951	29.647	29.951	30.029
of all m	Y_2O_3		1.340	1.076	0.988	1.136	1.038	1.087	1.151	0.988	1.380	1.158	1.280	1.340	1.059	1.197	1.269	1.122	0.948	1.360	1.360	1.650	1.600	1.360	1.610	1.570	1.520	1.320	1.290	1.320	1.300	1.340	1.340	1.340	1.310	1.340
alyses a	ThO_2		4.320	4.280	3.920	3.460	2.600	2.370	2.260	5.650	4.330	3.380	3.380	2.920	2.880	2.800	2.750	2.390	2.090	4.310	4.200	3.520	3.430	3.240	3.020	2.740	2.720	2.560	2.560	2.310	2.100	2.090	2.020	2.010	1.960	1.880
vical an	UO_2		0.627	0.365	0.421	0.453	0.319	0.361	0.331	0.320	0.366	0.463	0.288	0.310	0.431	0.360	0.293	0.243	0.296	0.386	0.404	0.457	0.513	0.361	0.468	0.435	0.335	0.309	0.284	0.289	0.311	0.331	0.297	0.284	0.311	0.309
ie chem	La_2O_3		13.431	13.853	14.127	14.196	14.471	14.314	14.255	13.147	13.598	13.549	13.569	13.745	13.794	13.961	14.049	14.118	14.245	13.618	13.686	13.578	13.696	14.206	14.029	13.951	13.951	14.343	14.167	14.304	14.775	14.676	14.520	14.392	14.441	14.647
about th	PbO	oblast	0.515	0.428	0.421	0.395	0.298	0.280	0.269	0.515	0.442	0.390	0.338	0.312	0.337	0.315	0.302	0.266	0.249	0.442	0.434	0.396	0.398	0.352	0.377	0.339	0.305	0.288	0.281	0.268	0.251	0.258	0.239	0.237	0.241	0.231
e data .	P_2O_5	orphyr	31.451	1.225	1.451	1.422	31.637	11.588	1.657	31.333	31.902	1.618	31.529	31.461	31.314	1.422	31.814	31.873	32.088	1.402	31.412	31.324	31.363	31.206	31.578	1.225	31.382	31.637	31.451	31.235	1.549	0.951	31.559	1.441	31.255	31.402
Table 4. Complet	Shah S.No.	Monazite within F	Shah S.No. 1 🗧	Shah S.No. 2 5	Shah S.No. 3 5	Shah S.No. 4 5	Shah S.No. 5 5	Shah S.No. 6 5	Shah S.No. 7 §	Shah S.No. 8 5	Shah S.No. 9 5	Shah S.No. 10 5	Shah S.No. 11 §	Shah S.No. 12 5	Shah S.No. 13 5	Shah S.No. 14 §	Shah S.No. 15 5	Shah S.No. 16 5	Shah S.No. 17 ε	Shah S.No. 34 5	Shah S.No. 35 5	Shah S.No. 36 5	Shah S.No. 37 §	Shah S.No. 38 5	Shah S.No. 39 🗧	Shah S.No. 40 5	Shah S.No. 41 §	Shah S.No. 42 \lesssim	Shah S.No. 43 5	Shah S.No. 44 §	Shah S.No. 45 5	Shah S.No. 46 5	Shah S.No. 47 §	Shah S.No. 48 5	Shah S.No. 49 5	Shah S.No. 50 5

A A Shah and T H Bell

80	101	101	108	113	121	135	71	71	73	75	74	79	80	78	80	80	89	91	06	91	97	105	107	109	112	114	117	119	131	135	121	89	$\begin{array}{c} 91 \\ 106 \end{array}$
1784	1734	1688	1752	1758	1820	1885	1710	1777	1779	1724	1723	1764	1746	1737	1844	1802	1794	1724	1766	1850	1763	1727	1685	1708	1809	1763	1774	1762	1682	1780	1793	1791	1707 1713
C84 Grt M3 18	C84 Grt M3 19	C84 Grt M3 20	C84 Grt M3 21	C84 Grt M3 22	C84 Grt M3 23	C84 Grt M3 24	C77 Crd M4 1	C77 Crd M4 2	C77 Crd M4 3	C77 Crd M4 4	C77 Crd M4 5	C77 Crd M4 6	C77 Crd M4 7	C77 Crd M4 8	C77 Crd M4 9	C77 Crd M4 10	C77 Crd M4 11	C77 Crd M4 12	C77 Crd M4 13	C77 Crd M4 14	C77 Crd M4 15	C77 Crd M4 16	C77 Crd M4 17	C77 Crd M4 18	C77 Crd M4 19	C77 Crd M4 20	C77 Crd M4 21	C77 Crd M4 22	C77 Crd M4 23	C77 Crd M4 24	C51B Crd M5 1	C51B Crd M5 2	C51B Crd M5 3 C51B Crd M5 4
98.447	99.509	100.122	97.849	100.073	100.443	98.834	100.108	99.797	99.339	99.536	99.743	99.508	99.183	98.911	100.111	99.505	98.871	666.66	99.156	99.192	99.576	99.985	100.074	100.228	100.358	99.338	99.568	99.846	99.422	99.601	99.988	99.735	99.913 99.729
0.679	0.621	0.604	0.522	0.607	0.578	0.565	0.569	0.745	0.767	0.642	0.729	0.718	0.709	0.680	0.691	0.695	0.712	0.707	0.760	0.699	0.680	0.624	0.610	0.664	0.569	0.661	0.545	0.600	0.549	0.704	0.547	0.698	$0.616 \\ 0.692$
1.647	1.588	1.588	1.471	1.598	1.559	1.500	1.860	1.870	1.810	1.880	1.850	1.870	1.840	1.730	1.890	1.850	1.800	1.830	1.830	1.840	1.750	1.870	1.770	1.850	1.900	1.760	1.770	1.810	1.640	1.690	1.600	1.630	1.510 1.550
2.010	2.000	2.000	1.990	2.069	2.020	1.961	1.970	1.990	2.020	2.030	2.070	2.060	2.020	1.910	2.010	1.980	1.980	2.020	1.950	2.030	2.040	2.030	2.000	2.040	2.040	1.960	1.970	2.000	1.950	1.940	2.040	1.920	$1.920 \\ 1.860$
11.931	12.422	12.402	12.245	12.451	12.559	12.284	11.660	11.430	11.610	11.690	11.690	11.820	11.590	11.620	11.810	11.610	11.740	11.990	11.910	11.890	11.950	12.360	11.920	12.010	12.080	12.000	12.150	11.950	11.770	12.190	12.650	12.340	12.210 12.440
0.002	0.006	0.013	0.007	0.013	0.013	0.003	0.005	0.013	0.004	0.014	0.007	0.002	0.010	0.004	0.001	0.008	0.000	0.000	0.000	0.017	0.000	0.000	0.014	0.007	0.000	0.013	0.006	0.007	0.003	0.010	0.015	0.007	0.005 0.004
3.196	3.304	3.343	3.216	3.363	3.353	3.255	3.100	3.120	3.080	3.010	3.170	3.150	3.090	3.250	3.170	3.090	3.100	3.160	3.190	3.170	3.240	3.260	3.260	3.230	3.260	3.210	3.200	3.180	3.240	3.260	3.290	3.240	3.270 3.310
0.254	0.169	0.177	0.551	0.347	0.255	0.614	0.313	0.187	0.208	0.159	0.182	0.175	0.175	0.170	0.178	0.163	0.146	0.160	0.130	0.146	0.341	0.112	0.098	0.104	0.112	0.099	0.114	0.095	0.083	0.071	0.148	0.109	$0.084 \\ 0.069$
0.933	0.679	0.645	0.602	0.585	0.526	0.529	1.061	1.076	1.020	0.970	1.004	0.928	0.963	0.969	0.931	0.918	0.806	0.779	0.805	0.786	0.747	0.649	0.640	0.623	0.651	0.613	0.595	0.585	0.509	0.519	0.520	0.523	0.415 0.523
27.598	28.873	29.275	28.686	29.147	29.627	29.039	28.170	27.960	27.690	28.090	28.020	28.160	28.130	28.250	28.350	28.390	28.790	29.140	28.720	28.500	28.980	29.380	29.890	29.760	29.610	29.680	29.680	29.910	30.260	30.120	29.160	29.110	29.710 29.500
1.620	1.390	1.360	1.340	1.430	1.300	1.250	1.320	1.700	1.680	1.580	1.680	1.680	1.580	1.540	1.630	1.660	1.570	1.540	1.540	1.630	1.460	1.460	1.370	1.380	1.430	1.430	1.350	1.330	1.246	1.310	1.243	2.020	1.650 2.300
3.240	2.560	2.520	2.470	2.380	2.200	2.140	5.020	4.560	4.230	4.160	4.150	3.960	3.960	3.870	3.830	3.820	3.340	3.320	3.300	3.220	3.160	2.750	2.660	2.540	2.520	2.520	2.500	2.330	2.090	2.010	2.050	1.200	0.925 0.428
0.566	0.382	0.377	0.330	0.312	0.297	0.223	0.396	0.545	0.527	0.490	0.515	0.474	0.432	0.488	0.508	0.479	0.429	0.377	0.408	0.431	0.337	0.323	0.320	0.322	0.330	0.302	0.276	0.295	0.251	0.263	0.359	0.872	0.895 0.810
13.520	14.186	14.343	13.765	13.863	14.343	14.010	13.970	13.650	13.590	13.840	13.580	13.510	13.620	13.740	14.030	13.970	13.980	14.190	14.010	13.890	14.030	14.370	14.720	14.810	14.950	14.360	14.670	14.880	15.220	14.790	14.900	15.020	15.890 15.400
0.417	0.301	0.288	0.283	0.272	0.264	0.246	0.485	0.512	0.482	0.450	0.456	0.442	0.425	0.431	0.463	0.442	0.388	0.355	0.372	0.392	0.340	0.298	0.282	0.278	0.297	0.281	0.274	0.264	0.221	0.233	0.266	0.347	$0.314 \\ 0.254$
30.833	31.029	31.186	30.373	31.637	31.549	31.216	30.210	30.440	30.620	30.530	30.640	30.560	30.640	30.260	30.620	30.430	30.090	30.430	30.230	30.550	30.520	30.500	30.520	30.610	30.610	30.450	30.470	30.610	30.390	30.490	31.200	30.700	30.500 30.590
Shah S.No. 51	Shah S.No. 52	Shah S.No. 53	Shah S.No. 54	Shah S.No. 55	Shah S.No. 56	Shah S.No. 57	Shah S.No. 58	Shah S.No. 59	Shah S.No. 60	Shah S.No. 61	Shah S.No. 62	Shah S.No. 63	Shah S.No. 64	Shah S.No. 65	Shah S.No. 66	Shah S.No. 67	Shah S.No. 68	Shah S.No. 69	Shah S.No. 70	Shah S.No. 71	Shah S.No. 72	Shah S.No. 73	Shah S.No. 74	Shah S.No. 75	Shah S.No. 76	Shah S.No. 77	Shah S.No. 78	Shah S.No. 79	Shah S.No. 80	Shah S.No. 81	Shah S.No. 82	Shah S.No. 83	Shah S.No. 84 Shah S.No. 85

e 4. (Continu	(pan																		
No.	P_2O_5	PbO	La_2O_3	UO_2	ThO_2	Y_2O_3	Ce_2O_3	CaO	SiO ₂	Pr_2O_3	SO_3	$\mathrm{Nd}_{2}\mathrm{O}_{3}$	$\mathrm{Sm}_2\mathrm{O}_3$	$\mathrm{Gd}_2\mathrm{O}_3$	$\rm Dy_2O_3$	Total	$\operatorname{Sample}^{\mathrm{a}}$	Age]	Irror
.No. 86	30.550	0.199	15.780	0.613	0.415	2.180	29.570	0.345	0.170	3.270	0.000	12.360	1.940	1.580	0.663	99.635	C51B Crd M5 5	1707	131
No. 87.	30.780	0.202	15.960	0.620	0.389	2.140	29.610	0.360	0.070	3.300	0.000	12.400	1.710	1.550	0.677	99.768	C51B Crd M5 6	1733	131
5.No. 88	30.840	0.223	15.400	0.673	0.375	1.820	29.920	0.333	0.104	3.380	0.000	12.790	1.980	1.590	0.562	99.990	C51B Crd M5 7	1782	125
S.No. 89	30.840	0.263	15.300	0.806	0.359	2.470	29.350	0.425	0.154	3.230	0.000	12.320	1.870	1.520	0.761	99.668	C51B Crd M5 8	1796	109
S.No. 90	30.700	0.250	15.150	0.761	0.333	2.460	29.130	0.362	0.216	3.280	0.000	12.800	1.890	1.630	0.762	99.723	C51B Crd M5 9	1809	114
S.No. 91	30.670	0.134	16.320	0.413	0.264	1.300	30.680	0.206	0.065	3.370	0.006	12.610	1.950	1.410	0.547	99.943	C51B Crd M5 10	1717	191
S.No. 92	31.220	0.295	15.100	0.987	0.208	2.320	29.390	0.395	0.151	3.290	0.003	12.580	1.930	1.590	0.705	100.163	C51B Crd M5 11	1752	95
S.No. 93	30.360	0.306	15.320	1.003	0.162	2.280	29.090	0.558	0.164	3.290	0.002	12.510	1.930	1.510	0.756	99.241	C51B Crd M5 12	1801	94
ite within r	natrix																		
S.No. 94	30.931	0.529	13.451	0.410	5.140	1.290	27.382	1.088	0.296	3.078	0.007	12.010	1.863	1.559	0.533	99.568	C75 M 2 2	1810	69
S.No. 95	31.245	0.485	13.716	0.434	4.590	1.450	27.255	1.005	0.280	3.137	0.013	11.990	2.029	1.716	0.549	99.895	C75 M 2 3	1785	73
S.No. 96	31.382	0.238	14.441	0.277	2.110	1.290	29.686	0.525	0.100	3.333	0.002	12.431	1.971	1.637	0.594	100.018	C75 M 2 4	1739	125
S.No. 97	31.294	0.229	14.373	0.276	2.090	1.300	29.882	0.500	0.073	3.402	0.020	12.706	2.108	1.676	0.554	100.482	C75 M 2 5	1686	124
S.No. 98	31.422	0.227	14.363	0.262	2.110	1.245	29.902	0.479	0.083	3.373	0.001	12.676	2.059	1.588	0.592	100.381	C75 M 2 6	1691	126
S.No. 99	31.147	0.203	14.382	0.250	1.820	1.280	30.010	0.445	0.077	3.392	0.002	12.637	2.049	1.618	0.600	99.911	C75 M 2 7	1695	138
S.No. 101	31.314	0.486	12.922	0.359	4.950	0.632	27.598	1.065	0.236	3.157	0.012	12.167	2.275	2.294	0.542	100.009	65A M11 1	1767	72
S.No. 102	31.520	0.386	13.480	0.285	3.900	0.690	28.255	0.849	0.194	3.147	0.000	12.333	2.235	2.284	0.594	100.153	65A M11 2	1778	88
S.No. 103	31.382	0.390	13.167	0.374	3.850	1.510	28.324	0.865	0.246	3.078	0.022	12.000	2.078	2.235	0.817	100.340	65A M11 3	1707	81
S.No. 104	31.490	0.375	13.294	0.322	3.830	0.705	28.412	0.853	0.181	3.176	0.008	12.186	2.255	2.392	0.628	100.108	65A M11 4	1709	8 5
S.No. 105	31.412	0.393	13.529	0.334	3.760	0.882	28.225	0.851	0.173	3.137	0.011	11.990	2.118	2.402	0.789	100.006	65A M11 5	1793	87
S.No. 106	31.314	0.458	13.431	0.709	3.490	0.620	29.118	0.955	0.106	3.186	0.007	12.333	2.196	1.755	0.272	99.950	65A M11 6	1719	71
S.No. 107	31.216	0.379	14.078	0.479	3.190	0.359	30.010	0.825	0.115	3.343	0.008	12.569	2.147	1.529	0.232	100.480	65A M11 7	1748	85
S.No. 108	31.422	0.295	13.804	0.284	2.900	1.280	29.245	0.681	0.112	3.216	0.015	12.343	2.049	2.059	0.709	100.413	65A M11 8	1711	103

 $^{\mathrm{a}}$ Sample number, porphyroblast and monazite.

Figure 6. (a) Back scatter image shows the garnet porphyroblast which preserves a single monazite grain lying parallel to the orientation of its foliation. A mean age of 1754 ± 29 Ma is calculated from a total of 10 spots analyzed. (b) Enlarged view of the monazite grain with black spots showing the location of each analysis. In (c) the weighted average age plot is shown, created by using Isoplot software (Ludwig 1998) and in (d) the probability density plot is shown.

phases include magnetite, zircon, xenotine and monazite. A total of two monazite grains were dated from this sample. One within garnet with an age spread of 1762 ± 21 Ma (FIA set 1) and the other grain within staurolite (FIA set 3, Sanislav and Shah 2010) with an age spread of 1683 ± 36 Ma (see tables 3 and 4).

4.3.3 Sample C77

This sample contains andalusite and cordierite porphyroblasts, but no garnet and staurolite porphyroblasts, and the extra accessory phases of magnetite and xenotine. Inclusion trails in cordierite are continuous with the matrix foliation and preserve FIA set 4. Cordierite contains a pseudo-FIA belonging to set 3 and FIA set 4. Andalusite contains inclusion trails defining FIA set 3 that are truncated by foliations within both the matrix and the youngest foliation in cordierite. Inclusions in both porphyroblastic phases include staurolite and garnet although the latter is rare. Three monazite grains enclosed within cordierite (2) and andalusite (1) porphyroblasts were dated. One monazite grain within a crenulated cleavage seam gives a pseudo-FIA set 3 age of 1678 \pm 17 Ma within cordierite. The andalusite porphyroblast preserves the same foliation as FIA 3. The 1760 \pm 18 and 1726 \pm 18 Ma ages were derived from their monazites (see tables 3–6).

4.3.4 Sample C110

Also contains and alusite and cordierite porphyroblasts. Extra accessory phases are dominated by magnetite, xenotine, zircon and baddeleyite. And alusite preserves FIA set 4 and its inclusion trails are continuous with the matrix foliation. Inclusions within and alusite include staurolite and cordierite. A single monazite grain found in and alusite gave an age of 1432 ± 39 Ma (see tables 3 and 7) for the foliation preserved as inclusion trails.

	Error	
	Age	
d to FIA set 2.	$\operatorname{Sample}^{\operatorname{a}}$	
oles aligne	Total	
ix phases of samp	Gd_2O_3 Dy_2O_3	
ts and matr	$O_3 Sm_2O_3$	
rphyroblast	03 Nd ₂ (
d within po	Pr_2O_3 S	
, preserve	$0 SiO_2$	
grains,	3 CaC	
monazite) ₃ Ce ₂ O;	
of all 1	$_2 Y_2C$	
nalyses	² Th(
mical a)3 UO	
the $ch\epsilon$	La ₂ C	
a about	PbO	
$nplete \ dat_{i}$	P_2O_5	
le 5. Con	h S.No.	

it the chemical analyses of all monazite gra	mical analyses of all monazite gra	alyses of all monazite gra	f all monazite gra	nazite gra	2	vins, p	reserved	l within	porphy	roblasts a	and mati	ix phase	s of sam	ples alig	ned to FIA set 2.		
$P_2O_5 Pb$	$O La_2 O$	3 UO2	ThO_2	Y_2O_3	Ce_2O_3	CaO	SiO_2	Pr_2O_3	SO_3	$\rm Nd_2O_3$	$\mathrm{Sm}_2\mathrm{O}_3$	Gd_2O_3	$\rm Dy_2O_3$	Total	$\operatorname{Sample}^{\operatorname{a}}$	Age	Error
a Porphyrobli	ast																
5 31.294 0.59	96 12.47.	1 0.790	5.010	2.250	26.706	1.277	0.210	3.010	0.023	11.461	2.029	2.176	0.710	100.013	C77 crd M12 1	1721	58
3 31.324 0.35	59 14.26	5 0.490	2.970	1.630	29.873	0.871	0.137	3.157	0.005	11.422	1.843	1.833	0.622	100.800	C77 crd M12 2	1721	87
7 31.696 0.31	18 14.07	8 0.388	2.850	1.690	29.676	0.752	0.106	3.275	0.003	11.990	1.971	2.039	0.612	101.443	C77 crd M12 3	1699	95
8 31.343 0.29) 4 14.29 [,]	4 0.357	2.410	1.520	30.618	0.760	0.109	3.284	0.007	11.912	1.863	1.853	0.541	101.165	C77 crd M12 4	1794	108
9 31.657 0.26	36 14.200	6 0.349	2.230	1.650	30.098	0.614	0.074	3.275	0.000	12.127	1.961	1.961	0.616	101.083	C77 crd M12 5	1728	112
$0 \ 31.598 \ 0.24$	15 14.08	8 0.352	1.970	1.670	29.990	0.525	0.076	3.167	0.000	12.206	2.039	2.059	0.579	100.565	C77 crd M12 6	1715	120
$1 \ 30.350 \ 0.54$	11 13.23	0 0.539	5.010	1.760	27.390	1.171	0.257	3.080	0.004	11.810	2.070	1.900	0.740	101.177	C77 crd M12 7	1762	67
2 30.360 0.47	79 13.33	0 0.493	4.660	1.690	27.510	1.033	0.200	3.110	0.000	11.570	2.070	1.910	0.746	100.945	C77 crd M12 8	1692	70
3 30.550 0.42	28 13.600	0 0.385	4.250	1.560	28.280	0.969	0.191	3.130	0.016	11.840	1.990	1.860	0.764	100.973	C77 crd M12 9	1727	79
14 30.220 0.40	0 13.94	0 0.372	3.970	1.470	28.340	0.897	0.201	3.180	0.001	12.000	2.030	1.820	0.663	100.954	C77 crd M12 10	1714	82
15 30.340 0.47	79 13.94	0 0.692	3.840	1.640	28.410	1.035	0.108	3.060	0.009	11.660	1.810	1.650	0.655	100.619	C77 crd M12 11	1716	70
16 30.380 0.38	33 13.810	0 0.362	3.810	1.510	28.640	0.873	0.162	3.240	0.000	12.040	1.970	1.780	0.695	101.363	C77 crd M12 12	1704	85
17 30.340 0.35	90 13.96	0 0.383	3.790	1.470	28.540	0.863	0.144	3.160	0.016	11.990	1.910	1.780	0.712	100.788	C77 crd M12 13	1715	84
18 30.450 0.35)1 13.950	0 0.358	3.760	1.520	28.470	0.827	0.177	3.140	0.010	11.980	2.040	1.820	0.707	101.332	C77 crd M12 14	1757	87
19 30.430 0.35	30 13.870	0 0.362	3.750	1.490	28.880	0.839	0.156	3.270	0.009	12.310	2.030	1.880	0.646	101.297	C77 crd M12 15	1710	80
20 30.500 0.35)5 13.740	0 0.386	3.740	1.550	28.630	0.852	0.132	3.200	0.005	12.150	2.000	1.930	0.765	101.623	C77 crd M12 16	1748	86
21 30.450 0.35	33 13.720	0 0.370	3.670	1.530	28.490	0.837	0.134	3.170	0.006	12.140	2.000	1.850	0.730	101.261	C77 crd M12 17	1739	87
22 30.480 0.38	30 13.840	0 0.356	3.650	1.490	28.880	0.835	0.150	3.200	0.000	12.200	2.040	1.860	0.667	100.487	C77 crd M12 18	1746	88
23 30.420 0.35	55 13.910	0 0.363	3.580	1.480	28.760	0.826	0.142	3.230	0.004	12.200	2.000	1.790	0.693	100.155	C77 crd M12 19	1656	87
24 30.550 0.34	11 14.090	0 0.287	3.350	1.400	29.060	0.751	0.166	3.190	0.002	12.310	1.950	1.830	0.641	100.575	C77 crd M12 20	1765	98
25 30.400 0.28	36 14.090	0 0.247	2.840	1.370	29.730	0.646	0.147	3.290	0.011	12.410	2.040	1.760	0.598	100.776	C77 crd M12 21	1741	111
26 30.400 0.27	77 14.20	0 0.252	2.710	1.360	29.470	0.633	0.172	3.250	0.007	12.330	2.050	1.760	0.630	100.376	C77 crd M12 22	1736	115
iin matrix																	
37 31.588 0.27	70 13.99	$0 \ 0.326$	2.420	1.760	28.980	0.603	0.120	3.373	0.008	12.412	2.108	2.000	0.679	100.637	C43 M3 1	1709	108
38 31.794 0.31	13 13.93.	1 0.380	2.760	1.830	28.569	0.648	0.133	3.255	0.005	12.392	2.088	1.980	0.676	100.755	C43 M3 2	1721	97
39 32.020 0.25	50 14.35	3 0.302	2.300	1.620	29.500	0.568	0.130	3.343	0.022	12.412	1.990	1.873	0.609	101.290	C43 M3 3	1679	114
40 31.833 0.34	14.04	9 0.490	2.680	1.750	28.667	0.649	0.141	3.216	0.012	12.167	2.029	1.980	0.382	100.391	C43 M3 4	1759	88
$41 \ 31.794 \ 0.26$	32 14.09	8 0.355	2.180	1.580	29.480	0.541	0.115	3.324	0.021	12.265	1.922	1.833	0.703	100.473	C43 M3 5	1720	112
42 31.373 0.35	55 13.72	$5 \ 0.415$	3.190	1.800	28.186	0.755	0.178	3.186	0.004	12.088	2.020	2.000	0.605	99.881	C43 M3 6	1721	87
43 32.294 0.35	21 14.11	8 0.440	2.610	1.810	28.941	0.672	0.167	3.294	0.013	11.990	1.931	1.843	0.599	101.044	C43 M3 7	1735	95
44 31.480 0.43	30 13.63′	7 0.450	3.980	1.710	28.667	1.302	0.242	3.186	0.010	11.784	2.029	2.049	0.651	101.609	C84 M7 1	1742	76
45 31.539 0.23	30 13.95.	1 0.249	2.220	1.330	29.892	0.533	0.073	3.304	0.000	12.284	2.069	1.951	0.540	100.164	C84 M7 2	1678	122
46 31.490 0.25)4 13.87;	3 0.297	2.700	1.370	29.373	0.646	0.117	3.343	0.011	12.255	2.059	1.931	0.572	100.331	C84 M7 3	1765	106
47 31.529 0.32	20 13.89	2 0.318	3.080	1.370	29.431	0.699	0.121	3.324	0.002	12.069	2.000	1.931	0.668	100.755	C84 M7 4	1722	95

A A Shah and T H Bell

111 149	1675 1647	C51B M8 6 C51B M8 7	99.296 99.171	0.64 0.53	1.67 1.5	$2.1 \\ 1.74$	12.75 12.69	0 0.002	3.35 3.37	0.078 0.144	0.598 0.428	29.29 30.1	1.37 1.058	<u>8</u> 12	1.8	0.314 2.4 0.207 1.8 azite.	14.38 0.314 2.2 15.13 0.207 1.8 and monazite.	0.263 14.38 0.314 2.4 0.187 15.13 0.207 1.8 roblast and monazite.	30.04 0.263 14.38 0.314 2.4 30.23 0.187 15.13 0.207 1.8 • nombyroblast and monazite
C51B M8 5 1751 C51B M8 6 1675	C51B M8 5 C51B M8 6		99.099 99.296	$0.59 \\ 0.64$	$1.56 \\ 1.67$	$1.99 \\ 2.1$	$\begin{array}{c} 12.17\\ 12.75\end{array}$	0.015 0	3.18 3.35	0.056 0.078	<u>1</u> 8	$1.18 \\ 0.59$	27.67 1.18 29.29 0.59	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.64 1.45 27.67 1.18 2.45 1.37 29.29 0.59	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.5 1.077 3.64 1.45 27.67 1.18 14.38 0.314 2.45 1.37 29.29 0.59	0.583 13.5 1.077 3.64 1.45 27.67 1.18 0.263 14.38 0.314 2.45 1.37 29.29 0.59	30.44 0.583 13.5 1.077 3.64 1.45 27.67 1.18 30.04 0.263 14.38 0.314 2.45 1.37 29.29 0.59
C51B M8 3 1690 C51B M8 4 1756	C51B M8 3 C51B M8 4		99.551 99.871	0.55 0.56	$1.66 \\ 1.61$	2.04 2.05	12.45 12.28	0.006 0.008	3.24 3.19	0.125 0.049	0.667		29.04 (27.94 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.294 14.42 0.241 3.1 1.256 29.04 (0.544 13.86 0.936 3.63 1.51 27.94 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C51B M8 2 1704	C51B M8 2	-	986.986	0.53	1.68	2.08	12.85	0.006	3.42	0.105	0.489		29.82	1.212 29.82	2.16 1.212 29.82	0.200 2.16 1.212 29.82	14.69 0.200 2.16 1.212 29.82	0.216 14.69 0.200 2.16 1.212 29.82	30.53 0.216 14.69 0.200 2.16 1.212 29.82
[7 14 1711	[7 14	C84 N	101.440	0.687	2.098	2.108	12.294	0.005	3.216	0.188	1.067		27.853	1.710 27.853	4.680 1.710 27.853	$0.514 \ 4.680 \ 1.710 \ 27.853$	12.882 0.514 4.680 1.710 27.853	0.492 12.882 0.514 4.680 1.710 27.853	31.647 0.492 12.882 0.514 4.680 1.710 27.853
M7 13 1703	M7 13	C84	101.526	0.675	2.108	2.157	12.441	0.000	3.206	0.137	0.800		28.961	1.560 28.961	3.470 1.560 28.961	0.383 3.470 1.560 28.961	13.559 0.383 3.470 1.560 28.961	0.363 13.559 0.383 3.470 1.560 28.961	31.706 0.363 13.559 0.383 3.470 1.560 28.961
M7 12 1809	M7 12	C84	101.457	0.624	2.020	2.098	12.520	0.000	3.304	0.118	0.701	0	29.33	1.520 29.33	2.980 1.520 29.33	0.342 2.980 1.520 29.33	13.765 0.342 2.980 1.520 29.33	0.337 13.765 0.342 2.980 1.520 29.33	31.794 0.337 13.765 0.342 2.980 1.520 29.33
M7 11 1719	M7 11	C84	101.731	0.741	1.853	1.951	12.294	0.007	3.216	0.163	0.802		28.961	1.540 28.961	3.480 1.540 28.961	0.392 3.480 1.540 28.961	14.020 0.392 3.480 1.540 28.961	0.370 14.020 0.392 3.480 1.540 28.961	31.941 0.370 14.020 0.392 3.480 1.540 28.961
M7 10 1731	M7 10	C84]	100.483	0.732	2.137	2.020	11.373	0.003	3.108	0.194	1.122		27.294	$1.860 \ 27.294$	4.660 1.860 27.294	$0.668 \ 4.660 \ 1.860 \ 27.294$	13.000 0.668 4.660 1.860 27.294	0.539 13.000 0.668 4.660 1.860 27.294	31.775 0.539 13.000 0.668 4.660 1.860 27.294
I7 9 1805	6.71	C84 N	100.140	0.590	1.765	1.980	11.735	0.015	3.333	0.112	0.630		29.598	1.340 29.598	2.850 1.340 29.598	0.292 2.850 1.340 29.598	13.922 0.292 2.850 1.340 29.598	0.312 13.922 0.292 2.850 1.340 29.598	31.667 0.312 13.922 0.292 2.850 1.340 29.598
8 1777	x	C84 M7	99.935	0.431	1.941	2.049	11.990	0.019	3.304	0.123	0.629		29.127	1.350 29.127	2.610 1.350 29.127	0.260 2.610 1.350 29.127	14.039 0.260 2.610 1.350 29.127	0.278 14.039 0.260 2.610 1.350 29.127	31.784 0.278 14.039 0.260 2.610 1.350 29.127
1703		C84 M7 7	100.314	0.643	1.961	1.971	11.667	0.008	3.137	0.170	0.950		28.186	$1.590 \ 28.186$	4.250 1.590 28.186	0.496 4.250 1.590 28.186	13.245 0.496 4.250 1.590 28.186	0.452 13.245 0.496 4.250 1.590 28.186	31.588 0.452 13.245 0.496 4.250 1.590 28.186
1779		C84 M7 6	100.171	0.650	1.873	2.049	12.461	0.000	3.382	0.101	0.537		29.863	1.310 29.863	2.180 1.310 29.863	0.233 2.180 1.310 29.863	13.775 0.233 2.180 1.310 29.863	0.237 13.775 0.233 2.180 1.310 29.863	31.520 0.237 13.775 0.233 2.180 1.310 29.863
665		C84 M7 5	100.460	0.611	1.882	2.029	11.941	0.001	3.235	0.150	0.871		28.627	1.460 28.627	3.940 1.460 28.627	0.404 3.940 1.460 28.627	13.412 0.404 3.940 1.460 28.627	0.394 13.412 0.404 3.940 1.460 28.627	31.500 0.394 13.412 0.404 3.940 1.460 28.627

4.3.5 Sample C55A

This sample also contains cordierite plus minor xenotine. Garnet preserves inclusion trails defining FIA set 3 that are truncated by the foliation in cordierite and the matrix. Cordierite contains FIA set 4 trails that are continuous with those present within the matrix. Staurolite is also included in cordierite. A single monazite dated at 1666 ± 26 Ma from this sample is located within garnet (see tables 3 and 6). No monazite grains were found in cordierite.

4.3.6 Sample C51B

This sample also contains cordierite porphyroblasts with inclusion trails defining FIA set 4 that are continuous with foliations preserved within the matrix. Staurolite and andalusite are also present as inclusions. Two grains of monazite dated at an average age of 1412 ± 17 Ma lie within the foliation preserved within the cordierite (see tables 3 and 7). Another monazite was dated at $1762 \pm$ 32 Ma, within the same foliation (see tables 3 and 6).

5. Dating of matrix foliations

The foliations within porphyroblasts are completely truncated by those within the matrix phases in all samples except C110. Consequently, monazite ages in the matrix cannot be used to date FIAs. They were dated to see what relics of the deformation history determined from the FIA succession were preserved in the matrix and whether there was any evidence for deformation occurring between the Colorado and Berthoud orogenies.

5.1 Sample C83 (FIA 2 in garnet and 3 in staurolite)

A single monazite grain parallel to the main matrix foliation (S_{e1}) of this sample has an age of 1723 \pm 34 Ma (see tables 3 and 5). This sample preserves FIA set 2 within garnet and set 3 in staurolite porphyroblasts (figure 7).

5.2 Sample C75 (FIA 1 and 2 in staurolite)

Three foliations in the matrix $(S_{ea}-S_{ec})$ are shown in figure 8. A 1664 \pm 38 Ma age was derived from a monazite grain lying sub-parallel to S_{e2} (figure 9). Another monazite grain that lay orthogonal to this

	Error		54	59	72	87	00	96	107	113	131	124	83	84	80	76	88	101	108	108	71	75	71	78	62	72	78	83	69	68	73	79	56	68	73	76
	Age		1693	1645	1673	1713	1661	1617	1645	1601	1698	1670	1682	1659	1704	1600	1693	1698	1684	1649	1657	1653	1666	1694	1707	1705	1695	1674	1698	1681	1691	1660	1631	1712	1638	1693
ligned to FIA set 3.	$\operatorname{Sample}^{\mathrm{a}}$		C51 A Grt M15 1	C51 A Grt M15 2	C51 A Grt M15 3	C51 A Grt M15 4	C51 A Grt M15 5	C51 A Grt M15 6	C51 A Grt M15 7	C51 A Grt M15 8	C51 A Grt M15 9	C51 A Grt M15 10	C77 And M16 1	C77 And M16 2	C77 And M16 3	C77 And M16 4	C77 And M16 5	C77 And M16 6	C77 And M16 7	C77 And M16 8	C77 And M16 9	C77 And M16 10	C77 And M16 11	C77 And M16 12	C77 And M16 13	C77 And M16 14	C77 And M16 15	C77 And M16 16	C77 And M16 17	C77 And M16 18	C77 And M16 19	C77 And M16 20	65A M18 1	65A M18 2	65A M18 3	65A M18 4
samples a	Total		100.490	101.016	100.135	100.360	100.928	100.069	100.095	101.348	99.771	99.819	99.518	99.476	99.037	99.017	99.098	99.156	99.727	99.201	98.963	98.891	99.485	99.372	99.492	99.432	99.674	99.425	99.289	100.746	99.133	99.609	100.149	100.497	99.660	100.220
ases of s	$\mathrm{Dy}_2\mathrm{O}_3$		0.559	0.580	0.598	0.603	0.491	0.481	0.557	0.616	0.564	0.639	0.724	0.646	0.682	0.575	0.614	0.709	0.616	0.657	0.658	0.596	0.742	0.656	0.811	0.656	0.617	0.684	0.721	0.753	0.735	0.713	0.641	0.562	0.542	0.544
natrix ph	$\mathrm{Gd}_2\mathrm{O}_3$		2.010	2.029	1.922	1.961	1.990	1.873	1.902	1.971	1.755	1.941	1.690	1.720	1.770	1.580	1.730	1.750	1.780	1.730	1.690	1.550	1.880	1.800	1.870	1.640	1.690	1.800	1.800	1.780	1.880	1.820	2.265	2.098	1.951	1.961
sts and r	$\mathrm{Sm}_2\mathrm{O}_3$		1.922	1.931	1.863	1.971	1.882	1.961	1.863	1.971	1.814	1.961	1.890	1.960	2.020	1.910	1.910	2.000	1.980	1.960	2.000	1.870	2.070	1.990	2.010	1.970	1.890	2.020	1.990	1.980	2.000	1.950	2.069	2.049	2.059	2.078
phyrobla	$\rm Nd_2O_3$		11.422	11.725	11.716	12.108	12.157	12.000	12.137	12.549	11.882	12.363	11.950	11.610	11.660	11.670	11.910	11.830	12.320	11.880	11.580	11.380	11.850	11.840	11.540	11.540	11.710	11.790	11.540	11.940	12.050	11.800	11.333	11.667	12.020	12.059
thin por	SO_3		0.003	0.001	0.000	0.004	0.025	0.005	0.006	0.006	0.006	0.006	0.007	0.005	0.004	0.005	0.009	0.008	0.000	0.007	0.012	0.012	0.006	0.000	0.019	0.016	0.011	0.000	0.005	0.000	0.000	0.000	0.021	0.015	0.008	0.013
erved wi	Pr_2O_3		3.039	3.137	3.137	3.225	3.245	3.343	3.343	3.353	3.353	3.412	3.210	3.150	3.080	3.150	3.200	3.180	3.240	3.270	3.110	3.090	3.180	3.180	3.020	3.160	3.120	3.130	3.130	3.130	3.160	3.130	2.941	3.049	3.196	3.118
s, prese	SiO_2		0.230	0.210	0.239	0.159	0.150	0.130	0.129	0.072	0.084	0.088	0.192	0.181	0.157	0.476	0.160	0.136	0.134	0.114	0.150	0.133	0.144	0.167	0.209	0.243	0.210	0.166	0.182	0.207	0.259	0.525	0.393	0.362	0.218	0.218
grains	CaO		1.392	1.240	0.992	0.834	0.852	0.738	0.623	0.524	0.516	0.523	0.806	0.840	0.857	0.894	0.781	0.646	0.627	0.616	1.066	0.979	1.021	0.921	1.239	0.999	0.930	0.853	1.053	1.094	1.038	0.910	1.588	1.195	0.976	0.871
vonazite	Ce_2O_3		27.186	27.873	28.618	29.353	30.127	30.186	30.186	30.853	30.657	30.069	28.820	28.910	28.600	28.690	29.100	29.290	29.620	29.690	28.220	28.640	28.020	28.390	27.020	28.340	28.670	28.600	27.950	28.330	28.120	28.480	26.598	27.608	28.559	29.020
of all n	Y_2O_3		1.780	1.630	1.510	1.470	1.450	1.450	1.430	1.660	1.390	1.620	1.390	1.390	1.550	1.480	1.440	1.420	1.390	1.350	1.670	1.530	1.770	1.620	1.850	1.520	1.440	1.490	1.670	1.690	1.590	1.580	1.193	1.053	0.955	0.934
alyses a	ΓhO ₂		5.670	5.010	4.600	3.480	3.110	2.900	2.500	1.940	1.900	1.870	3.820	3.820	3.770	3.740	3.450	2.860	2.680	2.600	4.270	3.940	4.290	4.020	5.380	4.670	4.430	3.770	4.580	4.670	4.420	3.990	3.930	5.670	4.350	3.980
ical an	UO2		.843	.757	.438 4	.377 :	.392	.345	.330	.392	.287	.337	.385	.361	.452 :	.499 ;	.384	.349	.301	.317	.537	.512	.529 4	.448	.607	.423 4	.352 2	.399 ;	.533 4	.551 4	.475 4	.420	.424 (0.276	.424 4	.450
e chem	a_2O_3		2.706 (3.176 (3.392 (3.696 (4.137 0	4.343 (4.098 (4.314 (4.539 (3.961 (4.180 (4.060 (3.680 (3.690 (3.980 (4.170 0	4.230 (4.230 (3.440 (4.170 0	3.170 (3.670 (3.070 (3.570 (3.850 (4.030 (3.460 (3.600 (3.390 (3.660 (2.382 (3.147 (3.363 (3.343 (
bout th	bO L	blast	649 1	558 1	454 1	365 1	330 1	293 1	266 1	235 1	219 1	226 1	385 1	373 1	405 1	388 1	360 1	308 1	279 1	270 1	451 1	420 1	453 1	420 1	568 1	465 1	424 1	383 1	485 1	492 1	456 1	401 1	$604 \ 1$	$501 \ 1$	422 1	417 1
data a	O_5 P	orphyrc	078 0.	157 0.	657 0.	755 0.	588 0.	020 0.	725 0.	892 0.	804 0.	804 0.	070 0.	450 0.	350 0.	270 0.	070 0.	500 0.	530 0.	510 0.	110 0.	070 0.	360 0.	250 0.	280 0.	220 0.	330 0.	310 0.	190 0.	530 0.	560 0.	230 0.	765 0.	245 0.	618 0.	216 0.
nplete	P_2	hin Pc	1 31.	2 31.	30.	1 30.	30.	3 30.	7 30.	3 30.) 30.	10 30.	11 30.	12 30.	13 30.	14 30.	15 30.	16 30.	17 30.	18 30.	19 30.	20 30.	21 30.	22 30.	23 30.	24 30.	25 30.	26 30.	27 30.	28 30.	<u>29</u> 29.	30 30.	31 30.	32 31.	33 30.	34 31.
Table 6. Con	Shah S.No.	Monazite wit.	Shah S.No.1	Shah S.No.2	Shah S.No.5	Shah S.No.4	Shah S.No.5	Shah S.No.6	Shah S.No.7	Shah S.No.8	Shah S.No.5	Shah S.No.1	Shah S.No.1	Shah S.No.1	Shah S.No.1	Shah S.No.1	Shah S.No.1	Shah S.No.1	Shah S.No.1	Shah S.No.1	Shah S.No.1	Shah S.No.2	Shah S.No.5	Shah S.No.5	Shah S.No.5	Shah S.No.5	Shah S.No.5									

1380

A A Shah and T H Bell

84	88	82	92	00		92	98	111	108	116	81	122	65	65	86	85	80	88	71	74	77	76	77	87	76	85	103	91	89	71	75	71	78	62
1638	1688	1677	1679	1664		1668	1685	1671	1655	1635	1658	1669	1699	1650	1668	1683	1668	1668	1681	1693	1678	1660	1651	1677	1637	1625	1760	1707	1618	1657	1653	1666	1694	1707
65A M18 6	65A M18 7	65A M18 8	65A M 18 9	65A M18 10		C75 M1 1	C75 M1 2	C75 M1 3	C75 M1 4	C75 M1 5	C75 M1 6	C75 M1 7	C108 M4 1	C108 M4 2	C108 M4 3	C108 M4 4	C108 M4 5	C108 M4 6	C108 M4 7	C108 M4 8	C108 M4 9	C108 M4 10	C77 M5 1	C77 M5 2	C77 M5 3	C77 M5 4	C77 M5 5	C77 M5 6	C77 M5 7	C77 M5 8	C77 M5 9	C77 M5 10	C77 M5 11	C77 M5 12
99.721	100.662	100.010	100.348	100.631		100.617	100.787	100.825	100.633	100.321	100.237	100.171	100.844	101.116	100.754	101.383	101.040	100.665	101.372	100.960	101.263	101.258	98.331	99.872	98.971	98.350	99.302	96.968	99.972	98.963	98.891	99.484	99.372	99.492
0.472	0.563	0.516	0.492	0.457		0.577	0.630	0.530	0.598	0.456	0.622	0.559	0.654	0.704	0.596	0.652	0.692	0.681	0.583	0.633	0.694	0.585	0.66	0.673	0.681	0.640	0.621	0.656	0.678	0.657	0.596	0.741	0.656	0.810
1.814	1.814	1.814	1.824	1.794		1.569	1.569	1.549	1.520	1.784	1.676	1.529	1.775	1.853	1.745	2.020	1.971	2.020	2.108	2.255	2.206	2.088	1.66	1.75	1.83	1.68	1.69	1.67	1.82	1.69	1.55	1.88	1.8	1.87
1.971	2.000	2.020	1.951	2.078		1.971	2.020	2.020	1.931	2.118	2.020	1.931	1.941	1.941	1.922	2.118	2.078	2.088	2.118	2.206	2.206	2.127	1.96	1.98	2.03	1.97	2.03	1.93	2.08	2	1.87	2.07	1.99	2.01
12.167	12.088	12.049	12.245	12.392		12.245	12.314	12.235	12.029	12.284	12.127	12.333	11.902	11.990	12.078	12.490	12.373	12.471	12.392	12.353	12.490	12.206	11.47	11.82	11.67	11.59	11.77	11.51	12.27	11.58	11.38	11.85	11.84	11.54
0.003	0.008	0.012	0.006	0.007		0.000	0.014	0.000	0.010	0.000	0.000	0.002	0.006	0.005	0.000	0.004	0.015	0.006	0.010	0.013	0.005	0.000	0.004	0.002	0	0.012	0.012	0.007	0.003	0.011	0.011	0.005	0	0.019
3.314	3.304	3.176	3.314	3.206		3.314	3.363	3.431	3.284	3.304	3.225	3.333	3.196	3.235	3.255	3.343	3.255	3.284	3.206	3.176	3.186	3.147	3.17	3.21	3.12	3.16	3.22	3.18	3.14	3.11	3.09	3.18	3.18	3.02
0.262	0.219	0.191	0.171	0.359		0.121	0.126	0.116	0.101	0.089	0.125	0.099	0.207	0.218	0.188	0.153	0.186	0.160	0.259	0.210	0.232	0.225	0.297	0.173	0.341	0.739	0.251	0.375	0.166	0.150	0.132	0.144	0.167	0.208
0.842	0.799	0.786	0.719	0.683		0.681	0.685	0.574	0.583	0.550	0.771	0.515	1.066	0.968	0.771	0.764	0.841	0.713	1.052	1.035	0.921	0.937	0.985	0.808	0.950	0.861	0.735	0.770	0.821	1.065	0.979	1.020	0.921	1.238
29.186	29.392	29.225	29.627	29.569		29.167	29.108	29.784	29.657	29.471	28.716	29.735	28.029	28.127	28.853	28.980	28.529	28.588	27.667	27.490	27.931	27.863	28.47	29.08	28.21	28.64	29.59	28.51	29	28.22	28.64	28.02	28.39	27.02
0.751	0.874	0.879	0.852	0.713		1.450	1.460	1.300	1.310	1.221	1.590	1.300	1.920	1.880	1.630	1.400	1.410	1.420	1.450	1.490	1.450	1.430	1.49	1.44	1.51	1.43	1.33	1.37	1.58	1.67	1.53	1.77	1.62	1.85
3.730	3.570	3.540	3.140	2.970		2.950	2.930	2.550	2.540	2.340	3.120	2.150	4.470	4.490	3.360	3.520	3.940	3.350	5.080	4.790	4.410	4.490	3.89	3.59	3.99	3.64	2.95	3.25	3.36	4.27	3.94	4.29	4.02	5.38
0.344	0.326	0.427	0.357	0.419		0.390	0.333	0.271	0.297	0.271	0.534	0.277	0.648	0.603	0.390	0.351	0.350	0.351	0.328	0.326	0.319	0.333	0.486	0.370	0.462	0.387	0.314	0.365	0.363	0.536	0.512	0.528	0.447	0.606
13.824	13.804	13.824	14.010	13.873		14.059	14.245	14.422	14.804	14.618	13.882	14.500	13.255	13.275	13.765	13.804	13.676	13.784	13.108	13.029	13.098	13.696	13.52	14.2	13.57	13.9	14.2	13.78	14.06	13.44	14.17	13.17	13.67	13.07
0.357	0.352	0.374	0.327	0.327		0.319	0.306	0.259	0.262	0.238	0.367	0.231	0.509	0.482	0.349	0.354	0.381	0.338	0.462	0.444	0.409	0.414	0.408	0.362	0.406	0.358	0.316	0.343	0.330	0.451	0.419	0.453	0.419	0.568
30.686	31.549	31.176	31.314	31.784	matrix	31.804	31.686	31.784	31.706	31.578	31.461	31.676	31.265	31.343	31.853	31.431	31.343	31.412	31.549	31.510	31.706	31.716	29.86	30.41	30.2	29.34	30.27	29.25	30.3	30.11	30.07	30.36	30.25	30.28
Shah S.No.36	Shah S.No.37	Shah S.No.38	Shah S.No.39	Shah S.No.40	Monazite within	Shah S.No.41	Shah S.No.42	Shah S.No.43	Shah S.No.44	Shah S.No.45	Shah S.No.46	Shah S.No.47	Shah S.No.48	Shah S.No.49	Shah S.No.50	Shah S.No.51	Shah S.No.52	Shah S.No.53	Shah S.No.54	Shah S.No.55	Shah S.No.56	Shah S.No.57	Shah S.No.58	Shah S.No.59	Shah S.No.60	Shah S.No.61	Shah S.No.62	Shah S.No.63	Shah S.No.64	Shah S.No.65	Shah S.No.66	Shah S.No.67	Shah S.No.68	Shah S.No.69

Millions of years of orogenesis and quiescence and further orogenesis with no change in PT 1381

Error	72	78	83	69	68	89	104	94	86	89	85	74	87	81	56	68	73	76	76	84	88	82	92	06	106	115	117	121	128	126
Age	1705	1695	1674	1698	1681	1675	1708	1708	1636	1686	1711	1696	1655	1693	1631	1712	1638	1693	1656	1638	1688	1677	1679	1664	1699	1671	1682	1629	1677	1639
$\operatorname{Sample}^{\mathrm{a}}$	C77 M5 13	C77 M5 14	C77 M5 15	C77 M5 16	C77 M5 17	C83 M6 1	C83 M6 2	C83 M6 3	C83 M6 4	C83 M6 5	C83 M6 6	C83 M6 7	C83 M6 8	C83 M6 9	65A M10 1	65A M10 2	65A M10 3	65A M104	65A M10 5	65A M10 6	65A M10 7	65A M10 8	65A M10 9	65A M10 10	65A M11 9	65A M11 10	65A M11 11	65A M11 12	65A M11 13	65A M11 14
Total	99.431	99.673	99.425	99.288	100.746	99.316	100.364	99.905	99.397	99.701	100.036	99.666	99.493	99.328	100.149	100.497	99.660	100.220	99.950	99.721	100.662	100.010	100.348	100.631	100.508	100.198	100.997	99.977	100.131	99.530
$\rm Dy_2O_3$	0.655	0.616	0.684	0.721	0.753	0.626	0.647	0.617	0.696	0.669	0.652	0.798	0.701	0.684	0.641	0.562	0.542	0.544	0.570	0.472	0.563	0.516	0.492	0.457	0.662	0.679	0.632	0.702	0.494	0.414
$\mathrm{Gd}_2\mathrm{O}_3$	1.64	1.69	1.8	1.8	1.78	1.65	1.73	1.68	1.71	1.74	1.75	1.84	1.76	1.7	2.265	2.098	1.951	1.961	1.873	1.814	1.814	1.814	1.824	1.794	1.971	2.020	1.971	1.912	1.716	1.520
$\mathrm{Sm}_2\mathrm{O}_3$	1.97	1.89	2.02	1.99	1.98	1.89	1.91	1.9	1.79	1.89	1.98	1.97	1.91	1.92	2.069	2.049	2.059	2.078	2.029	1.971	2.000	2.020	1.951	2.078	2.010	2.049	2.118	2.010	2.010	1.980
$\rm Nd_2O_3$	11.54	11.71	11.79	11.54	11.94	12.05	12.27	12.16	11.72	11.78	11.99	11.74	11.84	11.78	11.333	11.667	12.020	12.059	12.127	12.167	12.088	12.049	12.245	12.392	12.245	12.324	12.706	12.480	12.608	12.333
SO_3	0.015	0.011	0	0.004	0	0.010	0.012	0.004	0.005	0	0.020	0.007	0.013	0.008	0.021	0.015	0.008	0.013	0.017	0.003	0.008	0.012	0.006	0.007	0.019	0.017	0.006	0.015	0.007	0.013
Pr_2O_3	3.16	3.12	3.13	3.13	3.13	3.2	3.33	3.22	3.22	3.23	3.22	3.16	3.2	3.16	2.941	3.049	3.196	3.118	3.206	3.314	3.304	3.176	3.314	3.206	3.255	3.235	3.294	3.314	3.343	3.412
SiO_2	0.243	0.209	0.166	0.181	0.207	0.250	0.138	0.161	0.167	0.183	0.159	0.146	0.134	0.138	0.393	0.362	0.218	0.218	0.194	0.262	0.219	0.191	0.171	0.359	0.117	0.231	0.131	0.129	0.078	0.089
CaO	0.999	0.929	0.852	1.052	1.093	0.82	0.703	0.790	0.813	0.799	0.876	1.001	0.829	0.916	1.588	1.195	0.976	0.871	0.881	0.842	0.799	0.786	0.719	0.683	0.647	0.573	0.549	0.540	0.465	0.484
Ce_2O_3	28.34	28.67	28.6	27.95	28.33	28.77	29.79	29.34	29.27	29.22	29.05	28.22	28.96	28.47	26.598	27.608	28.559	29.020	28.912	29.186	29.392	29.225	29.627	29.569	29.578	29.804	30.186	29.882	30.549	30.961
Y_2O_3	1.52	1.44	1.49	1.67	1.69	1.43	1.41	1.38	1.39	1.42	1.48	1.67	1.5	1.58	1.193	1.053	0.955	0.934	0.946	0.751	0.874	0.879	0.852	0.713	1.229	1.240	1.162	1.120	0.758	0.441
ThO_2	4.67	4.43	3.77	4.58	4.67	3.58	2.97	3.44	3.59	3.58	3.68	4.26	3.43	3.86	6.930	5.670	4.350	3.980	3.960	3.730	3.570	3.540	3.140	2.970	2.680	2.340	2.320	2.200	1.890	1.840
UO_2	0.423	0.352	0.399	0.532	0.551	0.335	0.290	0.317	0.363	0.342	0.386	0.485	0.392	0.428	0.424	0.276	0.424	0.450	0.440	0.344	0.326	0.427	0.357	0.419	0.310	0.283	0.276	0.263	0.299	0.327
La_2O_3	13.57	13.85	14.03	13.46	13.6	13.9	14.36	14.22	14.25	14.16	14.02	13.57	14.17	14.03	12.382	13.147	13.363	13.343	13.627	13.824	13.804	13.824	14.010	13.873	13.980	13.922	13.902	14.098	14.265	15.000
PbO	0.464	0.424	0.382	0.485	0.491	0.352	0.301	0.344	0.351	0.356	0.381	0.448	0.351	0.402	0.604	0.501	0.422	0.417	0.403	0.357	0.352	0.374	0.327	0.327	0.284	0.247	0.245	0.225	0.219	0.217
P_2O_5	30.22	30.33	30.31	30.19	30.53	30.45	30.5	30.33	30.03	30.33	30.39	30.35	30.3	30.25	30.765	31.245	30.618	31.216	30.765	30.686	31.549	31.176	31.314	31.784	31.520	31.235	31.500	31.088	31.431	30.500
Shah S.No.	Shah S.No.70	Shah S.No.71	Shah S.No.72	Shah S.No.73	Shah S.No.74	Shah S.No.75	Shah S.No.76	Shah S.No.77	Shah S.No.78	Shah S.No.79	Shah S.No.80	Shah S.No.81	Shah S.No.82	Shah S.No.83	Shah S.No.84	Shah S.No.85	Shah S.No.86	Shah S.No.87	Shah S.No.88	Shah S.No.89	Shah S.No.90	Shah S.No.91	Shah S.No.92	Shah S.No.93	Shah S.No.94	Shah S.No.95	Shah S.No.96	Shah S.No.97	Shah S.No.98	Shah S.No.99

 $^{\mathrm{a}}$ Sample number, porphyroblast and monazite.

 Table 6.
 (Continued)

	Error		56	72	74	77	77	78	82	81	87	96	107	114	123	69	71	70	81	82	87	86	93	97	104	71	82	86	104	110
	Age		1419	1407	1412	1470	1378	1366	1466	1419	1459	1386	1451	1356	1338	1381	1430	1427	1405	1397	1418	1401	1437	1390	1409	1448	1425	1434	1353	1489
igned to FIA set 4.	$\operatorname{Sample}^{\operatorname{a}}$		C51B Crd M19 1	C51B Crd M19 2	C51B Crd M19 3	C51B Crd M19 4	C51B Crd M19 5	C51B Crd M19 6	C51B Crd M19 7	C51B Crd M19 8	C51B Crd M19 9	C51B Crd M19 10	C51B Crd M19 11	C51B Crd M19 12	C51B Crd M19 13	C77 Crd M20 1	C77 Crd M20 2	C77 Crd M20 3	C77 Crd M20 4	C77 Crd M20 5	C77 Crd M20 6	C77 Crd M20 7	C77 Crd M20 8	C77 Crd M20 9	C77 Crd M20 10	C110 And M21 1	C110 And M21 2	C110 And M21 3	C110 And M21 4	C110 And M21 5
amples al	Total		99.953	99.708	99.186	99.222	99.872	100.511	100.050	99.723	100.937	99.997	100.394	100.822	99.729	98.864	99.258	99.387	99.699	99.212	99.421	99.328	99.563	99.818	99.671	99.678	100.449	100.904	100.186	99.784
vases of s	$\rm Dy_2O_3$		0.539	0.508	0.551	0.470	0.469	0.549	0.541	0.508	0.445	0.515	0.574	0.516	0.541	0.634	0.569	0.504	0.554	0.527	0.477	0.574	0.559	0.527	0.562	0.697	0.615	0.687	0.583	0.623
natrix ph	$\mathrm{Gd}_2\mathrm{O}_3$		1.560	1.620	1.720	1.620	1.670	1.660	1.670	1.660	1.630	1.610	1.680	1.750	1.620	1.660	1.630	1.790	1.520	1.720	1.700	1.690	1.700	1.750	1.710	1.770	1.690	1.710	1.660	1.640
sts and n	$\mathrm{Sm}_2\mathrm{O}_3$		2.040	2.120	2.120	2.030	2.130	2.090	2.140	2.130	2.110	2.110	2.230	2.240	2.150	2.040	2.060	2.060	1.930	2.080	1.970	2.030	2.010	2.090	2.280	2.110	2.070	2.140	2.080	2.070
phyrobla	$\mathrm{Nd}_{2}\mathrm{O}_{3}$		12.060	12.230	12.590	12.480	12.730	12.740	12.750	12.730	12.440	12.730	12.740	13.430	12.900	12.190	12.200	12.440	12.440	12.590	12.400	12.290	12.540	13.180	12.910	12.180	12.450	12.620	12.600	12.790
thin por	SO_3		0.000	0.012	0.000	0.018	0.006	0.010	0.012	0.015	0.003	0.000	0.007	0.018	0.000	0.018	0.000	0.002	0.009	0.002	0.007	0.007	0.015	0.001	0.007	0.002	0.006	0.005	0.000	0.010
erved wi	Pr_2O_3		3.050	3.170	3.310	3.220	3.260	3.270	3.250	3.370	3.320	3.330	3.350	3.450	3.380	3.190	3.190	3.220	3.280	3.310	3.290	3.240	3.260	3.350	3.360	3.160	3.310	3.320	3.310	3.320
s, prese	SiO_2		5 0.491) 2.390	2 0.323	7 0.492	3 0.261	1 0.263	3 0.272	1 0.269	1 1.972	9 0.244	5 0.160	7 0.153	8 0.131	3 0.318	1 0.296	3 0.221	0.222	5 0.193	3 0.188	3 0.160	3 0.177	8 0.157	0.188	2 0.200	7 0.208	9 0.158	3 0.274	8 0.100
te grair	3 CaC		0 1.28!	0 1.059	0 0.95	0 0.93'	0 0.900	0 0.82	0 0.88:	0 0.84	0 0.79	0 0.669	0 0.62!	0 0.53'	0 0.508	0 1.018	$0 0.96_{-}$	0 1.000	0 0.850	0 0.81	0 0.800	0 0.77:	0 0.74:	0 0.678	0 0.70(0 0.97	0 0.79′	0 0.749	0 0.60	0 0.578
monazi	Ce ₂ O		26.66	26.83	27.54	27.89	28.03	28.57	28.35	28.32	28.19	28.89	29.50	29.80	29.54	26.88	27.77	27.34	28.15	27.86	28.04	28.18	28.38	28.46	29.11	28.35	29.35	29.64	29.96	30.04
s of all	Y_2O_3		1.128	1.130	1.089	1.047	1.083	1.090	1.120	1.086	1.083	1.121	1.130	1.136	1.088	1.213	1.087	1.209	1.026	1.191	1.152	1.152	1.108	1.080	1.121	1.560	1.390	1.420	1.244	1.228
analyse	ThO_2		7.180	4.950	4.910	4.720	4.510	4.360	4.220	4.200	3.880	3.280	2.960	2.540	2.340	5.060	5.060	4.990	4.260	4.050	3.910	3.700	3.530	3.310	2.990	3.960	3.460	3.180	2.600	2.470
emical	UO_2		0.211	0.211	0.188	0.185	0.204	0.206	0.207	0.209	0.209	0.206	0.190	0.200	0.187	0.264	0.227	0.283	0.204	0.237	0.198	0.235	0.197	0.194	0.189	0.537	0.384	0.406	0.289	0.288
the $ch\epsilon$	La_2O_3	t	13.040	13.090	13.470	13.570	14.010	14.190	13.810	13.720	13.840	14.470	14.410	14.430	14.640	13.360	13.620	13.440	13.990	13.510	14.130	14.190	14.220	13.940	14.060	13.470	13.830	14.040	14.210	14.060
ı about	PbO	yroblas	0.489	0.349	0.342	0.344	0.313	0.302	0.317	0.305	0.294	0.242	0.230	0.191	0.174	0.360	0.365	0.372	0.304	0.297	0.284	0.276	0.265	0.242	0.224	0.370	0.299	0.288	0.213	0.227
ilete date	$\mathrm{P}_{2}\mathrm{O}_{5}$	n porph	30.220	30.040	30.080	30.200	30.290	30.390	30.510	30.360	30.730	30.580	30.610	30.430	30.530	30.660	30.220	30.510	30.960	30.830	30.870	30.830	30.860	30.860	30.260	30.340	30.590	30.540	30.560	30.340
Table 7. Comp	Shah S.No.	Monazite withi	Shah S.No.1	Shah S.No.2	Shah S.No.3	Shah S.No.4	Shah S.No.5	Shah S.No.6	Shah S.No.7	Shah S.No.8	Shah S.No.9	Shah S.No.10	Shah S.No.11	Shah S.No.12	Shah S.No.13	Shah S.No.14	Shah S.No.15	Shah S.No.16	Shah S.No.17	Shah S.No.18	Shah S.No.19	Shah S.No.20	Shah S.No.21	Shah S.No.22	Shah S.No.23	Shah S.No.24	Shah S.No.25	Shah S.No.26	Shah S.No.27	Shah S.No.28

Shah S.No.	P_2O_5	PbO	La_2O_3	UO_2	ThO_2	Y_2O_3	Ce_2O_3	CaO	SiO_2	\Pr_{2O_3}	SO_3	$\mathrm{Nd}_2\mathrm{O}_3$	$\mathrm{Sm}_2\mathrm{O}_3$	$\mathrm{Gd}_2\mathrm{O}_3$	$\rm Dy_2O_3$	Total	$\operatorname{Sample}^{\mathrm{a}}$	Age	Error
Monazite with	n matri	x																	
Shah S.No.29	31.14	0.296	13.64	0.351	3.33	1.41	29.08	0.794	0.326	3.27	0.002	12.3	2.12	1.71	0.613	100.384	C110 M9 1	1482	88
Shah S.No.30	30.77	0.243	13.93	0.372	2.51	1.43	29.52	0.596	0.139	3.34	0.011	12.69	2.13	1.68	0.635	99.998	C110 M9 2	1458	100
Shah S.No.31	30.79	0.310	13.71	0.389	3.6	1.4	29.16	0.810	0.157	3.23	0.015	12.55	2.09	1.66	0.641	100.515	C110 M9 3	1432	80
Shah S.No.32	31.38	0.209	14.14	0.282	2.23	1.28	30.12	0.557	0.209	3.33	0.007	12.59	2.12	1.65	0.630	100.737	C110 M9 4	1483	117
Shah S.No.33	31.14	0.235	13.99	0.323	2.54	1.27	29.88	0.593	0.262	3.36	0.000	12.72	2.13	1.64	0.578	100.663	C110 M9 5	1461	104
Shah S.No.34	30.89	0.464	12.66	0.692	5.05	1.79	27.09	1.231	0.276	3.1	0.000	11.85	2.09	1.77	0.758	99.713	C110 M9 6	1423	57
Shah S.No.35	31.13	0.434	12.51	0.623	4.87	1.85	26.81	1.135	0.372	3.09	0	11.94	2.15	1.84	0.733	99.489	C110 M9 7	1410	59
a Complemin			a para ta	1:0000															

Table 7. (Continued)

monazite. and number, porphyroplast cample

foliation gave an age of 1762 ± 35 Ma (figure 9). This sample preserves FIA sets 1 and 2 within staurolite porphyroblasts (figure 8). The monazite grains are not zoned (figures 10 and 11).

5.3 Sample C84 (FIA 2 in garnet and 3 in staurolite)

The dominant foliation in the matrix (S_{e1}) contains a single monazite grain that lies sub-parallel to it that has an age of 1729 \pm 23 Ma (see tables 3 and 5).

5.4 Sample C65A (FIA 1 in garnet and 2 plus FIA 3 in staurolite)

Two monazite grains in the main matrix foliation (S_{ea}) have ages 1742 \pm 29 Ma and 1665 \pm 23 Ma (e.g., table 3; figures 12 and 13). Both lie subparallel to S_{ea} . A monazite grain in staurolite is shown in figure 14).

5.5 Sample C43 (FIA 1 in garnet and 2 in staurolite)

A single monazite grain parallel to the main matrix foliation (S_{e1}) has an age of 1724 \pm 37 Ma (see tables 3 and 5). This sample preserves FIA sets 1 $\frac{1}{2}$ and 2 within garnet and staurolite porphyroblasts.

5.6 Sample C51B (FIA 3 in cordierite)

A single monazite grain lying orthogonal to the main matrix foliation (S_{e1}) in this sample has an age of 1685 ± 29 Ma (see tables 3 and 6). This sample preserves FIA set 3 within cordierite porphyroblasts.

5.7 Sample C77 (FIA 3 in cordierite)

A single monazite grain lying in the youngest matrix foliation (S_{e3}) in this sample has an age of 1677 ± 19 Ma (see tables 3 and 6). This sample preserves FIA set 3 within cordierite porphyroblasts.

5.8 Sample C108 (FIA 1 in garnet and 2 in staurolite)

A single monazite grain sub-parallel to the main matrix foliation (S_{e1}) has an age of 1675 \pm 24 Ma (see tables 3 and 6). This sample preserves FIA sets 1 and 2 within garnet and staurolite porphyroblasts.

Figure 7. (a) Back scatter image shows the staurolite porphyroblast, which contains a single monazite grain lying parallel to the orientation of the foliation. A mean age of 1681 ± 27 Ma is dated from a total of 10 spots analyzed (Sanislav and Shah 2010). (b) Enlarged view of the monazite grain with black spots showing the location of each analysis. In (c) the weighted average age plot is shown, created by using Isoplot software (Ludwig 1998) and (d) is showing the probability density plot.

5.9 Sample C110 (FIA 4 in andalusite)

A single monazite grain sub-parallel to the main matrix foliation (S_{e1}) has an age of 1438 \pm 30 Ma (see tables 3 and 7). This sample preserves FIA set 4 within andalusite porphyroblasts.

6. Compositional mapping of monazite grains

Samples containing monazite were compositionally mapped for Th, Y, U, Pb and Ce using the JEOL JXA-8300 Superprobe. Most were devoid of any apparent chemical zoning (e.g., figures 10 and 11). One monazite in the matrix of sample C65A showed chemical zoning in both Th and Y (figure 13). Dating of 1742 ± 29 and 1668 ± 48 Ma suggests that this was a product of FIAs 1 and 3 (see below). Sample C75 showed a single example of a monazite with slight zoning in Th preserved within a staurolite porphyroblast (figure 11). A mean age of 1712 ± 25 Ma was analyzed from this grain.

7. Interpretation and discussion

7.1 The ages within porphyroblast containing FIAs

The monazite grains stored within foliations defining FIAs in garnet, staurolite (Sanislav and Shah 2010), cordierite and andalusite have recorded ages over an extended period of metamorphism. For example garnet in sample C117, preserves the oldest deformation event recorded in the area at 1756 ± 22 Ma. The date obtained from this porphyroblast agrees with the other samples containing the same FIA sets. This is shown in sample C84, which records the same event in garnet at 1762 \pm 21 Ma and fits well with its FIA. The younger grain stored within staurolite is ellipsoidal and aligned parallel to the foliation defined by the inclusion trails and should give a representative age for FIA 3 (Sanislav and Shah 2010). The 1666 \pm 26 Ma age in garnet (C51B) accords with the dates obtained from other samples bearing this FIA set (e.g., staurolite grains dated in Sanislav and Shah 2010). The two dates obtained from monazite grains preserved within pseudo-FIA in cordierite (set 3) and as

Figure 8. (a) Back scatter electron image shows a staurolite porphyroblast, which preserves a single euhedral monazite grain lying orthogonal to the orientation of the foliation. A mean age of 1765 ± 23 Ma is dated from a total of 16 spots analyzed (Sanislav and Shah 2010). (b) Enlarged view of the monazite grain with black spots showing the location of each analysis. X-ray images of this monazite grain are shown in this figure. (c) Orientated photomicrograph displays the larger view of the staurolite dated. Two different foliations are preserved within staurolite porphyroblast. Monazite grain was contained within a crenulation cleavage. In this sample, staurolite contains a pseudo-FIA belonging to set 1 FIA plus FIA set 2. Thin section is vertical, the light is plane-polarized and single barbed arrow indicates way up and strike. (d) Line diagram, shows the detailed features preserved. In (e) weighted average age plot is shown which is created by using Isoplot software (Ludwig 1998) and in (f) the probability density plot is shown. Se: external foliation, Si: internal foliation, Grt: garnet, St: staurolite, and Bt: Biotite.

single FIA in andalusite (set 3) in the sample C77, accord with the dates obtained from other samples for this event (table 3). The two earlier ages

acquired from monazite grains within the main foliation of cordierite are relics of an older foliation that lies oblique to the main foliation defined by the

Figure 9. (a) Back scatter electron image shows two monazite grains preserved within matrix foliation of sample C75. (b) Enlarged view of a monazite grain with black spots showing the location of each analysis. This euhedral grain is preserved within the main matrix foliation and is located parallel to its orientation. A mean age of 1664 ± 38 Ma is dated from a total of seven spots analyzed. (c) Enlarged view of a monazite grain with black spots showing the location of each analysis. This grain is oriented orthogonal to the orientation of the main matrix foliation. A mean age of 1762 ± 35 Ma is dated from a total of seven spots analyzed. Thin section is vertical, single barbed arrow indicates way up and strike. In (d and f) weighted average age plots are shown, created by using Isoplot software (Ludwig 1998) and in (e and g) the probability density plots are shown.

Figure 10. (a) Back scatter oriented electron image of a monazite grain preserved within the foliation of porphyroblast that contains the inclusion trails of FIA set 1 in sample (C75). The location of each analysis is shown by black spots. In (b) through (f), X-ray maps of Th, Y, Ce, Pb and U are shown. Chemical zoning in Th and Pb is crudely present.

inclusion trails. Their dates are compatible with the ages obtained from FIA sets 1 and 2, preserved within other samples. The date acquired from two monazites in cordierite (C51B) accords with the dates obtained from other samples for FIA set 4 (see table 3). An older age within this sample from one monazite is consistent with an earlier foliation aligned to FIA set 1 and represents its relics. The age recorded in sample C110 is consistent with the youngest FIA set observed.

7.2 Combining the age data within FIA sets

Monazite grains are common within staurolite (Sanislav and Shah 2010), cordierite and andalusite porphyroblasts but rare in garnet. Of the 11 samples investigated, five contained inclusion trails defining FIA set 1; six monazite grains were identified and 93 analyses completed defining an age of 1760.5 ± 9.7 Ma (table 3; figure 15a and b). Five samples contained inclusion trails defining FIA set 2; eight monazite grains were identified and

136 analyses completed defining an age of 1719.7 \pm 6.4 Ma (table 3; figure 15c and d). Five samples contained inclusion trails defining FIA set 3; five monazite grains were identified and 56 analyses completed defining an age of 1674 ± 11 Ma (table 3; figure 15e and f). Three samples contained inclusion trails defining FIA set 4; three monazite grains were identified and 28 analyses completed defining an age of 1415 ± 16 Ma (table 3; figure 15g and h). These ages $(1760.5 \pm 9.7, 1719.7 \pm 6.4, 1674 \pm 11)$ and 1415 ± 16 Ma), respectively, confirm the FIA 1, 2, 3, 4 succession established using core/rim criteria plus the previously recognized (Tweto 1987; Nyman et al. 1994; Karlstrom et al. 1997) separation of orogenesis into two distinct periods 250 million years apart (Shah 2010).

7.3 The significance of FIAs for determining monazite ages

Texturally controlled dating of monazite inclusions has recently been used by many petrologists Millions of years of orogenesis and quiescence and further orogenesis with no change in PT 1389

Figure 11. (a) Back scatter oriented electron image of a monazite grain preserved within the foliation of porphyroblast that contains the inclusion trails of FIA set 2, in sample (C75). The location of each analysis is shown by black spots. Single barbed arrow indicates way up and strike. In (b) through (f) X-ray maps of Ce, Pb, Th, U and Y are shown. Chemical zoning in Th is crudely present. A single mean age of 1712 ± 25 Ma is preserved within this monazite, which is coeval with the ages obtained from the other samples for the regional deformation that produced this FIA set. In (g) the weighted average age plot of eight spots is shown which is created by using Isoplot software (Ludwig 1998) and in (h) the probability density plot is shown.

around the world to date foliation ages (Williams *et al.* 1999; Shaw *et al.* 2001; Dahl *et al.* 2005). A range of ages will always be present in the matrix due to the potential for the preservation of monazite grains within the strain shadows of successively grown porphyroblasts and this is exemplified by table 3. Depending on the timing of porphyroblast growth, a similar range can be preserved from the influence of younger events. The most critical phase in using an absolute microstructural dating method is to accurately identify monazite grains within a particular textural and structural setting. FIA provide such a setting and offer a robust opportunity to extract *in situ* information from individual monazite grains preserved within an independently determined relative timeframe.

The accord between FIA set and age recorded herein is remarkable (table 3). Only one sample

Figure 12. (a) Shows a back scatter in which a monazite grain is preserved within a matrix foliation which is lying parallel to the orientation of the foliation. A mean age of 1665 ± 23 Ma is dated from a total of 10 spots analyzed. (b) Enlarged view of the monazite grain with black spots showing the location of each analysis. Single barbed arrow indicates way up and strike. In (e) the weighted average age plot of 18 spots is shown, created by using Isoplot software (Ludwig 1998). (f) shows a probability density plot.

(C77) contains 'anomalous' older ages which can be attributed to the earlier events as just mentioned. The recognition of pseudo-FIAs and FIAs provided tight control over what FIA sets were preserved in each sample. Without this level of control on the distribution of FIAs, the ~ 100 million year range in ages obtained (not including the far younger ~ 1400 Ma ages) would have been attributed to noise. Instead it accords perfectly with the independently obtained succession of FIA sets!

7.4 The ages within matrix

The older monazite grain $(1762 \pm 35 \text{ Ma})$ in sample C75, accords with the dates acquired for FIA set 1 (table 3). The younger matrix age obtained is coeval with dates acquired for FIA set 3 suggesting that the matrix was reused or reactivated

during the development of this FIA set. The single matrix age in sample (C84), accords with the date for FIA set 2 (table 3) and is interpreted to represent a relic of an earlier-formed foliation. Similar ages were obtained within the sample C65A, which are consistent FIA sets 1 and 3 (table 3) and are interpreted to represent relics of earlier-formed foliations preserved within the strain shadows of porphyroblast. In sample C43, the matrix age obtained $(1724 \pm 37 \text{ Ma})$ accords with the dates acquired for FIA set 2 (see table 3), which suggests reactivation of the matrix during these events. This monazite grain was parallel to the main matrix foliation (S_{e1}). Another relic age (1723 \pm 34 Ma) was acquired in the sample C83, and is consistent with FIA set 2 rather than for FIA set 3. This suggests that this grain was not deformed and recrystallized during the development of FIA 3 prior to staurolite growth. Some crystallographic orientations of grains relative to a developing strain field can make

Figure 13. (a) Back scatter oriented electron image of a monazite grain preserved within the matrix of the sample (C65A), which shows the location of each analysis. (b) through (f), shows the X-ray maps of Ce, Pb, Th, U and Y respectively. Age zoning in the chemical contents of Th and Y is present, which offer two different age domains. A mean age of 1742 ± 29 Ma is preserved within high Th domains (polygonal area). The relatively low Th regions contain a mean age of 1668 ± 48 Ma. Thin section is vertical, single barbed arrow indicates way up and strike. (g and i) shows weighted average age plots, created by using Isoplot software (Ludwig 1998) and in (h and j) the probability density plot is shown.

Figure 14. (**a** and **b**) Photomicrograph and accompanying line diagram from sample C65A (cross polarized light) which preserves a crenulated and a crenulation cleavage within staurolite porphyroblast. Garnet also contains a foliation which is different from those contained within the staurolite. This section is vertical, the light is cross-polarized and the single barbed arrow indicates way up and strike. (**b**) Back scatter image shows the staurolite porphyroblast preserving a single euhedral monazite grain within a crenulated cleavage of the same thin section. A mean age of 1737 ± 36 Ma is dated from a total of nine spots analyzed (Sanislav and Shah 2010). (**c**) Enlarged view of the monazite. In (**e**) weighted average age plot of 18 spots is shown which is created by using Isoplot software (Ludwig 1998) and (**f**) shows the probability density plot.

a particular mineral phase very competent and hard to deform (e.g., Mancktelow 1981). This grain could reflect such a phenomenon. In samples C51B, C77 and C108, the acquired ages accord with the dates obtained for FIA set 3 suggesting these monazites grew at this time and were preserved through modification of the matrix by subsequent deformation events. A younger age was preserved within a monazite of sample C110, which is consistent with ages for FIA set 4. This was obtained in the foliations preserved within the andalusite porphyroblast, which are very similar to and continuous with the matrix.

7.5 Assessing the spread of the age data from matrix relative to that for the FIA succession

Monazite grains are common within the matrix and randomly distributed. They are generally preserved

Figure 15. Probability density and weighted average age plots $(\mathbf{a}-\mathbf{h})$ for all samples in which monazite grains were dated within matrix. These plots were created in Isoplot software (Ludwig 1998). Complete chemical data is shown in tables 4–7.

within muscovite and biotite grains (e.g., figures 9 and 12). A total of nine samples out of 30 investigated contained monazite crystals in the matrix. Two samples each contain a monazite grain, from which a total of 14 analyses were completed defining an age of 1749 ± 23 Ma (table 3; figure 16a and b). Four samples contained four monazite

grains from which 28 analyses were obtained defining an age of 1726 ± 17 Ma (table 3; figure 16c and d). Six samples contained six monazite grains from which 59 analyses were completed defining an age of 1674 ± 11 Ma (table 3; figure 16e and f). One sample contained a single monazite grain from which seven analyses were completed defining

Figure 16. Probability density and weighted average age plots (a-h) for all samples in which monazite grains were dated within porphyroblasts. These plots were created in Isoplot software (Ludwig 1998). Complete chemical data is shown in tables 4–7.

Figure 17. (a, c, e and f) P-T pseudosections calculated in the MnNCKFMASH system based on the bulk XRF composition for the samples C117B, C83, C82 and C54C, respectively. It shows the mineral stability fields with dark toned areas representing higher variance value. The bulk composition is displayed on the upper left corner of the diagrams. (b, d, f and h) Garnet core isopleths of (X_{Mn} , X_{Ca} and X_{Fe}) in which the compositional contours corresponding to the real composition (microprobe) of garnet core along with their 2-sigma errors indicated as gray-toned think lines (Shah 2010).

an age of 1438 ± 29 Ma (table 3; figure 16g and h). These ages accord to some degree with dates obtained from the porphyroblasts preserving FIA sets 1, 2, 3 and 4 and clearly reflect those events in spite of the fact that there is no real control on the significance.

7.6 The porphyroblast ages versus matrix ages

In all the samples that were dated foliations defined by inclusion trails in porphyroblasts are truncated by matrix foliations except in sample C110. Therefore, monazite ages in the matrix have no relevance to the dating of FIAs. In most samples, monazite grains in the matrix foliation gave the same or younger ages than those within the porphyroblasts. Ages range from 1749 ± 23 to $1674 \pm$ 11 Ma (table 3) with one sample preserving a monazite with an approximate FIA 1 age of 1762 Ma and another containing a relic from a foliation within the matrix that predated porphyroblast growth. The younger ages were always a product of reuse or reactivation of old foliations (e.g., Bell et al. 2003) or the development of new ones. Consequently, only the ages obtained from monazite grains preserved within porphyroblasts where an FIA control on the significance of that age were used to time deformation and metamorphism (figure 15). However, as mentioned above, it is apparent that most, if not all, of the ages associated with the succession of FIA development are preserved within the matrix. Yet an approach that involves dating monazite grains within the matrix can only ever provide an average age that does not distinguish when deformation commenced or when porphyroblast growth ceased.

7.7 Role of deformation and its significance for porphyroblast growth

Nucleation of any mineral phase requires that P–T and bulk composition should be appropriate for that phase to grow. However, deformation is also known to play a vital role in formation of different minerals, particularly porphyroblastic phases (e.g., Bell 1986; Williams 1994; Cihan et al. 2006) through its control on sites for the access of nutrients needed for nucleation and growth (Spiess and Bell 1996). The FIA controlled monazite dating described herein reveals ~ 90 million vears of continuous deformation/metamorphism followed by ~ 250 million years of quiescence before orogenesis recommenced for ~ 20 million years with little or no change in PT conditions (Shah 2010). What kept this region at similar crustal levels during the 250 million years of quiescence?

The PT conditions and the bulk composition were clearly suitable for the growth of porphyroblasts during the ~ 250 Ma between the development of FIAs 3 and 4. Yet no porphyroblastic phases grew during this time and there is no microstructural evidence for any foliations developing. The latter fact is confirmed by dating of monazite grains within the matrix. They reflect the FIA succession and provide no evidence for any deformation between at least 1665 and 1438 Ma. It is now well established that deformation and concurrent metamorphism form cleavage seams by dissolution as well as provide a large range of components essential for the nucleation and growth of porphyroblasts (Bell and Cuff 1989; Spiess and Bell 1996). Deformation provides sites for nucleation and growth, and a means of overcoming the energy barrier for nucleation, in the form of the energy removal from, for example, crenulation hinges (Bell 1986). The lack of porphyroblast growth for this extended ~ 250 million year period can be attributed to the lack of crenulation development (Bell *et al.* 2003). When deformation recommenced around ~ 1415 Ma, porphyroblasts also began to grow again forming FIA set 4 inclusion trails within garnet, staurolite, and alusite and cordierite porphyroblasts strongly supporting the role of crenulation deformation in porphyroblast growth (e.g., Bell 1986; Cihan *et al.* 2006).

7.8 Deformation and metamorphism

The three stages of folding and two stages of metamorphism reported previously from this region were determined from matrix foliation relationship. A much longer history of deformation and metamorphism is preserved by the porphyroblasts. The preservation of four FIA trends with changing directions of shortening from (NE–SW to E– W to SE–NW to NNE–SSW), which range in age from 1760.5 \pm 9.7 to 1415 \pm 16 Ma has considerable implications for tectonics of this region. The first regional folding episode initiated during FIA set 1 at 1760.5 \pm 9.7 Ma and trended NE-SW and approximately coincides with the regional trend of the Chevenne belt. This is regarded as the suture zone along which the rocks of Colorado and Wyoming province accreted about 1790–1650 Ma ago (Sims et al. 2003). Pressure and temperature at this time was about 540° - 550° C and 3.8-4.0 kbars, as proposed by the garnet isopleth geothermobarometry. Intersections of Ca, Mg, and Fe isopleths in garnet core, which preserved FIA set 1, indicate that these rocks never got above 4 kbars during the Colorado Orogeny (figure 17a and b).

During the formation of FIA set 2 (centred around 1719.7 ± 6.4 Ma), the pressure and temperature changed slightly to 3.40-3.65 kbar and

 $525^{\circ}-537^{\circ}C$ (figure 17c and d). F2 regional folds were formed during this stage. Foliation evidence from this period or orogeny is rarely preserved as crenulations in the matrix, due to the effects of rotation and reactivation in the many subsequent deformations. Trondhiemite dikes, which now have a sill like character, were emplaced at $\sim 1726 \pm$ 15 Ma (Selverstone et al. 1997). Intrusion forming W-E trending dikes could occur along the W-E trending vertical foliation that generated this FIA set during gravitational collapse stages of orogenesis when this vertical foliation would have created a plane of weakness that failed (e.g., Bell and Newman 2006). Subsequent reactivation of the compositional layering would have progressively rotated most of them into sub-parallelism with the bedding and disguised any crosscutting relics of the dikes along which they intruded.

FIA set 3 also developed during the Colorado Orogeny (figure 17e and f). The SE–NW trend of this FIA set was created by NE-SW shortening. Previously formed folds were refolded and a new F3, generation were created. The pressuretemperature conditions indicated by garnet isopleth conditions for this period were 3.3–3.6 kbar and 525°–535°C. More staurolite porphyroblasts also grew at this time. In particular, it marks the first appearance of andalusite and cordierite porphyroblasts. Some staurolite porphyroblasts containing FIA set 3 have been partially replaced by and a lusite or cordierite suggesting a decrease in pressure accompanied their development. Absolute dating of monazite grains enclosed within the inclusions of these four porphyroblastic phases provide an age of 1674 \pm 11 Ma for this period of FIA development which appears to end the Colorado Orogenv. These rocks remained undisturbed for about 250 Ma.

Monazite grains enclosed within the foliations of andalusite and cordierite porphyroblasts containing FIA set 4 give an age of 1420 \pm 14 Ma for this period of orogenesis. The tight intersection of Ca, Mn and Fe isopleths in garnet cores indicates that the pressure conditions during this period of orogenesis were similar to those observed at the end of the Colorado Orogeny (figure 17g and h). Large-scale heating event associated with granite emplacement and some deformation at this time is regionally known as the Berthoud Orogeny (Sims et al. 2003). FIA set 4 trends NNE–SSW and resulted from NNW-SSE directed shortening. Garnet, staurolite, cordierite and andalusite also grew during this period of orogenesis. Slightly higher temperatures were recorded during this period of orogenesis than previously. Some and alusite and cordierite were formed by replacing staurolite porphyroblasts but most grew as completely new grains. After this period of orogenesis, these rocks were retrogressed, presumably during exhumation. This is revealed by pseudomorphs after staurolite, garnet, cordierite and andalusite (Shah 2010).

7.9 Regional tectonic implications of Colorado and Berthoud Orogenies

The metasediments exposed in and around the Big Thompson region of Colorado represent mature sediments deposited in a fore-arc (Condie and Martel 1983) or back-arc setting (Reed et al. 1987). Detrital zircon ages suggest a maximum age of 1758 ± 26 Ma for deposition of the Big Thompson sequence (Selverstone *et al.* 2000). Previous researchers (e.g., Selverstone *et al.* 1997; Chamberlain 1998; Shaw et al. 2001; Williams 1999) suggested protracted metamoret al. and deformation associated with the phism ~ 1700 Ma orogeny and local effects due to the ~ 1400 Ma orogeny. The evidence presented here for deformation and metamorphism around 1758.8 ± 9 Ma suggests orogenesis commenced around the time of sedimentation. This correlates with the beginning of contractional deformation along the Chevenne belt, during which time the Colorado province was accreted onto the Archean Wyoming province (Chamberlain 1998). Orogenesis was essentially continuous for about ~ 100 Ma and then ceased. FIA data reveal that deformation during 1420 ± 14 Ma Berthoud Orogeny was pervasive, with well-preserved foliations that are continuous with the matrix foliation. However, not a single monazite grain of Berthoud age was found within garnet or staurolite porphyroblasts that could be associated with this event. They were found only in andalusite and cordierite suggesting a slight change in T, P conditions from those forming staurolite was required for further growth of this phase.

Acknowledgements

The authors would like to thank Prof. Tim Bell for his critical comments. Special thanks to Dr Mike Rubenach for help with monazite dating and critical discussions. Funding for this work was provided by the James Cook University.

References

- Ali A 2010 The tectono-metamorphic evolution of the Balcooma metamorphic group, north-eastern Australia: A multidisciplinary approach; J. Metamorph. Geol. 28 397–422.
- Bell T H 1986 Foliation development and refraction in metamorphic rocks: Reaction of earlier foliations and

decrenulation due to shifting patterns of deformation partitioning; J. Metamorph. Geol. 4 421–444.

- Bell T H and Cuff C 1989 Dissolution, solution transfer, diffusion versus fluid flow and volume loss during deformation/metamorphism; J. Metamorph. Geol. 7 425–448.
- Bell T H and Chen A 2002 The development of spiralshaped inclusion trails during multiple metamorphism and folding; *J. Metamorph. Geol.* **20** 397–412.
- Bell T H and Welch P W 2002 Prolonged Acadian Orogenesis: Revelations from FIA controlled monazite dating of foliations in porphyroblasts and matrix American; J. Sci. **302** 549–581.
- Bell T H and Newman R L 2006 Appalachian Orogenesis: The role of repeated gravitational collapse; In: Styles of Continental Contraction (eds) Mazzoli S and Butler R W H; Geol. Soc. Am. Spec. Paper 414 95–118.
- Bell T H and Bruce M D 2007 Progressive deformation partitioning and deformation history: Evidence from millipede structures; J. Struct. Geol. 29 18–35.
- Bell T H, Forde A and Wang J 1995 A new indicator of movement direction during orogenesis: Measurement technique and application to the Alps; *Terra Nova.* **7** 500–508.
- Bell T H, Hickey K A and Upton G J G 1998 Distinguishing and correlating multiple phases of metamorphism across a multiply deformed region using the axes of spiral, staircase and sigmoidally curved inclusion trails in garnet; J. Metamorph. Geol. **16** 767–794.
- Bell T H, Ham A P and Hickey K A 2003 Early formed regional antiforms and synforms that fold younger matrix schistosities: Their effect on sites of mineral growth; *Tectonophys.* **367** 253–278.
- Bell T H, Ham A P and Kim H S 2004 Partitioning of deformation along an orogen and its effects on porphyroblast growth during orogenesis; J. Struct. Geol. 26 825–845.
- Bell T H, Ham A P, Hayward N and Hickey KA 2005 On the development of gneiss domes; Australian J. Earth Sci. 52 183–204.
- Braddock W A and Cole J C 1979 Precambrian structural relations metamorphic grade, and intrusive rocks along the northeast flank of the Front Range in the Thompson Canyon, Poudre Canyon, and Virginia Dale areas: Field Guide; *Geol. Soc. Am.*, pp. 106–120.
- Cavosie A and Selverstone J 2003 Early Proterozoic oceanic crust in the northern Colorado front Range: Implication for crustal growth and initiation of basement faults; *Tectonics* **22** 10–23.
- Chamberlain K R 1998 Medicine bow orogeny: Timing of deformation and model of crustal structure produced during continent-arc collision ~178 Ga, southeastern Wyoming; *Rocky Mountain Geol.* **33** 259–277.
- Cherniak D J, Watson E B, Grove M and Harrison T M 2004 Pb diffusion in monazite: A combined RBS/SIMS study; *Geochim. Cosmochim. Acta* 68 829–840.
- Cihan M 2004 The drawbacks of sectioning rocks relative to fabric orientations in the matrix: A case study from the Robertson River Metamorphics (Northern Queensland, Australia); J. Struct. Geol. **26** 2157–2174.
- Cihan M and Parsons A 2005 The use of porphyroblasts to resolve the history of macro-scale structures: An example from the Robertson River Metamorphics, North-Eastern Australia; J. Struct. Geol. **27** 1027–1045.
- Cihan M, Evins P, Lisowiec N and Blake K 2006 Time constraints on deformation and metamorphism from EPMA dating of monazite in the Proterozoic Robertson River Metamorphics, NE Australia; *Precambr. Res.* **145** 1–2.

- Condie K C and Martel C 1983 Early Proterozoic metasediments from north-central Colorado: Metamorphism, provenance, and tectonic setting; *Geol. Soc. Am. Bull.* 94 1215–1224.
- Dahl P S, Terry M P, Jercinovic M J, Williams M L, Hamilton M A, Foland K A, Clement S M and Friberg L M 2005 Electron probe (Ultrachron) microchronometry of metamorphic monazite: Unraveling the timing of polyphase thermotectonism in the easternmost Wyoming Craton (Black Hills, South Dakota); Am. Mineral. 90 1712–1728.
- Gaidies F, Krenn E, de Capitani C and Abart R 2008 Coupling forward modelling of garnet growth with monazite geochronology: An application to the Rappold Complex (Austroalpine crystalline basement); J. Metamorph. Geol. 26 775–793.
- Ham A P and Bell T H 2004 Recycling of foliations during folding; J. Struct. Geol. 26 1898–2009.
- Hayward N 1990 Determination of early fold axis orientations within multiply deformed rocks using porphyroblasts; *Tectonophys.* 179 353–369.
- Karlstrom K E, Dallmeyer R D and Grambling J A $1997 \ ^{40}\text{Ar}/^{39}\text{Ar}$ evidence for 14 Ga regional metamorphism in New Mexico: Implications for thermal evolution of lithosphere in the southwestern US; *J. Geol.* **105** 205–223.
- Kelly N M, Clarke G L and Harley S L 2006 Monazite behaviour and age significance in poly-metamorphic highgrade terrains: A case study from the western Musgrave Block, central Australia; *Lithos* 88 100–134.
- Kim H and Bell T H 2005 Combining compositional zoning and foliation intersection axes (FIAs) in garnet to quantitatively determine early P-T-t paths in multiply deformed and metamorphosed schists: North central Massachusetts, USA; Contrib. Mineral. Petrol. **149** 141–163.
- Ludwig K R 1998 Isoplot/Ex: A geochronological toolkit for Microsoft Excel; Berkeley Geochronological Center, Spec. Publ. 1 43.
- Mancktelow N S 1981 Strain variation between quartz grains of different crystallographic orientation in a naturally deformed metasiltstone; *Tectonophys.* **78** 73–84.
- Montel J M, Foret S, Veschambre M, Nicolette C and Provost A 1996 Electron microprobe dating of monazite; *Chem. Geol.* **131** 37–53.
- Nyman M, Karlstrom K E, Graubard C and Kirby E 1994 Mesozoic contractional orogeny in western North America: Evidence from ca 14 Ga plutons; *Geology* **22** 901–904.
- Paquette J L, Nédélec A, Moine B and Rakotondrazafy M 1984 U–Pb, single zircon Pb-evaporation, and Sm–Nd isotopic study of a granulite domain in SE Madagascar; J. Geol. **102** 523–538.
- Parrish R R 1990 U–Pb dating of monazite and its application to geological problems; *Canadian J. Earth Sci.* 27 1431–1450.
- Pyle J M, Spear F S, Rudnick R I and McDonough W F 2002 Monazite-xenotime-garnet equilibrium in metapelites and a new monazite garnet thermometer; J. Petrol. 42 2083–2107.
- Pyle J M, Spear F S, Wark D A, Daniel C G and Storm L C 2005 Contributions to precision and accuracy of chemical ages of monazite; Am. Mineral. 90 547–577.
- Reed J C, Bickford M E Jr, Premo W R, Aleinikoff J N and Pallister J 1987 Evolution of the Early Proterozoic Colorado Province: Constraints from U–Pb geochronology; *Geology* **15** 861–865.
- Sanislav IV 2010 A long lived metamorphic history in the contact aureole of the Mooselookmeguntic pluton revealed by *in situ* dating of monazite grains preserved

as inclusions in staurolite porphyroblasts; J. Metamorph. Geol. 29 251–273.

- Sanislav I V and Shah A A 2010 The problem, significance and implications for metamorphism of 60 million years of multiple phases of staurolite growth; J. Geol. Soc. India 6 384–398.
- Sanislav IV and Bell T H 2011 The inter-relationships between long-lived metamorphism, pluton emplacement and changes in the direction of bulk shortening during orogenesis; J. Metamorph. Geol. 29(5) 513–536.
- Sayab M 2005 Microstructural evidence for N-S shortening in the Mount Isa Inlier (NW Queensland, Australia): The preservation of early W–E-trending foliations in porphyroblasts revealed by independent 3D measurement techniques; J. Struct. Geol. 27 1445–1468.
- Sayab M 2006 Decompression through clockwise P-T path: Implications for an early N–S shortening orogenesis in the Mesoproterozoic Mt Isa Inlier (NE Australia); J. Metamorph. Geol. 24 89–105.
- Selverstone J, Hodgins M, Shaw C, Aleinikoff J N and Fanning C M 1997 Proterozoic tectonics of the northern Colorado Front Range; In: Geologic history of the Colorado Front Range Denver (eds) Bolyard D W and Sonnenberg S A, Rocky Mountain Association of Geologist, pp. 9–18.
- Selverstone J, Aleinikoff J, Hodgins M and Fanning C M 2000 Mesoproterozoic reactivation of a Paleoproterozoic transcurrent boundary in the Colorado Front Range: Implications for ca 17 and 14 Ga tectonism; *Rocky Mountain Geol.* **35** 136–162.
- Shah A A 2009 FIAs (Foliation Intersection/Inflection Axes) preserved in porphyroblasts, the DNA of deformation: A solution to the puzzle of deformation and metamorphism in the Colorado, Rocky Mountains USA; Acta Geol. Sin. 83 801–840.

- Shah A A 2010 Tectono-metamorphic evolution of Big Thompson Canyon Region Colorado Rocky Mountains, USA; Unpublished PhD thesis, James Cook University, B-22.
- Shaw C A, Karlstrom K E, Williams M L, Jercinovic M J and McCoy A M 2001 Electron microprobe monazite dating of ca 171–163 Ga and ca 145–138 deformation in the Homestake shear zone, Colorado: Origin and early evolution of a persistent intracontinental tectonic zone; *Geology* 29 739–742.
- Sims Paul K, Stein and Holly J 2003 Tectonic evolution of the Proterozoic Colorado province, Southern Rocky Mountains: A summary and appraisal; *Rocky Mountain Geol.* **38(2)** 183–204.
- Spiess R and Bell T H 1996 Microstructural controls on sites of metamorphic reaction: A case study of the interrelationship between deformation and metamorphism; *European J. Mineral.* 8 165–186.
- Tweto O L 1987 Rock units of the Precambrian basement in Colorado US; Geological Survey Professional Papers 1321-A 54.
- Williams M L 1994 Sigmoidal inclusion trails, punctuated fabric development, and interactions between metamorphism and deformation; J. Metamorph. Geol. **12** 1–21
- Williams M L and Jercinovic M J 2002 Microprobe monazite geochronology: Putting absolute time into microstructural analysis; J. Struct. Geol. 24 1013–1028.
- Williams M L, Jercinovic M J and Terry M P 1999 Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories; *Geology* 27 1023–1026.
- Williams M L, Jercinovic M J, Callum J and Hetherrington 2007 Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology; Ann. Rev. Earth Planet. Sci. 35 137–175.

MS received 21 December 2010; revised 6 August 2011; accepted 3 April 2012