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Abstract

One of the most important advantages of automatic human face recognition is its non-

intrusiveness property. Face images can sometime be acquired without user’s knowledge

or explicit cooperation. However, face images acquired in an uncontrolled environment

can appear with varying imaging conditions. Traditionally, researchers focus on tackling

this problem using 2D gray-scale images due to the wide availability of 2D cameras and

the low processing and storage cost of gray-scale data. Nevertheless, face recognition can

not be performed reliably with 2D gray-scale data due to insufficient information and its

high sensitivity to pose, expression and illumination variations. Recent rapid development

in hardware makes acquisition and processing of color and 3D data feasible. This thesis

aims to improve face recognition accuracy and robustness using color and 3D information.

In terms of color information usage, this thesis proposes several improvements over ex-

isting approaches. Firstly, the Block-wise Discriminant Color Space is proposed, which

learns the discriminative color space based on local patches of a human face image instead

of the holistic image, as human faces display different colors in different parts. Secondly,

observing that most of the existing color spaces consist of at most three color components,

while complementary information can be found in multiple color components across mul-

tiple color spaces and therefore the Multiple Color Fusion model is proposed to search

and utilize multiple color components effectively. Lastly, two robust color face recognition

algorithms are proposed. The Color Sparse Coding method can deal with face images

with noise and occlusion. The Multi-linear Color Tensor Discriminant method harnesses

multi-linear technique to handle non-linear data. Experiments show that all the proposed

methods outperform their existing competitors.

In terms of 3D information utilization, this thesis investigates the feasibility of face recog-

nition using Kinect. Unlike traditional 3D scanners which are too slow in speed and too

expensive in cost for broad face recognition applications, Kinect trades data quality for

high speed and low cost. An algorithm is proposed to show that Kinect data can be

used for face recognition despite its noisy nature. In order to fully utilize Kinect data,

a more sophisticated RGB-D face recognition algorithm is developed which harnesses the

Color Sparse Coding framework and 3D information to perform accurate face recognition

robustly even under simultaneous varying conditions of poses, illuminations, expressions

and disguises.
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Chapter 1

Introduction

Biometrics are personal characteristics that can be used to uniquely identify a person.

Although finger prints and iris scans are highly accurate, they both require user coopera-

tion. On the other hand, face images can be captured even without the user’s knowledge.

This non-intrusiveness property is an apparent advantage for face recognition, which al-

lows broad applications. Therefore, face recognition research should focus on non-intrusive

situations where face images are acquired under uncontrolled environment. These images

can be in varied conditions such as different head poses, illumination, facial expressions,

disguises and noises. Since, these conditions are unknown beforehand and can appear

simultaneously, they pose additional challenges and complexity to the conventional face

recognition problem.

Traditionally, face recognition was performed using gray-scale images. One of the main

reasons using gray-scale over color images is due to the low storage and processing re-

quirements for gray-scale data. A gray-scale image stores only the light intensity at each

pixel location, whereas a color image is usually modeled in RGB, storing intensity values

of three channels R, G and B, which when in combinations, infinite number of colors can

be generated. Since three channels are used to represent color images, handling them

requires high storage and processing cost.

Color is an important cue for face recognition. Colors can be defined as the spectra of

light. Visible light source always consists of infinite spectra, which can be separated into

rainbow-like colors using a dispersive prism (i.e. the visible wavelength range (400-700nm)

can be partitioned into any number of bands). Different objects display different colors

because they have different reflection properties on different spectra. For example, human

lips are reddish because it has higher reflection rate on the red spectrum, while pupils

appear black because it dose not reflect any light. This reflection property is also different

from face to face, therefore color information can help discriminate different people. In

addition, redundant information across different spectrum also facilitate error correction

and thus increases recognition robustness to noise. In fact, color face recognition has

been shown to outperform gray-scale face recognition in many situations. With the rapid

development of technology, larger capacity of storage media and higher processing power of

1



computers are available at a much lower cost than before. Handling large amount of color

image data is feasible nowadays. The advantages of using color data actually outweigh its

disadvantages. In short, color information should not be ignored.

Despite the usefulness of color information, many face recognition algorithms proposed

recently are still designed and evaluated only on gray-scale images. How much these

methods can be benefited from color information, has not been investigated. On the other

hand, existing research on color face recognition mainly focus on deriving new color spaces,

where a few shortcomings can be noted. Firstly, most color spaces are derived based on

holistic face images, while human faces display different colors at different parts. Secondly,

most color spaces consist of three components only, while complementary information can

be revealed from more than three color components across multiple color spaces. Lastly,

most color spaces are evaluated using basic features and classifiers. The evaluations usually

involve face images with moderate variations only. The advantages of these proposed color

spaces with more advanced recognition algorithms are unknown. Their performance under

large variation, especially with occlusion and noise, is highly questionable.

Color information can certainly aid face recognition, however adding color information

alone to existing face recognition algorithms may not be sufficient to solve all real world

problems. Consider that human can perform face recognition remarkably well for face

images under large variation, while the accuracy of most of the existing face recognition

algorithms degrade dramatically when the input face image is taken at a different view

point, or is taken after several years. It is possible that there are some other key types of

information, such as structural or spatial information, missing in existing face recognition

algorithms.

One of the most obvious information that has been missed out but start receiving research

attention recently is 3D information. In fact, whether using gray scale or color data, face

recognition can not be performed reliably with only two-dimensional (2D) images alone.

A 2D image is a projection of the 3D scene on to the image plane of a camera which

is a one way process i.e. the original 3D scene cannot be recovered from the projected

image. While a 2D image contains the reflective properties of an object, a 3D image

describes its shape. Unlike 2D images, absolute measurements can be performed on 3D

data. There is no way to tell how far two objects are apart from each other on one single

2D image, because they can be captured in any distance from the camera. The absolute

measurement computed using 3D data can be used, for example, to correct the facial

pose or to generate infinite novel poses using computer graphic techniques. Furthermore,

facial geometry is invariant to illumination whereas 2D images are a direct function of the

lighting conditions (i.e. direction and spectrum). Although, the 3D imaging process can
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be influenced by lighting, the 3D data itself is illumination invariant. Facial images under

different illumination conditions can be generated using a 3D face model. In short, many

limitations of 2D face recognition can be overcome by using 3D data.

Although much research focus has been put on 3D face recognition recently, most algo-

rithms proposed so far do not effectively utilize or completely ignore the 2D (texture)

image, which is usually captured along with the 3D data by most of the 3D scanners.

Existing multi-modal (2D+3D) methods mostly use gray-scale images only, however color

information is important and should not be ignored as discussed before. Moreover, exist-

ing 3D methods assume the availability of high resolution 3D data, however 3D scanners

that are able to provide such data usually are expensive and slow in capturing speed which

limits their applicability. On the other hand, the recently released Kinect sensor has re-

ceived increasing research interest due to its low cost and high speed. However, whether

the low resolution 3D data captured by Kinect is useful for face recognition or not has not

been justified.

1.1 Aims and Approach

The main aim of this thesis is to achieve robust and accurate automatic face recognition

under uncontrolled environment, for non-intrusive applications. To this end, an algorithm

is expected to be developed that utilizes color and depth information for face recognition

achieving high and robust performance. The recognition process may involve four major

steps with several sub-objectives described as follows:

1. Face (2D and 3D) data acquisition.

2. Automatic face detection.

3. Extracting discriminative (2D and 3D) features or representations.

4. Deciding the person identity based on some classification rules.

The objective associated with step (1) is to justify the feasibility of using low resolution

3D data for robust face recognition. Existing technology allows convenient acquisition of

high quality colored 2D face images and therefore the choice of 2D acquisition devices is

not critical. However, existing 3D scanners that can capture high resolution 3D data, are

usually slow in capture speed. This means that the users are required to present their faces
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still during acquisition, which is not achievable in many non-intrusive applications. On

the other hand, high speed 3D devices provide low quality 3D data which leads to bumpy

and non-realistic 3D face models. The usefulness of such 3D data has to be justified.

Step (2) is not the research focus of this thesis. All face recognition algorithms proposed

in this thesis assume the bounding box of the face on a 2D image, or the nose tip position

on a 3D face model is previously detected and available. Face detection in 2D images

and nose tip detection in 3D face modelled is a well explored area with many existing

algorithm such as (Viola and Jones, 2004; Mian et al., 2007).

The objective associated with step (3) and (4) is to better utilize 2D color and 3D in-

formation to improve face recognition performance. For 2D color images, investigation in

better color spaces or color models, which are more discriminative for face recognition, is

required. For example, such a color model can be derived using local patches of human

face or from multiple existing color spaces. It is also important to design better classifiers,

which are more robust to varying conditions, after the color features are extracted. For

example, multi-linear and sparse coding techniques can be used to handle large variation

and outliers, but they have to be re-formulated to work on color data.

For 3D data, designing of better preprocessing methods is required, such as pose cor-

rection, that can maximize the advantage of 3D data of having absolute measurement.

Furthermore, a more discriminative representation can be developed to represent the 3D

data. For example, the normal map image converted from range image is more discrimi-

native. After that, the formulation of robust classifier to make use of the representation

is needed. For example, some 2D classification methods such as sparse coding can be

extended to work on 3D data. Lastly, the interaction and complement of 2D and 3D data

to each other also require consideration. For example, the 3D data can be used to correct

the pose of the corresponding 2D texture.

1.2 Contributions

In this thesis, all aforementioned objectives are achieved, resulting in several contributions

to the field. We describe some of our major contributions from methodological, theoretical

and experimental perspectives.
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1.2.1 Novel Methods

All methods and algorithms proposed in this thesis are novel and significant. They either

set the new state-of-the-art performance for face recognition, or provide an alternative

solution to the problem with different advantages, which usually lead to new theoretical

insights. The following methods are proposed in this thesis.

Pixel-level Discriminant Color Space (PLDCS) and Block-wise Discriminant Color Space

(BWDCS) are two novel color spaces generalizing Yang and Liu (2008b)’s Discriminant

Color Space (DCS) to work on local patches of face image. The proposed color spaces

outperform the original DCS which is among the state-of-the-art color spaces for color

face recognition.

Multiple Color Fusion (MCF) is a novel algorithm which searches for optimal color compo-

nent combination and fuses them for face recognition. This algorithm outperforms existing

color spaces and models, which sets the new state-of-the-art performance for color face

recognition. The MCF algorithm consisting of several components is also very general,

where each of the components can be replaced by more advanced techniques to further

improve performance.

Color Sparse Coding (CSC) is a novel extension of the popular sparse coding method

for face recognition. The Sparse Representation Classifier (SRC) (Wright et al., 2009)

and Correntropy Sparse Representation (CESR) (He et al., 2010) are originally designed

for gray-scale images only, but they are reformulated to work on color images in this

thesis. The CSC method achieves superior performance especially in cases of random

pixel corruptions and occlusions.

Multilinear Color Tensor Discriminant (MCTD) model is a novel integration of two state-

of-the-art methods, i.e. the MPCA-PS (Rana et al., 2009) and Tensor Discriminant Color

Space (TDCS) (Wang et al., 2011). MCTD defines a novel representation for color images,

modifies and utilizes TDCS for feature extraction and reformulates a classifier based on

MPCA-PS. MCTD complements the shortages of these two methods while retains their

advantages. As a result, MCTD outperforms MPCA-PS and TDCS especially in the

presence of large imaging variation.

Finer Feature Fusion (FFF) proposed in this thesis is a novel approach to perform face

recognition using low quality RGB-D data (i.e. Red, Green, Blue and Depth). It utilizes

Local Binary Pattern (LBP) (Ahonen et al., 2004), Haar-like features (Viola and Jones,
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2001) and Gabor features (Liu and Wechsler, 2002). A novel feature fusion strategy is

proposed which removes redundant information and retains only the meaningful features

for maximizing class separability. This method benefits from depth information even it is

noisy. FFF is able to achieve high face recognition accuracy under challenging conditions.

Lastly, a novel multi-modal (2D+3D) face recognition algorithm is proposed which consists

of several innovative components, i.e. Canonical Preprocessing (CP), Multi-channel Dis-

criminant Transform (MDT) and Multi-channel Weighted Sparse Coding (MWSC). The

most important part of CP algorithm is that it exploits facial symmetry to handle large

pose variation. The MDT method generalizes DCS to derive a discriminant transform that

works well on any multi-channel data. MWSC is a reformulation of the state-of-the-art

Robust Sparse Coding (RSC) (Yang et al., 2011) method to utilize color and depth data.

The proposed multi-modal method outperforms existing state-of-the-art algorithms. It

can handle simultaneous variations in pose, expression, illumination and disguise. More-

over, it dose not require parameters tuning for each case and it performs equally well on

both low and high resolution 3D data.

1.2.2 Theoretical Insights

Theoretical insights are significant contributions as they inspire and facilitate future re-

search. The following theoretical insights are provided in this thesis.

In terms of color space, we provide strong analytical evidences on the advantages of con-

sidering DCS locally compared to holistically. We show that the local optimal color space

can be very different to the holistical one. The inter-component correlation can be de-

creased when deriving DCS locally, thus increasing its discriminative power. The findings

suggest that subdivision of color image is more desirable when deriving color spaces. Fur-

thermore, we have given a clear definition to distinguish color space from color model,

which aids clarifying color face recognition methods. Moreover, we introduce the concept

of Variance Face (VF) which can help visualizing and estimating the available information

in a specific color component image. We also justify the advantages of using multiple color

components over using three fixed components, which is the case in most of the traditional

color spaces.

We show that many recently proposed gray-scale methods can be reformulated to take

advantage of color images. However, the amount by which they benefit from color is

different. The way how color is used can also affect the performance. Therefore, we

suggest researchers to consider the case of color images when proposing new methods.
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We show that although the performance of popular sparse coding technique is claimed to

be feature invariant when feature dimension is high enough, it can be affected by color

information. Two novel concepts are introduced namely the correctness and discrimina-

tiveness (DIS). We propose a mathematical formula to measure DIS for a given sparse

code in order to determine its discriminative power.

Lastly, we prove that even though Kinect provides only noisy depth data, it is still very

useful for face recognition when utilized effectively. We also argue that existing 3D face

recognition algorithms do not consider color information and only account for high reso-

lution 3D data which is a clear disadvantage. With a properly designed algorithm, robust

face recognition can be performed reliably with low cost.

1.2.3 Experimental Data and Protocols

Experimental data and protocols are important as they help evaluating proposed methods

and provide unbiased comparison.

In this thesis, we design a few novel and repeatable experimental setups that cover many

aspects of face recognition problems including seen and unseen identification, as well as

unseen and partially-seen verification. These test protocols that resemble some useful

real-world applications and have not been considered before.

Lastly, a new database namely CurtinFaces is constructed to complement existing databases.

It is captured using the Kinect sensor, which provides only low resolution and noisy depth

data. Images in CurtinFaces are captured with extreme variations in poses, expression,

illumination and disguise. This is, to the best of our knowledge, the first publicly available

Kinect face database that consists of images with such large variations.

1.3 Thesis Structure

The rest of this thesis is organized as follows.

In Chapter 2, some background knowledge is presented to aid understanding of this thesis.

Some definitions about 2D, color and 3D face recognition are clarified. Some related 2D

subspace methods are introduced. We also detail some recent 2D approaches based on

tensor and sparse coding. Background knowledge about color face recognition is given at
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last, which includes some existing color spaces and color face recognition methods.

Chapter 3 proposes the Pixel-level Discriminant Color Space (PLDCS) and Block-wise

Discriminant Color Space (BWDCS) methods for color face recognition. We contrast the

difference between our proposal and the original DCS method. Experiment is designed

to justify the advantages of our algorithms. We also investigate on the advantages of

applying DCS locally instead of holistically.

Chapter 4 presents the Multiple Color Fusion (MCF) algorithm, which utilizes multiple

color components from across various linear and non-linear color spaces, for face recogni-

tion. We detail the advantages of MCF and evaluate it against other existing color face

recognition methods. Some weaknesses of MCF are also identified. We also show that

different color components carry different but complementary information.

Chapter 5 formulates the popular sparse coding framework to work on color images. We

first discuss the challenges and advantages of our formulation. We also analyze different

choices of formulations, detail and justify our approach. The concept of Correctness and

Discriminativeness (DIS) is introduced to describe the discriminative power of a given

sparse code. We propose a mathematical way to measure DIS. Several experiments are

designed to validate our claims. Experimental results are analyzed at the end.

Chapter 6 investigates the feasibility of using low quality RGB-D (Red, Green, Blue and

Depth) data from the Kinect sensor for face recognition under challenging conditions. We

introduce a new 3D face database acquired using the Kinect sensor for our experiments and

for the research community. Two algorithms are presented to utilize Kinect data for robust

face recognition. The first algorithm namely the Multilinear Color Tensor Discriminant

(MCTD), makes use of only 2D color face images. We show that this method outperforms

several other state-of-the-art 2D methods. The second algorithm is proposed to utilize

the noisy Kinect depth data with a novel Finer Feature Fusion (FFF) technique. We

show that FFF has more robust performance and therefore justifies the usefulness of noisy

Kinect 3D data.

Chapter 7 proposes a multi-modal face recognition algorithm that is robust to variations

in pose, illumination, facial expressions and disguise. This algorithm consists of several

components which are described in detail with justification and analysis. Experiments

are carried out extensively on four challenging public databases in order to show the

outstanding performance of our proposed method.

Finally, Chapter 8 concludes this thesis in the perspective of color spaces, recognition
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methods and RGB-D face recognition. Some interesting future directions are also de-

scribed.
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Chapter 2

Background

In this chapter, some background knowledge is presented. Firstly, we introduce several

notations about 2D, color and 3D face recognition. Secondly, a few 2D subspace methods

are introduced. Thirdly, we detail some recent approaches based on tensor and sparse

coding. Lastly, background information on color face recognition is given, which includes

the introduction of some existing color spaces and methods. A summary is given at the

end.

2.1 Notations and Terminologies

Data structures, frequently used in image processing, are mathematically defined as fol-

lows. Assume the resolution of an image is r×c. It is usually organized as a d-dimensional

column vector (where d = r× c is the total number of pixels), by stacking all its columns.

Two dimensional face data (or texture) image can be either gray-scale or colored. Gray-

scale image is a vector v ∈ Rd of the light intensity at each pixel location. A Color image

is usually modeled in RGB color space, which is a matrix [R,G,B] ∈ Rd×3, where R, G

and B are the Red, Green and Blue color components (or channels), each representing

the light intensity of its spectrum that has been sensed or captured by the camera.

Three dimensional face data is usually acquired in the form of range image (2.5D image).

A range image is a single view of the object, containing part of the 3D information sampled

on a rectangular r×c image grid that is visible to the camera. Each sampled data point has

its 3D coordinates denoted as x, y and z. Converting each of them to vector form, results

in a matrix [x,y, z] ∈ Rd×3, which is termed as the point-cloud. Along with range image,

most of the 3D acquisition devices also acquire the corresponding 2D texture image with

color. Multi-modal data refers to 2D+3D data, which is a matrix [x,y, z, R,G,B] ∈ Rd×6

or [x,y, z,v] ∈ Rd×4 if the texture is in gray-scale.

Through out this thesis, several terms that refer to different types of approaches are defined
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as follows. Gray-scale face recognition refers to approaches that use 2D gray-scale image,

whereas color face recognition refers to approaches that use 2D color image. The term

3D face recognition refers to approaches that use 3D or range image data. Multi-modal

approaches are 3D face recognition methods that additionally use 2D data.

2.2 Subspace Methods

Statistical approaches are proven to be effective for face recognition. In order to obtain re-

liable statistical results, dense samples are necessary. However, face recognition is usually

a Small Sample Sized (SSS) problem. Most of the cameras nowadays offer imaging reso-

lution over 4 megapixels (or 2240 × 1680), whereas in most face recognition applications

only one or a few training samples per subject are available. These samples lie in such

a high dimensional space that is too sparse to draw statistical significance. This is com-

monly referred to as the Curse of Dimensionality problem. Therefore, dimension reduction

is usually necessary for statistical methods. Subspace methods project the data into a low

dimensional subspace and the Nearest Neighbor (NN) classifier is applied subsequently to

decide the identities of the test samples.

Existing subspace methods are mostly proposed for gray-scale images, and some basic

notations can be defined. Given n gray-scale training face images with d pixels, they are

commonly organized into a single matrix A, by arranging each image vectors v as a column

of A:

A = [v1, v2, . . . , vn] ∈ Rd×n. (2.1)

Assume that there are C classes each having Mi images with class label Pi (where n =∑C
i=1Mi). Let vj (j=1,2,...,n) denote the j-th image vector in A. The class mean image

Ai can be computed as:

Ai =
1

Mi

∑
vj∈Pi

vj , (2.2)

and the grand mean image A can be computed as:

A =
1

n

n∑
i=1

vi. (2.3)
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2.2.1 Principal Component Analysis (PCA)

This section introduces the original PCA and the whitened PCA methods. The original

PCA method is used in this thesis mainly for dimensional reduction by preserving certain

percentage of energy, which will be explained here in detail. The whitened PCA is an

improvement over the original PCA method for face recognition.

Eigenface is one of the earliest successful statistical method for face recognition proposed

by Turk and Pentland (1991) based on PCA. Following the image data arrangement defined

in Eq. 2.1, the covariance matrix can be computed as follows:

Σ = (A−A)(A−A)T , (2.4)

where A is the mean image vector in Eq. 2.3. The PCA projection is an orthonormal

eigenvector matrix W = [w1, w2, . . . , wr], containing eigenvectors of Σ arranged in de-

scending order of their associated eigenvalues Ωr = [λ1, λ2, . . . , λr], where r is the rank of

Σ. Usually, the eigenvectors with small eigenvalues are related to noise and therefore are

discarded to improve performance. Since the number of useful eigenvectors varies under

different data conditions, one of the common rules is to keep s eigenvectors to preserve

g% energy, i.e.

argmax
s

∑s
i=1 λi∑
λ

s.t.

∑s
i=1 λi∑
λ
≤ g. (2.5)

Finally, the dimension of A can be reduced by projecting to the subspace W :

Ãpca = W TA. (2.6)

The matrix Ãpca, consisting of PCA features extracted from A, can be used directly for

NN classification. The whitened PCA (wPCA) (Deng et al., 2010a) increases the perfor-

mance over PCA for face recognition under larger variations by balancing the eigenvectors.

The physical meaning of the eigenvalues are the data variance along the corresponding

eigenvector, thus the first few eigenvectors may dominate in magnitude due to large vari-

ations of illumination or noise. To stabilize the result, each principal direction is scaled to

uniform the spread of the data:

Ãwpca = Ω−1/2r Ãpca. (2.7)

Applying NN classifier on Ãwpca usually results in better performance than on Ãpca.

2.2.2 Linear Discriminant Analysis (LDA)

This section introduces the original LDA and regularized LDA methods. The LDA method

is frequently used in this thesis for experiments. Several discriminative features and color
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spaces are also derived based on LDA’s idea. The regularized LDA is an improvement

over the original LDA method for face recognition.

The Fisherface method is a successful subspace method for gray-scale face recognition

proposed by Belhumeur et al. (1997) based on LDA. Unlike PCA which maximizes the

data variance in the subspace, LDA maximizes inter-class separability. It is a supervised

method which requires class labels for training. Following the image data arrangement

defined in Eq. 2.1, the between-class matrix Sb and within-class scatter matrix Sw are

defined as follows:

Sb =
C∑
i=1

(Ai −A)(Ai −A)T , (2.8)

Sw =

C∑
i=1

∑
vj∈Pi

(vj −Ai)(vj −Ai)T , (2.9)

where Ai is the class mean in Eq. 2.2 and A is the grand mean in Eq. 2.3. Sb and

Sw measure the between-class and within-class variance respectively and LDA finds a

projection subspace W to maximize their ratio:

argmax
W

tr(W TSbW )

tr(W TSwW )
, (2.10)

and the solution can be obtained by solving the equivalent generalized eigenvalue problem:

SbW = λSwW. (2.11)

Finally, the dimension of A can be reduced by projecting to the subspace W :

Ãlda = W TA. (2.12)

The matrix Ãlda consisting of LDA features extracted from A can be used directly for

NN classification. A problem encountered in LDA is related to the inverse of Sw in Eq.

2.11, which may not exist due to the fact that Sw is usually singular in most of the face

recognition applications. To stabilize the result, the Fisherface algorithm applies PCA on

A first for dimension reduction, resulting in a full rank Sw matrix in the PCA subspace,

where LDA can then be applied afterward. One of the drawbacks of this approach is

the loss of discriminative information during the PCA projection step. Instead of PCA

projection, the regularized LDA method (Lu et al., 2005) solves the original objective

function directly with regularization:

argmax
W

tr(W TSbW )

tr(W T (Sw + λI)W )
, (2.13)

where λ here is a user defined constant and I is the identity matrix. As a result, the

regularized LDA outperforms Fisherface in terms of recognition accuracy.
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2.2.3 Other Subspace methods

Although it is impossible to cover all existing subspace methods, this section briefly de-

scribes two other subspace methods that have been used in this thesis. These two methods,

namely the supervised Locality Preserving Projection (sLPP) and Intrinsic Discriminant

Analysis (IDA), can achieve good face recognition performance with their own advantages.

The Laplacianfaces method is proposed by He et al. (2005) as an unsupervised technique

for face recognition, based on Locality Preserving Projection (LPP). Different from PCA

and LDA which assume the face space to be Euclidean, LPP finds an embedding that

preserves the local structure and obtains a subspace that best resembles the actual face

manifold. When class labels are available, LPP projection can be computed with supervi-

sion to improve performance (Zheng et al., 2006). The supervised LPP usually has higher

face recognition accuracy than LDA if the underlying data structure is complex.

The Intrinsic Discrimnant Anlaysis (IDA) is a recent method proposed by Wang and Wu

(2010). Unlike other subspace approaches, IDA is designed specifically for face recogni-

tion. It mathematically decomposes a face image into three components: facial common-

ness difference, individuality difference and intrapersonal difference. By maximizing the

individuality difference while minimizing the intrapersonal difference, a subspace different

to PCA, LDA and LPP is derived, which is more suitable for face recognition. As a result,

IDA can achieve higher face recognition accuracy in comparison to LDA, LPP, etc.

2.2.4 The Nearest Neighbor Classification

All aforementioned subspace methods aim to find a projection subspace, and the Nearest

Neighbor (NN) classifier is applied after projection. This section describes the NN classifier

for sack of completeness. Two choices of the distance metric used for the nearest neighbor

measurement are introduced.

Assume the face feature matrix Ã and the corresponding projection matrix W are obtained

using one of the subspace methods. Let q ∈ Rd be a query (probe) face image vector. To

decide the identity of q, it has to be projected onto the same subspace first, i.e.: q̃ = W T q.

Afterwards, q is classified to class Pi if its nearest neighbor belongs to Pi. Image Aj is

said to be the nearest neighbor of q if q has the shortest distance to Aj , i.e.

argmin
j

dist(Ãj , q̃), (j = 1, 2, . . . , n). (2.14)
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The dist(a, b) function is commonly evaluated using Euclidean distance, i.e. ‖a − b‖2.
However, sometimes the cosine similarity is used instead, i.e. -(a · b)/(‖a‖ · ‖b‖). The

better choice of metric depends on the data, therefore one way to choose is via cross-

validation.

2.3 Multi-linear Analysis

In this section, some multilinear based methods are introduced. As mentioned in Section

1.1, this thesis focuses on user non-intrusive face recognition applications and therefore

face image probes may have large variations such as pose, illumination and expression.

Subspace methods described in Section 2.2 are all formulated linearly, and therefore have

limited ability to handle non-linear variations especially for poses. Although there are

manifold methods in existing literature to deal with non-linear data, they have several

disadvantages. Firstly, manifold methods usually require dense sampling which is hard to

achieve when the user is not cooperated. Secondly, even with sufficient samples, the true

manifold may be too complicated to be modeled accurately or reliably enough. Lastly,

the computation cost is usually expensive for manifold methods. Multilinear analysis

is an alternative approach to handle largely varied images with low computational cost.

Multilinear methods assume that a face image is a multilinear function of various factors

(i.e. person, lighting, pose, pixel etc). The main idea is to deal with each factor linearly,

in which linear methods can be employed. For this purpose, all training samples are

represented by a single data tensor, with different factors modeled as different modes.

Before detailing the technique, some tensor properties and operations have to be defined

first. Then the Multilinear PCA (MPCA) method as well as its improved version MPCA-

PS are introduced for face recognition.

2.3.1 Tensor Operations

Tensor is an object describing relations between vectors. It can be viewed as a multi-

dimensional array of numerical values, which extends the notion of scalar, vector and

matrix. For example, a d-dimensional array can be referred to as a dth-order tensor when

using tensor terminology. The order of a tensor is the number of indices required to label

an entry. Each dimension of the tensor is denoted as a mode. Let A ∈ RI1×I2×···×Id be a

tensor of order d. The following tensor operations are defined:

Unfolding is a unary operation on a single tensor. If d > 2, A can be unfolded at kth
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mode, resulting in a 2D matrix A(k) ∈ RIk×(Ik+1···IdI1···Ik−1) which puts the kth dimension

data as the rows and concatenate all data in other modes as the columns.

Figure 2.1: Illustration of tensor unfolding operation (Jia et al., 2012).

Mode-k multiplication is an operation between a tensor and a matrix. A can be mul-

tiplied by the matrix U ∈ RIk×Ik at kth mode denoted by B = A ×k U . The tensor

B ∈ RI1×I2×···×Ik−1×Ik×Ik+1×···×Id can be obtained by unfolding A at kth mode, to per-

form normal matrix multiplication U · A(k) and finally fold the resulting matrix back to

tensor by directly reversing the unfolding operation. In other words,

(A×k U)(k) = U ·A(k). (2.15)

Kronecker product is referred to as the tensor product of two matrices denoted by ⊗,

which generalizes the outer product of two vectors. The Kronecker product of U ∈ Ra×b

and V ∈ Rc×d results in a ac× bd block matrix:

U ⊗ V =


u11V · · · u1bV

...
. . .

...

ua1V · · · uabV

 . (2.16)

Higher Order SVD (HOSVD) is a generalization of Singular Value Decomposition

(SVD) from matrix to tensor. Applying HOSVD on A yields the following decomposition:

A = C ×1 U
1 ×2 U

2 ×3 · · · ×d Ud, (2.17)
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where Uk = SV D(A(k)) is an orthonormal matrix containing the ordered eigenvectors for

the kth mode. C = A ×1 U
1T ×2 U

2T ×3 · · · ×d Ud
T

is the core tensor containing the

projections of A in each mode-specific eigen-subspace.

Frobenius norm of a tensor is denoted by the ‖.‖F operator and it is computed as:

‖A‖F = ‖A(k)‖F . (2.18)

2.3.2 Multilinear PCA and MPCA-PS

Multilinear PCA (MPCA) is applied for gray-scale face recognition by Vasilescu and Ter-

zopoulos (2002). Assuming that the training data contains samples of Np people with

Nl lighting conditions being captured under Nv viewpoints. All these training images are

represented as a single fourth-order tensor T :

T ∈ RNp×Nl×Nv×Nx , (2.19)

where

T (ip, il, iv) ∈ RNx (2.20)

indexes to an image vector of the ip-th persion at il-th lighting condition and iv-th view-

point with Nx pixels. Applying HOSVD (as in Eq. 2.17) on T yields the following

decomposition:

T = C ×1 U
P ×2 U

L ×3 U
V ×4 U

X , (2.21)

where UP ∈ RNp×N ′p , UL ∈ RNl×N ′l , UV ∈ RNv×N ′v and UX ∈ RNx×N ′x are four orthonor-

mal factor subspaces. N ′p, N
′
l , N

′
v and N ′x are the numbers of leading eigenvectors. C

is the core tensor which controls the mutual interaction between the subspaces. Note

that UX is actually the traditional eigenface. Similarly, UP , UL and UV represent the

eigen-person, eigen-lighting and eigen-viewpoint respectively. Since each factor subspace

is orthonormal, each of their rows contains coefficients that can be used to reconstruct a

factor. The full training dataset can be reconstructed approximately by

T ≈ C ×1 U
P ×2 U

L ×3 U
V ×4 U

X . (2.22)

Based on the above MPCA framework for face image representation, there are several

recognition approaches. Among them, MPCA-PS (Rana et al., 2009) is one of the most

promising. Assuming that a query image q is one of the people in training set T , MPCA-PS

classifies a query q to person k who has the minimum value of the following optimization

problem:

min
k,ul,uv

‖q − C ×1 u
k
p ×2 ul ×3 uv ×4 UX‖2, (2.23)
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where ukp is the kth row of Up (k = 1, . . . , Np). ul and uv are two free variables used to

reconstruct the lighting and viewpoint modes respectively. Rana et al. (2009) showed that

there is a direct least square solution for solving ul and uv. High recognition performance

is also achieved by MPCA-PS.

2.4 Sparse Coding

In this section, some sparse coding based methods for gray-scale face recognition are

introduced. Unlike the problem of varied imaging conditions, a face image with disguise

and noise carries unrelated pixels. The ability to identify these unrelated pixels is crucial to

handle occlusion successfully. Methods that are based on sparse coding have been shown

to perform exceptionally well for this problem. Specifically, the Sparse Representation

Classifier (SRC) (Wright et al., 2009) has achieved the state-of-the-art performance for

corruption or occlusion problems, and has received much attention recently. Besides, the

Correntropy-based Sparse Representation (CESR) (He et al., 2010) and Robust Sparse

Coding (RSC) (Yang et al., 2011) methods have been proposed to improve over SRC.

This section details these methods.

2.4.1 Sparse Representation Classifier

The Sparse Representation Classifier (SRC) is proposed by Wright et al. (2009), who cast

the face recognition problem as a linear regression problem. It assumes all human face

images lie in a linear space, faces of the same person lie in its local linear subspace and

the linear spaces for different people are separable. Therefore if the training sample size

is large enough to represent the whole face population (i.e., spanning the entire space

for each person), any facial image can be represented as a linear combination of training

images from the same class. Given a query image, though its membership is unknown, it

can still be represented by a linear combination of all the training images. With intuition

of the sparsest representation, the recovered combination coefficients are expected to be

zero except those associated with the same class as the query, and this will reveal the

membership of the query.

Let A = [A1, A2, . . . , AN ] ∈ Rd×N be N training samples, where d is the data dimension.

Statistically, assume that the training samples span the whole human face space, any new

18



query face image y can be represented as a linear combination of all training samples:

y ≈ Ax0 ∈ Rd (2.24)

where x0 ∈ RN is the coefficient vector whose entries are expected to be zero except those

associated with the same class as y and this can be found by maximizing its sparsity by

solving the following equation:

x0 = min ‖x‖0 s.t. Ax = y (2.25)

where ‖ · ‖0 denotes the `0-norm, which counts the number of non-zero entries in a vector.

In fact, solving Eq. 2.25 is NP-hard, however theoretical analysis (Sharon et al., 2009)

allows recovery of the correct x0 via the following `1-norm minimization,

x1 = min ‖x‖1 s.t. Ax = y (2.26)

as long as x0 is sparse enough.

To increase robustness, Wright et al. (2009) further extended the model in Eq. 2.26 to

deal with noise. Let e ∈ Rd be the error vector, the linear model in Eq. 2.24 becomes

y ≈ Ax0 + e (2.27)

and the objective function in Eq. 2.26 in this case changes to:

min
x
‖x‖1 s.t. ‖Ax− y‖2 ≤ ε (2.28)

Since the noise level ε is unknown beforehand, one possible alternative to solve this problem

is to use the Lasso (Tibshirani, 1994) formulation by solving:

min
x,e
‖y −Ax+ e‖22 + λ (‖x‖1 + ‖e‖1) (2.29)

which is the same as:

min
w
‖y −Bw‖22 + λ (‖w‖1) (2.30)

with

Ax+ e = [A, I]

[
x

e

]
= Bw (2.31)

where λ is a given regularization parameter controlling the sparsity.

In recognition stage, the query y is classified to class i in which its associated coefficients

would reproduce y with the smallest error, i.e.,

min
i
ri(y) = ‖y −Aδi(x1)‖2 (2.32)

where δi : RN → RN is the characteristic function that selects the coefficients associated

with the ith class and δi(x) ∈ RN is a vector whose non-zero entries are the entries in x

corresponding to class i.
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2.4.2 Correntropy-based Sparse Representation

Recently, He et al. (2010) proposed a more robust improvement by integrating correntropy

measure and non-negative constraint into the sparse model, namely the correntropy-based

sparse representation (CESR). The correntropy firstly proposed by Liu et al. (2007) from

concepts of correlation and entropy. It is a nonlinear similarity measure between two

random variables P and Q. Let P and Q have finite number of samples {(Pj , Qj)}Nj=1, the

sampling correntropy is estimated as:

V̂N,σ(P,Q) =
1

N

N∑
j=1

kσ(Pj −Qj) (2.33)

where kσ(·) is a kernel function satisfying the Mercer condition (Vapnik, 1995). Instead

of minimizing the reconstruction error in Eq. 2.29, CESR aims to find a non-negative

sparse representation coefficient x = (x1, . . . , xN )T ∈ RN to maximize the correntropy

between the original query image y = (y1, . . . , yd)
T ∈ Rd and the reconstructed query

image ŷ = Ax = (
∑

j Aj1 xj , . . . ,
∑

j Ajd xj)
T ∈ Rd, for j = 1, . . . , N . Thus the objective

function for CESR becomes:

max
x

d∑
k=1

g

yk − N∑
j=1

Ajkxj

− λ n∑
j=1

xj s.t. xj ≥ 0 (2.34)

where g(x) = exp
(
− x2

2σ2

)
is a Gaussian kernel function and σ2 is the kernel size. As

presented by He et al. (2010), Eq. 2.34 can be solved via the half-quadratic technique

and expectation maximization method. They proposed an iterative solution, which also

compute the kernel size σ2 in each iteration.

For classification, instead of finding the minimum residual as in Eq. 2.32, y is classified to

class i which its associating coefficients would best reproduce y in terms of the maximum

correntropy (similarity):

max
i

Si(y) =
d∑

k=1

g

yk − N∑
j=1

Ajkx̂
i
j

 (2.35)

where x̂i = δi(x) ∈ RN is a new vector whose non-zero entries are from x that associate

with class i as defined in Eq. 2.32.

Unlike the error modeled SRC in Eq. 2.30, optimizing both the error e and coefficient

x at the same time, which is computationally intensive, CESR iteratively updates the

weights for each pixels (locating the errors) and finds the sparse coefficients based on the

pixel-weighted samples. Furthermore, the correntropy measure is claimed to be robust
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against non-gaussian noise (Liu et al., 2007). Therefore, CESR improves over SRC not

only in computational efficiency but also in accuracy.

2.4.3 Robust Sparse Coding

The Robust Sparse Coding (RSC) method (Yang et al., 2011) greatly improves the per-

formance of SRC by introducing pixel weights with a different formulation to CESR. For

the sake of simplicity, consider Eq. 2.29 without the error term:

min
x
‖y −Ax‖22 + λ‖x‖1. (2.36)

Yang et al. (2011) pointed out that, the fidelity term ‖y − Ax‖22 implicitly assumes the

data has gaussian distribution. However, the actual distribution may be far from this

assumption. For example, if the data has Laplacian distribution, `1-norm will be more

suitable (i.e. ‖y − Ax‖1). Since the distribution is unknown beforehand, a distribution

function fθ should be used in the fidelity term (i.e. fθ(y−Ax)) instead. Yang et al. (2011)

showed that this distribution actually induces weights and therefore they reformulated Eq.

2.36 as the following weighted Lasso problem:

min
x
‖W (Ax− y)‖2 + λ‖x‖1, (2.37)

where a robust W can be estimated by:

W =
exp(µδ − µ(e)2)

(1 + exp(µδ − µ(e)2))
. (2.38)

Here in Eq. 2.38, e = Ax − y is a vector of reconstruction residuals, µ and δ are user

defined parameters controlling the rate of decrease and the location of demarcation point

respectively. W (1) is initialized as the residual to the mean dictionary atom e(1) = A− y.

Eq. 2.37 is then iteratively solved for x and W . The iteration stops at the t-th iterations

when the change in W is smaller than ε, i.e:

‖W (t) −W (t−1)‖2/‖W (t−1)‖2 < ε (2.39)

In recognition stage, a strategy similar to Eq. 2.32 is used. The query y is classified to

class i if it satisfies:

min
i
ri(y) = ‖W (y −Aδi(x1))‖2 (2.40)

where δi is the same characteristic function defined in Eq. 2.32.
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2.5 Color Face Recognition

All methods described in Section 2.2, 2.3 and 2.4 are proposed for gray-scale images only.

However, as discussed in Chapter 1, color information is very useful and should not be

ignored. Most of the existing color face recognition methods focus on deriving new color

spaces. Once the new color space is derived, traditional subspace methods are used to

decide the identity. We briefly describe their recognition pattern as follows. Given a color

image, it is usually modeled in a color space of three components (e.g. Red, Green and

Blue in RGB color space) organized as a matrix As = [c1, c2, c3] ∈ Rd×3. In order to apply

a subspace method on As, it is converted into one column vector by stacking the three

color components (image level fusion), i.e. Av = [c1 c2 c3]T ∈ R3d. After fusion, different

subspace methods can be applied directly on Av as in the case of gray-scale image. In this

section, several color spaces and some approaches with slight variation to this pattern are

introduced.

2.5.1 Conventional Color Spaces

The RGB color space is an additive color space. Any color can be produced by mixing

the three elemental colors: Red, Green and Blue. Therefore, storing these three color

components is sufficient to reproduce a color image. The RGB space is a fundamental

color space as a RGB color image can be converted to another color space by either linear

or non-linear transformation (which is referred to as linear and non-linear color space

respectively hereafter).

Linear color spaces is obtained by linear matrix multiplication, i.e. As = ArgbTs, where

Argb = [R,G,B] ∈ Rd×3 is the RGB color image, and Ts ∈ R3×3 is the transformation

matrix. The transformation matrix for RGB color space can be defined as the identity

matrix:

Trgb =

1 0 0

0 1 0

0 0 1

 (2.41)

The I1I2I3 color space (Ohta, 1985) is obtained by de-correlating RGB using Karhunen-

Loève transform. The transformation is defined as follows:

TI1I2I3 =

1/3 1/2 −1/2

1/3 0 1

1/3 −1/2 −1/2

 (2.42)
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The YIQ, YUV and Y CbCr color spaces are designed to take advantage of human color-

response characteristics, by separating the eye-sensitive colors and less sensitive ones in

different components. They represent a colour in luminance (Y) and chrominance (IQ, UV

or CbCr) components respectively. Therefore they allow better compression and are less

sensitive to perceptible errors during image or video processing, transmission and display

(Buchsbaum, 1975). Their transformation matrices are defined as follows:

TY IQ =

0.2990 0.5957 0.2115

0.5870 −0.2744 −0.5226

0.1140 −0.3213 0.3111

 , (2.43)

TY UV =

0.2990 −0.1471 0.6148

0.5870 −0.2888 −0.5148

0.1140 0.4359 −0.1000

 , (2.44)

TY CbCr =


0.2126×219

255
0.2126×224
1.8556×255

0.5×224
255

0.7152×219
255

0.7152×224
1.8556×255 −0.7152×224

1.5748×255
0.0722×219

255
0.5×224

255 −0.0722×224
1.5748×255

 (2.45)

(note that for the Y CbCr color space, an offset of [16, 128, 128] is required to be added to

the three components after the transformation).

The XYZ color space is derived from a series of experiments in the study of the human

perception by the International Commission on Illumination (CIE)(Weeks, 1996). The

transformation matrix is:

TXY Z =

0.607 0.299 0.000

0.174 0.587 0.066

0.201 0.114 1.117

 (2.46)

Non-linear color space is obtained by applying some functions that involve non-linear

operations. The L∗a∗b∗ color space defined by CIE (Weeks, 1996) as a device-independent

color space which describes all colors that are visible to the human eyes. It is converted

from the XYZ color space non-linearly as follows:

L∗ = 116f(Y/Yn)− 16

a∗ = 500[f(X/Xn)− f(Y/Yn)]

b∗ = 200[f(Y/Yn)− f(Z/Zn)]

(2.47)

where

f(t) =

{
t1/3, if t > ( 6

29)3

1
3(296 )2 + 4

29 , otherwise
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and [Xn, Yn, Zn] is the reference white point defined as [0.950456, 1, 1.088754]. Similar to

L∗a∗b∗ color space, L∗u∗v∗ and L∗c∗h∗ are two other color spaces from the same family

having similar transformations and purposes.

The HSL color space rearranges the geometry of RGB relating to human perception of

color. The HSL components represent the Hue, Saturation and Lightness which are defined

as follows:

H = 60o ×


0, if C = 0
G−B
C mod 6, if M = R

B−R
C + 2, if M = G

R−G
C + 4, if M = B

, (2.48)

S =

{
0, if C = 0

C
1−|2L−1| , otherwise

, (2.49)

L =
1

2
(M +m), (2.50)

where R, G and B are the Red, Green and Blue components of the RGB image, M =

max(R,G,B), m = min(R,G,B) and C = M −m.

2.5.2 Normalized Color Spaces

Color Space Normalization (CSN) is proposed by Yang et al. (2010a) to improve the dis-

crimination power of weak linear color spaces. Although all color spaces introduced in

former section can be used for face recognition, it has been shown that the performance

of some linear color spaces such as RGB and XYZ are relatively weak due to high corre-

lation between color components. Observed by Yang et al. (2010a) that all color spaces

such as I1I2I3 and YUV satisfying the so-called Double Zero Sum (DZS) property (Yang

et al., 2010b), have lower inter-component correlation, which leads to higher face recog-

nition performance. A color space is said to satisfy the DZS property if two row sums

of its transformation matrix equal to zero, while the remaining one dose not. Defining it

precisely, given a transformation matrix

T =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,
let the row-sum-vector b = [b1, b2, b3]

T contains the sum over each row of T , i.e., bi =∑3
j=1 aij . The transformed color space is DZS if only two numbers in b equal to zero.
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There are several ways to convert a non-DZS color space to DZS. One way is by removing

the mean from the second and third rows of their transformation matrix, i.e.,

T̃ =

 a11 a12 a13

a21 −m2 a22 −m2 a23 −m2

a31 −m3 a32 −m3 a33 −m3

 ,
where m2 = b2/3 and m3 = b3/3 are the second and third row means. The experiments

carried out by (Yang et al., 2010a) have shown that the normalized RGB and XYZ spaces

(nRGB and nXYZ) perform significantly better than their original. Their transformation

matrices after normalization are:

TnRGB =

1 −1/3 −1/3

0 2/3 −1/3

0 −1/3 2/3

 , (2.51)

TnXY Z =

0.6070 −0.0343 −0.3940

0.1740 0.2537 −0.3280

0.2000 −0.2193 0.7220

 . (2.52)

Notice that both matrices satisfy the DZS property.

2.5.3 Learned Statistical Color Space

The Uncorrelated Color Space (UCS) proposed by Liu (2008) derives a color space

based on PCA, where the three color components are statistically uncorrelated. The trans-

formation matrix is derived from the training samples, therefore there is no predetermined

transformation matrix like other linear color spaces mentioned in the former section. Since

the Eigen vectors found by PCA are orthogonal, the derived UCS has no inter-component

correlation. In detail, let Ai ∈ Rd×3, for i = 1, . . . , N , be the set of N RGB training

images. The color space covariance matrix is calculated as:

ΣA =
1

N

N∑
i=1

(Ai − Ā)T (Ai − Ā), (2.53)

where Ā is the grand mean image calculated as:

Ā =
1

N

N∑
i=1

Ai. (2.54)

The transformation matrix Tucs consists of the three left singular vectors obtained by

factorizing ΣA:

ΣA = Tucs Λ T̃ucs, (2.55)
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where Λ is the Eigen value matrix.

The Discriminant Color Space (DCS) proposed by Yang and Liu (2008b) is derived in

a similar way, but is based on LDA, utilizing class labels. Transforming to DCS not only

reduces inter-component correlation (Yang et al., 2010b), but also forms a statistically

optimal space for maximum discrimination. The DCS transformation matrix W is chosen

to maximize the following objective function:

J(W ) =
tr(W TLbW )

tr(W TLwW )
, (2.56)

where Lb and Lw are the color space between-class scatter matrix and color space within-

class scatter matrix respectively. Assuming that there are C classes each having Nj

(j = 1, . . . , C) samples with class label Pj and N =
∑
Nj . The color space scatter

matrices are derived as:

Lb =
C∑
j=1

(Āj − Ā)T (Āj − Ā), (2.57)

Lw =
C∑
j=1

∑
Ai∈Pj

(Ai − Āj)T (Ai − Āj), (2.58)

where Āj is the jth class mean computed as:

Āj =
1

Nj

∑
Ai∈Pj

Ai. (2.59)

The solution to Eq. 2.56 is the generalized eigenvectors corresponding to the largest

eigenvalues λ satisfying the following equation:

LbW = λLwW. (2.60)

After obtaining the transformation, the original image is converted to DCS with three

discriminant color components, i.e. [D1, D2, D3] = [R,G,B]W . Before stacking the three

components to form one vector for subsequent LDA application, these components are

normalized to zero mean and unit standard deviation to avoid magnitude dominance in

one over the others. Specifically, let µk =
∑
Dk be the mean of all elements in Dk and σk

be corresponding standard deviation, the normalization is done by:

Dk ← Dk − µk1N×1
σk

, , (2.61)

where 1N×1 is an N-dimensional column vector with all ones.
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2.5.4 Color Image Discriminant Model

Addressing the drawback of the DCS method described in last section, the extended

General Color Image Discriminant (eGCID) model (Yang and Liu, 2008a) is proposed.

Observing from Eq. 2.56, the objective of DCS is to maximize the ratio between the

color space scatter matrices Lb and Lw. These two matrices account for within and

between class variance for the original color images before vectorization. However, after

DCS transformation, LDA is applied on the vectorized color images where the within

and between class variance is no longer accounted by Lb and Lw but by Sb and Sw as in

Eq. 2.10. Therefore, DCS may not be optimal in terms of class discrimination for the

subsequent LDA operation.

The eGCID algorithm seeks the set of optimal color transformation coefficients and the

LDA projection together using an iterative approach. Given N RGB training samples

Ai ∈ Rd×3, (for i = 1, . . . , N) from C classes, each class has Nj (j = 1, . . . , C) samples

with class label Pj and N =
∑
Nj . Let X ∈ R3×3 be the color transformation matrix, such

that Ai can be converted to D-space by Di = AiX. The between-class and within-class

scatter matrices in D-space are defined as follows:

Sb(X) =
C∑
j=1

(D̄j − D̄)(D̄j − D̄)T

=
C∑
j=1

(Āi − Ā)XXT (Āi − Ā)T ,

(2.62)

Sw(X) =
C∑
j=1

∑
Di∈Pj

(Di − D̄j)(Di − D̄j)
T

=
C∑
j=1

∑
Ai∈Pj

(Ai − Āj)XXT (Ai − Āj)T .

(2.63)

Let W ∈ Rd×d̃ be the LDA projection matrix (where d̃ � d is the user-defined number

of LDA eigenvectors), such that Ai can be projected to LDA subspace by Ãi = W TAi.

The color space between-class and within-class scatter matrices in the LDA subspace are

defined as follows:

Lb(W ) =
C∑
j=1

(Āj − Ā)TWW T (Āj − Ā), (2.64)

Lw(W ) =
C∑
j=1

∑
Ai∈Pj

(Ai − Āj)TWW T (Ai − Āj). (2.65)
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The objective of eGCID is to maximize the following function:

J(W,X) =
tr(W TSb(X)W )

tr(W TSw(X)W )
.. (2.66)

Yang and Liu (2008a) have shown that Eq. 2.66 is equivalent to

J(W,X) =
tr(XTLb(W )X)

tr(XTLw(W )X)
.. (2.67)

For these two equations, when one variable is fixed, they become the generalized eigenvalue

problems as in Eq. 2.11 and Eq. 2.60. Therefore, an iterative solution can be derived by

first initializing X with, for example random numbers, and solves for W . Then uses W to

solve for X and iterates, until the change in J(W,X) is less then ε.

In above algorithm, X1 = [x11, x21, x31]
T is obtained as the eigenvector with the largest

eigenvalue. It is the combination coefficients to obtain one discriminant color component

D1 = x11R + x21G + X31B. As pointed out by Yang and Liu (2008a), one discriminant

color component is not enough to retain all useful information in general. Therefore X2

and X3 are required and can be derived from the null-space of Lw. It is known that

Xi(i = 1, 2, 3) are required to be Lw(W )-orthogonal, i.e.:

XT
i Lw(W )Xj = 0 ∀i 6= j, i, j = 1, 2, 3. (2.68)

Let u1 and u2 be the remaining eigenvectors which is Lw(W )-orthogonal to X1. In other

words, u1 and u2 are the bases of the null space of Lw. Then X2 can be expressed as a

linear combination of u1 and u2, i.e.

X2 = [u1, u2]

[
y1

y2

]
= UY, (2.69)

where y1 and y2 are two coefficients. Substituting X2 = UY into X in Eq. 2.67 results in

the following equations:

J2(W,X2) =
tr(XT

2 Lb(W )X2)

tr(XT
2 Lw(W )X2)

=
tr(Y T (UTLb(W )U)Y )

tr(Y T (UTLw(W )U)Y )

=
tr(Y T L̃b(W )Y )

tr(Y T L̃w(W )Y )
.

(2.70)

Y can be obtained as the generalized eigenvector of (L̃b(W ), L̃w(W )) with the largest

eigenvalue and X2 can be derived using Y . The the same iterative procedures used to

find X1, can be adopted to solve X2. Similarly, the remaining color component must

be Lw(W )-orthogonal complement of both X1 and X2, which is actually 1-D. Therefore,

X3 is unique when the length is fixed and the sign is neglected. Let Z be the smallest

generalized eigenvector of (L̃b(W ), L̃w(W )), then X3 can be obtained by X3 = UZ.
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2.5.5 Tensor Discriminant Color Space

The eGCID method introduced above is based on vectorized image. However, image

vectorization is a mechanical step that breaks the original image structure. Wang et al.

(2011) proposed the Tensor Discriminant Color Space (TDCS) to extract the discriminant

features, while preserves its matrix structure. Given N training RGB color images from

C classes, each image can be naturally represented by a third-order tensor Ai ∈ RI1×I2×I3

(for i = 1, . . . , N), where I1, I2 and I3 = 3 are the number of rows, columns and color

components of the images. Assumes that each class has Nj (j = 1, . . . , C) samples with

class label Pj and N =
∑
Nj . TDCS finds two discriminant projection matrices W1 ∈

RI1×I′1 , W2 ∈ RI2×I′2 and a color space transformation matrixW3 ∈ RI3×I′3 (usually I ′1 < I1,

I ′2 < I2 and I ′3 ≤ I3), in order to extract the feature tensor Di ∈ RI′1×I′2×I′3 :

Di = Ai ×1 W
T
1 ×2 W

T
2 ×3 W

T
3 , (2.71)

where ×k denotes the mode-k multiplication defined in Eq. 2.15. The grand mean and

class mean image tensors can be computed as follows:

Ā =
1

N

N∑
i=1

Ai, (2.72)

Āj =
1

Nj

∑
Ai∈Pj

Ai. (2.73)

The k-mode between-class scatter matrix Ψ
(k)
b in the feature space can be computed as

follows:

Ψ
(k)
b =

C∑
j=1

‖D̄j − D̄‖2(k)

=
C∑
j=1

‖(Āj − Ā)×1 W
T
1 ×2 W

T
2 ×3 W

T
3 ‖2(k)

=

C∑
j=1

‖W T
k (Āj(k) − Ā(k))W̃k‖

=

C∑
j=1

tr
[
W T
k (Āj(k) − Ā(k))W̃kW̃

T
k (Āj(k) − Ā(k))

TWk

]
= tr(W T

k S
(n)
b Wk),

(2.74)

where W̃k = Wd ⊗ · · · ⊗Wk+1 ⊗Wk−1 ⊗ · · · ⊗W1, k = 1, 2, . . . , d and d = 3. The ‖.‖
denotes the Frobenius norm of the tensor, ·(k) denotes k-mode unfolding and ⊗ denotes
the Kronecker product, as defined in Section 2.3.1. Similarly, the k-mode within-class
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scatter matrix Ψ
(k)
w in the feature space can be defined as :

Ψ(k)
w =

C∑
j=1

∑
Di∈Pj

‖Di − D̄j‖2(k)

=

C∑
j=1

∑
Ai∈Pj

tr
[
WT

k (Ai(k) − Āj(k))W̃kW̃
T
k (Ai(k) − Āj(k))

TWk

]
= tr(WT

k S(n)
w Wk).

(2.75)

The objective of TDCS is to maximize the class separability in the feature space with the

following criterion:

max J(Wk) =
Ψ

(k)
b

Ψ
(k)
w

=
tr(W T

k S
(k)
b Wk)

tr(W T
k S

(k)
w Wk)

, (k = 1, 2, 3). (2.76)

Since the above objective function consists of three variables, it can be optimized alter-

natively by solving its corresponding generalized eigenvalue decomposition problem while

fixing any two of the three variables, until the change in J(Wk) is less than ε.

2.5.6 Non Negative Matrix Factorization

Besides subspace and tensor methods, face recognition based on Non-negative Matrix

Factorization (NMF) has also been investigated. This section briefly introduce some NMF

based face recognition methods for sake of completeness.

The idea of NMF is to factorize a high dimensional matrix F into two low rank matrices

H and W such that F = W ×H and W and H contain no negative values. In the context

of face recognition, F is usually the collection of training faces where each column is a

image vector. The low rank factor matrix W can be interpreted as the dictionary where

its columns are basis images that can be linearly combined to reconstruct the original

face images. These combination coefficients (weighting) are stored in H which can be

interpreted as the encoding matrix. Since faces are naturally discriminative, therefore,

face images of the same person would have similar encoding while different people would

have very different encoding vector. Utilizing this property, faces can be recognized by

comparing its derived encoding vector with the database. Although there is no closed

form solution for NMF, it can be approximated using a iterative solution (Lee and Seung,

1999).

There are a few variation of NMF algorithm proposed for face recognition. Li et al. (2001)

proposed the Local NMF (LNMF), which aims to improve the locality of the learned
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features by imposing constraints. Wang et al. (2005) proposed the PNMF and FNMF.

They are derived with additional PCA and Fisher LDA criteria respectively and have

shown improved recognition accuracy. For color face recognition, Rajapakse et al. (2004)

proposed the color NMF algorithm. It performs NMF on each color channel separately and

fuses the result in similarity score level for decision. They have shown that the performance

can be improved significantly with color cover gray-scale images in their experiment.

2.6 Summary

This chapter has introduced some background knowledge related to this thesis. It begins

with giving some basic definitions, followed by describing a few subspace methods (i.e.

PCA, LDA, LPP and IDA) and the Nearest Neighbour (NN) classifier with different

metrics such as Euclidean or Cosine distance. Then some definitions related to tensor

are introduced in order to explain the multilinear PCA and MPCA-PS algorithm for face

recognition. Some sparse coding methods including SRC, CESR and RSC are detailed

next. We discuss that both multilinear and sparse coding techniques are more effective

than linear subspace methods in term of dealing with images under large variations and

outliers. Lastly, we introduce some conventional color spaces as well as some existing

color face recognition methods such as DCS, CSN, CID and TDCS which are some of the

current state of the art methods.
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Chapter 3

Local Discriminant Color Space

Many researches on color face recognition have investigated on which color space is more

suitable for face recognition (Yang et al., 2010a,b). The most recent and promising one is

the discriminate color space (DCS) (Yang and Liu, 2008b). As described in Section 2.5.3,

DCS linearly combines R, G and B components of a color image using a set of optimal

coefficients based on Fishers criterion. This space thus provides a theoretically optimal

representation of a color image for recognition purpose, and it has shown outstanding

performance with only one traditional classifier.

The shortcoming for DCS method is that it converts the entire image from RGB into DCS.

This may not provide the best discriminant information for some parts of the color image

since a color image consists of many different colors at various locations. For example,

different lips may be more recognizable by red component, while different eyes may be

more discriminable by blue component. Therefore, different blocks or pixels should be

treated differently instead of as one image in DCS. Based on this motivation, this chapter

proposes two novel color spaces namely the block-wise DCS (BWDCS), and the pixel-level

DCS (PLDCS). They aim to find optimal discriminant color space for each block or each

pixel in RGB images.

In this chapter, four subspace algorithms are considered, and each of them is integrated

with the proposed color spaces. Improvement in their performances is noted on five dif-

ferent databases. The most recent preprocessing pipeline in (Tan and Triggs, 2010) is also

integrated into the proposed system to form a complete color face recognition framework.

The rest of this chapter is organized as follows. The original DCS method is reviewed

briefly in Section II. Section III addresses the pixel-level DCS and Section IV addresses

the block-wise DCS. Experiments are provided in Section V. In Section VI PLDCS is

compared against DCS and Section VII concludes the chapter.
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3.1 Discriminant Color Space

The Discriminant Color Space (DCS) was originally proposed by Yang and Liu (2008b)

for color face recognition. For detailed introduction on DCS, we shall refer the reader to

Section 2.5.3. Nevertheless, some important DCS formulas are redefined in this section for

sake of completeness and referencing purpose. Let A be a color image with a resolution of

H×W consisting of three color components R, G and B. Assume they are represented as

column vectors: A = [R,G,B] ∈ RP×3, where P = H ×W is the number of pixels. The

idea is to convert the image A in RGB space to an image D in a more discriminable space

namely the DCS. Let the image D be:

D = [D1, D2, D3] ∈ R3×3. (3.1)

The conversion is done by the following linear combination:

Dk = x1kR+ x2kG+ x3kB = AXk, (3.2)

where k = 1, 2, 3 and Xk = [x1k, x2k, x3k]
T ∈ R3×1 is the combination coefficients that can

be found via maximizing the following objective function:

J(X) =
XTLbX

XTLwX
, (3.3)

where X = [X1, X2, X3]
T ∈ R3×3, Lb and Lw are the between-class and within-class color-

space scatter matrices. Assumes that we have N training images with C classes, Ti be the

ith class label (i = 1, 2, · · · , C) and Ni be the number of images in Ti. Then Lb and Lw

are defined as:

Lb =

C∑
i=1

(Āi − Ā)T (Āi − Ā), (3.4)

Lw =

C∑
i=1

∑
Aj∈Ti

(Aj − Āi)T (Aj − Āi), (3.5)

where j = 1, 2, · · · , N . Ā and Āi are the global mean and class mean computed as:

Ā =
1

N

N∑
j=1

Aj , (3.6)

Āi =
1

Ni

∑
Aj∈Ti

Aj . (3.7)

The optimal X that maximizes Eq. 3.3 is the generalized eigenvectors corresponding to

the largest eigenvalues λ satisfying the equation:

LbX = λLwX. (3.8)
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3.2 Pixel-level Discriminant Color Space

Unlike DCS which assigns the same coefficients for all pixels, we propose the Pixel-level

Discriminant Color Space (PLDCS) which assigns different coefficients to different pixels,

i.e.:

DK
p = x1kpRp + x2kPGp + x3kpBp, (3.9)

where p = 1, 2, · · · , P . These coefficients are obtained by optimizing the objective function

locally for each pixel. Then we convert each image A in RGB space to image E in PLDCS,

which consists of P different DCS. Image E can be defined as:

E = Dp = [D1
p, D

2
p, D

3
p]. (3.10)

The algorithmic procedure to convert a color image from RGB to PLDCS is stated below:

Algorithm 3.1 Pixel-level Discriminant Color Space

Require: A, RGB training samples

1. Store each color image using color space rearrangement in which R, G and B are

three column vectors, i.e. A = [R,G,B] ∈ RP×3.
2. Pixel extraction. From p = 1, extract the first pixel Ap = [Rp, Gp, Bp] ∈ R1×3.

3. Compute Āp and Āip using (3.6) and (3.7). Then Lbp and Lwp using (3.4) and (3.5).

4. Obtain the local projection matrix Xp by solving (3.8).

5. Convert Ap to Ep using (3.9) and (3.10).

6. Repeat Step 2 for p = p+ 1, until p = P .

return E

PLDCS is locally optimal for each pixel, while DCS is only holistically optimal, in terms of

color face recognition. By allowing different projections at different locations, we expect

the discriminative power of PLDCS will be stronger than DCS.

3.3 Block-wise Discriminant Color Space

Since PLDCS repeats calculations for each single pixel, it is expected to work slower.

The main bottleneck is in the P times DCS calculations. PLDCS may also suffer from

over-fitting problem, since single pixel does not have sufficient discriminative information

to separate different identities. Instead of pixel calculation, we propose the Block-wise

Discriminant Color Space (BWDCS) method which operates on blocks of an image to

overcome the shortcomings stated.
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For an image with resolution H ×W , we can divide the image into small blocks with size

h×w (h < H and w < W ) and convert each block to DCS. For simplicity, we just reduce

the block size to fit in the image edges, but other handling rules may also be applied,

for example zero-padding or circulating pixels. Clearly, BWDCS is a generalization of

PLDCS and DCS. If the block size is defined as H × W , then it is same as the DCS

method. Similarly, if the block size is defined as 1 × 1, then it is same as the PLDCS

method. The algorithmic procedure to convert a color image from RGB to BWDCS is as

follows:

Algorithm 3.2 Block-wise Discriminant Color Space

Require: A, RGB training samples

1. Store each color image using image matrix rearrangement in which R, G and B are

three matrices, i.e. A = [R,G,B] ∈ RH×W×3.
2. Extract h rows and w columns as a block (or sub-image), i.e. Â = [R̂, Ĝ, B̂] ∈ Rh×w×3.
3. Rearrange Â using color space rearrangement by converting R̂, Ĝ and B̂ to three

augmented vectors Â = [R̂, Ĝ, B̂] ∈ R(h∗w)×3.

4. Compute Â and Âi using (3.6) and (3.7). Then L̂b and L̂w using (3.4) and (3.5).

5. Obtain the local projection matrix X̂ by solving (3.8).

6. Convert Â to D̂ using (3.1) and (3.2).

7. Repeat Step 2 for the next unconverted block, until every block is converted.

return D̂

BWDCS has two main advantages. Firstly, it runs faster with the increase of block size.

In terms of color space conversion, PLDCS has a complexity of O(H × W ) while the

complexity of BWDCS is O(H×Wh×w ). Secondly, each calculation of BWDCS makes use of

information from the adjacent pixels which are always correlated. Thus, the performance

of BWDCS is expected to be more robust.

3.4 Experiments

In this section, we have evaluated our proposed color spaces by integrating them with four

subspace methods respectively. We have also compared the performance against other

color spaces as well as gray-scale (which is the origin of these four methods). This section

presents details of the experiments in terms of performance statistic, datasets, integration

methods and results.
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3.4.1 Evaluation Protocol and Performance Analysis

Following the protocol in Biometrics (2006), we divide face recognition problems into two

types: face identification problem and face verification problem. In our experiments, both

problems are evaluated. The evaluation protocol used in this chapter is as follows. Each

database is divided into three mutually exclusive sets: training set, gallery set and probe

set. Training is done on the training set while testing is done on both gallery and probe

sets. For identification problems, the probe images are matched to all of the gallery images

to find the match. For verification problems, we consider accepting or rejecting the probe

against the claimed gallery image. For each type of problem, the performance is calculated

in a different manner. For identification problems, we report the rank-one identification

rate on the Cumulative Match Characteristics (CMC) curve. For the verification problems,

we report the face verification rate (FVR) at 0.001 false accept rate (FAR) on the Receiver

operating characteristic (ROC) curve.

3.4.2 Databases and Experimental Setup

To ensure that our experimental results are unbiased, we extensively evaluate them on

five color face databases.

• The Aberdeen database from Psychological Image Collection at Stirling (PICS).

(Hancock, 2004)

• Georgia Tech face database (GT). (Nefian, 2007)

• AR face database (AR). (Martinez and Benavente, 1998)

• The Facial Recognition Technology (FERET). (J. Phillips, 2000)

• Face Recognition Grand Challenge ver. 2 exp. 4 (FRGC-204) (Phillips et al., 2005)

Images in PICS (Hancock, 2004) are collected for research in Psychology, however, it is

also suitable for the face recognition community given its variations in illumination, facial

expression and pose. We select a subset of the database that consists of 29 people each

having 9 images. Since this is a small database, we formulate the test as face identification

problem: i.e., 4 images per person are randomly chosen for training as well as being

the gallery images and the remaining 5 for probe images. To ensure that result is not

depending on specific training/testing samples, the process is repeated 10 times and the

average rank-one identification rate is reported with the standard deviation.
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Figure 3.1: Example images from the four databases used in our experiments.
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GT (Nefian, 2007) is a database often used for face recognition because of its variations

in facial expression/details and pose. The database consists of 50 people each having

15 images. We test them as a face identification problem: i.e., using all images of 25

people randomly chosen for training and for the other 25 people, 8 images per person are

randomly chosen as gallery and remaining images for probe, such that the subjects for

testing are never been seen during training. By repeating 10 times, the average rank-one

identification rate is reported with the standard deviation.

AR (Martinez and Benavente, 1998) is a publicly available face database, widely used for

evaluating face identification problems. This database contains over 4000 images which

are captured in two sessions with different facial expressions, illumination conditions and

occlusions. We use a subset of all unoccluded images from the first 50 males and 50

females. As a result, a total of 1400 images from two sessions (14 images per subject)

are involved in our experiment. We formulate a time-delayed face identification problem

using images from session one for training and images from session two for testing. Note

that the size of this database is much larger than PICS and GT. Therefore, this allows us

to resemble a large-scale identification situation.

For FERET (J. Phillips, 2000), we are using the color version (though some images are

still in gray-scale) which was released in year 2003. It was the de-facto standard dataset to

evaluate face recognition systems at that time because of the strictly controlled parameters

and support from US government. The database provides standard subsets namely fa, fb,

dup1 and dup2. We select only the color images with eyes/lip coordinates provided,

resulting in a total of 2419 images (808+806+593+212), from the four sets. We then

construct the training set by selecting from fa the first 400 images/subjects that are not

appearing in dup2 and then combining with the images of the corresponding subjects in

fb and dup1 , resulting in 1013 images (400fa + 399fb + 214dup1). The rest of the 408

images from fa serve as gallery, the rest of 407 images from fb serve as one probe set

and all 212 images from dup2 serve as another probe set. This design allows training on

images that vary in facial expression and time delay up to 1.5 years, while testing on facial

expression effect (fb) and aging effect of longer than 1.5 years (dup2). Subjects in training

and testing sets are mutually exclusive. We report face verification rates on the two tests

respectively.

FRGC version 2 (Phillips et al., 2005) having more than 50000 records is constructed

by the same organization as FERET, and is becoming the next major challenge for face

recognition systems. We consider only the most challenging protocol, i.e. the experiment 4

ROC-III. This subset consists of controlled gallery images and uncontrolled probe images

with pairs that is one semester different in collection time. This large-scaled dataset
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exhibits large intrapersonal variations and some people look very similar due to strong

illumination.

Some example images used in our experiments from each database are shown in Figure

3.1 as for ready reference. A summary is given in Table 3.1.

Table 3.1: Databases Summary

Name Problem Training Gallery Probe

PICS Seen 116 - 145

Identification

GT Unseen 375 200 175

Identification

AR Large-scale 700 - 700

Seen Identification

FERET Unseen 1013 408 407 (fb)

Verification 212 (dup2)

FRGC-204 Large-scale

Partially-seen 12776 16028 8014

Verification

3.4.3 System Pipeline

The face recognition system used in our experiment is detailed in this section. The major

steps are image preprocessing, color space conversion, feature extraction and similarity

score calculation as illustrated in Figure 3.2.

Preprocessing is done as following. Firstly, the face region is cropped out and resized

to resolution of 32× 32 after eyes and lip aligned to same position. We follow a tradition

alignment procedure which first manually locates the two eyes and the lip on the image,

then transits and scales the image such that these three identified points are aligned to

the same pixel. Subspace methods usually have some tolerance to facial misalignment,

however their performance may be greatly affected in case of significant misalignment.

Nevertheless, the current state of art face detection algorithms are proven to be reasonably

accurate and robust. Since the focus of this thesis is on the recognition stage rather than

the detection stage, in this work we assume that the two eyes and lip have been detected

on the face image.
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Figure 3.2: The face recognition system used in our experiment.

After facial alignment, we apply the preprocessing chain in (Tan and Triggs, 2010) on

each of the color image components (R,G and B) separately, i.e. gamma correction, DoG

filtering and contrast equalization to reduce illumination effect and enhance facial feature.

The preprocessing parameters are tuned manually to the best for gray-scale images and

recorded in Table 3.2. Note that the default parameters used by Tan and Triggs (2010)

is not used here since they are optimized for descriptor methods rather than for subspace

methods.

Color spaces that we have compared include the proposed PLDCS and BWDCS with

DCS, RGB as well as gray-scale. The color normalization step is done similarly to DCS by

Eq. 2.61, to avoid magnitude dominance in one color component over the others, which

is explained in Section 2.5.3. Note that we apply the normalization before and after color

space conversion as we find that it increases the performance.

Feature extraction methods that we have considered are:

• whitened Principal Component Analysis (wPCA) (Deng et al., 2010a)

• regularized Linear Discriminant Analysis (rLDA) (Lu et al., 2005)

• supervised Locality Preserving Projection (sLPP) (Zheng et al., 2006)

• Intrinsic Discriminant Analysis (IDA) (Wang and Wu, 2010)

The main reason of choosing these methods is because we are extending the work of Yang
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and Liu (2008b) where DCS was tested with appearance-based subspace method, thus

we are testing on methods of the same type. Further, we want to test on methods that

are stable and well-developed like PCA and LDA, but recent enough to compete with the

state of the art. For each method, parameters are tuned manually to the best for gray-

scale images and recorded in Table 3.2. Note that the parameter w of sLPP is a constant

number added to the weight matrix. The reason is that when we construct the weighted

graph for color space that allows negative values such as DCS, PLDCS and BWDCS, some

weights become negative. However, constructing this graph using the original RGB image

or Euclidean distance decreases the performance. We find that simply adding a constant

number w to the weights increases the performance, thus we introduce this parameter.

More detail of these subspace methods is given in Section 2.2. In order to apply these

methods with color images, the basic image level fusion strategy is used which stack the

color components to form an augmented color image vector.

Table 3.2: Method parameters.

Method Parameter PICS GT AR FERET FRGC-204

Gamma Correction γ 0.9 0.9 1 0.2 0.5

DoG filitering σ0 0 0 0.4 0.4 0.8

σ1 0 0 0 -1 -3

Constrast equalization α 0.1 0.1 0.1 0.1 0.1

τ 1 2 10 3 -10

wPCA Features 35 250 550 700 1000

rLDA λ 0.5 0.5 5e-3 10 5

Features 28 24 99 385 220

sLPP Dist. Metric cos cos cos cos cos

PCA Dim. 35 250 550 700 1000

w 0 0 0 1 100

Features 18 35 200 335 220

IDA λ 50 100 100 0.1 10

Features 28 24 99 390 221

Feature Vector Similarity Metric L2 L2 cos cos cos

Similarity score is calculated either by Euclidean distance or Cosine similarity depends

on which measurement gives higher performance on gray-scale image. The score is then

normalized using z-score (Jain et al., 2005). Lastly, the similarity matrix is evaluated

using the specific performance statistic described in Section 3.4.1.
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3.4.4 Experimental Results

The experimental results are presented in Table 3.3. For PICS and GT, the average rank

one identification rate r is reported along with the standard deviation s in the format of

r±s. For AR, we report the rank one identification rate. For FERET and FRGC, the face

verification rates (FVR) at 0.1% false accept rate (FAR) is reported. We have evaluated

PLDCS and BWDCS with various square block size (b×b), but in order to make it clearer,

just the best ones are shown with the block size bracketed (b). Note that the color space

for b = 1 is actually PLDCS. Results for various block sizes are shown separately in Table

3.4.

Figure 3.3: CMC/ROC curves for best performing method in each database.

All the methods considered were originally proposed and evaluated with the gray-scale
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Table 3.3: Experiment results for gray-scale, RGB, DCS and the proposed BWDCS. For

block size of BWDCS, only square block is considered. The optimal block size is in bracket.

Original RGB DCS Proposed

PICS database

wPCA 71.8% ± 1.2 72.9% ± 1.3 83.4% ± 0.8 90.8% ± 0.6 (1)

rLDA 86.7% ± 0.7 88.9% ± 0.5 95.7% ± 0.4 97.4% ± 0.5 (1)

sLPP 77.7% ± 1.1 78.7% ± 1.2 86.9% ± 1.0 93.8% ± 1.0 (1)

IDA 86.3% ± 0.9 87.9% ± 0.5 95.4% ± 0.5 97.0% ± 0.5 (2)

GT database

wPCA 84.4% ± 1.0 85.2% ± 1.0 90.1% ± 0.6 95.0% ± 0.5 (1)

rLDA 87.5% ± 1.0 90.6% ± 0.8 94.6% ± 0.5 95.7% ± 0.4 (1)

sLPP 89.7% ± 0.8 90.6% ± 0.7 94.5% ± 0.7 96.9% ± 0.6 (2)

IDA 91.6% ± 0.8 92.3% ± 0.7 95.0% ± 0.5 96.1% ± 0.3 (2)

AR database

wPCA 50.6% 74.0% 74.5% 77.0% (6)

rLDA 80.5% 86.6% 87.6% 90.3% (2)

sLPP 80.3% 90.1% 91.6% 93.0% (1)

IDA 79.0% 80.4% 81.0% 82.0% (6)

FERET (fa-fb set)

wPCA 85.1% 88.3% 90.1% 93.1% (4)

rLDA 90.5% 92.0% 93.9% 94.7% (4)

sLPP 85.5% 89.9% 93.7% 95.3% (2)

IDA 88.2% 91.5% 95.7% 96.4% (2)

FERET (fa-dup2 set)

wPCA 35.2% 39.8% 59.6% 66.2% (2)

rLDA 42.9% 50.5% 71.5% 73.7% (2)

sLPP 37.1% 43.4% 59.8% 66.8% (8)

IDA 34.1% 40.7% 70.6% 71.7% (16)

FRGC v2 exp4

wPCA 18.2% 20.2% 21.5% 23.3% (6)

rLDA 56.5% 75.7% 76.5% 78.2% (16)

sLPP 56.2% 73.0% 74.0% 75.9% (6)

IDA 37.9% 73.5% 74.4% 75.5% (16)
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Table 3.4: Experiment results for BWDCS with various block size.

1×1 2×2 4×4 6×6 8×8 16×16

PICS database

wPCA 90.8%±0.6 90.6%±0.6 88.1%±1.0 86.9%±0.8 84.8%±0.8 84.8%±0.8

rLDA 97.4%±0.4 97.4%±0.4 97.0%±0.5 96.1%±0.4 96.4%±0.4 95.9%±0.4

sLPP 93.8%±0.9 92.7%±1.0 91.3%±0.8 89.7%±0.8 89.0%±0.8 89.6%±1.0

IDA 96.8%±0.5 97.0%±0.5 96.6%±0.5 95.8%±0.4 96.3%±0.4 95.8%±0.5

GT database

wPCA 95.0%±0.5 95.0%±0.6 94.7%±0.6 93.4%±0.6 94.1%±0.7 91.4%±0.8

rLDA 95.7%±0.4 95.5%±0.4 95.2%±0.5 94.6%±0.5 95.6%±0.5 94.3%±0.6

sLPP 96.6%±0.6 96.9%±0.4 96.1%±0.4 95.5%±0.5 96.3%±0.4 95.3%±0.5

IDA 96.0%±0.3 96.1%±0.3 95.8%±0.4 95.1%±0.5 95.8%±0.5 94.9%±0.5

AR database

wPCA 76.3% 76.3% 76.3% 77.0% 76.3% 75.7%

rLDA 90.1% 90.3% 90.1% 90.3% 90.1% 89.0%

sLPP 93.0% 92.4% 92.6% 92.3% 92.0% 92.7%

IDA 81.8% 81.4% 81.0% 82.0% 81.4% 80.3%

FERET (fa-fb set)

wPCA 92.3% 93.0% 93.1% 92.0% 91.3% 92.5%

rLDA 94.4% 94.6% 94.7% 93.7% 94.1% 94.3%

sLPP 94.6% 95.3% 94.3% 94.9% 94.2% 93.7%

IDA 96.1% 96.4% 96.1% 95.5% 95.8% 95.8%

FERET (fa-dup2 set)

wPCA 64.2% 66.2% 64.5% 58.5% 60.3% 59.7%

rLDA 72.9% 73.7% 72.5% 70.8% 73.5% 71.3%

sLPP 63.4% 62.2% 62.2% 58.9% 66.8% 60.4%

IDA 69.6% 67.8% 70.2% 66.7% 70.8% 71.7%

FRGC v2 exp4

wPCA 22.5% 22.4% 22.5% 23.3% 22.2% 22.5%

rLDA 77.3% 77.7% 77.7% 77.7% 77.5% 78.2%

sLPP 75.7% 75.3% 75.6% 75.9% 75.2% 75.5%

IDA 74.3% 74.0% 74.4% 74.0% 74.6% 75.5%
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images in their published paper. By integrating with RGB color space, the performance is

increased by up to 36% (i.e. IDA on FRGC). The performance can be further increased by

converting to DCS with a margin of up to 30% (i.e. IDA on FERET dup2). Our proposed

color space further increases the performance in all cases, with about 7% improvement in

the best case (i.e. wPCA and sLPP on both PICS and FERET dup2). While comparing

with the original methods in gray-scale, our proposed color space boosts the performance

by 17% on average. Moreover, the proposed color space is more stable since it has smaller

standard deviation for the ten experiments repeated on PICS and GT.

Notice in Table 3.3 that, PLDCS sometimes performs better than BWDCS. This is because

PLDCS optimizes the Fisher’s criterion on each pixel where as only each block is optimized

in BWDCS. Nevertheless, the fact that PLDCS operates on pixel reduces its robustness

when there are large variations where a single pixel may not provide sufficient discrimi-

native information. Therefore, one can see from the table that PLDCS performs the best

on smaller datasets (i.e. PICS and GT) while larger blocks are usually required in more

challenging datasets such as AR, FERET and FRGC to achieve the best performance.

From Table 3.4, one can see that the performance varies with different block sizes (about

2% on average). Similar to selecting parameters for other subspace methods, there is no

scientific way to select the best block size in general situation. In real world application,

these parameters are often determined by cross validation. However, the performance of

even the worst block size is still comparable to DCS in our experiment.

The relative CMC/ROC curves for the best performing method in each database are

presented in Figure 3.3. It is clear that for identification problem on PICS and GT,

our proposed color space reaches the top rate at lower rank and outperforms DCS. For

verification problems on FERET and FRGC, our proposed color space is on top of DCS

over the entire curve. In all cases, our proposed color space is superior to gray-scale (in

which these methods originally developed for).

3.5 An Investigation on Holistic and Local DCS

DCS makes use of holistic information while we generalize it to use different scales of local

information. As a result, optimal projections can be obtained to suit each local area. In

addition, the correlation between each color components can be further reduced which is

shown to be an important factor for performance increment (Yang et al., 2010b). Some

color spaces are illustrated in Figure 3.4. For DCS, PLDCS and BWDCS, we scale the
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pixel values of each color component to image domain [0,255]. One can see that PLDCS

is visually very different to DCS. For example, the mouth area is forced to be in yellow

color in DCS, while the local optimal color is actually near blue and green in PLDCS.

Notice in Figure 3.4 that the images for PLDCS and BWDCS is harder to recognize

by human, but the computer recognition accuracy is increased with the transformation.

Understanding of the human visual perception system would often inspire the development

of computer vision algorithms as they are common in many aspect, however what is

perceived as discriminative (i.e. the discriminant information or cue) by human visual

system may not hold for machine vision. Human visual system is optimized for many

more tasks such as navigation, obstacle avoidance, etc whereas the algorithms proposed

in this thesis have been optimized to discriminate only human faces by transforming them

to a more discriminant color space. This color space may not be so discriminant when it

comes to other tasks.

Figure 3.4: Illustration of R, G, B color component images and the three DCS component

images generated by the proposed method.

The projection vector associated with the largest Eigen value on FERET training data

is further investigated. Since, the image resolution is 32 × 32, there are 1024 PLDCS

projection vectors. Angles between the DCS projection vector to each of these PLDCS

vectors are calculated. The summary of these 1024 angle differences are shown using box

plot in Figure 3.5 (left). All 1024 angle differences are then scaled from degree domain

[0, 90] to image domain [0, 255] and shown as a gray-scale image in Figure 3.5 (right). It
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is important to note that this figure is not a transform of a facial image. Black color (0)

means minimum angle difference (0.40 degrees) while white color (255) means maximum

angle difference (89.99 degrees). Each region on a face having similar color is also having

similar projection vector, while the greatest difference is at around the lip, eyes and edges,

thus making the image look like a face. DCS is based on Fisher Criterion which maximizes

class separation. Nevertheless, according to our illustration, every pixel has its own optimal

local projection vector and most of them (obtained by PLDCS) are different to the holistic

projection vector obtained by DCS method, with a 41 degrees difference on average. The

fact that DCS method uses one DCS projection for every pixel diminishes its performance.

Figure 3.5: Angle differences between DCS and PLDCS projection vectors. Left: box plot

for the differences. Right: gray-scale image obtained by scaling the differences to (0,255).

In a more theoretical perspective, Yang et al. (2010b) shows that color spaces that have

Double Zero Sum (DZS) property is better for face recognition. As explained in Section

2.5.2, a color space is DZS if two rows of its transformation matrix have zero sums. DZS

is important because color spaces that are DZS have lower correlation between their color

components. For example, the three color components of RGB is highly correlated and

therefore is not a good color space for recognition. DCS is a near DZS color space hence

it has low inter-component correlation and high discrimination power. PLDCS has DZS

property for each single pixels, which further reduces the inter-component correlations.

Table 3.5 shows the average inter-component correlation for the training images in FRGC-

204 and FERET. Given K color images Ai = [A1
i , A

2
i , A

3
i ](i = 1, · · · ,K), where A1A2A3

are three color components. The correlation matrix is calculated first from each individual

image as:

ρx,yi =
E[(Axi − E(Axi )(Ayi − E(Ayi )

T ]

σxi σ
y
i

, (x, y = 1, 2, 3, x 6= y). (3.11)

Since ρx,yi = ρy,xi and the sign does not affect the correlation magnitude, the average
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correlation R is calculated by averaging across all images and taking absolute value, i.e.

R =
1

K

K∑
i=1

(
|ρ1,2i |+ |ρ

1,3
i |+ |ρ

2,2
i |

3
). (3.12)

R is ranged from zero to one. Zero means no correlation at all while one means perfectly

correlated. We can see from Table 3.5 that image in PLDCS has much lower correlation.

Table 3.5: Average Inter-component Correlation.

FRGC-204 FERET

RGB 0.9283 0.9332

DCS 0.2992 0.3795

PLDCS 0.1669 0.0828

To conclude, different locations of a face have different optimal color space for classification.

The improvement achieved by PLDCS or BWDCS is mostly due to the reason that it

captures the optimal space for each pixel or block, and it further reduces correlation

between color components.

3.6 Summary

We have made the following contributions in this chapter. We propose two new color

spaces for face recognition. We incorporate some promising subspace algorithms that are

originally proposed and evaluated on gray images with our new color spaces. An effective

preprocessing pipeline proposed recently is integrated in our recognition framework to

work along with color images. We designed repeatable experimental setups that covered

many aspects of face recognition problems including seen and unseen identification as well

as unseen and partially-seen verification. By improving DCS, two new color spaces are pro-

posed for color face recognition namely PLDCS and BWDCS. Experimental results show

that, for all subspace methods considered, the performances are improved significantly

in the following order: gray-scale, RGB, DCS and our proposed PLDCS/BWDCS. The

improvement is due to the fact that local DCS allow locally optimal color space which

is important for face recognition. Locally derived DCS also has lower inter-component

correlation which is one of the factor for the improved performance. Since many recently

proposed methods are still being developed using gray-scale images, the state of the art

can be advanced by using the color spaces proposed in this work.

A shortcoming can be observed on our proposed color spaces. Both PLDCS and BWDCS

48



are derived from RGB linearly and consist of three color components only. In fact, comple-

mentary information can be found on more than three color components across multiple

linear and non-linear color spaces. This problem will be further investigated and a novel

color model for face recognition is proposed in Chapter 4.
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Chapter 4

Hybrid Color Model

Color has been proven to have the capability of increasing face recognition accuracy. As

stated multiple times in this thesis, main research effort on color face recognition has been

devoted to constructing a more discriminative color space. Starting from transformed

color models to statistically learned color models, all have shown improving performance

with different scales. In summary, the Color FisherFace (CFF) model (Thomas et al.,

2008) concatenates the R, G and B components to one vector in image level and then

applies LDA on the augmented vector. Shih and Liu (2006) proposed a hybrid color space

YQCr which outperforms RGB. Yang et al. (2010a) proposed a color space normalization

technique which can enhance the discriminative power of color spaces. Their experiments

show that the normalized RGB (nRGB) and normalized XYZ (nXYZ) have achieved signif-

icant performance improvement. Liu (2008) derived three statistical color spaces namely

the Uncorrelated Color Space (UCS), Discriminant Color Space (DCS) and Independent

Color Space (ICS). UCS aims to de-correlate RGB based on PCA. DCS aims to learn a

discriminant space using the class label based on LDA. ICS aims to separate RGB into

independent source images based on Independent Component Analysis (ICA). Yang and

Liu (2008a) developed the extended General Color Image Discriminant (eGCID) model to

iteratively optimize both the color transformation and feature extraction specific to LDA.

Jing et al. (2010) proposed a color model to extract uncorrelated features from each of the

RGB component images separately based on Holistic Orthogonal Analysis (HOA). HOA

features are combined in feature level for face recognition. Some of these methods, which

are more representative, are introduced in detail in Section 2.5.

We distinguish color models from color spaces based on whether the method poses re-

striction on recognition procedure or not. The CFF, eGCID and HOA are regarded as

color models. The eGCID involves LDA feature extraction in constructing the color space,

while the CFF and HOA restricts to LDA when deriving color features. Other methods

are color spaces since their proposed algorithms only generate a new color space and it is

up to the user to choose the recognition methods (e.g. what feature to use, when to fuse

the colors, etc.), although the underlying recognition algorithm used in their experiments

is still based on LDA.
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As we can see, most of the state-of-the-art color face recognition methods use at most

three color components transformed only linearly from RGB. However, using only three

color components may not capture sufficient information to solve complex face recognition

problems. In this chapter, we propose a novel color model namely Multiple Color Fusion

(MCF) model to utilize more than three color components across both linear and non-linear

color spaces. After reducing the number of available colors by correlation analysis, a greedy

search based algorithm is developed to find the optimal color combination. Decision level

fusion is designed to overcome the high dimensionality problem as well as to utilize most

of the information from different colors. The effectiveness of MCF is evaluated on FRGC

v2 experiment 4 (Phillips et al., 2005) and AR database (Martinez and Benavente, 1998),

for large-scale face verification and identification problems. Experimental results show

that the proposed MCF model outperforms all the state-of-the-art color face recognition

algorithms considered.

The rest of the chapter is organized as follows. Section 4.1 explains the MCF model

and presents the corresponding algorithms. Experimental results and time complexity are

reported next in Section 4.2. Section 4.3 demonstrates that different colors provide quite

different information for face recognition, justifying the motivation of MCF model and a

summary is given in Section 4.4.

4.1 Multiple Color Fusion model

The proposed method includes four steps. First, for highly correlated color components,

we keep one and remove the others. Then, a simple greedy search method is applied to

search for the optimal color combination set. Next, for each individual color, we extract

features and compute the similarity scores. And finally, we fuse the similarity scores from

all colors. In this section, we detail each step of the proposed algorithm with justification.

4.1.1 Stage 1: Correlation

To develop the MCF model, we use the following thirteen color spaces which involve 39
color components. Most of them are introduced in Section 2.5:

• RGB (fundamental color space)

• I1I2I3 ((decorrelated RGB)

• YIQ, YUV and YCbCr (NTSC video transmission color spaces)
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• XYZ, L∗a∗b∗, L∗u∗v∗ and L∗c∗h∗ (CIE uniform color spaces )

• HSL (human perceptual color space)

• DCS (statistic learning color space)

• nRGB and nXYZ (normalized RGB color spaces)

For these 39 color components, some are identical, for example the Y components from

YIQ, YUV and YCbCr. After removing duplicated color components, a color correlation

matrix is computed using the training samples. For highly correlated colors (> 0.99), only

one of them is kept and the others are removed.

4.1.2 Stage 2: Greedy Search

Assumes that n(< 39) color component candidates are left for selection after first stage.

We design a greedy search approach to find the best color combination, which is detailed

as follows.

Our selection criterion is based on recognition rate. Let A = [A1, A2, · · · , AN ] be N

training samples. First, we have to divide the training data into two subsets, i.e. the

learning set L = [L1, L2, · · · , LNl
] and validation set V = [V1, V2, · · · , VNv ], where A =

L ∪ V and N = Nl + Nv. The learning set is used for color-feature extraction, while

the validation set is used for color-performance computation. This division can be done

and repeated in a similar fashion to the cross validation technique for improving the

generalization capability of the resulting chosen optimal color set.

Next, assumes that each sample image from the two subsets consists of d pixels and n

color component candidates, which can be denoted by

Li = [l1i , l
2
i , · · · , lni ] ∈ Rd×n (i = 1, 2, · · · , Nl),

Vj = [v1j , v
2
j , · · · , vnj ] ∈ Rd×n (j = 1, 2, · · · , Nv),

(4.1)

where lki ∈ Rd and vkj ∈ Rd (for k = 1, 2, · · · , n) denote the k-th color component candidate

of the i-th image in learning set and the j-th image in the validation set, respectively. They

are both organized as d-dimensional column vectors. In order to extract LDA feature, the

projection matrices W k for each color candidate is first learned from the learning set. It

can be computed directly with respect to each color components of the learning samples,

i.e.

W k = LDA(Lk), (4.2)

where Lk = [lk1 , l
k
2 , · · · , lkNl

] ∈ Rd×Nl is a matrix containing all learning samples with

the k-th color component and LDA : Rd×Nl → Rd×d̃ is the function that computes the
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FisherFace projection matrix (see Eq. 2.10). In a similar fashion to Lk, we can define

V k ∈ Rd×Nv as a matrix containing all validation samples with the k-th color component.

Then. the following projections can be performed

L̃k = W T
k L

k,

Ṽ k = W T
k V

k.
(4.3)

In order to compute the recognition rate for each color candidate, we first compute their

decision scores, then the Nearest Neighbor (NN) classifier is used to classify each sample

in validation set to the learning set, color by color. As described in Section 2.2.4, the

decision score can be computed by different distance metrics such as Euclidean or Cosine

distance. Let this distance function be dist : Rd̃×Rd̃ → R, then the decision score matrix

Dk ∈ RNl×Nv for the k-th color candidate can be computed as

Dk
(i,j) = dist(lki , v

k
j ), (4.4)

where Dk
(i,j) indexes to (i, j) entry of the matrix Dk. An array of correctness denoted by

rk ∈ RNv can be computed as

rkj =

{
1, if label(lkm) = label(vkj )

0, otherwise
, (4.5)

where m = argmin
i

(Dk
(i,j)) is the index of the nearest neighbor of vkj . The performance

for the k-th color candidate denoted by pk1 is then computed as

pk1 =

∑Nv
j (rkj )

Nv
(4.6)

Let k1 be the index of the first chosen color candidate. It is set as follows: k1 = argmax
k

pk.

The index of second color k2 is chosen if it results in the highest performance after fusing

with the first color in decision score level based on sum rule (Ross and Jain, 2003), i.e.

Dk1
(i,j) + Dk2

(i,j), and so on. The index of c-th color kc is chosen if the fused decision score

matrix, i.e.

Dk1
(i,j) +Dk2

(i,j) + · · ·+Dkc
(i,j) (4.7)

results in the highest performance. Note that the z-score normalization (Jain et al., 2005) is

applied before fusion to balance the score distribution. This normalization minus the mean

and divides the standard deviation of the decision scores for each validation sample. It is

omitted from the formulas above for sake of simplicity. Finally, the selection procedures

stop at the (C + 1)-th iteration when the performance decreases, i.e. pC+1 < pC . As a

result, C colors are chosen to be the optimal color set. Since the same color is not allowed

to be fused twice, the computation complexity is n(n+ 1)/2.
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4.1.3 Remarks

The MCF model described above is used in our experiment in this work, however it can

be applied for more general cases. For example, the original color space candidates can be

chosen according to domain knowledge and the threshold for defining high correlation can

be set differently. Also, the feature extractor, similarity distance metric, score normaliza-

tion technique, classifiers and performance statistic can be changed to preferred choices.

In real-world applications, these parameters are usually tuned by performing k-fold cross

validation.

Here we give some justification for each step of our algorithm. We use correlation as a

selection criterion at the first step because highly correlated color components encode very

similar information and noise. Fusing two highly correlated color components has limited

gain on benefit whereas noise will be emphasized. The low cost correlation based selection

criterion we used at first stage not only eliminates this problem, but also speed up the

subsequent process.

For the combination search in step two, it is a NP-hard problem naturally. An exhaustive

search for all possible combinations has O(2n) complexity. Therefore a greedy search

approach is desired for simplicity and reliability. Although global optimal solution is

not guaranteed, sub-optimal solution can always be derived, which is usually sufficient to

improve recognition performance. More importantly, as the same color is not allowed to

be fused twice, the complexity of our proposed searching algorithm is only O(n(n+ 1)/2).

In terms of information fusion, the approach we adopted is at decision level. This ap-

proach not only overcomes the high dimensionality problem, but also utilizes most of the

information from different colors.

4.1.4 Algorithms

Algorithm 4.1 summarizes the proposed MCF model. Algorithm 4.2, which is also used

in our experiment, presents a possible application to face verification problem. Algorithm

4.2 can be modified easily for identification problem, by replacing step 9 to 13 by the NN

classifier and return the identity of the matched image.

54



Algorithm 4.1 MCF - Training

Require: A, RGB training samples

Ensure: -

{Tindex}, the chosen color transformations

{Fi}, the feature extractor for each chosen colors

1: T ()← Construct multiple color space transformer.

2: A← T (A): Convert A to multiple color spaces.

3: {train , test} ← Split {A} into two halves.

4: for all individual color i in {train} do

5: Fi()← Construct the feature extractor.

6: Bi ← Fi(test): Extract features.

7: end for

8: index← {}
9: d← 1

10: repeat

11: chosen = { Bindex }
12: remain = {B} − {Bindex}
13: for all individual color i in remain do

14: Fuses chosen and remaini in decision score level

15: Evaluate the performance of the fused scores

16: end for

17: Add to index the best performing color i after fusion

18: d← the performance difference after fuses color i

19: until (no more remaining color) OR (d < 0)

20: A← Tindex(A): Transform A to the chosen colors

21: for all individual color i in {A} do

22: Fi()← Construct the feature extractor.

23: end for

24: return {Tindex} and {Fi}
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Algorithm 4.2 MCF - Verification

Require: -

{Fi}, Feature extractor for each chosen colors

g, RGB a Gallery Images

x, a RGB Query Image

th, Acceptance threshold

T (), The chosen color transformers

Ensure: Accept or reject that g and x is the same person

1: g ← T (g): Transform g to the chosen multiple colors

2: x← T (x): Transform x to the chosen multiple colors

3: for all individual color i do

4: Hi ← Fi(G): Extract features.

5: yi ← Fi(x): Extract features.

6: Si ← Compute decision scores for the pair (Hi, yi)

7: end for

8: Normalize and fuse all scores Si

9: if The fused score > th then

10: return ACCEPT

11: else

12: return REJECT

13: end if
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4.2 Experiments

In our experiments, both face identification and verification problems are evaluated. For

identification problems, the test images are matched to all of the training images to find

the match. For verification problems, we consider accepting or rejecting the probe against

the claimed gallery image. In this section, we evaluate the proposed MCF under both

applications.

4.2.1 Face Verification

The face verification problem is evaluated using the Face Recognition Grand Challenge

version 2 (FRGC2) (Phillips et al., 2005). FRGC2 is a publicly available, large-scale

database, widely used to test face verification algorithms. According to FRGC2 standard

experiments setting, experiment 4 is the most challenging test containing 12776 training

images, 16028 controlled target images and 8014 uncontrolled query images. Three Re-

ceiver Operating Characteristic (ROC) curves (ROC-I, ROC-II and ROC-III) are used by

FRGC2 as the performance statistics. We considered the most difficult ROC-III which

only considers target/query pairs that the query is taken in a year later than the target.

All the face images are cropped and resized to 32×32 with eyes and mouths aligned to the

same position using the coordinates provided by FRGC2. Some sample images are shown

in Figure 4.1. The experiment setup and evaluation protocol follow exactly the FRGC2

standard to ensure fair and comparable experiment results. The face verification rate

(FVR) at 0.001 false accept rate (FAR) on the Receiver operating characteristic (ROC)

curve is reported.

Figure 4.1: Sample images from FRGC2.

The MCF model is applied on the database as described in Section 4.1. In stage one, it

removes 20 of the 39 colors which are either identical or highly correlated to the remanning.

The remaining 19 colors are RGB, YIQ, nG nB (the G and B competents in nRGB), nY

(the Y component in nXYZ), D1D2D3 (the three components in DCS), HS (from HSL),

a∗b∗ (from L∗a∗b∗), v∗ (from L∗u∗v∗) and c∗h∗ (from L∗c∗h∗). In stage two, 12 colors are

finally chosen as the optimal color set in this order: Y, nY, a∗, D2, I, R, nG, nB, G, H, B

and D1. This 12-color MCF model is compared to 9 state-of-the-art 3-color spaces/models
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as introduced previously: CFF , YQCr , nRGB , nXYZ , UCS , DCS, ICS, eGCID and

HOA . The same feature extraction procedure for each space/model is implemented as in

their published references. In particular, after converting to the specific color space, the

dimension is reduced using PCA to 1000 and then 220 LDA features are extracted. Image

level fusion is used for CFF, YQCr, RGB-NI, nXYZ, UCS, DCS, ICS and CID, feature

level fusion is used for HOA and decision level fusion is used by the proposed MCF model.

Before image level fusion, each color component image is normalized to zero mean and

unit standard deviation in order to avoid the negative effect of magnitude dominance of

one component over the others.

Figure 4.2: The ROC-III curve for each method compared on FRGC2 experiment 4.

Figure 4.2 shows the ROC-III curve for different methods compared on FRGC2 experiment

4. The CFF model applying LDA directly on the image-level-fused RGB image serves as

a good benchmark baseline for color face recognition. It is clear to see that the proposed

MCF model outperforms all other methods in comparison. Table 4.1 further reports

the corresponding Face Verification Rates (FVR) at 0.1% False Accept Rate (FAR). The

proposed model achieves 80%, outperforming the second best method nXYZ by 3%. In
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Table 4.1: The FVR (@FAR=0.1%) for different methods compared on FRGC2 experiment

4 ROC-III.

Methods FVR (%) @ FAR = 0.1%

MCF(proposed) 80.01

YQCr 73.01

nRGB 74.86

nXYZ 75.97

UCS 72.34

DCS 75.43

ICS 72.01

eGCID 73.01

HOA 73.29

CFF(baseline) 71.96

Table 4.2: The FVR (@FAR=0.1%) for 10 random 12-color combinations

12-Color Combination FVR (%) @ FAR = 0.1%

MCF(proposed) 80.01

1 76.56

2 75.11

3 75.95

4 76.86

5 76.74

6 72.69

7 74.98

8 73.70

9 75.73

10 75.70
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Figure 4.3: The FVR @ 0.1% FAR with increasing number of colors.

addition, MCF improves the CFF baseline method significantly by a margin of 8%.

To show the color selection effectiveness of MCF, we further compare the performance

of the 12-color combination selected by MCF with 10 other randomly selected 12-color

combinations in Table 4.2. The 10 randomly selected color combinations perform slightly

better than all 3-color model/space reported in Table 4.1 on average, but with unstable

performance. The best performing color combination is still the one selected by MCF.

Figure 4.3 shows the FVR with increasing number of colors. When using only 3 colors,

nXYZ perform slightly better than MCF. This is due to the local maximum problem asso-

ciated with the greedy search algorithm. However, the performance can still be improved

with more than three colors. The maximum possible FVR is 80.18% when using 10 colors,

but the optimal number found by MCF searching is 12 based on the training images. This

is due to the generalization problem that any supervised algorithm suffers when training

size is limited. This problem can be reduced by acquiring better training samples (repre-

sent the testing samples better) as well as by applying k-fold cross validation. Nonetheless,

the performance different between 10 and 12 colors is negligible (just 0.17%).

Notice that the proposed MCF outperforms the Block-wise Discriminant Color Space
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(BWDCS) proposed in Chapter 3. Since the experiment protocol we adopted in this

section is the FRGC standard, therefore results are directly comparable to Table 3.3.

The best performance for FRGC in Table 3.3 is 78.2% achieved by the BWDCS with a

16× 16 block size, utilizing regularized LDA (rLDA) for feature extraction. Whereas the

proposed MCF achieves 80.01% in Table 4.1 using the basic LDA algorithm for feature

extraction. Higher performance can be expected when MCF is applied on image patches

(i.e. block-wise MCF) with the use of advanced face recognition features. However,

since there are large number of such feature proposed for face recognition, and some of

them are more suitable in certain situations or proposed for tackling a specific challenge,

therefore it is impossible to experiment on every combination. The main purpose of

this chapter is to show that face recognition performance can be increased in general

when effectively utilizing multiple color components across color spaces. We achieve this

objective by comparing face recognition performance in this section with other holistic

color face recognition methods that use LDA feature, and therefore color space become

the only changing factor.

4.2.2 Face Identification

AR face database (AR) (Martinez and Benavente, 1998) is a publicly available face

database. It is widely used for evaluating face identification problems. This database

contains over 4000 images which is captured in two sessions with different facial expres-

sions, illumination conditions and occlusions. We use a subset of all the un-occluded

images from the first 50 males and 50 females. As a result, a total of 1400 images from

two sessions (14 images per subject) are included in our experiment. All the face images

are cropped and resized to 32 × 32 with eyes and mouths aligned to the same position

manually. Some sample images are shown in Figure 4.4. Following Yang et al. (2010a)

and Yang et al. (2010b), we formulate a time-delayed face identification problem using im-

ages from session one for training and images from session two for testing. The rank-one

identification rate on the Cumulative Match Characteristics (CMC) curve is reported.

Figure 4.4: Sample images from AR.

All methods with same parameters setting as in previous section are evaluated on AR,

except the dimension for PCA and LDA are set to 650 and 99 respectively. The best color
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Figure 4.5: The CMC curve for each method evaluated on AR.

Table 4.3: The rank one identification rate for each method evaluated on AR.

Methods Identification Rate (%)

MCF(proposed) 96.00

YQCr 92.27

nRGB 93.13

nXYZ 92.42

UCS 91.70

DCS 92.99

ICS 91.99

eGCID 93.13

HOA 92.56

CFF(baseline) 91.00
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Table 4.4: Identification rate (%) for 10 random 8-color combinations

8-Color Combination Identification Rate (%)

MCF(proposed) 96.00

1 94.56

2 93.71

3 93.71

4 93.28

5 92.99

6 93.42

7 92.13

8 89.13

9 93.28

10 94.99
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Figure 4.6: The Face Identification Rate with increasing number of colors.
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combination found by MCF consists of 8 colors: B (from RGB), b∗ (from L∗a∗b∗), nY

(from nXYZ), D1D2 (from DCS), YI (from YIQ) and nB (from nRGB). The corresponding

CMC curve is ploted in Figure 4.5 with the rank one identification rates reported in

Table 4.3. Similar result trend is observed. MCF model achieves 96%, outperforming the

second best method eGCID by nearly 3% and improves the CFF baseline method by 5%.

Since performance are already over 90%, a further 3 to 5 % difference can be considered

significant.

Next we evaluate color selection effectiveness of MCF as same as on FRGC in previous

section. 10 randomly generated 8-color combinations are compared against MCF in Table

4.4. Although the highest performance (i.e. the 10th combination) is nearly 95%, which is

comparable to MCF, the performance can not be guaranteed due to its random generation.

MCF does provide a systematic way to search for the optimal color combination.

From Figure 4.6, we can observe the same generalization problem for MCF. The optimal

color should include 9 color componenets but MCF can only pick up 8. The performance

difference is however negligible.

4.2.3 Time complexity

Although the proposed MCF algorithm is based on combinatorial search, time complexity

is not a problem. According to Algorithm 4.1, most of the steps in training stage are

linear except for the nested for-loop when searching for color combinations. For n colors,

it can take up to n(n + 1)/2 steps. The most computational intensive step is the re-

computation of the decision scores in each iteration, however if there are enough memory

to pre-compute all the decision scores for each color and keep them in memory, then this

step can be carried out in real time.

As shown in Table 4.5, only around 6 seconds is required for training in AR. Due to

the large scale of FRGC, the time needed becomes much longer, but is still acceptable.

Further, training time is actually not so important as it is an off-line process and only

required to be done once. Note that the training time in Table 4.5 is the total time spent

for the overall training process involving 12776 training images for FRGC and 700 images

for AR.

For testing, since the color transformation matrix and LDA projection matrix have been

constructed, the color transformation and feature extraction for a single image is very

quick. Since the testing time shown in Table 4.5 is the total time needed to answer more
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than 32 millions gallery/probe pairs of query for FRGC and 700 queries for AR. Therefore,

on average answering a single query can be completed in real time.

Table 4.5: Total training and testing time in seconds

Training FRGC2 AR

Color Transformation 198.3 23.5

Color Selection 2071.1 6.3

TOTAL 2269.4 29.8

Testing FRGC2 AR

Color Transformation 39.7 3.2

Evaluation 151.6 14.3

TOTAL 191.3 17.5

4.3 The usefulness of multiple color components

Face recognition is a complex pattern recognition problem, such that there is no single

feature that can capture all necessary information to solve it well. Research shows that

fusing different biometric models (e.g. finger print/ palmprint + face) (Yao et al., 2007),

different features, different scales of the same feature (Liu and Liu, 2010) or different LDA

based methods (Zuo et al., 2007) can also increase recognition performance significantly.

Evidenced from these findings, we expect the same property holds for fusing different

color models. Human faces display different colors at different locations. For example,

different eyes may be easier to classify in a specific color space, while lips may be easier

to discriminate in another color space. In fact, different color representations encode very

different information from a human face and thus complementary features can be extracted

from them. To illustrate this idea further, we introduce the variance face (VF). Given a

random face variable X and its expected value µ, the population variance is computed as:

σ2 = E[(X − µ)2]. (4.8)

Given N face image samples each arranged as a d dimension column vector in A (i.e.

A ∈ Rd×N is a collection of these N samples). If N is sufficiently large, µ in Eq. 4.8 can

be approximated with the sample mean Ā = 1
N

∑
Ai and VF can be computed from A as:

V F =

N∑
i

(Ai − Ā)2 (4.9)
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Figure 4.7: Variance face: variance of each pixel is computed and mapped to a 256-

intensity image. White color represents higher variance while black color represents lower

variance.

66



Figure 4.7 shows the VF computed from different colors using all the 12776 training sam-

ples in FRGC2 with Eq. 4.9. For visualization, the VF is scaled and displayed as an

256-intensity image. Therefore, black color means low variance while white color means

high variance. Note that these VFs are not real face images but are synthetic face analo-

gous to mean face image. The fact that some of these images look like a face demonstrates

that the variance is distributed according to regions on a human face. These VFs show

that different colors encode different complementary information. For example, the R com-

ponent has higher variance in the area between nose and lips, the G component has higher

variance for lips and the B component encodes higher variance for nose. Although R, G

and B are highly correlated, their variance distribution is complementary which explains

why fusing them can still offer performance improvement over single intensity image. It is

also interesting to point out that most of the colors encode high variance for mouth area,

which is caused by different facial expression. This finding may facilitate facial expression

recognition. In addition, most of the colors encode low variance for eyeball (maybe due

to low resolution) except for color H and h∗ which encode very different information from

other colors.

Since most of the color components used by the proposed MCF model can be linearly

transformed from RGB, therefore the RGB model may already contain all necessary infor-

mation. Nevertheless, RGB is not a good color model for face recognition. We believe that

this is because most of the information is hidden in RGB space. Our experiment results

show that, effective combination of different color components can increase recognition

performance significantly. The purpose of using hybrid color model is not to produce new

information but to reveal existing one in a better form for face recognition. In terms of

information fusion between color components, although a simple voting algorithm may

work, MCF utilizes the advantage of Linear Discriminant Analysis and fuses the colors

in image level to deliver a robust yet low complexity solution. In this chapter, the major

conclusion to be drawn is that effective utilization of multiple color models outperforms

any single model. The way to better utilize these models may deserve future investigation.

4.4 Summary

In this chapter, the following contributions have been made. We proposed a novel color

face recognition algorithm namely the MCF model, using more than three colors across

both linear and non-linear color spaces. It starts with a number of color spaces and (af-

ter removing identical and highly correlated color candidates) a greedy search approach

is adopted to find the optimal color combination. Decision level fusion with sum rule
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is used to fuse the optimal color set at last. Since different color components have dif-

ferent variance distribution, they capture different information for face recognition. By

greedy search, MCF finds the optimal color combination that encodes complementary in-

formation. The experiments on FRGC2 and AR show that MCF outperforms most of the

existing state-of-the-art methods which based on three colors only. Further, the concept

of Variance Face (VF) is introduced and we have shown that different colors capture dif-

ferent variance of a human face. These results and findings suggest that using only 3 color

components are often not enough to encode all available information for a complex face

recognition problem like FRGC.

Two shortcomings can be identified. Firstly, in terms of recognition, our proposed algo-

rithm is based on LDA. As discussed previously in this thesis, LDA is linear subspace

method that has limited effectiveness when dealing with large non-linear variation and

noise. Nevertheless, a novel color face recognition method is proposed in Chapter 5 to

address this problem. Secondly, in terms of color combination, the adopted greedy ap-

proach is only sub-optimal. An interesting future research direction will be to formulate

the Multiple color selection problem as an optimization problem possibly with an elegant

solution.
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Chapter 5

Sparse Coding for Color Images

Face recognition is a very challenging problem under uncontrolled conditions, where sys-

tem robustness is very important. Images of the same person can look very different

due to uncontrolled effects such as illumination and pose. Furthermore, the facial images

can even be corrupted or occluded. Among many existing robust face recognition solu-

tions, the sparse representation based algorithms are the most promising. Specifically, the

Sparse Representation Classifier (SRC) (Wright et al., 2009) described in Section 2.4.1

has achieved the state-of-the-art performance for corrupted or occluded problems, and

has received much attention recently. The Correntropy Sparse Representation (CESR)

(He et al., 2010) method described in Section 2.4.2 further improves the performance and

robustness over SRC.

Despite sparse coding technique can effectively deal with face image under difficult condi-

tions, most of the existing sparse coding methods, including SRC and CESR, are designed

and tested on gray-scale images only. To the best of our knowledge, none of the exist-

ing state-of-the-art color face recognition algorithms harness sparse representation. For

instance, an algorithm proposed by Yang et al. (2010a) first normalizes the RGB color

image to reduce the inter-color-component correlation. Then it extracts Local Binary

Pattern (LBP) and applies FLD (Belhumeur et al., 1997) for face recognition. Another

example is the method proposed by Deng et al. (2010b). This method first applies Gram-

Schmidt (GS) orthogonalization procedure to reduce inter-color-competent correlation,

then applies Regularized Couple Mappings (RCMs) for face recognition. Both methods

mentioned above are examples of some solid framework for color face recognition, which

unlike those described in Section 2.5 that simply aim to find a color space. Nevertheless,

they have limited ability to deal with noisy or occluded face images compared to sparse

coding methods.

In this work, we propose an explicit approach by utilizing color information when recov-

ering the sparse representation. The overview of the framework is depicted in Figure 5.1.

Unlike gray-scale images, each color image has three matrices. Let Argb be an m×n color

image in RGB space, it is usually arranged as a matrix Argb ∈ Rm×n×3, while its gray-scale

conversion is arranged as Agray ∈ Rm×n. Therefore, all of the sparse representation based
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algorithm working on Agray can not work directly on Argb.

Figure 5.1: The Sparse Representation Framework for color face recognition.

The organization for rest of the chapter is as follows. Section 5.1 proposes the color sparse

representation framework. Section 5.2 discusses the role of feature and color space as well

as the novel discriminativeness measurement. All claims are then evaluated in Section 5.3

and we summarize the chapter in Section 5.4.

5.1 Sparse Coding Framework for Color Images

In this section, we propose a new color face recognition model based on sparse represen-

tation. The complete framework involves three steps: color space transformation, feature

extraction and classification. Figure 5.1 depicts the framework. Face detection is not

included in this framework since it is beyond the scope of this work.

5.1.1 Color Space Transformation

Color space transformation has been described in detail in Section 2.5. Given N RGB

training images Argb ∈ Rp×3×N with pixels p = m × n, it can be transformed to another

space Aspace.

Let f : Rp×3×N → Rp×r×N be the function that transforms Argb to Aspace, where r is the

number of color components in the new space:

Aspace = f(Argb) (5.1)

Except for gray-scale, Aspace usually has 3 color components (i.e. r = 3) which encounters

difficulty when using traditional feature extraction approaches.
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5.1.2 Feature Extraction

Typical feature extraction approaches like PCA (Turk and Pentland, 1991), LDA (Bel-

humeur et al., 1997) and Locality Preserving Projection (LPP) (He et al., 2005) can be

applied directly on gray-scale images arranged as Agray ∈ Rp×N where each column rep-

resents one face image. Let g : Rp×N → Rd×N be the feature extractor working on Agray,

where d is the dimension to be reduced to, we have

Bgray = g(Agray) (5.2)

For color images, one choice is to stack the three color components to one augmented

vector (Thomas et al., 2008) such that conventional approaches can be applied directly.

This approach however decreases sparse recognition performance for two reasons. First,

for some color space like DCS, when stacking the three components together, we need to

normalize each component to zero mean and unit standard deviation in order to avoid

magnitude dominance on one component over others (Yang and Liu, 2008b). Since vari-

ation is normalized, some important discriminant information is removed or weakened.

Second, our experiment result shows that the performance of color images usually con-

verges only at dimension that is much higher than N − 1. However, PCA dimension is

bounded by N − 1 while LDA can have at most C − 1 dimension for C classes, which is

not high enough.

To take full advantage of color images, we should extract features from each color com-

ponent individually. Let gcolor : Rp×r×N → Rd×r×N be the feature extraction working on

color image with r color components 1 Acolor = [a1 a2 . . . ar]. The color feature Bcolor

can be extracted as:

Bcolor = gcolor(Acolor) = [g(a1) . . . g(ar)] (5.3)

5.1.3 Classification

The current Sparse Representation algorithm is designed for gray images. Let h : Rd×N ×
Rd → RC be a kind of sparse representation classifier as described in Section 2.4. However,

instead of returning the identity of the query, h returns the residual to each class i. Let

1Although r is usually 1 (for grayscale) or 3 (for color image), we use the variable r here for the sake of

generality. It is possible for r to be greater than 3 (e.g. when one combines multiple color components).

One can also just use two color components with r = 2.

71



Bgray ∈ Rd×N be N gray-scale training samples each with d features and y ∈ Rd be the

query image. We obtain the distance to each class:

S = [S1, S2, . . . , SC ] = h((Bgray, y)) (5.4)

where Si is the distance (residual) to class i (i = 1, . . . , C). We can classify y to class i

with min
i
Si.

Next, we discuss how to apply h to color face images. After feature extraction as mentioned

in last section, we have obtained training color features with r color components Bcolor =

[b1 . . . br] ∈ Rd×r×N and query color features ycolor = [y1 . . . yr] ∈ Rd×r. One choice is

to calculate the residual for each individual component and sum the distances up for a

decision:

Ŝ = hcolor((Bcolor, ycolor)) = h((b1, y1)) + . . .+ h((br, yr)) (5.5)

This approach however is r times slower. High computational cost is one of the main

drawbacks for sparse based approach, therefore this amount of computational time in-

crement is undesirable. Furthermore, computing the sparse representation on each color

individually does not make use of the complementary information among different color

compoenents effectively.

In order to take full advantage of complementary information, we want to find the sparse

representation directly for Bcolor and ycolor by optimizing the following proposed model:

x = min ‖x‖1 s.t.

ycolor = Bcolor x

= x1B1 + . . .+ xNBN

= x1[b11, . . . , b1r] + . . .+ xN [bN1, . . . , bNr]

(5.6)

where Bj ∈ Rd×r(j = 1, . . . N) is a particular color training sample with r color com-

ponents. Unlike Bgray where each face is a column vector, here each face Bj in Bcolor

is a matrix and we want to find a linear combination of these matrices. Therefore, the

original sparse representation algorithm can not be applied directly. However, we notice

that finding x in Eq. 5.6 is equivalent to finding x for the rearrangement of Bcolor and

ycolor by stacking the color component features into augmented column vectors which is

called the color image arrangement. Let D and z be the rearranged training samples and

the query, we have:

D = [ [b11 . . . b1r]
T , . . . , [bN1 . . . bNr]

T ] ∈ Rrd×N (5.7)

z = [y1 . . . yr]
T (5.8)
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Then the coefficients x for the model in Eq. 5.6 can be solved by optimizing the convention

sparse model:

x = min ‖x‖1 s.t. z = Dx (5.9)

Therefore, the distance metric h will work on D and z, which can be computed directly

by:

Scolor = h((D, z)) (5.10)

Lastly, we classify the query to class i with min
i
S i
color.

5.1.4 Algorithm

Algorithm 5.1 summarizes the complete sparse coding framework for color face images.

Algorithm 5.1 Color Sparse Representation Classifier

Require: -

Argb, RGB training samples

yrgb, RGB query image

c, choice of color space

F , choice of feature extractor

s, choice of sparse algorithms

1. Color Space Conversion by Eq. 5.1:

Ac ← fc(Argb)

yc ← fc(ycs)

2. Feature Extraction by Eq. 5.3:

Bc,F ← gcolor,F (Ac)

yc,F ← gcolor,F (yc)

3. Color image arrangement using Eq. 5.7 and (5.8):

Rearrange Bc,F to D

Rearrange yc,F to z

4. Normalize columns of D and z to unit `2-norm.

5. Compute the distance using Eq. 5.10:

S = h(D, z)

return identity(y) = min
i
Si

The computational time of algorihtm 5.1 is almost the same as the conventional algorithm

working on gray images. The time increases slightly with increasing number of color

components, which is usually 3, due to feature extraction on 3 times higher dimension data.
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Unlike the computation of sparse representation, conventional feature extraction methods

as well as downsampling are usually computed in real time. In this case, the feature

extraction time increased is almost negligible. In fact, the most time consuming step is

actually the sparse representation recovery. The proposed algorithm has exactly the same

complexity as the conventional ones regardless of the training sample size. Its complexity is

slightly higher than the conventional ones only when data dimension increases. Therefore,

the proposed framework does not have noticeable time complexity increment.

5.2 Roles of Features and Color Spaces

In this section, we define correctness and discriminativeness, which are the two factors

affecting performance of any sparse representation based classifiers. We argue that dif-

ferent choices of feature space and color space do not affect correctness, but will affect

discriminativeness and hence the performance.

5.2.1 Correctness

Correctness measures how close is the representation found via `1-norm minimization to

the one found via `0-norm minimization. The representation is said to be ideally correct

if x1 recovered by Eq. 2.26 is equivalent to x0 in Eq. 2.25. There are established theories

to guarantee the equivalence between `l and `0 minimization under mild conditions stated

by Sharon et al. (2007). Loosely speaking, sparse representation based classifiers are

guaranteed to be correct if the dimension of the data is high enough (Wright et al., 2009).

Therefore, different choices of features and color spaces with sufficiently high dimension

do not affect correctness.

5.2.2 Discriminativeness

Discriminativeness describes how uniquely and precisely the sparse coefficient x recon-

structs the query image y. The representation is said to be ideally discriminative if the

coefficients associating with the same class as y would reconstruct y with no error while

all other coefficients can not even approximate2 y. Since x is found by enforcing sparsity,

2A reconstruction ŷ does not approximate y if the reconstruction error is greater than or equal to the

reconstruction error of a random reconstruction.
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it tries to find a linear combination involving fewest possible training samples. In order to

achieve minimum number of training samples involvement, only training samples belong

to the same class as y should contribute to the representation and thus x becomes discrim-

inative. Ideally, entries of x should be all zero except those associated with the same class

as y. Obviously, sparse representation is not designed for classification purpose, it can be

used for classification because it is usually discriminative. It relies heavily on whether x

is close enough to the ideal case mentioned.

However, in practical context of robust face recognition, it is impossible to gather complete

training set to span the whole space of each class (modeling every possible intra-person

variation) without class overlap. Imagine to find the sparse representation for a query

that lies in the overlapped space of two classes. The representation may involve linear

combination of some number of training samples from both classes, hence increasing the

chance for misclassification. Therefore, it is impossible to find an ideal x. Different

features and color spaces disclose different information that may reduce the intra-class

variation and increases the inter-class distance, hence affecting the discriminativeness and

performance.

In this chapter, we propose a new measurement to describe discriminative power of x

as the ratio of the reconstruction error using coefficients associated with the same class

as y over the reconstruction error using all other coefficients. Specifically, let A be the

training samples and y belongs to class J , we define δJ(x) similar to Eq. 2.32 being a

vector whose non-zero entries are entries in x corresponding to class J and similarly the

complement δ̃J(x) be a same vector as x with entries of class J set to zero. The within-

class reconstruction error of y is Ew = ‖y − AδJ‖2 and the between-class reconstruction

error is Eb = ‖y −Aδ̃J‖2. The discriminativeness of x is defined as:

DIS(x) =

{
0 if Eb + Ew = 0

Eb/(Eb + Ew) otherwise
(5.11)

Since Ew and Eb is always non-negative, the range of DIS is always bounded between

[0, 1]. If y can be reconstructed perfectly using δJ(x) while δ̃J(x) can not, then Ew = 0

and Eb 6= 0. We have DIS = Eb/(Eb+0) = 1, which implies perfect discriminativeness. If

y can be reconstructed perfectly using δ̃J(x), then we have DIS = 0/(0 + Ew) = 0 which

indicates nil discriminative power. Furthermore, if both Ew and Eb are not zero, DIS will

be 0.5 when Ew = Eb, over 0.5 when Ew < Eb and less than 0.5 when Eb < Ew.
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5.3 Experimental Evaluations

In this section, we evaluate the proposed color sparse framework and validate the claims

in previous sections using two publicly available face databases. For fair comparison, we

follow exactly the same experiment protocols as reported in literatures (Wright et al., 2009;

He et al., 2010; Yang et al., 2010a; Jiang et al., 2008; Li et al., 2009). Specifically, we will

compare sparse representation methods under different color and feature spaces. We show

how our approach performs in comparison to the state-of-the-art performances. We also

compare the performances of color with gray-scale in cases of random pixel corruption and

occlusion.

5.3.1 Algorithm implementation and parameter selection

We use the source code provided by He et al. (2010) and use the same notations in our

experiments:

• SRC0 : Solves the standard SRC in Eq. 2.26 via an active set algorithm.

• SRC2 : Uses the Lasso optimization algorithm to solve Eq. 2.29.

• CESR: Integrating the maximum correntropy criterion and non-negative constrain

as in Eq. 2.34.

The parameters are estimated using five-fold cross-validation on each dimension and train-

ing set. Specifically, λsrc2 for SRC2 is set to 0.001 and λcesr for CESR is set to 0.05.

5.3.2 Databases

To allow fair comparison to (Wright et al., 2009), we use the same AR face database

(AR) as in their experiment. However, the Extended Yale B database used in (Wright

et al., 2009) only consists of gray-scale images, it is not suitable for our experiment here.

Therefore, we choose the Georgia Tech face database (GT) which is also widely used in

face recognition community to evaluate color face recognition algorithms.
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5.3.2.1 AR Face Database

AR (Martinez and Benavente, 1998) consists of over 4000 color frontal images for 126

individuals each having 26 images taken in two sessions. The uncontrolled variations

mainly include facial expression, illumination and occlusion. All images used are cropped

to 165 × 120 manually with eyes and mouth aligned to the same location. Illustrative

images of one person are shown in Figure 5.2.

Figure 5.2: Sample images of one person from AR database

5.3.2.2 Georgia Tech Face Database

GT (Nefian, 2007) consists of 700 color images for 50 individuals each with 15 images.

The uncontrolled variations mainly include facial expressions, illumination and poses. All

images used are cropped to 146 × 120 manually with eyes and mouth aligned to the same

location. Example images of one person are shown in Figure 5.3.

Figure 5.3: Sample images of one person from GT database
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5.3.3 Downsampling

The downsampling method used through out our experiments is done with Matlab’s ”im-

resize” function, which uses the bi-cubic interpolation technique by default. The ratios

between the height and width of the downsampled images are kept as close as to the orig-

inal. For color images, as described in Section 5.1.2, downsampling is first applied on each

individual color component image, the downsampled features are then combined. Note

that we have to maintain the same final dimensions for color images to allow fair compar-

ison with gray images. To this end, the downsampled dimension for each individual color

component is lower than that for gray image. For example, if the final dimension is set

to 100, a gray-scale image is downsampled directly to 100 pixels. While a RGB image is

downsampled to 33 pixels such that after stacking the R, G and B components, the final

dimension is 99 (which is the closest to 100 that we can achieve).

5.3.4 Various Color Spaces

We first evaluate the performance of SRC0 under uncontrolled condition but without

corruption or occlusion. Although SRC2 is more robust when dealing with noise, SRC0 is

usually enough in this situation with the advantage of faster computation. We show how

different color spaces affect the performance with varying downsampled dimensions and

how it performs in comparison with gray-scale on both AR and GT databases.

Our experiment protocol follows exactly the same as in (Wright et al., 2009; Naseem

et al., 2010). For AR, only the subset of 50 males and 50 females without occlusion is

used, resulting in 14 images per subject from two sessions. Consider the aging effect in

real world application, the first 7 images per subject from session 1 are used for training

while the rest from session 2 for testing. For GT, the first 8 images per subject are used

for training and the last 7 per subject for testing.

The results are presented in Table 5.1 and Figure 5.4. Table 5.1 reports the face recognition

rate for AR and GT with various color spaces, as well as the total time taken. Figure

5.4 plot the recognition rate for image in gray-scale, RGB space and the best performing

color space in each database with different downsampled dimension.

Four findings can be highlighted here. First, color outperforms gray-scale consistently,

which reveals that color can always improve the performance of SRC, no matter what

color space is used. Second, different color spaces have different performances. This
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Table 5.1: Recognition rates (%) and total time needed (second) with various color spaces.

Recognition Rate

Gray RGB DCS UCS I1I2I3 nRGB

AR database 92.6 94.0 98.1 95.6 98.0 98.0

GT database 96.6 97.1 96.0 100.0 99.7 99.7

Total Time in Second

Gray RGB DCS UCS I1I2I3 nRGB

AR database 217.0 222.3 231.5 239.0 227.7 225.1

GT database 22.4 23.9 24.8 24.4 24.2 22.7

(a) (b)

Figure 5.4: With various downsampled feature dimensions: (a) Comparisons of Gray-scale,

RGB and DCS on AR. (b) Comparisons of Gray-scale, RGB and UCS on GT.

implies that the choice of color space is important for SRC. Although SRC is claimed to

be invariant to the choice of feature (Wright et al., 2009), its performance can be affected

by color. By choosing the right color space, the performance for SRC can be improved

by 5.5% in AR and 3.4% in GT. Third, color information is more useful than appearance

information (resolution) for SRC. This can be best illustrated by the result when images

are downsampled to 100 dimensions. In this case, as described in Section 5.3.3, gray scale

images are downsampled to 100 pixels while color images are downsampled to 33 pixels

(where each of the three color component images has 33 pixels) in order to maintain the

dimension as close as to-100 (99 in this case) after combining the three color components.

However, even color images contain three times less the appearance information, it still

outperforms gray-scale. Lastly, the total time 3 needed for color images are slightly larger

3These time are obtained on a computer with an Intel Core Quard CPU @ 3GHz and 4GB of

RAM. The sparse coding computation is done using the SPAMS package available at: http://spams-

devel.gforge.inria.fr/, which is a c implementation optimized for sprase coding, with Matlab interface. All

other steps are done in 64-bit Matlab without extra code optimization effort.
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Table 5.2: Discriminativeness measures (DIS): mean ± variance, with various color space

AR database

Dimension Gray RGB DCS

100 0.49± 0.21 0.47± 0.21 0.51± 0.19

1000 0.51± 0.18 0.53± 0.18 0.55± 0.17

3000 0.50± 0.17 0.52± 0.17 0.54± 0.16

5000 0.49± 0.17 0.52± 0.17 0.53± 0.15

GT database

Dimension Gray RGB UCS

100 0.60± 0.21 0.61± 0.22 0.61± 0.23

1000 0.60± 0.18 0.63± 0.18 0.64± 0.17

3000 0.58± 0.18 0.62± 0.18 0.63± 0.17

5000 0.58± 0.17 0.61± 0.18 0.62± 0.17

Figure 5.5: The distribution plot of DIS values with dimension 5000 for AR and dimension

3000 for GT.

than that for gray-scale images as expected. This complies with our time complexity

analysis in Section 5.1.4.

To analyze how color affects the performance of SRC, the discriminativeness measure

(DIS) of the sparse representation recovered in different color spaces and gray-scale are

shown in Table 5.2. Their corresponding distribution is plotted in Figure 5.5. For each

query, we compute the DIS using Eq. 5.11 and report the mean DIS and its standard

deviation (µDIS ±σDIS). Since the recognition rates for both databases are over 90%, the

DIS difference is not large. However, a small difference is significant since it is averaged

over a few hundreds of query samples. One can see that the distribution of DIS with color

images are always with higher mean values and smaller deviations.
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One can find that the µDIS values computed for color spaces are always higher with smaller

σDIS . This implies that the sparse representation recovered in color space is always more

discriminative, hence classifying queries more precisely. This is the main factor why color

can improve the performance of SRC over gray-scale.

5.3.5 Various Feature Extractors

We next evaluate the performance with different feature extractors. We use the same

experimental set-up as in former section, however instead of only downsampled features,

we also compared PCA (Turk and Pentland, 1991), LPP (He et al., 2005) and LDA

(Belhumeur et al., 1997). These are some well known feature extractors which obtain

features from the original data by projecting it to the feature space linearly. To obtain the

projection matrix, the respective objective functions have to be solved and the solution

to the three mentioned methods can actually be converted to Eigen value decomposition

problems. After solving the Eigen problem, the first d Eigen vectors corresponding to the

d largest Eigen values are chosen to form the projection matrix. Then the data can be

projected to the d-dimension feature space. For color images, as described in Section 5.1.2,

feature is extracted on each color components separately and then combined in feature

level. Therefore, for a color space that has three color components, the final dimension

becomes 3d. Our evaluation is done on the dimension with the best performance for each

method.

Since all subspace methods compared here are all based on `2-norm minimization, it is

also interesting to investigate whether color can improve the performance of SRC under

a random projection (randomFace). RandomFace is defined in (Wright et al., 2009) as

dimension reduction technique based on linear projection, where the projection matrix

is sampled from a standard normal distribution. In case of color images, one random

projection matrix is created for one color channel and it is used for all three channels for

dimension reduction in order to make sure that the same number of random features are

extracted from gray-scale and color images. Similarly, only the best performing dimension

is reported.

Table 5.3 reports the results for both AR and GT. The first three columns compare the

performance of gray, RGB and DCS images with different feature extractors using SRC0

as the classifier. The last two columns report the performance for the Nearest Neighbor

(NN) classifier. PCA+NN, LDA+NN and LPP+NN are some well-known traditional

approaches widely used for benchmarking comparison. Here we integrate them with the

DCS color space and UCS color space using either image level fusion (I) or feature level
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Table 5.3: Recognition rates (%) with various feature extractors.

AR database

SRC0 NN Classifier

Feature(Dimension) Gray RGB DCS DCS(I) DCS(F)

Downsample(5000) 92.6 94.0 98.1 - -

RandomFace(3000) 93.0 95.0 96.0 - -

PCA(699) 92.9 93.9 97.6 82.0 76.8

LPP(300) 86.7 90.4 94.1 90.1 53.0

LDA(99) 89.2 92.0 96.0 95.6 93.0

GT database

SRC0 NN Classifier

Feature(Dimension) Gray RGB UCS UCS(I) UCS(F)

Downsample(3000) 96.6 97.1 100.0 - -

RandomFace(3000) 96.3 96.5 96.6 - -

PCA(399) 96.3 96.3 97.3 79.4 82.3

LPP(200) 88.6 93.1 90.1 86.3 47.1

LDA(49) 94.8 95.4 95.6 95.5 93.7

fusion (F). For (I), after transformation to the new color space, the three color components

are normalized to zero mean and unit standard deviation before stacking together to one

column. This fusion scheme is also used by Yang and Liu (2008b) and Liu (2008). For

(F), it is the one used in our proposed framework in Section 5.1. Here we just replace the

classification step in Section 5.1.3 by NN classifier to yield a meaningful comparison to

our approach.

Three findings are highlighted here. The first one is similar to former section, RGB per-

forms better than gray-scale, while DCS/UCS performs the best among all the feature

extractors, except for LPP in GT. Same pattern is observed even when using random

features. This once again justifies the effectiveness of color when using SRC for face recog-

nition. Second, in DCS/UCS, SRC is always better than NN. The proposed framework

outperforms traditional approaches. Lastly, downsampling is the best among all feature

extraction methods. This may be due to the fact that downsample method allow much

higher feature dimensions for the performance of SRC to converge (5000 for AR and 3000

for GT in this case).

Table 5.4 presents the corresponding discriminative measures (DIS) of the sparse repre-

sentations recovered in different feature spaces. Similar to Table 5.2, the DIS is com-

puted using Eq. 5.11 for each query and the mean and standard deviation is reported
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Table 5.4: Discriminativeness measures(DIS): mean ± variance, with various feature ex-

tractors.

AR database

Feature(Dimension) Gray RGB DCS

Downsample(5000) 0.49± 0.17 0.52± 0.17 0.53± 0.15

RandomFace(3000) 0.48± 0.16 0.49± 0.15 0.49± 0.14

PCA(699) 0.48± 0.17 0.50± 0.16 0.50± 0.15

LPP(300) 0.35± 0.12 0.40± 0.10 0.41± 0.08

LDA(99) 0.44± 0.15 0.46± 0.11 0.48± 0.07

GT database

Feature(Dimension) Gray RGB UCS

Downsample(3000) 0.58± 0.18 0.61± 0.18 0.63± 0.18

RandomFace(3000) 0.57± 0.17 0.59± 0.17 0.60± 0.17

PCA(399) 0.57± 0.18 0.59± 0.18 0.60± 0.18

LPP(200) 0.39± 0.13 0.42± 0.12 0.40± 0.12

LDA(49) 0.51± 0.15 0.52± 0.13 0.53± 0.13

(µDIS ± σDIS). The proposed DIS measurement precisely describes the performance re-

ported in Table 5.3. Methods that have higher recognition rate always have either higher

µDIS or lower σDIS .

5.3.6 Comparisons to the State-of-the-Art Algorithms

In this section, we compare our approach with some state-of-the-art methods reported in

the literature for face recognition under uncontrolled condition but without corruption or

occlusion. To allow meaningful comparisons, we have selected methods that are evaluated

under the same experimental protocol as ours.

For AR database, the Nonparametric Discriminant Analysis (NDA) method for face recog-

nition (Li et al., 2009) is published in a reputed journal (IEEE PAMI) in 2009. In their

work, two extensions on NDA are proposed namely the Principal Nonparametric Feature

Analysis (PNFA) and Null-space Nonparametric Feature Analysis (NNFA). Their exper-

imental result shows that the fusion of PNFA and NNFA using voting rule achieved the

state-of-the-art performance (91.9%), outperforming PCA, LDA, Bayesian method, Ker-

nel LDA, LDE and Multi-class NDA.The Sparse Representation Classifier (SRC) (Wright

et al., 2009), which is described in detail in Section 2.4.1, is published in PAMI as well in
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2009. The method has achieved 92% to 94.7% using various feature extractors. These two

methods use only gray-scale images. For color face recognition, one of the state-of-the-art

methods, as described at the beginning of the chapter, is nRGB+LBP+FLD (Yang et al.,

2010a) which is published in another reputed journal (Pattern Recognition) in 2010. The

best performance they have achieved is 94.6% on AR database.

For GT database, one of the best methods is the Regularized Eigenfeature method (Jiang

et al., 2008) published in PAMI in 2008. They have compared to 8 other state-of-the-art

methods but the proposed ERE St has achieved the best performance (93.1%). The Linear

Regressing Classifier (LRC) (Naseem et al., 2010) is published in PAMI in 2010. They

have achieved 92.57%. Unlike ERE St, which uses carefully engineered features, LRC just

uses the downsampled features. These two methods use only gray-scale images. For color

face recognition, as described at the beginning of the chapter, the GS+RCMs (Deng et al.,

2010b) method is one of the state-of-the-art methods for color face recognition that has

achieved 98.1% on GT database.

Our framework achieved 98.1% in AR and 100% in GT. It outperforms the second best

method by 3.4% percent in AR and 1.9% in GT. This result suggests that by carefully

selecting the suitable color space and feature dimension, the proposed framework can

achieve the new state-of-the-art performance. Table 5.5 summaries the performance. Note

that although we only show the best performance of the proposed framework, the choice

of parameters does not affect much of its performance. As previously shown in Table 5.1

and Figure 5.4, the best performance achieved by the proposed framework in both AR

and GT does not vary much when dimension is high enough (>1000).

Table 5.5: State-of-the-art recognition rates on AR and GT.

AR database

PNFA+NNFA+Voting SRC nRGB+LBP+FLD proposed

91.9% 92-94.7% 94.6% 98.1%

GT database

ERE St LRC GS+RCMs proposed

93.1% 92.6% 98.1% 100.0%

5.3.7 Evaluation on Random Pixel Corruption

In this section, we will evaluate the proposed framework under random pixel corruption.

One of the main goals for robust face recognition is to tolerate error and noise. Real world
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images can be corrupted in random possibly during the process of capture or transmission.

We simulate this kind of error by randomly choosing entries of the query image matrix

and replacing its intensity value with a random value in [0, 255] (which is applied to all

three color channels in case of color image). Each query has different corrupted locations

which is not known to the algorithm in advance.

Figure 5.6: Recognition on GT under random pixel corruption.

We setup this problem on GT database and employ the SRC2 algorithm. Same experi-

mental setting is used as in previous section. We do not repeat the experimental setting

in (Wright et al., 2009) because the Extended Yale B is a gray-scale database. In order

to isolate the effect of corruption while testing precisely how good the proposed approach

can tolerate corruption, we need a database that the performance is expected to decrease

with increasing percentage of corruption. For dimension reduction, Both gray-scale and

color image are downsampled (as described in Section 5.3.3) to 4000 (final) dimension.

Figure 5.6 reports the recognition rate for gray-scale and UCS up to 90% corruption. UCS

completely outperforms gray-scale as expected. The maximum difference is 15.5% with
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50% corruption. We conclude that the richer information in color space can help tolerating

more noise and errors.

5.3.8 Evaluation on Occlusion

One of the most difficult challenges for robust face recognition is to identify an occluded

person. Under occlusion, only part of the face is useable for recognition. In addition,

the location of occlusion may vary and is not known in advance. Unlike random pixel

corruption, the affected pixels in real world occlusion are usually continuous over a region.

Therefore, this is actually the worst kind of error for robust face recognition.

We evaluate our framework using CESR on subset of the AR database. As claimed in

(He et al., 2010), CESR is more robust and outperforms SRC when recognizing occluded

people. Further, DCS is the best performing color in AR database. Therefore, we integrate

CESR with DCS in this experiment. In addition, we find that instead of initializing the

weighting to all ones as in (He et al., 2010), better performance can be achieved by

initializing to the correntropy similarity between the query and mean face (i.e. g(y−A)).

Following the protocol in (Wright et al., 2009), for the same 100 subjects used in previous

section, we select per subject the first 4 images from session 1 and first 4 images from

session 2 for training (except for a corrupted image w-027-14.raw). These eight images

per subject is all un-occluded and frontal with varying facial expressions. Every image is

downsampled to 4000 dimension. For the experiment on sunglasses occlusion, 2 images

wearing sunglasses per subject are selected as queries. Similarly for the experiment on

scarves occlusion, 2 images wearing scarf per subject are selected as queries. The total

number of testing images for the two experiments are both 200 each. Examples of such

images can be found in Figure 5.2. Table 5.6 compares the recognition rates between

gray-scale and DCS as well as for various other methods designed specifically to tackle

real world occlusion problem.

Table 5.7 lists results with different CESR weighting initializations. Three results should

be highlighted. First, CESR performs better in DCS compared to gray-scale. Especially

for scarf occlusion, the original CESR using gray-scale images only achieves 89%, how-

ever color improve the performance to 95%, which is significant. Second, the proposed

approach outperforms all other state-of-the-art algorithms for occluded face recognition

in the existing literature. Lastly, the proposed weighting initialization (i.e. g(y − A))

boosts the recognition rate, while the original all-ones, as well as 10 random initializations

all converge to similar performance. Especially for scarves occlusion on Gray image, the

86



Table 5.6: Recognition rates on AR under real world occlusion. Unlike (He et al., 2010),

we set the initial weighting of CESR to the correntropy similarity between the query and

mean face (i.e. g(y −A)).

Approach Sunglasses Scarves

DCS + CESR 100.0% 95.0%

Gray + CESR (He et al., 2010) 97.0% 89.0%

Other reported performance

SRC in (Wright et al., 2009) 87.0% 59.5%

LRC in (Naseem et al., 2010) 96.0% 26%

PCA + NN (Turk and Pentland, 1991) 70.0% 12.0%

ICA I + NN (Kim et al., 2005) 53.5% 15.0%

LNMF + NN (Li et al., 2001) 33.5% 24.0%

Table 5.7: Recognition rates for CESR with different initial weighting. ”All-ones” denotes

the original strategy used in (He et al., 2010), initializing weighting to all ones. ”Random”

denotes 10 random initializations. ”g(y−A)” denotes initializing the weighting using the

correntropy between the query and the mean training sample face.

Sunglasses All-ones (He et al., 2010) Random (min-max) g(y −A)

DCS + CESR 99.5% 99.0 - 99.5% 100.0%

Gray + CESR 95.5% 95.0 - 95.5% 97.0%

Scarves All-ones (He et al., 2010) Random (min-max) g(y −A)

DCS + CESR 79.5% 80.0 - 81.0% 95.0%

Gray + CESR 45.0% 45.5 - 46.0% 89.0%

performance is increased from 45% to 89%. We believe this is due to that the all-one

initialization is more likely leading to local optimal. Since the mean face is computed

using some real human face images, thus the computed mean pixel values will be highly

correlated to those on a face image. Using the mean face to compute the initial weighting

mask can effectively mask out non-face shading caused by for example uneven illumina-

tion or occlusion. Therefore, noise or highly uncorrelated pixels will receive lower focus

(or weighting) at the beginning which eventually increases the chance of converging to a

global optimal weighting after several iterations.

We further analyze why DCS can significantly improves the performance of CESR on

scarf occluded images. As discussed in Section 2.4.2, CESR can be interpreted as a pixel-

weighted SRC, which iteratively update the pixel weighting and the sparse representation.
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Figure 5.7: A query from AR database with scarf occlusion. The corresponding pixel

weighting obtained by CESR is shown as an intensity image, which darker pixel means

lower weighting. (a) The original RGB image. (b) The original image in gray-scale. (c)

The weighting on gray-scale image. (d) The original image in DCS. (e-g) The weighting

on the 1st, 2nd and 3rd DCS components respectively.

The way that CESR computes the weighting is based on the reconstruction residual of

each pixel. The weighting maps for one query are shown in Figure 5.7 (c, e, f and g),

where darker pixel represents lower weighting, which in other words, higher reconstruction

residual. Notice on the gray-scale image (b) that the intensity values of the scarf is just

a little darker but still very close to the skin intensity values. As this scarfed area is

nearly 40% of the face region, finding a linear combination of the training samples to best

reconstruct (b) will result to a darker face image like the scarf. This would cause larger

reconstruction residual on the valid face pixels than on the scarf pixels. Therefore, the

low-weighted pixels in (c) are clustered around the forehead and two side of the face, but

not the scarfed area due to the fact that it is being resembled. Since some valid pixels

are treated as error, the performance decreases by 33% when it compares to the original

SRC in Table 5.6. On the other hand, one can see on image (d) that the color of the scarf

and the face have significantly higher contrast in DCS space. Therefore, the low weighting

are concentrated on the scarf pixels as they can not be reconstructed. This effect is more

apparent in (f) where the weighting is computed in the 2nd DCS component. As a result,

the performance can be increased significantly.
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5.4 Summary

In this chapter, the following contributions have been made. We have shown that color

can be used to improve performance of robust face recognition. The proposed color sparse

representation framework outperforms both gray-scale methods and some other state-of-

the-art algorithms. Supporting results are obtained with experiments on uncontrolled

condition, different feature extractors, random pixels corruption as well as occlusions. We

also introduce a concept about discriminativeness and contrast its difference to correct-

ness. We argue that when the data dimension is high enough, the choice of features or

color spaces do not affect correctness but discriminativeness. The sparse representation

recovered in color space is very different from the one recovered with gray-scale. The main

contribution of color is that its richer information can effectively increase discriminative-

ness of the sparse representation and help correct errors, which is critical for the success in

robust face recognition. Therefore, the proposed color sparse framework provides a better

solution to this problem.

There are two main shortcomings of the proposed method. Firstly, sparse coding is based

on linear combination. Although it can effectively handel noisy data, it is not a reliable

solution to the pose problem. Pose variation usually causes non-linear variation in data

which can not be modeled linearly. Secondly, the proposed algorithm vectorizes the color

image to a single vector in order to apply sparse coding methods directly. Vectorization

is a mechanical step which may destroy important image structure. Color image should

be represented naturally by a 3-rd order tensor. We will address these two problems and

propose two novel face recognition algorithms in Chapter 6.
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Chapter 6

Face Recognition using Kinect

As discussed in Chapter 1, face recognition can be done without user cooperation. How-

ever, in this context, the query image is usually in uncontrolled condition, posing great

challenges for face recognition. These challenges can not be tackled reliably with only 2D

images. In fact, it has been shown that face recognition based on RGB-D (Red, Green,

Blue and Depth) information outperforms traditional 2D methods (Bowyer et al., 2006).

Existing techniques (Wang et al., 2010; Queirolo et al., 2010) are able to achieve over 99%

accuracy on difficult experiments such as the Face Recognition Grand Challenge (FRGC)

(Phillips et al., 2005). However, all these methods are based on high resolution 3D scan-

ners which are usually expensive, bulky and have slow acquisition time. Although, low

cost 3D acquisition devices are available in the market, they usually generate very noisy

and low resolution depth information. Whether such low quality data can be used to

improve face recognition performance is an unknown question.

The recent release of Kinect sensor has received much attention because it can provide low

cost 3D data with high speed. Along with 3D data, the corresponding 2D color texture data

is also produced. In this chapter, we investigate whether Kinect is suitable for robust face

recognition. Due to the lack of publicly available Kinect face database that consists of large

amount of variations, we have constructed one namely CurtinFaces for our experiments

and for the research community. Two algorithms are proposed and evaluated on this new

dataset. The first algorithm namely the Multilinear Color Tensor Discriminant (MCTD)

model is a novel color face recognition algorithm. It makes use of only 2D data. By utilizing

tensor structure and multilinear analysis technique, it outperforms other state-of-the-art

2D methods when handling face images with large variations. The second algorithm

namely Finer Feature Fusion (FFF) is a novel RGB-D face recognition algorithm. We

show that, by utilizing the low quality 3D data Kinect provided, the performance of FFF

is more robust. As a result, we can justify the usefulness of Kinect 3D data.

The rest of this chapter is organized as follows. Section 6.1 compares several commercial

3D acquisition devices with the Kinect sensor. Section 6.2 describes the challenge of using

Kinect data. Section 6.3 details the specifications of the CurtinFaces database. Section

6.4 details the formulation and evaluation of the proposed MCTD method, whereas the
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Finer Feature Fusion algorithm is proposed and evaluated in Section 6.5. A summary is

presented in Section 6.6.

6.1 Commercial 3D Acquisition Devices

Figure 6.1: The Kinect Sensor (left) used in this work. The Minolta VIVID 910 3D scanner

(right) used in FRGC.

Table 6.1: Various 3D data acquisition devices.

Device Speed (sec) Charge Time Size (inch3) Price (USD) Acc. (mm)

3dMD 0.002 10 sec 423.9 >$50k <0.2

Minolta 2.5 no 1408 >$50k ∼0.1

Artec Eva 0.063 no 160.8 >$20k ∼0.5

BLITZ 0.9 no n/a >$14k ∼0.2

3D3 HDI R1 1.3 no n/a >$10k >0.3

SwissRanger 0.02 no 17.53 >$5k ∼10

DAVID SLS-1 2.4 no n/a >$2k ∼0.5

Kinect 0.033 no 41.25 <$200 ∼1.5-50

A comparison of 3D acquisition devices is summarized in Table 6.1 (see also (Boehnen and

Flynn, 2005)). 3dMD is designed specifically for instant 3D face acquisition and is used for

medical applications. Although, it can capture a single scan in 2 milliseconds, it requires
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10 seconds charging time prior to every scan. The VIVID 910 3D scanner from Konica

Minolta was used to acquire 3D data in the well-known Face Recognition Grand Challenge

(FRGC) (Phillips et al., 2005). The SwissRanger SR4000 is a time of flight 3D scanner.

Although it has faster capture time compared to the Kinect, its cost is relatively higher

and its accuracy is much lower than Kinect at medium range. Table 6.1 shows that high

resolution 3D scanners are generally expensive, slow in capturing time and bulky in size.

On the other hand, the Kinect sensor is low cost, has high acquisition speed, no recharge

time and is compact in size. More precisely, its size is about 11×1.5×2.5=41.25 cubic inch

and it weighs 1400 grams. It is available off-the-shelf and costs less than $200 USD. The

size, weight and cost of Kinect can be further reduced if its multi-array microphone and

motorized tilt are excluded since they are not necessary for face recognition.

6.2 Challenges of Kinect Data

Figure 6.2: Texture and 3D face models acquired with Minolta Phillips et al. (2005),

InSpeck Savran et al. (2008) and Kinect sensors. Top row: 3D faces with texture maps.

Second and third row: 3D faces without texture rendered as smooth surfaces in MeshLab

(Cignoni, 2012).

In terms of data acquisition, the Kinect sensor includes a standard RGB camera, an infra-

red projector and an infra-red camera. The projector projects a static infra-red pattern on

the scene (face in our case) which is sensed by the infra-red camera. This pattern is used

to resolve correspondence between the projector and the camera, and depth is calculated

using stereopsis (Khoshelham and Elberink, 2012). It is able to produce 640×480 range

image (mapped with RGB texture from the standard camera) at 30 frames per second.
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The depth accuracy of Kinect decreases dramatically from 1.5mm to 50mm when the

object is further away form the camera. However, since we use Kinect at a distance of 1m,

we are operating at a depth resolution very close to 1.5mm. Nevertheless, the 3D data

acquired with the Kinect sensor is very noisy. Some sample face images acquired with the

Kinect sensor are shown in Figure 6.2. The 3D faces rendered without texture are hardly

recognizable as human faces. One of the main objectives of this chapter is to justify the

feasibility of face recognition on such noisy Kinect data, so that we can take advantage of

its high speed and low cost.

6.3 CurtinFaces database

This section gives details of the instruments used, the data acquired and the participating

subjects during the creation of the CurtinFaces database. This database is available for

download at http://impca.curtin.edu.au/downloads/datasets.cfm.

6.3.1 Instrument Setup

Figure 6.3: Instruments setup.

The main instruments involved were a Kinect sensor, a standard digital camera, five 18W

fluorescent lamps and a standard desktop computer used to communicate with the Kinect.

The Kinect sensor produces 640×480 RGB image and a depth map (range image) at a

frame rate of about 30 per seconds. We have developed a program using the APIs provided
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by OpenNI 1 to stream the video frames from Kinect, and store the required frames as

still images in PNG format. A standard digital camera, the Lumix-DMC-FT1 model from

Panasonic, was used to capture still RGB Images with 4000×3000 resolution (stored in

JPEG format) for comparison with the RGB camera of the Kinect sensor. The position

of the cameras and lamps are shown in Figure 6.3. The cameras and lamps were located

about 1m from the floor and 1m from the subject, while the subject was asked to sit on

a chair so that his/her face is about 0.5m from the floor.

6.3.2 Data Acquisition and Organization

Each subject was imaged under different combinations of seven facial expressions, seven

poses, five illuminations and occlusions, resulting in a total of 97 variations. For each of

these 97 conditions, we obtained two images where one was captured by Kinect sensor and

the other was captured by the Panasonic digital camera at almost the same time.

The seven expressions are neutral, happy, disgust, anger, sad, surprise and fear. This

expression set is widely used as a standard for research on facial expression recognition

(Lucey et al., 2010; Shan et al., 2009). This expression set involves a rich set of facial

Action Units (AU) (P. Ekman, 1978) and can, therefore, simulate wide range of facial

variations in real application such as talking or laughing under surveillance. Although we

do not consider expression recognition in this work, the CurtinFaces database can be used

by other researchers for facial expression recognition.

The complete image capturing routine for one subject can be divided into four parts. Each

subject was labeled with a unique subject ID (sid) while images of the same subject was

labeled with a unique image ID (mid). A specific image in the database can be uniquely

identified by the subject and image ID together, i.e. (sid,mid).

Figure 6.4: Sample images in part 1 of the CurtinFaces database, which contains three

controlled shots.

In part 1, a total of 3 controlled shots were taken with frontal pose, 90 degree left profile

and right profile, as shown in Figure 6.4. Only for this part, the subjects were required to

1We used the Matlab wrapper (www.mathworks.com/matlabcentral/fileexchange/30242).
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Figure 6.5: Sample images in part 2 of the CurtinFaces database, which contains variations

in expression and pose.
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Figure 6.6: Sample images in part 3 of the CurtinFaces database, which contains variations

in expression and illumination.
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Figure 6.7: Sample images in part 4 of the CurtinFaces database, which contains occluded

images.

take off their glasses in case they were wearing them. These three controlled shots can be

used to reconstruct a complete 3D face model of the subject for 3D modeling applications.

We labeled these three images with (sid, 1), (sid, 2) and (sid, 3) respectively.

In part 2, images were acquired under the seven different expressions and the seven different

poses resulting in a total of 49 images per subject (see Figure 6.5). The seven poses, as

depicted in Figure 6.3, are 0o-frontal, 45o-up, 45o-down, 60o-left, 30o-left, 30o-right and

60o-right, respectively. At first, the subject was requested to perform one of the 7 facial

expressions. Then for each expression, the subject was requested to move their head to the

specific pre-measured position for the different pose captures, while the camera stay still.

Therefore, these 49 images were captured at different time. None of the lamps were turned

on in this part, while the lab lights were kept on to simulate ambient lighting condition.

The labeling of them was in order of poses, then expressions. Specifically, images in first

row of Figure 6.5 were labeled with (sid, 4) to (sid, 10) from left to right, while images in

second row had ID (sid, 11) to (sid, 17), etc, until (sid, 52).

In part 3, images were acquired under the seven different expressions and five different

illuminations resulting in a total of 35 images per subject (see Figure 6.6). The five different

illuminations were generated by five fluorescent lamps positioned at different locations as

shown in Figure 6.3. After turning off all laboratory lights, the fluorescent lamps were

turned on one by one. Under each lighting condition, the subject was requested to perform

one of the seven facial expressions. Thus each facial expression was captured under five

different lighting conditions in the following sequence: low ambient lighting (from monitors

etc.), left lamp, back left lamp, back right lamp and right lamp. Only frontal pose was

considered in this part. Images in the first row of Figure 6.6 were labeled with (sid, 53) to

(sid, 57) from left to right, while images in second row had ID (sid, 58) to (sid, 62), etc,

until (sid, 87).
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In part 4, images were captured under two types of occlusions. For each type, 5 conditions

were considered: 3 different poses and 2 different lightings, respectively. There were a

total of 10 images as shown in Figure 6.7. The first type of occlusion was designed to

cover the eyes. Subjects were requested to put on a sunglass. Then with the lab lights

switched on but none of the other lamps, the subject was requested to move his/her head

to 0o-frontal, 30o-left, and 60o-right. Next, we switched off the lab lights, with the subject

looking frontal, we turned on only the left lamp and then only the right lamp. The second

type of occlusion was designed to cover around the mouth. Subject was requested to take

off the sunglass and cover their mouth with his/her right hand. Then the same 3 poses,

2 lightings procedures were executed. Images in first row of Figure 6.7 were labeled with

(sid, 88) to (sid, 92) from left to right, while images in second row had ID (sid, 93) to

(sid, 97).

6.3.3 Subjects Detail

The participating subjects were students and staff members from our university and rep-

resent different demographics. The participants represent different races including Cau-

casians, Chinese and Indians. There were 10 females and 42 males. The ages of the

participants ranged from 20 to 60 years. 21 of the subjects were also wearing glasses.

Subjects were labeled with subject IDs in order.

6.4 Face Recognition using MCTD

In this section, we propose an algorithm that uses only the colored 2D data Kinect pro-

vided for robust face recognition. The proposed algorithm namely the Multilinear Color

Tensor Discriminant (MCTD) model, integrates two state-of-the-art 2D methods, i.e. the

MPCA-PS (Rana et al., 2009) and TDCS (Wang et al., 2011). As a result, MCTD com-

pensates their weakness and retain their strength. This method is composed of novel image

representation, color feature extraction and multilinear based classifier. Each component

will be detailed in this section after a brief review on MPCA-PS and TDCS.
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6.4.1 MPCA-PS and TDCS

MPCA-PS and TDCS are introduced in Section 2.3.2 and Section 2.5.5. A brief review is

given here for sake of completeness and contrasting purpose.

MPCA-PS uses a single tensor to represent the whole training data. Assumes that the

training data contains samples of Np people with Nl lighting conditions being captured

under Nv viewpoints. MPCA-PS represents all of them as a single fourth-order tensor T :

T ∈ RNp×Nl×Nv×Nx , (6.1)

where

T (ip, il, iv) ∈ RNx , (6.2)

denotes an image vector for the ip-th persion at il-th lighting condition and iv-th viewpoint

with Nx pixels. In conventional face identification, a query image q must be one of the

people in training set T . With this assumption, MPCA-PS classifies a query q to be a

person k with the minimum value of the following optimization problem:

min
k,ul,uv

‖q − C ×1 u
k
p ×2 ul ×3 uv ×4 UX‖2, (6.3)

where C is the core tensor, ukp is the k-th row of Up, for k = 1, . . . , Np. ul and uv are two

free variables used to reconstruct the lighting and viewpoint modes respectively.

The main idea of MPCA-PS is to create the core tensor C as a multilinear principal

subspace, such that any face image can be reconstructed approximately using C from

different lighting and pose perspective. Therefore, a query image can be classified as

person k, by finding the corresponding coefficients: ukp in Up, ul and uv in Eq. 6.3 that

yield the least reconstruction error. This approach generalize well to deal with variation

factors that are unseen in the training set. However, it is designed only for gray-scale

images. How to reformulate it for color images is an open problem.

TDCS represents each color image as a tensor. Thus, if there are N RGB training images

of size I1 × I2, they will be represented by N tensors {Ai ∈ RI1×I2×I3}, for i = 1, . . . , N

and I3 = 3. Each Ai can be transformed into its feature tensor Di as follows:

Di = Ai ×1 W
T
1 ×2 W

T
2 ×3 W

T
3 , (6.4)

where W1, W2 and W3 are projection matrices for row-mode, column-mode and color-mode

respectively. They are solved to maximize the classes separability in D-space, i.e.:

max
W1,W2,W3

tr(Sb)

tr(Sw)
. (6.5)
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where, Sb and Sw are the between and within class scatter matrices in D-space. In (Wang

et al., 2011), an iterative solution is proposed to solve W1,W2 and W3 alternatively. Fi-

nally, a query image is projected to TDCS and the Nearest Neighbor (NN) classifier is

used for classification.

The main idea of TDCS model is to extract features in row space, column space and color

space with an aim of achieving the maximum class discrimination. In fact the factors of

lighting and pose variations are not considered properly.

In summary, there are two significant differences between MPCA and TDCS. The first one

is their data representation: MPCA-PS represents each image as a vector and organizes

all training image vectors as a single tensor in Eq. 6.2, while TDCS model represents

each image as one individual tensor as in Eq. 6.4 instead of converting them to vector.

The second difference is their objectives: MPCA-PS focuses on creating a good core

tensor such that a query image can be reconstructed with the least error, while TDCS

focuses on extracting discriminative features such that the maximum class separability

can be achieved. The first drawback of MPCA-PS is that it converts each facial image

to vector mechanically, and this may discard some important facial structure information.

Secondly, MPCA-PS applies the classical Eigenface approach on the pixel mode, which

does not maximize class separability, hence lacking discrimination power. Lastly, MPCA-

PS is designed to work only on gray-scale images, thus it loses the advantage of color

information. On the other hand, the main disadvantage for TDCS model is that it does

not consider factors like pose and illumination properly, hence lacking robustness when

dealing with uncontrolled query images with large pose and lighting variations.

6.4.2 The Proposed MCTD Model

Based on above observations, we propose the Multilinear Color Tensor Discriminant

(MCTD) model in this section, which integrates MPCA-PS and TDCS as an novel repre-

sentation for training images. With this new framework, we can extract powerful discrim-

inant features based on color information and also can handle pose and lighting variations

properly. This will result in a multilinear based classifier for robust color face recognition.
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6.4.2.1 Image Representation

An important issue of the proposed MCTD model is its new data representation. In detail,

we first represent each color image as a tensor, to retain its underlying matrix structure,

and then organize all training image tensors into one single tensor for multilinear analysis.

As a result, N RGB training images can be represented by a tensor M :

M ∈ RNp×Nl×Nv×I1×I2×I3 , (6.6)

where Np ×Nl ×Nv = N and each of the N sub-tensors

M(ip, il, iv) ∈ RI1×I2×I3 (6.7)

denotes a color image, where I1 is the number of rows, I2 is the number of columns and

I3 = 3 is the number of color components. In contrast to the image T (ip, il, iv) in Eq. 6.2

which is converted to a vector, M(ip, il, iv) is a color image represented naturally as a 3-rd

order tensor. Consequently, the mean image of the ip-th person is defined as

M
ip

=
1

Nl ×Nv

Nl∑
il=1

Nv∑
iv=1

M(ip, il, iv), (6.8)

and the total mean image of all images is computed as

M =
1

N

N∑
ip=1

M
ip
. (6.9)

6.4.2.2 Feature Extraction

In order to extract the discriminant features from M , while preserving its matrix structure,

we need to find two discriminant projection matrices W1 ∈ RI1×I′1 , W2 ∈ RI2×I′2 and a

color space transformation matrix W3 ∈ RI3×I′3 (usually I ′1 < I1, I
′
2 < I2 and I ′3 ≤ I3),

and obtain the feature tensor F ∈ RNp×Nl×Nv×I′1×I′2×I′3 :

F (ip, il, iv) = M(ip, il, iv)×1 W
T
1 ×2 W

T
2 ×3 W

T
3 . (6.10)

Instead of following the procedure in (Wang et al., 2011) directly, we need to consider

the pose and lighting variations here. For such purpose, let T(n) denote mode-n tensor

unfolding, ‖T‖ denote the Frobenius norm for a tensor and tr(.) denote the trace of a

matrix. Then the n-mode between-class scatter matrix Ψ
(n)
b in the feature space can be
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computed as follows:

Ψ
(n)
b = Σ

Np

ip=1‖F
ip − F‖2

(n)

= Σ
Np

ip=1‖(M
ip −M)×1 W

T
1 ×2 W

T
2 ×3 W

T
3 ‖2(n)

= Σ
Np

ip=1‖W
T
n (M

ip
(n) −M (n))W̃n‖

= Σ
Np

ip=1tr
[
W T
n (M

ip
(n) −M (n))W̃nW̃

T
n

× (M
ip
(n) −M (n))

TWn

]
= tr(W T

n S
(n)
b Wn),

(6.11)

where W̃n = Wd ⊗ · · · ⊗Wn+1 ⊗Wn−1 ⊗ · · · ⊗W1, n = 1, 2, . . . , d and d = 3, while ⊗
denotes the Kronecker product. Similarly, the n-mode within-class scatter matrix Ψ

(n)
w in

the feature space can be defined as :

Ψ(n)
w = Σ

Np

ip=1Σ
Nl
il=1Σ

Nv
iv=1‖F (ip, il, iv)− F

ip‖2
(n)

= tr

{
W T
n

[
Σ
Np

ip=1Σ
Nl
il=1Σ

Nv
iv=1

(M(ip, il, iv)(n) −M
ip
(n))W̃nW̃

T
n

× (M(ip, il, iv)(n) −A
ip
(n))

T
]
Wn

}
= tr(W T

n S
(n)
w Wn).

(6.12)

The objective here is to maximize the class separability in the feature space, hence defining

the following MCTD criterion:

max J(Wn) =
Ψ

(n)
b

Ψ
(n)
w

=
tr(W T

n S
(n)
b Wn)

tr(W T
n S

(n)
w Wn)

, (n = 1, 2, 3). (6.13)

One can see that Eq. 6.13 consists of three variables, it can be optimized alternatively by

solving its corresponding generalized eigenvalue decomposition problem while fixing any

two of the variables. In fact, the approach for obtaining solutions Wi is actually the same

as in (Wang et al., 2011). However the representation will be useful for the classification

in next step.

6.4.2.3 Classification

To harness the power of multilinear analysis, we use the multilinear technique on the

feature tensors F in Eq. 6.10 to create a core tensor C. In this case, F can be reconstructed
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as

F ≈ C ×1 U
P ×2 U

L ×3 U
V ×4 U

x ×5 U
y ×6 U

z, (6.14)

where C is the core tensor computed by Eq. 2.17, UP , UL and UV are the eigen-

person, eigen-lighting and eigen-viewpoint, respectively. Compared to the eigen-pixel Ux

in MPCA-PS, here we have three items Ux, Uy and U z. They are the eigen-row-feature,

eigen-column-feature and eigen-DCS, respectively. One can see that the images here are

still in tensor form without conversion to vectors.

Now given a RGB query image represented as a third-order tensor Q ∈ RI1×I2×I3 , we first

project Q to the feature space with Wn and obtain Q′ ∈ RI′1×I′2×I′3 .

Refereing to Eq. 6.14, let ukp denotes the k-th row of Up and Bk = C×1u
k
p×4U

x×5U
y×6U

z.

We classify Q as person k by solving the following:

min
k,ul,uv

‖Q′ −Bk ×2 ul ×3 uv‖2. (6.15)

Let B(k, el, ev) ∈ RI′1×I′2×I′3 denote the image-feature tensor of the k-th person at el-th

eigen-lighting and ev-th eigen-viewpoint. Following the rule of mode multiplication, we

can rewrite the following term as matrix multiplication:

Bk ×2 ul ×3 uv

= ΣN ′v
ev uv(ev)Σ

N ′l
el ul(el) . B(k, el, ev) ≡ gk . Ek,

(6.16)

where gk ∈ RN ′lN ′v is a row vector of combined coefficients for person k, and Ek ∈
R(N ′l .N

′
v)×(I′1.I′2.I′3) is a matrix that each of its rows is obtained by concatenating all feature

tensors of the k-th person B(k, 1, . . . , N ′l , 1, . . . , N
′
v) to an augmented row vector. Since

Eq. 6.15 is minimized when Q′ = (gk. Ek), thus we can derive the least square solution

for gk as follows:

gk = Q′ . E+
k , (6.17)

where (.)+ denote the Moore-Penrose pseudoinverse operator.

Ultimately, we can classify Q as person k by solving:

min
k
‖Q′ − gk . Ek‖2. (6.18)

6.4.3 Evaluation on MCTD

In this section, we evaluate MCTD on both CMU-PIE and CurtinFaces databases. All

images used here are cropped to 32× 32 with eyes and mouth aligned to same locations.
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PIE (Sim et al., 2001) dataset contains color face images of 68 subjects. The ”illumina-

tion” set, which has 273 images (at 13 poses × 21 lighting conditions) for each subject

(subject 04039 is excluded from our test), is used for our experiments. The four experiment

sets consist of different number of randomly selected training samples (pose × lighting)

per subject, which are: 15(3 × 5), 60(6 × 10), 135(9 × 15) and 209(11 × 19) respectively,

while the remaining images are used for testing.

CurtinFaces, as described previously, consists of 2D and 3D face samples with large

variation and disguise. Only a subset of 2D data is used to evaluate MCTD, whereas the

3D data is ignored here. This subset consists of 4368 color images of 52 individuals with

variations in poses(V ), lighting(L) conditions and facial expressions(E). Each individual

has a total of 84 images, where 49 images are composed of 7V × 7E and 35 images are

composed of 5L×7E. Four experiment training sets are constructed by randomly selecting

images of: 5V × 5E, 6V × 6E, 3L× 5E and 4L× 6E, per subject, respectively and using

the rest for testing.

Four methods are implemented here: PCA+NN(Gray) (Turk and Pentland, 1991), MPCA-

PS(Gray) (Rana et al., 2009), TDCS(color) (Wang et al., 2011) and MCTD(Proposed).

For methods that involving PCA or MPCA, the numbers of eigenvector retained are chosen

to preserve 99% of energy. Following (Wang et al., 2011), for TDCS and MCTD feature

extraction, 10 row features, 10 column features and 3 discriminant color combinations

are retained, with iteration-stop threshold set to 0.1. For each of the eight experiments,

the rank-one identification rate (Biometrics, 2006) averaged over 25 repetitions and the

corresponding standard-deviation (rate%±std) are reported in Table 6.2.

Table 6.2: Recognition rates (% ± std)

PIE database

Training PCA+NN MPCA-PS TDCS MCTD

15 36.3± 5 46.5± 7 46.4± 7 48.0± 8

60 56.8± 5 65.6± 7 69.2± 5 73.3± 7

135 70.3± 5 75.3± 6 75.3± 4 85.4± 6

209 70.9± 10 76.7± 10 77.0± 6 88.6± 10

CurtinFaces database

Training PCA+NN MPCA-PS TDCS MCTD

5V × 5E 52.2± 6 56.7± 7 74.1± 9 78.2± 10

6V × 6E 55.4± 10 57.9± 4 74.7± 2 79.0± 2

3L× 5E 64.8± 3 72.9± 2 88.4± 3 90.1± 4

4L× 6E 80.2± 17 88.2± 19 97.6± 17 98.5± 16
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From Table 6.2, one can observe that the proposed MCTD model always achieve the best

results in comparison with all other approaches in all cases. For PIE database, the iden-

tification rate increases with increasing number of training samples, which demonstrates

consistency in our experimental setup. The identification rate in CurtinFaces database is

lower with pose variations than with lighting variations, which shows that the pose prob-

lem is more challenging. Note that for all methods, the standard deviations can be as high

as 19%, however, this is reasonable in the situation of having random unseen factors in the

testing sets. Despite having large deviation, the proposed MCTD model achieves compa-

rable stability to others. Moreover, both MPCA-PS and TDCS outperform the baseline

PCA, which once again demonstrates the power of multilinear analysis and color informa-

tion. Nevertheless, MPCA-PS is not compared to MPCA since MPCA-PS is proven to be

better in Rana et al. (2009).

As all 8 experiments are repeated 25 times, there are a total of 200 single evaluations.

The proposed MCTD consistently outperforms both MPCA-PS and TDCS, proving that

it utilizes the advantage of both methods. Therefore we are confident to conclude that,

MCTD model achieves the new state-of-the-art performance for robust face identification

using only 2D data that involve large and unseen factor variations.

While MCTD seems to be a reasonable solution to robust face recognition problem, it is

not completely reliable, as it sometime has large standard deviation. Its performance drops

dramatically especially when more unseen poses appear in the test set. For example, its

performance decreases to 48% on PIE when only 15 images per person is used for training

and the rest for testing. Similarly in CurtinFaces, the lowest recognition rate is observed

for the training set 5V ×5E, where the corresponding test set consists of two unseen poses.

In next section, we propose an algorithm that also makes use of Kinect depth data. We

expect that the Kinect depth data can improve recognition robustness even though it is

very noisy.

6.5 Face Recognition using FFF

Similar to most 3D scanners, the Kinect provides both RGB texture image and depth map

of the scene at the same time. In terms of data format, there are two common options

namely range image or real world coordinates. The range image is similar to an intensity

image except that each pixel value represents the depth of the scene point measured from

the camera. Using the camera intrinsic parameters, the depth map can be converted to

real world coordinates comprising the x, y and z coordinates of the pixels. These are
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Figure 6.8: The proposed framework.

also referred to as the “point cloud”. Using the OpenNI API, it is possible to obtain

Kinect data in both formats. We use the range image format in our experiments but the

CurtinFaces database contains both formats.

As mentioned, the depth data provided by Kinect has a relatively lower accuracy. In

order to show the effectiveness of Kinect data for face recognition, we propose an effective

algorithm based on Kinect depth map. An overview of the framework is depicted in

Figure 6.8. The framework can be divided into three stages: data preprocessing, feature

extraction and finer feature fusion. Finally, the Nearest Neighbor (NN) rule is used for

classification.

6.5.1 Stage 1: Data Preprocessing

Data preprocessing is the first stage of our framework. The steps involved are: calibration,

face cropping, face alignment, down-sampling and normalization. In particular, we cali-

brate the RGB and depth image using the parameters provided by ROS.org. After that,

the eyes, nose and mouth are located. Then the face image and depth map are cropped

with the facial components aligned. Similar to previous chapters, we follow a tradition

alignment procedure which first manually locates the two eyes and the lip on the image,

then transits and scales the image and depth map such that these three identified points

are aligned to the same pixel. They are then downsampled to 32×32. Finally, the depth
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map is normalized such that the closest pixel has value 0 (which is usually the nose tip

for frontal faces).

Camera calibration is required since Kinect captures RGB and depth image using different

cameras. Despite that both images are 640×480, their pixels cannot be directly mapped

to each other. This is because the RGB and depth cameras have different extrinsic and

intrinsic parameters.

Facial components alignment is an important preprocessing step for the success of ap-

pearance based template matching methods such as LDA. Images of the same face under

different poses have very different facial component locations which can lead to the failure

of face recognition methods. Some 3D face recognition methods align poses in 3D space

based on their 3D model (Wang et al., 2010; Spreeuwers, 2011). However, the quality

of the data provided by Kinect is not high enough to benefit form such a 3D alignment

approach. For the sake of simplicity and efficiency, we adopt a 2D based face alignment

approach. Ultimately, our objective is just to show the effectiveness of Kinect data for

face recognition.

6.5.2 Stage 2: Feature Extraction

In stage 2, various useful features are extracted from both the preprocessed RGB and

range images. In particular, the DCS (Discriminant Color Space) (Yang et al., 2010b)

method is applied to the RGB image whereas three different shape descriptors are used

to represent the depth map. These shape descriptors are LBP (Local Binary Patterns)

(Ahonen et al., 2004), Haar (Viola and Jones, 2001) features and Gabor features (Liu and

Wechsler, 2002). Details of the features are given below.

(Stage 2a) Texture Feature: The RGB image captured by Kinect has the same struc-

ture as any other standard camera. Therefore, color face recognition algorithms can be

applied directly to extract color face features. As detailed in Section 2.5.3, the Discrimi-

nant Color Space (DCS) (Yang et al., 2010b) method is one of the simplest, yet efficient

and robust approaches. It seeks 3 linear combinations of R, G and B color components to

transfer the image from RGB color space to DCS, such that the within class distance is

minimized while the between class distance is maximized.

To extract DCS-LDA features, the image is first converted from RGB to DCS format.

Each of the 3 DCS color components are then normalized to zero mean and unit stan-

dard deviation to avoid variance domination in one component over the others. After
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concatenating the 3 DCS color components into an augmented vector, LDA is applied.

(Stage 2b) Depth Feature: The raw depth map itself provides very little discriminative

information due to its low quality. However, we can extract useful shape cues from it.

Wang et al. (2010) showed that the Local Binary Patterns (LBP), Haar-like features and

Gabor features provide complementary discriminative shape cues for face recognition.

Tenllado et al. (2010) proved that the original image and its Gabor filtered images also

exhibit complementary information. In our framework, we adopt four different shape

representations: Range, LBP, Haar and Gabor features. After transforming to these

representations, a classical LDA is employed for feature extraction. This step is important,

since the dimension for Haar and Gabor representations are too high. More importantly,

as we are considering the context of robust face recognition, we need to transform features

into a more discriminant space which is robust to intra-class variations.

To extract Range-LDA features, the preprocessed range image is scaled from 0 to 255

and stored as a gray-scale image 2. The range image is converted into a vector form by

concatenating its columns before the application of LDA.

Figure 6.9: The LBP operators. (Left) Gray-scale image block. (Middle) LBP represen-

tation. (Right) Extended LBP operator with 8 samples on a circle of radius 2.

To extract LBP-LDA features, LBP is applied on the original range image scaled from 0

to 255. LBP is a powerful descriptor for face recognition and we use its improved version

(Ahonen et al., 2004) which computes the representation on image patches. It uses circular

neighborhoods and emphasizes on uniform patterns. An LBP is uniform if there are at

most two bitwise transitions from 0 to 1 or vice versa. For the neighbor pixels selection,

8 pixels are sampled on a circle of radius 2 pixels as shown in Figure 6.9. For histogram

computation, instead of computing one for the whole image, the image is divided into 16

2Although more than 10 bits are used to store the original depth data, 256 intensity levels is enough to

retain all the information as most of the faces only have around 50 mm depth ranges.
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non-overlapping patches of 8×8 each and local histograms are computed for each local

patch. There are a total of 58 LBPs that is uniform and we use a 59-bin histogram for

each patch, where the extra bin stores all non-uniform LBPs. By concatenating all local

histograms, we obtain an LBP representation for the 32×32 range image as a vector of

944 dimensions (59×16). Finally, LDA is applied for dimensionality reduction.

Figure 6.10: The Haar operators. The square on the right denotes the average of a region.

To extract Haar-LDA features, the Haar operators are applied on the range image. Haar

features effectively describe the local shape differences. The Haar operators we used are

shown in Figure 6.10. These operators have multiple possible sizes which may lead to a very

high dimensional feature vector. Therefore, we only use squares or rectangles with width

and height equal to 6 or 7 pixels. This is a typical size of a facial component (e.g. eyes

and mouth) in a 32×32 range image. By combining the output of all operators, we obtain

a Haar feature vector of 29230 dimensions. We use LDA to reduce the dimensionality of

this feature.

To extract Gabor-LDA features, Gabor filters with different scales and orientations are

applied on the range image to capture the spatial locality characteristic. The Gabor

kernels are defined as

Ψu,v(z) =
‖ku,v‖2

σ2
e−‖ku,v‖

2‖z‖2/(2σ2)(eiku,vz − e−σ2/2), (6.19)

where z = (x, y), ‖·‖ is the norm operator, u and v is the orientation and scale respectively.

ku,v is the wave vector defined as

ku,v =
kmax
fv

eiπu/8, (6.20)

where fv is the spacing factor between kernels and kmax is the maximum frequency. We
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extract Gabor features at 8 orientations and 5 scales. Each Gabor output is downsampled

to 16×16 to avoid the high dimensionality and normalized to zero mean with unit standard

deviation. By combining these downsampled outputs, we obtain a Gabor representation

vector of 10240 (40 × 16 × 16) dimensions which is then fed to LDA for dimensionality

reduction.

Note that in the case of each feature, before applying LDA, PCA is used to reduce the

dimensionality of the feature vectors by retaining 99% of the energy. LDA further reduces

the dimensions of all individual features to 51.

6.5.3 Stage 3: Finer Feature Fusion

After obtaining Range-LDA, LBP-LDA, Haar-LDA, Gabor-LDA and DCS-LDA features,

an effective fusion mechanism is required, as these features have their own weaknesses

and advantages. A feature-level fusion mechanism can be used. We can first normalize

each feature vector and then concatenate them into one augmented vector for Nearest

Neighbor (NN) classification. However, since LBP, Haar and Gabor decode shape cues,

the augmented feature vector is expected to carry redundant information. Performing

NN classification on this feature vector, with high dimensionality and redundancy, is

ineffective.

Based on this analysis, we propose a novel fusion strategy by applying LDA one more

time to extract finer LDA features. Specifically, each type of feature is normalized to zero

mean and unit standard deviation. Then they are concatenated to form an augmented

feature vector of size (51×5 = 255) for the subsequent application of LDA.

There are two advantages of this fusion mechanism. Firstly, the subsequent LDA further

reduces the dimension of the augmented feature vector and therefore, removes redundant

information. Secondly, LDA extracts features such that they maximize class separability.

Therefore, if the training samples cover sufficient variations such as varying poses, illumi-

nations and expressions, then a subsequent application of LDA will extract finer features

that are more robust to various imaging conditions.
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6.5.4 Evaluation on FFF

In this section, we propose a standard training and test set for the CurtinFaces database.

We will evaluate the proposed framework using these standard partitions. We aim to

demonstrate the effectiveness of kinect data for face recognition and to report benchmark

performances on this newly acquired data set. Although the CurtinFaces database con-

sists of two sets of images, which are captured by Kinect sensor and Panasonic3 camera

respectively, we only consider Kinect data in this work. For all experiments that involve

LDA feature extraction, the dimension is set to be 51 (which is the maximum).

6.5.4.1 Data Partitioning and Performance Evaluation

We propose a standard training set for CurtinFaces and use it in all our experiments in

this section. Nevertheless, the effect of different training sizes is also examined later. A

fair training set should contain sufficient images to cover a reasonable range of variations.

Therefore, we select a subset of the database, containing 18 images per subject. More

precisely, we select 7 viewpoints, 6 facial expressions and 5 lighting conditions without

interaction between these factors i.e., when one factor changes, the other two factors

remain fixed. The IDs of the training images are 4 to 11, 18, 25, 32, 39, 46 and 53 to 57.

Thus the total number of training images are 936. Moreover, since the Kinect camera can

capture video with a frame rate of 30fps, collection of this training set is feasible in real

applications during the enrollment stage with the help of a suitable flashing system.

The testing set used for all experiments in this work includes all other unoccluded images

that are not used for training. There are a total of 60 images per subject involving 6×6

different viewpoints×expressions and 5×6 different lightings×expressions. Precisely, the

IDs of the test images are 4 to 87 excluding the IDs appeared in training set. Thus in

overall we have a total of 3120 test images. Note that we do not use images 1,2 and 3

for training or testing. However, other researchers can consider their use for profile face

recognition.

CurtinFaces is more suitable for the analysis of face identification, such as surveillance or

access control systems. This problem requires the system to identify the identity of the

query image from the database. The rank-one identification rate on the Cumulative Match

Curve (CMC) is used as the performance benchmark. CMC plots the correct identification

rate against the rank. Rank-one means only choosing one identity, which is usually the

3The Lumix-DMC-FT1 model digital camera.
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requirement for most of the face identification systems. Rank-k means choosing k identities

which means to allow certain false accept rate. Since there are 52 subjects in CurtinFaces,

thus the maximum value for k is 52.
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Figure 6.11: The CMC curve up to rank-

35 for PCA, LDA, DCS and the proposed

framework.
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Figure 6.12: The CMC curve up to rank-35

for various shape features and fusion mech-

anisms.

Table 6.3: Rank-1 identification rates (%) for the proposed frame-

work with different color spaces. The notation ”+Depth” in the

second row denotes the inclusion of the four shape features.

Gray RGB nRGB I1I2I3 DCS

Texture only 74.8 82.0 85.6 86.9 87.0

Texture+Depth 82.3 87.2 89.7 90.0 91.3

Improvement 7.5 5.1 4.1 3.1 4.3

6.5.4.2 Benchmark Performance Overview

In this experiment, we aim to show some benchmark performances. In order to examine the

difficulty level of CurtinFaces, we implemented the EigenFace (PCA) (Turk and Pentland,

1991) and FisherFace (LDA) (Belhumeur et al., 1997) algorithms as the baselines. Both

algorithms are based on gray-scale images. Nevertheless, the proposed framework is also

evaluated against the DCS (Yang et al., 2010b) method on color images, which is closely

related to our framework. The corresponding CMC curve is plotted in Figure 6.11.

In terms of rank-1 identification rate, the PCA method achieves only 64.8% showing the

difficulty level of this data set. Although LDA achieves 74.6%, this accuracy is still unac-

ceptable for many applications. The proposed framework achieves 91.3%, which improves

the baselines by a large magnitude. By excluding depth data from our framework, the
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Table 6.4: Rank-1 identification rates (%) using different training sizes.

Number of training images per subject

6 9 12 15 18

LDA baseline 44.5 ± 4.4 55.2 ± 4.0 62.9 ± 2.4 69.1 ± 2.2 74.6

RGB+LDA 48.6 ± 4.9 61.0 ± 5.1 70.0 ± 3.7 76.8 ± 2.5 82.0

DCS method 57.1 ± 6.1 70.2 ± 5.3 78.4 ± 3.4 82.7 ± 3.0 87.0

Proposed 62.1 ± 5.0 74.3 ± 5.6 82.5 ± 3.3 86.4 ± 3.7 91.3

Improvement over DCS 5.0 4.1 4.1 3.8 4.3

Table 6.5: Recognition time in milliseconds for the

complete testing set and a single query (average time).

Whole Set Single Query

Preprocessing 175.5ms 0.051 ms

Range image 25.0 ms 0.007 ms

LBP 2299.9 ms 0.670 ms

Haar 4529.3 ms 1.320 ms

Gabor 34172.6 ms 9.957 ms

DCS 233.2 ms 0.080 ms

Fine features 31.0 ms 0.009 ms

NN Classification 75.5 ms 0.022 ms

Total 41466.5 ms 12.082 ms
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DCS method itself achieves 87% by using texture image only. As a result, the inclusion

of depth data in our framework increases the accuracy by 4.3% over the texture data,

justifying its importance. On the CMC curve, our proposed framework is consistently on

top of the others, while the performance of all methods converge at around rank-35. These

results reveal the difficulty level of face recognition on CurtinFaces and set the current

state-of-art performance for it.

6.5.4.3 Recognition with Kinect Depth Map

In this experiment, we perform face recognition using the depth map only. No texture

information is involved. In order to justify the effectiveness of our proposed usage of depth

data, we investigated the performance of individual shape features and two different fusion

mechanisms. As described in Section 6.5.2, the shape features are Range-LDA , LBP-

LDA, Haar-LDA and Gabor-LDA. We also implemented the common feature-level fusion

mechanism mentioned in Section 6.5.3, which is denoted as Funsion1 in Figure 6.12. This

method simply concatenates each normalized feature and then performs NN classification

directly on the augmented feature. Our proposed mechanism that applies LDA on the

augmented feature vector for finer feature fusion (FFF) is denoted as Funsion2.

As shown in Figure 6.12, applying LDA on the original range image achieves only 41.9%

rank-1 accuracy, but after fusing all shape features by Fusion2, it becomes 72.5%. The

other 3 shape features are all performing better than Range-LDA. Among them, LBP-

LDA is the most powerful in this case which achieved 67.5%. However, Fusion1 decreases

the performance to 66%, showing ineffectiveness of this fusion strategy. One reason is due

to a large number of variation factors in our database. The subsequent LDA step in FFF

(Funsion2) takes advantage by extracting invariant and complementary finer features from

all the shape cues. Thus, the proposed Fusion2 is able to further increase the performance

by 5% over LBP-LDA.

It is important to emphasize that we achieved a 72.5% recognition rate using the depth

data alone from Kinect which is the highest recognition rate reported for Kinect so far.

6.5.4.4 Recognition with Various Color Spaces

In this experiment, we investigate the use of color texture information provided by the

Kinect sensor. The color texture image provided by Kinect is encoded using the RGB
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color model. However, RGB is a weak color space for face recognition. Other color spaces

such as the normalized RGB (denoted as nRGB) using CSN-I proposed in (Yang et al.,

2010a), the I1I2I3 (Ohta, 1985) and the Discriminant Color Space (DCS) (Yang et al.,

2010b) are proven to be better than RGB. Nevertheless, it is important to use a color

space that has complementary information to the shape features. The performance of the

proposed framework with different color spaces are summarized in Table 6.3.

For gray-scale and all color spaces considered in Table 6.3, performances can be improved

when combined with shape features. This observation shows that the shape features

encode information that is complementary to the texture features. The candidates that

benefit most from shape features are gray-scale and RGB. However, their performances

are the lowest due to the fact that both gray-scale and RGB are not a good representation

for color image in terms of separability for different identities. Although I1I2I3 performs

similar to DCS, it benefits the least from depth feature. Therefore, DCS is the best color

space in this case.

6.5.4.5 Robustness to Unseen Variations

One may argue that the success of LDA in our experiment can be due to the fact that,

the standard training set has covered all poses, illuminations and expressions. Although

interaction between these factors (i.e. the testing set) are not seen, it may be sufficient

for LDA to extract invariant features. In this section, we aim to show how our framework

generalizes against unseen variations. In addition, we also aim to show some baseline

performances for CurtinFaces under different number of training samples.

From 18 images per subject in the standard training set, we create 4 smaller sets with

6, 9, 12 and 15 images per subject. These images are randomly chosen and repeated

50 times. Therefore, each training set contains some missing factors with 50 random

alternations. We evaluate the performance of LDA baseline (gray-scale), RGB+LDA,

DCS method and our proposed framework on the same standard testing set introduced

in Section 6.5.4.1. Note that these methods, except the proposed framework, only work

on the texture image, not considering any depth data. The averaged rank-1 identification

rate and standard deviation for the 50 repetitions are reported in Table 6.4.

From Table 6.4, the performance of LDA baseline drops dramatically to 44.5% with 6

training images per subject. As expected, color is better than gray-scale image, and is even

better when depth data is also used. Despite having unseen factors in smaller training sets,

the proposed framework still improves over DCS, in all cases. These results demonstrate
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the importance of Kinect depth data, as well as the effectiveness of our framework.

6.5.4.6 Time Complexity

Haar and Gabor features are known to be slow due to their high dimensionality. In this

section, we justify the applicability of our framework for real time systems. Only testing

time is considered, as training is an offline process. Our implementation is based on 64-bit

Matlab using a computer with Intel Core2 Quad CPU @ 3GHz and 4GB RAM. The time

required in each step of our framework is reported in Table 6.5. As shown in Table 6.5, only

around 12 milliseconds are required to recognize a single query image. Actually, most of

the time is spent on Gabor feature extraction which can be even faster when implemented

optimally in a faster programming language. However, the current implementation is

already sufficient for real time applications.

6.6 Summary

The contributions made in this chapter are as follows. Firstly, we construct a new face

database namely CurtinFaces. This database is the first publicly available face database

that captured by Kinect with large variations. Some standard experimental protocol are

proposed. Secondly, we propose the MCTD method for 2D color face recognition. This

method outperforms several other state-of-the-art 2D methods on PIE and CurtinFaces.

Thirdly, we propose the FFF method that utilizes the RGB-D data Kinect provided.

We show that although the Kinect depth data is noisy, it can be used to improve face

recognition performance significantly.

A shortcoming of MCTD algorithm is that it dose not harness 3D information. Although

we have proposed the FFF algorithm to utilize the depth data from Kinect, it dose not

utilize the absolute measurement advantage of 3D data. Moreover, both MCTD and

FFF do not harness sparse coding. As a result, they have limited robustness against

uncontrolled factors such as pose, noise and disguise. Addressing all these weakness, a

sophisticated RGB-D face recognition method is proposed in Chapter 7. This method

can perform reliable face recognition under simultaneous variations in pose, illumination,

expression and disguise, regardless of whether the 3D resolution is high or low.

116



Chapter 7

Utilizing Color and Depth for

Robust Face Recognition

Three dimensional face recognition has attracted significant research interest in the past

decade due to its broad applications. Face recognition can be performed in a non-intrusive

way and sometimes without the user’s knowledge or explicit cooperation. However, facial

images captured in an uncontrolled environment can have combinations of variations such

as varying pose, facial expressions, illumination and disguise. Since the type of variations

are unknown for a given image, it becomes critical to design a face recognition algorithm

that can handle all these factors simultaneously.

Simultaneously dealing with multiple variations is a challenging task for face recognition.

Traditional approaches have tried to tackle one challenge at a time using optical 2D images

or texture. For example, the illumination cone method (Georghiades et al., 2001) models

illumination changes linearly. The authors prove that the set of all images of a face under

the same pose but different illuminations lies on a low dimensional convex cone which can

be learned from a few training images. Although this technique can be used to generate

facial images under novel illuminations, it assumes that faces are convex and requires

training images to be taken with a point light source. The Spare Representation Classifier

(SRC) (Wright et al., 2009) and its extension, the Robust Sparse Coding (RSC) (Yang

et al., 2011), can handle face images with disguise (e.g. wearing sunglasses) and noise, by

removing or correcting the outlier pixels. However, some outlier pixels may have similar

texture intensity to the human face and thus can not be identified. Some researchers

have also tried to solve the pose problem using 2D images. For example, Gross et al.

(2004) construct the Eigen-light fields which are the 2D appearance models of a face from

all viewpoints. This method requires many training images under different poses and

dense correspondences between them which are difficult to achieve. Sharma and Jacobs

(2011) use Partial Least Squares (PLS) to linearly map facial images in different poses

to a common linear subspace where they are highly correlated. However, such a linear

subspace may not exist. In fact, pose variations are highly non-linear and can not be

modeled by linear methods. This is why the performance of the above methods drops

dramatically with extreme pose variations.
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As discussed in Chapter 1, limitations of 2D face recognition, especially sensitivity to

pose variation, can be overcome by using 3D face data. Facial geometry is invariant to

illumination whereas 2D images are a direct function of the lighting conditions. Although,

the 3D imaging process can be influenced by lighting, the 3D data itself is illumination

invariant. Facial images under different illumination conditions can be generated using a

3D face model (Toderici et al., 2010). Additionally, it can be used to correct the facial

pose or to generate infinite novel poses.

Although existing 3D methods (Mian et al., 2007; Queirolo et al., 2010; Spreeuwers, 2011;

Lei et al., 2013) can achieve very high accuracy even under challenging experiments such

as the Face Recognition Grand Challenge (FRGC) (Phillips et al., 2005), they all assume

the availability of high resolution 3D face scanners. Such scanners are costly, bulky in

size and have slow acquisition speed which limit their applications. As we can see from

Table 6.1 in previous chapter, most 3D devices that have less than 0.5mm depth accuracy

require more than one second to acquire one 3D sample. Consequently, subjects must sit

still in front of the sensor for the duration of scanning which implicitly means that the

user is cooperative. Therefore, the advantage of non-intrusiveness for face recognition is

compromised. Although high speed 3D acquisition devices are available such as Kinect,

they provide only low resolution and noisy 3D data. In this chapter, we design an algorithm

that performs equally well on low and high resolution 3D data for robust face recognition.

The rest of the chapter is organized as follows. Section 7.1 reviews some existing 3D

face recognition methods and discuss their limitation in case of low resolution 3D data.

Section 7.2 presents an overview of the proposed algorithm and Section 7.3 to 7.5 detail

the proposal, which includes canonical preprocessing, multi-channel discriminant trans-

form and multi-channel weighted sparse coding. Section 7.6 introduces the CurtinFaces

database and the portion used in our experiment. Section 7.7 describes the experiment

setting. Section 7.8 to 7.11 report and analyze the experimental results on four datasets.

Section 7.12 discusses the time complexity of the system. A summary is given at the end

in Section 7.13.

7.1 Current 3D Face Recognition Methods

Many methods have been proposed for 3D face recognition with increasing performance

and sophistication, but they are not designed for noisy data such as from Kinect. It would

be interesting to see the performance of existing 3D face recognition techniques on Kinect

data. Bowyer et al. (2006) gave a comprehensive survey of 3D face recognition methods
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in 2006 and recent developments until 2012 are covered in the literature review section of

a recent paper by Lei et al. (2013). Here, we complement these surveys and discus the

limitations of some representative techniques, specifically in the context of uncontrolled

face images acquired with a noisy sensor such as the Kinect.

The Iterative Closest Point (ICP) algorithm was proposed by Besl and McKay (1992) for

the registration and comparison of rigid surfaces. It has been used by many researchers for

pose normalization and comparison of 3D faces. It finds the optimal rigid transformation

that minimizes the distance between the corresponding (nearest) points of two 3D datasets.

The final registration error is generally used as a classification criterion. ICP and its

variants have been used for 3D face recognition (Mian et al., 2007; Faltemier et al., 2008).

The point-to-point error of ICP is sensitive to expression variations and incorrect point-

to-point correspondences may lead to a local minimum. These two problems are more

likely to occur when ICP is applied on a pair of noisy 3D faces acquired by Kinect and

therefore, the result can be highly inaccurate.

Bronstein et al. (2007) proposed an expression-invariant representation of the facial sur-

faces based on isometric deformations. Matching was done by computing distance between

the canonical forms of two faces in their embedded subspace. This algorithm assumes all

faces are frontal and does not perform any pose correction. Imaging artifacts caused by

disguise changing the facial surface deformation can also affect the canonical representa-

tion.

Mian et al. (2007) proposed multi-modal (2D + 3D) hybrid (holistic + part-base) ap-

proach for robust face recognition. An iterative PCA based algorithm was used for pose

correction. Matching of two faces was done using several heuristics: similarity of the SIFT

and spherical feature on the holistic 2D and 3D faces respectively, and ICP registration

errors of the segmented 3D nose and eyes-forehead components. They have shown that

these segmented parts are robust against expression variations. However, the segmenta-

tion requires automatic detection of the inflection points around the nose, which may not

be achievable on the noisy Kinect data. Faltemier et al. (2008) divided a face into 28

overlapping regions in order to improve recognition robustness. ICP method is applied

on each region and matching of two faces was performed by fusing the regional registra-

tion errors. The subdivision idea is very effective for high resolution scans. Over 80%

matching accuracy was reported on some of the small individual region of just 25-45mm

spherical radius. However, small regions in a low resolution data may not be sufficiently

discriminative for face recognition.

Queirolo et al. (2010) proposed a Simulated Annealing (SA) approach for range image
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registration and Surface Interpenetration Measure (SIM) for similarity. Matching was

done by fusing the SIM for elliptical regions around the nose, forehead and the holistic

face. Although, impressive results were reported on the FRGC database, their algorithm

requires six landmark points including eye and nose corners, which can not be detected,

even manually, on the noisy Kinect 3D face data. Kakadiaris et al. (2007) proposed the

Annotated Face Model (AFM) to register the input 3D face to an expression-invariant

deformable model. After fitting onto the AFM, several features were extracted on the

geometric and normal map for matching. Recently, Passalis et al. (2011) further extended

the AFM method with facial symmetry to handle missing data caused by self-occlusion in

non-frontal poses. Two fitted AFM were generated for matching by mirroring the AFM

external forces from one side to the other. As a result, their method can handle pose

and expression variations at the same time. However, the fitting of AFM requires eight

landmarks over the 3D face, which is even more difficult than Queirolo et al. (2010)’s

method to be applicable on Kinect data. Even on high resolution scans, some landmark

detection errors can be greater than 10mm, especially on 60 degree side scans.

Wang et al. (2010) proposed a novel representation namely the Signed Shape Difference

Map (SSDM). They fused several features extracted on the SSDM based on a boosting

algorithm for face recognition. Pose correction was done by aligning the normal of the

symmetry plane, nose tip and direction of nose bridge. The symmetry plane was deter-

mined, by registering the 3D face with its mirrored version using ICP, and fitting a plane

to the resulting registered faces. This pose correction method is more efficient than ICP

since it avoids registration to every gallery face. The proposed SSDM was created by

taking the direct pixel differences between two depth images after pose correction. How-

ever, searching for the symmetric plane on a profile view leads to non-convergence of ICP.

Additionally, the SSDM may not be effective for Kinect data where depth map differences

can also be due to noise.

Alyuz et al. (2012) is one of the very few works that address the disguise problem in

3D face recognition. They registered the probe face to a generic face model by applying

ICP to the area around the nose. After registration, points that were far away from the

generic face model were treated as outliers and removed. Missing data was then restored

using “Gappy PCA”. Matching was done by dividing the restored face into 30 regions

and fusing the regional similarity scores obtained from multiple local Linear Discriminant

Analysis (LDA) classifiers. Although they achieved 76% to 94% in their experiments on

the Bosphorus 3D face dataset (Savran et al., 2008), they have only considered frontal

views with neutral expression and have not compared with other 3D methods.

A summary of the aforementioned methods is presented in Table 7.1. The main limitations
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Table 7.1: Summary of some 3D methods on their required resolution, landmarks and

the main variation they addressed, i.e. Pose(P), Illumination(I), Expression(E) and Dis-

guise(D).

Resolution Landmark Variation(1)

Bronstein et al. (2007) high 2 E

Mian et al. (2007) high 5 E

Faltemier et al. (2008) high Nose tip E

Queirolo et al. (2010) high 6 E

Wang et al. (2010) high Nose tip E

Passalis et al. (2011) high 8 E, P

Alyuz et al. (2012) high Nose tip D

Proposed low Nose tip P, I, E, D(2)

(1)Main variation addressed.

(2)We also consider some combinations of variations.

of these techniques are as follows.

• All methods assume the availability of high resolution 3D scans and therefore, may

not work well for low resolution data.

• Some methods require more than one landmarks which may not be accurately de-

tectable on low resolution 3D data.

• Most techniques rely on face segmentation or region sub-division to ensure robust-

ness. This idea works well for high resolution scans because these smaller parts

themselves are discriminative enough to separate different identities. However, such

an approach is not feasible for noisy Kinect data, where even the completed 3D face

is hardly recognizable.

• Most algorithms focus on 3D data alone and ignore the 2D texture. However, 3D data

alone is insufficient for robust face recognition especially when acquired with a low

resolution sensor. Although, pure 3D techniques can be extended to multi-modal

(2D+3D) in a straight forward way using score level fusion, a more sophisticated

approach that considers interaction between 2D and 3D data will be more reliable

and accurate.
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• Most methods are optimized for the FRGC data alone and have not been tested on

other datasets. Their high performance could well be due to overfitting on this data

since faces in the FRGC data are all near-frontal and without disguise. In realistic

applications, uncontrolled images can be acquired in arbitrary variations of pose,

illumination, expression and disguise. None of the existing methods are evaluated

against all of these factors.

7.2 Proposed Method Overview

Figure 7.1: Overview of the proposed method.

An overview of our proposed method is shown in Figure 7.1. Our algorithm is designed

specifically for robust face recognition using Kinect and when the query image is acquired

without the user’s explicit cooperation. The following imaging conditions can be expected

in this context:

• Multiple training images of the enrolled subjects are available. This is possible with

Kinect’s high acquisition speed.

• The query image is uncontrolled since it can be acquired under arbitrary poses,

illuminations, expressions, and possibly with disguise.

• Both 2D (RGB) and 3D (XYZ) data are available. The 3D data are in low resolution
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and noisy.

Our results show that the proposed algorithm performs equally well on high and low reso-

lution data. Moreover, it can use a single gallery image per subject or exploit the presence

of multiple gallery images to perform recognition. Although multiple query images can

also be acquired during recognition, we restrict our experiments to recognition based on a

single query image to make our results consistent with standard face recognition protocols.

7.3 Canonical Preprocessing

The input to our canonical preprocessing algorithm is a 6D (XYZ-RGB) point cloud and

the output is a canonicalized depth map and registered RGB texture image of the face.

Unlike common range data preprocessing which only removes spikes and fills holes, the

proposed algorithm additionally corrects the facial pose so that it is view-point invariant

and completes missing data due to self-occlusion. In fact, most data obtained from the

Kinect sensor do not have spikes1. Holes are filled during a resampling step. Details of

each preprocessing step are given below.

7.3.1 3D Face Cropping and Pose Correction

Due to the level of noise in Kinect depth data (as illustrated in Figure 6.2), the nose tip is

the most reliable landmark that can be located on the 3D face. In this work, we assume

that the approximate nose tip location has been detected. Since the nose tip is required

only for rough alignment and face cropping, the algorithm works as long as the detected

nose tip is close enough to the true location. Given the nose tip position, we first translate

the point cloud such that the nose tip is at the origin. Then a sphere of 80mm radius

centered at the nose tip is used to crop the face. As a result, a 6D point cloud (XYZ-RGB)

of only the face area is obtained.

The Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992) is an accurate tech-

nique for aligning two 3D point clouds. However, it is known to be computationally

expensive, and hence registering the query face to every frontal gallery face in search of

the best alignment is not feasible. Instead, we register the query (XYZ only) to a reference

model. Since different subjects have different face shape, the reference face model must be

1It is possible that filtering is done inside the Kinect hardware or API.
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Figure 7.2: The reference face model.

a reliable representation of common 3D faces. Such a reference face can not be constructed

from the noisy Kinect data. Therefore, we build the reference using face models (with no

expression) from the FRGC (Phillips et al., 2005) and the UWA database (Mian, 2011).

The reference face is constructed by aligning the scans, resampling them on a uniform

128x128 grid and then taking their mean. The reference face has 64 points between the

centers of the eyes. The number of points from the center of the lip to the line joining the

eyes is also 64. Figure 7.2 shows the reference face used in our experiments. Both training

and test data are registered to this reference face using up to 30 iterations of ICP. In each

iteration, we do not consider point correspondences further than 16mm apart. Such a

setting allows us to correct poses up to ±90o. An example registration of a profile face

to our reference face is shown in Figure 7.3. In this case, only points around the nose

can establish correspondences in first few iterations. More correspondences are found in

subsequent iterations until the two faces are correctly aligned.

Figure 7.3: First column show the profile face before ICP and last two columns show the

result after ICP converge.
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7.3.2 Symmetric Filling and Resampling

After pose correction, some data may be missing due to self occlusion for non-frontal

views. This missing data can be estimated based on facial symmetry. Despite the fact

that human faces are not perfectly symmetric, the variations caused by facial asymmetry

are less than the variations caused by different identities (Passalis et al., 2011). Unlike

the work in (Passalis et al., 2011) which mirrors the AFM external forces from one side to

the other and then generates two different fitted AFMs for recognition, we utilize facial

symmetry in the preprocessing stage at the point cloud level. Specifically, a mirrored point

cloud is created by replacing the X values in the original point cloud by their opposite

numbers (-X). However, not all the mirrored points are useful as we only want to fill in

the missing data. Ideally, no point should be added on a frontal face, while all points

should be mirrored on a profile view. To this end, for each mirrored point, we compute

its Euclidean distance using (XY values only) to the closest point in the original point

cloud. If this distance is less than δ, the mirrored point is removed. The idea is to add the

mirrored point only if there is no neighboring point at that location. Note that Z is not

used when calculating the distance, because the difference in Z is usually caused by facial

asymmetry rather than missing data. The remaining mirrored points are then combined

with the original point cloud before resampling. A sample symmetric filling can be seen in

Figure 7.4. The threshold δ can be chosen based on the spatial resolution of the sensor or

the point cloud itself. In our experiments, it was user defined. Depending on the original

sample density, high values of δ will lead to a noisy surfaces while values too low will not

help in symmetric filling. We empirically found that a good balance can be achieved with

δ = 2mm, however, the performance is not affected much when setting δ to values between

1-5mm.

Resampling is the final step in our preprocessing algorithm, which is done by fitting

a smooth surface to the point cloud (XYZ) using an approximation approach2. This

algorithm fits a surface to the points with a smoothing (or stiffness) constrain that does

not allow it to bend abruptly and thereby alleviating the effects of noise and outliers. Since

surface fitting is done after symmetric filling, the added mirror points will also contribute

to the surface. This is especially helpful to stabilize the noisy Kinect data. For each face,

161 × 161 points are re-sampled uniformly from its minimum to the maximum X and Y

values. The advantage of re-sampling from min to max is that it aligns faces on a 2D grid.

Notice that we do not smooth the RGB texture since it is not noisy and smoothing will

only blur it. Instead, we just re-sample it to the same XY location with interpolation.

After re-sampling, the X and Y grids are discarded and the Z depth map is converted

2mathworks.com/matlabcentral/fileexchange/8998
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Figure 7.4: Example canonical preprocessing and sparse reconstruction on profile view

probe image.
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to its surface normal map. Finally, six 161 × 161 matrices (RGBNxNyNz) are obtained.

These matrices are down-sampled to 32× 32 for further processing. Some sample output

images of the proposed canonical preprocessing algorithm are shown in Figure 7.9b.

7.3.3 RGB Histogram Equalization

Figure 7.5: Result of RGB histogram equalization.

The above preprocessing steps also gives the RGB texture of the face that is registered with

the depth map. However, texture is easily affected by illumination. Therefore, the last

step of our proposed preprocessing algorithm aims to enhance the reliability of the texture

map. Since we only want to enhance the illumination contrast, the RGB color image

is first converted to the CIE L∗a∗b∗ color space, where the three channels representing

the lightness of color (L∗), position between red and green (a∗) and position between

yellow and blue (b∗), respectively. The Contrast-Limited Adaptive Histogram Equalization

(CLAHE) method (Zuiderveld, 1994) is applied on the L∗ component only, using a 2 ×
2 window, to enhance local contrast. This method applies histogram equalization on

each patch of the image with a specified contrast limit to avoid amplification of noise.

Neighboring patches are then combined using bilinear interpolation to eliminate artificially

induced boundaries. The standard histogram equalization method is then applied again

on L∗ channel of the holistic image. Finally, the resulting image is converted back to RGB

space. Some examples are shown in Figure 7.5. The top row are original images, while the

bottom row are processed images. Compared with the original images, the facial details

are more apparent after preprocessing.
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7.4 Multi-channel Discriminant Transform

Since both the color map (RGB) and normal map (NxNyNz) images consist of multiple

channels, we can improve their discriminative power by applying a transformation that

is learned from labeled training data similar to the idea of Discriminant Color Space

(DCS) (Yang et al., 2010b). Most existing multi-modal (2D+3D) face recognition methods

convert the color image to gray-scale first (Mian et al., 2007; Al-Osaimi et al., 2012).

However, color information is proven to be useful especially when the shape cue is noisy

(Yip and Sinha, 2002). Therefore, color cue is likely to be very useful in the case of Kinect

where the 3D data is noisy and low resolution.

Color images are usually modeled in the RGB space which is not a discriminant space due

to high inter-component correlation (Yang et al., 2010a). Although Yang et al. (2010a)

have proposed Color Space Normalization (CSN) to reduce correlation, CSN does not con-

sider class separability. Recently, optimal color spaces, that are learned from the training

data to maximize class separability, are proposed. The Discriminant Color Space (DCS)

(Yang et al., 2010b) method finds a set of linear combinations for the R, G and B compo-

nents in order to maximize class separability similar to the idea of LDA. The Color Image

Discriminant Model (CID) (Yang and Liu, 2008a) seeks the optimal color space and fea-

ture subspace simultaneously. The Tensor Discriminant Color Space (TDCS) (Wang et al.,

2011) method models the color image as tensor and seeks the color space transformation

and two feature subspaces respectively along the row and column directions. However,

both CID and TDCS methods do not have closed-form solutions and are solved iteratively

which can lead to local minima or non-convergence. Our experience shows that DCS is a

reliable color space for face recognition.

Similar to RGB image, the normal map also has three channels (NxNyNz). A discriminant

transform similar to DCS can be derived to increase its discriminative power. To this

end, we propose a Multi-channel Discriminant Transform (MDT) method, which is a

generalization of the DCS method to work on multi-channel data of any order.

Suppose there are a total of M training samples of C classes. Each d dimensional training

sample with h channels is denoted by Uj = [u1j , u
2
j , · · · , uhj ] ∈ Rd×h, where j = 1, 2, · · · ,M .

We can define the following linear transform:

V = a1u
1 + a2u

2 + · · ·+ a3u
h = Uj ·A, (7.1)

where A = [a1, a2, · · · , ah]T is a vector of the transformation coefficients. A good trans-

formation vector should point to the direction that maximizes class separability. Let Svb
and Svw be the scatter matrices to describe the between-class and within-class variance
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in the transformed V-space, then A can be found by maximizing the following objective

function:

J(A) =
tr(Svb )

tr(Svw)
, (7.2)

Let Pi be the label of the i-th class (i=1,2,...,C), U i be the mean sample of class Pi, U be

the grand mean for all data, and Mi be the number of samples in class Pi, we can derive

the following:

tr(Svb ) = AT

(
C∑
i=1

Mi(Ui − U)T (Ui − U)

)
A

= ATSubA,

(7.3)

tr(Svw) = AT

 C∑
i=1

∑
Uj∈Pi

(Uj − Ui)T (Uj − Ui)

A

= ATSuwA.

(7.4)

The objective junction in Eq. 7.2 can be re-written as:

J(A) =
ATSubA

ATSuwA
, (7.5)

Since Sub and Suw are both h × h nonnegative definite matrices in general (where h is

usually small), the optimal solution can be obtained by solving the equivalent generalized

eigenvalue problem:

SubA = λSuwA, (7.6)

such that A = [A1, A2, · · · , Ah] ∈ Rh×h are the eigenvectors arranged in descending order

of their corresponding eigenvalues.

In the proposed approach, the RGB map is ordered as a 3-channel sample (i.e. [R,G,B] ∈
Rd×3). We apply MDT to obtain the corresponding discriminative transformation matrix

A = [A1, A2, A3] ∈ R3×3. Although A1 is the most discriminative projection, usually all

three eigenvectors are required to achieve maximum recognition performance. After the

transformation, the texture map is converted from RGB space to Discriminant Color Space

(DCS). Similarly, by applying MDT on the normal map which consist of three channels

(i.e. [Nx, Ny, Nz] ∈ Rd×3), a Discriminant Normal Map (DNM) is obtained. Both DCS

and DNM consist of three discriminant channels. Each channel is then normalized to zero

mean and unit standard deviation to avoid magnitude domination of one channel over the

others.

Figure 7.6 shows some sample images after transformation and a plot of Euclidean dis-

tances between images of different subjects of the FRGC dataset. One can observe that

the images exhibit a greater color contrast after MDT. Similarly, distances between images

of different subjects also increase i.e. the red circles shift upwards.
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Figure 7.6: Some sample images from the FRGC dataset. Different subjects are more

discriminative after Multi-channel Discriminant Transform (MDT).

7.5 Multi-channel Weighted Sparse Coding

Given multiple gallery images per subject, one way to utilize them effectively is by allowing

their sparse linear combinations to be matched with a query image (Wright et al., 2009).

Although, our preprocessing algorithm removes some level of noise and completes missing

data due to occlusions, it cannot perfectly reconstruct a frontal view from profile views.

This is because missing data can not be estimated when there are no reference points for

mirroring. See Figure 7.4 as an example, which shows an error line in the middle of the

resulting canonical face image. A robust approach such as weighted sparse coding (Yang

et al., 2011; He et al., 2010), which are shown to be robust against outliers and missing

data, can be employed to overcome this problem. In this chapter, we propose a novel

face recognition method namely Multi-channel Weighted Sparse Coding (MWSC), which

extends Yang et al.’s Robust Sparse Coding (Yang et al., 2011) method to work effectively

on multiple channels (e.g. R, G and B) and multiple modalities (2D + 3D). First we

formulate the sparse coding as the weighted Lasso problem with `1 penalty:

x = argmin
x
‖W (Ax− y)‖2 + λ‖x‖1 (7.7)

where A is the dictionary i.e. the training samples in our case, y is the query face, x is

the coding parameters vector,λ is a constant that controls the coding sparsity and W is

a vector consisting of weights for each variable in A. Yang et al. (Yang et al., 2011) have
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shown that a robust W can be estimated by this function:

W =
exp(µδ − µ(e)2)

(1 + exp(µδ − µ(e)2))
(7.8)

where e = Ax−y is a vector of reconstruction residuals, µ and δ are user defined parameters

controlling the rate of decrease and the location of demarcation point respectively. W (1)

is initialized as the residual to the mean dictionary atom e(1) = A − y. Equation 7.7 is

then iteratively solved for x and W . The iterations stop at the t-th iteration when the

change in W is smaller than ε, i.e:

‖W (t) −W (t−1)‖2/‖W (t−1)‖2 < ε (7.9)

In our case, the d-pixels query image Y = [c1, c2, c3] ∈ Rd×3 consists of three channels: c1,

c2 and c3 (which can be either the three channels of DCS or DNM). In order to apply Eq.

7.7, we convert Y to a column vector y = [c1c2c3]T ∈ R3d by stacking the three channels.

The dictionary A ∈ R3d×m with m training samples is also arranged in a similar way.

While this is a standard data-level fusion strategy, we propose a more effective way to

compute the weights W .

We use three channels instead of gray scale images because outliers have more chances

of getting detected with multi-channels compared to a single channel. Consider a toy

example where a pure red face (RGB1: [1 0 0]) is wearing a pure blue scarf (RGB2: [0

0 1]). Although the facial part and scarf have different colors, they have the same gray-

scale intensity of 1/3. Since the residual vector e is computed by direct pixel difference,

both red and blue pixels are likely to contribute equally in a grayscale image. Based

on this observation, we treat each multi-channel pixel as a h-dimensional vector (h = 3

in our case), and compute the residual for each pixel using Euclidean distance in the

h-dimensional space.

In each iteration, after the coding vector x is computed using Eq. 7.7, the reconstructed

image vector ỹ = Ax ∈ R3d is rearranged back to image matrix Ỹ = [c̃1, c̃2, c̃3] ∈ Rd×3.
The query image vector y is also rearranged back to image matrix Y = [c1, c2, c3] ∈ Rd×3.
The d-dimensional residual vector is computed pixel-wise by

ej = ‖Ỹj − Yj‖2 (j = 1, . . . , d). (7.10)

In our approach, two sets of weights (Wtex and Wdep) are computed for the DCS and DNM

images respectively. Similarly, separate coefficient vectors (xtex and xdep) are computed

by sparse coding the DCS and DNM images using Eq. 7.7. For C classes, two sets of

131



class-wise similarity scores (Stex and Sdep) are computed based on the class-wise weighted

reconstruction residual:

Sitex = −‖Wtex(A∈Pi
tex x

∈Pi
tex − ytex)‖2

Sidep = −‖Wdep(A
∈Pi
dep x

∈Pi
dep − ydep)‖2

(7.11)

where i=1,...,C, and Pi is the label for class i. The two scores, Stex and Sdep, are then

individually normalized using z-score technique (Jain et al., 2005) and then summed before

final decision. The query Y is recognized as the person with the highest final similarity

score.

Figure 7.7: Weight masks computed for some probes in CurtinFaces (without histogram

equalization). The proposed MWSC works better in terms of masking out outlier pixels.

Figure 7.7 shows some sample weight matrices obtained using Yang et al. (2011)’s Robust

Sparse Coding (RSC) method and our proposed MWSC approach. The weight matrices

are computed using the texture images in CurtinFaces and are shown as 256-level intensity

images where brighter pixels represent higher weights. One can see that, for the prepro-

cessed profile face (column 1), a few error lines appear in the middle caused by missing

data. These lines are masked out better by our MWSC approach compared to RSC. For

a smiling face that is looking up or down (columns 2 and 3), MWSC assigns lower weights

to the mouth area, which is the non-rigid part of the face that easily deforms under facial

expression. The most apparent advantage of MWSC over RSC is that it is more robust

against illumination. RSC assigns low weights to shaded pixels under non-frontal lighting,

while MWSC computes a sparse weight mask consistently for frontal faces (column 4-7).

In the last column, both RSC and MWSC correctly mask out the pixels associated with

sunglasses.

For the choice of parameters, we set λ to 0.001 and ε to 0.05. Following Yang et al. (2011),
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µ is set as c/δ and δ is chosen as the `-th smallest pixel residual, where ` is computed by

bτnc. We set c to 8 and τ to 0.6. We empirically found out that this setting yields the

best trade-off between robustness, accuracy and speed. To show that these parameters

are not tuned to overfit a specific situation, this setting is used through out this chapter

in all the experiments using different datasets.

7.6 CurtinFaces: A Kinect Face Database

Table 7.2: Some publicly available 3D databases.

Name Year Res. Acq. Variation(1)

CASIA (CASIA, 2004) 2004 high 4624 P, I, E (2)

FRGCv2 (Phillips et al., 2005) 2005 high 4007 E, I

BU-3DFE (Yin et al., 2006) 2006 high 2500 E

ND2006 (Faltemier et al., 2007) 2007 high 13450 E

Bosphorus (Savran et al., 2008) 2008 high 4652 P, I, E, D

CurtinFaces 2012 low 5044 P×E, P×I, D

(1)Main ones only: {P(pose), I(illum.), E(exp.), D(Disguise)}.

(2)CASIA also contains some E+I and P+E.

Table 7.2 lists some publicly available datasets. To the best of our knowledge, all existing

3D databases are acquired using high resolution scanners. In addition, none of them

consider extensive combination of variation factors. Therefore, we construct our own

dataset namely CurtinFaces which is available to the research community3. This dataset

contains over 5000 images of 52 subjects acquired using Kinect. In this chapter, we use

a subset which consists of 4784 images of 52 individuals with variations in poses (P ),

illumination (I), facial expressions (E) and sunglasses disguise. The database contains

facial images with and without glasses. For each subject, three images in the front, left

and right profile view are without glasses. Additionally, for each subject, there are 49

images at 7E × 7P and 35 images at 7E × 5I i.e. combinations of 7 expressions with 7

poses and 5 illuminations. Images with sunglasses are under five conditions (i.e. 3P and

2L). The full set of images per person are 92.

Out of the 92, 18 images per subject (see Figure 7.8) are used as the training/gallery

set. Each of these 18 images contain only one of the three variations (I, P or E). They

are used to learn the DCS and DNM transformations and as the coding dictionary, after

3impca.curtin.edu.au/downloads/datasets.cfm
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(a) Before preprocessing.

(b) After preprocessing.

Figure 7.8: Sample enrollment images of one subject.

(a) Before preprocessing.

(b) After preprocessing.

Figure 7.9: Sample test images of one subject.
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preprocessing. The 74 remaining images per subject are used as test images (see Figure

7.9). For all images, the nose tip is manually detected.

7.7 Experiment Setup

Face recognition can be divided into verification and identification. The former verifies if

two face images are from the same subject, while the latter finds the identity of a query

face image within a database. Verification problems usually assume certain level of user

cooperation (such as displaying the passport photo and looking at the camera). However,

as discussed previously, this work focuses on applications where user cooperation may

not be achievable. Therefore, we evaluate our system under face identification protocol.

The proposed method applies canonical preprocessing on both training and test data as

detailed in Section 7.2. The multi-channel Discriminant Transform (mDT) is applied

afterwards. The multi-channel Weighted Sparse Coding (MWSC) method is then used to

identify the probe. We also compare the performance of the proposed method with the

following methods from existing literature:

• Mian et al. (2007) (2D+3D)

• RSC (Yang et al., 2011) (RGB-D)

• SRC (Wright et al., 2009) (RGB-D)

• SVM-rbf (Chang and Lin, 2011) (RGB-D)

Although some of these methods were proposed for 2D gray-scale images, we extend them

and tune them for RGB-D data for a fair comparison. First, we scale and translate every

face image such that the eyes and mouths are aligned on the same pixels. Then a bounding

box is used to crop the face area. These procedures are applied on both the RGB and

depth data. Afterwards, they are resized to 32 × 32 and converted to two vectors by

stacking their columns. The resulting 1024D depth vector and 3072D RGB vector are

input into the aforementioned 2D algorithms separately, except for SVM, where PCA

is applied first to reduce the data dimension retaining 99% energy (around 350D). Two

different similarity scores obtained from RGB and depth are then normalized using z-score

(Jain et al., 2005) and summed for final decision.
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7.8 Robust Identification using Kinect

Identification results are reported in Figure 7.10 and labels are defined in Figure 7.9a. For

simultaneous variation in pose and expression (P×E, top two plots), the performances of

other methods decrease dramatically with larger pose variations (both yaw and pitch) to

the extent that accuracy is < 15% on profile query faces (±90o). Although Main et al.’s

MMH method performs pose correction using 3D data, their method is not designed to

handle missing data caused by self-occlusion on non-frontal views. One can see that our

proposed method outperforms all four techniques and is more robust to variations.

Observe from (left middle plot) the result under simultaneous variations in illumination

and expression (I×E) that most methods are not affected by illumination. This is because

of the fusion of depth data which is less sensitive to illumination. Also notice that RSC

performs the worst in this case. The reason is that, as illustrated in Figure 7.7, the

RSC’s weight mask computation is sensitive to extreme outliers such as texture pixels

that are in cast shadows. Although our method also uses texture data, it is not affected

by illumination and is able to maintain consistent performance across different lighting

conditions.

The results of sunglasses disguise is presented in the bottom right figure. As expected,

SVM achieves very low performance because it is not designed to handel occlusion. RSC

performs better than SRC on the average, as it can correctly mask out the sunglasses

pixels. Mian et al.’s method can handle disguise to some extends as it segments the face

into two parts and the nose part is completely un-occluded by sunglasses. However, our

method achieves the best performance. The main reason is that the small nose region

used by MMH is not discriminative enough due to Kinect’s low resolution.

The main reason why methods like MMH that have been tested on the FRGC data are not

suitable for Kinect is because they require face segmentation or landmark identification

which can not be accurately performed on low resolution data. Observe that MMH only

achieves 94.2% on frontal views with expressions. This suggests that the idea of using

rigid face segments to deal with expressions is not very effective on low resolution data.

This is due to the fact that smaller regions themselves are not sufficiently discriminative in

low resolution. Moreover, some errors are also caused by the failure of landmark detection

leading to incorrect face segmentation.

Furthermore, MMH achieves only 85.5% for test images under illumination variations

(frontal views with expressions). This significant drop in performance is caused by the
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SVM SRC RSC Mian Prop.

frontal(52) 96.2 94.2 96.2 94.2 100

yaw30o(624) 76.4 78.9 74.4 81.9 100

yaw60o(624) 54.3 66.5 65.7 46.7 97.9

yaw90o(104) 2.9 3.9 2.9 12.5 87.5

pitch(624) 68.1 72.3 67.8 78.4 96.0

illum.(1560) 87.6 93.5 83.9 85.5 99.5

sun.(260) 13.1 49.6 55.0 62.3 99.6

All(3848) 70.0 77.9 72.8 74.1 98.4

Figure 7.10: Identification results on CurtinFaces. The top two plots show that the

proposed method outperforms all others and is robust to pose variations in yaw and pitch.

The middle two plots show that the proposed algorithm is robust to illumination and

occlusions. CMC curves are given in the bottom left plot and rank-1 identification rates

are summarized in the table. The proposed method achieves the overall best results.
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false rejection in the first stage of MMH where candidates are eliminated by a low cost

rejection classifier which is partly based on the the SIFT features extracted from the

texture image. Removing the rejection step or setting a higher threshold to reject less

faces may not be feasible for identification problem due to the fact that the matching

engine of MMH is based on ICP which is computationally very expensive. Matching a

single query to a large gallery may take several hours.

In summary, our proposed algorithm achieves an overall average of 96.5% and 94.6% rank-1

identification rates respectively using only the DCS texture and DNM depth images alone.

Considering the high levels of noise in Kinect 3D data, 94.6% accuracy is a significant

achievement. Combining DCS and DNM, our proposed approach is able to achieve an

average of 98.4% identification rate. Even under the extreme case of profile view, our

accuracy is 87.5%. To the best of our knowledge, these are the best identification rates

reported for low resolution 3D data acquired under challenging conditions. Our results

justify that noisy Kinect data is useful for face recognition.

7.9 Evaluation on Bosphorus Database

To show that the proposed algorithm works equally well on high resolution scans, we

evaluate it on the Bosphorus 3D face database (Savran et al., 2008) which was acquired

with a high resolution scanner namely InSpeck. This database contains 4666 scans of 105

individuals. Each subject has up to 54 scans out of which up to 35 are with expression

variations. There are six standard emotional expressions and 28 expressions are performed

according to the Facial Action Coding System (FACS) (Savran et al., 2012). Besides ex-

pressions, the database also contains 13 poses with different degrees of yaw, pitch and a

combination of both up to 90o. Each person also has up to four types of occlusions or dis-

guises. Some sample images are shown in Figure 7.11. The amount of uncontrolled factors

in this database makes it very suitable for our study on non-intrusive face recognition.

All images in the Bosphorus database are labeled with up to 24 landmarks. However, our

algorithm requires only the nose tip location. For training, we use the FRGC dataset to

compute the DCS and DNM transformation matrices. For testing, we follow the first versus

all experimental protocol similar to Li et al.(Li et al., 2011). This protocol uses the first

scan of each subject (105) as the gallery and the rest (4561) for testing. In fact, this setting

is not favorable for sparse coding which exploits linear combinations of multiple gallery

images per subject. To overcome this limitation, we generate multiple samples from each

gallery image. Since our approach works on images as low in resolution as 32×32, multiple
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Figure 7.11: Sample images in Bosphorus.

independent (to some extent) samples can be generated by downsampling the original

high-resolution image. More specifically, we downsample the original preprocessed image

from 161×161 to 64 × 64, and then generate four 32×32 images by taking its alternate

(even or odd) rows and columns. The fifth image is obtained by directly downsampling

the 64 × 64 image to 32×32 using interpolation. These five samples mimic images taken

by five independent low resolution cameras with slight translational shifts. Our claim is

backed up by the increased identification rates we achieved using this approach.

Furthermore, these generated samples also increase the tolerance to minor translational

errors caused by misalignments. Note that the use of synthesized samples do not violate

Li’s protocol since they are generated from a single gallery image. Therefore, our per-

formance comparison to Li’s work in the first versus all scenario is fair. A comparison

of rank-1 identification rates is reported in Table 7.3. Note that Mian’s approach does

not achieve good performance in this dataset because it was not designed to handle pose

and occlusion variations. Our proposed method outperforms its competitors in all cases

except with occlusion. This is mainly because of the point-to-point ICP registration which

tries to register the hand-occluded surface to the reference face. In fact, our performance

for occlusion can be increased if ICP step is skipped since all occluded faces are frontal.
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Table 7.3: Results on Bosphorus using first-neutral (105) vs. all (4561) protocol.

SVM SRC RSC
Mian et al.

(2007)

Li et al.

(2011)
Proposed

Expression by Emotion

Neural(194) 91.8 89.7 90.7 100 100 100

Anger(71) 67.6 64.8 81.7 93.0 88.7 98.6

Disgust(69) 52.2 75.4 88.0 88.4 76.8 100

Fear(70) 40.0 58.6 81.4 95.7 92.9 100

Happy(106) 38.7 73.6 88.7 87.7 95.3 97.2

Sad(66) 68.2 77.3 89.4 98.5 95.5 100

Surprise(71) 31.0 66.2 90.1 95.8 98.6 100

Expression by Facial Action Unit

LFAU(1549) 72.8 83.5 91.7 94.3 97.2 99.5

UFAU(432) 81.9 85.7 92.8 98.8 99.1 100

CAU(169) 60.4 81.1 94.1 96.5 98.8 100

Poses in Yaw, Pitch and Combination

YR(735) 7.8 18.2 23.8 50.9 78.0 92.4

PR(419) 50.8 59.2 73.5 98.1 98.8 99.5

CR(419) 4.7 13.7 19.0 62.6 94.3 96.7

Disguise/Occlusion

O(381) 28.9 51.70 74.0 77.7 99.2 91.1

All Probes

All (4561) 52.3 63.9 73.9 87.9 94.1 97.6
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However, we assume we do not have previous knowledge about the query face and the

same algorithm is applied on every database. The 91.1% identification rate shows that

our system does not fail even in the difficult case of hand occlusion.

Interestingly, without the use of synthesized multiple enrollments, our system still achieves

an overall average 96.6% identification rate on the Bosphorus database. This is because

sparse coding is performed collaboratively over all gallery images. Faces of different sub-

jects share some parts in common which can help stabilize the sparse coding results (also

see Zhang et al. (2011)). Due to the high discriminativeness of DCS and DNM feature,

the sparse coding solution always assign a large coefficient to the image of correct identity,

hence recognizing most of the query faces correctly.

In summary, our proposed approach achieves the highest average performance of 97.6%

which is, to the best of our knowledge, the highest identification rate reported for the

Bosphorus database. It is important to emphasize that the performances reported in the

table are obtained by employing exactly the same algorithm and parameters as those used

for CurtinFaces in Section 7.8. Our proposed method performs consistently and robustly

across different datasets with arbitrary uncontrolled conditions.

7.10 Evaluation on CASIA

This dataset (CASIA, 2004) is also acquired with a high resolution 3D scanner namely

Minolta. It contains a total of 4624 scans of 123 individuals. We consider this dataset

suitable for our experiments because of two reasons. Firstly, it contains separate variations

in expressions (E), poses (P) up to 90o and illumination (I). Secondly, it contains two types

of combined variations: expression variations with illumination from the right side (E+I)

and pose variations with a smiling expression (E+P). Some sample images are shown in

Figure 7.12. Notice that due to the use of fast mode of Minolta, the 3D models are not

as accurate as those in Bosphorus or FRGC databases. However, they are far better than

those acquired by Kinect.

All images in the CASIA database with ≤ 60o pose and without glasses are labeled with

nose tip position using their nose tip detection algorithm. We manually label the nose tip

in the remanning images. We follow Xu et al.’s (Xu et al., 2009) experimental protocol

and use 759 images from the last 23 subjects for training and the first images of the

remaining 100 subjects for gallery. Unlike Xu et al. we use all the remaining images as

probes whereas Xu et al. exclude probes with > 60o pose and those wearing glasses. We
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Figure 7.12: Sample images in CASIA. Note that images are shown after contrast en-

hancement for better visualization.

Table 7.4: Results on CASIA using first-neutral (100) vs. all (3663) protocol.

SVM SRC RSC
Mian et al.

(2007)

Xu et al.

(2009)
Proposed

I(400) 80.5 86.0 88.5 99.8 98.3 99.8

E(500) 57.6 74.4 76.6 94.2 90.0 98.0

E+I(500) 58.0 73.8 77.8 93.2 93.3 97.8

P30o(700) 20.3 26.7 36.3 96.1 91.0 98.3

P60o(200) 1.0 4 6 47 91.0 96.5

P90o(200) 1.0 0.5 1.5 5 - 81.0

E+P30o(700) 19.0 26.4 34.9 93.7 87.9 96.0

E+P60o(200) 1.0 4 5.5 45.5 79.0 95.0

E+P90o(200) 1.0 2.5 2.0 4.5 - 77.0

Glasses(63) 54.0 79.4 82.5 95.3 - 100

All(3663) 33.2 41.7 46.6 80.0 - 95.6

All Xu’s(3200) 36.8 46.0 51.5 89.1 90.7 97.5
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use the training set to derive DCS and DNM transforms and the gallery set to form the

coding dictionary. Similar to the case of Bosphorus database, we synthesize five samples

from each gallery image as described in Section 7.9. The rank-1 identification rates are

reported in Table 7.4 and a similar pattern to former experimental results can be observed.

The proposed algorithm outperforms all other methods and achieves an average of 95.6%

identification rate using all the probes and 97.5% when using Xu et al.’s limited probe set.

No obvious drop in performance is observed across most of the variations. Even under the

challenging case of profile view, we can maintain an accuracy of 81% without expression

and 77% with a smiling expression. To the best of our knowledge, these are the best

results reported for the CASIA databases under the first versus all protocol.

7.11 Evaluation on FRGC

This database contains 4007 images of 465 subjects4 captured across multiple sessions and

with various expressions. The de-facto standard in FRGC for identification is the first

versus all protocol. Figure 7.13 shows the CMC curve of our algorithm. Although synthe-

sized gallery images are generated in a similar way (see Section 7.9), we only use them in

the last iteration of our multi-channel weighted sparse coding to avoid the computational

cost associated with large dictionary (465 × 5 = 2325).

The proposed algorithm achieved a rank-1 identification rate of 95.2% which is compara-

ble to the state-of-the-art (Mian et al., 2007; Faltemier et al., 2008; Queirolo et al., 2010;

Spreeuwers, 2011). Although some existing 3D methods in the literature report higher

performance compared to our algorithm, most of them are evaluated only on the FRGC

dataset. These methods may have been optimized for high resolution data and it is difficult

to say how they will scale to low resolution data. Moreover, the FRGC database mostly

contain expression variations, no occlusions and only minor pose variations. Therefore, it

is difficult to perceive the robustness of these algorithms to occlusions and pose variations.

Furthermore, the de-facto standard protocol allowing only a single gallery image per sub-

ject does not favor our proposed algorithm. In practical applications, multiple 3D scans

of the same subject can easily be obtained during enrollment. Nevertheless, our results

show that our method does not fail even under the unfavorable situation of single gallery

image per subject.

4Confirmed in (Queirolo et al., 2010) and by the FRGC organizers that subject ID 04643 and 04783

are the same person.
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Figure 7.13: CMC curve for first-neutral (465) vs. all (3542) protocol on FRGC.

7.12 Time Complexity

The proposed algorithm was implemented on an Intel Core2 Quad 3GHz CPU with 4GB

RAM using a 64-bit Matlab. It takes a total of 15 seconds to identify one query face from

a gallery of 100 images. The time increases to 25 seconds for a larger dictionary of 2325

images. The average time per match is less than 0.5 seconds. Most of the time is taken

by ICP based registration. We used up to 30 ICP iterations to achieve fine registration

in our experiments which takes 10 seconds on the average. This can be speeded up to

just 2 seconds by using only 5 ICP iterations which causes little drop in accuracy and can

correct the pose even in the case of profile faces. Symmetric filling step requires searching

for nearest neighbor points which takes 0.5 seconds. The histogram equalization takes 2

seconds. The DCS and DNM are linear transformations and take less than a millisecond.

Sparse coding is performed using the SPAMS (Mairal et al., 2010) package with Mat-

lab interface. Despite the overhead of Matlab function calls, SPAMS is able to return

the solution in 0.05 seconds on a dictionary of 100 images with 3072 (32×32×3) feature

dimension. Note that our Multi-channel Weighted Sparse Coding (MWSC) computes a

mask of weights for each pixel iteratively. With our proposed parameter setting, about
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40% of pixels receive a weight <= 0.001 and 10% of the pixels are located outside of

the face after resampling to a square grid. These pixels are removed and therefore, the

effective feature dimension is around 1100. Furthermore, about 4.5 iterations are required

on the average for MWSC to converge and we apply MWSC on both 2D and 3D images.

Taking all these into account, a total of 0.3 seconds are required to recognize one face

in the Bosphorus and CASIA databases with a gallery size of 105 and 100 respectively.

When synthesized images are generated, the dictionary size increases five times and the

algorithm converges in 2 seconds. For CurtinFaces with 936 gallery images (dictionary

size), a total of 3 seconds are required. For FRGC, as mentioned in Section 7.11, the syn-

thesized gallery images are used only in last iteration. A total of 9.5 seconds are needed

because the last iteration on a gallery of 2325 images consumes most of the time (about

8 seconds). Lastly, computation of the class-wise distance requires less than 0.05 seconds

in all cases.

Note that excluding the sparse coding step, our algorithm is implemented fully in Matlab

which makes it slow. Moreover, for consistency and comparison with existing 3D face

recognition techniques, we focused on achieving higher accuracy at the cost of compu-

tational complexity. Implementation in a faster programming language will considerably

increase the speed of our algorithm given the iterative nature of many components of

our algorithm. Further, higher speed can also be achieved by algorithmic changes such

as fewer ICP iterations and smaller dictionary sizes albeit at the cost of minor drop in

accuracy.

7.13 Summary

In this chapter, we have made the following contributions. Firstly, we propose a practical

algorithm for robust face recognition that works equally well on low and high resolution

RGB-D data. These algorithm consists of multiple novel components. The proposed

Canonical Preprocessing procedures can correct poses and estimate the full frontal-view

from side-view of a face. The proposed multi-channel Discriminant Transform (MDT) can

increase the discriminative power of any multi-channel data. The proposed multi-channel

Weighted Sparse Coding (MWSC) method, which computes varies weighting for sparse

coding using multiple channels, is better than single channel in terms of robustness to

variation in imaging conditions. Secondly, we analyzed and experimentally showed that

existing 3D face recognition methods designed for high resolution 3D data are not suitable

for low resolution Kinect data. However, using our proposed approach, accurate face

recognition can still be performed reliably with Kinect. Lastly, our method outperforms
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existing techniques under challenging conditions. Specifically, we can maintain consistent

performance even under simultaneous variations in pose, expression, illumination and

disguise. Our method can also handle, to some extend, faces in the extreme case of profile-

view. Moreover, no parameter tuning is required to achieve satisfactory performance

in arbitrary cases. State-of-the-art results on the CurtinFaces, Bosphours and CASIA

databases are reported.

Nevertheless, our proposed method inherited some problems from the original sparse cod-

ing framework. In order to perform sparse coding classification, the person of the probe

image must have previously enrolled into the coding dictionary. Therefore, it can be used

for face identification application only, but not for verification problem. The objective of

verification problem is to determine whether two images are of the same identity, where

this identity may not appear in the training set, and thus sparse coding can not be used.

In future research, we will try to generalize the sparse coding framework to work for

verification problem. One possible direction is to derive personal signature using sparse

coding. Given a image, it can be sparsely coded using a referencing dictionary. This

referencing dictionary must not contain the identity of the image to be coded. We expect

that the same person will have similar sparse code pattern while different people will have

very different one and therefore can be used as an unique biometric signature. Verification

can then be done by comparing two signatures. The advantage of of sparse coding based

signature is that it is robust to noise and disguise. Another advantage of this proposal is

that we can control the time complexity by controlling the size of referencing dictionary,

whereas in tradition framework, time complexity increases dramatically with increasing

number of people, since the dictionary size is also increased.
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Chapter 8

Conclusions and Future Directions

This thesis addresses the problem of automatic face recognition where user cooperation

is not possible. We demonstrate that in such context, color and 3D information are es-

sential to ensure recognition robustness of the system. Starting from existing color face

recognition methods, we have shown some of their weaknesses and proposed corresponding

improvements. We also investigate into the feasibility of low resolution 3D data for face

recognition. Finally, an algorithm that utilizes color and 3D data for robust face recog-

nition is proposed. A few conclusions can be drawn through out our research which can

inspire some future research directions. These will be discussed in the perspective of color

spaces, color methods and RGB-D methods in this chapter.

8.1 Color Spaces

We can conclude from Chapter 3 that using only one Discriminant Color Space (DCS)

for the holistic human face image is suboptimal. Since human faces display different

colors at different locations, performance can always be improved by deriving different

color spaces that are locally optimal for each patch of the image. This idea was realised

into two successful algorithms namely the Pixel-level Discriminant Color Space (PLDCS)

and Block-wise Discriminant Color Space (BWDCS). The BWDCS method is actually a

generalization of the DCS method with adjustable block sizes, while PLDCS is an extreme

case of BWDCS with block size of one pixel. In our experiments involving five databases

with six test sets, the proposed BWDCS can improve the recognition accuracy of subspace

methods by about 7% over DCS. The projection vectors found by PLDCS are different

to the one found by DCS on an average of 41 degrees in angle. PLDCS also exhibits

lower inter-component correlation and hence higher discriminative power. Therefore, when

seeking color spaces for face recognition, it may be more desirable to operate on local

patches of the image instead of the holistic image.

As shown in Chapter 4 that complementary information for face recognition resides in

multiple color components across different linear and non-linear color spaces, however
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most of the existing color spaces consist of only three color components and are linearly

transformed from RGB. We proposed the Multiple Color Fusion (MCF) algorithm that

obtains a color model for face recognition with more than three color components from

both linear and non-linear color spaces. This algorithm searches for the optimal color com-

binations offline using the training samples with a greedy approach. In our experiments,

the proposed system adopted a color model with 12 color components and achieved 80%

recognition accuracy on the FRGC database, outperforming other state-of-the-art color

spaces by 3% to 8%. On AR database, 8 color components were adopted and 96% ac-

curacy was achieved, while other competing color spaces achieved only 91% to 93%. We

observed that although using a random combination of 12 and 8 color components on

FRGC and AR databases respectively can sometimes achieve high performance as well,

but this performance is not stable and is still lower than the proposed method. We have

also shown that different color components have different variation distribution across the

face image. For example, some color has higher variance near the eyes while some has

higher variance around the mouths. We believe that this is the reason why performance

can be improved when fusing multiple color components. Therefore, when seeking color

representation for face data, it may be better not to limit to only three color components.

Based on the above findings, a few future directions will be possible. For example, we

can expect further improvement of BWDCS by using overlapping blocks, as well as fusing

the decisions from serval block sizes, instead of using one fixed block size. The MCF

method can be improved by replacing the greedy search with some state-of-art feature

selection methods. There are other research done on decision score level fusion which can

also be employed to replace the sum rule technique used by MCF, or we may formulate

the multiple color selection problem as an optimization problem to derive a more elegant

solution. Lastly, many other recently proposed methods are still being developed using

gray-scale images, therefore the state of the art can be advanced by reformulating them

using the color spaces or model we proposed.

8.2 Color Recognition Methods

Although the popular sparse coding technique is claimed to be feature invariant for face

recognition, we have shown in Chapter 5 that its performance can be affected by color.

We have presented an algorithm to formulate the sparse coding method on color images

based on image level fusion, which has achieved the state-of-the-art performance. We also

proposed the concept of Correctness and Discriminativeness (DIS) which describes the

discriminative power of a sparse coding solution. We found that color can always increase
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DIS and thus increases the recognition performance, regardless of the choice of dimensions

and features. In addition, the choice of color space can greatly affect the performance.

Furthermore, formulating sparse coding on color image also facilitates error correction

and is more robust in case of random pixel corruption. When recognizing occluded face

images, the Correntropy Sparse Representation (CESR), which is a sparse coding method

with pixel weighting, is an effective solution. Its performance can be further increased with

DCS, because more accurate pixel weighting is derived. In particular, we can achieve 100%

for sunglasses occlusion and 95% for scarves occlusion, while Wright et al. (2009) achieved

only 87% and 59.5% respectively using the popular Sparse Representation Classifier (SRC)

method.

When dealing with images that have large variations, the multilinear technique is very

promising. We have shown in Chapter 6 that the performance of Rana et al. (2009)’s

MPCA-PS method can be improved further when integrated with Wang et al. (2011)’s

Tensor Discriminant Color Space (TDCS) method. We found that the formulation of

MPCA-PS requires vectorization of images, which discard important structural informa-

tion. On the other hand, the TDCS method has linear formulation, which can not deal

with non-linear variation like poses. We proposed the Multilinear Color Tensor Discrimi-

nant (MCTD) model, which utilizes the advantage of both methods. As a result, MCTD

outperforms MPCA-PS and TDCS on test data that consist of large variation in poses,

expressions and lighting.

One of the the future directions that may be interesting is to statistically derive optimal

color and feature space for sparse coding in terms of the maximum discriminativeness.

We need an alternative discriminativeness measurement that can be computed without

recovering the sparse representation, so that it can be used as the optimization criterion.

Another possible future direction is related to MCTD. Although MCTD tries to preserve

the color image structure using tensor, the unfolding operation is still mechanical rather

than mathematical. To fully preserve the image structure, a mathematical representation

may be needed such as using the quaternion matrix (Sun et al., 2011).

8.3 Recognition with Color and Depth

Existing commercial 3D acquisition devices, that are high in resolution, are slow in acqui-

sition speed, high in cost and bulky in size, which limit their applications. Although the

recent release of Kinect overcame these problems, we found that it has low depth data

quality. Nevertheless, Chapter 6 shows that such low quality data is still useful for face
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recognition when utilized effectively. An algorithm was presented that utilizes the RGB-D

(Red, Green, Blue and Depth) data from Kinect, which extracts multiple features and

fusing them at the feature level using a novel technique namely the Finer Feature Fusion.

We found that the performance of our algorithm was decreased by about 3% to 7% when

the depth data is ignored. On the other hand, when utilizing the depth data alone, a high

recognition rate of 91.3% was achieved on the CurtinFaces database, which has test image

of 52 subjects in different poses, expressions and lighting conditions. The high recognition

rate suggests that 3D face recognition can be performed well using Kinect even though

the data quality is low, and therefore we can take advantage of its high speed and low

cost.

In Chapter 7, we proposed a robust face recognition algorithm that performs equally well

on low and high resolution 3D data. During preprocessing, facial symmetry is exploited

at the 3D point cloud level to obtain a canonical frontal view irrespective of the initial

pose. Depth data is converted to XYZ normal maps. We proposed the Multi-channel

Discriminant Transforms (MDT) which converts RGB to DCS (Discriminant Color Space)

and normal maps to DNM (Discriminant Normal Maps). A Multi-channel Robust Sparse

Coding method is proposed that codes the multiple channels (DCS or DNM) of a test

image as a sparse combination of training samples with different pixel weighting. Weights

are calculated dynamically in an iterative process to achieve robustness to variations in

pose, illumination, facial expressions and disguise. In contrast to existing techniques, our

multi-channel approach is more robust to variations. Reconstruction errors of the test

image (DCS and DNM) are normalized and fused to decide its identity. The proposed

algorithm was evaluated on four public databases. We achieved 98.4% identification rate

on CurtinFaces, a Kinect database with 4784 RGB-D images of 52 subjects. Using a

first versus all protocol on the Bosphorus, CASIA and FRGC v2 databases, we achieved

97.6%, 95.6% and 95.2% identification rates respectively. To the best of our knowledge,

for CurtinFaces, Bosphorus and CASIA, these are the highest identification rates reported

to date.

In future work, we will improve our 3D algorithm in each stages. First of all, although

the canonical preprocessing can estimate full frontal poses by utilizing facial symmetry,

the illumination correction is by histogram equalization on the 2D texture. With 3D

information, surface reflection can be modelled and we can perform a more accurate illu-

mination correction. Secondly, the current system is based on DCS. This can be improved

by our previous works on color spaces. We can derive the color space block-wise using

more than three color components to further improve the performance. The block-wise

idea can also be applied to the DNM. Moreover, instead of fixed blocks, we can divide

the face into components using 3D information and perform component-wise operations.
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Lastly, as mentioned in Section 7.13, the sparse coding based recognition method used

in our algorithm only support face identification problems, since the coding dictionary is

required to contain images of all users. We want to derive a personal signature based

on sparse coding, then both identification and verification can be done by comparing the

signature.
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