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Abstract 

 

The main purpose of this research study was to explore students’ understanding of 

stereochemistry and their perceptions of learning chemistry in first year 

undergraduate chemistry classes following a modified Process-Oriented Guided 

Inquiry Learning (POGIL) that included group work. POGIL, a student centered 

instructional strategy, is a blend of content knowledge and process skills. The 

research utilised an existing model of curriculum evaluation to ascertain that the 

goals of the curriculum are met. The model examined curricula under four headings - 

the intended curriculum, the implemented curriculum, the perceived curriculum, and 

the achieved curriculum.  

 

A quasi-experimental mixed method research design was used to provide responses 

to the research questions. The researcher developed a 5-item two-tier 

stereochemistry concept diagnostic test (SCDT) that was administered to two student 

cohorts, Group 1 and Group 2, as a post-test and a delayed post-test format to 

explore their understanding of stereochemistry concepts. Both groups used POGIL 

worksheets; Group 1 received POGIL-style instruction and Group 2 students were 

taught using traditional lectures. Analysis of students’ responses, administered to 

218 students from Group 1 and Group 2 cohorts, revealed about ten 

misunderstandings. The delayed post-test performance was significantly higher than 

the post-test performance for Group 1 students, suggesting the positive impact of 

POGIL style instruction in first year chemistry classes. The results of independent 

samples t-test between the mean achievements of Group 1 and Group 2 students 

indicated that the POGIL instruction was more effective with regard to students’ 

understanding compared to the traditional instruction in organic chemistry topics. 

 

The investigation gauged the students’ perception of POGIL learning using 

quantitative and qualitative methods. The primary imperative was the validation of 

the Student Assessment of their Learning Gains (SALG) instrument. The adapted 

SALG instrument was administered to 114 students in 2011. The exploratory factor 

analyses (EFA) of the data suggest that the factor SALG instrument has strong 

construct, convergent and discriminant validity. The validated 44 item 5-point Likert 
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scale SALG instrument was subsequently administered to 154 students in 2012 for 

confirmatory factor analysis (CFA). The CFA of the 44 item 5-point Likert scale 

SALG instrument using SPSS v20 resulted in a slight variation from the factor 

structure obtained in EFA. Next, the CFA based Structural Equation Modelling 

(SEM) analysis was used to test the four factor model derived from the EFA and the 

results obtained with AMOS v20 met the adequacy criteria of goodness-of-fit. The 

Cronbach alpha internal reliability of the items of SALG after CFA was highly 

satisfactory. The results of the fit indices of the causal model of SEM provided a 

reliable and valid instrument that illustrated students’ perceptions of improved 

learning gains with POGIL method of instruction.  

This study has made distinctive contributions to POGIL and undergraduate 

chemistry education, being the first attempt to investigate students’ understanding of 

stereochemistry concepts in POGIL classes with a two-tier diagnostic test (SCDT) 

and establishing construct and convergent validity to the SALG instrument. The 

SCDT and the four factor SALG instrument could be valuable to science educators 

interested in measurement of students’ conceptual understanding and perceptions of 

their learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

Acknowledgements 

 

My research journey through chemical education at the Science and Mathematics 

Education Centre has been a most humbling experience. I wish to express my sincere 

gratitude to my research supervisor, Professor David Treagust for accepting me into 

the POGIL research project. I will be forever indebted to him for all the exceptional 

guidance, prompt feedback and response. I also wish to thank my other supervisors, 

Associate Professor Mauro Mocerino and Senior Lecturer Dr. Daniel Southam for 

their intellectual contributions and directions that enriched my research work. The 

active involvement, guidance and support of the supervisors had helped me present 

my research findings at various international conferences.  

 

I extend my sincere thanks to Professor Barry Fraser, Dr. Arulsingam 

Chandrasegaran, the staff at the Science and Mathematics Education Centre, 

especially Ms Petrina Beeton and Mrs Rosalie Wood,  the Department of Chemistry, 

doctoral students and undergraduate chemistry students for their assistance and 

cooperation during my doctoral study. I also wish to thank Curtin University for the 

financial support in the form of Australian Postgraduate Award. 

 

This work is dedicated to my parents, my wife Bharathi Vishnumolakala, and my 

son Sravan for their love and unconditional support. 

 

 

 

 

 

 

 

 

 

 

  



 

vi 

Table of Contents 

Abstract .......................................................................................................................iii 

Acknowledgements ...................................................................................................... v 

Chapter 1 ...................................................................................................................... 1 

Introduction .................................................................................................................. 1 

1.1 Introduction .............................................................................................................. 1 

1.2 Background .............................................................................................................. 1 

1.3 Objective .................................................................................................................. 3 

1.4 Significance .............................................................................................................. 3 

1.5 Definitions and Terminology ................................................................................... 4 

1.5.1 General Definitions .......................................................................................... 4 

1.5.2 Chemistry Terminology ................................................................................... 5 

1.6 The Organisation of the Thesis ................................................................................ 6 

Chapter 2 ...................................................................................................................... 8 

Review of the Literature .............................................................................................. 8 

2.1 Introduction .............................................................................................................. 8 

2.2 Curriculum Framework ............................................................................................ 8 

2.3 POGIL .................................................................................................................... 11 

2.3.1 Theoretical Framework .................................................................................. 11 

2.3.2  Constructivism ............................................................................................... 12 

2.3.3 Learning Cycle ............................................................................................... 15 

2.3.4 Characteristics of POGIL materials ............................................................... 16 

2.3.5 Process Skills ................................................................................................. 20 

2.4 Student Conceptions .............................................................................................. 22 

2.4.1 Origin of Alternative Conceptions ................................................................. 22 

2.4.2 Studies on Students’ Alternative Conceptions in Chemistry ......................... 25 

2.4.3 Organic Chemistry ......................................................................................... 25 

2.5 Methodologies for Investigating Conceptions ....................................................... 27 

2.5.1 Interviews ....................................................................................................... 28 

2.5.2 Two-Tier Multiple Choice Tests .................................................................... 29 

2.6 Implementation of POGIL ..................................................................................... 31 

2.7 Effectiveness of POGIL ......................................................................................... 32 

2.8 Students’ Perceptions ............................................................................................. 35 

2.9 POGIL in Australia ................................................................................................ 36 

2.10 Summary ................................................................................................................ 37 



 

vii 

Chapter 3 .................................................................................................................... 39 

Methodology .............................................................................................................. 39 

3.1 Introduction ............................................................................................................ 39 

3.2 Research Paradigm ................................................................................................. 39 

3.3 Research Design ..................................................................................................... 39 

3.4   Research Questions ................................................................................................ 42 

3.5 Participants ............................................................................................................. 42 

3.6 Instructors .............................................................................................................. 43 

3.7 Ethical Procedures.................................................................................................. 43 

3.8 Data Collection and Analysis Procedures to respond to each Research  Question 43 

3.9 Data Collection and Analysis Procedures to respond to Research   Question 1 .... 44 

3.10  Data Collection and Analysis Procedures to respond the Research  Question 2 45 

3.11  Data Collection and Analysis Procedures to respond to Research Question 3 .. 45 

3.11.1 Stereochemistry Concept Diagnostic Test (SCDT) ........................................... 46 

3.12  Data Collection and Analysis Procedures to respond to Research Question 4 .. 52 

3.12.1 Student Assessment of Their Learning Gains (SALG) ...................................... 52 

3.13 Qualitative Data Analysis ...................................................................................... 54 

3.14  Methods used for Data reliability and validity ................................................... 55 

3.14.1 Triangulation ...................................................................................................... 55 

3.14.2 Reliability of the instruments ............................................................................. 56 

3.14.3 Validity of the Instruments ................................................................................ 56 

3.15 Summary ................................................................................................................ 58 

Chapter 4 .................................................................................................................... 59 

The Intended and Implemented Curricula ................................................................. 59 

4.1 Introduction ............................................................................................................ 59 

4.2 The Intended Curriculum ....................................................................................... 60 

4.2.1 Course Units ................................................................................................... 60 

4.2.2 Learning Outcomes ........................................................................................ 62 

4.3 Graduate Attributes ................................................................................................ 64 

4.4 POGIL Process skills ............................................................................................. 65 

4.5 The Implemented Curriculum ................................................................................ 70 

4.6 Activity Materials .................................................................................................. 71 

4.7 Researcher’s Observations ..................................................................................... 71 

4.8 Process Skills ......................................................................................................... 74 

4.9 Summary ................................................................................................................ 77 



 

viii 

Chapter 5 .................................................................................................................... 78 

The Achieved Curriculum .......................................................................................... 78 

5.1 Introduction ............................................................................................................ 78 

5.2. Statistical Analysis of Student Responses to the Stereochemistry Concept 
Diagnostic Test (SCDT) .................................................................................................... 79 

5.3. Group 1: Chem102, Semester 2, 2011 ................................................................... 79 

5.3.1 Stereocentres (Item 1) .................................................................................... 80 

5.3.2 Enantiomers (Item 2) ...................................................................................... 81 

5.3.3 Chirality (Item 3) ............................................................................................ 83 

5.3.4 Stereoisomers (Item 4) ................................................................................... 85 

5.3.5 Molecular Visualisation (Item 5) ................................................................... 87 

5.4 Group 1 (Chem102) Students’ Overall Performance in the SCDT ........................ 89 

5.5 Group 2: Chem121, Semester 1, 2012 ................................................................... 92 

5.5.1 Stereocentres (Item 1) .................................................................................... 92 

5.5.2 Enantiomers (Item 2) ...................................................................................... 93 

5.5.3 Chirality (Item 3) ............................................................................................ 94 

5.5.4 Stereoisomers (Item 4) ................................................................................... 94 

5.5.5 Molecular Visualisation (Item 5) ................................................................... 95 

5.6 Group 2 (Chem121) Students’ Overall Performance in the SCDT ........................ 96 

5.7 Stereochemistry Learning Gains: Group 1 and Group 2 ........................................ 97 

5.8 Summary .............................................................................................................. 100 

Chapter 6 .................................................................................................................. 104 

The Perceived Curriculum ....................................................................................... 104 

6.1 Introduction .......................................................................................................... 104 

6.2 Perceived Curriculum .......................................................................................... 104 

6.3 Students’ Assessment of Their Learning Gains (SALG) ..................................... 105 

6.3.1 Stages 1 and 2 .............................................................................................. 105 

6.3.2 Stages 3 and 4 .............................................................................................. 106 

6.4 Exploratory Factor Analysis (EFA) of SALG Instrument ................................... 108 

6.5 Confirmatory Factor Analysis .............................................................................. 112 

6.6 The Hypothesised Model ..................................................................................... 115 

6.7 Qualitative Data Analysis .................................................................................... 123 

6.7.1 The Profile of the Interviewees .................................................................... 124 

6.7.2 Approach to the Interview Analysis ............................................................. 124 

6.7.3 Students’ Perception of their Learning Gains in POGIL Classes ................ 125 

6.8  Summary .............................................................................................................. 137 



 

ix 

Chapter 7 .................................................................................................................. 139 

Discussion and Conclusions..................................................................................... 139 

7.1 Introduction .......................................................................................................... 139 

7.2 Summary of the Thesis ........................................................................................ 139 

7.3 Major Findings ..................................................................................................... 141 

7.3.1 Research Question 1 ..................................................................................... 141 

7.3.2 Research Question 2 ..................................................................................... 141 

7.3.3 Research Question 3 ..................................................................................... 142 

7.3.4 Research Question 4 ..................................................................................... 144 

7.4 Limitations of the Study ....................................................................................... 146 

7.4.1 The Sample .................................................................................................. 147 

7.4.2 Instruments, Data Analysis and Interpretation ............................................. 147 

7.5 Recommendations Relating to this Study ............................................................ 147 

7.5.1 Improving the Validity of the Instruments ................................................... 147 

7.5.2 Further Research on Diagnostic Tests Suitable to POGIL ........................... 148 

7.5.3 Future Research on Trans-national Study of POGIL Implementation ......... 148 

7.5.4 Future Research on Australian POGIL Implementations ............................ 148 

7.6 Summary .............................................................................................................. 148 

References ................................................................................................................ 150 

Appendices ............................................................................................................... 177 

Appendix A ...................................................................................................................... 177 

Appendix B ...................................................................................................................... 179 

Appendix C ...................................................................................................................... 184 

Appendix D ...................................................................................................................... 188 

Appendix E ...................................................................................................................... 192 

Appendix F....................................................................................................................... 206 

Appendix G ...................................................................................................................... 208 

Appendix H ...................................................................................................................... 221 

Appendix I ....................................................................................................................... 229 

Appendix J ....................................................................................................................... 232 

Appendix K ...................................................................................................................... 236 

 

 

 

 



 

x 

List of Tables 

 

Table 3. 1: Relationship between research questions and data collection tools: RQ1 
and RQ2 ..................................................................................................................... 44 

Table 3. 2: Relationship between research questions and data collection tools: RQ3 
and RQ4 ..................................................................................................................... 44 

Table 3. 3: Summary of the final sample of first year chemistry cohort ................... 46 

Table 3. 4: Propositional content knowledge statements ........................................... 49 

Table 3. 5: Specification grid of propositional content knowledge statement ........... 50 

 
Table 4. 1: List of topics covered in Chemistry units 101 and 102 ........................... 61 

Table 4. 2: Extract from the programme calendar for chemistry 101 and 102 .......... 62 

Table 4. 3: Learning outcomes and targeted graduate attributes – extracts from 
course units Chemistry 101 & 102 ............................................................................. 63 

Table 4. 4: POGIL process skills ............................................................................... 66 

Table 4. 5: Alignment of graduate attributes and POGIL process skills as evidenced 
from POGIL class observations ................................................................................. 68 
  

Table 5. 1: Percentage of Group 1 (Chem102, Sem 2, 2011) student response pattern 
to Item 1 ..................................................................................................................... 80 

Table 5. 2: Percentage of Group 1 (Chem102, Sem 2, 2011) student response pattern 
to Item 2 ..................................................................................................................... 82 

Table 5. 3: Percentage of Group 1 (Chem102, Sem 2, 2011) student response pattern 
to Item 3 ..................................................................................................................... 85 

Table 5. 4: Percentage of Group 1 (Chem102, Sem 2, 2011) student response pattern 
to Item 4 ..................................................................................................................... 86 

Table 5. 5: Percentage of Group 1 (Chem102, Sem 2, 2011) student response pattern 
to Item 5 ..................................................................................................................... 88 

Table 5. 6: Percentage of students (Chem102, Semester 2, 2011) who correctly 
answered the first part and both parts of the items in the diagnostic test (Post-Test 
and Delayed Post-Test) .............................................................................................. 90 

Table 5. 7: Comparison of students’ misunderstanding of stereochemistry concepts at 
the end of post-test of SCDT ...................................................................................... 91 

Table 5. 8: Percentage of Group 2 (Chem121, Sem 1, 2012) student response pattern 
to Item 1 ..................................................................................................................... 93 

Table 5. 9: Percentage of Group 2 (Chem121, Sem 1, 2012) student response pattern 
to Item 2 ..................................................................................................................... 93 

Table 5. 10: Percentage of Group 2 (Chem121, Sem 1, 2012) student response 
pattern to Item 3 ......................................................................................................... 94 

Table 5. 11: Percentage of Group 2 (Chem121, Sem 1, 2012) student response 
pattern to Item 4 ......................................................................................................... 95 



 

xi 

Table 5. 12: Percentage of Group 2 (Chem121, Sem 1, 2012) student response 
pattern to Item 5 ......................................................................................................... 96 

Table 5. 13: Percentage of students (Chem121, Semester 1, 2012) who correctly 
answered the first part and both parts of the items in the diagnostic test (Post-Test 
and Delayed Post-Test) .............................................................................................. 96 

Table 5. 14: Descriptive statistics for students’ achievement in SCDT ..................... 99 

 
Table 6. 1: Factor loading, eigenvalue and percentage of variance for SALG 
(Chem102, 2011) (n = 114) ...................................................................................... 109 

Table 6. 2: Scale development of SALG ................................................................. 110 

Table 6. 3: Internal consistency reliability (Cronbach’s alpha) for the SALG scales
 .................................................................................................................................. 111 

Table 6. 4: Inter construct correlations and square roots of average variance extracted 
for the SALG scales ................................................................................................. 111 

Table 6. 5: Factor loading after CFA for SALG – Chem102, 2012......................... 113 

Table 6. 6: Factor loadings of four-factor SEM and Squared Multiple Correlations 
(SMC) ....................................................................................................................... 118 

Table 6. 7: Internal consistency reliability of SALG scales after CFA ................... 119 

Table 6. 8: Standardized regression weights ............................................................ 119 

Table 6. 9: Squared multiple correlations ................................................................ 121 

Table 6. 10: Student assessment of their learning gains (SALG) mean scores 
Chem102, 2012 ........................................................................................................ 122 

Table 6. 11: Pearson correlation coefficient values of four factors of the SALG 
instrument ................................................................................................................. 123 

Table 6. 12: Demographics profile of the interviewees (N= 10) ............................. 124 

Table 6. 13: The six categories that emerged out of the coding of student qualitative 
data ........................................................................................................................... 125 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

List of Figures 

 

Figure: 2. 1. Curriculum Evaluation Model ................................................................. 9 

Figure: 2. 2. POGIL facilitation plan ......................................................................... 14 

Figure: 2. 3. Learning cycle approach ........................................................................ 15 

Figure: 2. 4. An illustration of how a POGIL session is organised ........................... 19 

Figure: 2. 5. A model for summarising the main components of working memory 
(proposed by Baddeley and Hitch (1974)) ................................................................. 23 

Figure: 2. 6. Johnston’s Information Processing Model ............................................ 24 

 
Figure: 3. 1. An outline of the research design .......................................................... 41 

Figure: 3. 2.  Items 4 & 5 from the Stereochemistry Concept Diagnostic Test 
(SCDT) ....................................................................................................................... 48 

Figure: 3. 3. Item 1 from Student Assessment of Their Learning Gains questionnaire
 .................................................................................................................................... 53 

Figure: 3. 4. Framework for construct validity (Trochim & Donnelly, 2006) ........... 57 

 
Figure: 4. 1. Curtin graduate attributes ...................................................................... 65 

Figure: 4. 2. Students’ responses to a clicker question .............................................. 72 
 

Figure: 5. 1. The percentages of Chem102 students who provided the correct 
response to both tiers of the 5 items in the Stereochemistry concept diagnostic test. 90 

Figure: 5. 2. The percentages of Chem121 students who provided the correct 
response to both tiers of the 5 items in the Stereochemistry concept diagnostic test. 97 
 

Figure: 6. 1. An outline showing the administration and data analysis of SALG.... 107 

Figure: 6. 2. The measurement and structural models of SEM: with three latent 
factors. ...................................................................................................................... 114 

Figure: 6. 3. Confirmatory factor model obtained with SALG data from Chem102, 
Semester 2, 2012 ...................................................................................................... 117 

Figure: 6. 4. Structural model showing relationship between the latent constructs . 120 

 

 

 



 

1 

Chapter 1 

Introduction 

 

1.1 Introduction 

Section 1.2 provides some background to the genesis of the research and the nature 

and scope of the study. Section 1.3 outlines the key research questions upon which 

the research has focused. Section 1.4 includes insights on the significance of the 

research study. At the end of the chapter, Section 1.5 lists key terms used in this 

thesis and their definitions; in Section 1.6 the general outline of the organisation of 

the thesis is given.  

 

1.2 Background 

Pedagogical approaches in chemistry at the tertiary level are changing  from a 

knowledge-transmitting teacher-focused lecture method to concept-developing 

student-centered active learning (Anderson, 2002; Bedgood Jr., 2008; Bowen, 1994; 

Day & Houk, 1970; Trigwell & Prosser, 1996). The trend  is  not an exception in 

Australian universities as evidenced from the literature (Cawley, 2008; Hager, Sleet, 

Logan, & Hooper, 2003; Lawrie, 2010; O'Toole, 2010; Watters & Watters, 2007; 

Zeegers & Martin, 2001). Contemporary research into cognitive understanding of 

post-secondary students is providing exciting challenges for teachers to improve 

chemical education.  

 

First year tertiary science educators in Australian universities, through grant funding 

groups from the Committee for University Teaching and Staff Development 

(CUSD), Australian Universities Teaching Committee (AUTC) and the Australian 

Learning and Teaching Council (ALTC) have been practicing various innovative 

teaching approaches both in the classroom and in the laboratory. These innovative 

approaches are designed to accommodate class size, diversity, students’ incoming 

skills, knowledge bases, and expectations (Rice et al., 2009).  

  

Indeed, studies reveal that traditional didactic methods are no longer meeting 

students’ educational needs. Typically, the first year cohort of science students 

taking chemistry as one of the science courses, vary widely in students’ background, 
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interest and ability levels. The abstract nature of chemistry topics may create  

difficulties for students to appy knowledge  to solve text-book, examination and real-

world problems (Frost, 2010). According to Apple (2004), students in the lecture 

setting gain little experience in teamwork and associated skills needed for the 

workplace. All these considerations may have led to chemistry education reform 

initiatives that include changing the curriculum and course content, including digital 

technology-assisted instruction, and incorporating student-focused active learning.  

 

A general notion of university chemistry educators is that active student engagement 

and social interaction are now recognised as being essential for most students to gain 

a scientific understanding and long-term retention. Marshall (2010) argues for an 

established need for introductory chemistry courses to offer interactive learning 

environments for all types of students in order to advance their scientific reasoning 

and problem solving skills.  Many such research-based instructional strategies which 

involve small groups of students (Anderson, 2002; Felder, 1996; Kovac, 1999) have 

been proposed and implemented in first year science courses (Basu-Dutt, Slappey, & 

Bartley, 2010; Ruiz-Primo, 2011).  

 

These research-based teaching practices are often termed reciprocally as cooperative 

learning, collaborative learning, small-group learning, and team-based learning by 

university academics but pedagogical researchers find distinctions among these 

terms (Cooper, 2005). However, when these innovative instructional strategies were 

used optimally, the educational experience of students in terms of satisfaction and 

retention was shown to have improved significantly (Francisco, 1998; Gosser, 

Kampmeier, & Varma-Nelson, 2010; Lewis, 2006; Lyon & Lagowski, 2008).  

 

Process Oriented Guided Inquiry Learning (POGIL Project) is one such student-

centered instructional approach where students work in small groups with the 

instructor acting as a facilitator. In a POGIL classroom, students work in learning 

teams using specially designed activities that promote mastery of the discipline 

content and the development of skills necessary for scientific inquiry.  

 

The POGIL method of instruction effectively combines processing skills and the 

small-group learning environment and POGIL-influenced instruction has shown 
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substantial improvement in student attitudes, retention and performance in general 

chemistry classes (Farrell, Moog, & Spencer, 1999; Hanson & Wolfskill, 2000).  

 

1.3 Objective 

The purpose of this research was to study the effectiveness of POGIL instruction in 

undergraduate chemistry classes. The research objectives for this study were 

generated from the literature regarding small group active learning like POGIL in 

chemistry classes. 

1. Identify the skills needed for the development and practice of skills in 

POGIL classrooms. 

2. Investigate how the POGIL was implemented in classrooms. 

3.   Investigate students’ conceptual understanding in POGIL classrooms. 

4. Investigate students’ perception of their learning in POGIL classrooms. 

 

The following research questions were addressed. 

1. How do the skills that students learn in POGIL classroom align with 

university graduate attributes?  

2. How are these learning requirements implemented through POGIL-based 

curriculum? 

3. How effectively do students achieve the intended learning outcomes 

using a POGIL approach? 

4. In what ways do students perceive their learning while engaged in POGIL 

classes? 

1.4 Significance 

The use of guided inquiry and cooperative learning has been very limited at 

university level. However, the POGIL method has shown to be effective in chemistry 

major courses at several institutions in the United States. More recently, in Australia, 

Active Learning in University Science (ALIUS), a collaborative project of six 

Australian universities, uses POGIL as a model of teaching innovation to engage 

students in large first year chemistry classes. In a recent report submitted to ALTC 

(Australian Learning and Teaching Council), Bedgood Jr et al. (2012) highlighted 

the successful journey of POGIL implementation and discussed significant 

challenges faced by Australian chemistry educators while adopting active learning 
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strategies at ALIUS member institutions. Bedgood et al. state that student 

performance is maintained or improved by changing to an active learning strategy.  

 

The study reported in this thesis measures the effectiveness of POGIL as a pedagogy 

to reduce students’ non-scientific conceptions involved in stereochemistry. In this 

study, the use of POGIL allowed students to discover for themselves the principal 

features of chirality in organic molecules. Engagement of students’ conceptions and 

their misconceptions is important during instruction for the achievement of deeper 

and a scientifically correct understanding (Ozmen & Ayas, 2003; Sreenivasulu & 

Subramaniam, 2012; Tan, Taber, Goh, & Chia, 2005; Treagust, 1988). The results of 

an exploratory research study of organic chemistry educators (Duis, 2011) on 

students’ understanding of organic chemistry concepts recommended the need to 

design new assessments to elicit students’ explanations of their different conceptions 

in organic chemistry.  

 

This research is significant in several ways. Firstly, the study is designed to show 

that a change of existing teaching practice is possible and that improved learning 

outcomes may be achieved. Secondly, the study is designed to gain an understanding 

of Australian students’ perceptions of the philosophy behind POGIL.  Thirdly, the 

research findings may help Australian educators to extend POGIL methodology to 

other learning areas of Science and Engineering, besides Chemistry. Furthermore, 

the research outcome may help innovative secondary school science teachers explore 

the possibilities of implementing POGIL methods in senior secondary science 

subjects. 

 

1.5 Definitions and Terminology 

Several terms have been used in this thesis to convey specific meanings and to avoid 

any misunderstandings. 

 

1.5.1 General Definitions 

Collaborative learning – a small group of students working together towards a 

common goal using well-structured learning materials that help guide the group 

toward a particular learning outcome (Shibley & Zimmaro, 2002).  
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Constructivism – a philosophy of learning in which knowledge is built up from 

within by a thinking person (Staver, 1998). 

Cooperative learning – small-group based student interaction to support each group 

member to improve their learning (Joliffe, 2007). 

Learning cycle – a theory that states that students’ learning occurs in three stages: 

exploration, concept invention, and application (REF, Karplus and Thier?). 

Metacognition – being aware of one’s conscious and deliberate thoughts. 

Misconceptions – the ideas that provide incorrect understanding of ideas, objects, or 

events that, typically, are constructed based on a person’s experience (Ameyaw & 

Sarpong, 2011). 

Pencast – a digitalised interactive, portable document containing student’s and/or 

teacher’s notes and their captured audio (Murray, 2012).    

Process Oriented Guided Inquiry Learning: POGIL – a student centered teaching 

philosophy in which students as self-managed small groups are engaged in a learning 

cycle of focused guided inquiry activities that are intended to develop content 

mastery and process skills (Moog & Spencer, 2008).  

Process skills – a set of skills that POGIL students are expected to gain in order to 

promote their maturity in communication, written expression and problem solving 

(Hein, 2012). 

 

1.5.2 Chemistry Terminology  

A chemistry book authored by Blackman, Bottle, Schmid, Mocerino and Wille 

(2008) was consulted for the following chemistry related terminology. 

 

Achiral molecules – molecules that are superimposable on their mirror images.  

Chiral molecules – molecules that can form non-superimposable mirror images. 

Conformations – the different positions into which a molecule can twist. 

Configuration – a matter of right handedness and or left handedness. 

Diastereomers – stereoisomers that are not mirror images of each other. 

Enantiomers – a pair of stereoisomers that are mirror images of each other. 

Isomers – compounds with the same formula and different structures. 

Organic chemistry – the chemistry of carbon-containing compounds 

Stereoisomers – isomers in which the atoms are connected in the same way, but 

differ in how the atoms are arranged in space  
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Stereocenter or stereogenic atom – A stereocenter is an atom for which the 

interchange of two groups converts one stereoisomer into another  

 

1.6 The Organisation of the Thesis 

The thesis is organised into various chapters based on the research objectives. After 

the first chapter, the thesis consists of a further 6 chapters: 

 

Chapter 2, Literature Review, describes studies pertaining to the POGIL approach; 

the curriculum evaluation framework adopted for the research study, students’ 

conceptions of the particulate nature of matter and organic chemistry, and an 

evaluation of POGIL implementations.  

 

Chapter 3, Research Methodology, describes the research methods used in the study, 

which begins with a general description of research design and includes data 

collection, data analysis, and details of instruments with their validity and reliability. 

 

Chapters 4, 5, and 6 contain the results of the research. Chapter 4, Intended and 

Implemented Curriculum, addresses the first and second objectives of the research 

concerning the skills needed for first year undergraduate chemistry students for 

successful learning in POGIL class.  Relevant information relating to the intended 

and implemented curriculum of the first year chemistry courses, Chem101 and 

Chem102 is presented. The second research objective addressed was, how the 

learning requirements were implemented as part of the curriculum. The researchers’ 

observations of the POGIL interactions were included in this chapter. 

 

Chapters 5 and 6 address the third and fourth objectives of exploring the students’ 

conceptual understanding and their perceptions of learning in a POGIL class. 

 

Chapter 5, Achieved Curriculum, the results of the data analysis pertaining to 

students’ understanding of stereochemistry concepts are presented.  
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Chapter 6, Perceived Curriculum, addresses exploratory and confirmatory studies 

relating to the validation of SALG questionnaire. The results of students’ general 

perception of their learning gains were also reported. 

 

Chapter 7, Discussions, Conclusion, and Implications for Future Research, the final 

chapter, summarises and compiles the findings of the research. The implications of 

the results and limitations of the research are discussed along with suggestions for 

future research. 
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Chapter 2 

Review of the Literature 

2.1 Introduction 

This review focuses on literature relevant to this study of an intervention that used 

Process Oriented Guided Inquiry Learning, POGIL, as a way to improve students’ 

understanding of chemistry in first year undergraduate classes.  

 

Section 2.2 reviews literature related to the curriculum evaluation framework 

adopted for the study. Further to an introduction to POGIL, Section 2.3 reviews the 

theoretical framework, research on the use of POGIL for the development of 

students’ process skills, logical thinking, characteristics of POGIL materials and the 

use of technology in POGIL classes. 

 

Section 2.4 reviews literature relating to research on student conceptions, their origin 

and several studies related to students’ alternative concepts in chemistry, especially, 

organic chemistry. Section 2.5 features the literature related to methods used in 

investigating students’ conceptions and their implications for teaching and learning. 

Literature pertaining to the implementation and effectiveness of POGIL is reviewed 

in Sections 2.6 and 2.7. Section 2.8 highlights the research related to students’ 

perceptions of POGIL implementation in undergraduate classes and identifies the 

need for a reliable instrument to gauge students’ perception of their learning in 

POGIL classes. Finally, Section 2.9 reviews literature related to POGIL 

implementation in Australia.  

 

2.2 Curriculum Framework 

The ideas of education in practice are expressed as curriculum, defined concisely by 

Taba (1962, p. 529) as a “plan for learning” and elaborated further by Walker (1990, 

p. 133) as “the content and purpose of an educational programme together with their 

organisation”. The framework, as shown in Figure 2.1, for the evaluation of the 

POGIL course used in this research, was developed by Keeves (1995), originating 

from the studies of the International Association of Evaluation of  Educational 

Achievement (IEA) and modified or developed further by Van den Akker (1988) and 

Treagust (1993).  
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Figure: 2. 1. Curriculum Evaluation Model 

 

Summarising information on the science curricula of 23 countries, Rosier and 

Keeves (1991) suggested that the science curriculum could be viewed in terms of: 

 “three sequential stages, which related to three groups of agents involved in 

science education, namely the curriculum planners, the classroom teachers 

and the students. The stages are (1) the intended curriculum, (2) the 

implemented curriculum, (3) the achieved curriculum”.  

 

The implemented curriculum is dependent on the intended curriculum and the 

achieved curriculum depends on the curriculum implemented in the classroom. 

Treagust (1986b) added an additional stage to the framework, that is the perceived 

curriculum. These four aspects were used as a lens though which this study viewed 

the implementation of POGIL in first year chemistry classes. Subsequently, the 

effectiveness of the POGIL was evaluated in terms: 

(i) the intended curriculum - the way chemistry during first and second 

semesters of a year-long course is to be presented based on the course outline 

and instructional materials;  

(ii) the implemented curriculum - the manner in which POGIL is blended into 

first year chemistry instruction;   

(iii) the perceived curriculum - the actual learning experiences as perceived 

by the students  

(iv) the achieved curriculum - the resulting learning outcomes of the students. 
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The intended curriculum, which may also be labelled as recommended, adopted, 

formal, explicit or the ideal curriculum (Cuban, 1993), consists of the aims 

objectives, syllabus, course materials, and textbook content and indicates the 

learning programme to be achieved through teaching science or chemistry (Menis, 

1994). According to Van den Akker (1988), the intended curriculum comprises the 

fundamental philosophy or the vision of the curriculum and written curriculum 

documents or materials that outline these intentions. Course outlines, practical 

activities, handouts, assessment tasks, and in-class worksheets reflect the teachers’ 

interpretation of the intended curriculum. The intended curriculum, according to 

(Treagust, 1986b), is described in terms of the syllabus, the textbooks, ‘teaching 

foci’, and the nature of course-work as illustrated by the teaching academics. 

 

The implemented curriculum, also termed the taught, implicit, operational or 

delivered curriculum (Cuban, 1993), represents the opportunity that is offered 

formally or informally to students to learn and is more visible than the intended 

curriculum. Eggen, Pelgrum and Plomp (1987) described the implemented 

curriculum as the teaching-learning process within the classroom in terms of the 

methods used and the applied teaching approaches. According to Treagust (1986b), 

the implemented curriculum can be examined by the qualitative and quantitative data 

related to the teacher’s class organisation, class management, the teacher’s handling 

of students of different ability levels, student motivation and the nature of academic 

work. 

 

The perceived curriculum, according to Treagust (1986b), is the curriculum actually 

experienced by the students. Van den Akker (1998, pp. 421-447) referred to the 

students’ perspective of their learning experiences as the experiential curriculum 

which consists of “those things that a student chooses to emphasise, elaborate on, 

ignore, or omit as he or she recounts learning from a science class or a field trip – 

learners personal meanings”.  

 

The achieved curriculum also referred to as the learned or attained curriculum 

(Cuban, 1993; Van den Akker, 1988; 1998, pp. 421-447), portrays learning 

outcomes achieved by the students as recorded in their results of assessment.  
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2.3 POGIL 

POGIL is a student-centered instructional strategy that provides opportunities 

simultaneously to teach both content and key process skills. The genesis of POGIL is 

deeply rooted in Spencer’s (1999) student-focused active learning (SFAL) that 

offered students opportunities to become involved in their learning though social 

interaction. In his article, Spencer commended the need to change the conventional 

roles of teachers and students for the successful implementation of SFAL in the 

chemistry classroom and laboratory. According to Spencer, students become active 

learners when they reach their own conclusions rather than just verifying the 

information or concept. Similarly, POGIL aims to develop learning and process 

skills while guiding the students to a conceptual understanding.  

According to the Moog, Creegan, Hanson, Spencer, Straumanis, and Bunce (2009), 

the structure of POGIL is based on philosophical foundations of teaching that 

provide a pedagogical basis for structuring the learning environment. Identifying 

POGIL as a succinct model of effective learning, Moog et al. state that: 

(POGIL Project) learning is an interactive process of thinking carefully, 

discussing ideas, refining understanding, practicing skills, reflecting on 

progress, and assessing performance.  (p. 90) 

In a POGIL paradigm, instructors facilitate learning rather than serve as a source of 

information while students work in small self-managed groups on activities to 

explore concepts by examining the data or information (Spencer & Moog, 2008). 

Furthermore, Moog et al. (2009) highlight the incorporation of five key ideas into 

research-based pedagogies like POGIL: adoption of a constructivist model for 

learning; use of the learning cycle as a paradigm for the construction and design of 

classroom and laboratory activities; in-class activity sheets containing models and 

representations that help students make connections and visualise the material; 

incorporation of peer to peer teaching through cooperative learning groups; and 

teaching metacognitive skills in an explicit manner. 

 

2.3.1 Theoretical Framework 

The research-based chemical education approaches have utilised and/or modified 

learning theories in order to develop curriculum materials and instructional 
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strategies.  According to Abraham (2008), the theoretical framework helps the 

researcher identify the appropriate research procedures to assess the developed 

curriculum materials and instructional strategies. The following is a review of the 

theory-base to which the POGIL approach and the characteristics of POGIL activity 

materials were deeply related. 

 

2.3.2  Constructivism 

The theory of constructivism emphasises knowledge construction rather than 

knowledge transmission. Knowledge is personal and is constructed in the minds of 

the learners when they actively analyse information or data. It is not acquired 

through direct transmission from the instructor or a resource (Bodner, 1986; Sewell, 

2002). Students’ constructive learning of new information widely depends on their 

misconceptions, beliefs, likes and dislikes (Karplus & Butts, 1977) and their prior 

knowledge influences what new or modified knowledge they will construct as a 

result of their learning experience in the classroom (Sewell, 2002). Explaining 

students’ knowledge construction in chemistry courses, Cracolice (2005) stated that 

the constructivist model of science learning serves as a pragmatic theoretical base for 

designing an effective curriculum that allows students to learn concepts effectively. 

Cracolice infers that the constructivist theory of knowledge development is the most 

applicable in the chemistry classroom.  

 

Providing a more focussed theoretical framework, Cole, Becker, Towns, Sweeney, 

Wawro, and Rasmussen (2012) identify theoretical foundations for small group 

active learning pedagogy like POGIL as emerging from Vygotsky’s social 

constructivism which views the origin of knowledge construction as being the social 

interaction of people, interactions that involve sharing, comparing and debating 

among learners. Vygotsky’s (1978) sociocultural theory of learning accentuates the 

supportive guidance of peers, mentors for the development of higher order functions, 

and independent competence. Accordingly, Wertsch (1985) viewed ‘teaching by 

engaging’ as a way of transforming social interaction into individual tools of 

thinking and problem solving. The interactive social milieu of learning is central to 

the POGIL classroom, where learners identify the concept and refine its meaning by 

critically exploring the information.  
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In a POGIL class, students work in groups of three or four with a flexible 

membership. The assignment of group membership varies with the size of the class 

(Straumanis, 2010). In a smaller class, the instructor may assign the group 

membership based on the skills and personality, whereas in large classes, the 

instructor may assign in a random manner. The instructors allow students to switch 

groups at the start of the semester and this switching becomes less frequent as the 

semester progresses. Students are assigned roles which can often be changed. 

Typical POGIL roles (Bailey, Minderhout, & Loertscher, 2012; Libby, 2008; Vacek, 

2011) are: Manager, Recorder, Presenter or Spokesperson and Reflector or Strategy 

Analyst. Additional roles such as Technician, Encourager and Significant Figure 

Checker are made available depending on the nature of the POGIL activity. 

 

 The manager ensures that members are fulfilling their roles while 

participating in the activities and understanding the concepts.  

 The recorder maintains a log of important concepts that the group has learnt 

and records important aspects of group discussions, observations, insights, 

etc.  

 The presenter concisely reports the group discussion to the whole class 

within the set time limit.  

 The reflector or strategy analyst observes and comments on group dynamics 

and behaviour with respect to the learning process.  

 The technician performs all technical operations for the group, sourcing 

information, and using resources like a computer or calculator.  

 The encourager acknowledges good ideas and insights of group members.  

 The significant figure checker ensures an orderly role out of events/ideas.  

 

Formal roles are considered essential to generate equal participation among group 

members in terms of achieving the content and process goals (Straumanis, 2010). In 

other words, without participation or contribution, a student may not have an 

opportunity to develop content knowledge or process skills. Structured roles in 

collaborative learning groups foster connections between students (Caulfield & 

Persell, 2006) and develop teamwork skills that add value at the workplace 

(Dickinson, 2000). Interpersonal dynamics in a POGIL classroom are important to 
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positively shape student learning. When a POGIL class has student groups with un-

assigned roles, the instructor may direct the question to a less active student or invite 

a group of students to present their information to the whole class (Cole et al., 2012). 

In an ideal POGIL setting, the instructor advises the students to rotate their roles.  

 

In a POGIL class, the role of a teacher is like a facilitator rather than an information 

transmitter, guiding students to develop their process skills and conceptual 

understanding. Here, the role of a facilitator is to encourage full participation, 

promote mutual understanding, and cultivate shared responsibility (Doyle, 2011). 

Effective facilitation involves an expert teacher utilising his or her expertise to 

enable learners to gain a deeper self-understanding of concepts or content. However, 

facilitation is more than a set of technical skills that are applied to promote 

discussion in a student-centered learning environment (Regmi, 2012). Minderhout 

and Loertscher (2008) outlined a profile for a quality POGIL facilitator that included 

a set of skills ranging from preparation to the closure of POGIL-style interaction. 

Skills of listening and rephrasing, asking critical questions and recognising emotions 

are considered extremely useful in learner-centered classrooms. Minderhout and 

Loertscher modelled a facilitation plan, as shown in Figure 2.2 that aimed to guide 

successful teaching performance before, during and after active learning.  

 

Figure: 2. 2. POGIL facilitation plan 

 



 

15 

2.3.3 Learning Cycle 

Karplus and Butts (1977) proposed the learning cycle as a structured, mediated form 

of learning and, according to them, the three phases of a learning cycle are 

exploration, concept introduction, and concept application. During the exploration 

phase, students explore new materials and new ideas with minimal teacher guidance.  

During the concept introduction phase, students try to define the concept or idea or 

principle, applying a new pattern of reasoning to their experiences. During the last 

concept application phase, students apply their conceptual understanding or 

reasoning to a new learning situation. The learning cycle approach has been accepted 

by many science educators as a teaching method (Abraham & John, 1986; Goh & 

Chia, 1989), as a source for curriculum construction (Renner, Abraham, & Birnie, 

1985), and as an inquiry model offering  students the opportunity for meaningful and 

efficient self-evaluation and self-regulation (Halloun, 2006).  

 

 

Figure: 2. 3. Learning cycle approach 

 

The learning cycle approach has been reported as being superior to traditional 

approaches with regards to reflection of scientific inquiry processes in the laboratory 

(Pavelich & Abraham, 1979),  content achievement  (Purser, 1983),  intellectual 

development gains (Killian & Warrick, 1980; Purser, 1983; Schneider, 1980), and 

retention of gains of content achievement (Killian & Warrick, 1980; Schneider, 

1980).  Abraham (2005) identified the learning cycle approach as a student-oriented 

inquiry-based instructional strategy with strong connections to constructivist ideas of 

nature of the science (Bodner, 1986) and the developmental theory of Piaget (1963). 
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Inquiry-based teaching methods modelled on the learning cycle are widely believed 

to be the best methods for helping students develop an understanding of the nature of 

science (Lawson, 2003). Further, Lamba (2008) inferred that learning cycle-based, 

hands-on and minds-on strategies encourage scientific thinking and yield better 

student outcomes. Student discussions from learning cycle structured activities can 

lead to the discovery of concepts. One of the important features of the POGIL 

approach is assigning special attention to the use of the learning cycle as the primary 

structure for the development of content knowledge. In a POGIL class, students 

work in self-managed groups and explore the information to construct their own 

understanding of concepts or ideas with a guidance of the teacher.  

 

The learning cycle activities of POGIL have a sequence of questions that are 

intended to help students progress steadily, to help them derive appropriate 

conclusions and to develop process skills such as problem solving, deductive 

reasoning, communication and self-assessment (Eberlein, 2008). Libby (2008) 

proposed the use of learning cycle activities without class groups as a way to move 

from lecturing to active learning.  

 

Research supports the learning cycle as an effective way to help students enjoy 

science, understand content, and apply scientific processes and concepts to authentic 

situations (Lawson, Abraham, & Renner, 1989).  The learning cycle approach is 

effective for learners exploring new science concepts. Further, teachers can use the 

learning cycle approach to diagnose and challenge students’ conceptions about 

scientific principles (Colburn & Clough, 1997). 

 

2.3.4 Characteristics of POGIL materials 

POGIL pedagogy uses specially designed activities/materials:  

 for usage in self-managed team learning where the instructor becomes a 

facilitator 

 that help students construct their understanding of concepts  

 facilitate the development of higher level thinking skills and ability to apply 

the learnt knowledge in new situations 
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The POGIL activities contain a number of models that the students explore to answer 

critical thinking questions (P. J. P. Brown, 2010). The models may include text, 

equations, diagrams, tables, graphs, and figures related to the chosen concepts. 

Writers of POGIL activities (Luxford, Crowder, & Bretz, 2011; Spencer & Moog, 

2008) usually focus on the development of one to three concepts.  The students are 

asked to answer some key questions, usually, sentence completion items, 

manipulation of physical objects, and filling in tables through which they are guided 

to the desired concepts. The critical thinking questions of the activity sheets test the 

ability of the students to apply their conceptual knowledge in new learning 

situations. Interpretation of graphs and written communications are ideally 

considered the key process skills. The POGIL activities which are designed for upper 

level university courses emphasise the exercise of a set of process skills for 

insightful conceptual understanding. According to Geiger (2010), the structured 

POGIL activities lead students to higher levels of Bloom’s taxonomy, particularly at 

Level 2 (concept development) and Level 3 (application of knowledge to new 

contexts).  

 

The POGIL activities are broadly of two categories based on the learning cycle 

approach: concept invention activity, and concept formation activity. Concept 

invention (Spencer, 1999) activities typically follow the learning cycle approach of 

exploration, concept invention/introduction and application. In situations where the 

learning cycle structure is not applicable, the learning content provides opportunities 

for the development of process skills (Cole & Bauer, 2008). In concept formation 

activities, the concept or concepts to be understood are presented in the model as a 

graph or table at the start of the activity. For concept formation activities, the 

learning cycle approach starts with concept introduction/concept invention stage, 

followed by exploration and application stages. The critical thinking questions affirm 

understanding of concepts presented and develop process skills. Content learning 

objectives are in the form of statements of what students will be able to ‘gain’ as a 

result of completing the POGIL task (Cole & Bauer, 2008 pp. 566-569). In an article 

on their implementation of lecture-free biochemistry using POGIL, Minderhout and 

Loertscher (2007) listed four expected learning outcomes of a POGIL activity on 

enzyme catalysis. The structure of the POGIL activities included a pre-activity 

assignment, a classroom activity, and a post-activity skill exercise. In another study, 



 

18 

Luxford, Crowder and Bretz (2011) reported that POGIL activity on symmetry 

elements and symmetry operations allowed students to explore and understand the 

concepts and helped them create definitions of common symmetry terms. The 

activities consisted of two models where critical thinking and exercise questions 

were included. During their POGIL implementation at an urban university, Ruder 

and Hunnicutt (2008) used POGIL class activities containing many short models 

with three to ten critical thinking questions each to enable the large class stay on task 

and for easy intervention.  

 

The POGIL materials and the classroom facilitation support the development of both 

cognitive inquiry skills and group process skills (POGIL Project, 2008b). A 

hierarchical rating scheme in the form of rubrics (Stevens & Levi, 2005) was 

proposed by Bauer and Cole (2012) to provide guidance for the development of new 

materials for POGIL. The POGIL rubric, according to Bauer and Cole, guides 

authors of POGIL activities on the intended structure to reflect the simultaneous 

development of inquiry and process skills.  

  

Several POGIL practitioners (Geiger, 2010; Luxford et al., 2011; Schroeder & 

Greenbowe, 2008; Straumanis, 2010; Yezierski & Birk, 2006) have established 

examples of POGIL implementation strategies in small and large enrolment 

chemistry classes. The organisation of a POGIL session in large enrolment classes or 

workshops is illustrated in Figure 2.4.  

 

In a typical POGIL class, the students organise themselves into small groups of three 

to four. The instructors offer a structured or flexible group membership. As the 

students arrive the class, the instructor projects the day’s intended learning objectives 

and the first model of the POGIL activity. The introduction lasts a very short time, 

maybe a minute or two. The students are asked to explore the model and answer the 

questions given in the activity sheet. As the students work in groups, the instructor 

walks around observing the students’ progress and provides direction, if sought by 

any student groups, without divulging any answers.  
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Figure: 2. 4. An illustration of how a POGIL session is organised
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This learning cycle approach of POGIL activities helps the students to identify the 

concepts themselves and to construct their own understanding of the concepts. The 

instructor projects a series of multiple-choice clicker questions at key intervals to 

help groups progress towards completion and to check their understanding of the 

material. The students then answer the questions using a physical clicker device in 

about 30 seconds. Based on the results, the instructor may give a mini-lecture or a 

whole-class discussion to resolve any students’ misunderstandings of the concepts.  

 

This instructional method motivates students to stay engaged in their group work. In 

some POGIL classes, the honours students act as teaching assistants and they report 

back to the lecturer on any difficulties faced by the students and their progress on a 

particular activity. In practice, these POGIL sessions last for about 45 to 50 minutes. 

The class ends with a wrap-up of concepts, either with a mini-lecture or with clicker 

questions. Further, the students are expected to complete the exercises and/or 

problems as homework or complete assignments during the tutorial sessions.  

 

Drossman et al. (2011) assessed the mentoring programme in a first year 

atmospheric science class wherein four mentors developed and tested the 

effectiveness of a POGIL-based curriculum and reported that the use of POGIL 

assignments promoted graduate students’ understanding of cognitive and social 

constructivist principles. In their qualitative studies, the mentors acknowledged the 

use of teamwork and student collaboration in POGIL lessons as tools to develop 

problem-solving skills and connecting classroom topics with the real life 

experiences. The study also reported an improved understanding of the concepts of 

atmospheric physics by the students with the use of well-structured POGIL 

assignments. 

 

2.3.5 Process Skills 

Process skills are defined as the “methods of collecting, analysing, and acting upon 

information used in problem solving” (Molitor & George, 1976, p. 405). Hanson and 

Wolfskill (1998) highlighted the importance of process skills for chemistry students 

and introduced workshops aimed to impart skills that employers expect from their 

prospective newly graduated employees. Hanson and Overton (2010) reported the 

need for the development of generic skills like time management, organisation, oral 
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presentation and team working than chemical knowledge skills amongst the 

graduates. The 2012 Graduate Outlook Survey report (Arnott & Carroll, 2013) 

published by Graduate Careers Australia found that the top skills sought by 

employers from the job-ready graduates were: learning, teamwork, communication, 

problem-solving, initiative and enterprise, planning and organising, self-

management, technical skills from the course. Innovative teaching practices focus on 

connecting academic and employability skills.  When instructors focus on how 

students learn, they guide students to use the process skills to learn the information.  

 

The POGIL philosophy, according to Moog and Spencer (2008), emphasises the 

classroom implementation of process skills development that help students enhance 

their mastery of the course content and the institution’s goals. In a typical POGIL 

class, students use both cognitive and affective processes to acquire, interpret and 

apply knowledge. These process skills include: teamwork, oral and written 

communication, management, problem solving, information processing, self-

assessment and critical thinking.  

 

POGIL activities guide the students to use and practice a set of all these process 

goals based on the nature of the learning task. In a study on the effectiveness of 

process workshops in chemistry, Hanson and Wolfskill (2000) reported a significant 

increase in the number of students scoring 50% and above in the examinations, a 

15% increase in enrolment for second year organic chemistry course,  and a 70% 

increase in attendance at the recitation (or tutorial) sessions. 

 

Denson (1986)  documented the effectiveness of investigative instructional methods 

in promoting the acquisition of process skills and inferred that laboratory methods 

and instructional methods are equally effective in improving students’ knowledge of 

chemistry and process skills.  More recently, Bailey, Minderhout and Loertscher 

(2012) have evaluated the implementation of POGIL in their biochemistry classes 

and have reported the benefits in both teaching and learning. In addition to students’ 

practice of process skills like critical thinking, teamwork, problem-solving, their 

incorrect pronunciation of biochemistry vocabulary was reduced by 57% in the 

POGIL class, a key process skill in this context. Micari, Streitwieser, and Light 

(2005) investigated the experiences of undergraduate science students in a large 
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peer-learning programme, and reported improved personal growth in the form of 

communication skills of the participating students that included confident speaking, 

audience understanding, and self-expression.   

 

2.4 Student Conceptions 

Learning is conceptualised when there is a connection between existing and new 

knowledge. Pedagogical research in science over the past few decades (Gilbert & 

Watts, 1983; Taber, 2006; Taber & Watts, 1997) has focussed on students’ general 

understanding of scientific phenomena. The research community, including science 

teachers, have reported an array of findings identifying and analysing reasons for the 

students’ erroneous understanding of concepts (Lawson, Baker, Didonato, Verdi, & 

Johnson, 1993; Schmidt, 1997; Treagust & Chiu, 2011). Though not unusual in the 

learning process, these illogical understandings are often termed misconceptions or 

alternative conceptions. In other words, concepts that are different from scientifically 

acceptable notions have been variously labelled as ‘misconceptions’, ‘alternate 

conceptions’, ‘preconceptions’, ‘alternate frameworks’, and ‘children’s science’ 

(Treagust, 1988).  Misconceptions are ideas held by students that do not align with 

reality. Preconcepts are the ideas that are often self-developed by students without 

any prior knowledge of the subject. The conceptions that differ significantly from 

those which are socially agreed by the scientific community constitute alternative 

conceptions (Gilbert & Watts, 1983). Duit and Treagust (1995) defined conceptions 

as “the individual’s idiosyncratic mental representations” while concepts are 

“something firmly defined or widely accepted” (p. 47). In a study that examined 

undergraduate students’ preconceptions of university research experience, Adedokun 

and Burgess (2011) acknowledged that the impact of students’ preconceptions on 

their learning outcomes should neither be ignored nor overemphasised.  

 

2.4.1 Origin of Alternative Conceptions 

Alternative conceptions may arise from a variety of experiences and many students 

hold alternative conceptions or misconceptions which are densely embedded in their 

long term memory (Gabel, 2005). Baddeley and Hitch (1974) proposed the working 

memory model to depict the mechanism of information processing for complex 

cognitive activities. According to Baddeley (2003), the temporary working memory 

supports human thought processes by providing an interface between perception, 
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long term memory and action. The model of working memory system (Baddeley & 

Hitch, 1974), as shown in Figure 2.5, involves the central executive, 

phonological/verbal state, visuo-spatial storage, and the episodic buffer.  

  

The central executive is responsible for orchestrating storage, transformation, and 

retrieval of information and modality-specific storage buffers like phonological and 

visuo-spatial storage are responsible for holding different types of information 

whereas, the episodic component combines visual and verbal components and links 

them to multidimensional representations in long term memory. Any disorders in 

this storage system may have implications for complex cognitive activities like 

comprehension, learning and reasoning.  

 

 

Figure: 2. 5. A model for summarising the main components of working memory 

(proposed by Baddeley and Hitch (1974)) 

 

Further, based on Baddeley and Hitch (1974) work, Johnstone (1997) proposed an 

information processing model, as shown in Figure 2.6, to describe the complexities 

associated with teaching and learning. In this model, the sensory information passes 

through a perception filter (controlled by prior knowledge) into the limited space in 

short-term/working memory where it is prepared for storage in long-term memory, 

as branched networks or fragments.  

 

Alternative conceptions adhere to these networks when learners are taught with 

incorrect information or when they inaccurately interpret information. Consequently, 

these misconceptions or alternative conceptions become robust when embedded in 

long-term memory. 
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Figure: 2. 6. Johnston’s Information Processing Model 

 

The succeeding nature or the continuity of alternative conceptions, if not diagnosed 

and addressed in learning (Sreenivasulu & Subramaniam, 2012) make them highly 

resistant to change (Garnett, Garnett, & Hackling, 1995) and interfere in the process 

of acquiring new knowledge (Kendeou & van den Broek, 2005). According to 

Gilbert et al. (1982), some of the misconceptions or alternative conceptions arise due 

to “perplexed interpretation of common language with specific scientific language” 

(p. 625). Garnett et al. (1995) considered that some of the conceptions result from 

pedagogical practices and inferred that any conscious knowledge of these should 

help inform teachers in the selection and organisation of the taught curriculum and in 

the scientifically valid construction of conceptions by students.  

 

For educators, it is imperative to identify alternative conceptions before any 

pedagogical practice (Wandersee, 1994); if not, these alternative conceptions 

become integrated into their cognitive structure and can interfere with their 

subsequent learning (Treagust & Chandrasegaran, 2007). As a result, students’ 

understanding of new concepts may be inappropriate and the integration of new 

information into their process of thinking may be very challenging. The knowledge 

of how students perceive, process, and apply their experiences in ways that lead to 

inaccurate way of understanding the world can be useful to instructors in tailoring 

their teaching to address these alternative conceptions (Rushton, Hardy, Gwaltney, & 

Lewis, 2008) .  
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2.4.2 Studies on Students’ Alternative Conceptions in Chemistry 

Appropriate understanding of chemistry concepts may happen when students are 

able to understand the fundamental chemistry concepts from macroscopic, sub-

microscopic, and symbolic perspectives (Orgill & Sutherland, 2008; Treagust, 

Chittleborough, & Mamiala, 2003) and integrate these concepts into their new 

learning.  

 

A broad range of chemical education research focuses studies on student 

understanding and misconceptions in the conceptual areas of particulate nature of 

matter (Ben-Zvi, Eylon, & Silberstein, 1986; Garnett et al., 1995; Griffiths, 1992; 

Nakhleh, 1992; Novick, 1981), chemical equations (Ben-Zvi, Eylon, & Silberstein, 

1987; Hesse III & Anderson, 1992; Kelly, 2010; Naah, 2012; Niaz & Lawson, 1985; 

Nurrenburg, 1987; Savoy, 1988; Staver & Jacks, 1988a, 1988b; Yarroch, 1985), 

chemical equilibrium (Banerjee, 1991; Bergquist, 1990; Johnstone, MacDonald, & 

Webb, 1977; Tyson, Treagust, & Bucat, 1999; Van Driel & Graber, 2002; Wheeler, 

1978), acids and bases (Cartrette, 2011; Epstein, 1998; Kelly, 2010; Sisovic, 2000; 

Smith, 1996), oxidation-reduction (BouJaoude, 1991; Tan et al., 2007) and 

electrochemistry  (Boulabiar, Bouraoui, Chastrette, & Abderrabba, 2004; Garnett & 

Treagust, 1990), physical and chemical change, and thermodynamics (Garnett et al., 

1995; Ozmen, 2004; Palmer & Treagust, 1996).  

 

A minor and yet a steadily increasing number of studies has been taking place on 

students’ understanding of concepts in organic chemistry (McClary & Bretz, 2012; 

Rushton et al., 2008; Villafañe, Bailey, Loertscher, Minderhout, & Lewis, 2011). 

These and other studies have demonstrated that pedagogical methods which 

systematically address common student misunderstandings or misconceptions do 

produce significant gains in students’ conceptual learning. The following is the 

summary of research related to students’ understanding of organic chemistry 

(Section 2.4.4) from where the aims of the present research study have emerged. 

 

2.4.3 Organic Chemistry 

Organic chemistry is the study of the properties, preparation, identification and 

modification of compounds involving carbon. In his introductory activity of a 

textbook on organic chemistry, Straumanis (2009a) considered that the study of 
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organic chemistry was a potential field for sharpening analytical and problem-

solving skills. Analogising the study of organic chemistry to a long story, Klein 

(2012) stated that organic chemistry “is not about memorization, but making sense of 

the plot, the scenes, and the individual concepts that make up the story” (p.iv). The 

research study in this thesis explored students’ understanding of stereochemistry 

concepts in a POGIL-influenced class. 

 

Stereochemistry is an important aspect of organic chemistry that primarily includes 

the study of relative spatial arrangement of atoms within molecules and the study of 

stereochemical requirements and outcomes of chemical reactions. Furio and 

Calatayud (1996) analysed the knowledge levels of grade 12 and university students 

concerning the geometry and polarity of molecules. They reported students’ 

difficulty with molecular geometry, specifically three-dimensional visualization 

which was observed to be due to students’ lack of spatial ability. Earlier, Schmidt 

(1992) investigated pre-university students’ conceptual difficulties associated with 

isomerism and reported restricted conceptions of isomers held by the students. The 

study focused on alcohols and ethers. When identical molecular formulas for two 

alcohols and one ether were given, students classified only two alcohols as isomers. 

The acquisition of stereochemical knowledge is difficult and confusing to students 

(Boukhechem, Dumon, & Zouikri, 2011; Kurbanoglu, Taskesenligil, & Sozbilir, 

2006; Lujan-Upton, 2001). Nevertheless, the integration of conceptual knowledge 

and visuo-spatial skills are considered essential while studying stereochemistry 

(Barnea, 2000; Boukhechem et al., 2011; Habraken, 2004) 

 

Commenting on freshmen difficulties in chemistry, Zoller (1990) highlighted 

examples from organic chemistry that are very easily prone to learning difficulties, 

often leading to misunderstandings or misconceptions. These identified difficulties 

were: relative chemical reactivity of alkenes and alkynes, identifying molecules as 

chiral/achiral based on their steric structure, and comparing nucleophilicity or 

leaving groups. Further, Zoller inferred that the students’ conceptual 

misunderstanding was due to the very abstract or non-intuitive nature of the concepts 

that are not logically interrelated. 
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According to another investigation by Rushton, Hardy, Gwaltney and Lewis (2008), 

fourth year chemistry students exhibited persistent alternative conceptions of organic 

chemistry topics. For example, students incorrectly recognised a resonance 

stabilized, non-aromatic molecule as having aromaticity and a six carbon arene as a 

cyclohexane or an alkene. Their view may be due to a persistent alternative 

conception, that is, the identification of hexagons in bond-line formulas as one 

category, all aromatic or non-aromatic. Further, some of the near-to-graduation 

fourth year chemistry students chose most stable species as the most reactive, due to 

their unclear understanding of the relationship between relative energies and 

reactivity of molecules. 

 

Taagepera and Noori (2000) studied the results of a test administered through the 

application of knowledge space theory, a procedure used to display the students’ 

cognitive organisation of knowledge, and found that organic chemistry students in a 

three-course sequence exhibited alternative conceptions about bond polarity, boiling 

vs. burning, and hydrogen bonding. The students had difficulty in recognising 

reaction types like nucleophilic addition to carbonyl compounds. In a recent study, 

McClary and Bretz (2012) identified alternative conceptions held by undergraduate 

organic chemistry students related to acid strength, their frequency of appearance, 

and their intensity of existence in the students’ mental models. Conspicuously, 30% 

of the students held two alternative conceptions: functional group determines acid 

strength and stability determines acid strength, the mean confidence of these was 

greater than 50%.  

 

2.5 Methodologies for Investigating Conceptions 

The prerequisite for first year chemistry course enrolment in Australia is successful 

completion of Year 12 chemistry or its equivalent. For, international students and 

non-traditional school leavers, bridging units or foundation programmes offer an 

alternative entry into a first year undergraduate chemistry course. Hence most 

students’ prior knowledge and assumptions about chemistry were learned prior to 

starting their first semester chemistry course, and students access these ideas for 

further constructing their knowledge in chemistry. For any science curriculum, the 

essential constituents are its quality and scope of students’ understanding of 

scientific concepts or phenomena. Access to suitable assessment tools which can 
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effectively measure the effectiveness of instruction is highly desired (Treagust, 

2006). In an introduction to a special issue on diagnostic assessment in chemistry, 

Treagust and Chiu (2011) stated that “globally there is increasing interest in the need 

to provide formative diagnostic assessment as a means to assist learners in their 

efforts to develop a more comprehensive understanding of the chemical concepts in 

the implemented curriculum” (p. 119).  

 

For the assessment of students’ conceptions, researchers use a variety of methods, 

such as interviews, think-aloud protocols, open-ended questions, free writing, 

conceptual surveys, pencil-and-paper diagnostic instruments based on multiple 

choice items, two-tier multiple choice tests, prediction–observation–explanation, 

drawings and word associations (Adadan & Savasci, 2011; Peterson, Treagust, & 

Garnett, 1989; Schmidt, 1997).  Amongst these, interviews and two-tier multiple 

choice tests are more research-driven and widely validated (Ozmen, 2004). Bell and 

Cowie (2001) had argued that these assessments of students’ thinking need to be 

integrated into teaching. For the study of students’ understanding of stereochemistry 

concepts in a POGIL classroom, this researcher used interviews and multiple choice 

tests. 

 

2.5.1 Interviews 

Interviews can help teachers recognise, represent, and evaluate students 

understanding. Osborne and Gilbert (1980) used the interview-about instances 

technique, a method meant to explore students’ understanding of a single concept, by 

means of a voice capturing device. To elicit students’ understanding of a concept, 

Osborne and Gilbert showed students a number of cards containing line diagrams. 

Some of the cards depicted an instance or occurrence of the concept and others did 

not. The students were asked to identify with reason, whether the card contained the 

instance of the concept or not. Further to the interview-about instances method, 

Osborne (1980) used the interview-about events technique which he considered a 

more direct way of eliciting students’ descriptions of the physical events.  

 

The think-aloud strategy (Ericsson & Simon, 1998) allows students to verbalise their 

thoughts while completing the task without any disruption. Described as a popular 

strategy, the think-aloud protocol has helped uncover students’ alternative 
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conceptions in chemistry problem solving (Gabel, Sherwood, & Enochs, 1984; 

Rushton et al., 2008). Nyachwaya, Mohamed, Roehrig, Wood, Kern, and Schneider 

(2011) have developed an open-ended drawing tool as a qualitative approach to 

assess students’ understanding of the particulate nature of matter. In this study, 

students described their answers vividly through particulate drawings in an effort to 

provide insight into particulate thinking. The study helped confirm past findings as 

well as uncovering new findings on students’ misconceptions or misunderstandings 

which were not reported in the earlier literature. 

 

2.5.2 Two-Tier Multiple Choice Tests 

Two-tier multiple choice tests have been developed and used by several science 

education researchers since the outcome of Treagust’s (1988) seminal article on 

diagnostic testing in science for the purpose of identifying students’ alternative 

conceptions. Considered easy to administer, the paper and pencil test contain two-

tier multiple choice diagnostic items.  The first tier of the each item consists of a 

content question with two or four choices. The second tier of each item contains a set 

of four possible reasons for the chosen answer in the first part. The reasons contain 

the best possible correct answer and other identified students’ alternative 

conceptions.  

 

Two-tier multiple choice tests when administered and the analysis of results have led 

to the identification of many alternative conceptions held by the students are 

secondary and tertiary levels in various science topics, viz. chemical bonding 

(Jacobs, Kawanaka, & Stigler, 1999), covalent bonding (Birk & Kurtz, 1999), 

covalent bonding and structure (Peterson et al., 1989), qualitative analysis (Tan, 

Treagust, Goh, & Chia, 2002), chemical equilibrium (Tyson et al., 1999), multiple 

representations (Chandrasegaran, Treagust, & Mocerino, 2005), ionisation energies 

of elements (Tan et al., 2005), acids and bases, states of matter (Chiu, Chiu, & Ho, 

2002) and chemistry of solutions (Adadan & Savasci, 2011).  

  

Birk and Kurtz (1999) administered  Peterson et al.’s  two-tier diagnostic test to 

assess first year and advanced college chemistry students’ understanding of 

molecular structure and bonding. Besides reporting several misconceptions, this US 

study also had revealed first year chemistry students’ lack of understanding of 
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concepts of molecular structure from their inconsistent responses to the same 

questions. Later, Yezierski and Birk (2006) developed a 20-item Particulate Nature 

of Matter Assessment Version 2 diagnostic test to identify the students’ alternative 

conceptions about particulate nature of matter and determined the role of computer 

animations in challenging and changing the alternative conceptions.  

 

The two-tier diagnostic tests proved to be convenient for students to answer, and 

valuable for teachers to use in terms of their capability for large-scale administration, 

easy marking, reducing students’ guessing of answers, and more importantly offering 

insights into students’ reasoning (Adadan & Savasci, 2011; Liu, 2010; Othman, 

Treagust, & Chandrasegaran, 2008). Griffard and Wandersee (2001) acknowledged 

the ability of the validated diagnostic instruments in statistically predicting the 

prevalence of students’ alternative conceptions and further argued that experienced 

teachers are able to successfully uncover and address their students’ alternative 

conceptions. Griffard and Wandersee studied college biology students’ pattern of 

completing several tasks from the two-tier diagnostic test aimed to detect high school 

students’ understanding of photosynthesis. They argued that the diagnostic test 

measured students’ test taking skills rather than their actual knowledge because some 

students did not logically follow their response to the first tier question while 

answering the second tier question. Moreover, Griffard and Wandersee stressed the 

need for diagnosing the students’ unconnected knowledge gaps in their conceptual 

framework and that subsequent bridging could prevent the development of the non-

scientifically acceptable concepts. 

 

Garnett et al. (1995) had postulated several factors contributing to students’ lack of 

understanding of PNM, chemical bonding and chemical equilibrium. These factors 

included scientific contextual usage of daily language, over-simplification of 

concepts, use of un-qualified generalised statements, multiple definitions and 

models, lack of prerequisite knowledge and overlap of concepts of similar nature. 

 

The use of diagnostic instruments does benefit instructional staff to identify the type 

of knowledge that students depend on during problem solving and their non-

scientifically acceptable conceptions. Awareness of this knowledge could aid 

planning of lesson sequences. Treagust (2006) suggested that the administration of 
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diagnostic tests at pre and post levels of instruction may help instructors understand 

clearly the nature of students’ understanding and the presence of any alternative 

conceptions related to the particular topic of their studies. Further, Adadan and 

Savasci (2011) hoped that the of Nature of Solutions and Solubility – Diagnostic 

Instrument may help teachers explore the extent and nature of students’ conceptions 

and also provide information on the effectiveness of their own instruction.  

 

Analysis of two-tier diagnostic test results and qualitative data obtained from semi-

structured interviewing of students helped Tsui and Treagust (2010) to make 

evidence-based assertions about students’ scientific reasoning in genetics. Diagnostic 

testing helped to identify students at risk who primarily rely on rote learning of 

concepts without understanding the underlying reasons (Kilic & Saglam, 2009). 

 

2.6 Implementation of POGIL 

With no specified/required approach for its implementation, POGIL can be 

implemented in various ways; no two POGIL settings are alike at any institution or 

in any course. Every implementation of POGIL is unique because every instructor 

and institutional setting is unique (POGIL Project, 2008a). However, the most 

common features of any POGIL classroom implementation includes a daily quiz to 

encourage students to prepare for and attend every class, graded home-work, time 

investment in structuring and emphasising group work, encouraging students to 

adhere to the group roles, use of facilitation strategies to promote group members’ 

interaction, and mini-lectures.   However, the uniqueness of POGIL implementations 

is characterised by small groups of students working collaboratively on learning 

cycle-oriented POGIL worksheets facilitated by instructors in a non-lecturing 

learning environment.  

 

POGIL implementations may span over a few semesters (Drossman et al., 2011; 

Johnson, 2011; Schroeder & Greenbowe, 2008; Vacek, 2011) or alternatively during 

a semester as partial implementation (Cole et al., 2012; Criasia, Lees, Mongelli, 

Shin, & Stokes-Huby, 2009; Mitchell & Hiatt, 2010; Murphy, Picione, & Holme, 

2010; Rajan & Marcus, 2009). In sharing their knowledge and experience of POGIL 

implementation and assessment, Cole and Bauer (2008) call for the inclusion of a 

feedback loop that comprises self-analyses, student assessments and peer 
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assessments from other instructors to identify the strengths and areas of 

improvement in the POGIL implementation. 

 

2.7 Effectiveness of POGIL 

Farrell, Moog and Spencer (1999) first reported successful implementation of 

process-oriented guided inquiry learning in their general chemistry course. Later, 

POGIL was reported to have been successfully implemented in organic chemistry 

(Hein, 2012; Schroeder & Greenbowe, 2008; Straumanis & Simons, 2008), physical 

chemistry (Spencer & Moog, 2008), general chemistry (Criasia et al., 2009; 

Garoutte, 2008; Murphy et al., 2010; Rajan & Marcus, 2009), biochemistry (Bailey 

et al., 2012; Minderhout & Loertscher, 2007), medicinal chemistry (S. D. Brown, 

2010),  and high school chemistry (Barthlow, 2011). Beyond chemistry, POGIL had 

been implemented with positive results in anatomy and physiology (P. J. P. Brown, 

2010), mathematics (Rasmussen & Kwon, 2007), information technology 

(Kussmaul, 2011a, 2011b; Myers, Monypenny, & Trevathan, 2012), environmental 

health (Jin & Bierma, 2011), atmospheric science (Drossman et al., 2011), 

information literacy (Mitchell & Hiatt, 2010), marketing education (Hale & Mullen, 

2009), environmental engineering (Thompson, Ngambeki, Troch, Sivapalan, & 

Evangelou, 2012) and foreign language education (Johnson, 2011). 

 

Referring to the specifics of POGIL in chemistry classes, a number of studies are 

now discussed. Lewis and Lewis (2005) investigated the effect of replacing one of 

the three general chemistry lectures each week with peer-led small group learning 

sessions using POGIL worksheets. They reported that the students who attended the 

group learning sessions achieved a higher average score on the common 

examination.   

 

Bailey et al. (2012) assessed student understanding of general chemistry and biology 

concepts in a POGIL class using a diagnostic test.  The 24-item multiple choice 

diagnostic test addressed concepts related to bond energy, pH/pKa, hydrogen 

bonding, free energy changes, London dispersion forces, protein alpha helix 

structure, and the impact of mutation on protein function. This test was developed 

and validated by Villafañe et al. (2011) to identify incorrect ideas held by 

biochemistry students and investigate students’ learning gains. Bailey et al. have 
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reported a statistically significant increase of mean scores from 9.1 to 12.5 out of a 

possible 21 in a pre and post-test format. 

 

Nyachwaya et al. (2011) investigated the ability of first year general chemistry 

students in balancing chemical equations and drawing particulate representations 

related to those reactions while they were taught in an environment using POGIL 

activities, clickers and think-pair-share discussions. The study aimed at diagnosing 

students’ underlying conceptions of the particulate nature of matter related to 

chemical equations for reactions involving covalent compounds and/or ionic 

compounds. When students’ answers to three drawing task questions from the 

previously administered mid/end of semester examinations were coded and analysed, 

the data showed that the students had difficulty in drawing conceptual diagrams of 

chemical equations, especially with ionic compounds. Besides revealing several 

students’ alternative conceptions pertaining to PNM, the study reported students’ 

representational errors related to the behaviour of polyatomic ions in aqueous 

solution. The diagnostic assessment study of Nyachwaya et al. in a POGIL 

influenced course, created opportunity to further investigate how POGIL influences 

students’ understanding of the particulate nature of matter.  

 

Hein (2012) studied student’s final examination scores to evaluate the effectiveness 

of POGIL on students’ concept retention and their cumulative knowledge in organic 

chemistry. The data included the ACS final examination scores from the POGIL and 

the traditional lecture instruction, taught by the same instructor over a period of three 

years. The assessment criteria used throughout the study were similar such as class 

schedule, online and written homework, laboratory reports, mid-semester and the 

ACS final examinations. When the average percentile rankings for ACS examination 

results were compared between traditional and POGIL groups, 72% of POGIL 

students’ achieved higher than the median percentile achieved by the students in the  

traditional lecture group. The number of students ranking in the 25th percentile and 

below decreased over each year the POGIL method was used and the median 

national percentile ranking for the POGIL group was 36% compared to 20% for the  

traditional lecture group. Data on attrition levels for both of traditional lecture and 

POGIL instruction indicated that the teaching methods were independent of the 

students’ drop-out rate. 
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In another study, where one year traditional lecture was followed by a two year 

POGIL practice, Ruder and Hunnicutt (2008) reported successful implementation of 

POGIL in a large organic chemistry class in terms of test scores and knowledge 

retention. When three examination scores from each course semester were compared, 

a slight difference in first examination scores between traditional and POGIL groups 

was hypothesised to be due to students’ transitional adjustment into small group 

learning. In the second examination, the POGIL group outperformed the traditional 

lecture group, whereas in the third examination, more POGIL students were in in the 

grade distribution range of A and B than the traditional lecture group which had 

more students in the grade range of D and F. 

 

An action research study by Murphy, Picione and Holme (2010) investigated the 

implementation of POGIL in a preparatory college chemistry with 180 students in 

three lecture sections per semester for two years. Three one-hour examinations were 

given to students throughout the spring and fall semesters where students had used 

clickers to record their feedback. The initial experimental design which included a 

typical control i.e. lecture group, a partial POGIL and a full POGIL group, did not 

yield any statistically significant data in support of the POGIL methodology, due to 

students’ resistance to the new teaching methodology. Subsequent modifications to 

the POGIL approach in the form of integrated concept mapping, mini-lectures, and 

exclusion of reading material were implemented leading to a positive effect on 

student performance. This significant institutional modification of POGIL was 

further evidenced by Geiger (2010) who stated that the “institutional environment 

has a significant impact on the implementation of POGIL and process oriented 

learning; what works at one institution may need significant modification to be 

successful someplace else” (p 30). 

 

Schroeder and Greenbowe (2008) investigated student performance on nucleophilic 

substitution reaction mechanisms and reported improved performance by POGIL 

students on nucleophilic substitution and elimination examination questions 

compared to traditionally taught students from the previous year. For comparing the 

traditional and POGIL groups, Schroeder and Greenbowe included two examination 

questions similar to the previous year. For the first question where students needed 

to draw the correct structure of the product, 95% of the POGIL students drew a 
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correct structure which was comparable to the traditionally taught students. For the 

second question, where students needed to draw major and minor elimination 

products, 47% of POGIL students represented the major and minor products 

correctly. The mechanism of nucleophilic substitution and elimination reaction was 

represented correctly by 34% of POGIL students whereas only 6% of the 

traditionally taught students were able to answer this question correctly in the 

previous year. 

 

2.8 Students’ Perceptions 

Further to the reporting of improved learning outcomes via POGIL, researchers had 

published their results of student engagement, their perceptions of the value of small 

group learning and the perceived growth in process skills. In an end-of-course survey 

of chemistry for non-science majors that comprised POGIL and project-based 

learning methodologies, 80% of the respondents were enthusiastic and comfortable 

with guided inquiry learning (Lees, 2008). Contrary to this, Douglas (2009) reported 

a minimal benefit due to students’ expectations of instructors providing them with 

answers to all POGIL activity questions despite their positive reflections about small 

group work. However, Brown’s (2010) study showed little difference in students’ 

perceptions about the course between traditional lecture group and POGIL group on 

specific criteria such as delivery of course material, relevance to real-life situations, 

and its communication, with an exception to group work. Jin and Bierma (2011), 

from the limited available data, indicated that their environmental health students 

enjoyed the POGIL activities which helped them in deep understanding of the 

concepts. 

 

The Student Assessment of Their Learning Gains – SALG, an instrument developed 

by Seymour, Wiese, Hunter, and Daffinrud (2000), is used to gauge students’ 

perceptions of skills, understanding, and attitudes towards teaching or laboratory 

courses. Carroll (2010) inferred that a combination of SALG and student 

achievement tests could offer curriculum practitioners a powerful triangulation on 

measures and causes of student learning. Straumanis and Simons (2008) used SALG 

as an indicator of growth of students’ process skills in POGIL organic chemistry 

classes and reported that POGIL responses were higher than those in the lecture 

group. When compared to the traditional lecture group, the POGIL students 
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perceived greater value for course elements and a higher growth was shown in their 

process skills. 

 

Descriptive statistical analysis and response frequencies are widely used to interpret 

students’ responses (Douglas, 2009; Heady, 2002; Johnson, Corazzini, & Shaw, 

2011; Keeney-Kennicutt, Gunersel, & Simpson, 2008; Keeves, 1995; van Rooij, 

2009) to each or a set of the Likert scale questions in an effort to provide a glimpse 

of students’ perception of course implementation. Heady (2002) administered the 

SALG survey successively to two student cohorts over two years in introductory 

biology classes to find out what helps students to learn. The study compared the 

mean values for all of the student responses to the items of SALG. In an another 

study on the effectiveness of project management methodology in a psychology 

class, van Rooij (2009) administered a 20-item SALG survey and presented a 

comparative mean scores of students’ SALG responses in project management 

methodology and traditional project scaffolding.  Keeney-Kennicutt et al. (2008) 

used SALG instrument to investigate the general chemistry students’ perception of 

an educational web-based tool called, calibrated peer review. The results of the time-

series analysis included the percentage values of students’ responses to the 5-item 

SALG survey. Validity and reliability of SALG was established by comparing 

student responses with their interview data and by means of correlational study of 

SALG results, mainly mean values and other measures of learning. According to 

Seymour (2000), the flexibility of adapting SALG in between multi-disciplinary 

sciences is dependent on the extent of cohesiveness of various course elements such 

as goals of class or laboratory activities, curriculum, resources used and tested. At 

present, there is no study on establishing construct validity for any modified SALG 

being used in assessing POGIL implementations. Construct validity answers whether 

or not the instrument actually measures the construct under question. 

 

2.9 POGIL in Australia 

In a report submitted to the Australian Learning and Teaching Council, Bedgood et 

al. (2012) narrated the Australian experience of implementing POGIL in first year 

chemistry classes. Member institutions of the Active Learning in University Science 

(ALIUS) have been implementing POGIL in chemistry, veterinary chemistry, 

statistics, botany dentistry and nutrition. Despite their geographical isolation, 
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pedagogically, the POGIL practitioners in the US and Australia collaborate 

periodically to effectively implement POGIL in first year undergraduate courses. 

Leaders of ALIUS and POGIL practitioners from the US have been conducting 

POGIL workshops in Australia to train and support faculty members interested in 

teaching innovations. 

 

During the early implementation of POGIL in 2009 at their member institution, the 

instructors used POGIL worksheets as homework and the students discussed these 

during tutorial sessions. Following the initial ‘mixed’ feedback from the students, the 

instructors implemented a modified POGIL by integrating group-work questions into 

the lecture which was well received by the students who claiming that they liked the 

blended mode of lecture method and POGIL.  The students’ achievement in quizzes 

was compared with another student cohort to whom the same instructor taught at a 

different institution. The results indicated that there was no change in average and 

median grades, but an increase in the proportion of high-distinction grades due to 

students’ enhanced learning by means of POGIL and increase in fail grades due to 

various factors including instructor’s inexperience with POGIL activities. Later in 

semester 1, 2010, the quiz scores in another first year chemistry module were again 

compared between students in POGIL and traditional classes. The results showed a 

significant increase in the proportion of high-distinction, distinction, credit grades 

and a drop in fail grades in support of blended POGIL approach. According to 

Bedgood et al. (2012) the students’ positive comments on the POGIL activities 

revealed that they are better prepared for examinations, their lecture notes became 

shorter, and they have been guided through in solving problems and clicker 

questions that followed POGIL activities, made the lectures more interesting and 

interactive. 

 

2.10 Summary  

This review of literature focused several areas of research-salient features of Process 

Oriented Guided Inquiry Learning, POGIL, curriculum model for the evaluation of 

implementation of POGIL and a theoretical framework for this study was presented. 

A considerable amount of chemistry education research was conducted in the area of 

student centered learning pedagogies. A summary of the findings of the literature 

include: 
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 The curriculum evaluation framework used to investigate the effectiveness of 

instructional strategies included four aspects of the curriculum. 

 Social constructivism forms the theoretical basis for research-based 

pedagogies in chemistry education.   

 Numerous researchers support the need of inquiry approach for the 

development of process skills and logical thinking ability besides mastery of 

content.   

 Student interviews and 2-tier diagnostic tests were widely used to explore 

students’ understanding of science concepts. 

 Numerous studies reported students’ difficulties in organic chemistry, a very 

few included alternative conceptions regarding stereochemistry. 

 Successful POGIL implementation studies utilised examination scores as a 

measure of effectiveness. 

 POGIL is modified in accordance with the institutions’ learning environment. 

 A gap exists for establishing construct validity of Student Assessment of 

Their Learning Gains, SALG instrument to make it relevant to investigate 

student perceptions of POGIL implementation. 

 

The effectiveness of POGIL in first year chemistry classes in the United States is 

evident in the literature, but the effectiveness of POGIL in Australia has not been 

researched extensively. The research study addressed: 

 Students’ acquisition of POGIL process skills and their alignment with the 

graduate attributes of the university. 

 Implementation of learning requirements via POGIL based curriculum. 

 Students’ understanding of stereochemistry concepts in first year chemistry 

classes. 

 Students’ perception of their learning while engaged in a POGIL class. 
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Chapter 3 

Methodology 

 

3.1 Introduction 

This chapter describes, in detail, the research methods used in the present study.  The 

Section 3.2 outlines the research paradigm used in this research. The research design 

presented in Section 3.3 was based on the literature reviewed in Chapter 2. The 

research questions outlined in Section 3.4 emerged from the research paradigm 

described in Section 3.2. Sections, 3.5, 3.6 and 3.7 feature the details of participants, 

instructors and the ethical procedures implied in this study. Sections 3.8, 3.9, 3.10, 

3.11, and 3.12 provide details of instruments, data collection and analysis procedures 

used to answer the research questions. Section 3.13 elucidates the qualitative data 

analysis procedures. Section 3.14 details the triangulation methods, reliability and 

the procedures for the validation of the instruments.   

 

3.2 Research Paradigm  

Willis (2007, p.1936) defined a paradigm as “a comprehensive belief system, world 

view or framework that guides research and practice in a field”. Post-positivism was 

considered appropriate for this study as it offered the researcher an impersonal 

position to make context-dependent generalisations (Cooper, 1997) using methods 

that minimise the susceptibility of participants, reducing the effect of bias by means 

of structured interactions with students. Post-positivism is considered as an emergent 

alternative to positivism. The post-positivists assert that all reality is mentally 

constructed and can never be completely known, there are no general or universal 

laws that can be counted on in every situation (Guba, 1985).  Post-positivist research 

is commonly aligned with quantitative methods of data collection and analysis. 

Similarly, in this study, quantitative data were obtained from the Stereochemistry 

Concept Tests and the Student Assessment of Their Learning Gains (SALG) 

instrument.  

3.3 Research Design  

The theoretical framework for this study was based on social constructivism 

(Vygotsky, 1978) and the learning cycle approach (Farrell et al., 1999). The focus of 

this research is to create an understanding of the measurable and observable aspects 
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of students’ understanding of concepts and their perceptions of POGIL-influenced 

learning in a chemistry course.  

A variety of data gathering techniques were employed in this study: class 

observations, diagnostic testing of their understanding of chemistry concepts, survey 

of students’ perceptions of their learning in a POGIL class, and student interviews.  

Towns (2007) argued that mixed method designs offer a greater research landscape 

for explaining and expanding the investigating phenomenon composed of a single 

research strategy. Tashakkorri and Teddlie (1998) regarded mixed methods design as 

a philosophical framework that influences the entire research process. Similarly, 

Abraham (2008) argued that the integration of quantitative and qualitative methods 

bring in greater power to theory-based research designs. Most common mixed 

methods designs are – triangulation, explanatory and exploratory designs (Creswell, 

2005; Creswell & Plano-Clark, 2007). The sequential explanatory design (Creswell, 

2003), a mixed method strategy that prioritises quantitative data over qualitative 

data, is widely used by chemistry education researchers (Staver & Lumpe, 1995) to 

gain insights into the students’ misconceptions and the functional nature of students’ 

knowledge. Essentially, the qualitative results help in the elaboration and extension 

of findings of the primary quantitative study (Dinah, 2008).  

The layout of the research design is presented in Figure 3.1. As shown in the figure, 

the four research questions that originated from the research framework take the 

appropriate approach for the exploration of the process-oriented guided inquiry 

learning in chemistry classes. The accurate description of the sub-processes is 

presented in the corresponding chapters. For example, the method of validation of 

the SALG instrument is represented in Figure   6.1.  
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Figure: 3. 1. An outline of the research design 
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3.4   Research Questions 

This study investigated the effects of using student-centered process oriented guided 

inquiry learning (POGIL Project) on first year chemistry students’ learning. The 

research questions to be answered are: 

1. How do the skills that students learn in POGIL classroom align with 

university graduate attributes?  

2. How can these learning requirements be implemented through POGIL based 

curriculum? 

3. How effectively do students achieve the intended learning outcomes using a 

POGIL approach? 

4. In what ways do students perceive their learning while engaged in POGIL 

classes? 

The study focuses students’ understanding of stereochemistry concepts in a POGIL 

class. The research hypothesis is that students misunderstanding of stereochemistry 

concepts will be reduced by the use of Process Oriented Guided Inquiry Learning 

lessons. 

 

3.5 Participants 

The population studied comprised a cohort of first year chemistry students enrolled 

during 2011 at Curtin University, Bentley campus in Western Australia. Most of the 

students were Engineering and Science first year students opting to study chemistry 

during the first and second semesters. The majority of the students (domestic and 

international) were school leavers, however, non-traditional students such as mature 

age learners and students with vocational qualifications comprised a minority of the 

population. The student cohort had varying degrees of background knowledge in 

high school chemistry. 

Of the 320 students enrolled in chemistry at the start of semester 1 in 2011, the 

number of students participating in the research studies varied according to the 

changes in the enrolment and requirement of chemistry as a subject of studies during 

the following semester in 2011. The research study involved students enrolled in 

general chemistry units, Chem102 and Chem121. The students enrolled in 

Engineering and Science studied Chem102 whereas, the students enrolled in 
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Pharmaceutical Science studied Chem121. Both cohorts studied topics outlined in 

Appendix (E). The details of the course unit were provided in Chapter 4. 

  

3.6 Instructors 

The Department of Chemistry at Curtin University, Bentley campus has been 

actively implementing active learning strategies into its core teaching practices. The 

core teaching faculty of first year chemistry are pioneers of the reform-oriented 

Active Learning in University Science (ALIUS) project and have been teaching first 

year chemistry units for several years.  

The entire course is not taught the POGIL way; the instructor selects topics (see 

chapter 4) where POGIL is considered the best fit for effective learning.  

 

3.7 Ethical Procedures  

The research proposal and plan for data collection were presented to the Graduate 

Studies Committee, Human Research Ethics Committee and the first year 

coordinators of the Department of Chemistry at Curtin University. The proposal 

explained the aims of the study, type of data that would be collected, and the plan for 

handling data to protect confidentiality. Upon receiving the formal permission to 

proceed, the schedule for class observation, administration of tests and questionnaire 

was worked out in conjunction with the first year chemistry coordinators. A 

memorandum approving the research proposal by the Human Research Ethics 

Committee of the university is included in Appendix (A). The students were issued 

with the information sheet highlighting the purpose and objectives of the research 

and were made aware that their voluntary participation in the research would not 

generate any extra grade or credit. 

 

3.8 Data Collection and Analysis Procedures to respond to each Research  

Question   

The data were collected mostly during the tutorial sessions which are of 60 minutes 

duration. In these sessions students seek help from tutors to complete their 

assignments or activity sheets every week during the semester. A scheme was 

worked out that would only allow the export of coded data (without name, student 

identification numbers, or other data that could directly identify individual students) 



 

44 

to ensure that data remained confidential. The relationship between the four research 

questions and their respective data collection tools is shown in Tables 3.1 and 3.2. 

Table 3. 1: Relationship between research questions and data collection tools: RQ1 
and RQ2 

Research Question Data Source 

Research Question 1 

POGIL process skills and 
graduate attributes 

 

Curriculum documents 

POGIL activity materials 

Research Question 2 

POGIL implementation 

 

Researcher’s observation of lectures, 
tutorials/workshops 

Student interviews / Open ended SALG statements 

 

Table 3. 2: Relationship between research questions and data collection tools: RQ3 
and RQ4  

Research Question Instrument Item Numbers Form of Data 

Research Question 3 

Students’ achievement in 
POGIL class 

SCDT 

 

5 items 2 Tier Response 
and Reason 
(except for Item 1) 

 

Research Question 4 

Student learning and their 
perceptions in POGIL class 

 

SALG 

 

 

44 items 

10 items 

 

Likert 

Open ended 

 
A semi-structured interview format was used to obtain students’ feedback on their 

gains in POGIL-influenced learning. Students were interviewed using a Livescribe 

smartpen (Hannon, 2008; Hastings, 2008; Schmidt, Hernandez, & Ruocco, 2012) 

during the end of the semester. 

 

3.9 Data Collection and Analysis Procedures to respond to Research   

Question 1 

To answer the Research Question 1, the researcher analysed the course outline of the 

chemistry units for the first year undergraduate programme to see how the learning 
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outcomes were articulated with respect to an active learning pedagogy like POGIL in 

terms of process skills and graduate attributes. The curriculum documents and 

POGIL activity materials were analysed to identify the relevant graduate attributes 

and POGIL process skills that the instructors aimed to target during the 

implementation process. 

 

3.10  Data Collection and Analysis Procedures to respond the Research 

Question 2 

To answer the Research Question 2, the researcher observed the actual 

implementation of modified-POGIL in lecture and tutorial sessions. Qualitative data 

were obtained from semi-structured student interviews and students’ responses to the 

open ended items of SALG. 

 

3.11  Data Collection and Analysis Procedures to respond to Research 

Question 3 

One instrument was used to gather data for the quantitative analyses of this study. 

The Stereochemistry Concept Diagnostic Test (SCDT) measured students’ 

understanding of stereochemistry concepts. An outline showing the administration of 

the SCDT was illustrated in Figure 3.1. The SCDT was administered in semester 2 

for Chem102 students in 2011. For Chem121 students, the SCDT was administered 

in semester 1, 2012.  

Only 14 students participated in the delayed post-test of SCDT as it was 

administered just before the commencement of the examination preparation week.  

Pharmacy students study chemistry 121 during their first year and the module was 

taught by the same instructor who taught the organic chemistry part of chemistry 

102. The fundamental difference between Chem102 and Chem121, (see Figure 3.1) 

is that, the instructor delivered Chem102 modules (Chapter 4) using POGIL 

interaction and the Chem121 modules (Chapter 4) were delivered via lecture mode. 

However, both cohorts used POGIL style worksheets.  A summary of the final 

sample of students who participated in the study is presented in Table 3.3. 
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Table 3. 3: Summary of the final sample of first year chemistry cohort 

Course Semester Number of participants 

  SALG SCDT 

   Post-Test Delayed Post-Test 

Chem102 Sem 2, 2011 114 61 14 

Chem121 Sem 1, 2012  79 64 

Chem102 Sem 2, 2012 154   

 

3.11.1 Stereochemistry Concept Diagnostic Test (SCDT)  

To identify students’ understanding of stereochemistry concepts, a diagnostic test 

was developed by the researcher. The test consisted of 5 two-tier item questions. The 

questions on the test were adopted from organic chemistry text books (Straumanis, 

2012a, 2012b)  and are moderated by the chemistry instructor who has been teaching 

the course for several years and is also a co-author of first year general chemistry 

book (Blackman et al., 2008).  

Limited availability of literature on studies relating to students’ conceptions in 

stereochemistry and non-availability of a validated two tier diagnostic instrument 

which can effectively elicit students’ misconceptions has motivated the researcher to 

prepare the stereochemistry concept diagnostic test (SCDT).  

The researcher used Treagust’s (1988) guidelines to develop the SCDT; namely to: 

 examine the literature for possible difficulties in conceptual understanding of 

a particular topic 

 conduct informal interviews to attain a broad outlook of students’ 

understanding 

 develop 2-tier diagnostic test items, where the first part has content specific 

statements and the second part has reason specific items that primarily 

project students’ understandings, misunderstandings or misconceptions. 

 refine the developed assessment 
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To ensure the development of representational competence among the students, the 

instructor initially gave the students worksheets that featured practice questions (not 

SCDT items) on nomenclature of organic compounds, and structural representations 

of organic molecules during the workshops. 

Post-Test: In the second semester of 2011, a week after the occurrence of POGIL 

lecture on aromatic chemistry that included principles of stereochemistry and 

chirality, the SCDT was administered to Chem102 students. The students were made 

aware of the purpose of the testing and they knew that their performance on the test 

had no effect on their semester result. The results of the test have never been shared 

with the students. The participants who volunteered were invited to take the test 

individually during the workshop session. A 20 minute time had been assigned and 

the test was held in a typical examination pattern where the students recorded their 

responses in the given answer sheet.  

Delayed Post-Test: Two weeks later, the students were again invited to take the test 

as POGIL groups where they had an opportunity to collectively identify their best 

response and reason. For Chem121, the students had individually answered the 

delayed post-test without any POGIL interaction. The POGIL group roles were 

assigned and the students actively discussed the items before agreeing on their 

response-reason combinations. From a randomly chosen POGIL group, the student’s 

discussion while answering the questions was captured using a Livescribe smartpen 

(Hannon, 2008). The researcher in a non-confronting way had the opportunity to 

interview the students to gain an insight into their actual understanding of the 

concepts that underpin the questions.  

The two-week period between the post-test and delayed post-test did not involve any 

exclusive/follow-up teaching activity relating to stereochemistry. The instructors 

continued their routine lecturing and workshop schedule. The items of the 

stereochemistry concept diagnostic test attempt to identify how well students’ 

understand the concepts of chirality, stereocenters, and stereoisomers.  More 

information on these concepts is presented in chapter 5.  

Examples of the SCDT are shown in Figure 3.2. The complete SCDT is available in 

Appendix B 
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Figure: 3. 2.  Items 4 & 5 from the Stereochemistry Concept Diagnostic Test (SCDT) 

 

Development of Stereochemistry Concept Diagnostic Test  

For the development of SCDT, the researcher adopted the model for identifying 

students’ conceptions in science, suggested by Treagust (1995), wherein the content 

for this study, stereochemistry concepts, was first explored to identify the 

propositional content knowledge statements followed by content validation of the 

items of SCDT against the propositional content knowledge. 

 

The five questions of SCDT were chosen from the textbooks and other resources that 

the teaching staff use (Blackman et al., 2008) and they were content validated by the 
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instructor who teaches organic chemistry, also, an ALIUS leader and co-author of 

the popular and prescribed reference book that most of the first year chemistry 

students either refer to or own a copy.  

 

Propositional content knowledge statements 

The required knowledge to conceptualise the principles of setereochemistry are 

stated as propositional content knowledge statements. The SCDT addressed 14 

propositional content knowledge statements which are tabulated in Table 3.4.  

Table 3. 4: Propositional content knowledge statements 

SC1 Stereogenic atoms are also called chiral centers 
SC2 Stereogenic carbon has four different groups around it 
SC3 A molecule with an internal mirror plane is not chiral 
SC4 A molecule with no internal mirror plane is chiral 
SC5 Chiral molecule is not identical to its mirror image 
SC6 Achiral molecule is identical to its mirror image 
SC7 Enantiomer is a mirror image of a chiral molecule 
SC8 Enantiomers are a pair of non-identical molecules that are mirror images of 

each other 
SC9 Diastereomers are any two molecules that are not enantiomers 
SC10 A meso compound always has two or more chiral centers and an internal 

mirror plane 
SC11 Configurational stereoisomers have the same atom connectivity, but are not 

identical 
SC12 Stereoisomers are molecules with same connectivity but different 

arrangement in space 
SC13 The number of stereocenters in a molecule determines the maximum 

possible number of stereoisomers for that molecule 
SC14 The formula X = 2n  (n = number of stereocenters) is used to find the 

maximum number of possible stereoisomers 
 

A test specification grid was developed (see Table 3.5) to ensure that the SCDT 

covered the propositional content knowledge statements. There are some SCDT 

items where the propositional statements remain implicit. 
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Table 3. 5: Specification grid of propositional content knowledge statement 

Item Propositional content knowledge statement 

1 SC1, SC2, SC12 

2 SC1, SC2, SC3, SC4 

3 SC5, SC6 

4 SC13, SC14, SC10 

5 SC2, SC11, SC9, SC7, SC8 

 

The SCDT included the associated aspects of stereochemistry like chirality, 

stereocenter, stereoisomer, molecular orientation at stereo-carbons, and ability to 

identify a chiral molecule on the basis of plane of symmetry, non-superimposable 

mirror image formation, and ability to estimate the possible number of stereoisomers 

from a stereocenter of the molecule. As described in chapters 3 and 4, due to varying 

degrees of background chemistry knowledge of the students, the researcher chose to 

administer the SCDT a week after the lecture on introduction to isomerism as a post-

test, with an assumption that students will have had a learning opportunity to be 

familiar with the content. 

 

The students will have answered the questions individually during the tutorial 

session. One point was awarded if both the response and reason were correct, no 

point was awarded if the student had chosen a correct response and an incorrect 

reason or vice versa. A total of 5 points are possible for the entire 5 itemed 2 tier 

SCDT.  

 

Three honours students had volunteered to complete the stereochemistry diagnostic 

test as a trial test. Following the notification of a mutually agreed time, all these 

three students participated in the simultaneous individual trial testing. Of these three 

students, two were Forensic Science major students and another majored in 

nanotechnology; they all have studied chemistry for at least two years at 

undergraduate level. They all agreed to the correct answers to each questions and 

their positive feedback lead the researcher to re-confirm that the test items were 

precise and clear. 
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For the delayed post-test of SCDT, the selected POGIL groups also used the 

Livescribe smartpen to record their discussions and/or arguments as a think-aloud 

strategy. The Livescribe smartpen records audio digitally and connects it to the 

handwritten notes. The device allowed the group members to interact naturally 

without any distraction. The smartpen allowed the researcher to capture all diagrams 

or problems that were recorded by the POGIL group members and also what is being 

said while working on the diagrams or problems. 

The following are the some of the questions chosen for the follow-up interview of 

SCDT: (see Appendix D for the complete transcript) 

B)  Group work; concept test and group problems 

2)   “Tell me what it was like to work in groups on the Stereochemistry 

       concept diagnostic test.” 

3)  “How did the answering of questions like this as a group affect your  

       understanding of the chemical concepts being studied?” 

C)  In-class activity sheets, critical thinking questions and tests 

4)  “Here is an example of an activity-sheet you have already taken in 

       chemistry 102. What reasons would you use for deciding to 

       answer this question?” 

5)  “What reasons would you use for deciding not to answer this 

       critical thinking question?” 

 

Items in B are aimed at capturing students’ feedback on the benefits of POGIL based 

small group learning. Items in C attempt to follow students’ participation in POGIL 

related activity.  

The following are some of the questions chosen for semi-structured individual 

interviewing of students: (see Appendix D  for the complete transcript) 

1.5     Do you think that the in-class small group activities are 

          challenging? 

1.6     Do you think the in-class group activities have helped you develop  

          your critical/logical thinking? (making decisions based on 

          information, analysing, comparing, synthesizing, and reasoning?) 

1.7     Do you think that in-class group activities and argumentative  

          discussions have provided opportunities to improve your written 
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          and oral skills in this course? 

1.8     Are these small group discussions / in-class activities stressful and 

          frustrating? 

 

3.12  Data Collection and Analysis Procedures to respond to Research 

Question 4 

A modified version of Student Assessment of Their Learning Gains (SALG) 

evaluated students reporting of their learning gains. The student assessment of their 

gains (SALG) instrument was administered to Chem102 students during semester 2 

in 2011 and 2012. 

 

3.12.1 Student Assessment of Their Learning Gains (SALG)   

Designed by Seymour et al. (2000), the SALG instrument allows students to self-

assess their learning in science classrooms particularly at the tertiary level.  The 

customizable items in the SALG instrument have a 5-point Likert scale, giving 

students the opportunity to evaluate the elements of lecture and/or laboratory in 

terms of their own learning.  According to Seymour et al. (2000), SALG provides 

average scores and standard deviations for responses to each statement and requests 

that students include verbal explanations for their responses to each main question.  

The SALG was chosen because, when compared to other student evaluation 

instruments, Seymour et al. (2000) consider that the information gathered using the 

SALG instrument is more reliable and useful in negotiating changes in teaching 

methods with colleagues and it offers flexibility of inter-faculty use. The SALG 

instrument helps in eliciting the elements of the course that best support student 

learning and those that needs improvement. The SALG instrument helps instructors 

in obtaining students’ anonymous responses on class content, teaching strategies, 

activities, assessment, materials, resources, organization and pacing. 

The SALG instrument has 72 items; of these 62 items have a 5-point Likert scale for 

quantitative rating and for the remaining 10 items students given their feedback as a 

written statement. 

Students completed the SALG immediately before the course final examination to 

provide their opinion on learning chemistry 102 in a POGIL environment and their 
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perception of learning gains made by the small group process oriented guided 

inquiry learning. Student responses in each five categories were studied and written 

comments were analysed. Item 1 from the SALG is shown in Figure 3.3. The 

complete SALG is available in Appendix C. 

 

Figure: 3. 3. Item 1 from Student Assessment of Their Learning Gains questionnaire 

 

Students were asked to evaluate their gains in learning on a scale from 1 to 5. (1 

indicates no help, 2 indicates a little help, 3 indicates moderate help, 4 indicates 

much help and five indicates great help) 

The study used Structural Equation Modelling (SEM) to investigate the student 

perception of their learning in a POGIL class. Described as “a hybrid of factor 

analysis and path analysis” (Watson & Gore, 2006, p. 720), SEM allows the 

researcher to design, test and confirm models of complex relationships (Gallagher, 

Ting, & Palmer, 2008). The “measurement model” of SEM allows the researcher to 

assess how well the variables represent the unobservable (latent) construct, whereas 

in the “structural model” the researcher estimates the strength of the relationships 

amongst these unobservable constructs. Researchers describe these relationships 
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among latent variables as covariances, direct effects, or indirect (mediated) effects. 

In other words, SEM helps in testing causal relationships for the validation of 

instruments (Gefen, Straub, & Boudreau, 2000).  

Analysis of Moment Structures (AMOS) software was used for the confirmatory 

factor analysis of SALG survey as it has an easy user interface and is bundled to the 

SPSS package which was readily available to the researcher. AMOS produces 

statistical details that describe the fit of the measurement model and the significance 

of parameter estimates obtained from the structural model. 

 

3.13 Qualitative Data Analysis  

For chemical educators, qualitative research is inductive, that is the data were used to 

develop a theory based on the patterns of observed phenomena (Phelps, 1994). For 

qualitative researchers who study meaning, their obligation lies not only on eliciting 

the meanings that the individuals hold but also experiences and feelings they ascribe 

to such constructions of meaning. Successful qualitative research primarily depends 

on the authentic representation of participants’ perspectives in the research process 

and the interpretations from the gathered information and the coherence of the 

findings (Fossey, Harvey, McDermott, & Davidson, 2002).   

The study used qualitative analysis approaches suggested by researchers (Bretz, 

2008; Ezzy, 2002; Hsieh & Shannon, 2005; Pope, Ziebland, & Mays, 2000; 

Sandelowski, 1995; Tesch, 1990)  to analyse, interpret and understand the meaning 

of qualitative data.  A combination of inductive and deductive approaches such as 

content analysis and thematic coding were utilised to generate patterns and 

categories from the data for the purpose of responding to research questions (Bruck, 

Towns, & Bretz, 2010; Fereday & Muir-Cochrane, 2008; Selepe, 2011). Content 

analysis begins with predefined categories whereas thematic analysis allows 

categories to from the data.   

Themes are abstract constructs that investigators identify before, during, and after 

data collection. Coding in thematic or content analysis refers to identification of 

themes or concepts that are in the data from where the relevant theory emerges. The 

success of content analysis greatly depends on the coding process because the 

researcher uses predetermined themes and categories and it restricts the researcher in 



 

55 

the analysis of other themes and categories that emerge from the data that could add 

value to the study. Concurrent use of content and thematic analysis allows the 

emergence of new categories from the data inductively. In this study, the issues of 

interest for analysis were the students’ perceptions on learning chemistry in a small 

group POGIL format. 

Qualitative data obtained from this study were mainly used to triangulate, confirm or 

contrast results and findings from the quantitative data. The predetermined themes 

used for categorising students’ responses were similar to the scales of SALG. 

All qualitative data from the students’ written responses in SALG questionnaire and 

students’ interview transcripts were analysed using QSR NVivo version 9. The 

qualitative research software, NVivo was designed and developed by QSR 

International to explore patterns, identify themes and develop meaningful 

conclusions (NVivo, 2012). To start with, the transcribed interview data were 

transferred into NVvio document files. Then, textual information storing ‘nodes’ 

were generated by both a priori coding (deductive and predetermined) and generative 

coding (inductive and stemming from data) from the data (Georgiou & Sharma, 

2012). The Nodes contain themes that enable the investigator to answer the research 

questions. Themes were systematically reduced and analysed in an effort to organise 

the data specific to the research goal (Ozkan, 2004). 

 

3.14  Methods used for Data reliability and validity  

3.14.1 Triangulation 

Used as data analysis technique in multi-method research designs, triangulation is 

regarded as a combination of more than one data sources. Duffy (1987) defined 

triangulation as multiple methodological study of a phenomenon. According to 

Thummond  (2001), triangulation varies according to the nature of the source of data 

such as investigators’ triangulation, theoretical triangulation, analytical triangulation 

and methodological triangulation and further inferred the use of quantitative and 

qualitative strategies in the same studies as a means of triangulation to obtain 

complimentary research results.  

Investigators’ triangulation features the comparison of findings of several 

investigators originating from a particular study. Duffy viewed that the use of more 
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than one investigator not only eliminated the potential bias but also ensured greater 

reliability. Theoretical triangulation involves the analysis of the same data set to test 

several theories or hypotheses. Analytical triangulation attempts the data exploration 

using a set of statistical techniques for validation.  

The multi-method triangulation that determines data convergence in support of a 

phenomenon increases the validity of research findings (Janice, 1999), thus 

providing analysis opportunities not available through the use of a single method.  

 

3.14.2 Reliability of the instruments 

Reliability refers to the extent to which the results or observations of assessments are 

consistent. Carmines and Zeller (1979) described the stability with which the 

instrument items are answered or the individual’s scores remain relatively the same 

in repeated measurements as reliability. A higher degree of stability indicates a 

higher degree of reliability, establishing the repeatability of the results. The 

reliability of SALG instrument was estimated by computing the Cronbach’s alpha 

value. Mamo, Kettler, Husmann, and McCallister (2004) have reported an acceptable 

Cronbach’s alpha value of .97 from their reliability studies of SALG in introductory 

soil science class. 

 

3.14.3 Validity of the Instruments 

This study has attempted to establish construct validity for the Student Assessment 

of Their Learning Gains, SALG, survey following the framework of Trochim and 

Donnelly (2006), who emphasised translation and criterion-related validity 

requirements. 

An instrument is said to be valid when it truly measures what it is intended to 

measure. Construct validity is the extent to which the test provides accurate 

information about the concept of theory being assessed. The Figure 3. 4 represents a 

framework proposed by Trochim and Donnelly. 
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Figure: 3. 4. Framework for construct validity (Trochim & Donnelly, 2006) 

According to Trochim and Donnelly (2006) an instrument is said to possess high 

construct validity if it can establish content (assessment of the items with respect to  

the extent of coverage of the construct), face (assures that each question or item on 

the scale have a logical link with an objective), convergent (high correlation of items 

of a particular construct), discriminant (items from different constructs are not 

correlated), concurrent (how well an instrument compares with a second assessment) 

and predictive validity (extent to which the instrument can forecast an outcome).  

The Cronbach alpha coefficient was measured for each factor to estimate the internal 

consistency reliability. The criterion validation of SALG survey was established 

using factor analysis. Factor analysis helps to identify related survey items, 

expecting to produce similar answer patterns. Factor loadings indicated how strongly 

each item was related to a particular factor, the relative importance of each factor 

was indicated by eigenvalues, retaining of sufficient number of factors was based on 

the cumulative variance (Muijs, 2011). The factor loadings and internal consistency 

reliability revealed convergent validity of SALG survey. 

Attempts to establish validity of the Stereochemistry Concept Diagnostic Test, 

SCDT, were centered on its content validity using expert opinion and checking the 

items with propositional knowledge statements to ensure that the internal items are 

consistent. For construct validity group differences were studied including the 

difficulty index.  
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3.15 Summary 

This chapter described the research questions, research design, research paradigm, 

participants, and data collection methods. An overview of the three types of data 

collection instruments, their sample items, and how they were developed was 

described.  Methods of quantitative and qualitative data analysis were also discussed. 

The results of the data collected from the data sources described in this chapter were 

analysed, interpreted and presented in the following chapters. 
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Chapter 4 

The Intended and Implemented Curricula 

 

4.1 Introduction 

Section 4.2 answers the first research question (RQ1): How do the skills that 

students learn in POGIL classroom align with university graduate attributes, by 

describing the intended curriculum of chemistry from the course outline and 

providing documentary evidence of the intended learning outcomes and the targeted 

graduate attributes. Section 4.3 presents an introduction to the graduate attributes and 

the university’s policy statement on graduate attributes. Section 4.4 describes the 

process skills that instructors intend to target in a POGIL class and their relevance to 

the graduate attributes that were outlined in the intended curriculum.  

 

Sections 4.5, 4.6, 4.7 and 4.8 answer the second research question (RQ2): In what 

ways do students perceive their learning while engaged in POGIL classes, by 

describing the implementation of curriculum via the POGIL approach. Section 4.6 

describes the features of POGIL activity sheets used in the observed lectures. Section 

4.7 presents the details of the researcher’s observation of the two lectures and 

tutorials that were focused on the POGIL method. Section 4.8 describes the students’ 

acquaintance of the process skills in a POGIL class. 

 

Higher education institutions are autonomous in designing, implementing and 

assessing the outcomes of their programmes (Henard, 2010). In other words, 

universities have their own approved curriculum framework containing faculty 

approved course descriptions (Mills, 2002). In Australia, the Tertiary Education 

Quality and Standards Agency (TEQSA) is the regulatory body for the higher 

education standards framework, including teaching and learning standards. Many 

universities in Australia consistently review and redesign curricula that reflect the  

objects of the TEQSA act (Reedman, 2011).  

 

This research focused on the first year undergraduate chemistry course designed and 

implemented by the Department of Chemistry at Curtin University in the years 2011 

and 2012 in an attempt to answer the first two research questions in the study 
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discussed above.  To answer the first research question, the researcher analysed the 

course outline of the chemistry units for the first year undergraduate programme to 

determine how the learning outcomes were articulated with respect to an active 

learning pedagogy like POGIL in terms of process skills and graduate attributes (see 

Section 4.2 to 4.4). To answer the second research question, the researcher observed 

the actual implementation of modified-POGIL in lecture and tutorial sessions (see 

Section 4.5 to 4.8). 

 

4.2 The Intended Curriculum 

4.2.1 Course Units 

The first year chemistry course comprised two units, Chemistry 101 in semester 1 

and Chemistry 102 in semester 2. The course unit coordinators and unit delivering 

teaching staff of the department collectively designed the content of the course unit. 

After an approval process from the respective department and the university 

academic board, the approved unit outline is distributed to the students at the start of 

the semester. The unit outline document (Appendix: E) contains information on 

topics to be covered, unit learning outcomes, graduate attributes, pedagogical 

interventions used, essential and recommended textbooks and other reading, 

assessment schedule, grading details, assessment policies and the programme 

calendar for the semester (Curtin University, 2011c). For some students, Chem101 

and Chem102 provide the chemistry required by their major area of study, such as 

engineering. For other students, Chem101 and Chem102 provide review and 

preparation for subsequent Chemistry classes during their second and third year 

undergraduate programmes. 

 

The topics of principles of quantitative analysis, sub-atomic structure, quantum 

numbers, spectroscopy and nuclear chemistry, thermodynamics, bonding theories, 

molecular and ionic equilibria and coordination chemistry are covered in chemistry 

101 (Curtin University, 2011a). In chemistry 102 (Curtin University, 2011b), during 

the second semester, the students learn topics in instrumental analytical chemistry, 

intermolecular forces, redox reactions, hydrocarbons, chemical kinetics, substitution 

reactions, carbonyl compounds and biologically important molecules. The textbook 

titled ‘Chemistry’, authored by Blackman et al. (2008) was prescribed to students as 

a learning resource. Students who have completed Year 12 chemistry or equivalent 
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are eligible to study the units; however, students without the required level of 

chemistry knowledge are expected to complete a foundation level course in 

chemistry. The topics for the course are listed in the Table 4.1. 

 

Table 4. 1: List of topics covered in Chemistry units 101 and 102 

Chemistry 101 
Semester 1 

 Chemistry 102 
Semester 2 

 
Module D: 

Principles of analytical chemistry 
Module E: 

Thermodynamics 
Module F: 
Equilibria 

 

T
ra

d
it
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n

al
 

 
Module B: 

Intermolecular forces 
Module C: 

Redox reactions 
Module E: 
Kinetics 

 
Module A: 

Atomic theory and nuclear chemistry 
Module B: 
Bonding 

Module C: 
Coordination chemistry 

A
ct

iv
e 

le
ar

n
in

g 

 
Module A: 

Instrumental analytical chemistry 
Module D: 

Hydrocarbons 
Module F: 

Substitution and elimination reactions 
Module G: 

Carbonyl compounds and biologically 
important molecules 

 
 

Some of the content was delivered via traditional lectures whereas some modules (as 

listed in the Table 4.1) were delivered by a modified POGIL approach that mixed 

lecture presentations with small group activities in the lecture theatre and tutorial 

sessions. A programme calendar handed out to the students was included in the 

Appendix F, and an extract of the same is presented in Table 4.2. 
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Table 4. 2: Extract from the programme calendar for chemistry 101 and 102 

Chemistry 101 

Week Lecture 1 Lectures 2/3 Tutorial Other 

2 

(7 Mar) 

Module D: 

Principles of analysis 

Module A: 

Atomic theory 

Tutorial 1 

(Module D) 

 

3 

(14 Mar) 

Module A: 

Atomic theory 

Module E: 

Thermodynamics 

Tutorial 2 

(Module A) 

Quiz 1 (A/D) 

4 

(21 Mar) 

Module E: 

Atomic theory 

Module A: 

Atomic theory 

Tutorial 3 

(Module A) 

 

Chemistry 102 

2 

(25 Jul) 

Module B: 

Intermolecular forces (3 lectures) 

Tutorial 1 

(Module A) 

 

 

 

 

 

Mid-semester 

Test1 

(Modules A, 

B, C) 

3 

(1 Aug) 

Module C: 

Redox (3 lectures) 

Tutorial 2 

(Module B) 

4 

(8 Aug) 

Module B: 

Intermolecular forces (3 lectures) 

Tutorial 3 

(Module C) 

5 

(15 Aug) 

Module D: 

Hydrocarbons (9 lectures) 

Tutorial 4 

(Module B) 

 

4.2.2 Learning Outcomes 

The learning outcomes at university level provide the details of knowledge, skills 

and abilities that students will develop during their chosen course of study. The 

learning outcomes that were provided to the students in the unit study package for 

Chemistry 101 and 102 units are presented in Table 4.3 (refer Appendix E).  

 

The learning outcomes are linked to the graduate attributes, which are 

contextualised, embedded and assessed in every unit and course. However, 

according to Barrie (2004), the curricular approach of the academic staff varies with 

their understanding of graduate attributes.   
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Table 4. 3: Learning outcomes and targeted graduate attributes – extracts from 
course units Chemistry 101 & 102 

Learning Outcomes 
Graduate Attributes 

addressed: 
Chemistry 101 (Semester 1)    

1. Critically evaluate atomic theories and apply them to 

predict bonding within and properties of matter. 
 

2. Calculate the physical reactivity and energetics of 

matter 
 

3. Employ the principles of quantitation to determine 

uncertainty in measurement. 
 

4. Apply molecular-centric logical skills to discipline-

specific problem solving 
 

5. Employ experimental and analytical skills in the correct 

and safe use of laboratory equipment, individually and 

within a group. 

 

Chemistry 102 (Semester 2)    

1. Apply the basic principles of kinetics to solve problems 

in theoretical and practical contexts. 
 

2. Identify common functional groups and describe their 

principle reactions, their mechanistic pathway and 

predict the products of such reactions. 

 

3. Predict physiochemical properties of matter from their 

intermolecular forces. 
 

4. Use of internationally recognised conventions in the 

communication of chemistry, including nomenclature, 

graphical and symbolic representation of molecules. 

 

5. Efficiently and safely perform a range of laboratory 

procedures, including analysis, synthesis, isolation and 

purification. 

 

Note: The graduate attribute icons were taken from the web page of Curtin Teaching 
and Learning 
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4.3 Graduate Attributes 

In the Encyclopedia of Sciences of Learning, the graduate attributes or university 

learning goals, are described as: 

‘generic outcomes that all graduates are supposed to have learned as a 

result of their education. Such attributes include lifelong learning, creativity, 

critical thinking, professional knowledge and skills, intellectual autonomy, 

and independent problem solving as appropriate to a student’s area of 

specialization’. (Steel, 2012, p. 1383) 

 

The generic skills, often called graduate attributes at university level, refer to 

thinking skills such as logical and analytical reasoning, problem solving and, 

intellectual curiosity, communication skills, teamwork skills, information processing 

skills, personal qualities like imagination, creativity and values of ethical practice 

(Hager & Holland, 2006). With the advent of the technological and knowledge 

economy, the employers and organisations, nowadays, are emphasising the 

possession of such skills of employability amongst the new graduates.  

 

The expectations and development of student skills were introduced into the 

guidelines of the university (Curtin Teaching and Learning, 2010). The graduate 

attributes policy stated that: “all graduates will have developed during their course 

in order to equip them for the future. Student achievement of the graduate attributes 

is accomplished through implementation of outcomes-focused education”.  Curtin’s 

policy statement on graduate attributes is illustrated in Figure 4.1. 

 

The graduate attribute statements reveal the status of the institution’s position in 

influencing the values and attitudes of its students (Shephard, 2008). Policy 

statements listing graduate attributes ideally reflect a layered or staged development 

of such attributes (Barrie, Jain, & Carew, 2003). 
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Apply discipline knowledge: Understanding theoretical underpinnings and 
ways of thinking; extend the boundaries of knowledge through research. 

 
Communication skills: Communicate in ways appropriate to the discipline, 
audience and purpose. 

 
International perspective: Think globally and consider issues from a variety 
of perspectives; apply international standards and practices within a 
discipline or professional area. 

 
Thinking skills: Apply logical and rational processes to analyse the 
components of an issue; think creatively to generate innovative solutions. 

 
Technology skills: Use appropriate technologies recognising their advantage 
and limitations. 

 
Cultural understanding: Respect individual human rights; recognising the 
importance of cultural diversity particularly the perspective of Indigenous 
Australians; value diversity of language. 

 
Information skills: Decide what information is needed and where it might be 
found using appropriate technologies; make valid judgements and synthesise 
information from a range of sources. 

 
Learning how to learn: use a range of learning strategies; take responsibility 
for one’s own learning and development; sustain intellectual curiosity; know 
how to continue to learn as a graduate. 

 
Professional skills: Work independently and in teams; demonstrate 
leadership, professional behaviour and ethical practices. 

Figure: 4. 1. Curtin graduate attributes 

 

4.4 POGIL Process skills 

POGIL lessons and activity sheets are designed to target the development of specific 

process skills, namely, cognitive process skills - information processing skills, 

critical thinking and problem solving; group process skills – management, 

communication and teamwork (Bauer & Cole, 2012). The intended and identifiable 

student actions aimed at the development of process skills during any POGIL 

activity are listed in Table 4.4 (POGIL Project, 2008b).  
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Table 4. 4: POGIL process skills 

Process skill Identifiable Student Actions 

Communication articulating an idea, rephrasing, reporting and writing with 
technical skills 
 

Teamwork collaborating, keeping group members at same pace, 
responsibility for group concept development, group decision 
making, building consensus, sharing ideas 
 

Problem solving accepting challenge, applying prior knowledge, imagining, 
identification of problem, key issues, assumptions  
 

Critical thinking making decisions based on information, analysing, comparing, 
synthesising, and reasoning 
 

Management self-managing and group managing, time consciousness, asking 
questions on behalf of group 
 

Information 
processing 

using information to think, interpretation of graphs and 
diagrams, assessing the perception of correct information 
 

Assessment self-assessment and assessment of other’s responses  
  

As outlined in chapter 2, the philosophy of POGIL and the ongoing POGIL research 

indicate that the process skills developed from the small group active learning 

strategies like POGIL may academically be aligned to graduate attributes at any 

institution. A model to illustrate the alignment of graduate attributes and POGIL 

process skills in the Chem101 and Chem102 units as evidenced from the 

observations of POGIL classroom is presented in Table 4. 5.  

 

The fit between graduate attributes and the POGIL process skills was closely 

examined by following the classroom proceedings and especially observing students’ 

interactions within the groups. Both graduate attributes and the POGIL process skills 

focus on students’ ability to effectively communicate within the discipline. The 

reporter’s role is very effective in collating the outcome of the group discussions and 

presenting then to the entire class.  The following excerpts from the open-ended 

statements of SALG indicate that students considered the importance of the skill of 

communication in POGIL interactions: 
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better communication, learning to tackle problems, communication, logical 

questioning and more independent thinking, communication skills among 

peers, interpersonal skills, a lot of improvement there. 

 

The fit between graduate attributes and the POGIL process skills in terms of 

collaboration, teamwork and group discussion is coherent as indicated from the 

classroom observations and students’ feedback. The icebreaker strategy implemented 

by the instructor not only inculcated the aspect of collaboration through teamwork 

instantly but also worked as a very powerful move to bring students together. The 

frequent rotation of group roles among the students provided an opportunity for 

every student to experience and develop professional skills. The following excerpt 

from the students’ interviews provides evidence to the fit between graduate attributes 

and POGIL skills: 

I am comfortable with all that kind of thing. Absolutely, I mean, it is not just 

a little about learning, it is also about the socialisation part.  

 

A similar trend was observed for thinking and information skills from the 

information presented in the Table 4. 5. 
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Table 4. 5: Alignment of graduate attributes and POGIL process skills as evidenced from POGIL class observations 

 Graduate Attributes Process Skills Observations from POGIL classes 

C
om

m
u

n
ic

at
io

n
 

 

Communicate in ways 
appropriate to the 
discipline, audience 
and purpose 

Articulating ideas, 
reporting and 
rephrasing 

At the end of the allocated time for the completion of a POGIL activity model, the 
reporter from each POGIL group was invited to answer a specific critical thinking 
question (if it involved an organic structure / reaction, students were advised to draw 
its representation on the whiteboard) and the instructor randomly asked other 
reporters to comment on how they had answered that particular question / model. 
Depending on the outcome of the discussion, the instructor may either choose to 
explain the concept further or direct the POGIL groups to move to the next model. 
The reporters appeared to be actively listening to the other members of their group 
while preparing their own answers to the expected questions.   
 

P
ro

fe
ss

io
n

al
 S

k
ill

s 
 

Professional skills, 
collaboration, 
teamwork, and safe 
use of laboratory 
equipment 

Collaborating, keep 
group members at 
same pace, group 
discussion, building 
consensus, sharing 
ideas 

For every group, at the start of the POGIL session, the instructor recruited a manager 
by posing some motivating questions like “a person who went to the school close to 
the university” or “a person whose month of birth is lower will be the manager 
today”.  The strategy worked as an icebreaker. 
The manager ensured that the group members stayed on task and encouraged the 
members to arrive at a consensus, in case of any argumentative discussion. In 
practice, some inter-group conversations also took place mainly to compare their 
work and confirm their answers before the instructor called the reporters to present 
their findings. 
The laboratory work also offered POGIL groups the opportunities for teamwork and 
collaboration in the form of setting up of the equipment, recording observations, 
cleaning of the equipment, and discussions to complete the laboratory report. 
 
The excerpts from student interviews (CS3, CS4, and CS7) presented in 4.8 support 
the views of the students on the importance of the professional skills 
                                                                                                      (Table 4.5 continues) 
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T
h

in
k

in
g 

Sk
ill

s 
 

 
Application of 
content- specific 
logical skills to 
discipline specific 
problem solving 

 
Critical thinking 
skills: making 
decisions based on 
information, 
analysing, comparing, 
synthesising, and 
reasoning 

                                                                                                     (Table 4.5 continued) 
The characteristic feature of POGIL materials is that they are highly structured and 
organised as models containing several critical thinking questions (CTQs). The 
students were guided through these CTQs using clickers to solicit their responses in 
identifying, developing and applying the concepts. 
As shown in Appendix G, the CTQs presented in 3.1 and 3.2 provide the students an 
opportunity to explore the models and identify and revise the essential concepts like 
the central atom valence electron (CAVE) method to determine the number of 
electron domains in covalent compounds and  valence shell electron-pair repulsion 
(VSEPR) to predict molecular geometry. This sequential way of reviewing the pre-
requisite knowledge helped the students to overcome any perceptive difficulties 
(arrangement of electron pairs and molecular shape) that they may have encountered. 
 
Responding to a question on the importance of CTQs and discussion in the class, CS6 
said: 

The diagrammatical representations. I see.  So in the activity sheets, there are 
many graphs, charts and tables given.  I think they are helpful in identifying 
the trends. So if one is going the wrong way, so you could get hold of him or 
her, saying that (hey) this is true.  You are thinking side-ways.  This is the 
conceptual basis for that. (CS6) 

In
fo

rm
at

io
n

 S
k

il
ls

 
 

Deciding on the nature 
and scope of the 
presented information, 
making valid 
judgements and 
synthesising 
information from a 
range of sources 
 

Information 
processing: 
Using information to 
think, interpretation  
of graphs, assessing 
the perception of 
correct information 

POGIL materials are usually written following the learning cycle paradigm that 
consciously develops particular learning skills in students. As shown in Appendix H, 
the students are expected to understand and predict the chemical 
reactions/mechanisms from the given information. The skill of information 
processing is not exclusively taught in POGIL classes, but the students make use of 
the given data or information to identify the concepts.  
The model 3 in the Appendix is one such example where the students understand the 
concept of nucleophilic substitution and recognise SN1 and SN2 reactions by carefully 
examining the given data. 
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The practice of process skills, according to Straumanis (2010), helps students learn 

the content and create new transferable chemistry knowledge. Simonson and Shadle 

(2013) viewed that the task of writing POGIL activities and the synchronisation of 

the learning objectives with the targeted process skills is a challenging and labour-

intensive activity until they are refined. Further, Anderson and Rogan (2011) argued 

that there is a greater responsibility for the teaching staff when they seek innovative 

pedagogies, select appropriate curriculum components and achieve successful 

implementation. Coleman and Lang (2012) proposed collaboration across 

curriculum, emphasising a curriculum-wide approach to develop collaboration skills. 

Further, Coleman and Lang suggested the development of the intended collaboration 

skills as an integral part of the natural progression of students’ course work.  Burke, 

Lawrence, El-Sayed, and Apple (2009) viewed process-oriented education as:  

 

Integration of the tenets of constructivism with personal development, 

performance measures, and assessment in order to produce learner growth, 

promote critical thinking, and nurture continuous improvement. (p.37) 

 

The alignment of process skills and the graduate attributes could be evidenced from 

the nature of the POGIL activities. As shown in the Appendices G and H, the POGIL 

materials are highly scripted and provide opportunities for the development of 

specific process skills at various levels during the lectures and workshops. These 

POGIL materials were carefully structured by the instructors who had rich 

experience in implementing POGIL. Another significant contribution that ensured 

the cohesiveness of graduate attributes and process skills was that both instructors 

had the independent responsibility to design the unit modules. 

 

4.5 The Implemented Curriculum 

The Department of Chemistry at Curtin University are leaders in implementing 

active learning strategies in first year chemistry course units. The teaching staff had 

developed and adopted POGIL (Moog & Farrell, 2011) activities for use in the first 

year units. The programme calendar outlined in the Appendix F showed that the each 

semester is approximately 14 weeks long with two tuition free weeks happening at 

week 9 and week 14. Students attend two lectures, one tutorial/workshop, and a three 

hour laboratory session per week. Students were expected to take a mid-semester 
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examination during weeks 6 and 7, and end of semester examinations during weeks 

15 and 16. The preliminary lecture was intended to develop an understanding of the 

unit structure, information on the nature of the pedagogies used, followed by an 

introduction to the small group active learning strategies that the teaching staff 

intended to utilise for selected sections of the unit. There were no distinct POGIL 

and non-POGIL classes.  

 

The main source of data for answering the second research question, RQ2: How can 

the learning requirements be implemented through a POGIL based curriculum, came 

from the researcher’s observation of lectures, tutorial sessions and interviews with 

selected students. Of the several lectures observed, two lectures were chosen to 

explore the implementation of POGIL aspects. Lecture 1 focused molecular 

geometry and shape and the lecture 2 focused curved-arrow processes. Both these 

lectures were presented by different POGIL practitioners. 

 

4.6 Activity Materials 

The POGIL activity materials included a short introduction to the theme/topic, 

learning objectives and the details of study resources. Activity 3 (Appendix G) used 

in lecture 1 on molecular geometry and shape has three models, each targeting a 

learning objective that the staff member intended to develop. The three learning 

objectives included were model 3.1 – calculating the number of electron domains, 

model 3.2 – determining geometry and shape, and model 3.3 – bond angle and 

electron domains. Each model has several critical thinking questions. For example, 

activity 3 included 30 critical thinking questions and five homework problems. The 

time required to complete the activity was 60 minutes in the class and 60 minutes 

outside the class, for homework. The Chem102 Activity – F3 (Appendix H) used in 

lecture 2 has 5 models. The content that covered these models broadly were 

classification of curved-arrow processes and nucleophilic substitution reactions. 

 

4.7 Researcher’s Observations 

Lecture 1 

A typical lecture session began with the academic member making announcements 

and introducing the topic and handing out activity sheet 3 (Appendix G) on 

molecular geometry and shape to the students who were seated in groups of 3 or 4. 
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The instructor sequentially refreshed the students’ background knowledge using a 

mini-lecture on electronegativity, its definition, and the periodic trends of 

electronegativity, the relationship between electronegativity and bonding, definitions 

of ionic bonding, covalent bonding, bond length, and bond energy. Before directing 

the students to activity 3, the instructor once gain quickly presented the lecture slides 

containing the information on the method of determining electron domains, 

identifying the central atom in covalent compounds and multiple bonds, and method 

of estimating the total electron domains.  

 

The students were then asked to look at model 3.1 of activity 3 and, as a group, 

answer the critical thinking questions 1 to 3. While the students answered the 

questions, at each stage, the academic staff member posed a clicker question to 

verify their understanding of the concepts. Students were expected to tender their 

chosen response within 20 seconds using the clicker device. A sample clicker 

question containing the results of students’ response is shown in Figure 4.2. After the 

allocated time had passed, following the students’ responses to the clicker question, 

the academic member led a whole class discussion of critical thinking questions. At 

the request of the instructor, the designated reporter from each group shared the 

groups’ reasoning to the critical thinking question. The instructor provided a mini-

lecture to explain the concept of using Central Atom Valence Electron (CAVE) 

method of determining the number of electron domains when 18% of the students 

gave an incorrect answer. 

 

 

Figure: 4. 2. Students’ responses to a clicker question 
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At this stage, the instructor directed the students to answer the remaining critical 

thinking questions of the model 1 in small groups, thus continuing the cycle of 

student discussion, clicker questioning, and mini-lecture. The academic member 

walked around the lecture hall offering advisory help to the students while they 

actively discussed and answered the remaining questions. 

 

Lecture 2 

An activity (Appendix H) on curved-arrow processes was used to describe the 

mechanistic concepts like bond breaking and bond making processes and their 

application in understanding the nucleophilic substitution reactions. Model 1 of the 

activity provided some examples of how chemists use curved arrows. The students 

were advised to discuss the mechanism as a POGIL group and answer the questions 

given under model 1. The instructor used clicker questions to provide an opportunity 

for students to defend their answers. The instructor preferred the students to struggle 

first, if they had not understood the question, then he gave an explanation via a mini-

lecture. The students’ acquaintance of the language from the introductory activity on 

the arrow pushing mechanism guided them to apply their knowledge to solve 

problems in other modules that focussed the reactions of alkenes, alkyl halides, 

alcohols, aldehydes and ketones. In other words, the activity may have helped the 

students increase their understanding of curved-arrow processes and their 

proficiency of using this knowledge to solve other problems related to the 

nucleophilic substitution reactions. The instructor used the clickers to generate 

opportunities for discussions and the activity was further continued as a tutorial task 

where the students were supposed to hand in for grading.  

 

Tutorial 

About 25 to 30 students attended the tutorials/workshops once every week during the 

semester. The seating plan was more organised as compared to the large lecture 

theatre wherein four students work as a small group, organised by two facilitators. At 

the start of the tutorial the facilitators invited the reporters from every group to 

identify any question/item with which their group needed help. Then the instructor 

individually facilitated each group’s completion of the activity. At the end of the 

tutorial/workshop, the instructor collected the students’ answer scripts for marking 
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and further individual feedback. The following excerpt illustrates a student reflecting 

on the merit of working in a small group for construction of knowledge.  

 

In the tutorials it was really helpful, because if you don’t know how to do it, 

then you can speak to your group, and if somebody does know how to do it 

then they can explain what they think, but it is not necessarily right (it could 

be wrong), so at least you’ve got your tutors as well that you can all double 

check if nobody’s sure about anything.  So ultimately it worked in a sort of 

hierarchy, I guess. (CS5) 

 

If the question is different to what we have been thinking of, the tutor or 

facilitator is capable of directing us to the right conceptual thinking, which in 

turn leading to a feeling of success that we are heading towards the right 

answer. (CS4) 

 

Based on the observations from POGIL classes listed in Table 4.5 and the 

proceedings of the POGIL sessions mentioned in Section 4.7, it is proposed that a 

modified POGIL approach in the form of embedded mini-lectures, small group 

POGIL discussions, followed by clicker questions appeared to be an appropriate way 

of implementing the intended process skills along with chemistry content 

knowledge. 

 

4.8 Process Skills 

The development and acquisition of process skills were implemented within the 

curriculum. There was no specific incident or assessment that was linked to the 

process skills because most of the graduate attributes were described in the 

curriculum outline as targeted throughout the course. However, the development of 

learning requirements from the implemented curriculum was illustrated by various 

comments from the student interviews.  

 

POGIL style interaction reinforces the use of information processing skills 

like interpretation of data from graphs etc. though the skills were gained in 

the engineering stream. (CS2)  
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Integrated with the development of information processing skills was the 

development of communication and teamwork skills that was illustrated by several 

students in response to the open-ended statements of the SALG instrument, for 

example: 

 

The skills like teamwork, problem-solving, connecting ideas, communication, 

logical questioning are transferable beyond the coursework and prepares 

students for work-related tasks. (CS3) 

This class let me gained the skills which I can connect some knowledge to 

others what we had learnt before. (CS7) 

Small group discussions help me pick-up the concepts quickly and the ability 

to walk in the lecture room help us share ideas and develop problem solving 

skills. (CS4) 

 

These examples indicated that students collaborated with the members of their 

POGIL groups as well as sharing ideas and discussions across other groups. The 

skills of management and critical thinking are considered necessary for successful 

learning in a POGIL class. The structured or semi-structured small groups offered 

tasks for the group members to efficiently manage the dynamics within the group. 

The instructors at the start of the tutorial/workshop swap the roles of the students for 

every session in order to give every student an opportunity to perform the various 

POGIL group roles. The following excerpts from student interviews gave an 

indication of the use and development of the skill of group management and critical 

thinking in the POGIL class.  

 

The activities are more enjoyable when every group member puts an effort to 

achieve the most out of it. The benefit of working in an intelligent group is 

that you do not need to put in any effort. You could know how to do it but 

learning from them by looking at what they do. I generally feel more 

comfortable learning from friends. When we answer the questions as a 

group, generally one person who knows most of the topic leads the group 

hence there would not be any disagreement. (CS7) 
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Well the critical thinking questions, they do help me understand the content, 

because they do make you think… well what is annoying is that you don’t 

really get, like, answers to it, so you don’t know if you’re right or wrong. I 

think it has helped me quite a bit, because chemistry is quite an organised 

unit, I think it makes you answer the questions and forces you to think. (CS6) 

 

Students’ ability to self-assess their own and others’ responses is another critical 

skill required for successful learning in POGIL class. To enforce the practice of the 

skill, the instructor in a lecture often used clicker questions to initiate a whole-class 

discussion amidst POGIL activity or in workshops, the tutor/facilitator visited every 

POGIL group assessing the students’ grasp of the material. Several students 

illustrated the development of this skill through the use of clicker questions in the 

class. 

 

Yes, it is good, because you know which question you have answered, and 

then you get feedback as well if you got the questions right. (CS6) 

 

I love clickers.  Nowadays, like in the activity, that we have questions, 

challenging questions.  So that means that you can make mistakes and 

clickers can help you revise stuff during the study and understanding. (CS4) 

 

Yes.   I think so.  I mean the fact that general arguing doesn’t occur within 

the group, or even across groups, and one group thinks one thing, another 

group thinks the other, then we kind of work out the answer between 

ourselves.  That is where the clicker questions come in to help us, because 

they kind of reinforce that knowledge. (CS2) 

 

When you get stuck on something, you can ask someone and say, oh, what did 

you get for this one?  Can you give me a hand with this, sort of thing, and I 

think there were more things like group related self-assessment perhaps, help 

you prepare for the examinations…. (CS8) 

 

Hence, the researcher’s observations of the lecture, tutorial/workshop and the student 

interview data add further evidence to that of the intended curriculum, with respect 
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to student development of the process skills necessary for a POGIL class to be 

implemented. As will be shown in Chapter 6, a Pearson correlation value of 0.79, 

significant at the 0.01 level (2- tailed), between the students’ mean scores for the 

scales of process skills and active learning on the SALG instrument indicated that 

the implementation of POGIL strategy may have helped the students’ development 

of process skills.  

 

4.9 Summary 

The study investigated the intended and implemented curriculum by examining the 

data obtained in the form of course outlines observation of the POGIL classes, and 

interviewing the students.  

 

Initially for the first research question, the study had identified the skills that were 

considered essential in first year chemistry from the intended curriculum. The 

subsequent analysis of curriculum documents and POGIL activity materials and they 

were found to be in line with the process skills proposed by the POGIL practitioners. 

 

The second research question focused the actual implementation of modified POGIL 

in lectures and tutorial/workshops to explore students’ acquisition of process skills. 

The existence of a good fit between the graduate attributes and process skills in 

POGIL classes was evident from the nature of POGIL materials, students’ 

interactions and instructors’ rich experience in POGIL facilitation. The examination 

and triangulation of several data sources demonstrated that the skills required for 

POGIL learning were implemented and the POGIL approach may help in the 

development of process skills amongst the first year chemistry students. 
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Chapter 5 

The Achieved Curriculum 

 

5.1 Introduction 

This chapter describes the researcher’s approach to answer the third research 

question of this investigation, ‘How effectively do students achieve the intended 

learning outcomes using a POGIL approach?’  

The following ancillary research questions are answered in determining the 

effectiveness of POGIL in first year chemistry classes. 

 RQ 3.1. What understandings of stereochemistry are held by first year 

chemistry students following POGIL instruction in the post-test and in the 

delayed post-test? (Group 1: Chem102, Sem 2, 2011) 

 RQ 3.2. What understandings of stereochemistry are held by first year 

chemistry students following lectures in the post-test and in the delayed post-

test? (Group 2: Chem121, Sem 1, 2012) 

 RQ 3.3. Are there any statistical differences between learning gains for 

Group 1 and Group 2? 

 

Section 5.2 outlines the layout of the statistical analysis of student responses. Section 

5.3 presents Chem102 students’ (Group 1) post-test and delayed post-test results of 

the SCDT in an attempt to answer the first ancillary research question 3.1. The 

overall SCDT performance of Group 1 students is presented in Section 5.4. The 

second ancillary research question 3.2 is answered in Section 5.5 that included 

Chem121 students’ (Group 2) post-test and delayed post-test results and in Section 

5.6 the overall performance of Group 2 students in the SCDT is presented. Section 

5.7 attempts to answer the third ancillary research question 3.3 by presenting 

information on the differences in the learning gains of the concepts of 

stereochemistry between Group 1 and Group 2 students. The two-fold study to 

address students’ misunderstanding of stereochemistry concepts included (i) 

developing the Stereochemistry Concept Diagnostic Test - SCDT (as outlined in 

Chapter 3) and (ii) identifying the extent and features of students’ understanding of 

stereochemistry concepts in the POGIL class. The study differed from other previous 
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research studies in identifying students’ understanding of stereochemistry concepts 

using multiple-choice stereochemistry tests (Krylova, 1997; Kurbanoglu et al., 2006; 

Staver & Halsted, 1984; Tuckey & Selvaratnam, 1993) because it used a 2-tier, 5 

item multiple-choice test. 

 

5.2. Statistical Analysis of Student Responses to the Stereochemistry Concept 

Diagnostic Test (SCDT) 

The students’ responses to the SCDT were analysed using SPSS v20.  The test scores 

of the students who participated in both post-test and delayed post-test were only 

considered and the students were de-identified. The analyses for the five items in the 

post-test and delayed post-test are summarised in two categories: Group 1 

(Chem102, Semester 2, 2011) and Group 2 (Chem121, Semester 1, 2012). For Group 

1, the SCDT results are presented in Tables 5.1, 5.2, 5.3, 5.4, and 5.5; and for Group 

2 the SCDT results are presented in Tables 5.8, 5.9, 5.10, 5.11, and 5.12.  Item 1 of 

the SCDT contained an error in the reasons and has been treated as a one-tier 

question. Consequently, the analysis is based only on the students’ response to the 

question, without considering their reason choices. The remaining four items were 

two tier questions, where for every content choice made by the students in the first 

tier of an item, the analysis provided the corresponding number who selected each of 

the reason choices from the second tier. The percentage of students selecting each 

content-reason choice is depicted in parentheses. The most appropriate content 

choice and reason choice for each item are displayed with an asterisk (*). The total 

percentages are presented as whole numbers.  

 

The students’ misunderstanding of stereochemistry concepts was identified when 

students incorrectly responded to either content part or reason part or both (Peterson 

et al., 1989). The study considered any incorrect response as misunderstanding if 

more than 10% of students have selected it (McClary & Bretz, 2012; Othman et al., 

2008; Tan et al., 2007).  

 

5.3. Group 1: Chem102, Semester 2, 2011 

The results included in the sections 5.3.1 to 5.3.4 are in response to the Research 

Question 3.1: What understandings of stereochemistry are held by first year 

chemistry students following POGIL instruction in the post-test and in the delayed 
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post-test? (Group 1: Chem102, Sem2, 2011). Details are provided in relation to all of 

the two-tier items on stereochemistry concept diagnostic test. 

 

5.3.1 Stereocentres (Item 1) 

Determine which of the compounds have stereogenic carbon atoms (chiral centres)? 

 

To answer this item correctly, the students are expected to apply their understanding 

of what makes a tetrahedral carbon a chiral centre or stereocentre. Molecules ‘A’, 

‘B’ and ‘C’ in  item 1 have at least one tetrahedral carbon atom which is attached to 

four different groups of atoms making them stereogenic (Straumanis, 2012a). 

Therefore the correct answer to this question is ‘D’ as all the molecules ‘A’, ‘B’ and 

‘C’ contain stereogenic centres. The response patterns of Group 1 students 

(Chem102) in the post-test and delayed post-test of the SCDT are displayed in the 

Table 5.1. 

 

Table 5. 1: Percentage of Group 1 (Chem102, Sem 2, 2011) student response pattern 
to Item 1 

 

Group 1 

Chem102, Sem2, 2011 

 Content Choice 

 

Post-Test

A B C D 

6 (9.84) 15 (24.59) 12 (19.67) *28 (45.90)

  

Delayed 

Post-Test

A B C D 

0 2 (14.29) 3 (21.43) *9 (64.29) 

 

More than one third (45.90%) of Chem102 students have correctly answered this 

question. Interestingly, about 19.67% of Chem102 students who chose ‘C’ appeared 

to have misunderstood chirality and stereogenic centres. Compound ‘C’ contains two 

stereogenic centres but is not chiral because it has a plane of symmetry. The 

percentage of Group 1 students who gave the desired response for the question has 

increased from 45.90% in the post-test to 64.29% in the delayed post-test, whereas 
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the remaining students (35.71%) were unable to identify the stereogenic carbons in 

the molecules.  This indicated that POGIL interaction may have helped some 

students to recognise that stereogenic carbon atoms are bonded to four different 

groups of atoms. Interestingly, very few students recognised ‘A’ as having 

stereocentres. This may be because they misinterpreted the term ‘four different 

groups’ to be limited to the atoms bonded directly to the carbon and did not consider 

what was next along the ring.  

 

5.3.2 Enantiomers (Item 2) 

Which of the following doesn’t have an enantiomer (is not an enantiomer) 

A.    B.    C.  

Reason 

1. It has a chiral center 
2. doesn’t have a plane of symmetry 
3. It is achiral 
4. it’s a chiral molecule with no chiral centre 
 

According to Blackman et al. (2008), enantiomers are chiral molecules that can form 

non-superimposable mirror images. Item 2 of the SCDT was aimed at assessing 

students’ application of their knowledge of chirality in recognising the possibility of 

a molecule existing as enantiomers. Molecule ‘C’ is achiral and does not have a non-

superimposable mirror image; in other words, it does not exhibit enantiomerism, due 

to the fact that the carbon to which the Cl, Br and two CH3 groups are attached is not 

stereogenic.  

 

The data shown in the Table 5.2 indicate that a relatively smaller number of 

Chem102 students (14.75%) have given a correct response and reason (C3) to this 

item. More than one third (39.34%) of those students have chosen molecule ‘B’ 

(incorrect molecule) with a third of these selecting ‘B3’ (13.11%) being the incorrect 

molecule with a correct reason. Molecule B possesses chirality and exhibits 

enantiomerism. More than one tenth (11.48%) of the students have chosen A1 

indicating their misunderstanding of chirality with respect to enantiomerism. 
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Surprisingly, 18.03% of the students, though they chose the correct response, were 

unable to recognise the inability of C to form enantiomers.  

 

For this item in the delayed post-test, 42.86% of Group 1 students have chosen the 

desired answer-reason combination compared to their post-test answer (14.75%) 

indicating an overall significant improvement in their understanding of the principle 

of enantiomerism, which may have resulted due to POGIL interaction during the 

delayed post-test. From the results shown in Table 5.2, 43% of this student group has 

developed a new misunderstanding that a chiral molecule without a chiral centre is 

not an enantiomer, which could have been due to their argumentative discussion or 

lack of a consensus on the selection of the answer during the POGIL discussion. 

About 14% of the students still continued to hold a misunderstanding that chiral 

compounds do not have an enantiomer (C2). 

 

Table 5. 2: Percentage of Group 1 (Chem102, Sem 2, 2011) student response pattern 
to Item 2 

  Reason Choice  
Cohort Content 

Choice 
1 2 3 4 

Total
(%)a 

Group 1: 

Chem102 

Semester 2, 2011 

 

Post-test (n = 61) 

A 7 (11.48) 1 (1.64) 1 (1.64) 1 (1.64) 16 

B 8 (13.11) 4 (6.56) 8 (13.11) 4 (6.56) 39 

C 11 (18.03) 2 (3.28) *9 (14.75) 4 (6.56) 43 

Delayed Post-test (n = 14) 

A 0 0 0 0 0 

B 0 0 0 6 (42.86) 43 

C 0 2 (14.29) *6 (42.86) 0 57 
a  The total percentages have been reduced to the nearest one per cent. 
 

As outlined in Chapter 3, Section 3.11.1, a semi-structured interview format was 

used to record students’ discussions and/or arguments during the delayed post-test. 

The following is the conversation between two students ‘S1’, ‘S2’ and the researcher 

‘R’. A full transcript can be found in Appendix I. 
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S1: which of the following doesn’t have an enantiomer? 
S2: laughs… 
R: OK 
S1: actually, I do not know what an enantiomer is …. 
R: it is not an enantiomer, if you know what makes a molecule super-
imposable and non-superimposable, you can answer this? 
(Smartphone screen is mimicked as a mirror) look at the molecule…. (directs 
the student to view the image of the molecule on the screen of the 
smartphone) are these same or different?  
S1: they are different; an enantiomer is a different …..  thing.  
S2: points towards, molecule C, does this one have? 
S1: yes, because… carbon, hydrogen … that is different…… the carbon 
doesn’t have four different groups (recognises that it is not chiral) 
S2: yes 
S1: one, two … three, (searches for different groups of atoms around carbon) 
doesn’t have, so, that would?  
S2: yes 
R: think about it; think about it…, does it have four different groups attached 
to the carbon? 
S2: No 
R: so, does this mean, it is the feature you are after 
S2: did you get that (questions ‘ S1’) 
S1: yes 
R: (prompting to view the mirror images through smartphone screen) Do you 
think the image of molecule C is super-imposable or non-superimposable? 
Imagine, would the mirror image completely overlay the molecule C? 
 
 

5.3.3 Chirality (Item 3) 

Identify the achiral molecules 

A. B. C. D.  

 

E. they are all chiral 

Reason 

1. The molecule has no internal plane of symmetry, hence it is not chiral 
2. The mirror images are non-identical 
3. The stereocentric carbon is bonded to four different groups 
4. The mirror image is identical to the original, hence the molecule is not chiral 
 

Any achiral molecule has at least one plane of symmetry (Straumanis, 2009b).  Also 

known as mirror plane, a plane of symmetry refers to an imaginary plane passing 

through an object, dividing it equally so that one half of it is the true reflection of the 
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other. The students are generally expected to assess each molecule based on its plane 

of symmetry. Any misjudgement may lead to a misunderstanding of the concept of 

chirality. For this item, the correct response and reason combination is ‘B4’, because 

molecule ‘B’ has an internal plane of symmetry and its mirror image is identical to 

the original, hence it is achiral molecule.   

 

The results of response patterns of students are shown in Table 5.3. More than a third 

(37.70%) of the students incorrectly identified molecules A and D as achiral and 

reasoned out that these do not have an internal plane of symmetry (A1, D1). Students 

were unable to recognise the salient features of an achiral molecule, namely having a 

plane of symmetry and identical mirror image formation. The data indicate that the 

most commonly observed students’ misunderstanding about achiral molecules is that 

achiral molecules have no internal plane of symmetry and chiral molecules have an 

internal plane of symmetry. Only 16.39% of the students provided the correct 

answer.  

 

The data pertaining to the delayed post-test, as shown in Table 5.3, indicate that 50% 

of the Chem102 students were able to display a correct understanding that achiral 

molecules are superimposable on their mirror images as compared to their post-test 

performance of 16.39% (B4). The misunderstanding of an achiral molecule not 

having a plane of symmetry that emerged at the end of the post-test in Chem102 

students appeared to be resolved during their delayed post-test POGIL discussion 

and in return it may have led to the emergence of a new misunderstanding – that an 

achiral molecule has a tetrahedral carbon with four different groups of atoms 

connected to it.  
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Table 5. 3: Percentage of Group 1 (Chem102, Sem 2, 2011) student response pattern 
to Item 3 

  Reason Choice  
Cohort Content 

Choice 
1 2 3 4 

Total
(%)a 

Group 1: 

Chem102 

Semester 2, 2011 

 

Post-test (n = 61) 

A 8 (13.11) 0  1 (1.64) 1 (1.64) 16 

B 9 (14.75) 2 (3.28) 1 (1.64) *10 (16.39) 36 

C 3 (4.92) 0 0 0 5 

D 15 (24.59) 0 0 3 (4.92) 26 

E 7 (11.48) 1 (1.64) 0 0 13 

Delayed Post-test (n = 14) 

A 0 0 3 (21.43) 0 21 

B 0 0 2 (14.29) *7 (50.00) 64 

C 0 0 0 0 0 

D 0 0 0 0 0 

E 0 0 2 (14.29) 0 14 
a  The total percentages have been reduced to the nearest one per cent. 

 

5.3.4 Stereoisomers (Item 4) 

The 2-deoxyribose, a five carbon sugar component of DNA (deoxyribonucleic acid) 
with phosphate groups to form the backbones of DNA polymer, has the following 
structure: 

 

How many stereoisomers are possible for 2-deoxyribose? 

A. 8  B. 6  C. 4  D. 0 

 

Reason 

1. presence of 4 asymmetric carbons 
2. presence of 3 stereocentric carbons 
3. presence of 2 asymmetric carbons 
4. 2n rule valid only to acyclic molecules 
 

For item 4 of SCDT, when the students were able to identify the number of 

stereocentres, it is relatively easy to estimate the possible number of stereoisomers 
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arising from them. A generalised statement (Bettelheim, Brown, Campbell, Farrell, 

& Torres, 2012; Blackman et al., 2008) is that, for a molecule with n stereocentres, 

the maximum possible number of stereoisomers is 2n. The 2-deoxyribose molecule 

has 3 stereocentres that may give rise to 8 stereoisomers.  

 

As Table 5.4 shows, 16.39% of the students have correctly answered this question 

(A2). Nearly 36% of the students have incorrectly identified stereocentric carbons on 

2-deoxyribose molecule (C1, C3). This indicates that, students have an incorrect 

understanding of the association between the number of stereocentres and the 

number of resulting isomers. 

 

A 41% increase in the students’ response to this item (A2) in the delayed post-test 

indicated that POGIL style discussion may have helped them overcome their 

difficulty in estimating the possible number of isomers on the basis of the number of 

stereocentres for a chiral molecule.  

 

Table 5. 4: Percentage of Group 1 (Chem102, Sem 2, 2011) student response pattern 
to Item 4 

  Reason Choice  
Cohort Content 

Choice 
1 2 3 4 

Total
(%)a 

Group 1: 

Chem102 

Semester 2, 2011 

 

Post-test (n = 61) 

A 4 (6.56) *10 (16.39) 2 (3.28) 2 (3.28) 30 

B 5 (8.20) 4 (6.56) 0 2 (3.28) 18 

C 7 (11.48) 1 (1.64) 15 (24.59) 3 (4.92) 43 

D 4 (6.58) 0 0 2 (3.28) 10 

Delayed Post-test (n = 14) 

A 0 *8 (57.14) 0 0 57 

B 0 2 (14.29) 0 0 14 

C 0 0 4 (28.57) 0 29 

D 0 0 0 0 0 
a  The total percentages have been reduced to the nearest one per cent. 
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5.3.5 Molecular Visualisation (Item 5) 

What is the best way to describe the relationship between these two molecules? 

      A.                 B.  

A. they are enantiomers 
B. they are constitutional isomers 
C. they are diastereomers 
D. they are identical 
 
Reason  
1. they are non-super imposable, they are also mirror images  
2. the molecules are not non- superimposable and also are not mirror images  
3. these molecules have same molecular formula and different connectivities  
4. they are superimposable and are not mirror images  
 
This item was aimed at testing students’ ability to visualise the molecule in free 

space. The orientation of atoms of pent-4-en-2-ol (C5H10O) in space look different in 

both A and B, but they are identical. The molecule ‘A’ when rotated around the 

C─OH bond, forms a superimposable structure, ‘B’. There are two rotations required 

to orient A over B. Rotation of molecule ‘A’ around the C─OH bond followed by 

rotation around C2─C3 bond would orient it to be superimposable on ‘B’. The 

correct answer for this item is D4 – the molecules are identical and they are 

superimposable but they are not mirror images (Table 5.5). 

 

In the post-test, 11.48% of students chose the correct response and reason; 14.75% of 

students from Chem102 viewed these molecules as enantiomers that are non-

superimposable on their mirror images only. The delayed post-test data presented in 

Table 5.5 show that the Chem102 students’ performance has improved from 11.48% 

in post-test to 35.71% in delayed post-test (D4). This result indicated that student 

misunderstandings at the end of the post-test were, however, resolved but about 

28.57% of the students (from 6.58%) have developed a new misunderstanding that 

diastereomers have different connectivity of atoms (C3).   
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Table 5. 5: Percentage of Group 1 (Chem102, Sem 2, 2011) student response pattern 
to Item 5 

  Reason Choice  
Cohort Content 

Choice 
1 2 3 4 

Total
(%)a 

Group 1: 

Chem102 

Semester 2, 2011 

 

Post-test (n = 61) 

A 9 (14.75) 4 (6.56) 2 (3.28) 1 (1.64) 26 

B 5 (8.20) 3 (4.92) 6 (9.84) 3 (4.92) 28 

C 3 (4.92) 5 (8.20) 4 (6.58) 0 20 

D 3 (4.92) 2 (3.28) 4 (6.58) *7 (11.48) 26 

Delayed Post-test (n = 14) 

A 0 0 0 0 0 

B 0 2 (14.29) 3 (21.43) 0 36 

C 0 0 4 (28.57) 0 29 

D 0 0 0 *5 (35.71) 36 
a  The total percentages have been reduced to the nearest one per cent.  

The following discussion was observed during the semi-structured interview while 

the students were answering the item 5 of SCDT delayed post. A full transcript of 

the conversation is available in the Appendix I. 

 
S1: What is the best way to describe the relationship between these two 
molecules? 
S2: …. 
S1: they are not superimposable 
S2: no 
S1: no 
S2: OK 
S1: because they got four units (referring to the groups of atoms around the 
carbon) 
S2: ya 
R: Why it is not superimposable?, as such it is not superimposable and the 
reason …. As you twist it around the carbon, what would happen? Can you 
make them superimposable? 
S1: no 
R: on their mirror images? 
S1: wait… wait…wait a second… they are all messed around, they are all 
same here…. 
R: Just one turn, would those molecules are superimposable? 
S1: This H goes there, this OH goes there, if you rotate around like this, the 
OH goes to here, the H goes to here, and the H goes here where the OH was 
here,  
R: aha 
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S1: I would guess they are non-superimposable here 
S2: ya.. ya.. It is…  
S1: they are non-superimposable and they are also mirror images 
S2: no.. no.. they are not mirror images, that one is not 
R: can I just point out one thing, you take one of the molecules as standard 
and try to manipulate with the second one. So, let us take this one (molecule 
‘B’), what happens is, just make a turn, so the methyl goes up and OH goes 
down. So in that scenario, alright, visualise that, the OH going down, methyl 
going up, alright, and look at the images of both the molecules,  
S1: OK 

 
S1 showed highly developed visualisation skills and employed a mental-rotation 

method. S1 mentally rotated the axis at CH3 - C - OH. S1 described the strategy in 

the interview: 

This H goes there, this OH goes there, if you rotate around like this, the OH 
goes to here, the H goes to here, and the H goes here where the OH was here 
(S1) 

  

5.4 Group 1 (Chem102) Students’ Overall Performance in the SCDT  

The overall performance of the students in this post-test and delayed-post SCDT was 

obtained by comparing the percentage of students who scored both parts correctly in 

each two-tier item with the percentage who scored only the first part correctly. The 

data are tabulated in Table 5.6 and shown as a bar chart in Figure 5.1. The Group1 

students had taken post-test individually and the delayed post-test as POGIL groups. 

 

The percentage of students who correctly answered the item 1 has increased from 

46% in the post-test to 64% in the delayed post-test. When the item 1 was excluded, 

the percentage of students who correctly answered the first tier of the multiple choice 

items ranged from 26% to 43% in the post-test as compared to 36% to 64% in the 

delayed post-test. The percentage of students who answered both parts of the two-

tier items ranged from 12% to 16% in post-test as compared to 36% to 57% in the 

delayed post-test. This trend indicates that the small group POGIL style delayed 

post-test had offered the students the opportunity to discuss and decide their options 

more clearly in comparison to the individualised post-test set-up. 
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Table 5. 6: Percentage of students (Chem102, Semester 2, 2011) who correctly 
answered the first part and both parts of the items in the diagnostic test (Post-Test 
and Delayed Post-Test) 

Item 
Percentage of Students Who Correctly Answered 

Post Test Delayed Post Test 
First Part Both Parts First Part Both Parts 

1 46 NA* 64 NA* 

2 43 15 57 43 

3 36 16 64 50 

4 30 16 57 57 

5 26 12 36 36 

*NA – Not Applicable 

 

 

Figure: 5. 1. The percentages of Chem102 students who provided the correct 
response to both tiers of the 5 items in the Stereochemistry concept diagnostic test. 

 

The most common misunderstandings of stereochemistry concepts after the post-test 

are presented in Table 5.7. A higher proportion of Chem121 students displayed a 

misunderstanding of the concept of stereocentres. The prevalence of 

misunderstanding about the connectivity of atoms in stereocentric molecules is about 

40% higher amongst Chem121 students as compared to Chem102 students. 

Similarly, 53% of Chem121 students believe that stereocentred compounds are 

always asymmetrical as compared to about 25% of Chem102 students. However, 
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Chem121 students (22.78%) did not appear to possess any misunderstanding of the 

interpretation of the plane of symmetry and chirality of molecules but they seemed to 

have difficulty in understanding non-superimposability of chiral molecules, as 

evidenced from their choice combination.  Another misunderstanding that had spread 

among both cohorts was related to the stereocentres in 2-deoxyribose molecule. As 

shown in the Table 5.7, about 36% Chem102 and 28% Chem121 students held a 

misunderstanding that 2-deoxyribose molecule has two asymmetric carbons. A 

further 22% of Chem121 students believed that only one stereoisomer is possible 

from every stereo-centric carbon.  

 

Students’ inaccurate visualisation of molecules in item 5 of SCDT may have led to 

the development of a misunderstanding that enantiomers are identical. This was 

evidenced from the selection of incorrect choice combination (A1) by Chem102 

(14.75%) and Chem121 (21.52%) students. A further 10.13% of Chem121 students 

misunderstand that enantiomers have different order of atomic connectivity.  

 

Table 5. 7: Comparison of students’ misunderstanding of stereochemistry concepts at 
the end of post-test of SCDT 

Students’ misunderstanding 
Item 
no 

Choice 
combination

% of students 

   Chem102 Chem121

Stereocentres     

Stereocentres are determined by atoms 

bonded directly to the central atom 

1  B, C 

 

44.26 

 

60.78 

Stereocentred compounds are always 

asymmetrical 

1 B 

 

24.59 53.17 

Enantiomers     

Achiral compounds have an 

enantiomer 

2 A1 11.48 11.39 

Chiral compounds do not have an 

enantiomer 

2 B1 13.11 - 

Chirality     

Achiral molecule has no internal plane 

of symmetry 

3 B1 14.75 - 
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Chiral molecules have internal plane of 

symmetry 

3 B1 14.75 - 

Chiral molecules form identical mirror 

images 

3 D4 - 22.78 

Stereoisomers     

2-deoxyribose has 2 asymmetric 

carbons 

4 C1 11.48 15.19 

4 C3 24.59 13.92 

One stereoisomer is resulted from 

every stereo-centric carbon 

4 B2 - 21.52 

Molecular Visualisation     

Enantiomers are identical 5 A1 14.75 21.52 

Enantiomers have different order of 

atom connectivity 

5 B3 - 10.13 

 

5.5 Group 2: Chem121, Semester 1, 2012 

The results included in the sections 5.5.1 to 5.5.5 are in response to the Research 

Question 3.2: What understandings of stereochemistry are held by first year 

chemistry students following lectures in the post-test and in the delayed post-test? 

(Group 2: Chem121, Sem 1, 2012) 

 

5.5.1 Stereocentres (Item 1) 

The results presented in Table 5.8 show that 31.65% of Chem121 students had 

correctly answered this question. About 53% of Chem121 students who chose ‘B’ 

were able to identify stereogenic centres when all four atoms bonded to the central 

carbon atom are different but were unable to generalise the stereogenic nature of 

tetrahedral carbon to all the molecules in this question. The very low selection rate 

for molecule 'A' may suggest difficulty in identifying stereocentres in cyclic systems. 

 

For the Chem121 cohort, who had an individually administered delayed post-test, the 

correct response had increased to 59.30% compared to their post-test answer 

(31.65%). However, 41% of the students were unable to identify the stereocentres in 

all of the molecules.  
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Table 5. 8: Percentage of Group 2 (Chem121, Sem 1, 2012) student response pattern 
to Item 1 
 

Group 2: 

Chem121, 

Sem1, 

2012 

 Content Choice 

 A B C D 

Post-Test 4 (5.06) 42 (53.17) 6 (7.61) 25* (31.65) 

 

Delayed  

Post-Test 

A B C D 

1 (1.56) 18 (28.13) 7 (10.94) 38* (59.30) 

 

5.5.2 Enantiomers (Item 2) 

In the post-test, for this item, 21.52% of the students gave a correct response and 

reason (C3). A further 24.05% of the students have chosen an incorrect response (B) 

but a correct reason (3). Also, 11.39% of students who chose ‘A1’ displayed a 

misunderstanding of chirality with respect to enantiomerism. In the delayed post-test, 

a minor improvement (5%) in Chem121 students’ understanding of the concept of 

enantiomerism was evident from the data presented. A significant number of the 

students (47%) still continued to hold the misunderstanding that chiral compounds 

do not have an enantiomer (B1, B2 and B3).  

 

Table 5. 9: Percentage of Group 2 (Chem121, Sem 1, 2012) student response pattern 
to Item 2 

  Reason Choice  
Cohort Content 

Choice 
1 2 3 4 

Total
(%)a 

Group 2: 

Chem121 

Semester 1, 2012 

 

Post-test (n = 79) 

A 9 (11.39) 2 (2.53) 0 (0.00) 1 (1.27) 15 

B 2 (2.53) 10 (12.66) 19 (24.05) 5 (6.33) 46 

C 5 (6.33) 5 (6.33) *17 (21.52) 3 (3.80) 38 

Delayed Post-test (n = 64) 

A 6 (9.38) 1 (1.56) 1 (1.56) 0 (0.00) 13 

B 0 (0.00) 8 (12.50) 18 (28.13) 4 (6.25) 47 

C 4(6.25) 3 (4.69) *17 (26.56) 2 (3.13) 41 
a  The total percentages have been reduced to the nearest one per cent. 
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5.5.3 Chirality (Item 3) 

Only a minority of students (6.33%) of Chem121 chose the correct answer (B4) 

where 22.78% of the students chose molecule ‘D’ as achiral and reasoning that its 

mirror image is identical. The percentage of students with correct response and 

reason has increased from 6.33% in the post-test to 21.88% in the delayed post-test 

(B4). Also, 17.19% of the students, at the end of the delayed post-test chose E3 

indicating a misunderstanding that an achiral molecule has a tetrahedral carbon atom 

with four different groups of atoms connected to it.  

 

Table 5. 10: Percentage of Group 2 (Chem121, Sem 1, 2012) student response 
pattern to Item 3 

  Reason Choice  
Cohort Content 

Choice 
1 2 3 4 

Total
(%)a 

Group 2: 

Chem121 

Semester 1, 2012 

 

Post-test (n = 79) 

A 0 (0.00) 0 (0.00) 3 (3.80) 7 (8.86) 13 

B 3 (3.80) 1 (1.27) 2 (2.53) *5 (6.33) 14 

C 1(1.27) 3 (3.80) 0 (0.00) 3 (3.80) 9 

D 5 (6.33) 3 (3.80) 5 (6.33) 18 (22.78) 39 

E 1(1.27) 5 (6.33) 11(13.92) 0 (0.00) 22 

Delayed Post-test (n = 64) 

A 1 (1.56) 1 (1.56) 1 (1.56) 5 (7.81) 13 

B 1 (1.56) 4 (6.25) 2 (3.13) *14 (21.88) 33 

C 1 (1.56) 0 (0.00) 0 (0.00) 2 (3.13) 5 

D 0 (0.00) 1 (1.56) 1 (1.56) 10 (15.63) 19 

 E 3 (4.69) 5 (7.81) 11 (17.19) 1 (1.56) 31 
a  The total percentages have been reduced to the nearest one per cent. 

 

5.5.4 Stereoisomers (Item 4) 

As Table 5.11 shows, 6.33% of Chem121 students have correctly (A2) answered this 

question. About 29% of the students who chose either ‘C1’ or ‘C3’ as their response 

and the reason to this question displayed a lack of understanding of the estimating 

the possible number of isomers, given the number of stereocentres in a molecule. 
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Compared to the post-test performance, an increase to 26%  for A2 in the delayed 

post-test was observed for the Chem121 cohort.  

 

Table 5. 11: Percentage of Group 2 (Chem121, Sem 1, 2012) student response 
pattern to Item 4 

  Reason Choice  
Cohort Content 

Choice 
1 2 3 4 

Total
(%)a 

Group 2: 

Chem121 

Semester 1, 2012 

 

Post-test (n = 79) 

A 1(1.27) *5 (6.33) 3 (3.80) 2 (2.53) 14 

B 0 (0.00) 17 (21.52) 3 (3.80) 5 (6.33) 32 

C 12 (15.19) 7 (8.86) 11(13.92) 1(1.27) 39 

D 2 (2.53) 2 (2.53) 2 (2.53) 4 (5.06) 13 

Delayed Post-test (n = 64) 

A 1 (1.56) *17 (26.56) 3 (4.69) 0 (0.00) 33 

B 0 (0.00) 13 (20.31) 2 (3.13) 0 (0.00) 23 

C 9 (14.06) 5 (7.81) 7 (10.94) 2 (3.13) 36 

D 0 (0.00) 2 (3.13) 5 (7.81) 0 (0.00) 11 
a  The total percentages have been reduced to the nearest one per cent. 

 

5.5.5 Molecular Visualisation (Item 5) 

As displayed in Table 5.12, only two students chose the correct response and reason 

to this item, while, 21.52% of students have incorrectly identified the molecules A 

and B as enantiomers. A further eight students have identified the molecular 

representation of A and B as constitutional isomers having the same molecular 

formula but different connectivity of atoms. There has not been a significant change 

in the delayed post-test for this group of students. The persistence of the students’ 

misunderstanding about molecules A and B as enantiomers continued as evidenced 

by the delayed post-test. This was hypothesised as being mainly due to the lack of 

opportunity for POGIL style interaction among the students.  
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Table 5. 12: Percentage of Group 2 (Chem121, Sem 1, 2012) student response 
pattern to Item 5 

  Reason Choice  
Cohort Content 

Choice 
1 2 3 4 

Total
(%)a 

Group 2: 

Chem121 

Semester 1, 2012 

 

Post-test (n = 79) 

A 17 (21.52) 6 (7.59) 2 (2.53) 5 (6.33) 38 

B 3 (3.80) 4 (5.06) 8 (10.13) 7 (8.86) 28 

C 5 (6.33) 6 (7.59) 1(1.27) 6 (7.59) 23 

D 3 (3.80) 1(1.27) 2 (2.53) *2 (2.53) 10 

Delayed Post-test (n = 64) 

A 17 (26.56) 3 (4.69) 7 (10.94) 7 (10.94) 53 

B 0 (0.00) 8 (12.50) 5 (7.81) 3 (4.69) 25 

C 5 (7.81) 3 (4.68) 3 (4.69) 1 (1.56) 19 

D 0 (0.00) 0 (0.00) 0 (0.00) *2 (3.13) 3 
a  The total percentages have been reduced to the nearest one per cent.  

 
5.6 Group 2 (Chem121) Students’ Overall Performance in the SCDT  

The overall performance of Chem121 students in the post-test and delayed post-test 

was estimated by comparing the percentage of students who scored both parts of 

each item of the two-tier SCDT correctly with the percentage of students who scored 

only the first part correctly. The results are presented in Table 5.13 and Figure 5.2. 

The Group 2 students had taken post-test and delayed-post individually without any 

POGIL group interaction. 

 

Table 5. 13: Percentage of students (Chem121, Semester 1, 2012) who correctly 
answered the first part and both parts of the items in the diagnostic test (Post-Test 
and Delayed Post-Test) 

Item 
Percentage of Students Who Correctly Answered 

Post Test Delayed Post Test 
First Part Both Parts First Part Both Parts 

1 32 NA* 58 NA* 

2 38 22 41 27 

3 14 6 33 22 

4 14 6 33 27 

5 10 3 3 3 

*NA – Not Applicable 
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Figure: 5. 2. The percentages of Chem121 students who provided the correct 
response to both tiers of the 5 items in the Stereochemistry concept diagnostic test. 

 

The percentage of the students who correctly answered the first tier of multiple-

choice items in the post-test ranged from 10% to 38% in comparison to the delayed 

post-test where the percentage ranged between 3% and 41%. Likewise, the 

percentage of students who answered both the two-tier items ranged from 3% to 22% 

in the post-test as compared to 3% to 33% in the delayed post-test.  

 

5.7 Stereochemistry Learning Gains: Group 1 and Group 2 

The results included in this section are in response to the ancillary Research 

Question 3.3: Are there any statistical differences between learning gains for Group 

1 and Group 2? A paired samples t-test was conducted to compare the differences in 

the learning gains of Group 1 (Chem102, Sem 2, 2011) and Group 2 students 

(Chem121, Sem 1, 2012) students and the results were presented in Table 5.14. The 

analysis of the data for the paired samples two tailed t-test included only the students 

who had participated in both the post-test and the delayed post-test of the SCDT. The 

data presented in Table 5.14 corresponds to 14 Chem102 and 64 Chem121 students.  

 

For the Chem102 cohort, a paired samples two-tailed t-test indicated that students’ 

delayed post-test scores (M = 2.43, SD = 0.51) were significantly higher than their 
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post-test scores [(M = 1.29, SD = 0.91), t (13) = 5.56, p = 0.004]. The mean increase 

in SCDT scores was 1.14 with a 95% confidence interval ranging from 0.70 to 1.58. 

Similarly, for the Chem121 cohort, the paired samples t-test results also indicated 

that students’ delayed post-test scores (M = 1.28, SD = 1.33) were also moderately 

higher than their post-test scores, [(M = 0.74, SD = 0.94), t (53) = 4.26, p = 0.004]. 

The mean increase in SCDT scores was 0.54 with a 95% confidence interval ranging 

from 0.21 to 0.75. 

 

The effect sizes for the paired samples t-test were also computed to understand the 

effect of the POGIL discussion during the delayed post-tests. The guidelines for 

interpreting the eta squared values were: 0.01 = small effect, 0.06 = moderate effect, 

0.14 large effect (Cohen, 1988). The eta squared statistic (0.60) indicated a very 

large effect size for the Chem102 cohort and a large effect (0.13) for the Chem121 

cohort. Based on the eta squared values, we can conclude that there was a large 

effect for both the chemistry cohorts; however there was a substantial difference in 

the SCDT scores for Chem102. 

 

These results suggest that Chem102 students’ understanding of the concepts of 

stereochemistry had significantly improved after the POGIL group discussion. 

 

In order to examine the difference in learning gains (subtracting the post-test 

achievement mean from that of the delayed post-test mean) between Group 1 

(Chem102) and Group 2 (Chem121) students, an independent samples t-test was 

conducted. There was a significant difference in the means for Group 1 students (M 

= 1.14, SD = 0.77) and the Group 2 students [(M = 0.54, SD = 0.93), t (23.74) = 2.25, 

p < 0.012].  As represented in the Figure 3.1 (see Chapter 3), the Group 1 students 

had followed typical POGIL interaction during the delayed post-test whereas the 

Group 2 students had answered post and delayed post-tests individually. These 

findings suggest that the POGIL instruction was more effective compared to the 

traditional instruction in organic chemistry topics.  

 

A further verification of this finding was performed by comparing the differences in 

learning gains of Group 1 and Group 2 students after the post-test using an 

independent samples t-test. There was a significant difference in the means for 
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Group 1 students (M = 1.29, SD = 0.91) and the Group 2 students [(M = 0.74, SD = 

0.94), t (66) = 2.69, p < 0.009]. The post-test data presented in Tables 5.6 and 5.13 

indicated that the Group 1 students did better than Group 2 students in all the items 

for both parts of the SCDT than Group 2 students except for item 2.  

 

Table 5. 14: Descriptive statistics for students’ achievement in SCDT 

 Group 1 
Chem102, Semester 2, 2011 

Group 2 
Chem121, Semester 1, 2012 

 Post-
Test 

Delayed 
Post-Test 

t 
value 

Post-
Test 

Delayed 
Post-Test 

t 
value 

Maximum  

Score Possible 

 

5 

 

5 

 

 

 

5.56* 

 

 

5 

 

5 

 

 

 

 

4.26* 

 

Mean 1.29 2.43 0.74 1.28 

Median 1.00 2.00 0.00 1.00 

Standard 

Deviation 

0.91 0.51 0.94 1.16 

Variance 0.83 0.26 0.87 1.33 

Minimum 0.00 2.00 0.00 0.00 

Maximum 3.00 3.00 3.00 4.00 

*p<0.001 

A Cronbach’s alpha reliability analysis performed using SPSS v20 as a measure of 

internal consistency of the items of SCDT for the Chem102 and Chem121 cohorts 

gave a coefficient of 0.70 and 0.65, respectively. Ideally, a value of 0.70 or higher is 

considered satisfactory (Nunnally, 1978).  

 

The difficulty of the test items display the discriminatory power of the test (Jiang, 

Xu, Garcia, & Lewis, 2010). The difficulty index of the items of SCDT when the test 

was administered as post and delayed post-tests to Chem102 and Chem121 cohorts 

was estimated from the values presented in Tables 5.6 and 5.13. Items with a 

difficulty index value of 0.75 and above were treated as being easy and those items 

with a value below 0.25 were treated as being difficult. 
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The item difficulty index indicated that the level of difficulty of the items was 

reduced when the students of Chem102 cohort answered the questions of the SCDT 

as POGIL groups. Arguably, for the Chem121 cohort who answered the post-test 

and delayed post-test individually, the evidenced variation (except for item 5) in the 

difficulty level may have occurred due to active reviewing of the worksheets during 

tutorial sessions and their strong chemistry background. 

 

5.8 Summary 

Group 1 and Group 2 students had studied the same content of organic chemistry. 

Group 1 students (Chem102, Semester 2, 2011) had POGIL style lectures whereas 

the Group 2 students (Chem121, Semester 1, 2012) had received instruction in a 

traditional lecture format though both groups had used POGIL style activity sheets. 

The analysis of the five items of SCDT revealed that 11 (in Table 5.7) 

misunderstandings were held by Group 1 and Group 2 students. The SCDT post-test 

was administered individually to both Group 1 and Group 2 students. For the 

delayed post-test, the Group 1 students were allowed to answer the test items as 

POGIL groups and the Group 2 students had taken the delayed post-test individually.  

The delayed post-test performance was significantly higher than the post-test 

performance for Group 1 students suggesting the positive impact of POGIL style 

instruction in first year chemistry classes.  

 

Ancillary Research Question 3.1: What understandings of stereochemistry are held 

by first year chemistry students following POGIL instruction in the post-test and in 

the delayed post-test? (Group 1: Chem102, Sem 2, 2011) 

 

The Group 1 students completed the SCDT post-test individually and the delayed 

post-test as POGIL groups. The analysis of students’ responses to Item 1 of SCDT 

revealed their difficulty in recognising stereocentred carbons based on their atomic 

connectivity. This finding is in line with a study by Taagepera et al. (2011) who 

reported students’ difficulty in characterising the molecules based on stereocentres, 

chirality, a plane of symmetry and image formation. 

 

Item 2 of the SCDT was aimed at assessing students’ application of their knowledge 

of chirality with the possibility of a molecule existing as an enantiomer. As shown in 
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Table 5.2 more than one third (39.34%) of the students from Group 1 chose the 

incorrect molecule with a third of these (13.11%) selecting an incorrect molecule 

with a correct reason. The students appeared to lack the ability to make a distinction 

between a chiral and achiral molecule on the basis of ‘superimposable’ mirror 

images. For this item, the percentage of students who gave the correct answer 

combination increased from 14.75% in the post-test to 42.86% in the delayed post-

test indicating an overall significant improvement in their understanding of the 

concepts of enantiomerism.  

 

Item 3 of SCDT tested students’ ability to apply the knowledge of a plane of 

symmetry and mirror image formation in assessing the chirality of the given 

molecules. The findings of the post-test SCDT results (Table 5.3) revealed that one 

third (37.70%) of the students incorrectly identified achiral molecules with a reason 

that they lacked internal plane of symmetry. The percentage of students who gave 

the correct answer combination increased from 16.39% to 50% after the delayed 

post-test indicating the disappearance of certain misunderstandings as a result of 

POGIL interaction. 

 

For Item 4, the findings of the present study identified that 36% of Group 1 students 

(Table 5.4) have incorrect understanding of the possible number of isomers from a 

stereocentre in an organic molecule. These students appeared to lack ability to 

identify the stereocentres of the given molecules (Lujan-Upton, 2001). In the delayed 

post-test, the students’ correct answer combination has increased to 57.14% which 

showed that these students had overcome the difficulty of estimating the number of 

possible isomers from a stereocentre of an organic molecule.  

 

Responses to Item 5 revealed the students’ difficulty in mentally visualising the 

given molecules based on the finding that only 11.48% of students (Table 5.5) had 

provided a correct answer combination and in the delayed post-test, the performance 

has improved to 35.71%.   

 

In conclusion, the results of the investigation showed an improvement in students’ 

understanding of stereochemistry in the delayed post-test; however, the students 

have developed new misunderstandings, possibly due to their argumentative 
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discussions in the delayed post-test. The tendency for the students to continue their 

misunderstanding may be attributed to the confusion arising from the ability to move 

back and forth between 2-D and 3-D representations of the molecules (Abraham, 

Varghese, & Tang, 2010). 

 

Ancillary Research Question 3.2: What understandings of stereochemistry are held 

by first year chemistry students following lectures in the post-test and in the delayed 

post-test? (Group 2: Chem121, Sem 1, 2012) 

 

The Group 2 students completed both post and delayed post-tests individually. For 

Item 1 of the SCDT, the analyses of post-test results (Table 5.8) indicate that 

students have difficulty in identifying stereocentres in cyclic systems.  

 

For Item 2 of SCDT, the results (Table 5.9) showed the misunderstanding of Group 

2 students with respect to the chirality and enantiomerism: chiral molecules do not 

have an enantiomer, and achiral molecules have an enantiomer. A minor 

improvement (5%) in understanding of the principle of enantiomerism was evident 

after the delayed post-test, whereas, for a significant number (47%) of students, the 

misunderstanding remained unresolved even after the delayed post-test. 

  

For Item 3 of SCDT, more than a third (39%) of the Group 2 students (Table 5.10) 

chose a correct reason and an incorrect response, indicating a misunderstanding that 

chiral molecules are identical to their mirror images. After the delayed post-test, a 

few students (17.19%) had exhibited a misunderstanding that an achiral molecule has 

a tetrahedral carbon with four different groups of atoms connected to it. However, 

for Group 2 students, the correct answer combination has increased from 6.33% in 

the post-test to 21.88% in the delayed post-test.  

 

For Item 4, about 29% of students (Table 5.11) displayed a lack of understanding of 

estimating the possible number of isomers when the number of stereocentres in the 

molecule is known.  The delayed post-test data for the correct answer combination 

was 26.56% as compared to 6.33% in the post-test.  

 



 

103 

Group 2 students (21.52%) have incorrectly identified the molecules A and B, given 

in Item 5, as enantiomers (Table 5.12). A further 28% of the students have 

represented the molecules as constitutional isomers, of which 10% of the students 

reasoned that molecules A and B have same molecular formula but different atomic 

connectivity. In the delayed post-test, data revealed the persistence of the 

misunderstanding that both molecules are enantiomers. In conclusion, the data 

showed that the continuity of students’ misunderstanding may have arisen due to the 

lack of POGIL style interaction in the delayed post-test. 

 

Ancillary Research Question 3.3: Are there any statistical differences between 

learning gains for Group 1 and Group 2? 

 

The delayed post-test performance was significantly higher than post-test 

performance for Group 1 (Table 5.14), suggesting a positive impact of POGIL style 

instruction in first year chemistry classes. The results of the independent samples t-

test indicated a significant difference in the means for Group 1 students (M = 1.10, 

SD = 0.78) and the Group 2 students [(M = 0.33, SD = 0.75), t (19.66) = 2.86, 

 p < 0.010] suggesting that the POGIL instruction was more effective compared to 

the traditional instruction in organic chemistry topics. 

 

A Cronbach’s alpha reliability coefficient of 0.70 (Group 1, Chem102, Semester 2, 

2011 students) and 0.72 (Group 2, Chem121, Semester 1, 2012 students) for the 

diagnostic test, SCDT was obtained which is greater than the threshold value of 0.5 

suggested by (Nunnally, 1978). The level of difficulty of items had eased when the 

students answered the delayed post-test SCDT as POGIL groups.  

 

 

 

 

 

  



 

104 

Chapter 6 

The Perceived Curriculum 

 

6.1 Introduction 

The study attempted to answer among others, Research Question 4. In what ways do 

students perceive their learning while engaged in POGIL classes? The study used the 

Student Assessment of Their Learning Gains (SALG) instrument (Seymour et al., 

2000) and semi-structured interviewing of students in an effort to answer this 

research question. 

 

Section 6.2 describes the significance of the perceived curriculum and its relevance 

to the research study. An introduction to the Students’ Assessment of Their Learning 

Gains (SALG) instruments, the need and the process of validation of the SALG 

instrument are included in Sections 6.3, 6.3.1, and 6.3.2. The exploratory factor 

analyses results, reported in Section 6.4, examined both the convergent and 

discriminant validity of the SALG instrument. The confirmatory factor analyses 

results, reported in Sections 6.5 and 6.6 examined the construct validity of the SALG 

instrument with the utilisation of SPSS and structural equation modelling. The 

qualitative results from semi-structured student interviews and responses to open-

ended statements on the SALG instrument are included in Section 6.7. 

 

6.2 Perceived Curriculum 

The perceived or experienced curriculum, according to Rogers (1989), refers to 

students’ recounting their learning in the form of meaningful conclusions or 

interpretations from a class and laboratory or field work. Several approaches are 

proposed and practised (Mills & Treagust, 2003; Rogers, 1989; Treagust, 1986b) in 

an effort to assess the curriculum as perceived or experienced by the students. These 

approaches generally include end-of-course survey instruments and semi-structured 

student interviews. The examination of the curriculum as perceived by students in a 

POGIL class is an area of research in chemistry/science education that is of interest 

to chemistry educators.  
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6.3 Students’ Assessment of Their Learning Gains (SALG) 

According to Seymour (2000), the SALG instrument helps instructors in gaining the 

desired feedback from the students on their perceptions of learning during the 

semester, which, in return helps the instructors to examine and revise their 

pedagogical methods aimed at enhancing the students' learning gains. Despite wide 

usage of the SALG in chemistry classrooms (Chamely-Wilk, Galin, Kasdorf, & 

Haky, 2009; Gafney & Varma-Nelson, 2007; Hoffman, Britton, Cadwell, & Walz, 

2010; Middlecamp, Jordan, Shachter, Kashmanian Oates, & Lottridge, 2006), 

surprisingly, there is no literature available describing the factorial or internal 

construct validity of the SALG questionnaire.  

 

Following the introduction to the SALG, as outlined in Chapter 2, this research study 

adapted the questionnaire and the generated data were statistically analysed to 

validate the instrument and further explore how POGIL-influenced learning had 

helped students during their studies in chemistry. 

The development and validation of the SALG instrument had several stages: 

 Stage 1 involved the selection of a suitable instrument from the SALG site  

 Stage 2 involved developing the face validity in this context by amending 

items to make the instrument more suitable to this Australian POGIL 

classroom 

 Stage 3 involved administration of the SALG to Chem102 students at the end 

of semester 2 in 2011 in preparation for exploratory factor analysis. 

 Stage 4 involved administration of the refined SALG instrument to Chem102 

students at the end of semester 2 in 2012 in preparation for confirmatory 

factory analysis. 

 

6.3.1 Stages 1 and 2 

The website of the SALG (http://www.salgsite.org/about) offers students and 

instructors, access to the SALG instruments to complete, to enable instructors to 

compute the results from the questionnaire.  Instructors have access to the template-

style web-based instruments to which they can add or delete questions or edit 

existing questions. Alternatively, instructors can build their own SALG instrument 

from scratch by using a template-driven interface available on the website. The 
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researcher had identified a pool of items from the POGIL instruments that were 

developed and administered in other POGIL classes and modified some of the items. 

In addition, content-specific items were incorporated to make the instrument more 

suitable to the Australian version of POGIL. The adapted and modified SALG 

instrument was moderated by an instructor at the Department of Chemistry who has 

extensive experience in trans-national studies of students’ active learning pedagogies 

in chemistry. The SALG instruments developed and used in this study are available 

in Appendices C and J.  

 

6.3.2 Stages 3 and 4 

The SALG instrument was administered to Chem102 cohorts in 2011 and in 2012 to 

obtain data for exploratory and confirmatory analyses. The SALG instrument 

containing 62 5-point Likert scale items was administered during the second 

semester of 2011 for exploratory factor analysis (n = 114). Based on the results, the 

instrument was refined and the 44 item  5-point Likert scale SALG instrument was 

administered to Chem102 students during the second semester of 2012 for 

confirmatory factor analysis (n = 154). In addition to the Likert scale items, SALG 

also included items that were aimed at seeking students’ written responses on various 

aspects of the POGIL class. An outline on the development and administration of the 

SALG instrument is presented in Figure 6.1. 

 

For establishing convergent validity of SALG, the factor loadings and internal 

consistency reliability measures were computed. Brown (2006) suggested a strong 

interrelation of different measures of theoretically similar or overlapping constructs 

for convergent validity.  
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Figure: 6. 1. An outline showing the administration and data analysis of SALG 
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6.4 Exploratory Factor Analysis (EFA) of SALG Instrument 

EFA is generally employed in the process of scale development and construct 

validation (Brown, 2006). EFA is a data driven approach to see the relevant common 

factors emerging from it (Johnson & Stevens, 2001). The purpose of EFA was to 

investigate the factors encompassing the SALG instrument. Subsequently, EFA was 

performed on all 62 items of SALG. A principal axis factoring analysis with varimax 

rotation procedure performed using SPSS version 20 extracted 32 items identified as 

four sets of factors, subsequently named students’ active learning, concept learning, 

resources, and process skills.  

 

The feasibility of factor analysis was determined by examining the Kaiser–Meyer–

Olkin measure of sampling and Bartlett’s test of sphericity. The Kaiser–Meyer–

Olkin measure of sampling adequacy was 0.785, indicating that the data were 

appropriate for exploratory factor analysis (Tabachnick & Fidel, 1989). Bartlett’s test 

of sphericity indicated that X2 = 2196.521 which was statistically significant 

(p<0.001). Items loading on more than one factor with a loading score of equal to or 

greater than 0.40 on each factor were eliminated from the analysis. Table 6.1 shows 

the results of the varimax rotation and the factors obtained after EFA are presented in 

Table 6.2. Factor loadings indicate how strongly each item is related to a particular 

factor, eigenvalues show the relative importance of each factor, and the cumulative 

variance can be used to check whether a sufficient number of factors have been 

retained. The eigenvalue for each factor was greater than 1, as per Kaiser Criterion 

(Kaiser, 1960) and the cumulative variance for all the four factors was 45.79%. 
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Table 6. 1: Factor loading, eigenvalue and percentage of variance for SALG 

(Chem102, 2011) (n = 114) 

 
Item 

Number 
Factor Loadings 

Active  
       Learning 

Concept Learning Resources Process 
Skills 

1 .45    
2 .55    
3 .60    
4 .42    
5 .48   
6 .52    
7 .64    
8 .61    
9 .64    
10 .49    
11 .62    
12 .71    
13 .41    
14 .52    
15 .55    
16 .61    
17 
18 

.56 

.61 
   

19  .55   
20  .52   
21  .77   
22  .77   
23  .72   
24  .58   
25  .56   
26   .80  
27   .87  
28   .89  
29   .46  
30    .89 
31   .68 
32    .80 

% Variance 
Eigenvalue 
Cumulative % 
Variance 

18.12 
9.46 
18.12 

10.69 
2.86 
28.82 

9.33 
2.64 
38.15 

 

7.65 
1.90 
45.79 

Extraction Method: Principal Axis Factoring.  
Rotation Method: Varimax with Kaiser Normalization. 
Factor loadings smaller than 0.40 have been omitted 
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Table 6. 2: Scale development of SALG 

 Scales of SALG 

Active Learning (18 items) Concept Learning (7 items) 

1 Pace of class 19 Molecular Forces 

2 Attending class 20 SN1 SN2 rxn mechanism 

3 Working with Peers 21 Distinguishing Isomers 

4 Working with Peers outside the 

class 

22 Classifying chiral-achiral molecules

5 Explanation of instructor for 

involving small groups 

23 Identifying StereoCentres 

6 Explanation of focus on topics 

presented 

24 Ideas VS ideas other classes 

7 Confidence understanding material 25 Ideas VS Major 

8 Confidence in ability to do POGIL 

activities 

Resources (4 items) 

9 Comfort  level involving complex 

ideas 

26 Mini lectures 

10 Participating in class discussions 27 Pencasts 

11 Listening to discussions 28 Pencasts solutions HW problems 

12 Participating in Group Work 29 Interacting with Instructor office 

hours 

13 Class Activities help learning Process Skills (3 items) 

14 Number and spacing of tests 30 Argument use of evidence 

15 Grading system what I need to 

work 

31 Identify Data Pattern 

16 Feedback on my work tutorials 32 Develop logical argument 

17 Connecting key ideas to other 

knowledge 

  

18 Seeking help from others   

 

Internal consistency reliability was established by calculating the Cronbach’s alpha 

coefficient for each factor. The guidelines (Cohen, Mannion, & Morrison, 2000; 

Nunnally, 1978) indicate that an alpha coefficient of 0.70 is adequate for an 

instrument in the early stage of development; a coefficient of at least 0.80 is 

adequate for a more developed instrument. The results portrayed in Table 6.3 show 

that the Cronbach’s alpha coefficient for each factor was above 0.80, affirming the 
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reliability of the scales of SALG. The factor loadings and internal consistency 

measure confirmed the convergent validity of the SALG questionnaire. 

 

Table 6. 3: Internal consistency reliability (Cronbach’s alpha) for the SALG scales 

Factor Number of items Cronbach’s Alpha 

Active Learning 18 0.90 

Concept Learning 7 0.84 

Resources 4 0.81 

Process Skills 3 0.89 

 

The discriminant validity of the items of the instrument was assessed by comparing 

the construct correlations with the square root of the average variance extracted 

(AVE). Fornell and Larcker (1981) specify that discriminant validity is achieved 

when the square root of the AVE of a construct is larger than its correlation with 

other constructs. The square roots of the AVE were calculated and are represented in 

bold on the main diagonal of Table 6.4. The off diagonal elements represent the 

correlations among the latent variables. The results reported in Table 6.4 confirm 

that the discrimination validity was achieved by all scales.  

 

Discriminant validity according to Brown (2006) is expressed by results showing 

that indicators of theoretically distinct constructs are not highly inter-correlated. He 

further argued that, factor correlations above 0.80 imply overlap of items and point 

towards poor discrimination validity. As shown in the Table 6.4, the component 

correlation matrix obtained from varimax rotation ranged from 0.17 to 0.51, 

providing further evidence in support of the discriminant validity.  

 

Table 6. 4: Inter construct correlations and square roots of average variance extracted 

for the SALG scales 

 
Active 

Learning 
Concept 
Learning 

Resources 
Process 
Skills 

Active Learning 0.78 
Concept Learning 0.45 0.82 
Resources 0.31 0.17 0.89 
Process Skills 0.51 0.41 0.35 0.94 

Note. Square root of average variance extracted (AVE) is shown on the diagonal of 
the matrix 
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6.5 Confirmatory Factor Analysis 

Confirmatory factor analysis was used to determine whether the factor structure 

resulting from the exploratory factory analysis could be confirmed on the data 

obtained from the Chem102 cohort during semester 2 in 2012 when a refined SALG 

was used. Subsequently, 154 students completed the SALG questionnaire containing 

44 5- Likert scale items. SPSS v20 was used to analyse the data which resulted in a 

slight variation from the factor structure obtained in EFA. In lieu of the items 

grouped as ‘resources’ in EFA, a new group of items has emerged which was 

identified as ‘group work’.  

 

The distinct nature of the data used for EFA and CFA analysis may have resulted in 

a partial correspondence between the results obtained (Jan-Willem Van & Willem, 

2001). Methodological issues were attributed to the EFA and CFA results originating 

from the same data set (Kroonenberg & Lewis, 1982). As in the case of cross-

validation or comparative studies, the non-alignment of EFA and CFA results were 

commonly reported because the results originated from different data sets (Van de 

Vijver, 2011). As indicated earlier, the data used in this study for EFA has come 

from Chem102 of Semester 2, 2011 whereas, for CFA, the data came from Chem102 

of Semester 2, 2012. The initial outcome of CFA, as shown in Table 6.5, does have a 

reasonable match of items with that of EFA, but the SPSS v20 did not yield the 

desired group of items that are potentially able to elaborate students’ perception of 

POGIL. 

 

Modelling where a specification of the number of factors is possible prior to the 

analysis. The confirmatory factor analysis in Structural Equation Modelling (SEM), 

enabled the researcher to carefully specify the constructs and their indicators in order 

to assess the reliability and validity of the measurements prior to their actual testing 

with the data (Marcoulides, 2001).   
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Table 6. 5: Factor loading after CFA for SALG – Chem102, 2012 

Item 
No Item 

Factor Loadings 
Active  

learning 
Concept
Learning

Group 
work 

Resources

1 recognising argument and use of 
evidence 

.69   

2 developing logical argument .68   
3 connecting key class ideas .67    
4 use of systematic reasoning in 

problem solving 
.66    

5 connecting key ideas .65    
6 number and pacing of tests .60    
7 the pace of the class .59    
8 applying learning in other situations .59    
9 instructors explanation .59    
10 why class focused on topics 

presented 
.59    

11 feedback on my work .56    
12 listening to discussions .54    
13 inter-relationship of activities  .53    
14 attending class .51    
15 clickers .40    
16 sn1 sn2 reaction mechanisms  .75   
17 distinguishing types of isomers  .75   
18 nucleophilic substitution reactions  .73   
19 curved arrow conventions  .70   
20 classifying chiral and achiral 

molecules 
 .69   

21 identifying stereocenters in 
molecules 

 .69   

22 molecular forces  .61   
23 main concepts  .56   
24 identifying functional groups  .55   
25 relationships between concepts .54   
26 representing molecules with lewis 

structures 
 .48   

27 working with peers   .67  
28 small group activities help my 

learning 
  .67  

29 participating in discussions during 
class 

 .59  

30 participating in group work  .59  
31 working with others   .59  
32 working with peers outside class   .57  
33 mini-lectures    .84 
34 pencasts    .80 
35 pencast solutions for homework    .78 
36 blackboard    .59 

Extraction method: Principal Component Analysis 
Rotation Method: Varimax with Kaiser Normalisation 
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The researcher also used a more rigorous approach like CFA of Structural Equation  

 

The SEM models constitute two components – the measurement model and the 

structural model. The path diagram (Figure 6.2) shows a measurement model 

depicting three latent variables or factors, the arrows pointing to the observed 

variables represent the factor loadings and the residuals for each observed variable. 

Also included is the structural model displaying the direct effects among the latent 

factors. CFA is a type of structural equation modelling that uses a measurement 

model specifying the relationship between observed measures and latent variables or 

factors (Brown, 2006). The structural model of SEM specifies the association 

between the latent variables or factors. The double headed arrows shown in Figure 

6.2 represent the correlation between the latent variables. The residuals represent the 

variance between the proposed model and the observed data.  

 

 

Figure: 6. 2. The measurement and structural models of SEM: with three latent 
factors. 

 

In structural equation modelling, the data application of confirmatory factor analysis 

has two purposes (Hox & Bechger, 1998). The primary purpose is to obtain the 

estimates of the parameters of the model-like factor loadings, the variances and 

covariances of the factor, and the residual error variances of the observed variables. 
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The second purpose is to assess whether or not the model provides a good fit to the 

data.  

 

The advantages of CFA over EFA, which are well documented (Brown, 2006; Hong, 

Purzer, & Cardella, 2011; Joreskog, 2007), include specification of conceptually 

viable measurement models, the ability to estimate the relationships among variables 

for measurement error, the ability to examine whether the measurement and 

structural parameters of the factor model are equivalent along the multiple groups, 

evaluation of measurement invariance, superiority in modelling flexibility, scale 

reliability estimation and robust evidence in the form of goodness of fit measures for 

construct validity.  

 

6.6 The Hypothesised Model 

The CFA model hypothesised a priori that Chem102 students’ perceptions of 

POGIL would be explained by the four factors of SALG revealed by the exploratory 

factor analysis – Active Learning, Concept Learning, Resources, and Process Skills. 

In this study, for CFA the four-factor (Figure 6.3) measurement model was evaluated 

using IBM AMOS (Analysis of Moment Structures) v20 software that comes 

packaged with IBM SPSS. All tested models used maximum likelihood estimations. 

Model goodness of fit was evaluated using several indices: Chi-square, Chi-square/df 

ratio, Goodness-of-fitness index (GFI), Adjusted Goodness-of-Fit Index (AGFI), 

Comparative Fit Index (CFI), Root-Mean-Square Error of Approximation (RMSEA), 

Standardised Root Mean Squared Residual (SRMR), and the Tucker-Lewis Index 

(TLI). The measurement value indices proposed by Hu and Bentler (2009), 

Comparative Fit Index (CFI ≥0.9), Tucker-Lewis Index (TLI ≥0.9), SRMR (≤0.08), 

and RMSEA (≤0.08) were used in this study.  

 

The SEM model may sometimes be modified to attain the goodness of fit. A 

modified model may have a parameter either added or deleted to improve the fit 

(Hox & Bechger, 1998). The AMOS v20, software used for SEM, computes 

modification indices suggesting the addition of various covariances between error 

terms. The CFA model in Figure 6.3 displays few of the error terms having such 

covariance. For example, in Figure 6.3, the covariance between e8 (participating in 

group work) and e14 (working with peers) is theoretically justifiable because these 
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are strongly related parameters and have something specific in common. The 

analyses had identified such error terms and established covariance to improve the 

model fit. The factor loadings of the items of CFA, their corresponding item number 

in EFA and the squared multiple correlation values are presented in Table 6.6. 

Squared multiple correlations are an indication of how much of the variance of each 

factor is explained by the model. To take the variable RES2 (pencasts) as an 

example, 91% of its variance is accounted for by the latent factor resources. The 

remaining 19% of the variance is accounted for by the unique factor e25. Similarly, 

for AL4 (working with peers outside the class), only 15% of its variance is accounted 

for by the latent factor active learning. The remaining 85% of the variance is 

accounted for by the factor e13. 

  

The four-factor measurement model of CFA of SALG based on the values listed in 

Table 6.6 appeared to have met the criteria of the acceptable model fit (Bentler, 

1990; Hu & Bentler, 1999) values of CFI (≥0.9), TLI (≥0.9), SRMR (≤0.08), and 

RMSEA (≤0.08). The chi square value was statistically significant and the lower GFI 

and AGFI values could be due to a relatively small size of the student population of 

154 participating in the confirmatory factory analysis study (Fan, Thompson, & 

Wang, 1990).  For the four-factor model, the following fit statistics; chi square 

goodness-of-fit value = 619.40, df = 385, chi-square/df = 1.61, GFI = 0.80, AGFI = 

0.76, CFI = 0.92, TLI = 0.91, SRMR = 0.07, and RMSEA = 0.06 meet the adequacy 

criteria (Hu & Bentler, 1999). 
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Figure: 6. 3. Confirmatory factor model obtained with SALG data from Chem102, Semester 2, 2012
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Table 6. 6: Factor loadings of four-factor SEM and Squared Multiple Correlations 

(SMC) 

  Scales of SALG  

Item 
Item No in 

EFA 
Active  

Learning
Concept 
Leaning 

Resources 
Process 
Skills 

SMC 

AL1 2 .67    0.45 
AL2 1 .67    0.45 
AL3 3 .60    0.36 
AL4 4 .38    0.15 
AL5 5 .53    0.28 
AL6 6 .62    0.38 
AL7 10 .63    0.40 
AL8 11 .62    0.38 
AL9 12 .68    0.46 
AL10 13 .57    0.32 
AL11 14 .67    0.45 
AL12 16 .62    0.38 
AL13 17 .79    0.62 
AL14 7 .71    0.50 
AL15 8 .63    0.40 
AL16 9 .68    0.47 
CL1 20  .78   0.61 
CL2 21  .83   0.69 
CL3 22  .77   0.60 
CL4 23  71   0.51 
CL5 19  .67   0.45 
CL6   .59   0.35 
CL7   .76   0.58 

RES1 26   .76  0.58 
RES2 27   .96  0.91 
RES3 28   .76  0.58 
RES4    .58  0.34 
PS1 31    .82 0.68 
PS2 30    .90 0.81 
PS3 32    .88 0.78 

 

The internal consistency reliability of the items of SALG after CFA was calculated 

and the values are presented in Table 6.7. The Cronbach’s Alpha values for the 

SALG constructs after CFA resembled with those reported values of SALG EFA 

(Table 6.3). All of the four constructs exhibited high levels of reliability. 

 

 

  



 

119 

Table 6. 7: Internal consistency reliability of SALG scales after CFA 

Factor Number of items Cronbach’s Alpha 

Active Learning 16 0.92 

Concept Learning                      7 0.89 

Resources 4 0.82 

Process Skills 3 0.90 

 

The hypothesised structural model has been used to answer Research Question 4: In 

what ways do students perceive their learning while engaged in POGIL classes? The 

CFA model of the relationships between active learning, concept learning, resources 

and process skills is shown in Figure 6.4. The four-factor measurement model 

obtained from the confirmatory factor analysis was tested using IBM AMOS v20 for 

causal relationships between the four constructs, in an effort to answer the research 

question.  

 

The fitness indexes; Chi-square = 623.67, df = 388, chi-square/df = 1.60, GFI =  

0.80, AGFI = 0.76, CFI = 0.92, TLI = 0.91, SRMR = 0.07, and RMSEA = 0.06 meet 

the adequacy criteria (Hu & Bentler, 1999) for the four-factor structural model.   

 

Standardized regression weights explained the extent of increase or decrease in terms 

of standard error that a variable can cause. Standard regression weights for the four 

constructs in the structural model are shown in Table 6.8. The estimated standardized 

regressions weights for all other factors are included in Appendix K.  

 

Table 6. 8: Standardized regression weights 

Constructs Estimate 

Process Skills <--- Active Learning .88 

Concept Learning <--- Active Learning .78 

Resources <--- Active Learning .54 
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Figure: 6. 4. Structural model showing relationship between the latent constructs
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Squared multiple correlations (SMC) for the four constructs in the structural 

equation model are shown in Table 6.9. The SMC provide information about how 

much variance the factors account for in the observed variables (Gorsuch, 1983). The 

SMC values of all the other factors are included in the Appendix K. The data showed 

the strong effects of active learning on the process skills of the students (0.77) 

followed by concept learning (0.65) and resources (0.29). These results suggest that, 

the students’ POGIL participation has a positive effect on the development of their 

process skills and conceptual understanding. 

 

Table 6. 9: Squared multiple correlations 

Construct   Estimate 

Process Skills 0.77 

Concept Learning 0.61 

Resources 0.29 

 

Descriptive statistics of the items of the four scales were computed to further 

understand how students had self-reported their learning gains on each item of the 

scales. The mean scores, as shown in the Table 6.10, ranged from 2.74 to 3.66 and 

the adequate reliability (α >.70) for the four scales as shown in the Table 6.8 indicate 

that all domains were rated highly by the student for the overall assessment of their 

improvement in learning.  

 

Further, a comparison of the mean scores of the four scales revealed that the students 

consistently gave concept learning (7 items, maximum = 5, Mean = 3.47, SD = 1.05) 

and active learning (16 items, maximum = 5, Mean = 3.36, SD = 1.07) the highest 

rating. A look at the rating for organic chemistry topics like molecular forces (CL5), 

curved arrow conventions (CL6) and nucleophilic substitution reactions (CL7) 

revealed that the students gave highest scores indicating a greatest impact of POGIL 

in understanding these topics.  Besides assigning high rating for the learning gains in 

organic chemistry topics, the students also felt that the instructional approach had a 

positive impact on their confidence and comfort levels (AL14, AL15 and AL16). 

Further, the learning gains due to the active learning were strongly attributed to 

attending class (AL1), working with peers (AL3), listening to discussions (AL8), 
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participating in group work (AL9).  However, for the resources section, the mean 

score was low (4 items, Mean = 3.00, SD = 1.41) except for RES4 where the 

students had strongly agreed (Mean = 3.40, SD = 1.40) that the use of clicker 

questions during lectures and tutorials/workshops had helped their learning. The 

learning gains due to the process skills were consistently attributed to the three 

items: PS1, PS2, and PS3.  

 

Table 6. 10: Student assessment of their learning gains (SALG) mean scores 

Chem102, 2012 

Item  
Number 

Item 
Mean Std. 

Deviation 
Active Learning 3.36 1.07 

AL1 Attending class 3.56 1.16 
AL2 Pace of class 3.16 1.06 
AL3 Working with Peers 3.66 1.11 
AL4 Working with Peers outside the class 3.28 1.23 

AL5 
Explanation of instructor for involving small 
groups 2.92 1.15 

AL6 Explanation of focus on topics presented 3.19 1.06 
AL7 Participating in class discussions 3.20 1.03 
AL8 Listening to discussions 3.47 0.97 
AL9 Participating Group Work 3.56 1.02 
AL10 Class Activities help learning 3.39 1.06 
AL11 Number and spacing of tests 3.22 1.11 
AL12 Feedback on my work tutorials 3.33 1.17 
AL13 Connecting key ideas to other knowledge 3.40 0.92 
AL14 Confidence understanding material 3.51 1.03 
AL15 Confidence in ability to do POGIL activities 3.55 0.98 
AL16 Comfort  level involving complex ideas 3.31 1.06 

Concept Learning 3.47 1.05 
CL1 SN1 SN2 reaction mechanism 3.39 1.11 
CL2 Distinguishing Isomers 3.39 1.11 
CL3 Classifying chiral-achiral molecules 3.39 1.07 
CL4 Identifying StereoCentres 3.31 1.14 
CL5 Molecular Forces 3.66 0.94 
CL6 Curved arrows  3.64 1.03 
CL7 Nucleophilic substitutions 3.50 0.95 
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Resources 3.00 1.41 
RES1 Mini lectures 2.92 1.30 
RES2 Pencasts 2.74 1.44 
RES3 Pencasts solutions homework  problems 2.93 1.52 
RES4 Clickers 3.40 1.38 

Process skills 3.26 1.09 
PS1 Identify data pattern 3.23 1.02 
PS2 Argument use of evidence 3.26 1.00 
PS3 Develop logical argument 3.29 1.03 

 

Correlation studies of the mean scores of the factors of SALG are presented in Table 

6.11. 

 
A Pearson correlation coefficient was computed to assess the relationship between 

the four factors of the SALG instrument. Overall, there was a positive correlation 

between the four factors of the SALG instrument. 

 

Table 6. 11: Pearson correlation coefficient values of four factors of the SALG 

instrument 

 Active Learning Concept Learning Resources Process Skills

Active Learning 0.69 0.54 0.77

Concept Learning 0.42 0.66

Resources  0.41

Process Skills  

                                                                                             p< 0.01 level (2-tailed) 

6.7 Qualitative Data Analysis 

Further to the semi-structured interviews, open-ended questions also were included 

in the SALG questionnaire for the students to include their feedback on their 

learning experiences and perceptions in active learning chemistry classes in the form 

of written statements. This procedure was intended to corroborate the findings from 

the students’ interviews and identify areas for further exploration. In other words, 

these open-ended responses on questionnaires allow the research to explore  

participants' perspectives and provide information in support of the emerging 

theories (Creswell, 2005). 
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6.7.1 The Profile of the Interviewees 

All ten students were studying Chem102 at the time of the interview. For the purpose 

of protecting their anonymity, these students were assigned with codes which started 

with ‘CS’. Table 6.12 provides a summary of the profile of the interviewees. 

  

Table 6. 12: Demographics profile of the interviewees (N= 10) 

Student 

Data Source 

Code 

Major Status Gender 
Level of Chemistry 

Background 

CS1 Science Australian Male Mature Age 

CS2 Engineering Australian Male High School Chem 

CS3 Engineering & 

Commerce 

Australian Male High School Chem 

CS4 Engineering International Male High School Chem 

CS5 Chemical 

Engineering 

Australian Male Bridging Units 

CS6 Chemical 

Engineering 

International Female High School Chem 

CS7 Petroleum 

Engineering 

Australian Female High School Chem 

CS8 Petroleum 

Engineering 

Australian Male High School Chem 

CS9 Petroleum 

Engineering 

Australian Female High School Chem 

CS10 Science Australian Male High School Chem 

 

6.7.2 Approach to the Interview Analysis 

The data pertaining to the ten interviews were transcribed and quality assured by the 

researcher. The quality assurance procedure involved the researcher listening to the 

tapes for clarity while transcribing. The Chem102 students’ (n = 114) written 

responses to the open ended questions of the SALG were also transcribed. The 

transcripts were entered into NVivo (NVivo, 2012) and coded to generate themes 

and which were later explored across for meaningful conclusions. For the purpose of 
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categorisation of nodes into themes, the guidance of a postdoctoral researcher 

experienced in the QSR NVivo analysis was sought. The inter-rater agreement scores 

(evaluate agreement between two classifications) were not performed as the entire 

coding process was independently completed by the researcher.  

 

The SALG constructs obtained from CFA provided guidance in terms of analysing 

and interpreting the qualitative data. As shown in the Table 6.13, the thematic 

content analysis of the qualitative data resulted in six broad categories: teaching, 

learning, resources, process skills, attitudes and resistance. In an effort to seek an 

explanation to the Research Question 4 outlined in section 6.2, these broad 

categories are further divided into themes, categories and sub-categories in order to 

analyse and cluster systematically the students’ responses. 

 

Table 6. 13: The six categories that emerged out of the coding of student qualitative 

data 

Category Themes 

Teaching Instructional approach, atmosphere, participation 

Learning Understanding of concepts/subject, key ideas 

Process Skills Teamwork, group work, communication, 

logical/critical thinking, study skills etc., 

Resources Text book, learning management system 

(blackboard), lecture capture (iLectures), tests, 

quizzes 

Attitude Enthusiasm, confidence, interest 

Resistance Disagreement, lack of interest 

 

6.7.3 Students’ Perception of their Learning Gains in POGIL Classes 

This section presents the results and findings in response to the Research Question 4 

according to the identified categories and themes listed in Table 6.13.  
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Category: Teaching 

This category was used to ascertain students’ perceptions about the small group 

learning in chemistry class. The responses were clustered into themes, namely, 

instructional approach, atmosphere of the class and their participation. 

 

Theme: Instructional approach, atmosphere and participation  

 

CS9, CS6 and CS4 believed that the instructional approach in the POGIL class 

prepared them for inquiring into the concepts by way of finding solutions to the 

critical thinking questions. From the following excerpts, it is evident that students 

identify this teaching approach in chemistry as an innovative way to problem solving 

and conceptual understanding. 

 

I guess with a small group you are going to be with different people with 

different ideas and I guess different approaches towards a chemistry 

problem, so I guess that can help you learn, not just new aspects of the 

chemistry world, but new ways on how to tackle certain questions in the 

chemistry world. (CS9) 

 

Yes, because it makes you think about… you know, the processes involved on 

your own, and I guess it helps the thing get stuck into your mind. (CS6) 

 

We discuss it, and then we see the logic behind the concept.  And then we 

have the lecture notes, some internet, so we can carefully research it.  And 

then we come up with, like, our ideas and then we discuss again, and then we 

come up again with the right concept. I pick up the concept in my lectures 

and activity, and then we have to pick up the concept really quickly, so for 

example, it can really help me with picking up the concept. (CS4) 

 

CS8 admitted that the role of the facilitator in a POGIL session allowed students to 

seek clarification on questions which he found difficult in a traditional mode of 

lecturing. CS9 also underpinned the need for solutions to critical thinking questions 

that were included in the activity sheets, to avoid any misunderstandings or 

misconceptions. 
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In some ways it is good.  But in some ways I do like traditional training 

where you go in, you take notes, you learn stuff.  Sometimes it can be 

frustrating because, yes you can ask questions and they will, like, they won’t 

get time to answer your questions, and you kind of like not knowing the 

concepts. (CS8) 

 

I think it is pretty good in a way, but is better if we can get the answers 

because we don’t have solutions.  We have to find a solution our self, and 

sometimes if we understand a wrong concept we might get it wrong, and then 

when you bring that to the exam you just mess it up. (CS9) 

 

CS9 considered that participation in class activities help retain the knowledge gained 

from them.  

 

Yes, more active learning I guess, because while I listen in a lecture, when I 

walk out I forget visibly, yes because I have to learn something.  I have to … 

if I learn something I have to actually do it, because I am not a person who 

can read and remember. (CS9) 

 

The following excerpts from the open-ended SALG statements revealed that, apart 

from the understanding of the concepts, students’ participation in POGIL group 

discussions is dependent on the atmosphere of the class, in other words, a positive 

learning environment had maximised the student participation.  

 

“the instructors and help on the tutorials helped me understand things 

better”, “I participated regularly but enjoyed listening to discussions”, “all 

the time small group learning helped me deepen my understanding”, “I 

participated as much as possible and the atmosphere encourages this”, 

“personally had little participation, preferred to listen and construct my own 

ideas”, “I sometimes participated in class discussions, the classroom 

atmosphere encouraged participation as the lecturer was pleasant even if the 

answer was wrong”, “it contributed to the group discussions often and the 

atmosphere of the class is encouraging”.  
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In contrast, two factors appeared to impede the student participation, namely, the 

noise level and individual learning style. 

 

“Participated in every group discussion in every class. Noisy atmosphere of 

the class, comfortable asking for help”, “I sometimes participated, as I 

prefer solidifying concepts by my own logic. If I did not understand them, 

then I would discuss. The class becomes somewhat chaotic with mass 

discussion, which can be distracting”, “participated often in my immediate 

group. However as a shy person I felt the class too large to join in class 

discussions”, “I often participate in class discussions and it is helpful 

however sometimes not that encouraged because of the partners are not so 

proactive” 

 

Category: Learning 

Theme: understanding of concepts/subject, key ideas 

 

The following responses to the open-ended SALG items were associated with this 

category in support of a positive impact of the POGIL activities on the students’ 

learning. 

 

“the activities helped me remember key ideas in this class, however it would 

be helpful to have solutions posted so we can check our answered which is 

particularly helpful for exam study and preparation”, “The activities are a 

good method of identifying key concepts and ideas, help to remember them”, 

“the activities generally help in understanding and remembering concepts 

and ideas. “Summaries also reinforce this”, “the workshops were taught 

well but the only lecturer that was out to learn from was …... The others were 

not as entertaining and didn't draw my attention as well. Just my personal 

opinion”, “I still struggle remembering all the different reactions but the key 

concepts were exemplified numerous times which helped drill them into us”. 

 

These findings suggest that POGIL activities helped these students’ to master 

concepts in preparation for examinations in addition to active revision of the content.  
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Comparing the nature of the POGIL approach to that of a seminar-type discussion 

between presenter (lecturer) and audience (students), CS8 felt that the facilitator 

assisted or guided completion of activities helped these students attain their learning 

goals.  

 

Yes.  Completion of the activities or worksheets with the guidance of the 

facilitator is a very good pathway in achieving the learning goals, but I think, 

maybe, we do not have it solely active learning, and maybe, just more of a 

mix, so if we had it as part of a lecture where we do take notes and we learn 

from the lecturer.  And then have almost like a seminar discussion 

afterwards, where we can complete the activity and go from there, rather 

than learning solely through the activity. For me that is … I would find that 

more productive. (CS8) 

 

On the contrary, CS7 and CS8, the students who chose to do Chem102 directly 

without Chem101, indicated that the examining the perspectives of POGIL 

instruction in Chem102 is difficult without experiencing it in Chem101. 

 

So it was a bit hard to know whether you were on the right track.  Also, not 

doing Chem101, and then coming into Chem102, and all this, like, interactive 

learning blah blah, and they expected you to know how it worked in second 

semester as well.  So it was a bit … so we were a bit on the back-foot kind of 

thing. (CS7) 

 

Even if it is just a simple one that, say for example, we didn’t learn Chem101, 

but we need to know it for this topic.  It is sort of just assumed that you know 

it, then, it can be a little bit frustrating because it is sort of … like well, get 

the book, and learn it yourself.  It’s like, well, I would still like to be able to 

have some recognition on that.  This is important.  You should know this, and 

this is how you can go about it. (CS8) 

 

These excerpts attest to the finding that POGIL learning may be beneficial when the 

students study the chemistry units, Chem101 and Chem102 consecutively. More 

specifically, Petroleum engineering students like CS7, CS8 and CS9 who did not 
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study Chem101 but had to complete Chem102 as part of their course requirement, 

were unable to recognise the importance of POGIL in chemistry classes. 

 

Category: Process Skills 

This category was used to ascertain students’ perceptions of the use of process skills 

in a POGIL class and how such skills have influenced their chemistry learning. Two 

themes were included in this category to cluster the students’ responses. Theme 1 

represents group work / teamwork and theme 2 represents the clustering of students’ 

responses related to Communication, logical thinking, problem solving skills. 

 

Theme 1: Group work / Teamwork 

 

Seven responses were related to group work/teamwork.  

CS1 regarded small group learning as social interaction in the class.  

 

Look … I am comfortable with all that kind of thing.  It’s just growing up 

with, I suppose, a different way of learning, Absolutely, I mean, it is not just a 

little about learning, it is also about the socialisation part. (CS1) 

 

Speaking on the dynamics of the group members, CS2 said that when group 

members are motivated, they tend to learn, and he also felt that inter-group 

consultation may help in the affirmation of conceptual understanding.  

 

I think that in regards to the small group … working in the small groups, it 

does work but only if you have got a group that is actually willing to work. It 

is only those groups that are willing to...are actually want to learn in that 

lecture. (CS2) 

 

Yes.  I mean, fortunately, where I normally sit, we have got a pretty good 

group.  Or our group in general has been formed is quite good, so there is 

my group and also the group also sits near us that are always working on the 

pros, so that we do cross communicate and check. (CS2) 
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Group work in POGIL is characterised by the assignment of roles to the group 

members. CS3 identified the importance of self-actualisation of group role before 

interacting with other group members. 

 

I would  … I personally, I am not quite sure what I … if I had a choice I 

would probably treat myself as one of the .. as like a reporter, as someone 

who likes to research the information, or likes to get it … because I 

personally don’t want to get … I personally want to know the aspects myself 

before I send it to my group so that I can understand it and then place into 

my workload and then use that and then communicate with my whole group, 

so that they can understand it as well – see where I am coming from. (CS3) 

 

In addition, CS5 considered that small group discussion is valuable in terms of 

verification of conceptual understanding in the classroom as it offers a peer-lead 

learning opportunity.  

 

It is not a waste of time; it is good just to share your answers and double 

check.  Like reassure yourself that you get it right, and if you don’t you can 

discuss it, because obviously there is only 1 tutor, so if she was busy with 

someone else, it is obviously of benefit to have discussed it with someone 

else.  So, I wouldn’t say it was a waste of time.  Yes. (CS5) 

 

Further, CS5 believed that the POGIL activity-driven identification of concepts 

helped them to advance their knowledge of a particular idea or concept.  

 

That is the activities kind of benefit, is you are like exploring something to get 

you going, you are figuring it out yourself rather just taking information and 

not meaning anything.  A lot of activities provide that systematic kind of 

optimal progression through an idea.  So that is … when we group. (CS5) 

 

CS6 and CS9 believed that group-assisted learning is helpful in understanding the 

concepts more than individual participation.  
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Not really.  Just sort.. it was just working together. It’s an unstructured 

group work. Small groups are pretty helpful, because it is different people, 

ways of thinking, then it is oh so … you know it helps.. It is much easier to 

understand something when you are in a group and people are telling you, 

than instead of being on your own and in a big lecture hall.  Yes.  As 

engineers need to work as a group, and then it is pretty much group work 

solving a problem.  (CS6) 

 

Pretty good.  Pretty … how should I put it … a lot of work where we group 

together in a lecture instead of sit there and listen. (CS19) 

 

These findings suggest that students’ placing in POGIL classes as small groups and 

their active discussions help them understand the concepts more easily than working 

independently. Research evidence (Cole et al., 2012) show that students’ active 

discussions and argumentations improve their understanding of concepts. 

Furthermore, the factors like motivation, group roles, and divergent thinking appear 

to influence their learning in first year chemistry classes.  

 

Theme 2: Communication, logical thinking, problem solving skills  

 

CS3 felt that group discussions help improve communication skills and the student 

asserts this as an essential skill for multi-disciplinary learning contexts. 

 

Group work, I personally don’t believe that it is a waste of time, because it 

helps you improve on your communication skills, I know for a fact that it is 

not just applicable for the engineering course, but for any sort of world you 

have to have that communication skill or you are just not going be able to go, 

so yes. (CS3) 

 

Contrary to CS3, CS5 considered the gain of logical thinking ability. The following 

excerpt attests to the finding: 

 

I think so.  The logical skills, yes definitely.  I wouldn’t say communication.  I 

think the logical properties of some of the … just like patterns and reading 
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patterns and then you need something to simply I find a lot of it is just 

following patterns.  Sort of working through an idea and, okay, if this is the 

case, then is this is the case, then what can you infer, what can you suggest 

about this.  So it is like leading on the logical kind of reply. (CS5) 

 

In their open-ended statements on SALG instruments, the students reported that the 

group work had strengthened their problem solving skills. It helped them understand 

the critical thinking questions based on the limited information available from the 

worksheets. The group work also helped to mind-map the concepts, and write the 

answers quickly and efficiently during the lectures or tutorials or laboratory sessions. 

Students have also reported the development of logical questioning, connecting key 

class ideas, and the skill of reporting of the progress of the group back to the 

facilitator. The following excerpts provide evidence for the finding that students 

have self-reported the development of evidence-based logical argument and 

analytical skills: 

 

“better communication, learning to tackle problems. Using rules and logic 

rather than just looking at the single problem”, “this class let me gained the 

skills which I can connect some knowledge to others what we had learnt 

before”, “communication, logical questioning and more independent”, 

“pattern information is greater than memorising information”, “the 

discussion among others and the activity helps with connecting key class 

ideas”, “interpersonal skills, lots of improvement there”, “analytical skills, 

communication skills among peers and problem solving skills”, “writing 

quickly and efficiently in labs”. 

 

Category: Resources 

This category was aimed at seeking the students’ perceptions on the use of resources 

like the textbook, tests, and technology like clickers, the learning management 

system (Blackboard), lecture capture (iLecture), and pencasts. 
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Theme:  textbook, clickers, learning management system (Blackboard), lecture 

capture (iLecture) and Tests 

 

CS3 and CS5 felt that resources like textbook and clicker questions helped them 

understand and revise the concepts.  

 

The list, I would first have to say that the lecture notes and the book 

especially, because ….. I like the lecturer.  It is just that with his activity 

sheets you have to be really independent, and that is where the book came in 

to help and that is why I found the book to be very resourceful.  So yes. (CS3) 

Clicker questions are good, and to see how the rest of the class is going and 

you can find out which points are important key things you have to be 

knowledge of.  It is good for that purpose … (CS5) 

 

The following students’ statements from the open-ended items of the SALG 

instrument indicate a positive effect of the use of technology and other traditional 

resources like textbook and lecture notes on their learning.  The findings suggest 

enhanced students’ learning when POGIL lessons are blended with the use of 

technology. 

 

“the textbook and lecture notes were the main source of learning”, “clicker 

questions: it makes me have a better understanding of the content and 

enhanced my learning and confidence”, “blackboard helps the most, post all 

the information”, “many resources gave good gains in result”, “the lecture 

notes were helpful. Anything further was clarified in the textbook”, “clickers 

were extremely helpful and usually learnt the immediate knowledge better”, 

“the group activities in lecture helped me understand the key concepts”, “the 

clicker questions were good, helped my understanding and confidence in the 

subject”, “clicker questions were fun. The textbook and lectures are the best 

resources for this unit”, “blackboard/internet used in the lab”, “the textbook 

help me mostly in Chem102, there are no pencast and mini lectures in 

Chem102 like in Chem101 it helped me a lot, “resources, especially pencast 

solutions help me to their understanding”. 
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Category: Attitude 

This category exemplified the students’ measure of their perceptions about POGIL 

class in terms of enthusiasm, confidence and interest. 

 

Theme: Enthusiasm, confidence and interest 

 

The findings in this theme, based on the data generated, indicate that the students 

who reported increased confidence, enthusiasm, and interest had a better 

understanding of the content. The following excerpts from the open-ended SALG 

questions indicate that students developed a positive attitude towards their learning 

in chemistry using small group active learning. 

 

“This class has increased my enthusiasm for the subject as I can see some 

practical examples and applications for what I am learning”, “more 

passionate for the subject of chemistry”, “I am positive about getting good 

marks in chemistry”, “I found aspects interesting which may be more 

positive in doing independent study”, “increased confidence in my ability to 

understand ideas”, “completing tutorials confirmed my understanding of 

each topic, giving me confidence”, “the class has helped in learning more 

complex ideas which were greatly helpful”, “made me appreciate the 

complexity and beauty of physical sciences”, “it changed a lot and gave me 

new idea how to study other subjects”, “understand more than before, it 

gives me confidence”. 

 

Expressing a more confident attitude towards chemistry, CS7 felt that peer-assisted 

learning is a way to transfer knowledge within a group. 

 

  I think rather than our knowledge, the confidence is raised.  I think it has 

been more confidence in being able to help someone else if they had a 

problem, because obviously you are sharing what you know, but I think it 

probably encourages you to ask questions more. (CS7) 

 

It has, kind of, because you have a bit more confidence in your analytical 

skills, you know you have to give things out and kind of discover concepts for 
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yourself, so you kind of you think I was capable of figuring it out.  So you do 

have more confidence in knowing the fundamental laws.  Not just knowing 

how to answer questions. (CS9) 

 

Category: Resistance 

This category was used to elicit students concerns about the implementation of active 

learning strategies like POGIL activities. Students’ feedback ranged from the timing 

of the lecture to the dynamics of the student participation in class discussion. 

Whereas it is interesting to note that no student had spoken negatively about the 

fundamental aspects of active learning such as the design and the delivery of the 

instruction. However the volunteer interviewees were likely to self-select aspects 

like timing of the lecture, their own approach to participation in group work. 

 

Theme: Disagreement, and lack of interest 

 

Students express their resistance to pedagogical innovations in various forms. The 

excerpts from the interviews with three Chem102 students reflected this. According 

to CS4, an International student who studies Engineering believed that timing of the 

lecture is a motivating factor for not having a positive feeling about small group 

active learning. 

 

It is kind of annoying because now they have a 1 hour small lecture, right, 

and then most of the time it is on the days when there are no other classes, so 

it is like it is only a 1 hour lecture on a Wednesday and I don’t have any 

other classes.  I don’t know if it is worth it. Sometimes people think that they 

can, like, they don’t have to go to the lectures because it is group work, so 

you can just do it at home. (CS4) 

 

Another student CS10 felt that they spend most of the class time finding answers to 

the critical thinking questions by a way of class discussion which in turn becomes 

distractive due to the presence of non-participants. 

 

  I feel like I don’t really learn as much in … and even when we have been 

doing questions that sometimes feel like I am not learning as much as we 
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would be if we were writing notes.  And a lot of the class gets distracted and 

they don’t end up doing their activity, so they become distracting in the 

background to try and not to work. (CS10) 

 

CS1 argued that class discussion among the group members is challenging when the  

members do not recognise the learning context. 

 

I don’t think it is an efficient exchange of information.  It depends, and as I 

said, if you’re partnered with two other people who really don’t know what is 

going on, in the lecture they just have no idea. (CS1) 

 

The following responses from the open-ended statements part of the SALG 

instrument point towards a very minimal resistance based on the count of such 

negative statements from the student population. 

 

Active learning was a horrible teaching method. I felt I learnt nothing from 

attending those lectures, which resulted in me not attending more than five 

lectures throughout the semester, it gave me a more negative attitude 

towards chemistry. I enjoy chemistry classes but the way this unit is taught 

makes less comfortable with the group, do not really like it any more than 

before. 

 

Triangulation studies of data presented in Table 5.14, 6.12 and the resulting NVivo 

themes of teaching and learning indicated a positive correlation between the concept 

learning and active learning scales of the SALG instrument. That means that the 

students have reported a greater understanding of concepts as a result of POGIL 

interaction and POGIL activities. A strong positive correlation also existed between 

active learning and the process skills revealing that students have reported a greater 

development of process skills due to participation in POGIL activities. 

 

6.8  Summary 

The fourth research question investigated the students’ perception of POGIL learning 

using quantitative and qualitative methods. The data analyses occurred in two 

phases.  First, the factor structure was established for the SALG instrument and later 
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the resultant scales were utilised to gauze the students’ perceptions. The need for 

establishing the validity of the SALG instrument was discussed and the EFA study 

had yielded a four-factor model for the SALG instrument. In the CFA study, a 

different data set was used to examine the latent structure of the SALG instrument. 

The hypothesised four-factor measurement model of CFA of SALG had met the 

acceptable model fit criteria.  

 

The mean scores of the items of the four scales and the inter-scale reliability results 

indicate that the students rated highly about their improvement in learning. The 

instructional approach seemed to be beneficial particularly for organic chemistry 

topics like molecular forces, curved arrow conventions, and nucleophilic substitution 

reactions based on the students’ rating for these items on SALG instrument. A 

positive impact of the instructional approach was also evident on students’ 

confidence and comfort levels. Further, the use of clicker questions during lectures 

and tutorials/workshops had also helped the students’ in understanding the concepts 

in POGIL classes.  

 

The qualitative analysis of the semi-structured student interviews and their responses 

on open-ended statements in the SALG instrument indicated the positive impact on 

chemistry learning because the students had reported an improved understanding of 

chemistry concepts when they actively participated in small group discussions in a 

POGIL class. Students have also reported the development of process skills as a 

result of small group POGIL interaction besides a better understanding of the 

content. 
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Chapter 7 

Discussion and Conclusions 

 

7.1 Introduction 

Section 7.2 outlines the summary of every chapter of the thesis. Section 7.3 presents 

the major findings in relation to the four research questions of the investigation.  

Section 7.4 describes the limitations of the investigation and Section 7.5 outlines the 

opportunities for future research. 

 

7.2 Summary of the Thesis 

The purpose of this study was to explore the outcomes of using process-oriented 

guided inquiry learning in first year chemistry classes at Curtin University. 

Subsequently, students’ understanding of chemistry concepts in a modified POGIL 

class was investigated in addition to these students’ perceptions about learning 

chemistry using the POGIL approach. The premise was demonstrated by concerns 

that traditional lecturing was not meeting the educational needs of the students. A 

large number of recent research studies have focussed on the evaluation of small 

group active learning pedagogies like POGIL, principally in terms of student 

achievement in tests or end-of semester examinations. However, students’ 

understanding of concepts, especially those of first year chemistry, still remains 

unaddressed. Therefore, the main focus of this study included both students’ 

conceptual understanding of stereochemistry and their perceptions of learning in 

POGIL chemistry classes.  The stereochemistry concept diagnostic test (SCDT) was 

devised to investigate students’ understanding of stereochemistry and the students’ 

assessment of their learning gains (SALG) instrument was administered to explore 

students’ perceptions of their learning.  

 

In the introductory chapter of the thesis, the background and significance for 

investigating the process-oriented guided inquiry learning in first year chemistry 

classes was described. The objectives and research questions of the study were 

outlined.  
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Chapter 2 presented a review of literature regarding the research on the curriculum 

framework adopted for the research study and the theoretical framework that 

underlay the philosophy of the POGIL approach.  The literature related to POGIL 

activities and the intended process skills were presented. Since the study followed 

students’ understanding of chemistry concepts in POGIL classes, an overview of the 

related research on student conceptions and the origin of alternate conceptions were 

presented. Studies on students’ alternative conceptions of organic chemistry 

including stereochemistry, methodologies for investigating alternate conceptions 

using two-tier diagnostic tests, implementation and effectiveness of POGIL, 

students’ perception of POGIL and POGIL in Australia were reviewed.   

 

In Chapter 3, the exploration of process-oriented guided inquiry learning was 

approached from the perspectives of the intended and the implemented, the achieved, 

and the perceived curriculum (Keeves, 1995; Treagust & Rennie, 1993). The 

required knowledge to conceptualise the principles of stereochemistry was presented 

as propositional content knowledge statements. The study utilised a mixed-method 

research design, involving qualitative and quantitative approaches to collect and 

analyse data (Creswell, 2003). Quantitative data were analysed using IBM SPSS v20 

and IBM AMOS v20. The qualitative data were analysed using NVivo 10. 

Curriculum documents related to first year chemistry units were analysed to answer 

Research Question 1. The data from semi-structured interviewing of students and 

researcher’s observation of lectures and tutorials/workshops were used to answer 

Research Question 2. For answering Research Question 3, the data were obtained 

using SCDT from 61 Group 1 (Chem102, Sem 2, 2011) and 79 Group 2 (Chem121, 

Sem 1, 2012) students. The SALG instrument was used to collect data from 268 

students to answer Research Question 4. Ten students participated in semi-structured 

interviews. The data from the open-ended statements of the SALG instruments and 

the student interviews were used to complement the quantitative results about their 

understanding of stereochemistry concepts in POGIL classes.  

 

Chapter 4 reported the results and findings in response to Research Questions 1 and 

2 on the skills needed for students to succeed and the implementation of the required 

learning in POGIL classes. Chapter 5 presented results and findings of student 

understanding of stereochemistry concepts in response to Research Question 3. 
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Chapter 6 presented the results of the validation of the SALG instrument, 

quantitative and qualitative results and findings on students’ perception of their 

learning in POGIL class in response to Research Question 4.  

 

A summary of the major findings of this study are now provided in this chapter. 

Limitations of the study and recommendations for future research and conclusions 

are considered. 

 

7.3 Major Findings 

The following section discusses the findings of the research study in the context of 

the research questions and the literature review.  

 

7.3.1 Research Question 1 

How do the skills that students learn in POGIL classroom align with university 

graduate attributes?  

This research question was concerned with the intended curriculum described in 

Chapter 4, which was answered by analysing the course content of the first year 

undergraduate chemistry units to see how the learning outcomes were articulated 

with respect to an active learning pedagogy like POGIL in terms of process skills 

and graduate attributes. The coherence between the university’s graduate attribute 

policy and the philosophy of POGIL indicated that the instructors emphasised the 

classroom implementation of process skills development. Consistent with university 

policy and the goals of POGIL,  Hanson and Wolfskill (1998), Moog and Spencer 

(2008), and Burke (2009) had reported discipline-based approach for the 

simultaneous development of content knowledge and process skills. The existence of 

a good fit, as shown in Table 4.5 (Chapter 4), between the graduate attributes and 

process skills in POGIL classes was evident from the nature of POGIL materials, 

students’ interactions and instructors’ rich experience in POGIL facilitation. 

7.3.2 Research Question 2 

How can these learning requirements be implemented through a POGIL based 

curriculum? 

The research question was concerned with the implemented curriculum described in 

Chapter 4. The implemented curriculum matched the intended curriculum. The 
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delivery of the content was aimed at the students’ understanding of discipline-

specific concepts together with the development of graduate attributes is similar to 

what Bailey et al. (2012) had reported. The development and acquisition of process 

skills was intrinsic to the curriculum and the modified POGIL approach appeared 

conducive to the desired learning requirements. The qualitative data were examined 

and compared with the quantitative findings as a means of mixed-method 

triangulation of both the quantitative and qualitative data. The results from the 

analyses of curriculum documents, POGIL materials, students’ written responses to 

the SALG items and interview excerpts indicated that the use and development of 

transferable generic skills in POGIL class were consistent with other POGIL 

implementations from the literature (Criasia et al., 2009; Douglas, 2009; Geiger, 

2010). As described in section 4.7 of Chapter 4, the modified POGIL approach in the 

form of embedded mini-lectures, small group POGIL discussions, followed by 

clicker questions appeared to be an appropriate way of developing the intended 

process skills along with chemistry content knowledge.  The students’ consistent 

reporting of learning gains due to process skills was attributed to the skills of 

identifying data pattern, argument use of evidence and the development of logical 

argument. 

7.3.3 Research Question 3 

How effectively do students achieve the intended learning outcomes using a POGIL 

approach? 

The third question was concerned with the achieved curriculum described and 

analysed in Chapter 5 and was limited to stereochemistry for the discipline-content 

of this investigation. The required knowledge to conceptualise the principles of 

stereochemistry in the form of propositional content knowledge statements was 

presented in Section 3.8.2.2 of Chapter 3. The ancillary research questions 3.1 and 

3.2 explored students’ misunderstanding of the concepts which were grouped based 

on the items of the SCDT, namely, stereocentres, enantiomers, chirality, 

stereoisomers, and molecular visualisation.  

 

Stereocentres 

The post-test SCDT results revealed students’ difficulty in recognising stereocentred 

carbons based on their atomic connectivity. Another misunderstanding that was 
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prevalent among the students was that stereocentred compounds are always 

asymmetrical. This finding is in line with a study by Taagepera et al. (2011) and 

Zoller (1990) who reported students’ difficulty in characterising molecules based on 

stereocentres, chirality, a plane of symmetry and image formation. Further, at the end 

of the delayed post-test, the students appeared to have difficulty identifying 

stereocentres in cyclic systems.  

 

Chirality and Enantiomers 

The analyses of the post-test SCDT data identified two misunderstandings. They are: 

Achiral compounds have an enantiomer and chiral compounds do not have an 

enantiomer. The students’ difficulty in distinguishing the terms chial and achiral for 

geometrical models has been extensively reported (Lloyd-Williams & Giralt, 2005; 

Lujan-Upton, 2001; Taagepera et al., 2011). These misunderstandings occurred for 

propositions SC5 and SC6 (see Table 3.3) which were clearly caused by students 

believing that achiral molecules form non-superimposable mirror images and chiral 

molecules form superimposable mirror images. The students appeared to lack the 

ability to make a distinction between chiral and achiral molecules on the basis of 

superimposable mirror images.  

 

Similarly, the students’ incorrect response-reason combinations revealed a 

misunderstanding that achiral molecules have no internal plane of symmetry and 

chiral molecules have an internal plane of symmetry.  

 

Stereoisomers 

The students appeared to lack the ability to identify the stereocentres of the given 

molecules as they incorrectly estimated the possible number of isomers when the 

number of stereocentres in the molecule is known.  Two misunderstandings occurred 

for propositions SC10, SC13, and SC14 (see Table 3.3). Students incorrectly 

identified that 2-deoxyribose has two asymmetric carbons and another 

misunderstanding was that one stereoisomer resulted from every stereo-centric 

carbon.  
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Molecular Visualisation 

The students had experienced difficulty in mentally visualising the given molecules 

in item 5. The data analysis revealed students’ misunderstanding that the two 

molecules are enantiomers which are non-superimposable on their mirror images. 

This finding is consistent with earlier work  that demonstrated the difficulty that 

many students find with tasks that involve interpreting a 2-dimensional 

representation into a 3-dimensional image, performing mental operations like 

rotation on the 3-dimensional image, and re-representation of newly visualised 3-

dimensional image as a 2-dimensional representation (Bucat & Mocerino, 2009; 

Head & Bucat, 2002; Steiff, 2007; Tuckey & Selvaratnam, 1993) 

 

The third ancillary research question 3.3 investigated the statistical differences 

between learning gains for Group 1 and Group 2 students. The results as shown in 

section 5.7 (see Chapter 5) indicated a positive effect of POGIL instruction and more 

specifically that the POGIL discussions showed a very large effect size on SCDT 

scores for the Chem102 cohort. The results presented in Table 5.14 support similar 

POGIL intervention studies in undergraduate chemistry courses (Bailey et al., 2012; 

S. D. Brown, 2010; Criasia et al., 2009; Geiger, 2010; Hale & Mullen, 2009). Each 

of these studies focused on the identification of students’ gaps in their content 

knowledge and their misunderstandings in undergraduate courses.  

 

7.3.4 Research Question 4 

In what ways do students perceive their learning while engaged in POGIL classes?  

For answering this question, which was concerned with the perceived curriculum 

reported in Chapter 6, both qualitative and quantitative data were collected and 

analysed. The criterion validation of the SALG instrument was first established 

using exploratory (EFA) and confirmatory factor analyses (CFA).  Later, the CFA 

causal model of structural equation modelling (SEM) and Pearson correlations 

between the SALG constructs were used to estimate the students’ perceptions of 

POGIL. 

 

The factor analysis of the data obtained from 114 students of Chem102, Sem 2, 2011 

cohort resulted in a four factorial structure of the SALG instrument, namely, Active 

Learning, Concept Learning, Resources, and Process Skills. The internal consistency 
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reliability (Table 6.3) was highly satisfactory where each factor scored a Cronbach’s 

alpha coefficient value greater than 0.80.   

 

For CFA, the explored four factor model was fitted to the data obtained from 

Chem102, Sem 2, 2012 (n = 154) cohort, using a measurement model of structural 

equation modelling (SEM); the fit statistics met the criteria of a good fit. The 

Cronbach’s alpha internal consistency reliability values (see Table 6.7) of the SALG 

constructs after CFA were also highly satisfactory (>0.80).  The findings give 

support to Hong, Purzer, and Cardella’s (2011) suggestion that, for adapted 

instruments, the CFA be used to test the fit of the factor structure from a sample 

different to the EFA. The CFA causal model of relationships (see Figure 6.4) 

between Active Learning, Concept Learning, Resources, and Process Skills met the 

adequacy criteria (Hu & Bentler, 1999) indicating the positive impact of POGIL on 

understanding of concepts and process skills. The mean scores for the items of all of 

the four scales (see Table 6.10) in this study indicated that the students rated all the 

domains highly for the overall assessment of their improvement in learning. This 

finding is in line with those of  Johnson, Corazzini and Shaw (2011) and Seymour 

(2000) who reported similar summary scale descriptive statistics for all the items of 

SALG.  

 

Based on the students’ rating for these items on SALG instrument, the instructional 

approach of the adapted POGIL was shown to be beneficial, particularly for organic 

chemistry topics like molecular forces, curved arrow conventions, and nucleophilic 

substitution reactions. This finding supports similar studies (Browne & Blackburn, 

1999; Farrell et al., 1999; Paulson, 1999) that reported an improvement of 

understanding of organic chemistry concepts by students when the topics were 

delivered using an active learning format. A positive impact of the instructional 

approach was also evident on students’ confidence and comfort levels. Further, 

based on the clustering of students’ positive feedback under the thematic category of 

resources as presented in section 6.7.3 (see Chapter 6), it was evident that  the use of 

clicker questions during lectures and tutorials/workshops had also helped the 

students understand the concepts in POGIL classes. 
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The positive alignment between the POGIL approach and the perceived learning 

gains was evident from the students’ high rating to the core elements of active 

learning, like attending class, working with peers, listening to discussions, and 

participating in group work (see Table 6.10). This conclusion is consistent with the 

findings of Hinde and Kovac (2001), Knight and Wood (2005), Kovac (1999) and 

Prince (2004) who investigated active learning strategies in STEM courses. In each 

study, the students felt that active learning sessions were valuable and they were 

more positive about learning chemistry. 

 

The qualitative analysis of the semi-structured student interviews and their responses 

to open-ended statements in the SALG instrument indicated a positive impact on 

chemistry learning because the students had reported an improved understanding of 

chemistry concepts when they had actively participated in small group discussions 

during POGIL sessions. The results of the thematic content analysis of the 

qualitative data presented in section 6.7.3 of Chapter 6 provided evidence that 

students recognised the influence of POGIL interaction in the development of 

generic process skills like critical thinking, logical argument, problem solving, 

communication, and teamwork. 

 

The findings from the sophisticated use of EFA and CFA indicated that the SALG 

questionnaire has high convergent and discriminant validity when used with first 

year chemistry classes. Therefore, data collected using this survey is likely to be 

valid and reliable. 

 

7.4 Limitations of the Study 

For any research study, what it intends to accomplish is very important. Similarly, 

there are a number of limitations evident in this research even though the findings 

are supported by literature from previous studies. The research findings may not be 

generalizable to other contexts or populations as they are specific to an evolving 

field of POGIL-influenced first year chemistry at one Australian university. The 

limitations include the sample, the validity of instruments, data analysis and 

interpretation. Each of these limitations is discussed.  
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7.4.1 The Sample  

The major limitation of this study is the relatively small sample of students who 

participated in the study, which has been restrained by the availability of 

lectures/workshops that used predominant POGIL interaction, accessibility to 

students, and time limitations. The data gathered were dependent on the volunteered 

participants taking time from their busy schedules to take part in diagnostic testing 

and complete the SALG survey. The delayed post-test for Group 1 students had a 

lower participation as it was administered when the end-of-semester examinations 

were just two weeks away. There were no distinct POGIL and non-POGIL 

streams/sections for Chemistry classes, and selected modules were used with both 

groups. However, only the Group 1 students responded to the delayed post-test as 

POGIL groups; students in Group 2 worked independently on the delayed post-test. 

This situation was not a fair test of the delayed post-tests from the two groups; hence 

limiting the researcher from making a generalisation involving a comparison of the 

delayed post-tests of the two cohorts.  

 

7.4.2 Instruments, Data Analysis and Interpretation 

Item 1 of SCDT lacked a valid second tier choice, hence the analysis of results for 

this item reflected students’ selection of content choice without reasoning. Another 

limitation is dependent on the researcher’s interpretation and analysis of SALG data 

for the structural equation modelling (SEM). Despite its rigor and the depth of the 

interpretation of the results, the research based on self-report data has a potential for 

continuous errors in self-assessment to confound the results (Beghetto, 2007; 

Dunning, Heath, & Suls, 2004).   

 

7.5 Recommendations Relating to this Study 

Suggestions arising from this study could further benefit the POGIL practitioners in 

enhancing their level of teaching and learning of chemistry at university and senior 

secondary levels. The suggestions are discussed under appropriate headings. 

 

7.5.1 Improving the Validity of the Instruments 

The two instruments that the study had utilised can be improved by carrying out 

trials on a wider scale. Extending the administration of the instruments to other 

ALIUS institutions and senior secondary schools where innovative approaches to 
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teaching and learning are implemented in first year science, technology, engineering, 

and mathematics courses.  

 

7.5.2 Further Research on Diagnostic Tests Suitable to POGIL 

The use of two-tier diagnostic testing in POGIL is found to be scarcer than their 

usage in the traditional lectures from the available literature. More research can be 

done on the development and use of diagnostic tests in POGIL classes to elicit 

students’ understanding of chemical kinetics, redox reactions, and general principles 

of organic chemistry. Also, by following the recommendations of Treagust (1986a) 

the data from interviewing of students in POGIL tutorials/workshops may provide an 

insight into the students’ understanding of chemistry concepts.  

 

7.5.3 Future Research on Trans-national Study of POGIL Implementation 

Multi-institutional POGIL implementations have been assessed in the US in an effort 

to study the effectiveness of the small group learning and there is a scope for trans-

national study of students’ understanding of concepts with the use of POGIL 

materials, diagnostic tests, and their perceptions using the new four-factor SALG 

instrument, as it could initiate opportunities to POGIL practitioners to share and 

compare their POGIL implementations and experiences. 

 

7.5.4 Future Research on Australian POGIL Implementations 

POGIL practitioners from the US visit Oceania regularly and liaise with ALIUS 

members to conduct seminars and POGIL workshops for the staff aspiring to take up 

POGIL instruction at undergraduate and senior secondary levels. As ALIUS leaders 

have reported (Bedgood Jr et al., 2012), Australian implementations of POGIL are 

different to that of US implementations in many aspects. Future research could 

disseminate the findings to the global POGIL community on a multi-institutional 

study of the Australian version of POGIL. 

 

7.6 Summary 

In conclusion, this final chapter of the thesis has discussed the findings of the 

research study by answering the research questions that were posed at the beginning. 

The constraints within which the research was conducted were also mentioned. 

Further opportunities for research involving POGIL-influenced students’ 
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understanding of chemistry concepts, their perceptions as well as other 

recommendations are presented.  
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Appendix D 

Questions for the follow-up interview of SCDT 

Interview Protocol 

I)  Student’s consent 

 Students will be asked to fill out a permission form. 

II)  Interview 

A. When everyone has finished the student’s consent sheet, the interview will begin 

by: 

 1.  To start the interview, why don’t we introduce ourselves, state your 

majors and what your future goals are? 

B. Topic one - group work; concept test and group problems: 

 2. Tell me what it was like to work in groups on the Stereochemistry concept 

diagnostic test. 

 3. How did the answering of questions like this as a group affect your 

understanding of the chemical concepts being studied? 

   possible probing question  -  How did the small group learning (POGIL) 

benefit you? 

C. Topic two – in-class activity sheets, critical thinking questions and tests: 

 4. Here is an example of an activity-sheet you have already taken in  

Chem102. What reasons would you use for deciding to answer  

this question? 

 5.  What reasons would you use for deciding not to answer this  

critical thinking question? 

 6. What are the advantages of embedding graphs, pictures in critical thinking 

questions for in-class activity- sheets? Do these help you solve problems / 

explore concepts? 

 7. What are the disadvantages of having critical thinking questions  

on activity sheets? 
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 8. What other recommendations could you provide to improve the  

use of critical thinking questions on activity sheets? 

 9. Here is an example of a critical thinking question found on a Chem102 

test this semester.  Explain the thought processes you would use to answer 

this question. 

 10. What study methods would be most helpful to enable you to answer this 

question? 

D. Learning chemistry 

 11. How would you describe what needs to occur while people are learning 

chemistry? 

 12. How do critical thinking questions fit into the process of learning 

chemistry? 

 13. How does small group interaction or team work fit into the process of 

learning chemistry? 

 14. Does anyone have any further comments 

 15. How do you feel about using clickers in this course? 

Thank you for taking the time to provide us the feedback 

 

Questions for the Individual student interviews 

1. Course in General: Small Group work: Learning, understanding, explaining  

    and thinking 

1.1 What is your major? 

1.2 How do you feel about your chemistry course? 

1.3 Do you feel that small group learning has strengthened your understanding of 

concepts in this course? 

1.4 Do you think that mini-lectures have helped you to explore the concepts? 
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1.5 Do you think that the in-class small group activities are challenging? 

1.6 Do you think the in-class group activities have helped you develop your 

critical/logical thinking? (making decisions based on information, analysing, 

comparing, synthesizing, and reasoning?) 

1.7 Do you think that in-class group activities and argumentative discussions have 

provided opportunities to improve your written and oral skills in this course? 

1.8 Are these small group discussions / in-class activities stressful and frustrating? 

1.9 Do you think that the in-class group activities are more beneficial than 

traditional lectures? 

1.10 Do you think the in-class group discussions have helped you prepare well for 

the tests? 

1.11 Have these in-class small group discussions / activities helped you improve 

your test scores? 

1.12 Do you think that participation in small group in-class activities have helped 

you gain confidence in this course? 

2. Skills 

2.1 Do you think that in-class activities and small group discussion have helped 

you improve your problem-solving skills? 

3. Resources 

3.1 How do you feel about using clickers in this course? 

3.2 When do you find the clicker questions to be more effective? 

3.3 Why do you think the professor is using clickers in this course? 

3.4 Have you used clickers in any of other courses here? 

3.5 Can you compare the way the clickers were used in your chemistry course to 

how they were used in these other courses? 
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3.6 Do you think Pencasting of homework solutions offered help in retaining your 

knowledge? 
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Appendix I 

The students were encouraged to think-aloud while answering the questions of 
delayed post-test of SCDT as a POGIL group. A Livescribe smart pen was used to 
record the conversations. The researcher has posed questions as and where necessary 
to keep track of their understanding of the concepts. Following is the transcript of the 
conversations between students and the researchers while answering the Item 2 of 
the delayed post-test of SCDT. 
 
Item 2 

 

S1: which of the following doesn’t have an enantiomer? 
S2: laughs… 
R: OK 
S1: actually, I do not know what an enantiomer is …. 
R: it is not an enantiomer, if you know what makes a molecule super-imposable and 
non-superimposable, you can answer this? 
(Smartphone screen is mimicked as a mirror) look at the molecule…. (directs the 
student to view the image of the molecule on the screen of the smartphone) are these 
same or different?  
S1: they are different; an enantiomer is a different …..  thing.  
S2: points towards, molecule C, does this one have? 
S1: yes, because… carbon, hydrogen … that is different…… the carbon doesn’t 
have four different groups (recognises that it is not chiral) 
S2: yes 
S1: one, two … three, (searches for different groups of atoms around carbon) doesn’t 
have, so, that would?  
S2: yes 
R: Think about it; think about it…, does it have four different groups attached to the 
carbon? 
S2: No 
R: so, does this mean, it is the feature you are after 
S2: did you get that (questions ‘ S1’) 
S1: yes 
R: (prompting to view the mirror images through smartphone screen) do you think 
the image of molecule C is super-imposable or non-superimposable? Imagine, would 
the mirror image completely overlay the molecule C. 
S2: superimposable ….  Molecule ‘C’ does not have an enantiomer 
R: (points towards molecule ‘A’) why this one is an enantiomer? 
S2: ….. 
R: Is it confusing, you have said, molecule is ‘C’ can’t have an enantiomer, because 
there are two methyl groups, hence, it is superimposable,  
S2: This molecule ‘A’ is not superimposable on its mirror image (if you keep a 
mirror at its front), hence it will have an enantiomer 
R: what reason can you give to your response? 
S2: Number 2, it does not have a plane of symmetry. 
R: OK, if you have chosen that, Is there any other best reason that you can give. 
S2: pause 
R: OK, that’s alright. Can you identify achiral molecule from these? 
S2: ….. 
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R: OK, what is achiral molecule? 
S1: …. 
R: What do you call a molecule that is superimposable on its mirror image? 
S2: achiral … that one (points towards molecule ‘C’) 
S1: because the carbon is connected to four different groups, and there are two 
methyl groups, so it is superimposable on its mirror image. That one you need 
(selects reason 3) 
Item 5 
S1: What is the best way to describe the relationship between these two molecules? 
S2: …. 
S1: they are not superimposable 
S2: no 
S1: no 
S2: OK 
S1: because they got four units (referring to the groups of atoms around the carbon) 
S2: ya 
R: Why it is not superimposable?, as such it is not superimposable and the reason …. 
As you twist it around the carbon, what would happen? Can you make them 
superimposable? 
S1: no 
R: on their mirror images? 
S1: wait… wait…wait a second… they are all messed around, they are all same 
here…. 
R: Just one turn, would those molecules are superimposable? 
S1: This H goes there, this OH goes there, if you rotate around like this, the OH goes 
to here, the H goes to here, and the H goes here where the OH was here,  
R: aha 
S1: I would guess they are non-superimposable here 
S2: ya.. ya.. its  
S1: they are non-superimposable and they are also mirror images 
S2: no.. no.. they are not mirror images, that one is not 
R: Can I just point out one thing, you take one of the molecule as standard and try to 
manipulate with the second one. So, let us take this one (molecule ‘B’), what 
happens is, just make a turn, so the methyl goes up and OH goes down. So in that 
scenario, alright, visualise that, the OH going down, methyl going up, alright, and 
look at the images of the both the molecules,  
S1: OK 
R: Right, visualise…. How do they look like? You need to be a bit hypothetical. 
Right, that’s what the question is about. So when this comes up and this goes down, 
do they look same or different? 
S2: ya…ya… if you rotate those, they are identical 
R: alright, do you understand that.. 
S2: ya 
R: with a simple rotation, the molecules are identical 
S2: ya 
S1: ya 
R: are they similar visually or structurally? 
S2: both 
R: what is the best response to this item? 
S2: they are identical (response ‘D’) 
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R: now, the reason… 
S2: oh! Number three 
R: check it out! 
S1: four 
S2: four 
R: Any reason for that? You are talking about mirror images …. When you keep the 
mirror there … 
S2: they are superimposable but not mirror images of the same. 
S1: ya… ya…. 
R: alright….. 
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Appendix K 

Standardized Regression Weights: (Group number 1 - Default model) 

Estimate

ProcessSkills <--- ActiveLearning .879

ConceptLearning <--- ActiveLearning .778

Resources <--- ActiveLearning .535

AL16 <--- ActiveLearning .684

AL15 <--- ActiveLearning .635

AL14 <--- ActiveLearning .712

AL13 <--- ActiveLearning .784

AL12 <--- ActiveLearning .611

AL11 <--- ActiveLearning .665

AL10 <--- ActiveLearning .566

AL9 <--- ActiveLearning .682

AL8 <--- ActiveLearning .622

AL7 <--- ActiveLearning .631

AL6 <--- ActiveLearning .616

AL5 <--- ActiveLearning .529

AL4 <--- ActiveLearning .379

AL3 <--- ActiveLearning .595

AL2 <--- ActiveLearning .674

AL1 <--- ActiveLearning .671

CL1 <--- ConceptLearning .778

CL2 <--- ConceptLearning .831

CL3 <--- ConceptLearning .772

CL4 <--- ConceptLearning .713

CL5 <--- ConceptLearning .674

CL6 <--- ConceptLearning .590

CL7 <--- ConceptLearning .761

RES1 <--- Resources .762

RES2 <--- Resources .958

RES3 <--- Resources .756

RES4 <--- Resources .583

PS3 <--- ProcessSkills .882

PS2 <--- ProcessSkills .902

PS1 <--- ProcessSkills .824
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Squared Multiple Correlations: (Group number 1 - Default model) 

Estimate 

ActiveLearning .000 

ProcessSkills .772 

Resources .287 

ConceptLearning .605 

PS1 .679 

PS2 .813 

PS3 .778 

RES4 .340 

RES3 .572 

RES2 .917 

RES1 .580 

CL7 .579 

CL6 .348 

CL5 .454 

CL4 .508 

CL3 .596 

CL2 .691 

CL1 .606 

AL1 .451 

AL2 .455 

AL3 .354 

AL4 .143 

AL5 .280 

AL6 .379 

AL7 .398 

AL8 .387 

AL9 .465 

AL10 .321 

AL11 .442 

AL12 .374 

AL13 .614 

AL14 .507 

AL15 .403 

AL16 .468 
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