Ninety million years of orogenesis, 250 million years
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in PT: Significance for the role of deformation
in porphyroblast growth
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In situ dating of monazite grains preserved as inclusions within foliations defining FIAs (foliation
inflection/intersection axes preserved within porphyroblasts) contained within garnet, staurolite,
andalusite and cordierite porphyroblasts provides a chronology of ages that matches the FIA succession
for the Big Thompson region of the northern Colorado Rocky Mountains. FIA sets 1, 2 and 3 trending
NE-SW, E-W and SE-NW were formed at 1760.5 + 9.7, 1719.7 4+ 6.4 and 1674 4+ 11 Ma, respectively.
For three samples where garnet first grew during just one of each of these FIAs, the intersection of Ca,
Mg, and Fe isopleths in their cores indicate that these rocks never got above 4 kbars throughout the
Colorado Orogeny. Furthermore, they remained around approximately the same depth for ~250 million
years to the onset of the younger Berthoud Orogeny at 1415 4+ 16 Ma when the pressure decreased
slightly as porphyroblasts formed with inclusion trails preserving FIA set 4 trending NNE-SSW. No por-
phyroblast growth occurred during the intervening ~250 million years of quiescence, even though the PT
did not change over this period. This confirms microstructural evidence gathered over the past 25 years
that crenulation deformation at the scale of a porphyroblast is required for reactions to re-initiate and
enable further growth.

1. Introduction

In multiply deformed and metamorphosed rocks,
foliations in the matrix, especially schistosity paral-
lel to compositional layering, have generally under-
gone long and complex histories (e.g., Ham and
Bell 2004). Different relics of this history can be
left in strain shadows or portions where later
deformation partitioning was less pervasive and
if not decoded carefully will lead to erroneous
or ambiguous results (e.g., Spiess and Bell 1996).
Each new deformation tends to erase developing
or earlier-formed structures through decrenulation

of developing crenulation cleavage and rotation
of relics of earlier-formed foliations into paral-
lelism with the compositional layering (e.g., Bell
et al. 2003). Deformation partitioning strongly
affects such kinds of processes from regional (Cihan
and Parsons 2005) to porphyroblastic scales (Bell
and Bruce 2007) and makes it difficult to corre-
late them from one region to another. It is pri-
marily because a mixture of ages will always be
present within matrix of such rocks and gets even
worst if deformation partitioning was intense. The
inclusion trails preserved within porphyroblasts
are remnants of earlier matrix events. These are
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generally isolated from the matrix phases and act
as robust candidates for studying deformation and
metamorphic processes. Such quantitative research
has greatly increased our understanding of com-
plex inclusion trail relationships, which otherwise
could not be interpreted or were misleading (e.g.,
Ham and Bell 2004).

Accurate measurement of the foliation inflection/
intersection axes preserved within different por-
phyroblastic phases (FIAs) has made it possible
to decode lengthy and complex histories of defor-
mation and metamorphism in orogens around the
world (e.g., Bell et al. 2004). More than 10 years
of research and data have already been published
using this technique from tectonically complex
regions around the world (e.g., Bell et al. 1998,
2003, 2005; Bell and Chen 2002; Cihan 2004; Kim
and Bell 2005; Sayab 2005, 2006; Bell and Bruce
2007; Sanislav 2010; Sanislav and Shah 2010; Ali
2010; Sanislav and Bell 2011).

The integration of detailed microstructural
studies and FIA data with garnet isopleth thermo-
barometry /MnNCKFMASH pseudosection construc-
tion can provide complete pressure-temperature—
time deformational trajectories of an area (e.g.,
Kim and Bell 2005; Cihan et al. 2006; Sayab
2006; Ali 2010). Such an approach significantly
improves our understanding of large-scale orogenic
processes. But the absolute timing of these events
remains a fundamental tool for decoding and
interpreting the tectonic evolution of the region.
Geometrically and texturally controlled dating
methods are critical for constraining the ages
of deformed and metamorphosed sediments and
their textures and foliations (e.g., Williams and
Jercinovic 2002). In pelites and psammites, mon-
azite is commonly present at amphibolite facies
(Dahl et al. 2005) and it has been dated in
migmatites and granulites (e.g., Kelly et al. 2006).
It is considered as a typical mineral of choice for in
situ geochronology in such rocks (Dahl et al. 2005;
Williams et al. 2007).

Absolute dating of monazite grains applying
high precission electron microprobe U-Th-Pb tech-
niques (EPMA) was used to correlate different
metamorphic and deformational events (e.g.,
Montel et al. 1996; Dahl et al. 2005) because
the bulk of the monazite grains analysed were
smaller in size. Dating of monazite inclusions
within different FIA sets (Bell and Welch 2002;
Ali 2010; Sanislav 2010; Sanislav and Shah 2010)
provides a robust tool for understanding and
unravelling lengthy and complex orogenic histo-
ries. Integration of FIAs with this approach pro-
vides a strong basis for studying the complex
pressure-temperature-time-deformation (PT-t-D)
paths that rocks appear to have followed. This
paper reports the results obtained from adapting
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Figure 1. Regional map of the Colorado Frontal Range
showing the Precambrian rocks and the location of the
study area (box shows area of figure 2). BCSZ: Buckhorn
Creek shear zone, CB: Cheyenne belt, ISRSZ: Idaho Springs-
Ralston shear zone, MMSZ: Moose Mountain shear zone,
SGSZ: Skin Gulch shear zone (modified after Cavosie and
Selverstone 2003).

this approach to the rocks collected in and around
the Big Thompson region of Colorado (figures 1
and 2).

2. Regional geology and tectonics

The rocks exposed in the Big Thomson Canyon
region, Colorado, USA, are mainly metasediments
and granitoids (figure 2). Condie and Martel
(1983) suggested that the metasediments represent
mature sediments deposited in a forearc setting.
Reed et al. (1987) argued that they were possi-
bly deposited in a back-arc setting between two
~1.8 and 1.7 Ma magmatic arc systems. Recent
detrital zircon ages suggest a maximum age of
1758426 Ma for deposition of the Big Thompson
sequence (Selverstone et al. 2000). These sediments
were repeatedly deformed, metamorphosed and
intruded by various plutons (e.g., Braddock and
Cole 1979; Selverstone et al. 1997; Sims et al. 2003)
during the Colorado (~1700 Ma) and Berthoud
(~1400 Ma) orogenies (Tweto 1987; Nyman et al.
1994; Karlstrom et al. 1997). The rocks show an
increase in metamorphic grade towards the west
and north and three stages of folding and cleavage
development (Cavosie and Selverstone 2003).
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Figure 2. Detailed geological map of the study area and the sample locations. White circles show the location of samples

used for monazite dating (geological map modified after Cavosie and Selverstone 2003).
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The first deformation/metamorphism occurred
before 1750 Ma and resulted in large-scale iso-
clinal folds (F1) and a regional axial cleavage
S1. The second and third stages of folding (F2
and F3) occurred around 1750 Ma ago, when
these rocks were intruded by the Boulder Creek
granodiorite and related rocks. Only one period
of metamorphism has been associated with these
events (M1) during which garnet and staurolite
grew. The second metamorphic event (M2), which
was stronger than the first, resulted in the for-
mation of up to sillimanite grade mineral assem-
blages (Sims et al. 2003), though metamorphic
conditions were very heterogeneous throughout
these episodes. A number of areas recorded an
entire transition in metamorphic grade from the
chlorite zone to the onset of migmatization during
the Colorado orogeny (Braddock and Cole 1979;
Selverstone et al. 1997).

3. Methods

3.1 FIA measurements

Hayward (1990) and Bell et al. (1995, 1998)
described a technique for analysing the geome-
tries of inclusion trails within porphyroblasts. It
involves measurement of the FIA, which is achieved
by cutting a minimum of eight vertically oriented
thin sections around the compass from each rock
sample to locate the switch in inclusion trail asym-
metry (clockwise or anticlockwise) within the por-
phyroblasts (figure 3a and b). Where the FIA
trends vary from the core to the rim of the por-
phyroblasts, a relative timing and thus an FIA suc-
cession can be established (Bell et al. 1998). The
accumulated error associated with determining the
trend of the FIA in each rock is random, and is
estimated to be 48 in both situations when one
uses a COCLAR compass (see Bell et al. 1998).

4. Results

4.1 FIA data

A total of 67 oriented samples were examined
for the present research. 800 oriented thin sec-
tions were prepared and a total of 138 FIA
and pseudo-FIA trends were determined (table 1,
figure 2). These measurements were achieved by
cutting a minimum of eight vertically oriented thin
sections around the compass from each rock sam-
ple (figure 3) and then locating the switch in inclu-
sion trail asymmetry (clockwise or anticlockwise)
within the porphyroblasts (e.g., Bell et al. 1998).
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Figure 3. (a) Sketch illustrating the method developed by
Bell et al. (1995, 1998) by which the trend of an FIA is
measured. This technique uses the change in asymmetries
of inclusion trails in a porphyroblast, when viewed in a con-
sistent direction for successive striking vertical thin sections,
to locate the FIA. The inclusion trail asymmetry changes
between 0° and 40°. Thin section orientation is marked
as single barbed arrow. The eyeball and grey arrow indicates
the direction in which the sections are viewed. (b) The 3-D
sketch illustrates a succession of foliations, as they would be
preserved within a vertical slice through a porphyroblast,
which define a single FIA trend.

Garnet, staurolite, andalusite and cordierite por-
phyroblasts preserve earlier foliations as inclusion
trails. These foliations are most commonly straight
with curvature at their extremities (e.g., figure 4a).
Porphyroblast inclusion trails are commonly trun-
cated (e.g., figure 4a) by the matrix foliations but
some are not (e.g., figure 4b). A relative timing
and thus an FIA succession can be established from
samples preserving an FIA trend that varies from
core to the rim of the porphyroblast (e.g., Bell et al.
1998). All FIA measurements are plotted on rose
diagram and are shown in figure 5(a). A total of 64
and 53 FIAs were measured in garnet and stauro-
lite porphyroblasts respectively (figure 5b and c).
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Table 1. Samples collected in and around Big Thompson Canyon region of northern Front Range, Colorado (shown in
figure 2), the geological formations from which they were taken, their latitude and longitude values and the FIA trends
measured in them.

Garnet Staurolite Cordierite Andalusite
single single single single
Sample Easting Northing FM FIA pFIA Core Rim FIA pFIA FIA pFIA FIA

C16 N 15

C18A N 15

C18B N 15 130

CI19A N 15 135

C35 477206 4484713 XKS 55 25

C37 477144 4484332 XBS 140 30

C38 477712 4484329  XKS 15

C39 477339 4483694 XKS 90 20

C40 475828 4483433 XKS 85 50 135

C41 476404 4483291 XKS 30

C42 476752 4483561 XKS 55 25

C43 475001 4483553 XKS 50 80

C44 474752 4484140 XKS 80 15 130

C45 475338 4484548 XKS 85 140

C47A 476418 4485315 XKS 140 25

C48 475216 4485600 XKS 135

C49 474307 4486810 XKS 90 120
C50 473290 4486411 XKS 135 25 25
C51A 473670 4485437 XKS 130

C51B 473670 4485437 XKS 55 125
Ch2 474484 4485910 XQS 50 85 25
Ch4C 476858 4474303 XQS 25 25

CH5A 474470 4475194 XQS 55

C55B 474470 4475194 XQS 40 15

C56A 475827 4474568 XQS 45 125

C60B 475036 4475308 XQS 85

C64 473360 4477763 XKS 85 40 125

C65A 472961 4477978  XQS 55 130 80

C66 473717 4479430  XQS 50 120 40

C67 473793 4480256 XQS 85 130

C68A 476612 4477904 XKS 120

C68B 476612 4477904 XKS 90 50

C69 477142 4476720  XQS 130 25

C70 477433 4475714 XQS 85

C75 470687 4480815 XBS 85 60

C76 469767 4480350 XQS 85 135 25 125
cT7 469104 4480353 XQS 120
CT78A 470822 4479966 XQS 45 25 115
C78B 470822 4479966 XQS 85 50 130 130
C80 474017 4478095 XKS 85

C81 474505 4478748  XQS 145 15

C82 475584 4476971  XQS 125 30

C83 475634 4477975  XKS 80 135

C84 474792 4477824  XKS 85 130

C85 475463 4479506  XQS 90 30

C86 476096 4479964  XQS 125 50

C88 476418 4481613 XQS 55 25

C92A 472011 4477468 XKS 130

C93A 472642 4479207  XQS 55 30

C96A 475043 4479775  XQS 85 130

C96B 475043 4479775  XQS 55 135
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Table 1. (Continued)
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Garnet Staurolite Cordierite Andalusite
single single single single
Sample Easting Northing FM FIA pFIA Core Rim FIA pFIA FIA pFIA FIA
C98A 473791 4482058 XBS 55 25
C98A 473791 4482058 XBS 55 90 30
C101 470677 4478975 XKS 15 85 30
C107B 471172 4481971 XKS 50 30 30
C108 470558 4478720 XKS 50 85 20
C110 471694 4482963 XKS 25 120 20
C111 472000 4483403 XKS 25 55
C117B 474053 4483669 XKS 55 80 35
C121 475042 4482626 XQS 85
C122 475531 4482644 XBS 130
C126 475980 4483996 XKS 55 120
C130 472840 4484427 XKS 50 25
C133 472811 4485927 XKS 85 55
C134A 472679 4485070 XKS 60 90
C135B 472295 4484694 XKS 55 80 130
C138B 469858 4485392 XKS 65 135

XQS = Quartzofeldspathic mica schist, XKS = Knotted mica schist, XBS = Porphyroblastic biotite schist, N = No

information available about the geographic coordinates.

The combined FIA trend data for garnet and stau-
rolite is shown in figure 5(d). The other porphy-
roblastic phases in which FIAs were measured
were andalusite and cordierite, with seven mea-
surements in the former and 14 in the latter.
Their trends are given in table 1 and are shown
on a rose diagram in figure 5(e and f). A few
samples maintain differentiated crenulation cleav-
ages that have been overgrown by the porphy-
roblasts where the asymmetry of the crenulated
cleavage can be determined. The crenulated cleav-
ages consist of quartz and ilmenite grains, while the
differentiated crenulation cleavages predominantly
contain ilmenite grains. The intersection between
the crenulated and crenulation cleavages can be
determined, when viewed in three dimensions, and
is called a pseudo-FIA (pseudo-FIA). The actual
FIA is formed during porphyroblast growth and
these samples are defined by the curvature of the
differentiated crenulation cleavage. All measured
trends were plotted on a rose diagram as shown in
figure 5.

4.2 Dating of FIA sets

To determine the age of the four FIA sets mea-
sured in the area, 30 samples were selected for mon-
azite dating. Polished thin sections were made for
use in the JEOL JXA-8300 Superprobe. Only 11
samples out of the 30 selected contained monazite
grains large enough for precise age calculations.
Detailed pre-dating maps were produced from each

polished thin section to accurately locate monazite
grain and their textural setting. The analytical
procedure is outlined in table 2. The samples were
analysed with a 1-2 micron meter diameter beam
at 15 kv and 200 nA. The collimators were opened
to a maximum (3 mm) and the PHA settings were
optimized as well. In all these measurements, 7rz
matrix corrections were performed using standard
Pb, U, Th, and Y concentrations in combination
with the preset values for other elements (P 33.3,
La 14.5, Ce 26, Pr 2.6, Nd 10.3, Sm 1.5, Gd 1.48,
Dy 0.82, Si 0.25, Ca 0.55 wt.% oxides). Interfer-
ence corrections of Th and Y on Pb M« and Th
on U M were executed as in Pyle et al. (2002).
An internal standard monazite from Manangotry
in Madagascar of 545 + 2 Ma (Paquette et al. 1984)
was analysed three times before and after each ana-
lytical session. Chemical ages were calculated as
described in Montel et al. (1996). Geologically sig-
nificant age information can be derived by assum-
ing low amounts of common Pb (e.g., Parrish 1990;
Gaidies et al. 2008) and slow diffusion rates for
Th, U and Pb in monazite (Cherniak et al. 2004).
The samples were chosen based on FIA set and
the grains were isolated and clustered according to
their age, textural setting and whether any chemi-
cal zonation was present (Cihan et al. 2006). This
would potentially reduce any error and make the
age information reliable (Montel et al. 1996; Pyle
et al. 2005; Gaidies et al. 2008). Dates and errors
were determined by mean age with standard errors
at 95% confidence level for a cluster of spots anal-
ysis within a single age domain or grain. Ages were
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Figure 4. Representative photomicrographs and line diagrams of vertical thin sections of different samples illustrating vari-
ation in inclusion trail geometry, truncation and continuity with the matrix foliation. (a, b) Garnet porphyroblast preserves
an oblique foliation that curves clockwise to sub-vertical (S;). (¢, d) Garnet porphyroblast preserves a sub-horizontal folia-
tion (S;) truncated and curved by a sub-vertical with an anti-clockwise asymmetry. (e, f) Staurolite porphyroblast preserves
a sub-horizontal foliation (S;) that is truncated with that in the matrix and has an anti-clockwise curvature. (g, h) Stauro-
lite porphyroblast with inclusion trails completely truncated by those within the matrix. A slightly anti-clockwise curvature
was observed in the rim or from the porphyroblast into the matrix in these porphyroblasts. Sample numbers, strikes and
way up of the vertical thin sections are shown in the upper left corner (thick single barbed arrow). PPL: plane polarized
light; XPL: cross polarized light, Se: external foliation, S;: Internal foliation, St: staurolite, Bt: biotite, Grt: garnet (after
Shah 2009).
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Total FlAs (staurolite, garnet,
cordierite and andalusite).

(a)

FlAs (Garnet)
(b) (c)

N =64
Max = 32.8%
Class interval = 10

N=53

FlAs (Andalusite)

(e)

N=7
Max = 42.9%
Class interval = 10

FlAs (Staurolite)

Max = 17.3%
Class interval = 10

IA Set 4
FIA Set 1

FIA Set 2

FIA Set 3

N =138
Max = 18.4%
Class interval = 10
FIAs (Garnet, Staurolite)

(d)

N=117
Max = 21.3%
Class interval = 10

FlAs (Cordierite)

()

N=14
Max = 35.7%
Class interval = 10

Figure 5. (a) Equal area rose plot of all FIA trends measured from garnet, staurolite, andalusite and cordierite. Four peaks
occur at 25°, 55°, 85° and 135°. (b) Garnet FIAs (c) staurolite FIAs, (d) garnet plus staurolite FIAs, (e) andalusite FIAs,

and (f) cordierite FIAs.

then calculated for all the grain populations ana-
lyzed and plotted using software Isoplot (Ludwig
1998). Three samples contained monazite grains
big enough to extract valuable age information
in garnet porphyroblasts. Six contained suitable
monazite grains in staurolite porphyroblasts. Two
contained suitable monazite grains in andalusite
plus cordierite.

4.3 Dating of foliations within porphyroblasts

Unless otherwise stated, monazite inclusions lie
with the foliation defining the FIA set for that

mineral phase. All rocks contain biotite, mus-
covite, plagioclase and quartz with accessory
phases ilmenite and apatite. Quartz and apatite
and rarely muscovite, biotite, chlorite inclusions
are always present within both garnet and stau-
rolite porphyroblasts. Monazite is always present
within staurolite but not necessarily in garnet
phases.

4.3.1 Sample C117

Garnet (FIA set 1) and staurolite (FIA set 2)
inclusion trails are always truncated by the matrix



Millions of years of orogenesis and quiescence and further orogenesis with no change in PT 1373

Table 2. Analytical set-up for monazite analyses on the JEOL JXA-8200, Electron
Probe Micro Analyzer (EPMA) at the Advanced Analytical Centre, JCU Townsuville,
Australia.

Crystal- Peak time Background
Element X-ray spectrometer (s) time (s) Standard
P Ka TAP 20 10 Ce phosphate
Pb Ma PETJP 180 90 PbSiO3a®
La La LIFH 10 5 La phospahte
U Mb PETJ 180 90 Uranium®
Th Ma PETJ 90 45 ThO2°¢
Y La TAP 60 30 Yttrium phospha‘ced
Ce La LIFH 10 5 Ce phosphate
Ca Ka PETJ 20 10 Wollastonite
Si Ka TAP 20 10 PbSiO3
Pr Lb LIFH 20 10 Pr phosphate
S Ka PETJ 30 15 BaSO4
Nd Lb LIFH 10 5 Nd phosphate
Sm Lb LIFH 40 20 Sm phospahte
Gd Lb LIFH 40 20 Gd phospahte
Dy Lb LIFH 40 20 DY phospate

& Astimex, PSealed Xe detectors, “Taylor, dPph-free synthetic from J. Pyle (Rennselaer
Polytechnic Institute, USA).

Table 3. Summary of ages derived from monazites preserved within the porphyroblasts and the matriz phases of above-
mentioned samples (staurolite data from Sanislav and Shah 2010).

Porphyroblast Matrix
Textural Age and  Total no.  No. of Textural Age and Total no.  No. of
Sample setting error of spots monazites Sample setting error of spots monazites
FIA'1 C117B Grt M1 1756 + 22 17 2 CT75 Bt M1 1664 + 38 7 1
C75 St M2 1765 + 23 16 1 C75 Bt M2 1762 £+ 35 7 1
C84 Grt M3 1762 £+ 21 24 1 C43 Mu M3 1724 4+ 37 7 1
cr7 Crd M4 1760 + 18 24 1 C108 Mt* M4 1675 4+ 24 10 1
C51B Crd M5 1762 + 32 12 1 cT7 Bt M5 1677 £ 19 17 1
C51B Mt M6 1685 + 29 9 1
FIA 2 (C43 St M6 1724 + 19 14 1 C84 Mt* M7 1729 + 23 26 1
C65A St M7,8,9 1717.6 + 9.5 53 3 C83 Mu M8 1723 4+ 34 7 1
C108 St M10, 11 1721 £+ 14 37 2 C110 Mu M9 1438 + 30 7 1
c77 Crd M12 1726 + 18 22 1 C65 Bt M10 1665 4+ 23 10 1
C75 St M13 1712 £+ 25 10 1 C65 Bt M11 1742 4+ 29 8 1
C65 Mt* M11 1668 + 48 6 1
FIA3 (C83 St M14 1681 4+ 27 10 1
C51A Grt M15 1666 4+ 26 10 1 AMt = Matrix
c77 And M16 1678 + 17 20 1
C84 St M17 1683 + 36 6 1
C65 St M18 1665 + 24 10 1
FIA4 C51B Crd M19 1414 + 23 13 1
c77 Crd M20 1410 4+ 26 10 1
C110 And M21 1432 + 39 5 1
foliation. Extra minor phases include zircon and 4.3.2 Sample C84

xenotine. Two monagzite inclusions within garnet
have given a mean age spread of 1756 + 22 Ma  Garnet and staurolite inclusion trails are always
(see tables 3 and 4; figure 6). truncated by the matrix foliation. Extra accessory
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Millions of years of orogenesis and quiescence and further orogenesis with no change in PT 1375
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Millions of years of orogenesis and quiescence and further orogenesis with no change in PT 1377
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Figure 6. (a) Back scatter image shows the garnet porphyroblast which preserves a single monazite grain lying parallel to
the orientation of its foliation. A mean age of 1754 £ 29 Ma is calculated from a total of 10 spots analyzed. (b) Enlarged
view of the monazite grain with black spots showing the location of each analysis. In (c¢) the weighted average age plot is
shown, created by using Isoplot software (Ludwig 1998) and in (d) the probability density plot is shown.

phases include magnetite, zircon, xenotine and
monazite. A total of two monazite grains were
dated from this sample. One within garnet with an
age spread of 1762 £ 21 Ma (FIA set 1) and the
other grain within staurolite (FIA set 3, Sanislav
and Shah 2010) with an age spread of 1683 + 36 Ma
(see tables 3 and 4).

4.3.3 Sample C77

This sample contains andalusite and cordierite
porphyroblasts, but no garnet and staurolite por-
phyroblasts, and the extra accessory phases of
magnetite and xenotine. Inclusion trails in
cordierite are continuous with the matrix folia-
tion and preserve FIA set 4. Cordierite contains
a pseudo-FIA belonging to set 3 and FIA set 4.
Andalusite contains inclusion trails defining FIA
set 3 that are truncated by foliations within both
the matrix and the youngest foliation in cordierite.
Inclusions in both porphyroblastic phases include
staurolite and garnet although the latter is rare.

Three monazite grains enclosed within cordierite
(2) and andalusite (1) porphyroblasts were dated.
One monazite grain within a crenulated cleavage
seam gives a pseudo-FIA set 3 age of 1678 +
17 Ma within cordierite. The andalusite porphy-
roblast preserves the same foliation as FIA 3. The
1760 £ 18 and 1726 + 18 Ma ages were derived
from their monazites (see tables 3-6).

4.3.4 Sample C110

Also contains andalusite and cordierite porphy-
roblasts. Extra accessory phases are dominated
by magnetite, xenotine, zircon and baddeleyite.
Andalusite preserves FIA set 4 and its inclusion
trails are continuous with the matrix foliation.
Inclusions within andalusite include staurolite
and cordierite. A single monazite grain found in
andalusite gave an age of 1432 4+ 39 Ma (see
tables 3 and 7) for the foliation preserved as
inclusion trails.
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1665

100.460 C84 M7 5
100.171 C84 M7 6

11.941 2.029 1.882 0.611

0.150 3.235 0.001

Shah S.No.148 31.500 0.394 13.412 0.404 3.940 1.460 28.627 0.871

1779 129
1703

Shah S.No.149 31.520 0.237 13.775 0.233 2.180 1.310 29.863 0.537 0.101 3.382 0.000 12.461 2.049 1.873 0.650

Shah S.No.150 31.588 0.452

Millions

71

1.961 0.643 100.314 C84 M7 7

1.971

11.667

1.590 28.186 0.950 0.170 3.137 0.008

13.245 0.496 4.250
14.039 0.260 2.610

1777 113

99.935 (C84 M7 8
100.140 C84 M7 9
100.483 (€84 M7 10
101.731 C84 M7 11
101.457 C84 M7 12

0.431
12.441 2.157 2.108 0.675 101.526 (C84 M7 13
12.294 2.108 2.098 0.687 101.440 C84 M7 14

11.990 2.049 1.941

11.735

1.122 0.194 3.108 0.003 11.373 2.020 2.137 0.732

1.350 29.127 0.629 0.123 3.304 0.019

Shah S.No.151 31.784 0.278

1805 103
1731

1.980 1.765 0.590

Shah S.No.152 31.667 0.312 13.922 0.292 2.850 1.340 29.598 0.630 0.112 3.333 0.015

Shah S.No.153 31.775 0.539 13.000 0.668 4.660 1.860 27.294

63
84
96
85

of years of orogenesis and quiescence and further orogenesis with no change in PT 1379

1719

1.853 0.741

1.951

Shah S.No.154 31.941 0.370 14.020 0.392 3.480 1.540 28.961 0.802 0.163 3.216 0.007 12.294

Shah S.No.155 31.794 0.337 13.765 0.342 2.980 1.520 29.333 0.701

Shah S.No.156 31.706 0.363

1809
1703
1711

12.520 2.098 2.020 0.624

0.118 3.304 0.000

1.560 28.961 0.800 0.137 3.206 0.000

13.559 0.383 3.470

67

Shah S.No.157 31.647 0.492 12.882 0.514 4.680 1.710 27.853 1.067 0.188 3.216 0.005

99.641 C51B M81 1656 120

0.52
0.53
0.55

0.

1.58
1.68
1.66
1.61
1.56
1.67
1.5

2.05
2.08
2.04
2.05
1.99

2.1

0.023 12.65

0.485 0.098 3.38
0.489 0.105 3.42
0.667 0.125 3.24
1.112 0.049 3.19
1.181 0.056 3.18
0.598 0.078 3.35
0.428 0.144 3.37

29.88

29.82

29.04
27.94
27.67
29.29

1.030
1.212

1.86

0.326

0.220 15

Shah S.No.158 30.54

99.986 C51B M82 1704 135

0.006 12.85

0.200 2.16

0.216 14.69

0.294 14.42
0.544

Shah S.No.159 30.53

99.551 C51B M8 3 1690 104

12.45
12.28
12.17
12.75
12.69

0.006
0.008
0.015

0

1.256

1.

0.241 3.1

Shah S.No.160 30.46

Shah S.No.161

64
60

C51B M8 4 1756
99.099 C51B M85 1751

99.871

56

51

0.936 3.63

13.86

30.59

0.59
0.64
0.53

1.45
1.

1.077 3.64

0.583 13.5

Shah S.No.162 30.44

99.296 C51B M8 6 1675 111

37

0.314 245

0.263 14.38

Shah S.No.163 30.04

99.171 C51B M8 7 1647 149

1.74

0.002

1.058 30.1

85

1.

0.207

0.187 15.13

Shah S.No.164 30.23

& Sample number, porphyroblast and monazite.

4.3.5 Sample C55A

This sample also contains cordierite plus minor
xenotine. Garnet preserves inclusion trails defin-
ing FIA set 3 that are truncated by the foli-
ation in cordierite and the matrix. Cordierite
contains FIA set 4 trails that are continuous with
those present within the matrix. Staurolite is also
included in cordierite. A single monazite dated at
1666 + 26 Ma from this sample is located within
garnet (see tables 3 and 6). No monazite grains
were found in cordierite.

4.3.6 Sample C51B

This sample also contains cordierite porphyrob-
lasts with inclusion trails defining FIA set 4 that
are continuous with foliations preserved within the
matrix. Staurolite and andalusite are also present
as inclusions. Two grains of monazite dated at an
average age of 1412 4+ 17 Ma lie within the foli-
ation preserved within the cordierite (see tables 3
and 7). Another monazite was dated at 1762 +
32 Ma, within the same foliation (see tables 3
and 6).

5. Dating of matrix foliations

The foliations within porphyroblasts are com-
pletely truncated by those within the matrix
phases in all samples except C110. Consequently,
monazite ages in the matrix cannot be used to date
FIAs. They were dated to see what relics of the
deformation history determined from the FIA suc-
cession were preserved in the matrix and whether
there was any evidence for deformation occurring
between the Colorado and Berthoud orogenies.

5.1 Sample C83 (FIA 2 in garnet
and 3 in staurolite)

A single monazite grain parallel to the main matrix
foliation (Se;) of this sample has an age of 1723 +
34 Ma (see tables 3 and 5). This sample preserves
FIA set 2 within garnet and set 3 in staurolite
porphyroblasts (figure 7).

5.2 Sample C75 (FIA 1 and 2 in staurolite)

Three foliations in the matrix (S.,—Se.) are shown
in figure 8. A 1664 + 38 Ma age was derived from a
monazite grain lying sub-parallel to Se, (figure 9).
Another monazite grain that lay orthogonal to this
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Millions of years of orogenesis and quiescence and further orogenesis with no change in PT 1381
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Millions of years of orogenesis and quiescence and further orogenesis with no change in PT 1383
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Table 7. (Continued)

SOg Nd203 Sm203 Gd203 Dy203 Total Sa,Inplea Age Error

ProO3

Y203 C8203 CaO SiOQ

ThO9

PbO LaQ 03 UOQ

P05

Shah S.No.

Monazite within matrix

88
100

100.384 C110 M9 1 1482

0.613

1.71
1.68
1.66
1.65
1.64
1.77
1.84

2.12
2.13

12.3

0.002
0.011

3.27
3.34
3.23
3.33
3.36

3.1

29.08 0.794 0.326
29.52 0.596 0.139
29.16 0.810 0.157
30.12  0.557 0.209
29.88 0.593 0.262

1.41
1.43

14

3.33
2.51

13.64 0.351

Shah S.No.29 31.14 0.296

99.998 C110 M9 2 1458
100.515 C110 M9 3 1432

0.635

12.69
12.55
12.59
12.72
11.85
11.94

13.93 0.372

13.71

Shah S.No.30 30.77 0.243

80
117
104

0.641

2.09
2.12
2.13
2.09
2.15

0.015

0.389 3.6

Shah S.No.31 30.79 0.310

C110 M9 4 1483

100.737
100.663 C110 M9 5 1461

0.630

0.007
0.000
0.000

0

1.28

2.23

14.14 0.282

Shah S.No.32 31.38 0.209

0.578
0.758

1.27
1.79
1.85

13.99 0.323 2.54
12.66  0.692

Shah S.No.33 31.14 0.235

57
59

99.713 C110 M9 6 1423

1.231 0.276
1.135 0.372

27.09

26.81

5.05

Shah S.No.34 30.89 0.464

99.489 C110 M9 7 1410

0.733

3.09

0.623 4.87

12.51

Shah S.No.35 31.13 0.434

A A Shah and T H Bell

& Sample number, porphyroblast and monazite.

foliation gave an age of 1762 + 35 Ma (figure 9).
This sample preserves FIA sets 1 and 2 within
staurolite porphyroblasts (figure 8). The monazite
grains are not zoned (figures 10 and 11).

5.3 Sample C84 (FIA 2 in garnet
and 8 in staurolite)

The dominant foliation in the matrix (S.;) contains
a single monazite grain that lies sub-parallel to it
that has an age of 1729 + 23 Ma (see tables 3
and 5).

5.4 Sample C65A (FIA 1 in garnet
and 2 plus FIA 3 in staurolite)

Two monazite grains in the main matrix foliation
(Sea) have ages 1742 + 29 Ma and 1665 + 23 Ma
(e.g., table 3; figures 12 and 13). Both lie sub-
parallel to S... A monazite grain in staurolite is
shown in figure 14).

5.5 Sample C43 (FIA 1 in garnet
and 2 in staurolite)

A single monazite grain parallel to the main matrix
foliation (Se;) has an age of 1724 + 37 Ma (see
tables 3 and 5). This sample preserves FIA sets 1
and 2 within garnet and staurolite porphyroblasts.

5.6 Sample C51B (FIA 3 in cordierite)

A single monazite grain lying orthogonal to the
main matrix foliation (S.;) in this sample has
an age of 1685 + 29 Ma (see tables 3 and 6).
This sample preserves FIA set 3 within cordierite
porphyroblasts.

5.7 Sample C77 (FIA 3 in cordierite)

A single monazite grain lying in the youngest
matrix foliation (S.3) in this sample has an age of
1677 £ 19 Ma (see tables 3 and 6). This sample pre-
serves FIA set 3 within cordierite porphyroblasts.

5.8 Sample C108 (FIA 1 in garnet
and 2 in staurolite)

A single monazite grain sub-parallel to the main
matrix foliation (S.;) has an age of 1675 =+
24 Ma (see tables 3 and 6). This sample preserves
FIA sets 1 and 2 within garnet and staurolite
porphyroblasts.
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Figure 7. (a) Back scatter image shows the staurolite porphyroblast, which contains a single monazite grain lying parallel
to the orientation of the foliation. A mean age of 1681 £ 27 Ma is dated from a total of 10 spots analyzed (Sanislav and Shah
2010). (b) Enlarged view of the monazite grain with black spots showing the location of each analysis. In (c) the weighted
average age plot is shown, created by using Isoplot software (Ludwig 1998) and (d) is showing the probability density plot.

5.9 Sample C110 (FIA 4 in andalusite)

A single monazite grain sub-parallel to the main
matrix foliation (S.;) has an age of 1438 + 30 Ma
(see tables 3 and 7). This sample preserves FIA set
4 within andalusite porphyroblasts.

6. Compositional mapping
of monazite grains

Samples containing monazite were composition-
ally mapped for Th, Y, U, Pb and Ce using the
JEOL JXA-8300 Superprobe. Most were devoid
of any apparent chemical zoning (e.g., figures 10
and 11). One monazite in the matrix of sample
C65A showed chemical zoning in both Th and Y
(figure 13). Dating of 1742 4+ 29 and 1668 + 48 Ma
suggests that this was a product of FIAs 1 and 3
(see below). Sample C75 showed a single example
of a monazite with slight zoning in Th preserved
within a staurolite porphyroblast (figure 11). A
mean age of 1712 £ 25 Ma was analyzed from this
grain.

7. Interpretation and discussion

7.1 The ages within porphyroblast containing FIAs

The monazite grains stored within foliations defin-
ing FIAs in garnet, staurolite (Sanislav and Shah
2010), cordierite and andalusite have recorded ages
over an extended period of metamorphism. For
example garnet in sample C117, preserves the old-
est deformation event recorded in the area at
1756 + 22 Ma. The date obtained from this porphy-
roblast agrees with the other samples containing
the same FIA sets. This is shown in sample C84,
which records the same event in garnet at 1762 +
21 Ma and fits well with its FIA. The younger grain
stored within staurolite is ellipsoidal and aligned
parallel to the foliation defined by the inclusion
trails and should give a representative age for FIA
3 (Sanislav and Shah 2010). The 1666 + 26 Ma age
in garnet (C51B) accords with the dates obtained
from other samples bearing this FIA set (e.g., stau-
rolite grains dated in Sanislav and Shah 2010). The
two dates obtained from monazite grains preserved
within pseudo-FIA in cordierite (set 3) and as
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Figure 8. (a) Back scatter electron image shows a staurolite porphyroblast, which preserves a single euhedral monazite
grain lying orthogonal to the orientation of the foliation. A mean age of 1765 + 23 Ma is dated from a total of 16 spots
analyzed (Sanislav and Shah 2010). (b) Enlarged view of the monazite grain with black spots showing the location of each
analysis. X-ray images of this monazite grain are shown in this figure. (¢) Orientated photomicrograph displays the larger
view of the staurolite dated. Two different foliations are preserved within staurolite porphyroblast. Monazite grain was
contained within a crenulation cleavage. In this sample, staurolite contains a pseudo-FIA belonging to set 1 FIA plus FIA
set 2. Thin section is vertical, the light is plane-polarized and single barbed arrow indicates way up and strike. (d) Line
diagram, shows the detailed features preserved. In (e) weighted average age plot is shown which is created by using Isoplot
software (Ludwig 1998) and in (f) the probability density plot is shown. Se: external foliation, Si: internal foliation, Grt:
garnet, St: staurolite, and Bt: Biotite.

single FIA in andalusite (set 3) in the sample C77, acquired from monazite grains within the main foli-
accord with the dates obtained from other sam- ation of cordierite are relics of an older foliation
ples for this event (table 3). The two earlier ages that lies oblique to the main foliation defined by the
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Figure 9. (a) Back scatter electron image shows two monazite grains preserved within matrix foliation of sample C75.
(b) Enlarged view of a monazite grain with black spots showing the location of each analysis. This euhedral grain is
preserved within the main matrix foliation and is located parallel to its orientation. A mean age of 1664 + 38 Ma is dated
from a total of seven spots analyzed. (¢) Enlarged view of a monazite grain with black spots showing the location of each
analysis. This grain is oriented orthogonal to the orientation of the main matrix foliation. A mean age of 1762 + 35 Ma
is dated from a total of seven spots analyzed. Thin section is vertical, single barbed arrow indicates way up and strike. In
(d and f) weighted average age plots are shown, created by using Isoplot software (Ludwig 1998) and in (e and g) the
probability density plots are shown.
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(b) (c)

Figure 10. (a) Back scatter oriented electron image of a monazite grain preserved within the foliation of porphyroblast that
contains the inclusion trails of FIA set 1 in sample (C75). The location of each analysis is shown by black spots. In (b)
through (f), X-ray maps of Th, Y, Ce, Pb and U are shown. Chemical zoning in Th and Pb is crudely present.

inclusion trails. Their dates are compatible with
the ages obtained from FIA sets 1 and 2, preserved
within other samples. The date acquired from two
monazites in cordierite (C51B) accords with the
dates obtained from other samples for FIA set 4
(see table 3). An older age within this sample from
one monagzite is consistent with an earlier foliation
aligned to FIA set 1 and represents its relics. The
age recorded in sample C110 is consistent with the
youngest FIA set observed.

7.2 Combining the age data within FIA sets

Monazite grains are common within staurolite
(Sanislav and Shah 2010), cordierite and andalusite
porphyroblasts but rare in garnet. Of the 11 sam-
ples investigated, five contained inclusion trails
defining FIA set 1; six monazite grains were
identified and 93 analyses completed defining an
age of 1760.5 + 9.7 Ma (table 3; figure 15a and
b). Five samples contained inclusion trails defining
FIA set 2; eight monazite grains were identified and

136 analyses completed defining an age of 1719.7 +
6.4 Ma (table 3; figure 15c¢ and d). Five samples
contained inclusion trails defining FIA set 3; five
monazite grains were identified and 56 analyses
completed defining an age of 1674 £+ 11 Ma (table 3;
figure 15e¢ and f). Three samples contained inclu-
sion trails defining FIA set 4; three monazite grains
were identified and 28 analyses completed defining
an age of 1415 £+ 16 Ma (table 3; figure 15g and h).
These ages (1760.5 + 9.7, 1719.7 &+ 6.4, 1674 + 11
and 1415 + 16 Ma), respectively, confirm the FTA
1, 2, 3, 4 succession established using core/rim cri-
teria plus the previously recognized (Tweto 1987;
Nyman et al. 1994; Karlstrom et al. 1997) sepa-
ration of orogenesis into two distinct periods 250
million years apart (Shah 2010).

7.3 The significance of FIAs for determining
monazite ages

Texturally controlled dating of monazite inclu-
sions has recently been used by many petrologists
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Figure 11. (a) Back scatter oriented electron image of a monazite grain preserved within the foliation of porphyroblast that
contains the inclusion trails of FIA set 2, in sample (C75). The location of each analysis is shown by black spots. Single
barbed arrow indicates way up and strike. In (b) through (f) X-ray maps of Ce, Pb, Th, U and Y are shown. Chemical
zoning in Th is crudely present. A single mean age of 1712 + 25 Ma is preserved within this monazite, which is coeval
with the ages obtained from the other samples for the regional deformation that produced this FIA set. In (g) the weighted
average age plot of eight spots is shown which is created by using Isoplot software (Ludwig 1998) and in (h) the probability

density plot is shown.

around the world to date foliation ages (Williams
et al. 1999; Shaw et al. 2001; Dahl et al. 2005). A
range of ages will always be present in the matrix
due to the potential for the preservation of mon-
azite grains within the strain shadows of succes-
sively grown porphyroblasts and this is exemplified
by table 3. Depending on the timing of porphy-
roblast growth, a similar range can be preserved
from the influence of younger events. The most

critical phase in using an absolute microstructural
dating method is to accurately identify monazite
grains within a particular textural and structural
setting. FIA provide such a setting and offer a
robust opportunity to extract in situ information
from individual monazite grains preserved within
an independently determined relative timeframe.
The accord between FIA set and age recorded
herein is remarkable (table 3). Only one sample
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Figure 12. (a) Shows a back scatter in which a monazite grain is preserved within a matrix foliation which is lying parallel
to the orientation of the foliation. A mean age of 1665 £+ 23 Ma is dated from a total of 10 spots analyzed. (b) Enlarged
view of the monazite grain with black spots showing the location of each analysis. Single barbed arrow indicates way up
and strike. In (e) the weighted average age plot of 18 spots is shown, created by using Isoplot software (Ludwig 1998).

(f) shows a probability density plot.

(C77) contains ‘anomalous’ older ages which can
be attributed to the earlier events as just men-
tioned. The recognition of pseudo-FIAs and FIAs
provided tight control over what FIA sets were
preserved in each sample. Without this level of
control on the distribution of FIAs, the ~100 mil-
lion year range in ages obtained (not including
the far younger ~1400 Ma ages) would have been
attributed to noise. Instead it accords perfectly
with the independently obtained succession of
FIA sets!

7.4 The ages within matriz

The older monazite grain (1762 £+ 35 Ma) in sam-
ple C75, accords with the dates acquired for FIA
set 1 (table 3). The younger matrix age obtained
is coeval with dates acquired for FIA set 3 sug-
gesting that the matrix was reused or reactivated

during the development of this FIA set. The single
matrix age in sample (C84), accords with the date
for FIA set 2 (table 3) and is interpreted to rep-
resent a relic of an earlier-formed foliation. Similar
ages were obtained within the sample C65A, which
are consistent FIA sets 1 and 3 (table 3) and are
interpreted to represent relics of earlier-formed foli-
ations preserved within the strain shadows of por-
phyroblast. In sample C43, the matrix age obtained
(1724 £ 37 Ma) accords with the dates acquired
for FIA set 2 (see table 3), which suggests reac-
tivation of the matrix during these events. This
monazite grain was parallel to the main matrix foli-
ation (Se1). Another relic age (1723 4+ 34 Ma) was
acquired in the sample C83, and is consistent with
FIA set 2 rather than for FIA set 3. This suggests
that this grain was not deformed and recrystallized
during the development of FIA 3 prior to stauro-
lite growth. Some crystallographic orientations of
grains relative to a developing strain field can make
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Figure 13. (a) Back scatter oriented electron image of a monazite grain preserved within the matrix of the sample (C65A),
which shows the location of each analysis. (b) through (f), shows the X-ray maps of Ce, Pb, Th, U and Y respectively.
Age zoning in the chemical contents of Th and Y is present, which offer two different age domains. A mean age of 1742 +
29 Ma is preserved within high Th domains (polygonal area). The relatively low Th regions contain a mean age of 1668
+ 48 Ma. Thin section is vertical, single barbed arrow indicates way up and strike. (g and i) shows weighted average age
plots, created by using Isoplot software (Ludwig 1998) and in (h and j) the probability density plot is shown.
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Figure 14. (a and b) Photomicrograph and accompanying line diagram from sample C65A (cross polarized light) which
preserves a crenulated and a crenulation cleavage within staurolite porphyroblast. Garnet also contains a foliation which
is different from those contained within the staurolite. Thin section is vertical, the light is cross-polarized and the single
barbed arrow indicates way up and strike. (b) Back scatter image shows the staurolite porphyroblast preserving a single
euhedral monazite grain within a crenulated cleavage of the same thin section. A mean age of 1737 £+ 36 Ma is dated from a
total of nine spots analyzed (Sanislav and Shah 2010). (c¢) Enlarged view of the monazite. In (e) weighted average age plot
of 18 spots is shown which is created by using Isoplot software (Ludwig 1998) and (f) shows the probability density plot.

a particular mineral phase very competent and
hard to deform (e.g., Mancktelow 1981). This grain
could reflect such a phenomenon. In samples C51B,
C77 and C108, the acquired ages accord with the
dates obtained for FTA set 3 suggesting these mon-
azites grew at this time and were preserved through
modification of the matrix by subsequent deforma-
tion events. A younger age was preserved within
a monazite of sample C110, which is consistent
with ages for FIA set 4. This was obtained in the

foliations preserved within the andalusite porphy-
roblast, which are very similar to and continuous
with the matrix.

7.5 Assessing the spread of the age data from
matriz relative to that for the FIA succession

Monazite grains are common within the matrix and
randomly distributed. They are generally preserved
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Figure 15. Probability density and weighted average age plots (a—h) for all samples in which monazite grains were dated
within matrix. These plots were created in Isoplot software (Ludwig 1998). Complete chemical data is shown in tables 4-7.

within muscovite and biotite grains (e.g., figures 9
and 12). A total of nine samples out of 30 inves-
tigated contained monagzite crystals in the matrix.
Two samples each contain a monazite grain, from
which a total of 14 analyses were completed defin-
ing an age of 1749 + 23 Ma (table 3; figure 16a
and b). Four samples contained four monazite

grains from which 28 analyses were obtained defin-
ing an age of 1726 + 17 Ma (table 3; figure 16¢
and d). Six samples contained six monazite grains
from which 59 analyses were completed defining
an age of 1674 + 11 Ma (table 3; figure 16e and
f). One sample contained a single monazite grain
from which seven analyses were completed defining
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Figure 16. Probability density and weighted average age plots (a—h) for all samples in which monazite grains were dated
within porphyroblasts. These plots were created in Isoplot software (Ludwig 1998). Complete chemical data is shown in
tables 4-7.
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Figure 17. (a, ¢, e and f) P-T pseudosections calculated in the MnNCKFMASH system based on the bulk XRF composition
for the samples C117B, C83, C82 and C54C, respectively. It shows the mineral stability fields with dark toned areas
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h) Garnet core isopleths of (Xym, Xca and Xge) in which the compositional contours corresponding to the real composition
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an age of 1438 + 29 Ma (table 3; figure 16g and
h). These ages accord to some degree with dates
obtained from the porphyroblasts preserving FIA
sets 1, 2, 3 and 4 and clearly reflect those events
in spite of the fact that there is no real control on
the significance.

7.6 The porphyroblast ages versus matriz ages

In all the samples that were dated foliations defined
by inclusion trails in porphyroblasts are truncated
by matrix foliations except in sample C110. There-
fore, monazite ages in the matrix have no rele-
vance to the dating of FIAs. In most samples,
monazite grains in the matrix foliation gave the
same or younger ages than those within the por-
phyroblasts. Ages range from 1749 + 23 to 1674 +
11 Ma (table 3) with one sample preserving a mon-
azite with an approximate FIA 1 age of 1762 Ma
and another containing a relic from a foliation
within the matrix that predated porphyroblast
growth. The younger ages were always a product
of reuse or reactivation of old foliations (e.g., Bell
et al. 2003) or the development of new ones. Con-
sequently, only the ages obtained from monazite
grains preserved within porphyroblasts where an
FIA control on the significance of that age were
used to time deformation and metamorphism (fig-
ure 15). However, as mentioned above, it is appar-
ent that most, if not all, of the ages associated
with the succession of FIA development are pre-
served within the matrix. Yet an approach that
involves dating monazite grains within the matrix
can only ever provide an average age that does not
distinguish when deformation commenced or when
porphyroblast growth ceased.

7.7 Role of deformation and its significance
for porphyroblast growth

Nucleation of any mineral phase requires that P-T
and bulk composition should be appropriate for
that phase to grow. However, deformation is also
known to play a vital role in formation of differ-
ent minerals, particularly porphyroblastic phases
(e.g., Bell 1986; Williams 1994; Cihan et al. 2006)
through its control on sites for the access of nutri-
ents needed for nucleation and growth (Spiess and
Bell 1996). The FIA controlled monazite dating
described herein reveals ~90 million years of con-
tinuous deformation/metamorphism followed by
~250 million years of quiescence before orogene-
sis recommenced for ~20 million years with little
or no change in PT conditions (Shah 2010). What
kept this region at similar crustal levels during the
250 million years of quiescence?

A A Shah and T H Bell

The PT conditions and the bulk composition
were clearly suitable for the growth of porphy-
roblasts during the ~250 Ma between the devel-
opment of FIAs 3 and 4. Yet no porphyroblastic
phases grew during this time and there is no
microstructural evidence for any foliations devel-
oping. The latter fact is confirmed by dating of
monazite grains within the matrix. They reflect the
FIA succession and provide no evidence for any
deformation between at least 1665 and 1438 Ma.
It is now well established that deformation and
concurrent metamorphism form cleavage seams by
dissolution as well as provide a large range of com-
ponents essential for the nucleation and growth
of porphyroblasts (Bell and Cuff 1989; Spiess and
Bell 1996). Deformation provides sites for nucle-
ation and growth, and a means of overcoming
the energy barrier for nucleation, in the form of
the energy removal from, for example, crenula-
tion hinges (Bell 1986). The lack of porphyrob-
last growth for this extended ~250 million year
period can be attributed to the lack of crenulation
development (Bell et al. 2003). When deformation
recommenced around ~1415 Ma, porphyroblasts
also began to grow again forming FIA set 4 inclu-
sion trails within garnet, staurolite, andalusite and
cordierite porphyroblasts strongly supporting the
role of crenulation deformation in porphyroblast
growth (e.g., Bell 1986; Cihan et al. 2006).

7.8 Deformation and metamorphism

The three stages of folding and two stages of meta-
morphism reported previously from this region
were determined from matrix foliation relation-
ship. A much longer history of deformation and
metamorphism is preserved by the porphyroblasts.
The preservation of four FIA trends with chang-
ing directions of shortening from (NE-SW to E-
W to SE-NW to NNE-SSW), which range in age
from 1760.5 4+ 9.7 to 1415 4+ 16 Ma has con-
siderable implications for tectonics of this region.
The first regional folding episode initiated during
FIA set 1 at 1760.5 + 9.7 Ma and trended NE—
SW and approximately coincides with the regional
trend of the Cheyenne belt. This is regarded as the
suture zone along which the rocks of Colorado and
Wyoming province accreted about 1790-1650 Ma
ago (Sims et al. 2003). Pressure and temperature at
this time was about 540°-550°C and 3.8-4.0 kbars,
as proposed by the garnet isopleth geothermo-
barometry. Intersections of Ca, Mg, and Fe iso-
pleths in garnet core, which preserved FIA set 1,
indicate that these rocks never got above 4 kbars
during the Colorado Orogeny (figure 17a and b).
During the formation of FIA set 2 (centred
around 1719.7 £ 6.4 Ma), the pressure and tem-
perature changed slightly to 3.40-3.65 kbar and
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525°-537°C (figure 17c and d). F2 regional folds
were formed during this stage. Foliation evidence
from this period or orogeny is rarely preserved as
crenulations in the matrix, due to the effects of
rotation and reactivation in the many subsequent
deformations. Trondhjemite dikes, which now have
a sill like character, were emplaced at ~1726 =+
15 Ma (Selverstone et al. 1997). Intrusion forming
W-E trending dikes could occur along the W-E
trending vertical foliation that generated this FIA
set during gravitational collapse stages of oroge-
nesis when this vertical foliation would have cre-
ated a plane of weakness that failed (e.g., Bell and
Newman 2006). Subsequent reactivation of the
compositional layering would have progressively
rotated most of them into sub-parallelism with the
bedding and disguised any crosscutting relics of the
dikes along which they intruded.

FIA set 3 also developed during the Colorado
Orogeny (figure 17e and f). The SE-NW trend
of this FIA set was created by NE-SW shorten-
ing. Previously formed folds were refolded and a
new F3, generation were created. The pressure—
temperature conditions indicated by garnet iso-
pleth conditions for this period were 3.3-3.6 kbar
and 525°-535°C. More staurolite porphyroblasts
also grew at this time. In particular, it marks the
first appearance of andalusite and cordierite por-
phyroblasts. Some staurolite porphyroblasts con-
taining FIA set 3 have been partially replaced by
andalusite or cordierite suggesting a decrease in
pressure accompanied their development. Absolute
dating of monazite grains enclosed within the inclu-
sions of these four porphyroblastic phases provide
an age of 1674 + 11 Ma for this period of FIA
development which appears to end the Colorado
Orogeny. These rocks remained undisturbed for
about 250 Ma.

Monazite grains enclosed within the foliations
of andalusite and cordierite porphyroblasts con-
taining FTIA set 4 give an age of 1420 + 14 Ma
for this period of orogenesis. The tight intersec-
tion of Ca, Mn and Fe isopleths in garnet cores
indicates that the pressure conditions during this
period of orogenesis were similar to those observed
at the end of the Colorado Orogeny (figure 17g
and h). Large-scale heating event associated with
granite emplacement and some deformation at this
time is regionally known as the Berthoud Orogeny
(Sims et al. 2003). FIA set 4 trends NNE-SSW and
resulted from NNW-SSE directed shortening. Gar-
net, staurolite, cordierite and andalusite also grew
during this period of orogenesis. Slightly higher
temperatures were recorded during this period of
orogenesis than previously. Some andalusite and
cordierite were formed by replacing staurolite por-
phyroblasts but most grew as completely new
grains. After this period of orogenesis, these rocks

were retrogressed, presumably during exhumation.
This is revealed by pseudomorphs after staurolite,
garnet, cordierite and andalusite (Shah 2010).

7.9 Regional tectonic implications of Colorado
and Berthoud Orogenies

The metasediments exposed in and around the Big
Thompson region of Colorado represent mature
sediments deposited in a fore-arc (Condie and
Martel 1983) or back-arc setting (Reed et al.
1987). Detrital zircon ages suggest a maximum
age of 1758 + 26 Ma for deposition of the Big
Thompson sequence (Selverstone et al. 2000). Pre-
vious researchers (e.g., Selverstone et al. 1997;
Chamberlain 1998; Shaw et al. 2001; Williams
et al. 1999) suggested protracted metamor-
phism and deformation associated with the
~1700 Ma orogeny and local effects due to
the ~1400 Ma orogeny. The evidence presented
here for deformation and metamorphism around
1758.8 &+ 9 Ma suggests orogenesis commenced
around the time of sedimentation. This correlates
with the beginning of contractional deformation
along the Cheyenne belt, during which time the
Colorado province was accreted onto the Archean
Wyoming province (Chamberlain 1998). Orogene-
sis was essentially continuous for about ~100 Ma
and then ceased. FIA data reveal that deformation
during 1420 + 14 Ma Berthoud Orogeny was per-
vasive, with well-preserved foliations that are con-
tinuous with the matrix foliation. However, not a
single monazite grain of Berthoud age was found
within garnet or staurolite porphyroblasts that
could be associated with this event. They were
found only in andalusite and cordierite suggesting
a slight change in T, P conditions from those form-
ing staurolite was required for further growth of
this phase.
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