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Abstract

Modeling patterns in temporal data has arisen as an important problem in engi-

neering and science. This has led to the popularity of several dynamic models, in

particular the renowned hidden Markov model (HMM) [Rabiner, 1989]. Despite its

widespread success in many cases, the standard HMM often fails to model more

complex data whose elements are correlated hierarchically or over a long period.

Such problems are, however, frequently encountered in practice. Existing e�orts

to overcome this weakness often address either one of these two aspects separately,

mainly due to computational intractability. Motivated by this modeling challenge

in many real world problems, in particular, for video surveillance and segmentation,

this thesis aims to develop tractable probabilistic models that can jointly model du-

ration and hierarchical information in a uni�ed framework. We believe that jointly

exploiting statistical strength from both properties will lead to more accurate and

robust models for the needed task.

To tackle the modeling aspect, we base our work on an intersection between dy-

namic graphical models and statistics of lifetime modeling. Realizing that the key

bottleneck found in the existing works lies in the choice of the distribution for a

state, we have successfully integrated the discrete Coxian distribution [Cox, 1955], a

special class of phase-type distributions, into the HMM to form a novel and power-

ful stochastic model termed as the Coxian Hidden Semi-Markov Model (CxHSMM).

We show that this model can still be expressed as a dynamic Bayesian network, and

inference and learning can be derived analytically. Most importantly, it has four

superior features over existing semi-Markov modelling: the parameter space is com-

pact, computation is fast (almost the same as the HMM), close-formed estimation

can be derived, and the Coxian is �exible enough to approximate a large class of

distributions. Next, we exploit hierarchical decomposition in the data by borrow-

ing analogy from the hierarchical hidden Markov model in [Fine et al., 1998, Bui

et al., 2004] and introduce a new type of shallow structured graphical model that



combines both duration and hierarchical modelling into a uni�ed framework, termed

the Coxian Switching Hidden Semi-Markov Models (CxSHSMM). The top layer is a

Markov sequence of switching variables, while the bottom layer is a sequence of con-

catenated CxHSMMs whose parameters are determined by the switching variable at

the top. Again, we provide a thorough analysis along with inference and learning

machinery. We also show that semi-Markov models with arbitrary depth structure

can easily be developed. In all cases we further address two practical issues: missing

observations to unstable tracking and the use of partially labelled data to improve

training accuracy.

Motivated by real-world problems, our application contribution is a framework to

recognize complex activities of daily livings (ADLs) and detect anomalies to pro-

vide better intelligent caring services for the elderly. Coarser activities with self

duration distributions are represented using the CxHSMM. Complex activities are

made of a sequence of coarser activities and represented at the top level in the

CxSHSMM. Intensive experiments are conducted to evaluate our solutions against

existing methods. In many cases, the superiority of the joint modeling and the

Coxian parameterization over traditional methods is con�rmed. The robustness of

our proposed models is further demonstrated in a series of more challenging ex-

periments, in which the tracking is often lost and activities considerably overlap.

Our �nal contribution is an application of the switching Coxian model to segment

education-oriented videos into coherent topical units. Our results again demonstrate

such segmentation processes can bene�t greatly from the joint modeling of duration

and hierarchy.
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Chapter 1

Introduction

Pattern recognition in sequential and stream data has become an increasingly im-

portant research topic. The ability to represent, infer and learn high-level patterns

is crucial in a wide range of real-world applications such as event mining in intelli-

gent sensor network processing, activity recognition in smart assistive technologies,

abnormality detection in public surveillance, mining temporal patterns on the web,

or discovery of genome structures in computational biology. The key challenge in

this process is to deal with the uncertainty that arises at di�erence phases, in par-

ticular, during modeling processes and in sensor measurement errors.

Motivated by this pressing challenge, this thesis seeks robust probabilistic models to

tackle the problem of high-level pattern recognition from the most popular form of

sensory data - streaming videos. Recognizing events in video data, such as activity

recognition, has been a long standing research topic for the last decade. However,

most existing approaches are limited to simple events since modeling complex events,

such as those that can capture long-range correlations in the data, is often prohib-

ited, mainly due to the computational bottleneck at the representation and inference

stages. Realizing this obstacle, this thesis exploits two important properties of the

data, namely duration and hierarchical information, for our modeling purpose. To

our knowledge, such modeling e�orts pose great di�culties and have not been rig-

orously explored in the past.

One obvious choice for temporal modeling is the hidden Markov models [Rabiner,

1989]. This celebrated model is simple, compact and has proven to work well in

many domains. Nonetheless, it is limited to simple modeling and fails to capture

1
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long-correlation in the data due to the strict �rst-order Markov assumption. The

hidden semi-Markov model is an attempt to relax this strictness by further specify-

ing the lifespan distribution for each state. But, it is still limited in practice due to

the computational cost, which grows linearly with the maximum possible duration

of a state, and optimisation problem when the duration distribution is continuous.

This particularly becomes problematic when dealing with sequential data since du-

ration can easily grow unmanageable. Hierarchical hidden Markov models [Fine

et al., 1998, Bui et al., 2004] is another e�ort to go beyond the simple HMM. Hi-

erarchical modeling can address not only the complex correlations in the data but

also the semantic decomposition often found in video data (e.g., goals and sub-goals

in activity recognition or episodes, scenes, shots in �lms). Clearly, probabilistic

models that can jointly model both duration and hierarchy, with e�cient inference

machinery, can potentially be extremely useful in many domains. We are motivated

to explore this type of modeling and its potential applications, in particular, for

two domains: recognition of normal/abnormal activities in surveillance video and

high-level segmentation of education-oriented video.

1.1 Aims and Approach

This thesis aims to develop robust probabilistic models for pattern recognition in

sequential and streaming data. It fosters applications of these models for smart

home surveillance and video segmentation. In particular, we seek the answer for the

following questions:

• Can we develop a new duration modeling framework that overcomes the com-

putational bottleneck presented in current existing hidden semi-Markov mod-

els? Can we represent it in a dynamic Bayesian network form and can we

construct suitable machinery for learning and inference?

• Can we develop new forms of stochastic models that seamlessly incorporate

duration and hierarchical information into a uni�ed framework? How can we

construct inference and learning algorithms? To what extent are they tractable

and e�cient?

• How can we use our solutions to provide better sensing intelligence for surveil-

lance environments and segmentation in video?
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Our approach, from a modelling perspective, is driven by the advantages provided by

probabilistic graphical modelling. Here, we revisit the existing hidden semi-Markov

models in the form of dynamic Bayesian networks to provide better intuition and

understanding into their representation and complexity. The key di�erence with

existing work is that we conduct a thorough investigation and provide a uni�ed

exponential family duration modeling framework for both continuous and discrete

distributions. In seeking better alternative modeling choices, we research the mature

branch of statistics concerned with lifetime modeling [Barlow and Proschan, 1981]

and in particular, a class of discrete phase-type distributions that is known to be

�exible in approximating any arbitrary distribution [Johnson and Taa�e, 1988]. For

hierarchical modeling our approach is motivated by the success of the hierarchical

hidden Markov models recently proposed in [Fine et al., 1998] and later extended

with general state hierarchy in [Bui et al., 2004, Phung, 2005b]. Again, using the lan-

guage of dynamic Bayesian networks, we seek to construct novel forms of stochastic

models that can jointly model �exible duration distributions and hierarchy. Ma-

chinery for tractable inference and parameter learning is subsequently investigated,

again, under the umbrella of directed graphical models.

From the application perspective, our �rst motivating application is the construction

of a safe and smart house for the aged that facilitates automatic monitoring and

support of its occupants, aiming to increase the opportunity for aging in the family

home. This is a growing and important research area, in particular, for countries

with increasing aging populations such as Australia [Ball, 2003]. Our aim is to focus

on speci�c types of daily activities, or activities of daily living (ADLs) [Katz et al.,

1963], because they are the measure of both cognitive and physical functions of the

occupants and can be used to assess the �tness of the elderly living independently

[Lawton, 1990, Rogers et al., 1998]. Our speci�c aims are:

• To develop a robust framework to de�ne and recognise a set of complex ac-

tivities performed routinely by the elderly from camera monitoring videos. In

particular, to seek solutions to distinguish activities with rich hierarchical and

duration information.

• To detect any anomalies that may arise in the activities so that prompt atten-

tion can be given, if needed.
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Our second motivating application is to learn, segment and possibly annotate education-

oriented videos into coherent units of topical content. This is an important step to

enabling abstraction, summarization, and browsing of educational content, particu-

larly useful in building e-services for learning and training. It is important in this

modeling process to exploit the long-term, multiple-scale correlations of video dy-

namics. This task, however, is complicated since the semantics in videos are often

organized hierarchically and their duration distributions vary greatly. This poses a

similar challenge to the previous activity recognition, and again, we aim to use our

modeling framework to tackle these issues.

1.2 Signi�cance and Contribution

The signi�cance of this work can be divided into two parts. The theoretical sig-

ni�cance includes the development of a set of novel, temporal, stochastic models

with e�cient computation to model hierarchical and duration properties in sequen-

tial data. The application signi�cance includes: (a) a system to recognise normal

activities and detect anomalies from video data, and (b) a probabilistic framework

to segment educational videos into units of topical contents. In particular, our

theoretical contributions are:

• A thorough investigation into the aspect of duration modeling in the HSMM

under the generic representation of exponential family distributions. This helps

to �esh out the pros and cons in using continuous and discrete distributions as

well as to identify the key drawbacks of existing computational bottlenecks.

• The innovative integration of the Coxian distributions1 for modeling state du-

rations in the HSMM. The Coxian parameterization o�ers several advantages

over traditional modeling: (a) it is computationally attractive since inference

complexity scales linearly with the number of Coxian phases, which is typi-

cally much smaller compared with the length of the data sequence, (b) it has

a small number of free parameters, again scaling linearly with the number of

phases, (c) Parameter learning can be done analytically with closed-form so-

lutions, and (d) it is theoretically �exible enough to approximate any generic

distributions.
1The Coxian distributions, a subfamily of the Phase-Type distributions, was introduced by

David Cox in [Cox, 1955].
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• The development of a novel Coxian Hidden Semi-Markov Model and its com-

plete analysis including dynamic Bayesian network representation, inference

and maximum likelihood estimation under a partially observed data case. We

also address how the model can be adapted to deal with missing observation

often caused by imperfect camera tracking.

• A novel formulation of the Coxian Switching Hidden Semi-Markov Model (CxSHSMM)2

that seamlessly integrates hierarchy, structure sharing and information into a

uni�ed framework. The CxSHSMM has a shallow hierarchical structure where

at the bottom layer is a set of concatenated Coxian semi-Markov models, each

initiated by a state at the top level, whose states switch in a Markovian man-

ner. Again, this model is accompanied by a complete analysis for its DBN

representation, inference and learning under missing observation and partially

labelled data cases.

• In conjunction with the previous model, we introduce a set of Switching Hidden

Semi-Markov Models (SHSMMs) having the same structure as the CxSHSMM

but state duration is modelled in a generic class of exponential family distri-

bution. This work helps to compare and contrast the di�erence between the

Coxian and other duration models and to broaden our investigation for the

sake of completeness.

• To move beyond shallow structures we show that hierarchical hidden semi-

Markov models with arbitrary depth can be constructed. We detail how they

can be represented by a DBN and discuss relevant inference algorithms when

the depth is high.

In applying our modeling solutions, main contributions are:

• A system that uses the CxHSMM as the main representation and inference

machinery to learn and recognize activities of daily livings in a smart home

context. We also make comparisons with other modeling choices (including

Multinomial, Poisson, and Inverse Gaussian) and demonstrate that: (a) dura-

tion information is essential for accurately modeling activities and can be most

e�ectively exploited by the Coxian parameterization, and (b) high recognition

2In fact, by the time of writing this thesis, this model has received an enormous attention from

the community. Its early result in the CVPR paper has been cited by more than 45 times, reported

by GoogleScholar as of 3rd March 2007.
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accuracy can be achieved with a relatively small number of Coxian phases.

The latter point is particularly signi�cant since it implies a great reduction

in parameter space to overcome the computational bottleneck encountered by

traditional methods.

• A system that employs the CxSHSMM as the main representation and in-

ference machinery to learn and recognize a set of complex activities under

challenging conditions, in particular, unlabeled and partially labelled data with

missing observations. To the best of our knowledge, our system is the �rst

to tackle activity recognition with both duration and hierarchy jointly. We

empirically con�rm that combinations of both types of information improves

the performance, and high accuracy can be achieved with a small number of

phases, thus complexity is greatly reduced.

• A novel scheme for anomaly detection by making use of the Coxian expres-

siveness to distinguish duration activity patterns. In this framework, `normal'

activities are learned from training data using the CxSHSMM, the `abnormal'

activity is de�ned as any substantial deviation from the normal pattern. We

develop a method to take the complement of the trained normal models to

facilitate detecting abnormalities. This scheme o�ers several advantages: (a)

it focuses on anomalies in the duration patterns of activities, a rather impor-

tant type of anomaly in the elderly-care3, but often ignored by the research

community, (b) abnormality can be detected at an early stage and monitored

when it returns to normality, and thus, alerts can be raised on time and false

alarms are minimized, (d) lastly, there is no need to manually construct or

train abnormal models.

• A probabilistic framework to exploit joint hierarchy, structure sharing and du-

ration information for segmenting educational videos into topical units. This

presents the �rst investigation of duration and hierarchical modeling for this

task. We demonstrate that such segmentation processes bene�t greatly from

the joint modelling.

Finally, even though applied in two speci�c domains, the models developed in this

thesis are generic and have a much wider implications. In fact, any existing work

3E.g., stay still unusually long at the dining table could be associated with a heart-attack.
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that use semi-Markov modelling can be revised to enjoy computational bene�ts from

our developments.

1.3 Outline of the Thesis

The rest of this thesis is organized as follows. In chapter 2, we provide related

background and literature, starting with a revision of Bayesian networks, dynamic

Bayesian networks, and exponential family distributions since they form the build-

ing blocks. In particular, we focus on the issues of representation, inference and

maximum likelihood estimation. The latter part of this chapter provides a review of

related applications organized into three main themes: activity recognition, anomaly

detection, and video segmentation and annotation.

Chapter 3 investigates the problem of duration modeling in the HSMM. We start

with descriptions of the HSMM followed by a study of the existing modeling choices

for state duration in the HSMM. This includes the Multinomial, Poisson and the

(continuous) Inverse Gaussian distributions. We show how they can all be repre-

sented in the generic exponential family representation. We detail the computation

for inference in discrete and continuous cases, provide an analysis on these models

and point out the key computational drawbacks that need to be overcome.

Chapter 4 presents the �rst main theoretical and application contribution. We pro-

vide an analysis for the family of discrete phase-type distributions with a focus on

the Coxian. We then show how the Coxian can be used to model state duration in

the HSMM, essentially leading to the new modelling form, termed the Coxian Hid-

den Semi-Markov Model (CxHSMM). Model de�nitions and its DBN representation

are provided followed by the inference procedure, including a scaling technique to

prevent the numerical under�ow problem. Parameter learning is then discussed.

Next, we present an application of the CxHSMM to learn and recognize ADLs in

a smart home environment. The CxHSMM is evaluated against the MuHSMM

(Multinomial duration distribution), the PsHSMM (Poisson), the IgHSMM (Inverse

Gaussian) and the standard HMM. We also address model selection by using dif-

ferent numbers of Coxian phases. The performance is judged against classi�cation

accuracy, early detection rate and computational time.
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Chapter 5 begins by explaining intuitively how hierarchy can be in incorporated into

the HSMM to form the Switching Hidden Semi-Markov Model (SHSMM). It then

presents the second main theoretical contribution of this thesis � formulation of the

Coxian Switching Hidden Semi-Markov Model (CxSHSMM). We provide its model

de�nition, how to represent it as a dynamic Bayesian network and discuss the issues

of inference learning. Similar to the CxHSMM case, we address these issues under

di�erent settings (e.g. supervised, partially supervised and missing observation).

For the sake of completeness and comparison, we also present, in parallel, a study

on the SHSMM whose state durations at the bottom layer are modeled by distri-

butions other than the Coxian. Finally, while the hierarchy in the CxSHSMM is

shallow, we show that our models can easily be adapted to accommodate arbitrary

depth.

In chapter 6 we present our major contributions in terms of applications in two dif-

ferent areas: activity recognition and video segmentation. We conduct three sets of

experiments in the �rst area. We �rst apply the CxSHSMM to automatically learn,

segment, and classify complex ADLs, in which the problem of phase number selec-

tion for the Coxian is also addressed. The CxSHSMM performance is compared with

that of a MuSHSMM, a two-layer HHMM, and a �at MuHSMM. Given the success

of the Coxian parameterization at capturing duration patterns, we next employ the

CxSHSMM to construct a novel scheme to detect anomalies in durations of ADLs.

The next set of experiments tackles activity recognition in more challenging scenar-

ios (e.g. lossy observations and activities with signi�cant overlapped trajectories)

using partially labelled data. The second part of this chapter presents a two-phase

framework to detect topic transitions in education-oriented videos. The CxSHSMM

is again evaluated against the HHMM, the HSMM and the HMM.

Finally, chapter 7 provides a summary of work in the thesis, its contributions, and

discusses potential directions for future work.



Chapter 2

Related Background

In this chapter we review relevant literature and background to the work presented

in this thesis. Since this thesis is mainly concerned with dynamic stochastic models

and their applications to activity recognition and video segmentation, we plan the

reviews around these areas. In most cases our models are directed graphical mod-

els, and thus can be viewed in more generic classes of probabilistic models known

as Bayesian Networks1 (BNs), Dynamic Bayesian Networks (DBNs), and exponen-

tial families. Sections 2.1 to 2.3 provide a brief account for these models where we

highlight the problems of inference and maximum likelihood (ML) estimation in the

general setting. The inference and ML estimation are then investigated in more

detail when we study the Hidden Markov Model (HMM) in section 2.4. Also, in

section 2.4, we brie�y analyse the limitations of the HMM at temporal and hierar-

chical modelings and existing solutions to these problems (section 2.4.5). Section 2.5

then provides a look at the Coxian and Phase-Type distributions in the literature.

Sections 2.6 and 2.7 present reviews on activity recognition and anomaly detection,

while section 2.8 provides the literature on video segmentation and annotation. Fi-

nally, the chapter ends with some closing remarks in section 2.9.

2.1 Bayesian Networks

Bayesian networks (BN) [Jensen, 1996, Pearl, 1988, 1998] is a popular class of prob-

abilistic directed graphical models widely used to model casual relationships without

loops among a set of random variables. Each random variable is represented by a

1also alternatively known as probabilistic belief networks or casual probabilistic networks.

9
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vertex2. Each random variable takes values from a countable or continuous state

space, however, we restrict our model to �nite (countable) state sets. The state-

ment on the certainty of the variable state is called evidence, while an exact state

assigned to it is an instantiation. The casual relationships between random variables

are shown by their directed links; however as the graph has no loop (acyclic), there

is no directed path from a random variable back to itself. If the link is directed

from vertex Xi to vertex Xj, then the random variable Xi is a child of Xj, and the

random variable Xj is a parent of Xi. A child can have more than one parent and

vice versa, and a set of all parents pointing to a child Xi is denoted as Xπi
where

πi denotes the set of indices of the parents of i. By default the root has no parent.

Formally, a BN is a directed graphical model de�ned as follows.

De�nition 2.1. A Bayesian Network (BN) consists of a set of N random variables

{X1, ..., XN}, each taking values from a �nite set of mutually exclusive states, and

an acyclic directed graph G = {V , E} de�ned on them, such that each node in the

set of vertices V corresponds to a random variable Xi. An edge (i, j) in the set of

edges E represents a directed child-parent relation from Xi to Xj. By enumerating

all directed links pointing to a node, each Xi is associated with a set of its parent

nodes Xπi
, and the resulting set {Xi, Xπi

} is assigned with a conditional distribution

Pr (Xi | Xπi
).

�

The main property of a BN is that the graphical structure allows joint distribution

of these N random variables to be factorized into a product of local conditional

probability forms:

Pr (X1, . . . , XN) =
N∏
i

Pr (Xi | Xπi
) (2.1)

where the conditional probabilities Pr (Xi | Xπi
) are speci�ed by the parameters θ

of the BN model.

Assuming each Xi is a binary random variable, the normal way to assign the joint

probabilities of N variables would take 2N parameters, which is usually impractical

2thus the terms `vertex' and `random variable' are used interchangeably.
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Figure 2.1: The three elemental connections in a BN.

in real world applications due to the exponential blow in parameters when N is high.

For the BN, it is clear from Eq. (2.1) that this number reduces to less than 2kN ,

where k is the maximum number of parents each node can have. This saving is a

result of built-in independence assumptions in the network.

An important concept in BN is d-separation [Jensen, 1996] which allows conditional

independence between variables to be asserted directly from the graph structure. As-

serting d-separation is based on examining the three elemental connections in BN,

namely serial, diverging, and converging as shown in Fig. (2.1). The two variables

Xn and Xm are d-separated if for all paths connecting them there is an in-between

variable Xs such that one of the two following conditions holds: (i.) the connec-

tion is either serial or diverging and Xs is instantiated, Xn ⊥⊥ Xm | Xs; or (ii.) the

connection is converging and the states of neither Xs nor any of its child nodes are

known. Another convenient way to work out conditional independency is to follow

the Baye's Ball algorithm as detailed in [Jordan, 2004].

Example 2.1. Fig. (2.2) shows a toy example of a BN in smart-home context. The

activity monitor M asserts the current state of activities of daily livings (ADLs) in

the house. If any abnormalities occur it will trigger the home alert system A, which

will in turn send messages simultaneously to carer C and the emergency monitoring

center E. The elderly occupant O can also send a message to the carer C if she

needs to. This graph depicts all three di�erent connections: serial (M −A−E and

M−A−C), converging (O−C−A), and diverging (C−A−E). The state of ADLs
in the house (M) a�ects the emergency monitoring center E through the home alert

system A (serial connection). However, if A is turned on (its state is known), the

emergency center E then knows that abnormality is detected, and thus there is no

need to know the state of M : E ⊥⊥ M | A. Similarly, the carer C can a�ect the
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Figure 2.2: An example of BNs.

emergency center E through the home alert system A (diverging connection). For

instance, the knowledge of C just receiving a message will increase the possibility

of alert system A being triggered, thus, it will increase the chance of the emergency

center E also getting a message. Nevertheless, if the state of A is known to be

o�, then C probably receives its message from the occupant O, and the chance

of E expecting a message remains unchanged: E ⊥⊥ C | A. Finally, we look at the

connection O−C−A. If the state of the carer C is known, then there is no a�liation

between the occupant O and the home alert system A. On the other hand, if C

receives a message then it must be sent from either O or A; equivalently O and A

become dependent.

�

The discussion on d-separation shows how evidence is propagated through the net-

work. The next question is how to quantitatively update the certainty of the states

of some nodes Xh given the exact states of other nodes Xo, i.e. to compute the

conditional probability Pr (Xh | Xo). This is called the problem of inference. Fortu-

nately, the factorization of the joint probability into local conditional probabilities in

Eq. (2.1) allows inference to be performed with the junction tree algorithm [Jensen,

1996] consisting of three steps: the BN is �rstly converted into an undirected graph

by a linking all nodes which have a common child (moralization step) and dropping

arrows on directed edges; the undirected graph is then triangulated and converted

into a junction tree, for example by Kruskal's algorithm [see Jensen, 1996, chapter

4]; and lastly, a message passing procedure is conducted on the resulting clique tree.

More details can be found in [Jordan, 2004, Jensen, 1996, Pearl, 1988]. However,
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except for special cases, the junction tree algorithm is often problematic in practice

due to the large clique size during triangulation step.

A central issue in BN is how to learn the model parameters θ, commonly known

as parameter estimation problem. We consider two di�erent cases: (a) the BN is

fully observed and (b) the BN has hidden (latent) variables. In the fully observed

case learning is done via Maximum Likelihood (ML) estimation; whereas in the

hidden case the Expectation Maximization (EM) algorithm [Dempster et al., 1977]

is used. However, as BN belongs to the Exponential Family distributions [Dan, 1998],

perhaps a better way to express the parameter estimation problem in BN is to view

it as a form of an Exponential Family. That is because the Exponential Family

provides the su�cient statistics readily and thus facilitates the learning process.

Our next section is dedicated to the Exponential Family and ML/EM estimation in

this context.

2.2 The Exponential Family

Exponential Family distributions arise popularly in many problems and encompass

a rich class of distributions such as Bernoulli, Poisson and Multinomial in the dis-

crete case as well as Gaussian, Beta and Gamma in the continuous case. The list

is much longer and indeed more sophisticated graphical models such as Bayesian

networks, Markov random �elds, conditional random �elds can also be represented

in Exponential Family forms. This class of distributions possesses some very impor-

tant properties that make them useful.

De�nition 2.2. A family of probability distributions is said to belong to an Expo-

nential Family if it can be expressed in the following form:

Pr (x | θ) = h(x) exp
{
θTT (x)− A (θ)

}
(2.2)

where θ is the parameter (often referred to as natural or canonical parameter), T (x)

is the vector of su�cient statistics, θTT (x) is the usual inner product, A (θ) is the

log-partition function serving as the normalization term to make Pr (x | θ) a proper
probability distribution (sum or integration to one), and h(x) is the base function

and independent of the parameter θ.
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�

The log-partition arises from Eq. (2.2) as:

A (θ) = log

∫
x

h(x) exp
{
θTT (x)

}
dx (2.3)

and in the discrete case, the integration sign is simply replaced by the sum. Let d

be the dimension of the random vector x, then the parameter space Θ is the set of

all parameters θ such that Eq. (2.2) is de�ned, which in turn implies that A(θ) in

Eq. (2.3) is �nite:

Θ =
{
θ ∈ Rd | A(θ) <∞

}

Example 2.2. As a simple example, the (discrete) Poisson distribution can be

expressed in Exponential Family form as follows:

Pr (x | λ) =
λx exp {−λ}

x!

=
1

x!
exp {x log λ− λ} (2.4)

with

the natural parameter θ = log λ;

the su�cient statistic T (x) = x;

the log-partition function: A (θ) = λ = exp {θ};

and the base function: h(x) = 1
x!
.

�

Example 2.3. Another simple example is the (continuous) univariate Gaussian

distribution:

Pr (x | µ, σ) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}

=
1√
2π

exp

{
µ

σ2
x− 1

2σ2
x2 − µ2

2σ2
− log σ

}
(2.5)

with
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the natural parameter θ =

[
µ
σ2

− 1
2σ2

]
;

the su�cient statistic T (x) =

[
x

x2

]
;

the log-partition function A (θ) = µ2

2σ2 + log σ = − θ21
4θ2
− 1

2
log {−2θ2};

and the base function h(x) = 1√
2π
.

�

From the de�nition in Eq. (2.2) it is easy to see that the product of two or more dis-

tributions in the Exponential Family also belong to the Exponential Family. Thus,

if each local conditional distribution in a BN can be expressed in an Exponential

Family form, then so can the joint distribution of the whole network. We use the

simple network in example (2.4) to illustrate this concept.

Example 2.4. Consider a simple network in Fig. (2.3) where X and Y are binary

random variables and further let Pr (X = 0) = a, Pr (Y = 0 | X = 0) = b, and

Pr (Y = 1 | X = 1) = c, then the joint probability is given as:

Pr (X, Y ) = Pr (X)Pr (Y | X) (2.6)

Let δ(i)
X be the event {X = i} (i.e. δ(i)

X = 1 if X = i, and δ(i)
X = 0 otherwise), the

local probabilities in Eq. (2.6) can be expressed accordingly as:

Pr (X) =
∏
x=0,1

Pr (X = x)δ
(x)
X

= exp

{∑
x

δ
(x)
X log Pr (X = x)

}
= exp

{
δ
(0)
X log a+ δ

(1)
X log (1− a)

}
(2.7)

Thus, Pr (X) belongs to Exponential Family with the natural parameter θ1 =

[log a log (1− a)]T, and the su�cient statistic T1 (X) =
[
δ
(0)
X δ

(1)
X

]T
. Similarly,

Pr (Y | X) =
∏
x=0,1

∏
y=0,1

Pr (Y = y | X = x)δ
(x)
X δ

(y)
Y = exp

{∑
x,y

δ
(x)
X δ

(y)
Y logPr (Y | X)

}
= exp

{
δ
(0)
X δ

(0)
Y log b+ δ

(0)
X δ

(1)
Y log (1− b) + δ

(1)
X δ

(1)
Y log c+ δ

(1)
X δ

(0)
Y log (1− c)

}
(2.8)
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X Y

Figure 2.3: The BN of example (2.4).

That means Pr (Y | X) is an Exponential Family distribution with the natural

parameter θ2 = [log b log (1− b) log c log (1− c)]T, and the su�cient statistic

T2 (X, Y ) =
[
δ
(0)
X δ

(0)
Y δ

(0)
X δ

(1)
Y δ

(1)
X δ

(1)
Y δ

(1)
X δ

(0)
Y

]T
. It then follows that the joint prob-

ability Pr (X, Y ) belongs to the Exponential Family with the natural parameter

θ = [θ1 θ2]
T, and the su�cient statistic T (X, Y ) = [T1 (X) T2(X,Y )]T as shown

below:

Pr (X, Y ) = exp {log Pr (X) + logPr (Y | X)}

= exp
{
δ
(0)
X log a+ δ

(1)
X log (1− a) + δ

(0)
X δ

(0)
Y log b

+δ
(0)
X δ

(1)
Y log (1− b) + δ

(1)
X δ

(1)
Y log c+ δ

(1)
X δ

(0)
Y log (1− c)

}
(2.9)

�

2.2.1 Maximum-likelihood with fully observed model

Assume for clarity in the discrete case that each Xi ∈ {1, . . . , K} = Xi and further

let Xπi
be the set of all values that its parent Xπi

can take, then the joint distribution

of the BN is given as:

Pr (X1, . . . , XN) = exp

{
N∑
i=1

logPr (Xi | Xπi
)

}

= exp


N∑
i=1

log

∏
k∈Xi

∏
v∈Xπi

δ
(k)
Xi
δ
(v)
Xπi

Pr (Xi = k | Xπi
= v)




= exp

{
N∑
i=1

[∑
k

∑
v

δ
(k)
Xi
δ
(v)
Xπi

]
log θik,v

}
(2.10)

where θik,v denotes Pr (Xi = k | Xπi
= v) (consequently

∑
k θ

i
k,v = 1). Eq. (2.10)

shows that the joint probability distribution belongs to the Exponential Family with

the canonical parameters log θik,v, and the su�cient statistics are a set of identity
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functions T
(
θik,v
)

= δ
(k)
Xi
δ
(v)
Xπi

:

Pr (X1, . . . , XN) = exp

{
N∑
i=1

∑
v

∑
k

T
(
θik,v
)
log θik,v

}
(2.11)

Given this form it is easy to show that Maximum Likelihood (ML) estimation in the

fully observed case is decoupled into local maximization involving each Xi and its

parent Xπi
. Using Lagrange multipliers [Arfken, 1985] (theorem (2.1)) on the con-

straint that each local conditional distribution must sum to one, ML in this case is

equivalent to counting the frequency of each local con�guration in the observed data.

Theorem 2.1. Given two vectors a = [a1 . . . aN ]T, z = [z1 . . . zN ]T and an ob-

jective function f (z) =
∑N

n=1 an log zn, the solution to the optimization problem

ẑ = argmax
Z

f (z) subject to the constraint
∑N

n=1 zn = 1 is ẑn = an�
∑N

n=1 an.

Proof. Adding the Lagrange multiplier λ into function f (z) results in:

f (z) =
N∑
n=1

an log zn + λ

(
1−

N∑
n=1

zn

)
(2.12)

Taking the derivative of Eq. (2.12) with respect to zn:

δf (z)

δzn
=
an
zn
− λ

Setting the derivative to zero:

an
zn
− λ = 0

⇒ zn =
an
λ

(2.13)

Summing both sides of Eq. (2.13) over all values of zn and an:

N∑
n=1

zn =
N∑
n=1

an
λ

⇒ λ =

∑N
n=1 an∑N
n=1 zn

=
N∑
n=1

an (2.14)

Substituting λ from Eq. (2.14) into Eq. (2.13) leads to the estimation formula for

zn:

ẑn =
an∑N
n=1 an

(2.15)
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2.2.1.1 The Maximum-Likelihood algorithm

Formally, the solution for the ML estimation in the fully observed case is stated as

follows. Given the observed data consists of M iid sequences D =
{
D(1), . . . , D(M)

}
whereD (m) is an instantiation of {X1, . . . , XN}, the complete log likelihood LC (D | θ)
is computed as:

LC (D | θ) = log
M∏
m=1

Pr
(
D (m) | θ

)
=

M∑
m=1

logPr
(
D(m) | θ

)
(2.16)

=
M∑
m=1

N∑
i=1

∑
v∈Xπi

∑
k∈Xi

δ
(k)

X
(m)
i

δ
(v)

X
(m)
πi

log θik,v (2.17)

=
N∑
i=1

∑
v∈Xπi

∑
k∈Xi

M∑
m=1

δ
(k)

X
(m)
i

δ
(v)

X
(m)
πi

log θik,v (2.18)

=
N∑
i=1

∑
v∈Xπi

∑
k∈Xi

T
(
θik,v
)
log θik,v (2.19)

where the step from Eq. (2.16) to Eq. (2.17) is based on the exponential form of the

joint distribution in Eq. (2.10), and

T
(
θik,v
)

=
M∑
m=1

δ
(k)

X
(m)
i

δ
(v)

X
(m)
πi

(2.20)

is the su�cient statistic of log θik,v. Thus, the su�cient statistic of iid observations is

equal to the sum of individual su�cient statistics. Given the above expression, the

ML solution can be now solved for each local conditional probability using theorem

(2.1):

θ̂ik,v =
T
(
θik,v
)∑

k∈Xi
T
(
θik,v
) (2.21)

and the su�cient statistic T
(
θik,v
)
is the count of con�gurations. Assuming m (xi)

to be the count that Xi is assigned to xi ∈ {1, . . . , K} and similarly m (xπi
) be

the con�guration count for its parents, then the ML solution in Eq. (2.21) can be

re-written as:

θ̂ik,v =
m (xi = k, xπi

= v)∑
km (xi = k, xπi

= v)
(2.22)

Also note that as the ML solution is based on the empirical counts, it is vulnerable

to over�tting.
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We now come back to example (2.4) to show how ML solutions can be computed

for this particular BN. Suppose we have seven idd observations of {X, Y }: D =

{{1, 0} , {0, 1} , {0, 0} , {1, 1} , {0, 1} , {1, 1} , {1, 1}}. Using Eq. (2.22), it then follows
that:

â =
m (x = 0)∑

k=0,1m (x = k)
=

3

7

b̂ =
m (y = 0, x = 0)∑

k=0,1m (y = k, x = 0)
=

1

3

ĉ =
m (y = 1, x = 1)∑

k=0,1m (y = k, x = 1)
=

3

4

2.2.2 Maximum-Likelihood with Hidden Variables

The ML problem becomes more challenging with the presence of latent variables as it

can no longer be straightforwardly decoupled into local maximization. To overcome

this, the Expectation-Maximization (EM) algorithm [Dempster et al., 1977] is used,

which consists of two iterative steps: the E-step and the M-step as brie�y outlined

in the following sub-section. For full explanation on EM, readers are referred to

references such as [Dempster et al., 1977, Prescher, 2003, Jordan, 2004].

2.2.2.1 The Expectation-Maximization algorithm

The set of variables X = {X1, . . . , XN} is partitioned into two subsets: a subset of

observed variables O, and a subset of latent variables H, then our objective in this

case is to maximize the function:

θ̂ = argmax
θ

Pr (O | θ) (2.23)

To utilize the advantage of decoupling the ML problem into local maximization as

in the fully observed case, we �rst have to ��ll in� the unobserved variables [Jordan,
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2004]. Let L (O | θ) be the incomplete log likelihood, then:

L (O | θ) = log {Pr (O | θ)} = log

{∑
H

Pr (O,H | θ)

}

= log

{∑
H

(
Pr (O,H | θ)
Q (H | O)

Q (H | O)

)}

≥
∑
H

Q (H | O) log

{
Pr (O,H | θ)
Q (H | O)

}
(2.24)

=
∑
H

Q (H | O) logPr (O,H | θ)−
∑
H

Q (H | O) logQ (H | O)

=
〈
LC (O,H | θ)

〉
Q
−
∑
H

Q (H | O) logQ (H | O) (2.25)

, z (Q, θ)

where the notation
〈
LC (O,H | θ)

〉
Q
denotes the expected value of logPr (O,H | θ)

over the functionQ (H | O). Eq. (2.24) is obtained from Jensen's inequality resulting

directly from the concavity of the log function. The EM algorithm is then preformed

on the lower bound of the incomplete log likelihood:

E-step: Q(t+1) = argmax
Q

z
(
Q, θ(t)

)
(2.26)

M-step: θ(t+1) = argmax
θ

z
(
Q(t+1), θ

)
(2.27)

As pointed out in [Jordan, 2004], the solution for the E-step isQ(t+1) = Pr
(
H | O, θ(t)

)
since:

z
(
Pr
(
H | O, θ(t)

)
, θ(t)

)
=
∑
H

Pr
(
H | O, θ(t)

)
log

{
Pr
(
O,H | θ(t)

)
Pr (H | O, θ(t))

}
=
∑
H

Pr
(
H | O, θ(t)

)
logPr

(
O | θ(t)

)
= L

(
O | θ(t)

)
Also we note that maximizing z

(
Pr
(
H | O, θ(t)

)
, θ
)
with respect to θ is equal to

maximizing the expected complete log likelihood
〈
LC (O,H | θ)

〉
Pr(H | O,θ(t)) be-

cause the second term in Eq. (2.25) does not depend on θ. Thus, the M-step at

iteration t+ 1 is essentially equivalent to:

θ(t+1) = argmax
θ

〈
LC (O,H | θ)

〉
Pr(H | O,θ(t)) (2.28)

and can be solved locally.
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2.2.2.2 The expected su�cient statistic and ML solution

As shown in Eq. (2.28), the maximization step in the presence of hidden variables is

performed on the expected log likelihood with respect to the probability of hidden

variables given observed ones, instead of on the log likelihood itself. We now see

how this change a�ects the su�cient statistic.

Using the expression of the complete log likelihood in Eq. (2.19) the expected com-

plete log likelihood can be written as:

〈
LC (O,H | θ)

〉
Pr(H | O,θ)

=

〈
N∑
i=1

∑
v∈Xπi

∑
k∈Xi

T
(
θik,v
)
log θik,v

〉
Pr(H | O,θ)

=
N∑
i=1

∑
v∈Xπi

∑
k∈Xi

〈
T
(
θik,v
)〉

Pr(H | O,θ)
log θik,v (2.29)

The above equation shows that the su�cient statistic now becomes the expected

su�cient statistic
〈
T
(
θik,v
)〉

Pr(H | O,θ)
, which is henceforth referred to as

〈
T
(
θik,v
)〉

for simplicity:

〈
T
(
θik,v
)〉

=
∑
H

Pr (H | O, θ)T
(
θik,v
)

=
∑
H

Pr (H | O, θ)
M∑
m=1

δ
(k)

X
(m)
i

δ
(v)

X
(m)
πi

(2.30)

Similar to the fully observed case, the ML solution for the expected complete log

likelihood is solved locally using the Lagrange multiplier (theorem (2.1)), which

leads to:

θ̂ik,v =

〈
T
(
θii,k
)〉∑

k∈Xi

〈
T
(
θii,k
)〉 (2.31)

2.3 Dynamic Bayesian Networks

Having shown that BN in the general case can be expressed in the Exponential Fam-

ily form, we now have a clearer picture of the structure of the solution for parameter

estimation. The nature of the data we work with in the thesis is sequential. The

models developed in this work need to be dynamic and we frame these developments

in a more generic class of probabilistic models known as Dynamic Bayesian Networks

(DBN) [Dean and Kanazawa, 1989, Murphy, 2002].
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Figure 2.4: DBN representation for the HMM.

Intuitively, a DBN is a Bayesian network de�ned for temporal data in which a single

Bayesian network structure B is replicated over time. Let Vt be the set of an amal-

gamated set of random variables at time t and let Bt (Vt) be network structure at

time t de�ned for Vt, then the network structure for the next time slice Bt+1 (Vt+1)

is identical to Bt (Vt) and thus it allows the use of a single B (V) to denote the

network structure at any time slice. To complete the de�nition for DBN, we further

specify a transition network structure that �ows from Vt to Vt+1 and we denote as

T (Vt → Vt+1). For example, the simplest form of DBN is the Hidden Markov Models

(HMM) shown in Fig. (2.4). Each time slice Vt consists of the state Xt and obser-

vation Yt; the one-slide B (Vt) has a simple structure of Xt → Yy and the two-slide

T (Zt → Zt+1) has the simple structure3 of Xt → Xt+1. With respect to parameter

speci�cation, DBN assigns two types of probability: the initial probability model

at the �rst time slice for Pr (V1) and the transition probability for Pr (Vt+1 | Vt) ,

and this transition model is copied4 over time which is known more technically as

a form of parameter tying across time (e.g., see [Phung, 2005b] for a discussion on

parameter tying and relationship to Exponential Family).

DBN has the same demands for inference and learning as in the BN, but since it is dy-

namic the techniques take the dynamic nature into account. The inference problem

includes computing the �ltering distribution Pr (Ht | o1:t), which is the probability of

current hidden state Ht given the observation sequence o1:t; the smoothing distribu-

tions Pr (Ht | o1:T>t); and the prediction distribution Pr (Ht | o1:τ<t). For learning,

3Since Yt and Yt+1 have no role in the transition network while only Xt and Xt+1 do, Murphy

[Murphy, 2002] refers to Xt as the interface nodes.
4To be more precise, we are considering time-invariant DBN here.



2.4. The Hidden Markov Models 23

we need to compute the parent-child distribution Pr
(
Ht, XπHt

| o1:T

)
where any of

of the parents XπHt
could be in the time slice t− 1. As any discrete-state DBN can

be converted into a HMM [Murphy, 2002], its inference can be e�ectively done by

the well-known forward/backward procedures applied in the HMM [Rabiner, 1989],

which are detailed in section 2.4.3. Parameter estimation (ML and EM) in the DBN

is similar to that of the BN, except here we have to collect the su�cient statistics

of all nodes which share the same parameters over time. There is, however, an ex-

emption for the parameters showing the initial condition of the network (Pr (V1)),

whose su�cient statistics only arise at the �rst time slice.

For a comprehensive survey on many aspects of DBN we refer readers to the excellent

work of [Murphy, 2002]. In particular, details on several approximate inference

techniques including the Boyen-Koller (BK), factor frontier (FF), particle �lters

(PF) and Rao-Blackwellised particle �lter (RBPF) can be found therein. Even

though not discussed fully, these techniques can be readily applied for the models

developed in this thesis when computational speed is a more pressing issue, e.g., in

large-scale systems, but of course, at the trade-o� of accuracy.

2.4 The Hidden Markov Models

This section is devoted to familiarizing the readers with the Hidden Markov Model

(HMM) as it is the baseline for all probabilistic models investigated in this thesis.

2.4.1 Model and de�nition

The well-known HMM [Rabiner, 1989] is de�ned as follows. The state space is a set

of discrete states, numbered sequentially: Q = {1, . . . , |Q|}, and elements in Q are

referred as i, j. The initial probability πi speci�es the starting state of the Markov

chain de�ned over states in Q, while the transition matrix Aij governs the transitions

within states. At each time point an observation v in the alphabet set V is generated

with an emission probability Bv|i with i being the current state5. Thus, a HMM is

completely parameterized by θHMM , {π, A, B}, and stochastic constraints require∑
i∈Q πi = 1,

∑
j∈QAij = 1, and

∑
v∈V Bv|i = 1. Table (2.1) shows a summary of

5Note that when the observation is continuous, the emission probability is usually modeled by

a mixture of Gaussians. However, we only consider discrete observations in our work.
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Symbols Meanings

Q
The state space includes |Q| mutually exclusive state:

Q = {1, 2, . . . , |Q|}.

V
The observation space consists of |V | distinguished
alphabets, V = {1, 2, . . . , |V |}.

πi
The probability that the semi-Markov chain will start

with state i,
∑

i∈Q πi = 1.

Aij
The probability that the next state will be j given the .

current state is i,
∑

j∈QAij = 1

Bv|i
The probability that an alphabet v is generated given

the current state is i,
∑

v∈V Bv|i = 1.

θHMM The HMM parameter set: θHMM , {π, A, B}.

Table 2.1: Parameters of a HMM.

HMM parameters. Finally, it is important to note that in the HMM, the probability

Di(d) for which a state i remains the same for a positive duration d, has a geometric

distribution: Di(d) ∼ f
Geom(1−Aii)

(d) = (Aii)
d−1 (1− Aii) .

2.4.2 DBN Representation

The HMM is a simple generative model which can be viewed as a special case of

the DBN (section 2.3). Figure (2.4) in section 2.3 shows the DBN representation

of a HMM when unrolled over T time slices. Each time slice t has a simple BN

(section 2.1) showing the environment at the speci�c time t. Each BN consists of

a state variable xt taking a single value from the state set Q, and an observation

yt generated from the state xt. In general, the state variables x1:T are hidden and

represented by clear nodes, the observations y1:T are observed and represented by

shaded nodes.

Fig. (2.5) shows the three core cliques in the DBN representation of the HMM. All

the three parameters (π, A, B) in θHMM can be transformed to causal relationship

in these cliques:
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Figure 2.5: Cliques of the HMM.

Clique 1: πi , Pr (x1 = i) ,
∑
i∈Q

xi = 1.

Clique 2: Aij , Pr
(
xt+1 = j | xt = i

)
,
∑
j∈Q

Aij = 1.

Clique 3: Bv|i , Pr (yt = v | xt = i) ,
∑
v∈V

Bv|i = 1.

2.4.3 Inference

Inference in the HMM includes the computation of a forward variable αt (i) ,

Pr(xit, y1:t), and a backward variable βt (i) , Pr(yt+1:T | xit) that in turn are used to

compute the two smoothing distributions required in learning: γt (i) , Pr(xit | y1:T ),

and ξt (i, j) , Pr(xit, x
j
t+1 | y1:T ). Note that for simplicity we have written sit as

shorthand for the event st = i with st being an arbitrary node in the DBN repre-

sentation.

Computing the forward and backward variables

The forward/backward variables can be computed recursively [Rabiner, 1989] via

dynamic programming by decomposing the variables using the conditional indepen-

dence property of the Markov chain. The recursive computation for the forward
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variable is as follows:

αt+1 (j) , Pr(xjt+1, y1:t+1) (2.32)

=
∑
i

Pr(xit, x
j
t+1, y1:t+1) (2.33)

=
∑
i

Pr(yt+1 | x
j
t+1) Pr(xjt+1 | xit) Pr(xit, y1:t) (2.34)

= Byt+1|j
∑
i

Aijαt (i) (2.35)

The step from equation (2.33) to equation (2.34) is a result of the conditional in-

dependency in the Markov chain (Fig. (2.4)). The variable xt+1 separates the ob-

servation yt+1 from all previous values: yt+1 ⊥ {xt, y1:t} | xt+1, which leads to

Pr(yt+1 | xt+1, xt, y1:t) = Pr(yt+1 | xt+1). Similarly the state variable xt isolates xt+1

from all previous observations y1:t: Pr(xt+1 | xt, y1:t) = Pr(xt+1 | xt). Since αt (i) is
a forward recursion, it needs a de�nition at time t = 1 to start with:

α1 (i) = Pr
(
xi1, y1

)
= Pr

(
y1 | xi1

)
Pr
(
xi1
)

= By1|iπi

Note that the likelihood is readily available from the forward variable as: Pr(y1:T ) =∑
i Pr(xiT , y1:T ) =

∑
i αT (i). The backward variable βt (i) can be computed recur-

sively in an analogous manner:

βt (i) , Pr
(
yt+1:T | xit

)
(2.36)

=
∑
j

Pr
(
xjt+1, yt+1:T | xit

)
(2.37)

=
∑
j

Pr
(
yt+1 | x

j
t+1

)
Pr
(
yt+2:T | x

j
t+1

)
Pr
(
xjt+1 | xit

)
(2.38)

=
∑
j

Byt+1|jAijβt+1 (j) (2.39)

The backward calculation needs an initialization at time t = T :

βT (i) = Pr
(
yT+1:T | xiT

)
= Pr

(
∅ | xiT

)
= 1

The scaled forward and backward variables

In real-world applications we may be faced with the problem of numerical under�ow

that occurs when the observation sequence is long, as αt and βt will become the

products of a large number of terms, each less than 1. To avoid this, we compute
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the scaled versions [Rabiner, 1989] of the forward/backward variables instead of the

original joint probabilities.

The scaled forward variable is de�ned as: α̃t (i) , Pr(xit | y1:t), which is a �ltering

distribution6, and computed by introducing two extra variables: the partially scaled

variable α̈t (i) , Pr(xit, yt | y1:t−1), and the scaling factor ψt , Pr(yt | y1:t−1), so that

α̃t (i) = α̈t (i) /ψt. Assume that at time t we have computed α̃t (i), the recursion at

time t+ 1 is then given as:

α̈t+1 (j) , Pr(xjt+1, yt+1 | y1:t)

=
∑
i

Pr(xjt+1, x
i
t, yt+1 | y1:t) (2.40)

=
∑
i

Pr(yt+1 | x
j
t+1) Pr(xjt+1 | xit) Pr(xit | y1:t) (2.41)

= Byt+1|j
∑
i

Aijα̃t (i) (2.42)

ψt+1 , Pr(yt+1 | y1:t) =
∑
j

Pr(xjt+1, yt+1 | y1:t) =
∑
j

α̈t+1 (j) (2.43)

Then

α̃t+1 (j) =
α̈t+1 (j)

ψt+1

(2.44)

Similar to the unscaled version the scaled forward variable also starts with an ini-

tialization at time t = 1:

α̃1 (i) = Pr
(
xi1 | y1

)
=

Pr (xi1, y1)

Pr (y1)
=

α1 (i)∑
i α1 (i)

=
By1|iπi∑
iBy1|iπi

For the scaled backward variable, we also introduce a scaled factor φt , Pr
(
yt+1:T | y1:t

)
,

which can be computed as:

φt , Pr
(
yt+1:T | y1:t

)
= Pr

(
yt+2:T | y1:t+1

)
Pr
(
yt+1 | y1:t

)
= φt+1ψt+1 (2.45)

The scaled backward variable then readily follows as:

β̃t(i) ,
βt (i)

φt
(2.46)

and the initialization at time t = T is given by:

β̃T (i) =
βT (i)

φT
=

Pr (∅ | xiT )

Pr (∅ | y1:T )
=

1

1
= 1

6i.e., the probability of a current state given the observation up to the current time.
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Given the scaled forward and backward variables, the smoothing distributions can

be easily computed. The (one-time slice) gamma distribution is derived as:

γt (i) = Pr
(
xit | y1:T

)
=

Pr
(
xit, yt+1:T | y1:t

)
Pr
(
yt+1:T | y1:t

) (2.47)

=
Pr
(
yt+1:T | xit

)
Pr (xit | y1:t)

Pr
(
yt+1:T | y1:t

) (2.48)

= β̃t(i)α̃t (i) (2.49)

Similarly, the two-time slice ξt distribution is computed as:

ξt (i, j) = Pr
(
xit, x

j
t+1 | y1:T

)
(2.50)

=
Pr
(
xit, x

j
t+1, y1:T

)
Pr (y1:T )

(2.51)

=
Pr
(
yt+1 | x

j
t+1

)
Pr
(
yt+2:T | x

j
t+1

)
Pr
(
xjt+1 | xit

)
Pr (xit | y1:t)

Pr
(
yt+1:T | y1:t

) (2.52)

=
Byt+1|jβt+1 (j)Aijα̃t (i)

φt
(2.53)

=
Byt+1|jAijα̃t (i) β̃t+1(j)

ψt+1

(2.54)

Finally, it is clear from the recursive formulae that the inference for the HMM has

a complexity of O(|Q|2T ).

2.4.4 Parameter Estimation

Maximum-likelihood estimation θ∗ = argmaxθ Pr(y1:T | θ) can be conducted using

the Expectation-Maximization algorithm (section 2.2.2.2) along with expected suf-

�cient statistics (ESS's) collected over time (section 2.3). The procedure is iterative

between two steps: compute the ESS's from the smoothing distributions (E-step)

followed by setting the newly re-estimated parameters to the normalized expected

su�cient statistics (M-step).

Following the results in section 2.2.2.2, the expected complete log likelihood for the

HMM can be written in exponential form, analogous to equation (2.29), as:〈
LC (x1:T , y1:T | θ)

〉
=
∑
i∈Q

〈T (πi)〉 log πi +
∑
j∈Q

∑
i∈Q

〈
T
(
Aij
)〉

logAij

+
∑
i∈Q

∑
v∈V

〈
T
(
Bv|i

)〉
logBv|i (2.55)



2.4. The Hidden Markov Models 29

in which the three terms correspond to the three local conditional probabilities

depicted in the three cliques in Fig. (2.5), and the ESS's 〈T (.)〉 are computed as

follows:

〈T (πi)〉 =
〈
δ(i)
x1

〉
=
∑
x1:T

Pr (x1:T | y1:T ) δ(i)
x1

= Pr
(
xi1 | y1:T

)
= γ1 (i) (2.56)

〈
T
(
Aij
)〉

=

〈
T∑
t=2

δ(i)
xt
δ(j)
xt+1

〉
=
∑
x1:T

Pr (x1:T | y1:T )
T∑
t=2

δ(i)
xt
δ(j)
xt+1

=
T∑
t=2

Pr
(
xit, x

j
t+1 | y1:T

)
=

T∑
t=2

ξt (i, j) (2.57)

〈
T
(
Bv|i

)〉
=

〈
T∑
t=1

δ(v)
yt
δ(i)
xt

〉
=
∑
x1:T

Pr (x1:T | y1:T )
T∑
t=1

δ(v)
yt
δ(i)
xt

=
T∑
t=1

Pr
(
xit | y1:T

)
δ(v)
yt

=
T∑
t=1

γt (i) δ
(v)
yt

(2.58)

Note that all the su�cient statistics in Eqs. (2.56), (2.57), and (2.58) have natural

interpretations: T (πi) = δ
(i)
xt

states the chance of having the hidden state x1 starting

with a value i; T
(
Aij
)

=
∑T

t=2δ
(i)
xt
δ
(j)
xt+1

counts the number of times a state i making

a transition to state j; and T
(
Bv|i

)
=
∑T

t=1 δ
(v)
yt
δ
(i)
xt

shows how many times a state i

generates an observation v.

Using the results of section 2.2.1, the ML solutions are given by:

π̂i =
〈πi〉
λ

=
〈πi〉∑
i∈Q 〈πi〉

=
γ1 (i)∑
i∈Q γ1 (i)

= γ1 (i) (2.59)

Âij =

〈
Aij
〉∑

j∈Q
〈
Aij
〉 =

∑T
t=2 ξt (i, j)∑T

t=2

∑
j∈Q ξt (i, j)

(2.60)

B̂v|i =

〈
Bv|i

〉∑
v∈V

〈
Bv|i

〉 =

∑T
t=1 γt (i) δ

(v)
yt∑T

t=1 γt (i)
(2.61)

Finally, if there are M idd observations then the ESS becomes the sum of the ESS

of every single observation (as a result of Eq. (2.20)).
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Figure 2.6: Block diagrams of the HMM, the HSMM and the HHMM.

2.4.5 Duration and Hierarchical Extensions

As identi�ed in [Rabiner, 1989], the major limitation of the HMM is its modeling of

state duration. As the state duration is de�ned by the state's self transition prob-

ability and thus follows a geometric distribution, the probability always decreases

with longer durations. This is unsuitable for many natural sequences, therefore, ex-

tensions have been made into the conventional HMM by allowing the state durations

to take general forms. This is done by setting the state's self transition probability

to zero and specifying a separate distribution for its duration, such as a Multinomial

or a Gaussian. In other words, a state remains unchanged for some duration of time7

(Fig. (2.6)(c)) that is to be de�ned by its own duration distribution before transiting

to a new state. The new model is called the Hidden Semi-Markov Model (HSMM)

as it violates the strong Markov assumption. That means the next state depends

not only on the current state but also on how long the chain has been in that state.

By representing the HSMM in a DBN, inference and learning are done using the

same techniques as in other DBN structures (e.g. HMM). Detailed descriptions of

the HSMM are provided in chapter 3. It is, however, important to point out that the

7or equivalently emits a sequence of observations.
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expressive power of incorporating duration modeling brings with its two important

drawbacks: the increasing number of parameters associated with each state that

need to be learned and the burden of additional computation. As detailed in chap-

ter 3, while the �rst disadvantage can be solved using compact parameterization

(e.g. the Gaussian or Gamma distributions instead of the Multinomial), the second

one remains challenging. In particular, for all the state-of-the-art modeling choices

of state durations (e.g. Multinomial and other distributions from the Exponential

Family), state durations need to be explicitly counted at each time slice in the DBN

representation. Hence, inference complexity in the HSMM is in order of the maxi-

mum duration and thus poses a serious issue in many applications.

Furthermore, by having a �at structure, the HMM is unable to model many physical

signals with complex multi-scale hierarchical structures. Hence, another important

extension to the HMM is the incorporation of hierarchical knowledge such as the

hierarchical HMM (HHMM) [Fine et al., 1998] and the layered HMM [Oliver et al.,

2002b, Sebe et al., 2005]. Fine et al. [Fine et al., 1998] were the �rst to introduce

the HHMM by generalizing the HMM and viewing each state as an autonomous

sub-HMM model. Fig. (2.6)(c) shows the block diagram for a two-layer HHMM.

In the HHMM only the lowest layer actually generates observations, and hence is

referred to as the production layer. States at layers other than the production layer

�generate� a sequence of observations rather than a single observation by recursive

activation of its sub-states. The state hierarchy proposed by [Fine et al., 1998]

is, however, restricted to a tree structure, thus, it does not allow the sharing of

lower-level states by higher-level states. This may be inappropriate for some ap-

plications. Bui et al. [Bui et al., 2004] introduce the concept of a general state

hierarchy to allow the sharing of common substructures in the HHMM, hence pro-

viding more �exibility in the model. Inference and learning in the HHMM (with

tree or general structure) can also be done in the usual DBN framework [Murphy,

2002, Phung, 2005b]. The layered HMM [Oliver et al., 2002b], on the other hand,

does not strictly model hierarchy. It can be viewed as a cascade of HMMs where

each layer is trained independently and the results of the lower layer are used as

inputs to train the higher layer.

Finally, although hierarchy and durations are both important extensions on the

HMM, there has not been any formal work to integrate these extensions into a
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uni�ed probabilistic model to exploit both the duration and hierarchical aspects

often encountered naturally in many applications.

2.5 The Coxian and Phase-Type distributions

In an attempt to overcome the limitations of existing duration models in the HSMM,

this thesis considers the Coxian distribution [Cox, 1955], a member of Phase-Type

(PH) distributions as a promising candidate for modeling state durations. Thus,

this section is devoted to summarizing current work on estimations and applications

of the PH distributions, and the Coxian in particular. Detailed descriptions of the

PH and Coxian distributions are presented in chapter 4.

As the PH distribution family is dense [Johnson and Taa�e, 1988], there are many

existing works on �tting data into general PH distributions, and some on Coxian in

particular. Most of these works [Johnson and Taa�e, 1990, 1991, Bobbio and Trivedi,

1990, Soren et al., 1996, Faddy, 1994, 1998, 2002] are continuous PH distributions;

however, there is some recent work on discrete PH such as [Bobbio et al., 2003, Hor-

vath and Telek, 2002, Isensee and Horton, 2005] . The continuous PH distribution is

a generalization of the exponential distribution, therefore, it includes distributions

such as exponential, Erlang, (continuous) Coxian, and hyper-exponential; whereas

the discrete PH is a generalization of geometric distributions and examples are ge-

ometric, (discrete) Coxian, hyper-geometric and negative binomial distributions.

Early work on continuous PH distribution estimation was based on moment match-

ing. Johnson and Taa�e develop methods for matching the �rst three moments

[Johnson and Taa�e, 1988] or more generally the �rst k moments [Johnson and

Taa�e, 1989] of non-degenerate distributions by a mixture of Erlang distributions

of common order. The same group later extend their work to include a mixture

of two Erlang distributions of not necessarily the same order, a Coxian distribu-

tion and also a PH distribution with no mass at zero [Johnson and Taa�e, 1990].

They also investigate the appropriateness of moment matching methods in queuing

models [Johnson and Taa�e, 1991]. Bobbio and Trivedi [Bobbio and Trivedi, 1990]

work on certain classes of acyclic PH distributions based on minimum distance �t-

ting. However, more recent �tting work aims to maximize the data D likelihood:

L(µ,λ) | D = Pr (D | µ,λ). Soren et al. [Soren et al., 1996], developed into a pack-
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age called EMPHT-program [Haggstrom et al., 1992], view the PH distribution as

a multi-parameter Exponential Family when the underlying Markov process is com-

pletely observed, and employ the EM algorithm [Dempster et al., 1977] to deal with

incomplete observations. An interesting �nding from their work is that except for

the Erlang distribution with feedback, a Coxian is as good a �t as any general PH

distribution with the same number of transient states. The Coxian distribution also

�nds its popularity in Faddy's work [Faddy, 1994, 1998], which uses a simple method

(the Nelder-Mead method) to maximize the likelihood and compensates the algo-

rithm non-convergence by a penalized function [Faddy, 2002]. Riska et al. [Riska

et al., 2002] use a divide and conquer approach which involves two steps: partition-

ing data into sets and employing the EM algorithm to �t each data set to a PH

distribution, then constructing a �nal �tting for the whole data from the resulting

PH distributions. Most recently, Thummler and Telek [Thummler and Telek, 2006]

claim a novel approach with more e�ciency and numerical stability.

The discrete PH distribution has started to gain more attention recently. Bobbio

et al. [Bobbio et al., 2003] are the �rst to introduce a discrete PH �tting method

and restrict their work to the acyclic PH class. Their method employs an ML esti-

mation procedure to compute the PH parameters in canonical form. They present

a �tting package named PhFit [Horvath and Telek, 2002] to estimate both discrete

and continuous PH distributions, which could become useful for heavy tail distri-

butions as it separates the body and tail parts in the �tting process. However, the

user is required to de�ne the number of phases for both the body and tail �ttings.

Isensee and Horton [Isensee and Horton, 2005] implement three di�erent optimiza-

tion methods (Gradient Descent, Nelder-Mead Simplex, Simulated Annealing) for

discrete PH approximation, and study the performance of the three algorithms and

the e�ects of the PH distribution size.

Regarding applications, both the continuous and discrete PH distribution families

(including the Coxian distribution) �nd their most common applications in queu-

ing models in communication networks [Neuts, 1981, 1989, Ishay, 2002, Soong and

Barria, 2000]. Recently, the continuous PH distributions are used to model state

durations in Continuous Time Bayesian Network [Nodelman et al., 2005] and the

discrete PHs are employed for the classic problem of sequence discrimination [Callut

and Dupont, 2006]. With respect to the Coxian distribution, its continuous version
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has lately become a useful practical tool in representing the survival of patients in

hospitals [Faddy and McClean, 1999] and modeling patient duration of stay in hospi-

tals [Faddy and McClean, 2000, Marshall and McClean, 2004], which also assists in

estimating the cost for groups of aged patients [Marshall et al., 2007]. In [Marshall

and McClean, 2004], based on the data collected on the patients, the continuous

Coxian is �tted with di�erent numbers of phases using a series of likelihood ratio

testing to �nd the best �t model. Nevertheless, there has not been any signi�cant

applications reported for the discrete Coxian distribution.

2.6 Activity Recognition

In the literature, many di�erent terminologies have been used by di�erent authors

to refer to human intentional actions such as actions, motions, temporal textures,

activities, behaviours, plans, primative/composite events, e.g. [Polana, 1994, Brand

et al., 1997, Bui, 2003, Tapia, 2003, Wang et al., 2003b, Wilson, 2005, Price, 2007]. In

their survey, Moeslund and Granum [Moeslund and Granum, 2001] view de�nitions

of human actions in current research under a hierarchy: action/motor primitives,

actions, and activities. Action primitives are the smallest meaningful entities used

to compose actions, which in turn are used to build activities. The authors gave

playing tennis as an example of activity, while action primitives are run lef t and

back-hand, and actions are a sequence of primitive actions performed to return the

ball successfully. In the work of this thesis, the term activity (or sometimes high-

level activity) carries the same meaning as in [Moeslund and Granum, 2001] since

it refers to a series of intended human actions to complete a designated task, for ex-

ample �preparing dinner�; while atomic activity is a primitive action or a sequence

of primitive actions carried within an activity, for example �cooking at stove� .

More speci�cally we are working with activities of daily living (ADLs) [Katz et al.,

1963], which are daily routines of house occupants in the independent-living home

environment. An index of ADLs was introduced in [Katz et al., 1963] to measure

both cognitive and physical functions of participants. Examples include bathing, ex-

ercising, cleaning and meal preparation. Many researchers [Lawton, 1990, Kempen

et al., 1996, Greiner et al., 1996, Rogers et al., 1998] have continued to con�rm the

importance and e�ectiveness of ADLs on assessing the �tness of the elderly living

independently in their home, inspiring research on automatic modeling and recogniz-
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ing ADLs as well as detecting anomalies, e.g. [Mynatt et al., 2000, Tapia, 2003, Bao

and Intille, 2004, Wilson, 2005, Rivera-Illingworth et al., 2005]. Readers are referred

to [Haigh and Yanco, 2002] for a good survey on current research and technologies

on automatic monitoring and assistance for the elderly to live independently in their

home. Existing research tends to further categorize everyday activities into three

classes: activities of daily living (ADLs) are activities related to personal care and

essential for people living independently, e.g. eating, bathing or dressing; instrumen-

tal activities of daily living (IADLs) involve the use of instruments, e.g. preparing

meals, washing dishes or dusting; and enhanced activities of daily living (EADLs)

are the more challenging types of activities, e.g. using the Internet to communicate

with others, pursuing further education or doing voluntary work. As we look at the

activity domain from an activity modelling and recognition perspective, rather than

a medical perspective, we use a loose de�nition on ADLs, which covers both basic

ADLs and IADLs.

In particular, our motivating application is the construction of safe and smart houses

for the aged that facilitate automatic monitoring and support of their occupants,

aiming to increase the opportunities for aging in the family home. There are two

main problems in building such a system. First, the system needs to learn, under-

stand, and automatically build a model of the occupant's ADLs by observing what

the occupant usually does during the day. Second, the system needs to be able to

use its learned knowledge to monitor the person's current activity, i.e. to recognize

what the occupant is doing and detect if there are any deviations from the normal

activity patterns and alerting the carer if necessary.

2.6.1 Activity Recognition with Dynamic Stochastic Models

Dynamic stochastic models have been widely chosen for the problem of modeling

and recognizing activities as they possess the capability of statistically describing

how a state, modeled by a statistical model, can transit into another, making them

particularly useful at capturing the dynamics in time-series activity data. This

section presents a review of the use of dynamic stochastic models in the �eld of

activity recognition, particularly focusing on the Hidden Markov Models and their

variants as they are more closely relevant to our work.
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2.6.1.1 Approaches using the HMMs and their variants

The HMMs and their variants are attractive approaches for learning and recogniz-

ing activities as they possess the following appealing properties. First, they can be

represented by DBNs, which have clear Bayesian semantics and model conditional

in/dependencies in a natural way, and thus are e�ective in handling time-varying

and/or incomplete data. Second, simple and e�cient inference and learning algo-

rithms are available [Rabiner, 1989, Murphy, 2002]. Third, prior knowledge, as well

as new domain knowledge can be incorporated, especially as it is more intuitive with

the availability of graphical representation. The HMMs and their variants, however,

are not generally applied directly to noisy raw video/sensor data. Essential fea-

tures are �rst extracted from data via various means, e.g. Bayesian Networks to

map video data into event concepts [Hongeng and Nevatia, 2003], particle �ow to

extract motion information [Niu and Abdel-Mottaleb, 2004], principle component

analysis coe�cients to represent activity trajectories [Bashir et al., 2007], or more

generally an independent data conversion scheme accompanied by observation mod-

els [Nguyen, 2004b]. The HMMs and their extensions then operate on these features

to exploit their temporal properties. This section presents the literature review on

approaches to Activity Recognition using the HMMs and their variants8 with a focus

on duration and hierarchical extensions.

HMM-based Approaches

Initially the HMMs were mainly used in speech recognition, and its usefulness in

understanding time-sequential data was �rst brought to the attention of the vi-

sual community in the early 90s by Yamato et al. [Yamato et al., 1992]. Yamato

et al. opened new potential applications in activity recognition for the HMMs and

their variants, successfully applying the HMMs for learning and recognizing di�er-

ent strokes in tennis games. The HMMs became popular with activity recognition

work in the 90s, such as recognizing American Sign Language [Starner and Pent-

land, 1995], simple tasks: pick-up, put-down, push, pull, drop, and throw [Siskind

and Morris, 1996], human gait [Bregler, 1997], and gestures [Lee and Kim, 1999].

For instance, Lee and Kim [Lee and Kim, 1999] argue that a simple threshold is

often not su�cient for recognizing hand gestures and thus make use of the internal

8Readers may be also interested in [Cappe, 2001], which provided a good list of papers developed

between 1989 and 2000 on general study and extensions on the HMMs and their applications in

various other areas.
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segmentation property of the HMM, saying that each state of a trained HMM repre-

sents a sub-pattern and state transitions follow sequential order of sub-patterns, to

construct an HMM-based threshold model. The HMM-based threshold model is a

simpli�ed version of an ergodic HMM that copies states from all trained HMMs and

fully connects them. Only gestures whose best likelihoods given all gesture models

are higher than their likelihoods given the threshold model are accepted as valid ones.

HMMs continued their popularity in this decade and have been exploited in di�erent

perspectives by various researchers [Brand and Kettnaker, 2000, Hamid et al., 2003,

Niu and Abdel-Mottaleb, 2004, Wyatt et al., 2005, Lester et al., 2006, Bashir et al.,

2007]. For example, Brand and Kettnaker [Brand and Kettnaker, 2000] argue for

the use of entropy minimization over the conventional Baum-Welch formula during

learning to better reveal the hidden structures in the data, as minimization is not

only performed on the entropy of the data's expected su�cient statistics (ESS's)

but also on the cross-entropy between the ESS's of the data and the model, and

entropy of the model itself. The authors apply the HMM learned with this modi-

�ed EM algorithm for the application of o�ce activities and monitoring tra�c. In

addition, as the latter application involves a varying number of objects, the authors

use a mixture observation model to handle the variable-length observations. Ad-

dressing multiple observation problems, Xiang and Gong [Xiang and Gong, 2007]

simply �x the number of observation symbols emitted at a given time. The obser-

vation space is then factorized by assuming each observation symbol is independent

of the others. The authors use di�erent Multi-Observation HMMs (MOHMMs) to

model di�erent behaviour patterns and then build a composite behaviour model us-

ing the mixture of learned MOHMMs. Their target applications are in surveillance

scenarios including both indoor, e.g. entering/existing building, and outdoor, e.g.

aircraft docking procedure. Peursum et al. [Peursum et al., 2004] use the (�at)

left-right HMMs to segment relatively complex hierarchical activities, e.g. print-

ing and retrieving documents or making tea, by viewing the segmentation problem

as missing observations. Labels of sub-activities are supplied during training as

observation features and treated as missing observations during testing. Nodes in

the HMM's DBN representation associated with missing observations are omitted

during computation of forward and backward variables, and the most probable sub-

activity labels yt (dubbed missing observations) are inferred from the distribution

Pr (yt | Observation1:T ). This approach, however, does not allow online segmenta-
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tion. As the author has pointed out, more �exible structures are required for activ-

ities with less restricted temporal order and a hierarchical HMM would be better

at modeling complex hierarchical activities. Aiming for view-invariant recognition,

Niu and Abdel-Mottaleb [Niu and Abdel-Mottaleb, 2004] use a bank of HMMs, each

trained for one activity captured from di�erent camera views. It is shown that the

recognition can bene�t when both optical �ow motion information and eigen-based

shape features are used (88.3% accuracy). However, the set of activities considered

are still relatively simple and primitive. Bashir et al. [Bashir et al., 2007] segment

object motion trajectories at changing points in their curvatures and represent sub-

trajectories by their principle component analysis (PCA) coe�cients. Each state in

the HMM is then modeled by a mixture of Gaussians representing the PCA coe�-

cients of sub-trajectories. It was found that this HMM-based trajectory modeling

delivered more consistent performance than Gaussian Mixture Models, when rec-

ognizing activities with temporal orders, such as in Australian Sign Language and

sport activities. However, most of these works are based on the assumption that

activities have �at structures with simple temporal orders, and thus, are inadequate

when it comes to learning, classifying and segmenting composite activities with com-

plex structures and temporal signatures.

While using HMMs is suitable and e�cient for learning simple sequential data, its

performance seriously degrades when the range of activities becomes more complex,

or the activities exhibit long-term temporal dependencies that are di�cult to deal

with under the strong Markov assumption. Further, activities that are hierarchical

in nature cannot be adequately modeled by the �at HMM structure. As mentioned

in section 2.4.5, to overcome these limitations two popular classes of extensions to

the HMM have been proposed: the HSMM and HHMM.

HSMM-based Approaches

The HSMM has the advantage of being able to model non-exponential/non-geometric

state durations and has been reported to achieve higher recognition rates in several

papers, e.g. [Hongeng and Nevatia, 2003, Luhr et al., 2004, Tweed et al., 2005,

Natarajan and Nevatia, 2007a]. Common choices of distributions used for model-

ing state durations include Multinomial [Luhr et al., 2004, Marhasev et al., 2006,

Natarajan and Nevatia, 2007a] and Gaussian [Hongeng and Nevatia, 2003]. This

advantage, however, carries a heavy computational burden in both training and
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classi�cation because the inference complexity depends on maximum duration span

of a state (as brie�y explained in section 2.4.5); that is, O
(
|Q|2MT

)
where |Q| is

the number of states, M is the maximum duration and T is the activity length. In

activity recognition the maximum sub-activity/activity duration can be arbitrarily

large. Realizing this computational drawback, several attempts have been made

to improve the inference complexity. Hongeng and Nevatia [Hongeng and Nevatia,

2003] try to limit the duration span to a small value during training and classi�ca-

tion, which may work for some typical durations: uniform by taking the maximum

upper bound, or normal by considering only the region around the mean. The

authors, however, apply their models to activities from various domains, such as

ground and airborne surveillance, whose temporal variances are not guaranteed to

follow uniform or Gaussian distributions. Alternatively, narrowing their purpose to

decoding only, Tweed et al. [Tweed et al., 2005] impose concave monotonic condi-

tions on the duration distribution of the HSMM to achieve an O
(
|Q|2 T

)
most-likely

sequence inference algorithm, and apply it for recognizing behaviours from a British

breakfast television program.

Computation costs become more severe as more structure is incorporated into the

HSMM. An example is the Non-stationary Hidden semi-Markov Models (NHSMM)

used in [Marhasev et al., 2006] to learn and recognize normal and abnormal human

behaviours in large-scale surveillance, e.g. activities of passengers in airport. The

NHSMM extends the HSMM by allowing transition probabilities between states to

depend on state durations. That means the probability of going from state i to

state j depends on the duration an agent has spent in state i. The authors re-

port important improvements in recognizing both normal and abnormal activities

as compared with the HSMM and HMM. As expected, the drawback of this model is

its computational cost since the likelihood computation complexity is O
(
|Q|2M2T

)
in comparison with O

(
|Q|2MT

)
of the HSMM, or O

(
|Q|2 T

)
of the HMM. An-

other example is the Coupled Hidden semi-Markov Models (CHSMM) proposed in

[Natarajan and Nevatia, 2007a] to model activities involving multiple agents. The

Coupled HMM [Brand, 1996] is an extension of the HMM to model multiple depen-

dent processes by running multiple Markov chains in parallel, connecting their states

across time slices. The CHSMM extends the CHMM in the way a HSMM expands

the HMM, i.e. allowing state duration to be non-exponential. By incorporating

both duration and multiple channels the CHSMM brings with it a very heavy com-
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putation cost. The authors then adopt Brand's approximate learning algorithm for

the CHMM [Brand, 1996] with some important modi�cation to achieve an inference

complexity O
(
C2 |Q|2M3T

)
, which is still expensive. In testing their models the

authors had to assume uniformly distributed duration models when building their

visual synthetic surveillance and normal duration distribution models for learning

American Sign Language. Again, it is clear from our review of the HSMM that

there is a strong need for a new type of duration parameterization to solve the

computational setback of current duration models.

HHMM-based approaches

The HHMM was �rst applied to the problem of learning multi-level structure in

text and detecting stroke patterns in handwriting in [Fine et al., 1998]. It is also

used for video analysis in [Xie et al., 2002], and later extended in [Xie and Chang,

2003]; however, hierarchy is not e�ectively modeled as the HHMM is �collapsed�

into a �at HMM during inference and learning. Luhr et al. [Luhr et al., 2003]

are the �rst to employ the HHMM in modeling and recognizing human activities.

Nevertheless, in these models the state hierarchy in the HHMM is restricted to a

tree structure. This is not suitable for complex activities as they sometimes share

common atomic activities, for example, both �cooking dinner� and �making co�ee�

may involve the use of kitchen cabinets. This problem in solved in [Bui et al., 2004]

wherein state hierarchy can be an arbitrary lattice structure. This model is �rst

used to learn activity trajectories using simulated data in [Bui et al., 2004] and

then real surveillance data in [Nguyen et al., 2005, Nguyen and Venkatesh, 2005].

Nguyen et al. [Nguyen et al., 2006] later use a set of multiple HHMMs integrated

with the joint probabilistic data association �lters (JPDAFs) to track and recognize

high-level behaviours of multiple people in a home environment. Each HHMM is

associated with a single person with high-level states for complex behaviours and

low-level states for atomic behaviours, and the assignment of people to observation

data is handled by the JPDAFs. Another type of hierarchical extension is the layered

HMMs used in [Oliver et al., 2002b, Sebe et al., 2005] for activity recognition. At

each layer a bank of HMMs (dubbed discriminative HMMs) are run in parallel and

the model with the highest likelihood is selected at each time slice. Outputs from

the lower layer are used as input to the higher layer. The layered HMMs are found

to be useful in enhancing the robustness in activity recognition by reducing training

and tuning requirements via re-training the lowest layer, and keeping the higher-level
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layers unchanged. The LHMM decomposes activities into di�erent time granularities

by using a sliding time window at each layer. An observation is generated for each

processed time window and passed as input to the next layer. The authors [Sebe

et al., 2005] use their intuition and knowledge on the activity types being modeled

at each layer to decide on sliding window sizes. Finally, even though hierarchical

structures have been e�ciently modeled in these works, temporal variances at both

atomic and complex activities are overlooked in the HHMMs, and not su�ciently

modeled in the LHMMs.

Approaches using other variants of the HMM

Apart from the two important extensions above, the HMMs have been extended

in several other ways tailored to the need of di�erent applications. A common ex-

tension is to supply the HMMs with parallel running Markov chains [Vogler and

Metaxas, 1999, Brand et al., 1997] to accommodate multiple interacting agents.

Model variants and their applications in human activity recognition include: (i.)

the parallel HMMs for American Sign Language [Vogler and Metaxas, 1999] and

later extended to human gait [Vogler et al., 2000], (ii.) the coupled HMMs for Tai

Chi martial art [Brand et al., 1997] and the occurrences of human interactions and

types of interactions [Oliver et al., 2000], (iii.) the factorial HMMs for human gaits

[Chen et al., 2007], and (iv.) the dynamically multi-linked HMMs for group activi-

ties at outdoor scenes [Gong and Xiang, 2003]. In multi-channel HMMs, inference

complexity is exponential in the number of Markov channels C because of the com-

posite state xt ,
{
x

(1)
t , . . . , x

(C)
t

}
and observation yt ,

{
y

(1)
t , . . . , y

(C)
t

}
. The typical

approach to reduce the model complexity is to make assumptions on the interaction

between channels as well as between channels and their observations, so that the

composite transition probabilities and emission probabilities can be factorized. For

example, in the coupled HMMs (CHMMs) [Brand, 1996] states from parallel HMMs

are connected over one time slice and the composite state transition probability is

factorized into products of individual Pr
(
x

(c)
t+1 | x

(c′)
t

)
with c, c′ ∈ [1, . . . , C]. This

could become erroneous as C increases since the composite transition probability is

set to the product of a large number of terms, each less than 1. The author also

assumes each chain has its own observation sequence to factorize the observation

probability as a product of individual Pr
(
y

(c)
t | x(c)

t

)
. Consequently, a deterministic

O
(
C2 |Q|2 T

)
approximation for MAP state estimation for C fully coupled chains of

|Q| states is derived, making the CHMM computationally feasible. A CHMM with
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two chains is then later used [Brand et al., 1997] to perform visual classi�cation of

Tai Chi Chuan two-hand gestures. Gong and Xiang [Gong and Xiang, 2003] simplify

the state factorization problem in the CHMMs by disconnecting irrelevant causal

relations between state variables across processes when constructing their dynam-

ically multi-linked HMMs (DML-HMMs). In order to achieve this simpli�cation

the authors have to �rst learn the topology of their DML-HMMs using Schwarz's

Bayesian Information Criterion. Their application is to model and recognize airport

cargo loading and unloading activities.

There are applications where multiple observations either are not or cannot be as-

sumed to come from multiple interacting processes. For example, observations from

various sources such as videos and sensors describing ADLs of a single house occu-

pant. In these cases the probabilities of observing multiple symbols given a hidden

state at a time in the HMMs can be factorized [Brand and Kettnaker, 2000, Xiang

and Gong, 2007] or constructed using a combinatorial method [Li et al., 2000]. Also

related to observation models, Wilson and Bobick [1999] extend the HMMs by in-

troducing a global parameter into the output probabilities, forming the parametric

HMMs. The authors then apply the parametric HMMs for gesture recognition.

Another extension is to enrich the HMM with context [Bui et al., 2002], trans-

forming it from a type of probabilistic context free grammar to context dependent

grammar. The Abstract HMM (AHMM) proposed in [Bui et al., 2002] is a multi-

scaled probabilistic model, consisting of multi-layer abstract policies where a policy

is similar to a high-level state in the HHMM. The policy selection process follows a

top-down decomposition. The higher policy selects the lower one and the execution

continues to the bottom level, where the bottom level policy does not select another

policy but models a Markov chain. The observations are then generated directly

from this Markov chain. Unlike the HHMM, the AHMM allows the re�nement of

an abstract state into lower-level states to be dependent on the current context,

modeled by the current state at the bottom level, and thus it belongs to the class

of context-dependent models. The AHMM is �rst applied to activity tracking and

recognition [Nguyen et al., 2004], then used to model movements in indoor [Osen-

toski et al., 2004] and outdoor [Liao et al., 2004] environments. Bui [Bui, 2003] later

introduces memory into the AHMM to form the Abstract Hidden Markov Memory

Model (AHMEM) that allows the choice of the next sub-plans to depend not only on
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the current state, but also the sub-plans chosen in the past. The AHMEM is found

to be e�ective at handling noisy data from multiple sources with its applications

in learning behaviour model from multiple cameras [Nguyen et al., 2004]. It is also

later extended to handle multi-agent policies, called the MultiAgent AHMEM, for

recognizing simple actions like walking and jumping, in which di�erent body parts

are represented as cooperative agents [Kosta et al., 2006].

The HMMs have been extended in various ways as discussed above, however, as

our current interest is to build stochastic models that are capable of automatically

learning and recognizing complex ADLs of a single house occupant as well as detect-

ing any anomalies, we focus only on extensions of HMMs which help towards this

goal. To this end we recognize that the best models for ADLs are those competent

to exploit both temporal variations and hierarchical decompositions (with shared

substructures) in a computationally e�ective fashion. Previous work [Kautz et al.,

2003] has recognized the need to combine both the hierarchical and semi-Markov

extensions to form the Hierarchical Hidden Semi-Markov Model. However, there

has been no attempt at formalizing such a model or in demonstrating its usefulness

empirically over other existing models.

2.6.1.2 Approaches using other dynamic stochastic models

Apart from the HMMs and their variants, activity recognition involves the use of

other probabilistic �nite state automatons and many di�erent structures of Dynamic

Bayesian Networks. This section provides a brief review on these approaches, focus-

ing on their durational and hierarchical modeling aspects.

The Variable Length Markov Model (VLMM) is a probabilistic �nite state automa-

ton capable of capturing processes with variable memory lengths (as opposed to the

�xed memory Markov model) wherein states are not hidden. Galata et al. [Galata

et al., 2001] use the VLMMs to learn, recognize, animate and predict exercise rou-

tines. By having variable memory length, the VLMM is e�ective at capturing large

scale temporal dependencies and is particularly good for behaviours with both short-

and long-term temporal dependencies. However, it does not model state durations.

Medioni et al. [Medioni et al., 2001] use a �nite-state automaton to recognize hier-

archically complex activities (dubbed multi-state scenarios such as �a car is avoiding
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the checkpoint�), where each state represent a sub-activity. Rule-based methods are

used to compute the likelihood of occurrences of activities. The authors later extend

their work in [Hongeng et al., 2004] enabling activity likelihood to be calculated rig-

orously via Bayesian and �rst-order logic.

A substantial amount of work on activity recognition has been based on DBNs;

nevertheless, they generally do not explore both durational and hierarchical prop-

erties embedded in human actions. First, we examine some research e�orts that

incorporates duration information. For example, the DBN used in [Du et al., 2006]

to recognize a few di�erent types of interacting activities between two people from

video data, can be viewed as a simpli�ed version of a coupled HSMM with two

channels: one consists of global activity states with learned uniform duration distri-

butions, while the other includes local activity states without durations. A simple

one-way causal relationship directs global states to local states. The global states

generate global observation features containing velocities of people, distances be-

tween them, and angles between moving directions. The local states generate local

features comprising of the aspect ratio of the tracked bounding box and inclination

of torso. Another example is the Activity Graph proposed in [Patterson et al., 2004]

to present ADLs in terms of the gross manipulation of household objects supplied

by RFID tags. An Activity Graph consists of a set of disjunctive and conjunctive

arcs (allowing partially ordered activities) with probabilities on disjunctive arcs and

nodes with Gaussian durations. An Activity Graph has to be constructed for each

ADL, and can be represented by a DBN and inference done with Rao-Blackwellized

particle �lters [Murphy and Russell, 2001]. Durations of sub-activities (nodes in the

Activity Graph) are modeled by Gaussians but parameter learning is not supported.

The authors also intend to extend their work to model hierarchically complex activi-

ties as well as address interrupted and resumed activities. Shi et al. [Shi et al., 2004]

take a di�erent approach by looking at (�nite) temporal intervals comprising activ-

ities instead. Component temporal intervals in activities are allowed to be partially

ordered or in parallel. The authors propose a Propagation Network (P-Nets), which

is a form of DBN with the ability to model duration explicitly. Each node in P-Nets

is associated with a temporal interval and its state (i.e. active or inactive) once ini-

tiated, depends solely on its Gaussian duration model, which is to be learned during

training. The authors apply P-Nets to model the task of calibrating a blood glu-

cose monitor, commonly used by the elderly with diabetes. They later extend their
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work to a new scheme called P-Nets+Boosting (by introducing a boosting-based

learning method) [Shi et al., 2006] aimed at reducing the burden of manual work

in constructing the network. In addition, they broaden their experiment to include

two more data sets: indoor activities (e.g. making a phone call, reading a book)

and weight-lifting exercises. However, common choices of distributions for modeling

activity durations are still multinomial and Gaussian, therefore, they su�er from the

same disadvantages as in the HMM-based approaches discussed previously.

DBNs have been e�ectively exploited in revealing the natural hierarchical organi-

zation of human actions in a number of research works. For instance, Kitani et al.

[Kitani et al., 2005] address the hierarchical nature in human activities via the

innovative combination of stochastic context free grammar (SCFG) and Bayesian

networks. SCFG is used for its expressive power. Hence, descriptions of hierarchical

structures in activities is �rst given in a SCFG, which is then used to generate a

hierarchical BN, as the BN is particularly good at handling the uncertainty of hu-

man actions and allows complex probabilistic queries across the grammar. Deleted

interpolation, a smoothing technique in natural language processing, is carried out

on the DBN and used to recognize various activities including temporally overlapped

ones such as passing through the scene and departing the scene; nevertheless, the

problem of duration modeling is not discussed. Hoey [Hoey, 2001] use a hierarchical

Bayesian Network in which the lowest level is a mixture of Gaussian distributions,

whereas upper levels are a mixture of Markov chains for learning and recognizing

facial expression events in video. A DBN representation is obtained by unrolling

the hierarchical BN at di�erent time scales at each level, with the higher level op-

erating at lower time scales. Although the hierarchy is nicely modeled and learned,

event durations are not incorporated, furthermore, manual segmentation of video

streams is required, making it unsuitable for real-time applications. Oliver and

Horvitz [Oliver and Horvitz, 2005] extend their Layered HMMs [Oliver et al., 2002a]

by combining the use of both HMMs and DBNs. This is done by replacing the bank

of discriminative HMMs at the highest layer by a DBN with hidden �activity� states

while keeping the lower-layer HMMs. O�ce activity labels inferred from this DBN-

HMMs structure give better accuracy rates than the Layered HMMs, nevertheless,

as the authors point out, it is more computationally expensive. Again, activity hi-

erarchy is well modeled but their temporal characteristics are overlooked.
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To sum up, these approaches have the same problems with those based on the

HMMs. They generally either do not model duration characteristics of activities

in a computationally e�cient fashion or integrate both duration and hierarchical

properties.

2.6.2 Non-dynamic Approaches to Activity Recognition

There are few research works based on relatively simple techniques such as template

matching, nearest neighbor and decision tree classi�ers, to recognize simple human

actions. The approaches generally cannot incorporate hierarchical/temporal infor-

mation or support online recognition. For example, Collins et al. [Collins et al.,

2002] present a view-dependent method for human identi�cation based on template

matching of 2D silhouettes extracted from the gait sequences. Rao et al. [Rao and

Shah, 2001, Rao et al., 2002], on the other hand, propose a view-invariant represen-

tation of actions composed of atomic units called dynamic instants and intervals.

Instants are instantaneous entities showing motion changes: speed, direction, accel-

eration, and curvature, while intervals are time periods between two instants during

which no important motion changes occurs. Distances between activities' instants

are then computed and used to decide a match, and activities used are relatively

simple like opening a cabinet, picking up an object or erasing the board. Alter-

natively, Ben-Arie et al. [Ben-Arie et al., 2002] recognize simple activities such as

walking or jumping using multidimensional indexing of body poses. [Bao and Intille,

2004] apply C4.5 decision tree, nearest neighbour, decision table and naive Bayes

classi�ers to recognize relatively complicated activities such as riding escalators or

vacuuming, using features extracted from acceleration data. The acceleration data

is obtained from several accelerometers worn on di�erent body parts of the partici-

pants.

Graphical representations are common in handling more complex activities, espe-

cially those with hierarchical orders. Hongeng et al. [Hongeng et al., 2000] use

a Bayesian Network comprising of several naive Bayesian classi�ers to represent

hierarchically complex activities at parking bay and checkpoint monitoring, with

a bottom-up inference process. This representation of hierarchy is very intuitive,

however, the network expands expensively in accommodating di�erent scenarios.

Also, temporal dependencies cannot be incorporated. Minnen et al. [Minnen et al.,

2003] propose a system based on stochastic parsing to automatically annotate well-
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ordered activities such as the Towers of Hanoi task from video data. Ghanem et al.

[Ghanem et al., 2004] use Petri Nets with extensions to represent composite (hier-

archical) events (e.g. car activities in car park) from simple events by combining

their logical, temporal and spatial relations. Liao et al. [Liao et al., 2005] use

relational Markov networks for location-based activity recognition. While duration

information can be incorporated as feature functions, activity duration distributions

cannot be modelled and learned explicitly. Avrahami-Zilberbrand et al. [Avrahami-

Zilberbrand et al., 2005] face similar problems with their plan library representation,

in which durations of plan-steps cannot be modeled explicitly but are de�ned by a

set of temporal constraints.

2.7 Detection of Anomalies in Activity

Anomalies are deviations from the common forms and are referred to with di�erent

names such as abnormality, outlier, irregularity, deviation, rarity, unusualness, etc.

Due to its importance in various areas, e.g. assistive technologies for the elderly

and patients, and security surveillance in airports and buildings, anomaly detection

has been extensively researched. However, we only discuss the most relevant works.

Our focus is to deliver an anomaly detection framework in a smart home context

for the aged, which is �rstly able to detect a subtle (thus, harder to spot) form of

abnormality, namely duration abnormality, which are deviations in durations (longer

or shorter) spent at some locations in the activity sequence, or equivalently the un-

usualness in the pace of conducting activity. This kind of anomaly, if detected, can

provide important clues in alert systems. For instance, a person staying at a loca-

tion for a longer duration than usual might indicate the onset of illness or disability.

Secondly, the detection scheme needs to be able to recognize an anomaly as soon as

it appears, and it is also important to detect when anomalous activities return to

normal. This ensures alerts to be raised on time and false alarms to be minimized.

Thirdly, the system needs to be capable of dealing with practical issues including

insu�cient negative training data (as abnormalities are rare and varied) and the

requirement of a de�ned abnormality threshold for detection decision (since it is

sometimes di�cult to specify in practice). The remainder of this section is devoted

to discussing anomaly detection work along these three criteria.

Most research on anomaly detection is to detect abnormalities in �apparent� forms,
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e.g. deviations in terms of activity trajectories or sequential orders; however, some

of them are also able to detect duration anomalies. Examples in large scale environ-

ments include [Grimson et al., 1998, Chellappa et al., 2003, Vaswani et al., 2004].

Using visual data returned from a distributed set of cameras, Grimson et al. [Grim-

son et al., 1998] detect unusual speeds of moving vehicles in a surveillance area

as outliers of the clusters representing normal activity patterns. Chellappa et al.

[Chellappa et al., 2003] use statistical shape theory to model the changing con�g-

urations of interacting objects and examine their mean and dynamic deviations to

spot abnormal behaviour in the tracked objects. In particular, abnormalities in the

walking pace of a passenger (e.g. sudden stop in his track) in an airport is detected

via the changes in shape formed by all passengers. The importance of detecting

duration anomalies for indoor activities has also been recognized. For instance,

Rivera-Illingworth et al. [Rivera-Illingworth et al., 2005] use an Adaptive Neural

Architecture, which, di�ering from most neutral networks, can grow to accommo-

date new samples in data without the need for re-training the whole network. The

network consists of an input layer, a hidden layer (with or without an accompanied

memory layer) and an output layer. It detects unusualness by using a threshold in

the hidden layer or growing a new class node to interpret the unfamiliar sample. The

importance of detecting deviations in the sequence, frequency and also durations of

learned activities is recognized by the author as they have introduced a memory

layer. Nevertheless, evaluation on the e�ectiveness of this memory layer is left for

further work as their current experiment only tests activities that are totally new

to the network. Hara et al. [Hara et al., 2002] �rst cluster sensory data obtained

from ubiquitous small motion detectors installed in a smart house into a manageable

number of states using the nearest neighbour method. They use �rst-order Markov

chains to construct templates for daily activities (e.g. one template for every hour)

de�ned on the state transition probabilities and state transition duration time dis-

tributions. Anomalous patterns are detected by comparing either the average log

likelihoods of the transition probabilities and transition duration time computed

from their cluster sequence, or their Kullback-Leibler/Euclidian distances from the

activity templates against some thresholds. This framework can detect unusual du-

ration patterns, for instance, the house occupant faints (stops long at a place) while

walking, but detection may fail if this happens in areas such as a living room where

stationary patterns are common. More closely related to our work is that of [Luhr

et al., 2004], who have done some primitive work on detecting duration abnormal-
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ities in daily activities. Activities whose decomposed sub-activities have unusual

durations are detected as an abrupt decline in the likelihood function given their

trained normal models. Good performance is reported when a left-to-right explicit

duration HSMM is used. Nevertheless, apart from modeling state durations expen-

sively by using multinomial distributions, this approach is unable to recognize the

return of abnormal activities to normal. Moreover, it requires decisions on threshold

values, which is generally hard to de�ne in practice.

Currently there is not much activity recognition work that supports detection of

abnormal state returning to normal. Hu et al. [Hu et al., 2006] o�er a system in a

large scale surveillance scenario which can achieve this goal. Based on the learned

(normal) statistical motion patterns, the system uses statistical methods to detect

anomalies in real tra�c scenes as soon as they appear and labels the tracked object

with an abnormality probability. Thus, it is able to recognize when the object be-

havior comes back to normal. Regarding anomaly detection in home domains, Yin

et al. [Yin et al., 2007] also recognize the importance of being able to realize when

unusual activities have returned to normal but have yet implemented this function

in their framework. Hence, they still face with the risk of generating a large number

of unnecessary abnormal models as their framework uses the learned normal activity

models to derive one new model for every new type of unusual activity.

In dealing with the scarcity of abnormal data available for training, there are two

common approaches: the unsupervised approach makes use of the scarcity property

of unusual activities to �lter out activities with the most discrepancies in the data

set, while the model-based approach �rst builds normal models from training data,

then uses them to infer abnormal models or to set thresholds. Less common is to

manually construct anomalous models. For example, Zhong et al. [Zhong et al.,

2004] take a completely unsupervised approach in detecting anomalies. They do

not model normal activities but view them as patterns that are repeated over time

and develop a similarity-based framework to detect unusual activities. Applications

include monitoring patients in a hospital dining room, detecting cheats in poker

games, detecting unusual car and pedestrian activities in road surveillance, and an-

alyzing the crowd via web cam. However, this approach is unsuitable for online

detection and at the same time requires a large data set for su�cient di�erentiation.
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With respect to the model-based approach, Zhang et al. [Zhang et al., 2005] has

empirically shown that a semi-supervised framework is superior than both unsu-

pervised and supervised ones, provided that only a small amount of abnormal data

is available for training in the supervised case. The authors detect unusual events

(cheating) from a poker video game, e.g. �passing cards under tables� and �hiding

a card� using a semi-supervised adapted HMM framework, in which a usual event

model is �rst learned from training data, and then use it to produce a number of

unusual event models (one at each iteration) by using Bayesian adaptation tech-

niques in an unsupervised fashion. This adapted framework is shown to yield better

detection rates than both an unsupervised HMM-based clustering approach and a

supervised HMM approach when given little abnormal training data. Even though

their work shows promising results, the optimal number of iterations has to be found

experimentally, and the task of optimizing the number of iterations has not yet been

investigated. The biggest disadvantage of this approach is probably the excessive

growth in the network as a new abnormal event model is added at every iteration.

Some of the work in the model-based approach does not derive abnormal models

from normal ones, but instead sets a threshold to classify anomalies. For instance,

in their building surveillance task, Hamid et al. [Hamid et al., 2005] learn normal

activity models (represent activities as bags of n-grams) and identify abnormal ac-

tivities based on discrepancies. For the application of unusual event detection in

crowds (large groups of people), Andrade et al. [Andrade et al., 2005] train a num-

ber of HMMs to model normal events using features extracted from particle �ow

patterns of scenes, with decisions on classifying normal or abnormal events based on

comparing the likelihoods of the observed events obtained from the bank of normal

HMMs against a threshold. Xiang and Gong [Xiang and Gong, 2007] build a com-

posite normal behaviour model using a mixture of MOHMMs from training data

from surveillance video, and compute an online anomaly measure that is a weighted

sum of the normalized log likelihood of the unseen behaviour given the composite

model. Liao et al. [Liao et al., 2004] do not derive abnormal models from normal

ones but use a prior model for anomalous behaviours. The authors detect anomalies

in a user's daily transportation routines by comparing the log likelihoods of two

models: a hierarchical Markov model learned from (normal) training data and a

�at model parameterized by prior knowledge of general physical constraints and not

subject to the user's daily routines. This framework has successfully identi�ed the

occurrence of anomalies when the user had missed her typical bus stop. Another
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example of using prior models is in [Chan et al., 2004]. To deal with the exceptional

rarity of unusual events in aerial data, Chan et al. [Chan et al., 2004] show that

semantic observations are more e�ective in generalizing unseen scenarios than direct

continuous observations. They use HMMs to model the spatial and temporal rela-

tions between interest objects with observations based on their binarized distances.

However, the rare (unusual) activities models are manually constructed, making this

approach only applicable to expected, simple and well de�ned activities.

2.8 Video Segmentation and Annotation

Analogous to video surveillance where we are able to segment a raw surveillance

video into coherent units of activities (e.g., making breakfast, cooking dinners), this

thesis also explores to another application area that is to segment and possibly an-

notate professionally made videos into coherent units of topics (e.g., video segment

about safety rules in o�ce) using the model developed. Di�erent from raw videos

captured from �xed cameras, professionally made videos are more sophisticated,

often intensively edited, to create entertaining experiences or to convey certain mes-

sages to the viewers. Duration as well as hierarchical information can be exploited

and modeled to ful�ll some common tasks such as segmentation and annotation.

We provide a brief review on video segmentation and annotation, focusing on ap-

proaches related to the models developed in this thesis.

The goal of the video segmentation is to characterize the temporal dynamics of the

video whereby it can be segmented into coherent units, possibly at di�erent levels

of hierarchical abstraction. Slightly di�erent from the computer vision community,

video segmentation in the multimedia �eld is generally concerned with edited videos

such as broadcast news, motion pictures, educational videos, documentary �lms and

so on. As they are professionally made, the structure and content usually adhere

to a prede�ned story board and are thus often rich in content. Video content-based

indexing and segmentation has been one of the central problems for decades in mul-

timedia computing and is still an active problem. Starting from individual image

frames, the next coherent segmental unit of a video is a shot which is de�ned as

the video segment `resulting from a single run of the camera [Phung, 2005b] (e.g.,

the portion in news where the anchor starts to speak until it switches to a di�erent

scene). The transition from one shot to another usually causes an abrupt change
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in the histogram and thus can be detected reliably with simple methods. Editing

optical transitions to create more pleasant experiences such as fades or dissolves are

more challenging to detect, but nevertheless they can also be detected at a satisfac-

tory level [Hanjalic, 2002, Phung, 2005b].

While shot detection is generally considered as a solved problem, seeking high-level

semantics that move beyond the shots to carry longer correlation between shots is

a challenging problem. Research into this problem is fast growing and depending

on the investigating domain, the high-level units appear under di�erent names such

as scene, story, episode in motion pictures; topic, subtopic, macro segments, story

units for information-oriented videos (news, documentaries, training and educational

videos), or in more general terms such as logical story units used in [Hanjalic et al.,

1999, Vendrig and Worring, 2002]. Otherwise stated, we shall use `scene' in this sec-

tion to mean all of those aforementioned names, and formally, a scene is de�ned as

�a sequence of consecutive shots whose contents are uni�ed in terms of time, locale

and dramatic structures� [Truong et al., 2002].

Some of the earliest work extracts scene-level concepts in broadcast programs, in

particular, news videos [Ide et al., 1998, Liu and Huang, 1999, Shearer et al., 2000].

The semantic extraction problem is usually cast as the classi�cation problem in

these works. The authors in [Shearer et al., 2000], for example, combine a num-

ber of visual and aural low-level features with shot syntax in news videos to group

shots into di�erent narrative structures and label them as anchor-shot, voice-over,

or interview. Liu and Huang [Liu and Huang, 1999] propose a video/audio fusion

approach to segment news reports from other categories in broadcast programs with

di�erent types of classi�ers (simple threshold method, Gaussian mixture classi�er,

and support vector machine). Ide et al. [Ide et al., 1998] propose an automatic

indexing scheme for news video where shots are indexed based on the image content

and keywords into �ve categories: speech/report, anchor, walking, gathering, and

computer graphics. Caption text information is then used with classi�ed shots to

build the indices.

Segmentation of the news story is the second major theme explored in the broadcast

domain. The common underlying approach used in these works is the use of explicit

`rules' about the structure of news programs to locate the transitions of a news
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story. Commonly accepted heuristics are for example: a news story often starts

and �nishes with anchor-person shots [Truong, 2004]; the start of a news story is

usually coupled with music [Aigrain et al., 1998]; or a relatively long silent period

is the indication of the boundary between two news stories [Wang et al., 2003a].

More complicated rules via temporal analysis are also exploited such as in the work

of [Zhu et al., 2001] which utilizes detection results of anchor-persons and captions

to form a richer set of rules (i.e, if the same text caption appears in two consecu-

tive anchor-person shots, then they belong to the same news story). There is also

a body of work which casts the segmentation problem of news stories in a HMM

framework [Iurgel et al., 2001, Chaisorn et al., 2004]. The authors in [Iurgel et al.,

2001], for example, propose the news segmentation as the problem of decoding the

maximum state sequence of a trained HMM whose transition matrix is tailored by

explicit rules about the news program. A somewhat similar approach to the work in

this thesis is [Chaisorn et al., 2004] (whose results came �rst in the TRECVID2003

story segmentation benchmark). Shots are �rst classi�ed into a set of common la-

bels in news (e.g, anchor, 2anchor, text-scene, etc.). These labels are then input

to a HMM for segmentation. They report best performances of 74.9% recall and

80.2% precision for the TRECVID dataset. Their work remains limited due to the

�at HMM being used, and it is not clear how the set of `transition' states were

chosen. In an e�ort to move beyond �at structure the authors have raised the need

for high-order statistical techniques.

More recent approaches towards scene extraction have shifted to motion pictures,

e.g. [Sundaram and Chang, 2002, Wang et al., 2001, Adams et al., 2001, Truong,

2004]. Detecting scenes in motion pictures is in general a challenging problem and

there are three main existing approaches as outlined in [Truong, 2004]: temporal

clustering-based, rule-based and memory-based detection. In the clustering-based

approach, shots are grouped into scenes based on visual similarity and temporal

closeness (e.g, [Hanjalic et al., 1999, Lin and Zhang, 2000]). Scene breaks in the

rule-based detection approach are determined based on the semantic and syntac-

tic analysis of audiovisual characteristics, and in some cases further enhanced with

more rigorous grammars from �lm theory (e.g, [Wang et al., 2001, Adams et al.,

2001]). The authors in [Sundaram and Chang, 2002] propose a memory-based scene

detection framework. Visual shot similarity in these works is determined based on

the consistency in color chromaticality, and the soundtrack is partitioned into `audio
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scenes'. Visual and aural data are then fused within a framework of memory and

attention span model to �nd likely scene breaks or singleton events. Further related

background on scene detection can be found in many good surveys (e.g, [Sundaram

and Chang, 2002, Snoek and Worring, 2004, Truong, 2004, Phung, 2005b]).

Existing HMM-based approaches for modeling long-term temporal dependencies

typically use pre-segmented training data at multiple levels, and hierarchically train

a pool of HMMs. HMMs at the lower levels are used as input to the HMMs at the

upper levels. In principle, some fundamental units are recognized by a sequence of

HMMs, and then likelihood values (or labels) obtained from these HMMs are com-

bined to form a hierarchy of HMMs to capture the interactions at higher semantic

levels (e.g, [Kijak et al., 2003, Naphade and Huang, 2002]). Analyzing sports videos,

Kijak et al. [Kijak et al., 2003] propose a two-tiered classi�cation of tennis videos

using two layers of HMMs. At the bottom level, four HMMs are used to model four

shot classes (`�rst missed serve',`rally', `replay', and `break'). Each HMM is trained

separately and subsequently topped up by another HMM which represents the syn-

tax of the tennis video with three states of the game: {`sets', `games', and `points'}.

Parameters for the top HMM are, however, all manually speci�ed. In [Naphade and

Huang, 2002], a generic two-level hierarchy of HMMs is proposed to detect recurrent

events in movies and talk shows. Their idea is to use an ergodic HMM at the top

level, in which each state is another (non-ergodic) sub-HMM representing a type of

signal property. For the case of movies, the top HMM has six states, and each in

turn is another three-state non-ergodic HMM. The observations are modelled as a

mixture of Gaussians. After training, the authors claim that interesting events such

as `explosion' and `male speech' can be detected. While being able to overcome the

limitation of the �at HMM in modeling long-term dependencies, approaches that

use HMMs at multiple levels still su�er from two major problems: (1) pre-segmented

and annotated data are needed at all levels for training, and (2) in most existing

work parameterization at higher levels has to be manually speci�ed. In many cases,

preparing training data at multiple levels is extremely tedious, and in the worst

case, may not be possible. With respect to the second problem, as each semantic

level has to be modeled separately, the underlying problem is that the interactions

across semantic layers are not modeled and thus do not contribute to the learning

process.
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One framework that integrates the semantics across layers is the Hierarchical Hid-

den Markov Model (HHMM) proposed in [Fine et al., 1998]. The hierarchical HMM

extends the standard HMM in a hierarchical manner to allow each state to be re-

cursively generalized as another sub-HMM, and thus enabling the ability to handle

hierarchical modeling of complex dynamic process, in particular �the ability to infer

correlated observations over long periods in the observation sequence via the higher

levels of hierarchy� [Fine et al., 1998]. The original motivation in [Fine et al., 1998]

was to seek better modeling of di�erent stochastic levels and length scales presented

in language (e.g, speech, handwriting, or text). However, the model introduced

in [Fine et al., 1998] considers only state hierarchies that have tree structures, dis-

allowing the sharing of substructures among the high-level states. Recognizing this

need, the authors in [Bui et al., 2004] have extended the strict tree-form topology

in the original HHMMs of [Fine et al., 1998] and allowed it to be a general lattice

structure. The extension thus permits a state at any arbitrary level of the HHMMs

to be shared by more than one parental states at its higher level (i.e, resulting in a

compact form of parameter typing at multiple levels). This extended form is very

attractive for video content modeling since it allows the natural organization of the

video content to be modeled not only in terms of multiple scales, but also in terms

of shared substructures existing in the decomposition.

Early application of the HHMM for video analysis is found in [Xie et al., 2002]

and later extended in [Xie and Chang, 2003]. In particular, the authors use the

HHMM to detect the events of `play' and `break' in soccer videos. For inference and

learning, the HHMM is `collapsed' into a �at HMM with a very large product state

space, which can then be used in conjunction with the standard forward/backward

passes as in a normal HMM. Four methods are compared in [Xie et al., 2002] to

detect `play' and `break': (1) supervised HMMs, in which each category is trained

with a separate HMM, (2) supervised HHMMs, in which bottom level HMMs are

learned separately and parameters for the upper levels are manually speci�ed, (3)

unsupervised HHMMs without model adaptation, and (4) supervised HHMMs with

model adaptation. In (3) and (4), two-level HHMMs are used. Their results have

shown a very close match between unsupervised and supervised methods in which

the completely unsupervised method with model adaptation performs marginally

better. These �gures are 75.5%, 75.0%, 75.0% and 75.7% respectively for those four

methods. While presenting a novel contribution to the feature selection and model
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selection procedure, the application of the HHMMs in their work is still limited,

both for learning and for the exploitation of the hierarchical structure. Flattening a

HHMM into a �at HMM as reported in [Xie et al., 2002, Xie and Chang, 2003] suf-

fers from many drawbacks as criticized in [Murphy and Paskin, 2001]: (a) it cannot

provide multi-scale interpretation, (b) it loses modularity since the parameters for

the �at HMM get constructed in a complex manner, and (c) it may introduce more

parameters, and most importantly it does not have the ability to reuse parameters.

In other words parameters for the shared sub-models are not `tied' during the learn-

ing, but have to be replicated and thus lose the inherent strength of hierarchical

modeling.

Being able to model shared structures, the extended HHMMs of [Bui et al., 2004]

allow us to build more compact models, which facilitates more e�cient inference

and reduces the sample complexity in learning. This model is applied in [Phung

et al., 2004a] and [Phung et al., 2004b] for the problem of topic transition detection

and video structure discovery, respectively. The authors in [Phung et al., 2004a]

use a three-level HHMM for the detection of topic transitions in educational videos.

Di�ering from our experiments in this thesis, the HHMM in [Phung et al., 2004a]

is modi�ed to operate directly with continuous-valued observed data via the use of

Gaussian mixture models as the emission probabilities. Each shot-based observed

vector consists of seven features extracted from visual and audio streams. They

report a 77.3% recall rate and 70.7% precision for the detection task. In another ap-

plication, with the help of prior knowledge about educational videos, a topology for

a three-level HHMM is used in [Phung et al., 2004b] to automatically discover mean-

ingful narrative units in the educational genre. Their experiments have shown en-

couraging results in which many meaningful structures are hierarchically discovered

such as `on-screen narration with texts', `expressive linkage', `expressive voice-over',

etc. The work of [Phung et al., 2004b] is somewhat similar to that of [Naphade

and Huang, 2002] except the model in [Phung et al., 2004b] allows more domain

knowledge to be encoded and the parameters are all learned automatically. Never-

theless, none of these works supports automatic modeling and learning of durational

knowledge.
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2.9 Closing remarks

We have presented a composition of related background for this thesis. Related

theories were provided in the �rst part (sections 2.1 to 2.4), while the second part

(section 2.5 to 2.8) was concerned with relevant applications. The �rst part included

a revision of Bayesian networks, dynamic Bayesian networks, exponential families

and the Hidden Markov Models. We particularly paid attention to inference and

learning algorithms in general DBN structures. The second part provided a litera-

ture review on the Phase-Type distribution and the application domains investigated

in this thesis including activity recognition, anomaly detection, and segmentation

and annotation of professionally made video.

The next chapter presents the �rst contribution in which we provide a thorough in-

vestigation, treated under a uni�ed framework of exponential families, into di�erent

modeling choices for state durations.



Chapter 3

The Hidden Semi-Markov Models

In this chapter we present an investigation into the state-of-the-art modeling choices

for the state duration in the HSMM. We revisit and analyze some existing proba-

bility density1 choices for modeling duration. We aim to treat all of these di�erent

duration models under a more generic class of the Exponential Family distributions

and highlight their key advantages and disadvantages. This will serve as the moti-

vation for our work on duration modeling in the next chapter.

Therefore, our contributions in this chapter include a thorough investigation into the

aspect of duration modeling and a generic DBN representation for the HSMM with

di�erent duration distributions of the Exponential Family. Even though Mitchell and

Jamieson [Mitchell and Jamieson, 1993] have investigated the use of the Exponential

Family distributions to model state durations, our work is di�erent from theirs by

the use of graphical representation. This representation makes the models intuitive

and allows us to use the available tools and techniques in graphical models for

inference and learning. The layout of this chapter is as follows. First, a description

on the Hidden Semi-Markov Model (HSMM) is provided in section 3.1. Our focus is,

however, in section 3.2, when we provide a detailed explanation on current duration

modeling and how it can be framed in the generic Exponential Family. Finally, our

conclusions are contained in section 3.3.

3.1 The Hidden Semi-Markov Models

The section presents descriptions of the Hidden Semi-Markov Model (HSMM).

1Note that the term �probability density� used here is for both continuous and discrete cases.
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Figure 3.1: From HMM to HSMM.

3.1.1 Model and de�nitions

In the HMM (section 2.4), the probability mass function for the state duration is

characterized by a geometric distribution, which is too restrictive for most cases. Fig.

(3.1) shows the evolution from a HMM to a Hidden semi-Markov model (HSMM)

by allowing a general distribution for the state duration. While state i remains

unchanged during time t − l + 1 to t, it emits an observation segment yt−l+1:t. If

Pr(yt−l+1:t | i) =
∏t

τ=t−l+1 Pr(yτ | i), the model is an explicit HSMM [Rabiner, 1989,

Mitchell et al., 1999]. If the factorization also depends on the mean of the segment,

then the model is a segmental model [Gales and Young, 1993, Ostendorf et al., 1996].

In this thesis we only consider the explicit HSMM, and for simplicity we henceforth

refer to it as HSMM.

As shown in Table (3.1), the HSMM is completely characterized by a state space

Q, an observation alphabet V , and a parameter set θHSMM , {π,A,D,B}. While

the initial state distribution π and the observation matrix B are the same as the

HMM's, the transition matrix A no longer allows self-transitions. Note that in the

HMM the self-transition probability Aii is stochastic and de�nes the state's inherent

geometric duration (Di(d) ∼ f
Geom(1−Aii)

(d)). On the contrary, in the HSMM, the

self-transition probability is set to zero and the state duration is characterized by

a separate distribution, which is the state duration distribution Di. If the state

duration Di is geometric (or exponential for continuous time HSMM), the HSMM

then reduces to a HMM.
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Symbols Meanings

Q
The state space includes |Q| mutually exclusive state,

Q = {1, 2, . . . , |Q|}.

V
The observation space consists of |V | distinguished
alphabets, V = {1, 2, . . . , |V |}.

M The maximum duration of any states.

πi
The probability that the semi-Markov chain will start

with state i,
∑

i∈Q πi = 1.

Aij

The probability that the next state will be j given the

current state is i, self transition is not allowed

Aii = 0,∀i ∈ Q, and
∑

j∈QAij = 1.

Di The duration distribution for state i.

Bv|i
The probability that an alphabet v is generated given

the current state is i,
∑

v∈V Bv|i = 1.

θHSMM The HSMM parameter set: θHSMM = {π, A, D, B}.

Table 3.1: Parameters of a HSMM.
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Figure 3.2: DBN representation for the HMM.
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Figure 3.3: DBN representation of a HSMM whose state duration is modeled by a

Multinomial or an Exponential Family distribution.

3.1.2 DBN representation, Inference and Learning

In this section we present a generic DBN structure for the HSMM whose state

durations can follow the Multinomial or other distributions from the Exponential

Family. We introduce a new set of variables m1:T , namely the duration variables,

into the DBN (Fig. (3.3)). This generic representation of the HSMM makes the

duration model more perceptive and enables us to take advantages of available tech-

niques for inference and parameter estimation in a usual DBN setting (e.g., the

forward/backward inference and the EM algorithm). Thus, similar to the HMM,

learning in the presence of latent variables in the HSMM becomes a learning problem

in a generic Bayesian network. Also, for the convenience of comparison we re-present

here, Fig. (3.2), the DBN representation of the HMM.

Fig. (3.3) shows that in addition to the state variable xt and observation variable

yt as in the HMM (Fig. (3.2)), at each time slice we also maintain a duration vari-

able mt. The duration mt is a �count-down� variable, which not only speci�es how

long the current state will last but also acts like the context, de�ning how the next

time slice t + 1 will be de�ned from the current time slice t. When mt > 1 the

same state xt carries on to the next time slice, and the state duration reduces by 1:

mt+1 = mt−1. On the contrary, when mt = 1, the next state xt+1, where xt+1 6= xt,

is drawn from the transition probability Axtxt+1
, and the duration variable mt+1 is

initialized to some random value d with a probability conventionally drawn from a



3.1. The Hidden Semi-Markov Models 62

tx

tyClique 31xClique 1 1+txtx Clique 2tm

tx

tm1−tm Clique 4
Figure 3.4: Cliques of the HSMM.

Multinomial or an Exponential Family distribution: Pr(md
t+1 |xit+1,m

1
t ) = Di(d), for

d > 0. Again, we use xit as a shorthand for xt = i. The variable mt+1 then counts

down until it reaches 1. Note that the de�nition of duration readily satis�es the

probabilistic constraints:
∑M

d=1Di(d) = 1.

Fig. (3.4) shows the four cliques comprising the HSMM. As compared to cliques of

the HMM (Fig. (3.2)), the transition clique (clique 2) is now also a�ected by the

context mt and a new duration clique (clique 4) is introduced, whose conditional

independencies de�ne the duration parameter. We have:

Clique 1: Pr
(
xi

1

)
= πi (3.1)

Clique 2: Pr
(
xj

t+1 | xi
t, md

t

)
=

δ(i, j) if d > 1 (stays in the same state)

Aij if d = 1 (transits to a new state j)
(3.2)

Clique 3: Pr
(
yv

t | xi
t

)
= Bv|i (3.3)

Clique 4: Pr
(
md

t | xi
t, md′

t−1

)
=

δ (d, d′ − 1) if d′ > 1 (stays in the same state)

Di(d) if d′ = 1 (transits to a new state)
(3.4)

Inference

The inference tasks for the HSMM include computing the forward variable αt (i, d) ,

Pr
(
xit,m

d
t , y1:t

)
, the backward variable βt (i, d) , Pr

(
yt+1:T | xit,md

t

)
, the smoothing

distributions γt (i, d) = Pr
(
xit,m

d
t | y1:T

)
and ξt (i, j, d) , Pr

(
xit, x

j
t+1,m

d
t+1,m

1
t | y1:T

)
,

and also the scaled forward/backward variables: α̃t (i, d) , Pr
(
xit,m

d
t | y1:t

)
and

β̃t(i, d) ,
Pr(yt+1:T | xi

t,m
d
t )

Pr(t+1:T | y1:t)
. All these variables can be computed analogous to that

of the HMM in section 2.4, and thus can be directly inferred from the available

�ltering and smoothing distributions of the HMM by replacing the single hidden
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state variable xt with the grouped variables {xt,mt}. For example, replacing x in

Eq. (2.34) by {x,m}, we obtain the forward recursion for the HSMM case as:

αt+1 (j, d) , Pr
(
xjt+1,m

d
t+1, y1:t+1

)
=
∑
i,d′

Pr
(
yt+1 | x

j
t+1,m

d
t+1

)
Pr
(
xjt+1,m

d
t+1 | xit,md′

t

)
Pr
(
xit,m

d′

t , y1:t

)
=
∑
i,d′

Pr
(
yt+1 | x

j
t+1

)
Pr
(
md
t+1 | x

j
t+1,m

d′

t

)
Pr
(
xjt+1 | xit,md′

t

)
Pr
(
xit,m

d′

t , y1:t

)
(3.5)

where Pr
(
yt+1 | x

j
t+1

)
= Byt+1|j and Pr

(
xit,m

d′
t , y1:t

)
= αt (i, d

′). The other two

terms in Eq. (3.5) are de�ned based on the conditional independencies of the tran-

sition and duration cliques (clique 2 and 4 in Eqs. (3.2) and (3.4)). If from time

t to t + 1: (i, d′) → (j, d) the semi-Markov chain continues in the same state and

{i = j, d′ = d+ 1 > 1}, it then follows:

Pr
(
xjt+1 | xit,md′

t

)
= 1

Pr
(
md
t+1 | x

j
t+1,m

d′

t

)
= 1

Otherwise, i.e. i 6= j and d′ = 1:

Pr
(
xjt+1 | xit,md′

t

)
= Aij

Pr
(
md
t+1 | x

j
t+1,m

d′

t

)
= Dj(d)

Combining the two cases results in:

αt+1 (j, d) = Byt+1|j

[
αt (j, d+ 1) +

∑
i6=j

Dj(d)Aijαt (i, 1)

]
(3.6)

Thus, skipping tedious derivations, we list here the �nal formulae for other recursive
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variables:

α̈t+1 (j, d) , Pr
(
xjt+1,m

d
t+1, yt+1 | y1:t

)
= Byt+1|j

[
α̃t (j, d+ 1) +

∑
i6=j

Dj(d)Aijα̃t (i, 1)

]
(3.7)

ψt+1 , Pr
(
yt+1 | y1:t

)
=
∑
j,d

α̈t+1 (j, d) (3.8)

α̃t+1 (j, d) =
α̈t+1 (j, d)

ψt+1

(3.9)

βt (i, d
′) =


∑

j,dByt+1|jAijDj(d)βt+1 (j, d) , d′ = 1

Byt+1|iβt+1 (i, d′ − 1) , d′ > 1
(3.10)

φt , Pr
(
yt+1:T | y1:t

)
= φt+1ψt+1 (3.11)

β̃t(i, d
′) =

βt (i, d
′)

φt
(3.12)

and the smoothing distributions:

γt (i, d) = α̃t (i, d) β̃t(i, d) (3.13)

ξt (i, j, d) =
Byt+1|jAijDj(d)α̃t (i, 1) β̃t+1(j, d)

ψt+1

(3.14)

Finally, it is clear from the recursive formula in Eq. (3.5) that the inference has

a complexity of O(|Q|2M2T ). However, by taking advantage of the deterministic

counting process of mt (i.e. within a given state, mt+1 = mt − 1), the complexity is

reduced to O(|Q|2MT ) as shown in Eqs. (3.6) and (3.10).

Learning

Similar to the HMM, the DBN representation of the HSMM enables it to be viewed

as a member of the Exponential Family. Hence, in the learning phase, the HSMM

parameter set θHSMM can be estimated using the EM algorithm in a similar fashion.

We provide here a summary for parameter estimation formulae, except for state

duration distribution which will be detailed separately in the next section.
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The initial probability: π̂i =
〈T (πi)〉∑
i 〈T (πi)〉

= 〈T (πi)〉 =
∑
d

γ1 (i, d)

The transition probability: Âij =

〈
T
(
Aij
)〉∑

j

〈
T
(
Aij
)〉 =

∑T
t=1

∑
d ξt (i, j, d)∑T

t=1

∑
j,d ξt (i, j, d)

The emission probability: B̂v|i =

〈
T
(
Bv|i

)〉∑
v

〈
T
(
Bv|i

)〉 =

∑T
t=1

∑
d γt (i, d) δ

(v)
yt∑T

t=1

∑
v,d γt (i, d) δ

(v)
yt

3.2 Duration models

Essential to a HSMM is the choice of state duration models. The duration dis-

tribution is required to be versatile enough to model complex durations and yet

e�cient to compute. Existing duration models include the Multinomial [Rabiner,

1989], the Poisson [Russell and Moore, 1985], the Gamma [Levinson, 1986], the

Gaussian [Hongeng and Nevatia, 2003] or more generally, the Exponential Family

distributions [Mitchell and Jamieson, 1993]. In this section we revisit these duration

models, viewing them through the framework of DBN.

Estimation of duration distributions

In the learning phase, we start with the E-step by computing the complete log like-

lihood. In the expression of the complete log-likelihood L = P (x1:T ,m1:T , y1:T | θ),
we collect only terms associated with the duration parameters (i.e., clique 4 of Fig.

(3.4)):

LD = log
T∏
t=1

Pr(mt | xt,mt−1) =
T∑
t=1

log

{∏
i∈Q

M∏
d=1

Pr
(
md
t | xit,m1

t−1

)δ(m)
mt

δ
(i)
xt
δ
(1)
mt−1

}

=
∑
i,d

T∑
t=1

δ(m)
mt

δ(i)
xt
δ(1)
mt−1

log {Di(d)} (3.15)

The su�cient statistic of the duration parameterDi(d): T (Di(d)) =
∑T

t=1 δ
(m)
mt

δ
(i)
xt
δ
(1)
mt−1

counts the number of instances the state duration of state i being initialized to d.

Taking the expectation of LD over the Pr (hidden | observed) = Pr (x1:T ,m1:T | y1:T )

results in:

〈LD〉 =
∑
i,d

〈T (Di(d))〉 log {Di(d)} (3.16)
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in which the expected su�cient statistics (ESS's) is de�ned by:

〈T (Di(d))〉 =

〈
T∑
t=1

δ(d)
mt
δ(i)
xt
δ(1)
mt−1

〉
=

T∑
t=1

Pr(xit,m
d
t ,m

1
t−1 | y1:T ) =

T∑
t=1

∑
j∈Q

ξt (j, i, d)

(3.17)

In the M-step we need to maximize the expected log-likelihood 〈LD〉 in Eq. (3.17)

with respect to the duration parameter Di, and the maximization method depends

on the choice of duration distributions. While a simple Lagrange multiplier method

is used for the discrete distributions, the continuous distributions need some other

optimization methods, and the choice of optimization methods depends on the dis-

tribution itself and the computation costs allowed. In the next sections we will

present the M-step separately for the Multinomial and the Exponential Family dis-

tributions. Note that even though the Multinomial also belongs to the Exponential

Family distributions, it is generally viewed separately as a non-parametric distribu-

tion.

3.2.1 The Multinomial Model

The Multinomial is a natural extension of the binomial distribution and has diverse

applications in �elds such as kinetic theory of classical physics, analysis of contin-

gency tables, population estimation and so on [Johnson et al., 1993]. The Multino-

mial is the most common choice for duration modeling in the HSMM [Rabiner, 1989,

Mitchell et al., 1999, Luhr et al., 2004, Yu and Kobayashi, 2003] due to its simplicity.

Let M be the maximum duration length. The duration of a state i is modeled

by a Multinomial as: Di ∼ Mult (Di(1), Di(2), . . . , Di(M)) ,
∑M

d=1Di(d) = 1. Us-

ing Lagrange theorem (theorem (2.1)) on Eq. (3.16) and subject to the constraint∑M
d=1Di(d) = 1, the re-estimated formula for Di(d) then follows as:

D̂i (d) =
〈T (Di(d))〉∑M
d=1 〈T (Di(d))〉

(3.18)

Substituting the ESS's in Eq. (3.17) into Eq. (3.18) results in:

D̂i (d) =

∑T
t=1

∑
j∈Q ξt (j, i, d)∑T

t=1

∑
j,d ξt (j, i, d)

(3.19)



3.2. Duration models 67

3.2.2 The Exponential Family Model

The Exponential Family includes a rich set of distributions such as binomial, Poisson,

Gaussian, Inverse Gaussian, Gamma, etc. The probability of a state i having a

duration d following an Exponential Family distribution takes the following form:

Di(d) , h(d) exp
(
wTT (d)− A(w)

)
(3.20)

where the function h(m) is not of fundamental importance as its existence is only to

make sure
∑

dDi(d) = 1 (or
∫
d
Di(d) = 1 for continuous case) and it also plays no

role in the M-step. Playing more important roles are the natural parameter w, the

su�cient statistics T (d) , and the log partition function A(w). The log partition

function is a log normalization factor: A(w) = log
∑

d exp
(
wTT (d)

)
for discrete d.

Substituting Di(d) in Eq. (3.20) into Eq. (3.16) results in:

〈LD〉 =
∑
i,d

〈T (Di(d))〉wTT (d) −
∑
i,d

〈T (Di(d))〉A(w) (3.21)

In maximizing the expected log 〈LD〉, we consider two popular and useful distri-

butions from the Exponential Family: the Poisson (discrete) and Inverse Gaussian

(continuous).

3.2.2.1 The Poisson distribution

The Poisson distribution arises from considering limiting forms of the binomial dis-

tribution. It is useful in situations where the number of independent trials is very

large, while the probability of occurrence of an outcome is very small. The Pois-

son distribution has a wide range of applications such as in measuring the arrivals

and departures in data networks, the number of particles emitted by a radioactive

source, the number of deaths from being kicked by mules in the Prussian Army

Corps [Johnson et al., 1993], etc. In particular, the Poisson is chosen as our exam-

ple because of its simplicity and its good results in modeling state duration in the

HSMM for speech recognition [Russell and Moore, 1985].

The state duration i modeled by a Poisson with mean λi has the following form:
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(d) λ = 100

Figure 3.5: Examples of Poisson probability mass function with λ =

12.5, 25, 50, and 100.
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Di(d) =
1

d!
λdi exp(−λi) =

1

d!
exp (d log λi − λi) (3.22)

Examples of the probability mass function of the Poisson distribution are shown in

Fig. (3.5). Eq. (3.22) shows that Poisson belongs to Exponential Family, with:

Natural parameter: wi = log λi

Su�cient Statistics: T (d) = d

Log partition function: A(wi) = λi = exp (wi)

Therefore, it follows from Eq. (3.21) that:

〈LD〉 =
∑
i,d

〈T (Di(d))〉wid−
∑
i,d

〈T (Di(d))〉 exp (wi) (3.23)

Di�erentiating Eq. (3.23) with respect to wi leads to:

δ 〈L〉
δwi

=
∑
d

〈T (Di(d))〉 d−
∑
d

〈T (Di(d))〉 exp (wi) (3.24)

Setting the derivative to zero δ〈L〉
δwi

= 0, we obtain the re-estimated formula for

λi = exp (wi):

λ̂ = exp (ŵi) =

∑
d 〈T (Di(d))〉 d∑
d 〈T (Di(d))〉

=

∑T−1
t=0

∑
j,d ξt (j, i, d) d∑T−1

t=0

∑
j,d ξt (j, i, d)

(3.25)

The above expression is intuitive as the Poisson parameter λ represents the duration

mean.

3.2.2.2 The Inverse Gaussian distribution

The Inverse Gaussian (IG) distribution was originally named by Tweedie [Johnson

et al., 1994] due to the inverse relationship between its cumulant generating function

and that of the Gaussian distributions. IG is also called the Wald distribution or

Inverse Normal distribution. It was employed to study the movement of particles

subject to Brownian motion and often appeared in Russian studies on electronics

and radio techniques. Further, the IG distribution is also well-known in sequential

analysis [Johnson et al., 1994]. We choose to investigate IG as an example of contin-

uous distributions in the Exponential Family because it is restricted to the positive

domain and has been used to model patients' staying time in hospital [Seshadri,
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Figure 3.6: Examples of Inverse Gaussian distributions with µ = 50, and λ =

4µ, 2µ, µ, 4µ, and 16µ

.

1993] with successful results. The IG probability density function, illustrated by

examples in Fig. (3.6), is de�ned on d ∈ (0,+∞) and takes the following form:

IG (µ, λ) = Pr (d | µ, λ) =

√
λ√

2πd3
exp

(
− λ

2µ2

(d− µ)2

d

)

in which µ is the distribution mean and µ3

λ
is its variance. Let

(
w

(1)
i , w

(2)
i

)
=(

−λ
2
,− λ

2µ2

)
(we start introducing i here to associate the distribution with a state

i), then the IG distribution can be written in Exponential Family form as:

IG (wi) = Pr (d | wi) =
d−

3
2

√
2π

exp

(
w

(1)
i

d
+ w

(2)
i d− A

(
w

(1)
i , w

(2)
i

))
∝ exp

(
w

(1)
i

d
+ w

(2)
i d− A

(
w

(1)
i , w

(2)
i

))
(3.26)

where the log partition function is:

A
(
w

(1)
i , w

(2)
i

)
= −2

√
w

(1)
i , w

(2)
i − 1

2
log
(
−w(1)

i

)
(3.27)

Clearly, the su�cient statistics is: T (d) =
[

1
d
, d
]
. The IG is a continuous dis-

tribution, thus when applying it into modeling discrete state duration we have to

introduce an additional normalization term:

N (wi) =
∑
d

exp
(
wTT (d)− A (wi)

)
(3.28)

Thus, the state duration i modeled by an IG distribution is de�ned by:
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Di(d) =
IG (wi)

N (wi)
=

exp
(
wTT (d)− A (wi)

)
N (wi)

(3.29)

with the log partition function A (wi) and the normalization factor N (wi) are de�ned

by Eqs. (3.27) and (3.28), respectively. Substituting Di(d) in Eq. (3.29) into Eq.

(3.16) results in:

〈LD〉 =
∑
i,d

〈T (Di(d))〉wT
i T (d)−

∑
i,d

〈T (Di(d))〉A (wi)−
∑
i,d

〈T (Di(d))〉 log {N (wi)}

(3.30)

Thus, compared to the standard result in Eq. (3.21), we have an extra (and problem-

atic!) term
∑

i,d 〈T (Di(d))〉 log {N (wi)} to optimize that will require approxima-

tion. Theoretically we can choose any black-box optimization method (e.g., steepest

descent, conjugate gradient, etc.). In this work, to avoid the costly computation of

Jacobian or Hessian, we choose to optimize it by the Nelder-Mead method [Mathews

and Fink, 1999], which requires neither the �rst nor the second derivative, but only

function evaluations. The Nelder-Mead search is used to �nd the local maximum

value for the expected log in Eq. (3.30) with respect to the two natural parameters

w
(1)
i and w(2)

i . The search starts with an initial triangle (called the simplex) in the

w
(1)
i − w

(2)
i plane. At each vertex of the triangle, a value for 〈LD〉 is evaluated.

The worst vertex, where 〈LD〉 is smallest, will be discarded. A new point in the

w
(1)
i − w

(2)
i plane is chosen to form a new triangle and the search continues until a

convergence with respect to a prede�ned tolerance.

3.2.3 State Duration Models and Computational Issues

Modeling state duration by the Multinomial and other distributions from the Ex-

ponential Family su�ers from a common major drawback. That is, the substantial

increase in computational load and storage as inference depends linearly on the

maximum possible duration M , i.e. O(|Q|2MT ). This is because the only way to

represent state durations at each time slice is to explicitly count them (Fig. (3.3)).

In addition, we have to face the problem of determining M in advance, and often in

many cases, M can be as large as T . That may require us to use domain knowledge

and perhaps intuition to pick a good value for M and then truncate the duration

domain toM in inference and learning. The Multinomial also has another shortcom-
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ing, which is the large number (i.e. M−1) of additional parameters required for each

state. This drawback could be a serious problem resulting in over�tting, when only

limited data is available for training. In addition, whereas the discrete Exponential

Family (e.g. the Poisson) can be estimated in a closed-form via the Baum-Welch

reestimation process, the continuous Exponential Family (e.g. the Inverse Gaus-

sian) su�ers from another disadvantage in that it requires numerical solutions when

applied to the discrete domain. Therefore, it can be concluded that the problem of

e�ective modeling of duration is still unsolved.

3.3 Closing remarks

In this chapter we explain how duration can be integrated into the HMM to form the

HSMM. We investigate existing state duration models including the non-parametric

Multinomial and the Exponential Family distribution in a new approach with graph-

ical models, facilitating learning and inference procedures. In addition, we analyze

existing duration models to understand their weaknesses. The next chapter will

address the limitations of these models.



Chapter 4

The Coxian Hidden semi-Markov

Model and its Applications

As shown in chapter 3, the problem of e�ective duration modeling in the HSMM is

left unresolved with existing duration models. To solve this problem, in this chap-

ter we propose the discrete Coxian distribution [Cox, 1955], a special case of the

Phase-Type distribution [Neuts, 1989], to model state duration in the HSMM and

form the (discrete) Coxian Hidden Semi-Markov Model (CxSHSMM). Further, we

argue that in the work of modeling and recognizing human activities of daily liv-

ing (ADLs), temporal information plays a very important role and the Coxian is a

suitable candidate to capture this temporal dependency. As to the signi�cance of

temporal information, it is natural to see that duration is such a dominant charac-

teristic of ADLs, e.g. �cooking dinner� is a signi�cantly longer task than �brushing

teeth�. Duration information becomes even more important when it comes to dis-

tinguishing activities of the same type such as �cooking dinner� and �preparing a

snack�.

We apply the CxHSMM to automatic learning and recognition of ADLs and com-

pare its performances with the other existing HSMMs and the standard HMM. Our

contributions in this chapter include:

• A review of Phase-Type and Coxian distributions with elaborations on sim-

pli�ed cdf/pdf forms for Coxian distributions with non-identical phases and

equations for computing Coxian distribution's mean and variance.

• A novel stochastic model named the (discrete) Coxian Hidden Semi-Markov

Model (CxSHSMM), which is a Hidden semi-Markov model whose state du-

73
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ration is modeled by the (discrete) Coxian distribution. The use of Cox-

ian distribution has several advantages over traditional parameterization (e.g.

Multinomial or Exponential Family) including low numbers of parameters, the

existence of closed-form solutions, computational e�ciency and denseness in

the �eld of non-negative distributions.

• A complete analysis of the novel CxHSMM includes its dynamic Bayesian

network representation, inference and maximum likelihood estimation for fully,

partially observed models and with missing observations.

• A full comparison between the proposed CxHSMM and existing models includ-

ing the Multinomial HSMM, the Exponential Family HSMM and the HMM

(without duration modeling) at recognizing ADLs. The signi�cance of this

experiment is twofold. First, it is a thorough investigation into activity recog-

nition in a smart home surveillance scenario of all available HSMM variants.

Second, it helps to demonstrate the outstanding performance of the CxHSMM

in many aspects, most importantly, its high recognition accuracy and low

computational cost, making it especially suitable in recognizing ADLs whose

movement trajectories are typically very long in nature.

4.1 The Discrete Phase-Type distribution

The discrete Coxian distribution belongs to a more generic class of distributions

known as discrete phase-type (PH) distributions. A discrete PH [Neuts, 1981, 1989]

is associated with a �nite-state (discrete-time) Markov chain (MC) of �niteM tran-

sient states, numbered from 1 to M, and a single absorbing state. The MC starts

in any transient state with initial probabilities µm ∈ [µ]M×1, and in absorbing state

with probability 1 −
∑M

m=1 µm. After entering a transient state (phase) m, the

MC stays in it for a period of time de�ned by the state's self transition probability

amm ∈ [A]M×M, before moving to the next transient state n 6= m with transition

probability amn ∈ [A]M×M or reaching the absorbing state with an ending probabil-

ity em ∈ [e]M×1. Probabilistic constraints require: e = 1−A1, where 1 is anM×1

vectors of 1. The MC never leaves the absorbing state. The MC for which there is

a probability of 1 of ending up in an absorbing state is called the absorbing MC,

and the total time since the MC is initialized until it comes to the absorbing state is

called the time to absorption. The distribution of this time to absorption (i.e. the
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distribution of the total number of transitions including self transitions within tran-

sient states required before absorption) is called the discrete Phase-Type distribution.

De�nition 4.1. A discrete Phase-Type (PH) distribution, denoted as PH (µ,A),

is the distribution of the total time τ ∈ N0 from initialization till absorption of

an absorbing, �nite-state, discrete-time Markov chain with a single absorbing state.

The parameter set (µ,A) is called the representation of the discrete PH distribution:

µ is the initial probabilities of transient states and A is the transition matrix between

transient states of the Markov chain.

The discrete PH cumulative distribution function:

FPH(µ,A)(d) = Pr (τ ≤ d | µ,A) = 1− µTAd1 (4.1)

The discrete PH probability mass function:

fPH(µ,A)(d) = Pr (τ = d | µ,A) = µTAd−1e (4.2)

�

Eq. (4.2) is intuitive as it shows that the time to absorption d is counted once the

MC is initialized with probability µ in its transient state, then stays in and transits

within transient states for a period of d − 1 with probability Ad−1, and eventually

comes to an end in its absorbing state in a single step (one time unit) with proba-

bility e.

If the MC is restricted to start only in its transient states, the factorial moments of

the discrete PH distribution function is given by:

E [τ (τ − 1) . . . (τ − n+ 1)] = n!µT (I−A)−n An−11 (4.3)

where I is an M×M identity matrix, and it is worth noting that the condition of

an absorbing MC ensures I−A to be a non-singular matrix.

Closure Properties:

It is shown in [Neuts, 1989] that under �nite mixture and �nite convolution products,

the discrete PH distribution is closed and the resulting representation can be derived

from the component representations.
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Examples of discrete PH distribution:

The discrete PH distribution is a generalization of geometric distribution [Johnson

and Kotz, 1969], and we present some examples.

• The geometric distribution: The geometric distribution is the distribu-

tion of the number of Bernoulli trials required to get one success. It is the

simplest case of discrete PH distribution having only 1 phase. Its underlying

MC stays in this phase (transient state) as long as a success is not registered

(Fig. (4.1)(a)). In addition, it is straightforward to recognize that the familiar

cdf and pmf of the geometric distribution (Geom (a)) is a special case of the

discrete PH distribution with only one phase having self transition a: µ = [1],

A = [a] and e = [1− a],

FGeom(a)(d) = FPH(1,a)(d) = 1− ad (4.4)

fGeom(a)(d) = fPH(1,a)(d) = ad−1 (1− a) (4.5)

• The negative binomial distribution: The negative binomial distribution

is the distribution of the number of Bernoulli trials to produce N successes for

a pre-determined number N . Clearly, when N = 1, it reduces to a geometric

distribution. The negative binomial distribution, thus, requires N identical

phases: its underlying MC always starts in the �rst phase and once a success

is produced in phase n < N , the process moves to the next phase n + 1 and

waits there till another success; �nally it comes to an end in the absorbing

state after the N th success drawn in the last phase (Fig. (4.1)(b)).

Figs. (4.1) - (4.3) show some examples of phase diagrams and pmfs from the discrete

PH distribution. The pmfs of distribution from the PH family tend to lean to the

left of their means, and have long tails on the right.

4.2 The Discrete Coxian distribution

The Coxian distributions are introduced in 1955 by David Cox in [Cox, 1955]. It is

one of two important subfamilies of the PH distribution, which are dense in the �eld

of non-negative discrete distributions [Johnson and Taa�e, 1988] (the other subfam-

ily is the �nite mixture of discrete Erlang distributions). The Coxian distribution
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(c) A example of general discrete PH distribution.

Figure 4.1: Examples of discrete PH distribution: The Phase Diagrams.

is appealing to us due to its simple underlying MC and its phase decomposition,

making it useful to model ADLs as we usually need to conduct several �tasks� in

sequence in order to complete activities, and each �task� is analogous to a phase in

the Coxian distribution.

The Markov chain underlying the discrete Coxian distribution is a strictly left-to-

right Markov chain. Fig. (4.4) shows a left-to-right Markov chain withM+1 states

numbered from 1 to M, with the self transition parameter λi and an absorbing

state. The �rst M transient states represent the M phases, while the last state

is absorbing and acts like an end state. For every transient state m ∈ [1,M], its

duration Xm is a random variable whose distribution is geometric with parameter

λm: Xi ∼ Geom(λi). If we start from state m, Sm = Xm + . . .+XM is the duration

of the Markov chain before the end state is reached. Thus, the Coxian distribution

Cox(µ,λ) is in fact the distribution of the duration of this constructed Markov chain

when µ is the initial state distribution.

De�nition 4.2. A discrete M-phase Coxian distribution with parameters µ =

[µ1, . . . , µM]T and λ = [λ1, . . . , λM]T, denoted by Cox (µ,λ), where 0 ≤ µi ≤ 1,
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(a) The Geometric distribution: a=0.9.
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(b) The negative distribution: a =0.77, N=3.

Figure 4.2: Examples of pmfs of discrete PH distributions.
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Figure 4.3: Examples of pmfs randomly generated from the PH distribution's phase

diagram in Fig. (4.1)(c).
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Figure 4.4: The phase diagram of an M-phase Coxian.

∑
µi = 1, 0 < λi ≤ 1, is de�ned as the mixture:

Cox (µ,λ) = Mix(µ1, S1; . . . ;µM, SM) =
M∑
m=1

µmSm (4.6)

where Sm = Xm + Xm+1 + . . . + XM; Xn∈[1,M] are independent variables having

geometric1 distributions Xi ∼ Geom(1− λi).

�

It is straightforward to see that the discrete Coxian is a special case of the PH

distribution with the transition matrix and absorbing vector given as:

A =


1− λ1 λ1 0 0 0

0 1− λ2 λ2 0 0

0 0 . . . . . . 0

0 0 0 1− λM−1 λM−1

0 0 0 0 1− λM

 , e =


0

0

. . .

0

λM

 (4.7)

Thus, given the above conversion, the Coxian cdf and pmf follow the same forms as

those of the discrete PH distribution in Eqs. (4.1) and (4.2):

FCox(µ,A)(d) = 1− µAdI (4.8)

fCox(µ,A)(d) = µAd−1e (4.9)

1When considering the continuous Coxian, the geometric distribution is replaced by its contin-

uous counterpart, the exponential distribution.
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However, if the Coxian distribution has M non-identical phases, i.e. (1− λn) 6=
(1− λm) for any n 6= m, we can e�ciently compute Eqs. (4.8) - (4.9) by using

matrix diagonalization techniques on A.

Cdf/pdf for Coxian with non-identical phases:

As the determinant of triangular matrix is equal to the product of its diagonal

entries, we have for any geometric phase λn ∈ λ:

det (A− (1− λn) I) = (λn − λ1) (λn − λ2) . . . (λn − λn−1) 0 (λn − λn+1) . . . (λn − λM) = 0

which means [1− λ1, . . . , 1− λM]T is the set of eigenvalues of A. The eigenvalues

are organized into an eigenvalue diagonal matrix Λ:

Λ =


1− λ1

. . .

1− λM


Let un, for n ∈ [1,M], be the unit eigenvector associated with eigenvalue λn,

which is the normalized solution of (A− (1− λn) I)un = 0, and U = [u1; . . . ;uM]

be the eigenvector matrix. The assumption of Coxian with non-identical phases

guarantees there areM distinguished eigenvalues, which means un∈[1,M] are linearly

independent and A is diagonalizable [Strang, 2003]:

A = UΛU−1 (4.10)

It then follows:

Ad =
(
UΛU−1

) (
UΛU−1

)
. . .
(
UΛU−1

)
= UΛdU−1 (4.11)

where the dthmultiplication of Λ is simply as:

Λd =


λd1

. . .

λdM


Thus, the cdf and pdf for Coxian with non-identical phases can be simpli�ed as:

FCox(µ,A)(d) = 1− µUΛdU−1I (4.12)

fCox(µ,A)(d) = µUΛd−1U−1e (4.13)

with the eigenvector matrix U and eigenvalue matrix Λ.
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Mean and Variance:

It is more convenient to derive the Coxian mean and variance from its de�nition

in Eq. (4.6), based on a cumulative mixture of independent geometrics rather than

from its pmf. The mean and variance of the component geometric distribution are

computed as follows:

The �rst moment (mean):

E [Xn] =
+∞∑
d=1

d (1− λn)
d−1 λn =

λn
1− λn

+∞∑
d=1

(1− λn)
d

d−1

=
λn

1− λn
Li−1 (1− λn) =

λn
1− λn

1− λn
λ2
n

=
1

λn
(4.14)

The second moment:

E
[
X2
n

]
=

+∞∑
d=1

d2(1− λn)
d−1λn =

λn
1− λn

Li−2 (1− λn)

=
λn

1− λn

(1− λn) (2− λn)

λ3
n

=
2− λn
λ2
n

(4.15)

The variance:

σ2
Xn

= E
[
X2
n

]
− X̄2

n =
1− λn
λ2
n

(4.16)

where Lis (x) =
∑+∞

k=1
xk

ks is the polylogarithm function valid for all s and |x| < 1,

and Li−1 (x) = x
(1−x)2 , and Li−2 (x) = x(1+x)

(1−x)3 .

Thus, the Coxian mean is given by:

Cox = E

[
M∑
m=1

µmSm

]
=

M∑
m=1

µmS̄m

=
M∑
m=1

µm

M∑
n=m

X̄n =
M∑
m=1

µm

M∑
n=m

1

λn
(4.17)

Since Sm are independent, their covariance is zero, thus the variance of the mixture

is the sum of variances weighted by the squares of the original coe�cients:
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Figure 4.5: Examples of Coxian distributions.

(a) µ = [0.36 0.32 0.04 0.11 0.16]T,λ = [0.18 0.64 0.43 0.62 0.07]T

µ = [0.32 0.31 0.01 0.25 0.11]T,λ = [0.41 0.25 0.46 0.64 0.58]T

σ2
Cox =

M∑
m=1

var (µmSm) =
M∑
m=1

µ2
mσ

2
Sm

The random variable Sm in turn consists of m independent random variable Xn (i.e.

their covariances are zero) and thus:

σ2
Cox =

M∑
m=1

µ2
m

M∑
n=m

σ2
Xn

=
M∑
m=1

µ2
m

M∑
n=m

1− λn
λ2
n

(4.18)

Eqs. (4.17) and (4.18) show that the mean and variance are somewhat �proportional�:

a large mean would lead to a large variance (i.e. large µ means large µ2; and large 1
λ

results in small λ2 and large (1− λ), or equivalently large 1−λ
λ2 ) and otherwise. Fig.

(4.5) shows examples of 5-phase Coxian density functions.

4.3 The Coxian Hidden semi-Markov Model

The discrete Coxian distribution is at �rst appealing to us as a suitable candidate for

duration model in the hidden semi-Markov model due to: its denseness, making it a

useful practical tool for approximating generic discrete distribution, and its simple
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underlying MC, resulting in simple parameterization and possibly less computational

load. In this section we formally present a novel stochastic model termed the discrete

Coxian hidden semi-Markov model (CxHSMM). We start with a generic (discrete-

time) HSMM (chapter 3) and describe how the Coxian distribution can be used to

model state durations. We also present the methods for inference and parameter

estimation by viewing the CxHSMM as a dynamic Bayesian network. To make our

model applicable to real-life problems, we provide modi�ed versions of inference and

learning algorithms to deal with missing observations or labeled data. As our time

domain is always discrete, henceforth, we omit the term discrete/discrete-time for

simplicity.

4.3.1 Model de�nition

To recap from chapter 3, the HSMM is a generative model de�ned over a �nite state

space Q and an observation alphabet set V . The parameters of the HSMM include:

the state initial probability π : Q 7→ [0, 1] specifying the starting state of the Markov

chain de�ned over the states in Q; the transition matrix A : Q2 7→ [0, 1] governing

the transitions within states (Aii = 0, ∀i ∈ Q); the state duration distribution

Di : N+ 7→ [0, 1] de�ning the duration of state i in Q; and the observation model

B : Q × V 7→ [0, 1] determining the probability of generating an alphabet given a

current state. We use a compact notation θHSMM , {π, A, D, B} to denote the

set of parameters for the (�at) HSMM.

4.3.2 The Coxian Duration Model

For each state i in the state space Q, we de�ne a discrete M-phases Coxian dis-

tribution Di = Cox
(
µi,λi

)
with the initial probabilities µi = [µi1, . . . , µ

i
M]

T and

transition probabilities λi = [λi1, . . . , λ
i
M]

T to model its duration. Note that the

Coxian distributions associated with di�erent states are independent but set to have

the same number of phases. Once the Coxian of the current state goes to absorbing,

the Markov chain transits to a new state and a new Coxian is initialized. We then

term this HSMM as the Coxian duration Hidden semi-Markov Model, denoted as

CxHSMM orM-ph.CxHSMM when there is a speci�c phase numberM. Tab. (4.1)

summarizes the M-ph.CxHSMM parameter set θM-ph.CxHSMM. We note that when

M = 1 the model is equivalent to a HMM. Further, as a special case, if for all i,

λi = 1 thus Pr(duration of phase i = d) = 1 for d = 1, and = 0 for d > 1, we recover
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Parameter Dimension Constraint Meaning

πi 1× |Q|
∑

i∈Q πi = 1 Initial probability of state i.

Aij |Q| × |Q|
∑

j∈QAij = 1 Transition probability from

state i to state j.

Di = Cox
(
µi,λi

)
Coxian duration distribution

for state i.

µin 1×M
∑M

n=1 µ
i
n = 1 Initial probability of phase n.

λin 1×M 0 < λin ≤ 1 Terminating probability of

phase n.

Bv|i |Q| × |V |
∑

v∈V Bv|i = 1 Probability of observing v

given the current state i.

Table 4.1: Parameter sets θM-ph.CxHSMM.
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Figure 4.6: DBN representation of the CxHSMM.

the Multinomial distribution Mult(µ1, µ2, . . . , µM). Finally, it is important to note

that the number of free parameters for the Coxian duration model is |Q|(2M− 1)

and is usually much smaller than |Q|(M − 1) for the explicit duration model, where

M can be potentially as large as T .

4.3.3 Dynamic Bayesian Network representation

This section constructs the Dynamic Bayesian Network (DBN) representation for

the CxHSMM, states the network assumptions and details the mapping between

DBN parameters and the model parameters. The CxHSMM's DBN representa-

tion is constructed in a similar manner to that of the Multinomial and exponential

HSMM in chapter 3. However, there is a fundamental di�erence in the mechanism
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controlling the duration of states which is no longer a simple �count� variable. Fig.

(4.6) shows a DBN representation of the CxHSMM, in which shaded nodes are the

observed variables while clear nodes are the hidden. At each time slice t, a set of

variables Vt = {xt,mt, et, yt} is maintained:

• xt is the current state variable.

• mt is an M-valued variable representing the current phase of xt.

• et is a Boolean-valued variable representing the ending status of xt: et = 1

when mt leaves the last phase (i.e. going to absorption), forcing xt to termi-

nate; otherwise et = 0.

• yt is the observation returned by the system at time t.

In general, {xt,mt, et} are hidden and yt is observed. In the setting of missing obser-

vation, yt is replaced by empty set {∅}; whereas in the presence of labeled data, e.g.

xt is observed, the observation set then includes the labels, e.g. the instantiations

of xt.

In this DBN representation, the �rst slice at time t = 1 is constructed as follows.

Firstly, the state variable x1 is initialized to an arbitrary state i ∈ Q with a prob-

ability πi. The variable m1 is activated to a number n ∈ [1,M] drawn from the

initial phase probability µin. If m1 <M, the ending variable e1 is always set to 0;

otherwise the link from x1 to e1 becomes active and e1 is set to 0 with probability

1 − λiM, or 1 with probability λiM. The observation y1 is drawn from the emission

matrix B.

After the �rst slice, the ending variable et for t ≥ 1 speci�es how the next time slice

t + 1 can be derived from the current time slice t given the model θCxHSMM. When

et = 0, the same state xt carries on to the next time slice, whereas when et = 1

(only when mt = M), the next state xt+1 is drawn from the transition matrix A:

Pr
(
xit+1 | xit, e0t

)
= 1

Pr
(
xjt+1 | xit, e1t

)
= Aij

In addition, the transitions of the phase variables mt follow the parameters of the

Coxian duration model as follows. When et = 0, we have mt+1 ∈ {mt,mt + 1} and
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Figure 4.7: The two DBN cliques associated with the Coxian duration model in the

CxHSMM.

the probability of staying in the same phase is :

Pr
(
mt+1 = n | mt = n, xt+1 = i, et = 0

)
= 1− λin for n <M (4.19)

Pr
(
mt+1 = M | mt = M, xt+1 = i, et = 0

)
= 1 (4.20)

Pr
(
e0t | mM

t , x
i
t

)
= 1− λiM (4.21)

When et = 1, the starting phase of a new state is initialized:

Pr
(
mt+1 = n | xt+1 = j, et = 1

)
= µin (4.22)

Eqs. (4.19)- (4.22) show that the Coxian parameters λ1:M−1 and µ1:M are associated

with the conditional probability over the clique
{
mt+1 | mt, et, xt+1

}
while the ter-

minating probability of the last phase λM is attached to clique {et | mt, xt}. Thus,
the Coxian duration model is fully de�ned over these two cliques (Fig. (4.7)) in the

DBN representation.

The above analysis shows that the construction of this DBN imposes the following

two restrictions:

mt <M =⇒ et = 0, ∀t

et = 0 =⇒ xt = xt+1, ∀t

Finally, Tab. (4.2) shows the full set of the CxHSMM parameters θCxHSMM in section

4.3.1 mapped into their equivalent conditional probabilities in the DBN structure.

Here again we adopt the notation sit for the event {st = i}.
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πi = Pr (xi1)

Aij = Pr
(
xjt+1 | xit, e1t

)
Di = Cox

(
µi,λi

)
µin = Pr

(
mn
t+1 | xit+1, e

1
t

)
λin<M = Pr

(
mn+1
t+1 | mn

t , x
i
t+1, e

0
t

)
λiM = Pr

(
e1t | mM

t , x
i
t

)
Bv|i = Pr (yvt | xit)

Table 4.2: Mappings between the CxHSMM parameters and its the local conditional

probabilities of its DBN representation.

4.3.4 Inference

Since the CxHSMM can be represented as a DBN, existing inference methods for

DBNs can be readily applied. At time t, let St , {xt,mt, et} be the amalgamated

hidden state and its realization written in short as s , {i, n, k}, then the CxHSMM

can be viewed as a HMM with amalgamated hidden states {St} and observations

{yt}, and inference task can be done similarly to that of the HMM (section 2.4.3).

In particular, the familiar forward and backward procedures of the HMM can be

used to compute the forward and backward variables of the CxHSMM:

forward variable: αt (i, n, k) = Pr
(
xit,m

n
t , e

k
t , y1:t

)
backward variable: βt (i, n, k) = Pr

(
yt+1:T | xit,mn

t , e
k
t

)
From α and β, we then compute one- and two-slice smoothing distributions:

one-slice: γt (i, n, k) = Pr
(
xit,m

n
t , e

k
t | y1:T

)
two-slice: ξt (i, i

′, n, n′, k, k′) = Pr
(
xit, x

i′

t+1,m
n
t ,m

n′

t+1, e
k
t , e

k′

t+1 | y1:T

)
which are required during EM training to compute the expected su�cient statistics

for θCxHSMM.

4.3.4.1 The (scaled) Forward and Backward Variables

Using the expression in Eq. (2.34) of the HMM forward variable (section 2.4.3)

and replacing the single hidden variable xit by the amalgamated hidden variable

Ss
t =

{
xit,m

n
t , e

k
t

}
, and xjt+1 by Ss′

t+1 =
{
xi
′
t+1,m

n′
t+1, e

k′
t+1

}
, we can write the forward
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variable for the CxHSMM as:

αt+1 (s′) = Pr
(
Ss′

t+1, y1:t+1

)
=
∑

s

Pr
(
yt+1 | Ss′

t+1

)
Pr
(
Ss′

t+1 | Ss
t

)
Pr (Ss

t , y1:t) (4.23)

in which Pr
(
yt+1 | Ss′

t+1

)
= Pr

(
yt+1 | xi

′
t+1,m

n′
t+1, e

k′
t+1

)
= Pr

(
yt+1 | xi

′
t+1

)
= Byt+1|i′ is

the emission probability, Pr (Ss
t , y1:t) = αt (s) is the forward variable associated with

the previous time slice and the transition probability Pr
(
Ss′
t+1 | Ss

t

)
is the product

of three local conditional probabilities:

Pr
(
Ss′

t+1 | Ss
t

)
= Pr

(
ek
′

t+1 | xi
′

t+1,m
n′

t+1

)
Pr
(
mn′

t+1 | xi
′

t+1,m
n
t , e

k
t

)
Pr
(
xi
′

t+1 | xit, ekt
)

(4.24)

Using the conditional independencies in the CxHSMM cliques, the individual tran-

sition probabilities are in turn given by:

Pr
(
ek
′

t+1 | xi
′

t+1,m
n′

t+1

)
=

δ
(0)
k′

(
1− λMi′

)
+ δ

(1)
k′ λ

M
i′ , n′ = M

δ
(0)
k′ , n′ <M

(4.25)

Pr
(
mn′

t+1 | xi
′

t+1,m
n
t , e

k
t

)
=


µn

′

i′ , k = 1, n = M

δ
(M)
n′ , k = 0, n = M

δ
(n)
n′ (1− λni′) + δ̄

(n)
n′ λ

n
i′ , k = 0, n <M

(4.26)

Pr
(
xi
′

t+1 | xit, ekt
)

=

δ
(i)
i′ , k = 0

Aii′ , k = 1
(4.27)

where the usual notation δ
(b)
a = 1 only if a = b, and = 0 otherwise; and the new

notation δ̄(b)
a shows the opposite, i.e. δ̄(b)

a = 1 only if a 6= b, and = 0 otherwise. From

Eqs. (4.24) to (4.27), the transition probability from slice t to t+ 1 is:

Pr
(
Ss′

t+1 | Ss
t

)
=
[
δ
(0)
k′ δ

(M)
n′

(
1− λMi′

)
+ δ

(1)
k′ δ

(M)
n′ λMi′ + δ

(0)
k′ δ̄

(M)
n′

]
×
[
δ
(0)
k δ(M)

n δ
(M)
n′ δ

(i)
i′ + δ

(0)
k δ̄(M)

n δ
(n)
n′ (1− λni′) δ

(i)
i′

+δ
(0)
k δ̄(M)

n δ̄
(n)
n′ λ

n
i′δ

(i)
i′ + δ

(1)
k δ(M)

n µn
′

i′ Aii′
]

(4.28)

Now the recursive forward variable can be written as:

αt+1 (s′ = {i′, n′, k′}) = Byt+1|i′
∑

s

Pr
(
Ss′

t+1 | Ss
t

)
αt (s) (4.29)
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with the transition Pr
(
Ss′
t+1 | Ss

t

)
given in Eq. (4.28). The forward variable starts

at t = 1 with:

α̃1 (i, n, k) = Pr
(
xi1,m

n
1 , e

k
1, y1

)
= Pr (y1 | i)Pr

(
ek1 | xi1,mn

1

)
Pr
(
mn

1 | xi1
)
Pr
(
xi1
)

= By1|i

[
δ
(0)
k δ(M)

n

(
1− λMi

)
+ δ

(1)
k δ(M)

n λMi + δ
(0)
k δ̄

(n)
M

]
µni πi (4.30)

Similarly, the backward calculation is given in the same form as that of the HMM

in Eq. (2.38) (section 2.4.3) with the single hidden state {x} again being replaced

by the amalgamated hidden state {x,m, e}:

βt (s) = Pr
(
yt+1:T | Ss

t

)
=
∑
s′

Pr
(
yt+1 | Ss′

t+1

)
Pr
(
yt+2:T | Ss′

t+1

)
Pr
(
Ss′

t+1 | Ss
t

)
=
∑
s′

Byt+1|i′Pr
(
Ss′

t+1 | Ss
t

)
βt+1 (s′) (4.31)

where the transition probability Pr
(
Ss′
t+1 | Ss

t

)
is again de�ned by Eq. (4.28). The

initialization at t = T is given by:

βT (i, n, k) = Pr
(
yT+1:T | xiT ,mn

T , e
k
T

)
= Pr

(
∅ | xiT ,mn

T , e
k
T

)
= 1 (4.32)

In practice, we usually have to deal with long observation sequences and thus the

calculation of αt will encounter the numerical under�ow problem since it will be a

joint probability of a large number of variables when t becomes very large. To avoid

this problem we use a scaling scheme similar to the HMM (section 2.4.3). Instead

of calculating αt(s), we calculate a scaled version α̃t (s):

α̃t (s) ,
αt (s)

Pr (y1:t)
= Pr (Ss

t | y1:t) (4.33)

Calculation of α̃t (s) can be performed e�ciently via dynamic programming. To

simplify the task, we write:

α̃t (s) = α̈t (s) /ψt (4.34)

where α̈t (s) = Pr(Sst , yt | y1:t−1) is a partially scaled version of αt(s), and ψt =

Pr(yt | y1:t−1) is the scaling factor. Given α̃t (s), the recursion at time t + 1 is
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computed as:

α̈t+1 (s′) =
∑

s

Pr
(
Ss
t , S

s′

t+1, yt+1 | y1:t

)
= Byt+1|i′

∑
s

Pr
(
Ss′

t+1 | Ss
t

)
α̃t (s) (4.35)

ψt+1 = Pr
(
yt+1 | y1:t

)
=
∑
s′

α̈t+1 (s′)

where the transition probability Pr
(
Ss′
t+1 | Ss

t

)
is again given in Eq. (4.28). At time

t = 1,

α̃1 (i, n, k) = Pr
(
xi1,m

n
1 , e

k
1 | y1

)
=

Pr
(
xi1,m

n
1 , e

k
1, y1

)
Pr (y1)

=
α1 (i, n, k)∑
i,n,k α1 (i, n, k)

with α1 (i, n, k) speci�ed in Eq. (4.30).

The backward variable is scaled by a factor φt , Pr
(
yt+1:T | y1:t

)
as follows:

β̃t(s) =
βt (s)

φt
(4.36)

with scaled factor φt computed recursively as:

φt = Pr
(
yt+1:T | y1:t

)
= Pr

(
yt+2:T | y1:t+1

)
Pr
(
yt+1 | y1:t

)
= φt+1ψt+1 (4.37)

and

φT = Pr
(
yT+1:T | y1:T

)
= Pr (∅ | y1:T ) = 1

Thus, the scaled backward variable is initialized at t = T with β̃T (i, n, k) = βT (i,n,k)/φT =

1 .

Next, following the derivations from Eq. (2.47) to Eq. (2.54) of the HMM (section

2.4.3), the one- and two-time slice smoothing distributions for the CxHSMM is

obtained as:

γt (s) , Pr (Ss
t | y1:T ) = α̃t (s) β̃t(s) (4.38)

ξt (s, s
′) , Pr

(
Ss
t , S

s′

t+1 | y1:T

)
=
α̃t (s) β̃t+1(s

′)Byt+1|i′Pr
(
Ss′
t+1 | Ss

t

)
ψt+1

(4.39)
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with the transition probability Pr
(
Ss′
t+1 | Ss

t

)
provided in Eq. (4.28).

Finally, the above analysis shows that the CxHSMM requires an inference complexity

of O(|Q|2M2T ), or O(|Q|2M2) for each �ltering step. However, since within a given

state, the phase variables are constrained so that mt+1 ∈ {mt,mt + 1}, the full

joint probability of mt and mt+1 can be represented in just O(M) space instead

of O(M2). This reduces the overall complexity to O(|Q|2MT ) (or O(|Q|2M) per

�ltering step). We note that if the duration is modeled as a Multinomial distribution

or an Exponential Family distribution, the complexity is O(|Q|2MT ) with M being

the maximum duration length. For M� M we have clearly achieved a signi�cant

speedup and at the same time avoided the problem of determining M in advance.

4.3.4.2 Inference with missing observations or observed states

The CxHSMM normally consists of hidden states {x1:T ,m1:T , e1:T} and observations

{y1:T} as shown by the clear and shaded variables in its DBN representation (Fig.

(4.6)). However, in practice we sometimes encounter missing data due to various

reasons such as tracking errors, and thus the need to perform inference in the pres-

ence of missing observation. For convenience let {g1, . . . , gT} be the observation set,

and gt = {∅} if there is a missing observation at time t, otherwise gt is set to the

observation, e.g. gt = {yt}. Another common practical situation is that the labels

of some normally hidden states could be supplied (semi-supervised learning), for

example via the use of various sensors. Let x̄t, m̄t, and ēt be the instantiations of

xt, mt, and et, respectively. For instance, if the state variable is observed at time t

together with the emission symbol, then gt = {x̄t, yt}; or if the end-node et is also
observed, then gt = {x̄t, ēt, yt}. Our inference algorithm also needs to be modi�ed

to tackle the issues.

Similar to inference in the normal context (section 4.3.4.1), let St = {xt,mt, et}
be the amalgamated state and s = {i, n, k} be its realization, then the following
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auxiliary variables are required to be computed at each time t:

Scaled forward variable: α̃t (s) = Pr (Ss
t | g1:t)

Scaling factor: ψt = Pr (gt | g1:t−1)

Scaled backward variable: β̃t(s) =
Pr (gt+1:T | Ss

t )

Pr (gt+1:T | g1:t)
=

Pr (gt+1:T | Ss
t )∏T

τ=t+1 ψτ

1-time slice smoothing dist.: γt (s) = Pr (Ss
t | g1:T )

2-time slice smoothing dist.: ξt (s, s
′) = Pr

(
Ss
t , S

s′

t+1 | g1:T

)
We start with the recursion of the partially labeled scaled forward variable α̈t (s):

α̈t (s) = Pr (Ss
t , gt | g1:t−1)

=
∑
s′

Pr
(
Ss′

t−1, S
s
t , gt | g1:t−1

)
=
∑
s′

Pr (gt | Ss
t )Pr

(
Ss
t | Ss′

t−1

)
Pr
(
Ss′

t−1 | g1:t−1

)
= Pr (gt | Ss

t )
∑
s′

Pr
(
Ss
t | Ss′

t−1

)
α̃t−1 (s′) (4.40)

The only term in Eq. (4.40) requiring special treatment is Pr (gt | Ss
t ) since it is

the only one containing an observation at time t. The observation gt must be

consistent with the amalgamated state Ss
t =

{
xit,m

n
t , e

k
t

}
, otherwise Pr (gt | Ss

t ) = 0.

In particular,

Pr
(
gt | Ss

t =
{
xit,m

n
t , e

k
t

})
=



Byt|i, gt = {yt} (observing yt)

δ
(i)
x̄t
, gt = {x̄t} (observing xt = x̄t)

δ
(n)
m̄t
, gt = {m̄t} (observing mt = m̄t)

δ
(k)
ēt
, gt = {ēt} (observing et = ēt)

1, gt = {∅} (missing observation)

(4.41)

or in short,

Pr (gt | Ss
t ) =

(
Byt|i

)h(yt⊆gt)
(
δ
(i)
x̄t

)h(x̄t⊆gt) (
δ
(n)
m̄t

)h(m̄t⊆gt) (
δ
(k)
ēt

)h(ēt⊆gt)

(4.42)

where h (z) = 1 if statement z is true; otherwise = 0. Thus, the probability of

observed given hidden Pr (gt | Ss
t ) is set to the emission probability if only the emis-

sion symbol is observed; otherwise, it is multiplied by an identity function of the

observed state for consistency, or simply set to 1 when the observation is missing.
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Given the partially scaled forward variable, the scaling factor is then computed as

normal:

ψt = Pr (gt | g1:t−1) =
∑

s

Pr (Ss
t , gt | g1:t−1) =

∑
s

α̈t (s) (4.43)

The expression in Eq. (4.43) is always valid for any cases of gt with α̈t (s) computed

as in Eq. (4.40), and it is straightforward to see that in case nothing is observed

gt = {∅}, the scaling factor is simply equal to 1: ψt = Pr (∅ | g1:t−1) = 1.

The scaled forward variable then follows as:

α̃t (s) = Pr (Ss
t | g1:t) =

α̈t (s)

ψt

which can be further expressed as:

α̃t (s) =
α̈t (s)∑
s α̈t (s)

=
Pr (gt | Ss

t )
∑

s′ Pr
(
Ss
t | Ss′

t−1

)
α̃t−1 (s′)∑

s Pr (gt | Ss
t )
∑

s′ Pr
(
Ss
t | Ss′

t−1

)
α̃t−1 (s′)

(4.44)

with Pr (gt | Ss
t ) given in Eq. (4.42). Our next step is to compute the scaled backward

variable:

β̃t−1(s
′) =

Pr
(
gt:T | Ss′

t−1

)∏T
τ=t ψτ

=
1∏T

τ=t ψτ

∑
s

Pr
(
Ss
t , gt:T | Ss′

t−1

)
=

1

ψt

∑
s

Pr (gt+1:T | Ss
t )∏T

τ=t+1 ψτ
Pr (gt | Ss

t )Pr
(
Ss
t | Ss′

t−1

)
=

1

ψt

∑
s

Pr (gt | Ss
t )Pr

(
Ss
t | Ss′

t−1

)
β̃t(s)

again with Pr (gt | Ss
t ) de�ned as in Eq. (4.42).

Given the forward and backward variables, the one-time slice smoothing distribu-

tions is then computed as follows:

γt (s) , Pr (Ss
t | g1:T )

=
Pr (gt+1:T | Ss

t )Pr (Ss
t | g1:t)

Pr (gt+1:T | g1:t)

= β̃t(s)α̃t (s) (4.45)
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where the need for consistency between gt and Ss
t is required in the computation of

α̃t (s) = Pr (Ss
t | g1:t) (Eq. (4.44)), which in turn is taken care of in the probability

Pr (gt | Ss
t ) as shown in Eq. (4.42). Next, the two-time slice smoothing distribution

is given by:

ξt−1 (s, s′) , Pr
(
Ss
t−1, S

s′

t | g1:T

)
=

Pr
(
gt+1:T | Ss′

t

)
Pr
(
gt | Ss′

t

)
Pr
(
Ss′
t | Ss

t−1

)
Pr
(
Ss′
t−1 | g1:t−1

)
Pr (gt:T | g1:t−1)

=
Pr
(
gt | Ss′

t

)
Pr
(
Ss′
t | Ss

t−1

)
Pr
(
Ss
t−1 | g1:t−1

)
Pr
(
gt+1:T | Ss′

t

)
Pr (gt | g1:t−1)Pr (gt+1:T | g1:t)

=
1

ψt
Pr
(
gt | Ss′

t

)
Pr
(
Ss′

t | Ss
t−1

)
α̃t−1 (s) β̃t(s

′) (4.46)

where the only term involving both gt and St is Pr
(
gt | Ss′

t

)
, and is already given

in Eq. (4.42).

In short, the de�nitions of auxiliary variables and the forward/backward procedures

remain almost the same as in normal context (section 4.3.4.1), except that the condi-

tional probability Pr (gt | St) has to maintain consistency between the observations

and the states. This leads to the following results: (a) if there is missing obser-

vation the emission probability Bv|i is removed during calculation, and (b) if any

states are observed, identity functions are multiplied into the emission probability.

These additional steps ensure the one- and two-time slice smoothing distributions

are computed consistently.

4.3.5 Learning

This section presents parameter learning in the CxHSMM. Since the CxHSMM

can be represented as a DBN, it can be written in the Exponential Family form,

and consequently the maximum likelihood (ML) estimation derived for the Expo-

nential Family distributions (sections 2.2.1 and 2.2.2.2) can be used here. We �rst

show the ML estimation when the model is fully observed before investigating the

Expectation-Maximization (EM) algorithm for the general case where the states

{x1:T ,m1:T , e1:T} are hidden and the emissions {y1:T} are observed. To make the

model applicable in real world applications, we also present learning in the presence

of missing observations and partially labeled data.
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4.3.5.1 Maximum Likelihood for fully observed CxHSMM

When all the states are observed, following the derivations in section 2.2.1, the

ML solutions are set to the normalized su�cient statistics, which are the count of

con�gurations. Let T
(
θik,v
)
be the su�cient statistic of parameter θik,v, which is

mapped to the local conditional probability Pr
(
Xit = k | Xπit

= v
)
at time slice t

of the respective DBN. Then,

T
(
θik,v
)

=
T∑
t=1

δ
(k)
Xit
δ
(v)
Xπit

(4.47)

T
(
θik,v
)
is the total number of con�gurations

{
Xit = k,Xπit

= v
}
present in the

DBN. This equation allows us to obtain su�cient statistics for θCxHSMM directly

from inspecting its DBN.

For example, the su�cient statistic T (µin) of the parameter µin, mapped to Pr
(
mn
t+1 |

xit+1, e
1
t

)
, is the the total count of con�gurations

{
mn
t+1, x

i
t+1, e

1
t

}
over time, which

is also the number of times the Coxian associated with state i is initiated in phase

n, or equivalently the total count of con�gurations
{
mn
t+1, x

i
t+1, e

1
t

}
:

T
(
µin
)

=
T−1∑
t=1

δ(n)
mt+1

δ(i)
xt+1

δ(1)
et

Thus, estimation for the Coxian phase initial probabilities is given by:

µ̂in =
T (µin)∑
n T (µin)

=

∑T−1
t=1 δ

(n)
mt+1

δ
(i)
xt+1

δ
(1)
et∑M

n=1

∑T−1
t=1 δ

(n)
mt+1

δ
(i)
xt+1

δ
(1)
et

=

∑T−1
t=1 δ

(n)
mt+1

δ
(i)
xt+1

δ
(1)
et∑T−1

t=1 δ
(i)
xt+1

δ
(1)
et

Another example is the ML solution for the phase transition parameter λin. For any

phase n <M, the su�cient statistic for λin is counted every time the Coxian leaves

phase n for phase n+ 1, which is in the con�guration
{
mn+1
t+1 ,m

n
t , x

i
t+1, e

0
t

}
. Hence,

for n <M:

λ̂in =
T (λin)∑
m1:T

T (λin)

=

∑T−1
t=1 δ

(n+1)
mt+1

δ
(n)
mt
δ
(i)
xt+1

δ
(0)
et∑

n′=n:n+1

∑T−1
t=1 δ

(n′)
mt+1

δ
(n)
mt
δ
(i)
xt+1

δ
(0)
et

=

∑T−1
t=1 δ

(n+1)
mt+1

δ
(n)
mt
δ
(i)
xt+1

δ
(0)
et∑T−1

t=1 δ
(n)
mt
δ
(i)
xt+1

δ
(0)
et

, for n <M
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The last phase parameter λiM is mapped into the DBN clique
{
e1t | mM

t , x
i
t

}
, there-

fore, its su�cient statistic is counted on the con�guration
{
e1t ,m

M
t , x

i
t

}
:

λ̂iM =
〈T (λiM)〉∑
e1:T

〈T (λiM)〉

=

∑T
t=1 δ

(1)
et
δ
(M)
mt

δ
(i)
xt∑

k=0:1

∑T
t=1 δ

(k)
et
δ
(M)
mt

δ
(i)
xt

=

∑T
t=1 δ

(1)
et
δ
(M)
mt

δ
(i)
xt∑T

t=1 δ
(M)
mt

δ
(i)
xt

Finally, ML solutions for the remaining parameters are:

π̂i =
T (πi)∑
i T (πi)

=
δ
(i)
x1∑
i δ

(i)
x1

= δ(i)
x1

(4.48)

Âij =
T
(
Aij
)∑

j T
(
Aij
) =

∑T−1
t=1 δ

(j)
xt+1

δ
(i)
xt
δ
(1)
et∑

j

∑T−1
t=1 δ

(j)
xt+1

δ
(i)
xt
δ
(1)
et

=

∑T−1
t=1 δ

(j)
xt+1

δ
(i)
xt
δ
(1)
et∑T−1

t=1 δ
(i)
xt
δ
(1)
et

(4.49)

B̂v|i =
T
(
Bv|i

)∑
v T
(
Bv|i

) =

∑T
t=1 δ

(v)
yt
δ
(i)
xt∑

v

∑T
t=1 δ

(v)
yt
δ
(i)
xt

=

∑T
t=1 δ

(v)
yt
δ
(i)
xt∑T

t=1 δ
(i)
xt

4.3.5.2 Expectation-Maximization for the CxHSMM

In general, the states {x1:T ,m1:T , e1:T} are hidden and the emissions {y1:T} are

observed. Thus, the Expectation-Maximization (EM) algorithm is employed for

the parameter estimation tasks. Following Eq. (2.29) (section 2.2.2.2), we com-

pute the expected complete log likelihood for the CxHSMM over the distribution

Pr (S1:T | y1:T , θF ) as:〈
LC (St:T , y1:T | θF )

〉
=
∑
i

〈T (πi)〉 log πi +
∑
i,j

〈
T
(
Aij
)〉

logAij

+
∑
i,n

〈
T
(
µin
)〉

log µin +
∑
i,n

〈
T
(
λin<M

)〉
log λin<M

+
∑
i

〈
T
(
λiM
)〉

log λiM +
∑
v,i

〈
T
(
Bv|i

)〉
logBv|i

in which the expected su�cient statistics (ESS's) are computed by following the

results in Eqs. (2.20) and (2.29) which states that the ESS for any parameter θk,v =

Pr (X = k | Xπ = v) de�ned as:

〈T (θk,v)〉 =
∑
H

T (θk,v)Pr (H | O, θ)

=
∑
H

∑
k,v

δ
(k)
X δ

(v)
Xπ
Pr (H | O, θ) (4.50)
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In particular, let us �rst look at the phase initial probability µin in detail. The

su�cient statistic of µin is collected every time the system enters phase n right after

a transition to state i, which means it is counted over the clique
{
mn
t+1 | xit+1, e

1
t

}
,

and thus:

T
(
µin
)

=
T−1∑
t=0

δ(n)
mt+1

δ(i)
xt+1

δ(1)
et

in which we assume et at time t = 0 is 1 by default. Taking the expectation of T (µin)

over the probability of hidden variables over observed ones Pr(x1:T ,m1:T , e1:T | y1:T )

results in:

〈
T
(
µin
)〉

=
∑

x1:T ,m1:T ,e1:T

T−1∑
t=0

δ(n)
mt+1

δ(i)
xt+1

δ(1)
et

Pr(x1:T ,m1:T , e1:T | y1:T )

=
T−1∑
t=0

Pr
(
xit+1,m

n
t+1, e

1
t | y1:T

)
which is easily obtained by marginalizing the one- and two-time slice smoothing

distributions:

〈
T
(
µin
)〉

= Pr
(
xi1,m

n
1 | y1:T

)
+

T−1∑
t=1

Pr
(
xit+1,m

n
t+1, e

1
t | y1:T

)
=
∑
k

γ1 (i, n, k) +
∑
i′,n′,k

ξt (i
′, i, n′, n, 1, k)

Following the results of theorem 2.1, the re-estimated formula for µin is then given

by:

µ̂in =
〈T (µin)〉∑
n 〈T (µin)〉

=

∑
k γ1 (i, n, k) +

∑
i′,n′,k ξt (i

′, i, n′, n, 1, k)∑
n,k γ1 (i, n, k) +

∑
i′,n′,n,k ξt (i

′, i, n′, n, 1, k)
(4.51)

The phase terminating probabilities λin need to be treated with more care as they

are de�ned di�erently, as shown in Tab. (4.2), for n <M and n = M. For n <M,

the su�cient statistic T (λin) is counted every time the phase n is terminated within

the given state i, or the number of con�gurations
{
mn+1
t+1 | mn

t , x
i
t+1, e

0
t

}
:

T (λin) =
T−1∑
t=1

δ(n+1)
mt+1

δ(n)
mt
δ(i)
xt+1

δ(0)
et
, for n <M
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The ESS then follows as:

〈
T
(
λin
)〉

=
∑

x1:T ,m1:T ,e1:T

T−1∑
t=1

δ(n+1)
mt+1

δ(n)
mt
δ(i)
xt+1

δ(0)
et

Pr(x1:T ,m1:T , e1:T | y1:T )

=
T−1∑
t=1

Pr(mn+1
t+1 ,m

n
t , x

i
t+1, e

0
t | y1:T ) (4.52)

=
T−1∑
t=1

∑
i′,k

ξt (i
′, i, n, n+ 1, 0, k) , for n <M (4.53)

The normalization factor (nFactor) in the ML solution for λin<M is obtained by

marginalizing out all possible values of the phase mt+1 from the ESS in Eq. (4.52):

nFactorλi
n<M

=
T−1∑
t=1

∑
mt+1

Pr(mt+1,m
n
t , x

i
t+1, e

0
t | y1:T )

=
T−1∑
t=1

Pr(mn
t , x

i
t+1, e

0
t | y1:T )

=
T−1∑
t=1

∑
i′,n′,k

ξt (i
′, i, n, n′, 0, k) (4.54)

From Eqs. (4.53) and (4.54), the ML solution is then given by:

λ̂in =
〈T (λin)〉

nFactorλi
n<M

=

∑T−1
t=1

∑
i′,k ξt (i

′, i, n, n+ 1, 0, k)∑T−1
t=1

∑
i′,n′,k ξt (i

′, i, n, n′, 0, k)
, for n <M (4.55)

For n = M, the terminating probability of the last phase λiM becomes the prob-

ability that the state i has �nished its duration, which is associated with the con-

�guration
{
e1t | mM

t , x
i
t

}
. Therefore, by using the same counting and expectation

procedures, we obtain:〈
T
(
λiM
)〉

= E
[
δ(1)
et
δ(M)
mt

δ(i)
xt

]
Pr(x1:T ,m1:T ,e1:T | y1:T )

=
T∑
t=1

Pr(e1t ,m
M
t , x

i
t | y1:T ) (4.56)

=
T∑
t=1

γt (i,M, 1)
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The normalization factor now is equivalent to the probability that the Coxian is at

its last phase (and the state i has or has not �nished its duration). Thus, from Eq.

(4.56) it follows that:

nFactorλi
M

=
T∑
t=1

[
Pr(e1t ,m

M
t , x

i
t | y1:T ) + Pr(e0t ,m

M
t , x

i
t | y1:T )

]
=

T∑
t=1

Pr(mM
t , x

i
t | y1:T )

=
T∑
t=1

∑
k

γt (i,M, k)

Hence,

λ̂iM =
〈T (λiM)〉
nFactorλi

M

=

∑T
t=1 γt (i,M, 1)∑T

t=1

∑
k γt (i,M, k)

(4.57)

The ML solutions for the remaining parameters can easily be obtained by �rst

computing the ESS (via Eq. (4.50)) and then using Lagrange multiplier (theorem

2.1), and thus brie�y listed below:

π̂i =
〈T (πi)〉∑
i 〈T (πi)〉

=
Pr (xi1 | y1:T )∑
i Pr (xi1 | y1:T )

=
∑
n,k

γ1 (i, n, k) (4.58)

Âij =

〈
T
(
Aij
)〉∑

j

〈
T
(
Aij
)〉 =

∑T−1
t=1 Pr

(
xjt+1, x

i
t, e

1
t | y1:T

)∑
j

∑T−1
t=1 Pr

(
xjt+1, x

i
t, e

1
t | y1:T

)
=

∑T−1
t=1

∑
n,n′,k′ ξt (i, j, n, n

′, 1, k)∑T−1
t=1

∑
j,n,n′,1,k ξt (i, j, n, n

′, 1, k)
(4.59)

B̂v|i =

〈
T
(
Bv|i

)〉∑
v

〈
T
(
Bv|i

)〉 =

∑T
t=1 Pr (xit | y1:T ) δ

(v)
yt∑

v

∑T
t=1 Pr (xit | y1:T ) δ

(v)
yt

=

∑T
t=1

∑
n,k γt (i, n, k) δ

(v)
yt∑T

t=1

∑
n,k γt (i, n, k)

(4.60)

4.3.5.3 Learning with missing observations or observed states

In the presence of missing observations, the ML solutions for π̂i, Âij, µ̂
i
n, λ̂

i
n in Eqs.

(4.58), (4.59), (4.51), (4.55), and (4.57) in the previous section are all valid provided

that the two smoothing distributions γt (s) and ξt (s, s
′) used are computed with
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xt+1

yt yt+1

xt

(a)

(

δ
x̄t+1

xt+1

)

yt yt+1

xt xt+1

×

(b)

Figure 4.8: The two equivalent structures.

missing observations as in Eqs. (4.45) and (4.46) (section 4.3.4.2). However, there

is a small change to the re-estimation formula for the emission probability as its

su�cient statistic involves probability of yt in the count of con�guration {yt | xt} :

〈
T
(
Bv|i

)〉
=

∑
x1:T ,m1:T ,e1:T

T∑
t=1

δ(v)
yt
δ(i)
xt
Pr (x1:T ,m1:T , e1:T | g1:T )

=


∑T

t=1 Pr (xit | g1:T ) δ
(v)
yt
, gt = yt∑

τ={1:T}rt Pr (xiτ | g1:T ) , gt = ∅ (missing obs.)

On the other hand, if some of the hidden states in the set {x1:T ,m1:T , e1:T} are ob-
served, then these observations have already been taken care of during the computa-

tion of the smoothing distributions γt (s) and ξt (s, s′) (section 4.3.4.2) by multipli-

cation with appropriate identity functions (Eq. (4.42)). For example, the structure

in Fig. 4.8(a) is equivalent to the structure in Fig. 4.8(b) multiplied by a suitable

identity function. In the E-step, the ESS's are computed directly from the smooth-

ing distributions, thus, the e�ect of observed states is then embedded into the ESS's.

For example, given xτ is observed, e.g. gτ = {yτ , x̄τ}, the ESS for the transition

parameter Aij would be calculated as follows:

〈
T
(
Aij
)〉

=
∑
S1:T

T−1∑
t=1

δ(j)
xt+1

δ(i)
xt
e1tPr (St | g1:T = {y1:T , x̄τ})

=
∑
t∈C

Pr
(
xjt+1, x

i
t, e

1
t | y1:T

)
+ Pr

(
xjτ , x

i
τ−1, e

1
τ−1 | g1:T

)
+ Pr

(
xjτ+1, x

i
τ , e

1
τ | g1:T

)
(4.61)
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where the set C = [1 : τ − 2, τ + 1 : T ]. The �rst term in Eq. (4.61) is computed nor-

mally by marginalizing over the two-time slice smoothing distribution, and the e�ect

of having xτ observed will be shown in the probabilities Pr (gτ = {yτ , x̄τ} | xiτ ,mτ , e
1
τ )

and Pr (gτ = {yτ , x̄τ} | xjτ ,m0
τ , eτ ) that will arise when we compute the last two

terms. In particular, for t ∈ [1 : τ − 2, τ + 1 : T ], we have:∑
t∈C

Pr
(
xjt+1, x

i
t, e

1
t | y1:T

)
=
∑
t∈C

∑
n,n′,k

ξτ ({i, n, 1} , {j, n′, k}) (4.62)

Substituting ξτ (.) in Eq. (4.39) with s = {i, n, 1} and s′ = {j, n′, k} into Eq. (4.62)

results in:

∑
t∈C

Pr
(
xjt+1, x

i
t, e

1
t | y1:T

)
=
∑
t∈C

∑
n,n′,k

Byt+1|jPr
(
S
{j,n′,k}
t+1 | S{i,n,1}t

)
α̃t (i, n, 1) β̃t+1(j, n

′, k)

ψt+1

(4.63)

Next, the second term in Eq. (4.61) is given by:

Pr
(
xjτ , x

i
τ−1, e

1
τ−1 | g1:T

)
=
∑
n,n′,k

ξτ−1 ({i, n, 1} , {j, n′, k})

(a)

=

∑
n,n′,k

[
Pr
(
gτ = {yτ , x̄τ} | S{j,n

′,k}
τ

)
Pr
(
S{j,n

′,k}
τ | S{i,n,1}τ−1

)
× α̃τ−1 (i, n, 1) β̃τ (j, n

′, k)

ψτ

]

(b)

=

∑
n,n′,k

Byτ |jδ
(j)
x̄τ
Pr
(
S
{j,n′,k}
τ | S{i,n,1}τ−1

)
α̃τ−1 (i, n, 1) β̃τ (j, n

′, k)

ψτ

where steps (a) and (b) are obtained by following the result of Eqs. (4.46) and (4.42),

respectively, and Pr
(
gτ = {yτ , x̄τ} | S

{j,n′,k}
τ

)
= Byτ |jδ

(j)
x̄τ

is the only term required

to be consistent with the observation of x̄τ .

The third term in Eq. (4.61) is then computed as:

Pr
(
xjτ+1, x

i
τ , e

1
τ | g1:T

)
=
∑
n,n′,k

ξτ ({i, n, 1} , {j, n′, k})

=
∑
n,n′,k

Byτ+1|jPr
(
S
{j,n′,k}
τ+1 | S{i,n,1}τ

)
α̃τ (i, n, 1) β̃τ+1(j, n

′, k)

ψτ+1
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in which the consistency between the observation gτ = {yτ , x̄τ} and the state xiτ
arises during the computation of α̃τ (i, n, 1). Following Eq. (4.44), we have:

α̃τ (i, n, 1) =
Pr
(
gτ | S{i,n,1}τ

)∑
s′ Pr

(
S
{i,n,1}
τ | Ss′

τ−1

)
α̃τ−1 (s′)∑

s Pr (gτ | Ss
τ )
∑

s′ Pr
(
Ss
τ | Ss′

τ−1

)
α̃τ−1 (s′)

=
Byτ |iδ

(i)
x̄τ

∑
s′ Pr

(
S
{i,n,1}
τ | Ss′

τ−1

)
α̃τ−1 (s′)∑

sByτ |iδ
(i)
x̄τ

∑
s′ Pr

(
Ss
τ | Ss′

τ−1

)
α̃τ−1 (s′)

Next, given the ESS
〈
T
(
Aij
)〉
, the M-step follows as normal (theorem 2.1) and leads

to the ML solution:

Âij =

〈
T
(
Aij
)〉∑

j

〈
T
(
Aij
)〉

In short, the inference step has ensured the consistency over observation of states.

Hence, the set of ML solutions for θCxHSMM in Eqs. (4.58), (4.59), (4.60), (4.51),

(4.55), and (4.57) remain valid provided that the smoothing distributions used in

them are computed as shown by Eqs. (4.45) and (4.46).

4.4 Applications with the CxHSMM: recognition of

activities of the same category

Apart from its other strengths, the Coxian is also appealing to activity recognition

due to its structural advantage of having cascaded phases, which intuitively relate

to sequences of sub-activities in an activity. In this section we apply the novel

CxHSMM to the problem of recognizing ADLs and compare it with other existing

semi-Markov models and the standard HMM. We argue that there are several com-

mon categories of ADLs in the house such as: “cooking meal”, “ washing dishes”,

“ ironing clothes”, “ leisure reading”, etc. Activities of the same category gener-

ally follow the same standard procedures. For example, “cooking meal” includes:

“taking food from fridge” → “washing veggies/cutting meat” → “seasoning food” →
“cooking”; or “ironing clothes” would consist of: “bringing clothes to laundry” →
“taking out the iron” → “setting up the iron board” → “ironing” → “tidying up”

→“putting clothes away”. In other words, each activity category has its own se-

quential order of tasks needed to be ful�lled. However, the sub-activities within a

given category may have di�erent durations. For example, time spent at the stove

for “cooking lunch” would be less than that for “cooking dinner”, or time spent at
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the laundry for “ironing a shirt” on weekday mornings would be much less than for

“ironing the whole set of clothes” at weekends. The challenging problem is how to

learn and distinguish ADLs of the same category mainly based on the di�erences in

the durations of their sub-activities.

This section investigates how e�ectively di�erent duration models (the Coxian, the

popular Multinomial and the Exponential Family) at modeling and recognizing ac-

tivities of the same category, in particular the three di�erent routines (activities)

of meal preparation and consumption (category). Thus, the experimental models

include the CxHSMM with the number of phases of the Coxian ranging from 2 to

7, the non-parametric Multinomial duration HSMM (MuHSMM), representatives of

the Exponential Family HSMMs: the Poisson duration HSMM (PsHSMM) and the

Inverse Gaussian duration HSMM (IgHSMM), and the baseline HMM.

4.4.1 Data and environment descriptions

We collect a total of 48 sequences for the three following activities in the meal

preparation and consumption category:

• (a.1) “tea− cake− newspaper breakfast”

• (a.2) “scrambled egg on toast lunch”

• (a.3) “lasagna− salad lunch”

We consider the extreme case in which the three activities have exactly the same se-

quential order of sub-activities but di�er in the durations of these tasks. This is also

the hardest scenario since the di�erences are in duration patterns and not in trajecto-

ries, making our task of activity classi�cation more challenging. Fig. (4.9) shows the

twelve �xed sequential steps: (1) “take food from fridge”→ (2) “bring food to stove”

→ (3) “wash veggies/�ll water at sink” → (4 ) “come back to stove for cooking” →
(5) “take plates/cup from cupboard”→ (6 ) “get food from stove”→ (7) “bring food

to table"→ (8) “take drink from fridge” → (9) “have meal at table"→ (10) “clean

stove” → (11) “wash dishes at sink” → (12) “leave the kitchen”. Tab. (4.3) shows

the statistics of typical durations spent at special landmarks (fridge, stove, sink,

cupboard, and table) for the three activities. For example, 15 − 17(s) is the du-

ration spent at the stove for cooking scrambled eggs on toast, which is generally
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Fridge Stove Sink Cupboard Table1 2 3 59
1 1 1 2Door Door7

8 1 064
Figure 4.9: Sequential orders of visits.

Fridge Stove Sink Cupb Table

(a.1) 1�2 4�6 1�2 1�2 7�9 1�2 2�4 8�10 8�10 1�2 28�32

(a.2) 6�8 1�2 8�10 15�17 4�6 8�10 6�8 18�20 1�2 3�4 14�16

(a.3) 10�12 1�2 4�6 8�10 2�4 3�5 12�14 12�14 1�2 3�4 19�21

Table 4.3: Typical durations spent (in seconds) at the landmarks obtained from

empirical data.

longer than for reheating the lasagna (8− 10(s)), or making a cup of tea (7− 9(s));

having breakfast while reading the morning newspaper, 28− 32(s), usually requires

more time at the table than simply having lunch alone, 14 − 16(s) or 19 − 21(s).

In addition, Tab. (4.3) shows that each landmark may have multiple durations: the

�rst column shows the duration of the �rst visit, the second column is the duration

of the second visit, etc. For example, for activity (a.1), the occupant �rst stops at

the fridge for 1-2(s) to check out milk and cake, then later returns to the fridge for

4-6(s) to take out milk and cake; whereas in activity (a.2), the occupant stops at

the fridge the �rst time for 6-8(s) to take out food and then re-visits the fridge after-

wards for 1-2(s) to get a drink. In this experiment we have covered the possibility

that an occupant may visit some landmarks several times within an activity, and

di�erent activities may sometimes share the same typical duration at the same place.

The environment is a kitchen set-up as shown in Fig. (4.10). The scene is captured

by two cameras mounted at two opposite ceiling corners and a multiple-camera

tracking module is used to detect movements and returns the list of positions in

x-y coordinates visited by the occupant. For modeling convenience the kitchen is

quantized into 28 square cells of 1m2, and the x-y readings are then converted into
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the cell numbers. The low-level vision tracking module employed in this work is the

same as that of [Nguyen, 2004a] and detailed in appendix A. This tracking module

however occasionally loses track of the occupant due to occlusions, or when the actor

stays still for too long and is confused with the background. That leads to about

a third of the captured sequences having approximately 7% entries being missed

on the average. Therefore, we will experiment with two sets of data: the �rst set

A consists of the originally captured sequences with missing observations, and to

further test the robustness of our model, we construct a second set of data B in

which a missing entry is interpolated by its neighbors.

4.4.2 Training and testing strategy

To ensure an objective result, we employ a leave-one-out strategy for training and

testing. We sequentially pick out one sequence Y from the dataset D for test-

ing, and use the remainder {D \ Y } for training. In the trained models (various

M-ph.CxHSMMs, a MuHSMM, a PsHSMM, an IgHSMM and a HMM), we let the

number of states |Q| = 28, equal to the number of quantized cells in the kitchen

environment (Fig. (4.10)). For the MuHSMM, the PsHSMM, and the IgHSMM, we

equate the maximum duration M to the maximum activity length (∼ 100−120(s)).

All these models have a �xed observation model B obtained o�ine from the char-

acteristics of the tracking model, and all other parameters are randomly initialized.

The model performance is tested on three criteria including classi�cation accuracy,

early detection rate and running time de�ned as follows.

De�nition 4.3. Given N di�erent stochastic models {θ1, . . . , θN}, each trained on

a class of activities, and an observation sequence y1:T , the likelihood Pr (y1:t | θn) is
computed at each time t ∈ [1, T ] and used to label the most likely activity class. The

online recognition accuracy at any time t is the ratio of activities correctly labeled

at time t to the total activities tested. The classi�cation accuracy is the online

recognition accuracy at time t = T . The early detection rate (EDR) is the ratio

t0�T where t0 is the earliest time from which the activity label remains accurate.

The running time is simply the time required to run one EM iteration during

training.

�
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Door Fridge Stove

Din
ing

 ch
air

(a) camera1

Sink Cupboard

(b) camera 2.

Figure 4.10: The kitchen environment viewed from two cameras.
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Model selection on di�erent M-ph.CxHSMMs: When modeling the state

duration by a Coxian distribution we have to choose the best number of phases.

The key is to balance the complexity of the model and its degree of �tness to the

data. For the M-ph.CxHSMM, we train six di�erent variants by varying M from

2 to 7 (note that for M = 1, the CxHSMM reduces to a HMM). We measure the

model performance in terms of classi�cation accuracy and early detection rate, and

running time on unseen data to select the most suitable M.

4.4.3 Experiments with missing observation dataset A

This section experiments with dataset A, which has some sequences containing miss-

ing observations. In both the learning and recognition phases, missing entries in the

observation vectors are treated as hidden (theory in sections 4.3.4.2 and 4.3.5.3).

First, we look at how the di�erent models have learned the state durations. Fig.

(4.11) shows the duration spent at the table in activity (a.3) learned by the PsHSMM,

the IgHSMM, the MuHSMM, and the 5-ph.CxHSMM. While the Poisson fails to

learn accurate duration information, the rest, especially the Coxian and the Multi-

nomial, have captured, relatively well, the mixture of two typical durations: 3-4(s),

and 19-21(s) (the statistics of empirical durations is shown in Tab. (4.3)). The Cox-

ian has not fully separated the two peaks but successfully smoothed the spikes in

the durations in comparison with the Multinomial.

In addition, Fig. (4.12) shows the log likelihood learned from the dataset of activity

(a.3) by all the models. Due to their simplicity the HMM and the PsHSMM quickly

converge after about 4 iterations; while the IgHSMM requires about 20 iterations,

both the MuHSMM and 5-ph.CxHSMM take up to 25 iterations. However, the learn-

ing time is well worth it as they deliver much higher performance as discussed below.

Tab. (4.4)(c) shows that the HMM performs worst with only 68% classi�cation

accuracy due to its incapacity to model non-geometric durations. The PsHSMM

performance is almost equally poor (69% accuracy), possibly because the Pois-

son is not �exible enough (i.e. having only one parameter) to model complicated

state occupancies. The IgHSMM (76% accuracy) performs almost comparably to

the 2-ph.CxHSMM (78% accuracy), but is completely surpassed by any M ≥
3-ph.CxHSMMs. The disadvantage of the Inverse Gaussian model is possibly be-
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Figure 4.11: The duration distribution of state �at-table� in activity (a.3) learned

by: (a) the PsHSMM, (b) the IgHSMM, (c) the MuHSMM, and (d) the

5-ph.CxHSMM.
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(a) The 5-ph.CxHSMM.
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(b) The MuHSMM.
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(c) The IgHSMM.
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(e) The HMM.

Figure 4.12: The log likelihoods learned from activity (a.3).
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cause of its approximation to the discrete domain and the additional approximation

during EM learning. Nevertheless, the most signi�cant result is that the best accu-

racy (91.39%) is achieved with M = 5, a relatively small number, thus indicating

the Coxian as a promising choice for modeling ADLs. In addition, the early detec-

tion rates (EDRs) in Tab. (4.5) show that on average the 5-ph.CxHSMM is capable

of recognizing activities as early as 18.38% of their �lifetime�, which is earlier than

other M -phase models. Furthermore, across all activities the 5-ph.CxHSMM has

an upper bound of less than 28% EDR, as compared to 35% (or above) for all other

values ofM. In comparison with the 5-ph.CxHSMM, at the heavy expense of com-

putational cost, the MuHSMM performs slightly better with an average of 95.56%

for accuracy and 15.59% for EDR2.

It is further observed that most models generally detect activity (a.1) accurately

and early, while sometimes confusing the other two activities. This is consistent

with the fact that activities (a.2) and (a.3) share more common durations as shown

in Tab. (4.3). Fig. (4.13) illustrates an example of online recognition performed by

the 5-ph.CxHSMM for a randomly chosen sequence of activity (a.2).

The comparison between the HMM and the CxHSMM shows us that by simply

adding one more geometric phase (extending from HMM to 2-ph.CxHSMM) the

Markov model can be improved signi�cantly in applications, in particular the accu-

racy increases from 68.02% to 78.61% (Tab. (4.4)(a & c)), and by adding a few more

geometric phases (the 5-ph.CxHSMM), we can achieve much better performance

(91.39% - Tab. (4.4)(a)). In addition, the model performance slightly decreases for

M≥ 6, making M = 5 the best number of phases for this data.

Regarding running time, theoretically the M-ph.CxHSMM time scales up linearly

by its phase number M, while the MuHSMM and the Exponential Family HSMM

(including PsHSMM and IgHSMM) scale up by the maximum duration length M .

In our experiment the best performance is achieved with M = 5, while M is in

the range of [100, 120], depending on each activity. Thus, the Coxian is far bet-

ter than any other model in computational time by a theoretical factor of 20 − 24

times. It is also worthy to noting that compared to the Multinomial duration model,

2We have smoothed the Multinomial duration to get rid of the spikes by a moving average, the

e�ectiveness of smoothing is discussed in section 6.1.1.
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M = 2 (avg.78.61%) M = 3 (avg.89.03%) M = 4 (avg.85.00%)

(a.1) (a.2) (a.3) (a.1) (a.2) (a.3) (a.1) (a.2) (a.3)

(a.1) 100 0 0 100 0 0 94.12 5.88 0

(a.2) 0 62.50 37.50 0 93.75 6.25 0 75.00 25.00

(a.3) 13.33 13.33 73.34 0 26.67 73.33 0 20.00 80.00

(a) Tested on di�erent M-ph.CxHSMMs.

M = 5 (avg.91.39%) M = 6 (avg.89.44%) M = 7 (avg.89.17%)

(a.1) (a.2) (a.3) (a.1) (a.2) (a.3) (a.1) (a.2) (a.3)

(a.1) 100 0 0 100 0 0 100 0 0

(a.2) 0 87.50 12.50 0 75.00 25.00 0 87.50 12.50

(a.3) 0 13.33 86.67 0 6.67 93.33 0 20.00 80.00

(b) Tested on di�erent M-ph.CxHSMMs.

HMM (avg.68.02%) PsHSMM (avg.69.05%) IgHSMM (avg.76.53%) MuHSMM (avg.95.56%)

(a.1) (a.2) (a.3) (a.1) (a.2) (a.3) (a.1) (a.2) (a.3) (a.1) (a.2) (a.3)

(a.1) 88.24 0 11.76 58.82 17.65 23.53 100 0 0 100 0 0

(a.2) 0 62.50 37.50 0 75.00 25.00 0 56.25 43.75 0 100 0

(a.3) 13.33 33.33 53.33 0 26.67 73.33 0 26.67 73.33 0 13.33 86.67

(c) Tested on other models.

Table 4.4: Classi�cation accuracy with the data containing missing observations

using the HSMM variants and the HMM.

HMM PsHSMM IgHSMM MuHSMM M= 2 M= 3 M= 4 M = 5 M= 6 M= 7

(a.1) 9.12 31.54 7.99 8.97 7.12 6.47 8.35 7.26 7.70 7.84

(a.2) 37.28 13.89 47.72 11.77 31.28 11.41 31.39 20.31 25.99 17.72

(a.3) 42.57 43.96 31.96 26.03 41.76 39.93 56.23 27.56 34.47 52.29

Avg. 29.66 29.80 29.22 15.59 26.72 19.27 31.99 18.38 22.72 25.95

Table 4.5: Early Detection Rate with data containing missing observations using

the HSMM variants and the HMM.
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Figure 4.13: Example of online recognition for an unseen sequence of activity (a.2)

obtained from the 5-ph.CxHSMM. Model θi is trained from the set of activities

(a.i).
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the Coxian duration model requires a signi�cantly less number of free parameters:

2×M− 1 = 9 vs. M − 1 ≈ 114. Fig. (4.14) shows our MATLAB computation time

for one EM iteration run on ten sequences randomly chosen from activities (a.1) to

(a.3). The empirical speed up factor goes from 7 times for the �rst four sequences,

which are from activity (a.1) whose lengths are shortest among the three activity

types, to 10 times for the next three sequences taken from activity (a.2), whose

lengths are the generally longest. While the CxHSMM computation time does not

increase noticeably with the activity length (i.e. (a.1) v.s (a.2)), the MuHSMM

does su�er considerably more computational cost as it moves from activity (a.1) to

(a.2). The di�erence between theoretical and empirical speed up factor is due to

the actual implementation. In our MATLAB work we have used matrix tricks to

signi�cantly speed up the MuHSMM; however, it is impossible to bring it up to the

same speed with the CxHSMM and the gap becomes wider as the activity length

increases.

Therefore, in comparison with the PsHSMM and the IgHSMM, the CxHSMM is far

better, not only in performance but also in running time; whereas in comparison

with the MuHSMM the CxHSMM achieves a comparable performance level, but at

a fraction of the computational time. We believe that the computational speedup

achieved is extremely crucial for semi-Markov models to have their real-world ap-

plications, as activity lengths can be arbitrarily long.

4.4.4 Experiment with interpolated dataset B

To further test the robustness of our models towards the problem of missing obser-

vation, we construct a dataset B which is essentially the same as the �rst dataset,

except missing observations are interpolated (averaged in our case) by the values of

the previous and next available entries. B thus does not have missing observation,

but may contain approximate or wrong coordinate readings of the actor.

Again, we employ a leave-one-out strategy and Tabs. (4.6)-(4.7) present the classi�-

cation and early detection results (we show here the 2-phase and 3-phase CxHSMMs

as representative examples for the Coxian variants). We observe that even though

the HMM has improved as compared with the �rst experiment (Tab. (4.4)(c) vs.

Tab. (4.6)), while the 2-ph.CxHSMM and 3-ph.CxHSMM accuracy drops (Tab.

(4.4)(a) vs. Tab. (4.6)), both the CxHSMMs still outperform the HMM. One pos-
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HMM (avg.72.21%) M = 2 (avg.74.17%) M = 3 (avg.82.64%)

(a.1) (a.2) (a.3) (a.1) (a.2) (a.3) (a.1) (a.2) (a.3)

(a.1) 94.12 0 5.88 100 0 0 100 0 0

(a.2) 0 62.50 37.50 0 62.50 37.50 0 81.25 18.75

(a.3) 20.00 20.00 60.00 0 40.00 60.00 6.67 26.67 66.67

Table 4.6: Classi�cation accuracy (%) with interpolated data using the HMM and

the M-ph.CxHSMMs.

HMM M = 2 M = 3

(a.1) 9.35 8.03 4.63

(a.2) 40.52 29.89 9.27

(a.3) 43.52 42.96 31.68

Avg. 31.13 26.96 15.19

Table 4.7: Early detection rate (%) with interpolated data using the

M-ph.CxHSMMs and the HMM.

sible explanation for the change in performance is that our interpolation method is

only appropriate for the case where the track is lost due to a person staying still.

If it is due to occlusion, then �lling in by averaging neighboring entries are more

likely to be inaccurate and states with short durations may now wrongly turn out

to be long. By modeling durations, the CxHSMM is thus more sensitive to any

wrong interpolations than the HMM. The better performances achieved in the �rst

experiment (i.e. with dataset A) clearly suggest that the type of uncertainty caused
by a small percentage of missing observations can be handled robustly and directly

by the CxHSMM3.

4.5 Closing remarks

This chapter started with a review of the discrete Phase-Type (PH) distribution

and its special case: the discrete Coxian distribution. Next, we presented the main

contribution of this chapter. That is the proposal of a novel stochastic model: the

discrete Coxian duration hidden semi-Markov model (CxHSMM) with a complete

3When a signi�cant portion of observations are missed, as shown in chapter 6 - section 6.1.3, a

small labels may be required to supply in training.
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analysis on the CxHSMM consisting of its de�nition, parameterization, DBN pre-

sentation, inference including scaling and learning with/without latent variables.

To make the CxHSMM applicable to real-world problems, we addressed the issue

of inference and learning with missing observations or observed states. The intro-

duction of the Coxian duration model has several advantages over classic duration

parameterization, including its denseness, its low number of free parameters (and

thus easy to control), and its computational attractiveness (i.e. computation cost

linearly scales up by the number of phases instead of by the maximum duration

length as in the Multinomial and Exponential Family case). The second main con-

tribution lies in the application. Our experiments with the CxHSMM vs. other

existing HSMM models including the MuHSMM, the PsHSMM, the IgHSMM, and

the baseline HMM at learning and recognizing ADLs show that the CxHSMM per-

forms comparably with the MuHSMM but at a fraction of computation time, and

outperforms the rest. In addition, best performance can be achieved when the num-

ber of phases of the Coxian is as small as 5, again making it a very attractive model

for the ADL domain. The results also point out that the CxHSMM can robustly

handle the case when there is a small amount of missing observations (7%) in the

data. Finally, our experiments can also be considered as a full investigation into a

rich set of duration modeling methods for the HSMM in ADLs.

Given the encouraging results for the duration modeling problem in the HSMM, our

next e�ort is to incorporate hierarchical knowledge into the HSMM to form a new

kind of stochastic model that is capable of exploiting both temporal and hierarchical

relations in a computationally e�cient fashion.



Chapter 5

The Coxian Switching Hidden

Semi-Markov Model

Chapters 3 and 4 present both the theory and application of the Hidden Semi-

Markov Model (HSMM), an extension in terms of duration modeling into the Hid-

den Markov Model (HMM). As mentioned in chapter 2, another important extension

to the HMM is the introduction of hierarchical knowledge to form the Hierarchical

Hidden Markov Model (HHMM), �rst proposed in [Fine et al., 1998]. However, no

attempt has been made to combine both the durational and hierarchical extensions

to form a uni�ed model which is capable of fully exploiting both the temporal and

structural properties that are inherent in many physical signals. Further, there is also

the need for sub-structure sharing with �exible sub-temporal characteristics in mod-

eling hierarchy as this feature is particularly useful in many applications, such as in

modeling ADLs. For example, both activities “cooking dinner” and “making coffee”

may share the use of the stove but with di�erent durations.

Our main contribution in this chapter is the introduction of a novel stochastic

model named the Coxian Switching Hidden Semi-Markov Model (CxSHSMM). The

CxSHSMM is a two-level structure. The bottom level is a set of concatenated

CxHSMMs and each is initiated by di�erent top-level states that follow a Markov

chain. Further, di�erent top-level states can share common states in the CxHSMMs

at the bottom level but can also assign them with di�erent duration parameters.

The semantics of our proposed CxSHSMM is somewhat similar to the switching

linear dynamic system (SLDS), used in several applications such as [Pavlovic et al.,

2000] for learning, tracking, synthesizing and classifying human motion and [Oh

118
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et al., 2005] for interpretation of honey-bee dances. While both SHSMM and SLDS

have two layers and their top layers switch in a similar manner, they are di�erent in

two fundamental ways: our state spaces are discrete while the SLDS is continuous at

the lower level and hence cannot model duration information; inference in ours can

be done exactly, while that in the SLDS is intractable and thus needs approximate

inference. The CxSHSMM o�ers the following advantages over existing models:

• A capability of automatically modeling both the structural and temporal vari-

ations.

• An e�ective way of modeling the temporal dependencies via the Coxian dis-

tribution.

• An ability to share sub-structural units that may carry di�erent sub-temporal

characteristics once conditioned on parents.

We present the formal de�nition for the proposed CxSHSMM and the complete tools

for learning and inference with its DBN representation, which include the case of

missing observations and labeled states. Furthermore, when no speci�c distribution

is referred to for modeling the state duration at the bottom level, the new model is

simply called a Switching Hidden Semi-Markov Model (SHSMM). For the purpose

of comparison as well as completeness, we include, in parallel, a study including

de�nitions, inference and parameter estimation of a SHSMM whose state duration

at the bottom level is modeled by distributions other than the Coxian.

Other contributions in this chapter are extensions to the CxSHSMM to develop the

Hierarchical Hidden Semi-Markov Models of any depth, in which duration informa-

tion can be incorporated at any layer. We also discuss the inference complexity with

di�erent inference methods in these models.

The rest of the chapter is organized as follows. We start with the generic HSMM

and point out how to integrate hierarchy into this model to form the SHSMM in

section 5.1. The formal de�nition for the CxSHSMM then follows in section 5.2.

Next, in section 5.3, we present the DBN representation of the CxSHSMM which

clearly shows the conditional (in)dependency between di�erent layers in the model.

The problems of inference and learning in the CxSHSMM are then fully discussed

in section 5.4 and 5.5, respectively. From sections 5.2 to 5.5, we present a brief
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analysis on the Multinomial and Exponential Family duration models in addition to

the Coxian. We then present how the SHSMM can be extended into deep hierarchy

in section 5.6. Section 5.7 discusses some of the work on extending the SHSMM and

CxSHSMM by other authors. Finally, our closing remarks are presented in section

5.8.

5.1 From HSMM to SHSMM: intuition

Fig. (5.1)(a) shows an example of a HSMM with three states: Q = {1, 2, 3}. In

this diagram, the duplicated circles associated with each state indicate that the

state can last an arbitrary time before making a transition to a new state. We can

introduce hierarchy into this HSMM to form the Switching Hidden semi-Markov

Model (SHSMM) by viewing all states as children of a higher state p, as shown in

Fig. (5.1)(b). When the parent state p is initialized, it can start in any child from

1 to 3 (demonstrated by the red arrows) and a semi-Markov chain within p, also

called the p-initiated semi-Markov chain, begins. This semi-Markov chain can end

in any child 1, 2 or 3 as shown by the purple arrows. However, it is important

to note that the parent state p can be restricted to start or end with only certain

child states, if required. When the p-initiated semi-Markov chain ends, it triggers

a transition between states at the higher level (Fig. (5.1)(c)). Di�erent from the

lower level, which is semi-Markovian, the higher level is strictly Markovian, and

thus a transition at this level means the state p repeats itself or transits to a totally

new state q 6= p. In either case a new semi-Markov chain is initialized at the lower

level. The name Switching HSMM comes as this two-layer structure can be viewed

as the concatenation of many HSMMs, each initialized by a di�erent �switching�

state p. Thus, the dynamics and parameters of the HSMMs at the bottom level

are not time invariant, but �switched� from time to time, similar to the way linear

Gaussian dynamics are �switched� in a Switching Kalman Filter [Murphy, 1998].

Furthermore, it is important to point out that in this SHSMM high-level states are

allowed to share common children. For example, Fig. 5.1(c) show the case where a

common child (state 2) is shared between two parents p and q. In addition, child 2

may possess di�erent temporal properties when called by di�erent parents.
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(a) A HSMM with three

states.

(b) The HSMM in (a) can be con-

sidered as children of a higher state

p.

(c) A SHSMM with two parents p and q.

p q

1 32

root

4

(d) Topology of the SHSMM in (c)

Figure 5.1: From HSMM to SHSMM.
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5.2 The CxSHSMM: de�nition

When we use the Coxian distributions to model durations of child states to exploit

its advantage over other existing duration models (chapter 4), the SHSMM is then

referred to as a Coxian Switching Hidden semi-Markov Model (CxSHSMM). It is

formally de�ned by a 3-tuple 〈ζ, θCxSHSMM, V 〉: a topology ζ, a set of parameters

θCxSHSMM and a set of emission alphabets V , as detailed below.

5.2.1 The topology ζ

The CxSHSMM is a two-layer structure, thus, the topology ζ divides the state space

into two sets: a set of states at the top level Q∗ = {1, . . . , |Q∗|}, and a set of states

at the bottom level Q = {1, . . . , |Q|}. Our convention is to use the letters p, q to

refer to elements of Q∗ and i, j to refer to elements of Q. For each parent p in Q∗,

the topology de�nes three associated sets: the children set ch(p) ∈ Q, the starting

set chS(p) ⊆ ch(p), and the ending set chE(p) ⊆ ch(p). The p-initiated semi-Markov

chain is allowed to start with only states in chE(p), transit among ch(p), and exit

from chE(p). Note that due to sharing of sub-structures, the sets {ch(p) ∩ ch(q)},
{chS(p) ∩ chS(q)}, and {chE(p) ∩ chE(q)} may not be empty for p 6= q. Finally, the

bottom level is also referred to as the production level as it is the only level that

emits observation.

Example 5.1. Fig. (5.1)(d) presents the topology of a simple SHSMM whose state

transition diagram is shown in Fig. (5.1)(c). This topology may present a simple

in-home scenario. For example, the two parent states are: (p).“having lunch” and

(q).“reading newspaper & having coffee”, and child states {1, 2, 3, 4} are the desig-

nated spaces in the kitchen: (1) − Table, (2) − Stove, (3) − Sink, and (4) − Sofa.

Activity (p).“having lunch” includes three atomic activities, ch(p) = {1, 2, 3}, con-
ducted sequentially as: (2) “cooking lunch at Stove” → (1) “eating lunch at Table”

→ (3) “washing dishes at Sink”, while activity (q).“reading newspaper & having coffee”

has ch(q) = {2, 4} in the following order: (2) “making co�ee at Stove”→ (4) �reading

newspaper - enjoying co�ee at Table”.

5.2.2 The parameter set θCxSHSMM

The Markov chain at the top level of the CxSHSMM is de�ned by the initial and

transition probabilities
{
π∗p, A

∗
pq

}
. A transition to p at the top level will initiate a
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semi-Markov chain at the bottom level over the states in ch(p). The parameters of

this p-initiated chain are given by
{
πpi , A

p
ij, A

p
i,end, D

p
i

}
where πpi , A

p
ij and A

p
i,end are

the initial, transition, and terminating probabilities, respectively, while Dp
i is the

duration parameter. At each time, an alphabet v from the (discrete) observation

space V is generated with a probability of Bv|i, where i is the current state of the p-

initiated semi-Markov chain. Tab. (5.1) provides the full de�nitions of the parameter

set θCxSHSMM.

5.2.2.1 The duration model

Given the disadvantages of existing duration models (i.e. Multinomial and Expo-

nential Family distributions), as described in chapter 3, we propose the use of the

Coxian distribution to model state durations at the bottom level in the CxSHSMM.

For each p-initiated semi-Markov sequence, the duration distribution of a child state

i is speci�ed by parameter Dp
i , Cox(µp,i,λp,i). As in the CxHSMM (chapter 4),

both the phase initial probabilities µp,i =
[
µp,i1 , . . . , µ

p,i
M
]T

and the phase transition

probabilities λp,i =
[
λp,i1 , . . . , λ

p,i
M
]T

are M-dimensional vectors where M is a �xed

constant representing the number of geometric phases in the discrete Coxian (Fig.

(5.2)), and
∑M

n=1 µ
p,i
n = 1, 0 < λp,in ≤ 1. The Coxian duration starts a transient

phase n ∈ [1,M] with probability µp,in , and then makes a transition to the next

phase n + 1 ≤ M with the probability λp,in . The process continues until the last

phase n = M is reached, and the Coxian then moves to its absorbing state with

a terminating probability of λp,iM. Finally, note that for M = 1, the CxSHSMM

reduces to a HHMM.

In addition, if distributions other than the Coxian are used to model the state dura-

tions, the pre�x of the name SHSMM would change accordingly, e.g. a Multinomial

Switching Hidden semi-Markov model (MuSHSMM) would mean its bottom-level

state durations are modeled by Multinomial distributions. Further, if Multinomial

or Exponential Family distributions are used, all parameters in Tab. (5.1) remain

unchanged except for the duration model. We then have to de�ne a new dura-

tion parameter Dp
i = [Dp

i (1), . . . , D
p
i (M)]T with M being the maximum allowed

duration, Dp
i (τ) is the probability of child state i in the p-initiated chain having

duration τ , and stochastic constraints require
∑M

n=1D
p
i (n) = 1. In a special case

of the CxSHSMM, λp,in = 1, ∀p, i, n, the CxSHSMM becomes a MuSHSMM with
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At the top level

Parameters Meanings, dimension, constraints

π∗p is the initial probability of parent p, dim:1× |Q∗|, and∑
p∈Q∗ π

∗
p = 1.

A∗
pq is the transition probability from parent p to parent q,

dim: |Q∗| × |Q∗|, and
∑

q∈Q∗ A
∗
pq = 1.

At the bottom level

πpi is the initial probability of child i in the p-initiated semi-

Markov chain, dim: |ch(p)| × |ch(p)|, and∑
i∈ch(p) π

p
i = 1.

Apij is the transition probability from child i to child j in the

p-initiated semi-Markov chain, dim: |ch(p)| × |ch(p)|,
and Apii = 0.

Api,end is the transition probability of child i going to end in the

p-initiated semi-Markov chain, dim: 1× |ch(p)|, and∑
j∈ch(p)A

p
ij + Api,end = 1.

Dp
i = Cox

(
µp,i,λp,i

)
is the Coxian duration model of child i in the p-initiated

semi-Markov chain.

µp,in is the initial probability of phase n, dim: 1×M, and∑M
n=1 µ

p,i
n = 1.

λp,in is the terminating probability of phase n, dim: 1×M,

and 0 < λp,in ≤ 1.

At the emission level

Bv|i is the emission probability of symbol v from the current

child state i, dim: |Q| × |V |, and
∑

v∈V Bv|i = 1.

Table 5.1: Parameter de�nitions for the CxSHSMM, where |ch(p)| denotes the num-

ber of elements in ch(p), andM is the number of phases of the Coxian distributions.
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Figure 5.2: The phase diagram of an M−phase Coxian. The clear circles are the

transient phases and the shaded ellipse is the absorbing phase.

Dp
i =

[
µp,i1 , . . . , µ

p,i
M
]T
.

5.3 Dynamic Bayesian Network Representation

Fig. (5.3) shows the DBN representation of the CxSHSMM over two time-slices,

which in turn can be viewed as a hierarchical extension1 of the CxHSMM's DBN in

Fig. (4.6). A set of variables Vt = {zt, εt, xt, et,mt, yt} is maintained at any given

time slice t:

• At the top level:

� zt is the current top-level state acting as a switching variable. Every time

zt is switched to a new state, it initializes a semi-Markov chain at the

bottom level.

� εt is a Boolean-valued variable set to 1 when the zt-initiated semi-Markov

sequence ends at the current time-slice.

• At the bottom level:

� xt is the current child state in the zt-initiated semi-Markov sequence.

� et is a Boolean-valued variable set to 1 when xt reaches the end of its

duration2.
1For a full study on hierarchical decomposition of stochastic dynamic process modeled in DBN,

readers are referred to work of [Bui et al., 2000, Murphy and Paskin, 2001, Phung, 2005b].
2 In an HSMM, t is the end of duration of the state xt i� xt 6= xt+1. However, in an SHSMM,

it is possible that xt+1 is actually part of a newly initiated HSMM. Thus xt+1 6= xt if et = 1 and

εt = 0, but we can have xt+1 = xt if et = εt = 1.
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εt+1εt

zt zt+1

mt mt+1

yt yt+1

xt+1xt

et+1et

Figure 5.3: DBN representation of the CxSHSMM for two time-slices.

� mt is anM-valued variable representing the current phase of xt and only

transient phases are shown in the DBN3.

� yt is the observed symbol emitted by the system at time t.

Generally, {y1:T} are observed as indicated by shaded nodes, while V1:T \ {y1:T}
are hidden as shown by clear nodes. However, in practice, we sometimes encounter

missing observations or are supplied with labeled data at some point in time. At

any time t, if the observation yt is missing, then the node yt is simply discarded from

the DBN, and thus the observation at t is set to {∅}. On the other hand, if some

states are observed at time t (labeled data), their corresponding nodes are shaded

and labeled with the observed values. For example, let z̄t denote the observed value

of zt, then node zt is shaded and labeled with z̄t. As shown later, the inference and

learning algorithms developed based on this DBN representation (Fig. (5.3)) can be

easily modi�ed to handle these scenarios.

3Once the current Coxian duration leaves its last transient phase for the absorbing phase, the

DBN continues with representing a newly initiated Coxian at the next time slice.
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5.3.1 Network construction

The DBN for the CxSHSMM is constructed with two assumptions: (i.) the parent

at the top level cannot end unless its child states at the bottom level do so �rst;

and (ii.) a child state, in turn, cannot end if its duration has not yet expired,

which happens when its Coxian duration model leaves the last transient phase for

the absorbing phase. Equivalently, if the Coxian has not reached its last transient

phase, the child state has to carry on the the next time slice, and so does its parent.

Therefore, from a bottom-up view:

∀t, mt <M =⇒ et = 0

and ∀t, et = 0 =⇒ εt = 0

Alternatively, from a top-down view:

∀t, εt = 1 =⇒ et = 1

and ∀t, et = 1 =⇒ mt = M

Now we start with the network construction at time t = 1. Firstly, at the top level

the variable z1 is initialized to a parent state p ∈ Q∗ with probability π∗p, which

then triggers a semi-Markov chain at the bottom level de�ned over its child states

ch(p). This semi-Markov chain starts in its initial state x1 = i, for i ∈ ch(p), with a

probability πpi . Next, the Coxian distribution associated with state i ∈ ch(p), termed

the (p, i)-Coxian, is then activated in its transient phase m1 = n with probability

µp,in . If m1 = n < M, i.e. the (p, i)-Coxian has not reached its last phase, the

bottom-state ending variable e1 must be set to 0 regardless of z1 and x1, as shown

by the broken dependencies in Fig. (5.4)(a). This is a form of context speci�c

independence in the BN where the dependencies in the network change with certain

observed context values. In contrast, if m1 = M, the causal relationships between

e1 and {z1, x1} remain active (Fig. (5.4)(b)), and e1 is assigned to 1 with probability

λp,iM, or to 0 with probability 1 − λp,iM. These relations apply to any time t ∈ [1, T ],

therefore:

∀t ∈ [1, T ] , Pr
(
et = 1 | zpt , xit,mn

t

)
=

0, n <M

λp,iM, n = M
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mt = n < M

et = 0

xt = i

zt = p

(a)

mt = M

et = 1, with prob. of λ
p,i

M

et = 0, with prob. of 1 − λ
p,i

M

xt = i

zt = p

(b)

Figure 5.4: The conditional dependencies over node et and its parents. Dotted lines

show broken dependencies.

Also, when e1 = 0, since the top state cannot switch if its current child has not

ended, ε1 must be �xed to 0; otherwise when e1 = 1, ε1 is assigned to 1 with

probability Api,end signaling the end of the p-initiated semi-Markov chain, and to 0

with probability 1− Api,end. Further, as illustrated in Fig. (5.5), these dependencies

hold for all t ∈ [1, T ], thus:

∀t ∈ [1, T ] , Pr
(
εt = 1 | zpt , xit, ekt

)
=

0, k = 0

Api,end, k = 1

Lastly, the observation y1 is generated from x1 = i with an emission probability By1|i.

After the network initialization at t = 1, the ending variables εt and et act like con-

text in term of de�ning how the next time-slice t+1 can be derived from the current

time-slice t (shown by the blue connections in Fig. (5.3)). When {εt = 0, et = 0},
the same states at the top and bottom levels carry on to the next time-slice while

the phase variable mt may have the choice of moving to the next phase or staying

in the same phase (Fig. (5.6)(a-b)):

Pr
(
mn+1
t+1 | mn

t , z
p
t+1, x

i
t+1, e

0
t

)
= λp,in , n <M

Pr
(
mn
t+1 | mn

t , z
p
t+1, x

i
t+1, e

0
t

)
=

1− λp,in , n <M

1, n = M
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εt = 0

et = 0

zt = p

xt = i

(a)

εt = 1 with prob. of A
p

i,end

xt = i

et = 1

zt = p

εt = 0 with prob. of 1 − A
p

i,end

(b)

Figure 5.5: The conditional dependencies over εt and its parents. Dotted lines show

broken dependencies.

mt = M

zt+1 = p

xt+1 = i

et = 0

mt+1 = M

(a)

mt+1 = n with prob. of 1 − λp,i

n

zt+1 = p

xt+1 = i

et = 0

mt = n < M

mt+1 = n + 1 with prob. of λp,i

n

(b)

mt = M

zt+1 = p

xt+1 = i

et = 1

mt+1 = n with prob. of µp,i

n

(c)

Figure 5.6: The conditional dependencies over node mt and its parents. Dotted lines

show broken dependencies.
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εt = 0

xt = i

zt+1 = p

xt+1 = i

et = 0

(a)

xt+1 = j 6= i with prob. of
A

p

ij

1−A
p

i,end

xt = i

zt+1 = p

εt = 0

et = 1

(b)

et = 1

xt = i′

zt+1 = p

xt+1 = i with prob. of π
p

i

εt = 1

(c)

Figure 5.7: The conditional dependencies over node xt+1 and its parents. Dotted

lines show broken dependencies.

When {εt = 0, et = 1}, the same top-level state p carries on to the next time-slice,

but the semi-Markov sequence at the bottom level transits from its current state i

to a new state j 6= i (Fig. (5.7)(b)) with probability:

Pr
(
xjt+1 | xit, z

p
t+1, ε

0
t , e

1
t

)
=

Apij
1− Api,end

and a new Coxian associated with state j is activated in its transient phase (Fig.

(5.6)(c)) with probability:

Pr
(
mn
t+1 | z

p
t+1, x

j
t+1, e

1
t

)
= µp,jn
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At the top level:

π∗p = Pr (zp1)

A∗
pq = Pr

(
zqt+1 | x

p
t , ε

1
t

)
,∀t ∈ [1, T − 1]

At the bottom level:

πpi = Pr
(
xit+1 | z

p
t+1, ε

1
t , e

1
t

)
,∀t ∈ [0, T − 1]

Apij = Pr
(
xjt+1, ε

0
t | xit, z

p
t+1, e

1
t

)
,∀t ∈ [1, T − 1]

Api,end = Pr (ε1t | z
p
t , x

i
t, e

1
t ) ,∀t ∈ [1, T ]

Dp
i = Cox

(
µp,i,λp,i

)
µp,in = Pr

(
mn
t+1 | z

p
t+1, x

i
t+1, e

1
t

)
,∀t ∈ [0, T − 1]

λp,in<M = Pr
(
mn+1
t+1 | mn

t , z
p
t+1, x

i
t+1, e

0
t

)
,∀t ∈ [1, T − 1]

λp,iM = Pr
(
e1t | z

p
t , x

i
t,m

M
t

)
,∀t ∈ [1, T ]

Bv|i = Pr (yvt | xit) ,∀t ∈ [1, T ]

Table 5.2: Mapping from the model parameters θCxSHSMM to the DBN parameters.

Nodes ε0 and e0 are set to 0 by default.

When {εt = 1, et = 1}, the top-level state p �switches� to the next state q, where q

could be the same as p, with probability:

Pr
(
zqt+1 | x

p
t , ε

1
t

)
= A∗

pq

and a new semi-Markov sequence is initiated at the bottom level (Fig. (5.7)(c)) with

probability:

Pr
(
xit+1 | z

p
t+1, ε

1
t , e

1
t

)
= πpi

Also, at the same time, a new Coxian de�ning the duration of state i is initialized

to in its transient phase n with probability µq,in .

Finally, for convenience a full summary of parameters in θCxSHSMM when mapped

into the DBN is presented in Tab. (5.2).

5.3.2 DBN representation with duration models other than

the Coxian

We present a DBN representation of the SHSMM in Fig. (5.8) where state durations

at its bottom level are modeled by the Multinomial or the Exponential Family dis-

tributions. The set of phase and ending variables {mt, et} at the bottom level is now
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εt+1εt

zt zt+1

mt mt+1

yt yt+1

xt+1xt

Figure 5.8: DBN representation of the SHSMM whose state durations at the bottom

level are modeled by Multinomial or Exponential Family distributions.

reduced to a �count� variable mt. Every time the semi-Markov chain at the bottom

level enters a new state, the count variable is initiated to that new state's duration,

which is a positive number less than or equal to the prede�ned maximum duration

M . The count variable then counts down one unit every time slice until it reaches

1, indicating the end of this new state. Hence, together with the top-level ending

variable εt, the count variable mt (replaced et in the previous case) now acts as a

context, de�ning how the next time slice t + 1 is related to the current time slice

t. When mt > 1, the bottom-level state has not �nished its duration; hence, the

top-level ending variable εt must be �xed to 0, and the states at both levels continue

to the next time slice. When mt = 1, the bottom-level state i comes to end, and

there are two possibilities: if εt = 0, the same top-level state proceeds to the next

slice, while the semi-Markov chain at the bottom level transits to a new child state;

if εt = 1, the top-level state switches to a new state and a new semi-Markov chain

starts at the bottom level.

Now we look at the duration variable mt in more detail. When mt > 1, the duration
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of the current state has not expired, thus, it continues to count down at the next

time slice:

∀τ > 1, Pr
(
mt+1 = τ − 1 | mτ

t , z
p
t+1, x

i
t+1

)
= 1

When mt = 1, a duration τ of a new state (within the same p-initiated semi-Markov

sequence if εt = 0, or of a newly p-initiated semi-Markov sequence if εt = 1) is

assigned with probability:

Pr
(
mt+1 = τ | m1

t , z
p
t+1, x

i
t+1

)
= Dp

i (τ)

If the duration is modeled by a Multinomial, then Dp
i ∼Mult (Dp

i (1), . . . , D
p
i (M)).

On other hand, if distribution from the Exponential Family is used, then:

Dp
i (τ) = h (τ) exp

{
wTT (τ)− A (w)

}
where h (τ) is the base function, w are the natural parameters, T (τ) is the su�cient

statistic and A (w) is the log-partition function. For example, if the distribution is

a Poisson with mean λpi , D
p
i (τ) has the following form:

Dp
i (τ) =

1

τ !
exp {τ log λpi − λpi }

Tab. (5.3) presents the complete list of parameters in θSHSMM, in which durations of

states at the bottom level are modeled by Multinomial or Exponential Family, when

mapped into its DBN conditional probabilities depicted Fig. (5.8).

5.4 Inference

In the inference task, let St , {zt, εt, xt,mt, et} be the amalgamated hidden state, we

are interested in computing the �ltering distribution Pr(St | y1:t) and the smoothing

distributions γt (s) = Pr(St | y1:T ) and ξt (s, s
′) = Pr

(
Ss
t , S

s′
t+1 | y1:T

)
. A range of

queries regarding the current top-level state zt, the current bottom-level state xt
and the remaining duration of the current bottom-level state can be answered from

the marginals of these distributions. In the normal setting or in the presence of

missing observations or labeled states, the inference, including scaling, is done in a

similar fashion to that of the CxHSMM (section 4.3.4). However, the amalgamated

hidden state St is now extended to include two more variables: the parent state zt
and the switching state εt. The state space of St is now O(|Q∗||Q|M), therefore, the

recursive complexities of the smoothing distribution is O(|Q∗|2|Q|2MT ) as the full

joint probability of mt and mt+1 is just O(M) instead of O(M2) (section 4.3.4.1).
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At the top level:

π∗p = Pr (zp1)

A∗
pq = Pr

(
zqt+1 | x

p
t , ε

1
t

)
,∀t ∈ [1, T − 1]

At the bottom level:

πpi = Pr
(
xit+1 | z

p
t+1, ε

1
t ,m

1
t

)
,∀t ∈ [0, T − 1]

Apij = Pr
(
xjt+1, ε

0
t | xit, z

p
t+1,m

1
t

)
,∀t ∈ [1, T − 1]

Api,end = Pr (ε1t | z
p
t , x

i
t,m

1
t ) ,∀t ∈ [1, T ]

Dp
i (τ) = Pr

(
mτ
t+1 | m1

t , z
p
t+1, x

i
t+1

)
,∀t ∈ [0, T − 1]

Bv|i = Pr (yvt | xit) ,∀t ∈ [1, T ]

Table 5.3: Mapping from the model parameters to the DBN parameters for the

Multinomial/Exponential Family duration SHSMM. Nodes ε0 and m0 are set to 0

by default.

5.4.1 Inference with scaling

Similar to inference in the HMM and CxHSMM (sections 2.4.3 and 4.3.4), the �lter-

ing distribution Pr (St | y1:t), also called the scaled forward variable4, is computed

recursively by using the Markov properties to decompose its local conditional inde-

pendencies. For convenience, we use the compact notation Ss
t ,

{
zpt , ε

l
t, x

i
t,m

n
t , e

k
t

}
to denote a realization of the amalgamated hidden state. The scaled forward variable

is de�ned by:

α̃t (s) , Pr (Ss
t | y1:t) =

α̈t (s)

ψt
(5.1)

in which α̈t (s) = Pr
(
Ss
t , yt | y1:t−1

)
is the partially forward variable, and ψt =

Pr
(
yt | y1:t−1

)
is the familiar scaling factor. The recursive computation at time

4We can begin with the forward variable Pr (St, y1:t), then move to the scaled forward variable

Pr (St | y1:t). However, as this step has been presented in detail for the CxHSMM in the previous

chapter and in practice we normally work with the scaled version to prevent numerical under�ow,

we thus go directly to inference with scaling here.
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t+ 1 for the partially forward variable is given as:

α̈t+1

(
s′ , {p′, l′, i′, n′, k′}

)
= Pr

(
Ss′

t+1, yt+1 | y1:t

)
=
∑

s

Pr
(
Ss
t , S

s′

t+1, yt+1 | y1:t

)
=
∑

s

Pr
(
yt+1 | Ss′

t+1

)
Pr
(
Ss′

t+1 | Ss
t

)
Pr (Ss

t | y1:t)

= Byt+1|i′
∑

s

Pr
(
Ss′

t+1 | Ss
t

)
α̃t (s) (5.2)

The only di�erence in the recursive expression of the partially forward variable of

the CxSHSMM in Eq. (5.2) and that of the CxHSMM in Eq. (4.35) is how the

transition probability Pr
(
Ss′
t+1 | Ss

t

)
is computed. As the CxSHSMM has hierarchy,

its transition probability is more complex. We �rst need to break Pr
(
Ss′
t+1 | Ss

t

)
into

its embedded conditional probabilities:

Pr
(
Ss′

t+1 | Ss
t

)
, Pr

(
zp

′

t+1, ε
l′

t+1, x
i′

t+1,m
n′

t+1, e
k′

t+1 | z
p
t , ε

l
t, x

i
t,m

n
t , e

k
t

)
= Pr

(
εl
′

t+1 | z
p′

t+1, x
i′

t+1, e
k′

t+1

)
Pr
(
ek
′

t+1 | z
p′

t+1, x
i′

t+1,m
n′

t+1

)
× Pr

(
mn′

t+1 | z
p′

t+1, x
i′

t+1,m
n
t , e

k
t

)
Pr
(
xi
′

t+1 | z
p′

t+1, ε
l
t, x

i
t, e

k
t

)
× Pr

(
zp

′

t+1 | z
p
t , ε

l
t

)
and except for the simple probability Pr

(
zp

′

t+1 | z
p
t , ε

l
t

)
, all other local probabilities

de�ned over a node and its parents are illustrated in Figs. (5.4) to (5.7). In particu-

lar, depending on the the context de�ned by the ending variables and the duration
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variable, these local probabilities take on di�erent values as summarized below:

Pr
(
εl
′

t+1 | z
p′

t+1, x
i′

t+1, e
k′

t+1

)
=

δ
(0)
l′ , k′ = 0(
1− Ap

′

i′,end

)
δ
(0)
l′ + Ap

′

i′,endδ
(1)
l′ , k′ = 1

Pr
(
ek
′

t+1 | z
p′

t+1, x
i′

t+1,m
n′

t+1

)
=

δ
(0)
k′ , n′ <M(
1− λp

′,i′

M

)
δ
(0)
k′ + λp

′,i′

M δ
(1)
k′ , n′ = M

Pr
(
mn′

t+1 | z
p′

t+1, x
i′

t+1,m
n
t , e

k
t

)
=


δ
(M)
n′ , k = 0, n <M(
1− λp

′,i′
n

)
δ
(n)
n′ + λp

′,i′
n δ

(n+1)
n′ , k = 0, n = M

µp
′,i′

n′ , k = 1, n = M

Pr
(
xi
′

t+1 | z
p′

t+1, ε
l
t, x

i
t, e

k
t

)
=


δ
(i)
i′ , k = 0, l = 0

Ap′
ii′

1−Ap′
i,end

, k = 1, l = 0

πp
′

i′ , k = 1, l = 1

and lastly,

Pr
(
zp

′

t+1 | z
p
t , ε

l
t

)
=

δ
(p)
p′ , l = 0

A∗
pp′ , l = 1

Next, the scaling factor at time t+ 1 is computed as:

ψt = Pr
(
yt+1 | y1:t

)
=
∑

s

Pr
(
Ss
t+1, yt+1 | y1:t

)
=
∑

s

α̈t+1 (s) (5.3)

The forward procedure is initialized at time t = 1 with α̈1 (s) given by:

α̈1 (s) = Pr
(
Ss

1 =
{
zp1 , ε

l
1, x

i
1,m

n
1 , e

k
1

}
, y1

)
= Pr

(
εl1 | z

p
1 , x

i
1, e

k
1

)
Pr
(
ek1 | z

p
1 , x

i
1,m

n
1

)
Pr
(
mn

1 | z
p
1 , x

i
1

)
× Pr

(
y1 | xi1

)
Pr
(
xi1 | z

p
1

)
Pr (zp1)

where

Pr
(
εl1 | z

p
1 , x

i
1, e

k
1

)
= δ

(0)
l δ

(0)
k +

(
1− Api,end

)
δ
(0)
l δ

(1)
k + Api,endδ

(1)
l δ

(1)
k

Pr
(
ek1 | z

p
1 , x

i
1,m

n
1

)
= δ

(0)
k δ(<M)

n +
(
1− λp,iM

)
δ
(0)
k δ(M)

n + λp,iMδ
(1)
k δ(M)

n

Pr
(
mn

1 | z
p
1 , x

i
1

)
= µp,in

Pr
(
y1 | xi1

)
= By1|i

Pr
(
xi1 | z

p
1

)
= πpi

Pr (zp1) = π∗p.
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To compute the smoothing distribution we also need the (scaled) backward variable:

β̃t(s) ,
Pr
(
yt+1:T | Ss

t

)∏T
τ=t+1 ψτ

which is computed backward as:

β̃t(s) =
1∏T

τ=t+1 ψτ

∑
s′

Pr
(
Ss′

t+1, yt+1:T | Ss
t

)
=

1∏T
τ=t+1 ψτ

∑
s′

Pr
(
yt+2:T | Ss′

t+1

)
Pr
(
yt+1 | Ss′

t+1

)
Pr
(
Ss′

t+1 | Ss
t

)
=

1

ψt+1

∑
s′

Byt+1|i′Pr
(
Ss′

t+1 | Ss
t

)
β̃t+1(s

′) (5.4)

and the backward recursion starts at time t = T with β̃T (s) = 1.

Finally, similar to the CxHSMM (section 4.3.4.1), the smoothing distributions follow

as:

γt (s) = α̃t (s) β̃t(s) (5.5)

ξt (s, s
′) =

α̃t (s) β̃t+1(s
′)Byt+1|i′Pr

(
Ss′
t+1 | Ss

t

)
ψt+1

(5.6)

5.4.2 Inference in the presence of missing observations or la-

beled states

As shown by the clear and shaded nodes in Fig. (5.3), all state variables of the

CxSHSMM are hidden, and only the emission symbols are observed. However, to

broaden the CxSHSMM's applicability in real-world problems, we consider the two

following scenarios: the observations are missing (for instance, there are errors in the

captured data), and the exact status of some state variables are given (for example,

there are labels returned from additional sensors). We use the same approach as for

the CxHSMM in section 4.3.4.2 to tackle these cases.

In the DBN representation, let {S1, . . . , ST} be the set of amalgamated states. Each

St , {zt, εt, xt,mt, et} consists of all nodes (hidden or observed), except the emis-

sion, at a given time. Also, let {g1, . . . , gT} be the observation set. In a normal

context, gt = {yt}; however if any states, for example zt is also observed with value
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z̄t, then gt = {yt, z̄t}. Alternatively if nothing is observed at time t, we set gt = {∅}.

The inference processes, including recursive computation of the scaled forward, back-

ward variables and derivations of the two smoothing distributions, are carried out

analogously to section 5.4.1, with extra care taken to ensure consistency over the

observations. Without loss of generality, suppose there are missing observations or

labeled states at some time t, consistency over the observations is done by replacing

the simple emission probability Pr (yt | i), whenever it arises, with the conditional

probability Pr (gt | Ss
t ) during computations. The conditional probability Pr (gt | St)

is computed such that the observation gt must be consistent with the set of states

in Ss
t :

Pr
(
gt | Ss

t =
{
zpt , ε

l
t, x

i
t,m

n
t , e

k
t

})
=



Byt|i, gt = {yt} (observing yt)

δ
(p)
z̄t
, gt = {z̄t} (observing zt = z̄t)

δ
(l)
ε̄t , gt = {ε̄t} (observing εt = ε̄t)

δ
(i)
x̄t
, gt = {x̄t} (observing xt = x̄t)

δ
(n)
m̄t
, gt = {m̄t} (observing mt = m̄t)

δ
(k)
ēt
, gt = {ēt} (observing et = ēt)

1, gt = {∅} (missing observation)

Let h (z) be a function such that h (z) = 1 if statement z is true, otherwise h (z) = 0,

the conditional probability Pr (gt | Ss
t ) can be expressed in a more compact form as:

Pr (gt | Ss
t ) =

(
Byt|i

)h(yt⊆gt)
(
δ
(p)
z̄t

)h(z̄t⊆gt) (
δ
(l)
ε̄t

)h(ε̄t⊆gt) (
δ
(i)
x̄t

)h(x̄t⊆gt) (
δ
(n)
m̄t

)h(m̄t⊆gt) (
δ
(k)
ēt

)h(ēt⊆gt)

(5.7)

Eq. (5.7) shows that during inference at time t the emission probability Byt|i is

simply replaced by 1 if the observation is missing, or multiplied by a set of relevant

identity functions if the labels of some states are supplied.

5.4.3 Inference with duration models other than Coxian

When the state durations at the bottom level of the SHSMM are modeled by a

Multinomial or more generally by a distribution from the Exponential Family, the

inference is carried out similarly by forward and backward recursions. Consistent

with the absence of e1:T in the DBN representation (Fig. (5.8)), the amalgamated
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hidden state now consists of one less variable : St , {zt, εt, xt,mt}, and the set

of auxiliary variables are: α̃t (s) = Pr (Ss
t | y1:t), β̃t(s) = Pr(yt+1:T | Ss

t )/∏T
τ=t+1 ψτ ,

γt (s) = Pr (Ss
t | y1:T ), and ξt (s, s

′) = Pr
(
Ss
t , S

s′
t+1 | y1:T

)
with scaling factor ψt =

Pr
(
yt | y1:t−1

)
. The set of Eqs. (5.1), (5.2), (5.3), (5.4), (5.5), and (5.6) of the

CxSHSMM inference in section 5.4.1 are all applicable to these variables, except the

de�nition of the transition probability Pr
(
Ss′
t+1 | Ss

t

)
and the initial value of α̃t (s)

at time t = 1. These di�erences come with the changes in its DBN representation

(Fig. (5.8) compared to Fig. (5.3)). Also, note that for any duration settings the

backward recursion is always initialized at time t = T with β̃T (s) = Pr (∅ | Ss
T ) = 1

since we can interpret that the probability of observing nothing given something is 1.

The transition probability Pr
(
Ss′
t+1 | Ss

t

)
is decomposed as follows:

Pr
(
Ss′

t+1 | Ss
t

)
= Pr

(
zp

′

t+1, ε
l′

t+1, x
i′

t+1,m
τ ′

t+1 | z
p
t , ε

l
t, x

i
t,m

τ
t

)
= Pr

(
εl
′

t+1 | z
p′

t+1, x
i′

t+1,m
τ ′

t+1

)
Pr
(
mτ ′

t+1 | z
p′

t+1, x
i′

t+1,m
τ
t

)
× Pr

(
xi
′

t+1 | z
p′

t+1, ε
l
t, x

i
t,m

τ
t

)
Pr
(
zp

′

t+1 | z
p
t , ε

l
t

)
in which each local probability is de�ned based on the status of the ending variable

ε and the duration variable m as detailed below:

Pr
(
εl
′

t+1 | z
p′

t+1, x
i′

t+1,m
τ ′

t+1

)
=

δ
(0)
l′ , τ ′ > 1(
1− Ap

′

i′,end

)
δ
(0)
l′ + Ap

′

i′,end δ
(1)
l′ , τ ′ = 1

Pr
(
mτ ′

t+1 | z
p′

t+1, x
i′

t+1,m
τ
t

)
=

δ
(τ−1)
τ ′ , τ > 1

Dp′

i′ (τ
′), τ = 1

Pr
(
xi
′

t+1 | z
p′

t+1, ε
l
t, x

i
t,m

τ
t

)
=


δ
(i)
i′ , τ > 1, l = 0

Ap′
ii′

1−Ap′
i,end

, τ = 1, l = 0

πp
′

i′ , τ = 1, l = 1

Pr
(
zp

′

t+1 | z
p
t , ε

l
t

)
=

δ
(p)
p′ , l = 0

A∗
pp′ , l = 1
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Next, we compute the initialization for the forward procedure at time t = 1:

α̈1 (s) = Pr
(
Ss

1 =
{
zp1 , ε

l
1, x

i
1,m

l
1

}
, y1

)
= Pr

(
εl1 | z

p
1 , x

i
1,m

τ
1

)
Pr
(
mτ

1 | z
p
1 , x

i
1

)
Pr
(
y1 | xi1

)
Pr
(
xi1 | z

p
1

)
Pr (zp1)

=
[
δ
(0)
l h (τ > 1) +

(
1− Api,end

)
δ
(0)
l δ(1)

τ + Api,endδ
(1)
l δ(1)

τ

]
Dp
i (τ)By1|iπ

p
i π

∗
p

Again, it is important to note that the amalgamated hidden state St now has a

state space of (|Q∗| |Q|M), which makes the inference complexity
(
|Q∗|2 |Q|2MT

)
,

signi�cantly larger than
(
|Q∗|2 |Q|2MT

)
of the CxSHSMM as typically M >>M.

Thus, when the model becomes more complex (i.e. hierarchical vs. �at HSMM), a

greater computational factor is saved by using the Coxian duration model. Lastly,

inference in the presence of missing observations and labeled states are handled

analogous to the CxSHSMM case.

5.5 Learning

Like the HMM, the set of parameters θCxSHSMM for the CxSHSMM ties together

di�erent parameters of the DBN, and thus can be viewed as a member of the Expo-

nential Family. Consequently, techniques developed for learning with Exponential

Family in sections 2.2.1 and 2.2.2 are applicable. We consider four di�erent set-

tings: (i.) all states and emission symbols are fully observed, (ii.) states are hidden,

but emission symbols are observed, (iii.) similar to case (ii.) except some emission

symbols are missing, and (iv.) similar to case (ii.) except some state labels are

supplied.

5.5.1 Maximum Likelihood with fully observed data

To recap, the su�cient statistic is the count of con�gurations (section 2.2.1.1). Fur-

ther, since our model is in the DBN form, parameters are tied over time and thus

we have to sum the su�cient statistic over time:

T
(
θik,v
)

=
T∑
t=1

δ
(k)
Xit
δ
(v)
Xπit

in which T
(
θik,v
)
is the su�cient statistic of the parameter θik,v = Pr (Xi = k | Xπi

= v).

It is important to note that the above equation allows us to conveniently derive the
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su�cient statistics by simply observing the DBN. Next, the ML solutions are solved

locally by using Lagrange multipliers (theorem 2.1).

We �rst derive the sets of ML solutions for parameters at the top level, consisting of

π∗p and A
∗
pq. As π

∗
p shows the initial conditions of the network, its su�cient statistic

arises only at the �rst time slice:

T
(
π∗p
)

= δ(p)
z1

(5.8)

thus,

π̂∗p =
T
(
π∗p
)∑

p T
(
π∗p
) =

δ
(p)
z1∑
p δ

(p)
z1

= δ(p)
z1

Next, the su�cient statistic for A∗
pq is counted every time the top-level state switches

from p to q shown by the con�guration
{
zqt+1, z

p
t , ε

1
t

}
:

T
(
A∗
pq

)
=

T−1∑
t=1

δ(q)
zt+1

δ(p)
zt
δ(1)
εt

(5.9)

=⇒ Â∗
pq =

T
(
A∗
pq

)∑
q T
(
A∗
pq

) =

∑T−1
t=1 δ

(q)
zt+1

δ
(p)
zt
δ
(1)
εt∑T−1

t=1 δ
(p)
zt
δ
(1)
εt

Beside, we observe that within each p- initiated semi-Markov chain, the ML estima-

tion process is equivalent to that of a CxHSMM, except that the explicit information

about the current parent state is carried along. Therefore, the sets of su�cient statis-

tics for the CxHSMM in section 4.3.5.1 can be reused by adding information on the

current parent state, and the status of the ending variables when necessary5. For ex-

ample, as compared with Eq. (4.49): T
(
Aij
)

=
∑T−1

t=1 δ
(j)
xt+1

δ
(i)
xt
δ
(1)
et

for the CxHSMM,

the su�cient statistic T
(
Apij
)
of the CxSHSMM has to also carry the information

showing that the transition is happening within the p-initiated semi-Markov chain by

including the status of the parent state (set to p), and the top-level ending variable

set to 0, hence,

T
(
Apij
)

=
T−1∑
t=1

δ(j)
xt+1

δ(i)
xt
δ(p)
zt+1

δ(0)
εt
δ(1)
et

Su�cient statistics for the rest are listed in Tab. (5.4). The �sequence-ending� pa-

rameter Api,end is a new concept not present in the CxHSMM. Api,end is the probability

5Alternatively, we can derive the su�cient statistics directly by examining relevant cliques in

Figs. (5.4), (5.5), (5.6), and (5.7).
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of the p-initiated semi-Markov coming to end. As illustrated in Fig. (5.5)(b), it is

mapped to the con�gurations {ε1t | z
p
t , x

i
t, e

1
t}:

T
(
Api,end

)
=

T∑
t=1

δ(1)
εt
δ(p)
zt
δ(i)
xt
δ(1)
et

Given all the su�cient statistics, we can now use Lagrange multiplier to derive the

ML solutions for the parameters in the bottom level. For example, the transition

probability Apij is re-estimated as:

Âpij =
T
(
Apij
)∑

j T
(
Apij
)

+ Api,end

The full ML solution set is presented in Tab. (5.4).

5.5.2 Expectation Maximization with CxSHSMM

The maximum likelihood parameter θ∗ = argmaxθ Pr(y1:T | θ) can be estimated it-

eratively using the EM algorithm. First, the expected su�cient statistics (ESS's)

〈T (.)〉 are computed in the E-step taking the expected value of the su�cient statis-

tics T (.) over the probability of hidden states given observed ones. Given the

availability of all the su�cient statistics for the CxSHSMM in the previous sec-

tion (section 5.5.1), and the probability of hidden given observed in our context is

Pr (S1:T | y1:T , θCxSHSMM), the ESS's can be easily computed as:〈
T
(
θik,v
)〉

=
∑
S1:T

Pr (S1:T | y1:T , θCxSHSMM)T
(
θik,v
)

(5.10)

The resulting ESS's then come as marginal probabilities and thus are obtained by

marginalizing the one and two time-slices smoothing distributions:

γt (p, l, i, n, k) = Pr
(
zpt , ε

l
t, x

i
t,m

n
t , e

k
t | y1:T

)
ξt (p, l, i, n, k, p

′, l′, i′, n′, k′) = Pr
(
zpt , ε

l
t, x

i
t,m

n
t , ε

k
t , z

p′

t+1, ε
l′

t+1, x
i′

t+1,m
n′

t+1, e
k′

t+1 | y1:T

)
For example, given the su�cient statistic of the Coxian initial phase parameter
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Su�cient statistics

At the top level

T
(
π∗p
)

= δ
(p)
z1

T
(
A∗
pq

)
=
∑T−1

t=1 δ
(q)
zt+1

δ
(p)
zt
δ
(1)
εt

At the bottom level

T (πpi ) = δ
(i)
x1
δ
(p)
z1 +

∑T−1
t=0 δ

(i)
xt+1

δ
(p)
zt+1

δ
(1)
εt δ

(1)
et

T
(
Apij
)

=
∑T−1

t=1 δ
(j)
xt+1

δ
(i)
xt
δ
(p)
zt+1

δ
(0)
εt δ

(1)
et

T
(
Api,end

)
=
∑T

t=1 δ
(1)
εt δ

(p)
zt
δ
(i)
xt
δ
(1)
et

T (µp,im ) = δ
(n)
m1
δ
(p)
z1 δ

(i)
x1

+
∑T−1

t=1 δ
(n)
mt+1

δ
(p)
zt+1

δ
(i)
xt+1

δ
(1)
et

T (λp,in ) =


∑T−1

t=1 δ
(n+1)
mt+1

δ
(n)
mt
δ
(p)
zt+1

δ
(0)
et

n <M∑T
t=1 δ

(1)
et
δ
(p)
zt
δ
(i)
xt
δ
(n)
mt

n = M
T
(
Bv|i

)
=
∑T

t=1 δ
(v)
yt
δ
(i)
xt

Re-estimation formulae

At the top level

π̂∗p = T
(
π∗p
)/∑

p T
(
π∗p
)

Â∗
pq = T

(
A∗
pq

)/∑
q T
(
A∗
pq

)
At the bottom level

π̂pi = T (πpi ) /
∑

i T (πpi )

Âpij = T
(
Apij
)/[∑

j T
(
Apij
)

+ T
(
Api,end

)]
Api,end = T

(
Api,end

)/[∑
j T
(
Apij
)

+ T
(
Api,end

)]
µ̂p,in = T (µp,in ) /

∑
n T (µp,in )

λ̂p,in =


T(λp,i

n )∑T−1
t=1 δ

(n)
mt

δ
(p)
zt+1

δ
(0)
et

n <M
T(λp,i

n )∑T
t=1 δ

(p)
zt
δ
(i)
xt
δ
(n)
mt

n = M

B̂vi = T
(
Bv|i

) /∑
v T
(
Bv|i

)
Table 5.4: ML solutions for the CxSHSMM when fully observed.
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T (µp,in ) in Tab. (5.4), the ESS follows as:〈
T
(
µp,in
)〉

=
∑
S1:T

Pr (S1:T | y1:T )T
(
µp,in
)

=
∑
S1:T

Pr (S1:T | y1:T )

[
δ(n)
m1
δ(p)
z1
δ(i)
x1

+
T−1∑
t=1

δ(n)
mt+1

δ(p)
zt+1

δ(i)
xt+1

δ(1)
et

]

=
∑

{m,z,x,e}1:T

Pr ({m, z, x, e}1:T | y1:T )

[
δ(n)
m1
δ(p)
z1
δ(i)
x1

+
T−1∑
t=1

δ(n)
mt+1

δ(p)
zt+1

δ(i)
xt+1

δ(1)
et

]
=

∑
m1,z1,x1

Pr (m1, z1, x1 | y1:T ) δ(n)
m1
δ(p)
z1
δ(i)
x1

+
∑

{m,z,x}2:T ,e1:T

Pr ({m, z, x}2:T , e1:T | y1:T )
T−1∑
t=1

δ(n)
mt+1

δ(p)
zt+1

δ(i)
xt+1

δ(1)
et

= Pr
(
mn

1 , z
p
1 , x

i
1 | y1:T

)
+

T−1∑
t=1

Pr
(
mn
t+1, z

p
t+1, x

i
t+1, e

1
t | y1:T

)
which is easily computed by marginalizing the two smoothing distributions:

〈
T
(
µp,in
)〉

=
∑
l,k

γ1 (p, l, i, n, k) +
T−1∑
t=1

∑
p′,l′,i′,n′,l,k

ξt (p
′, l′, i′, n′, 1, p, l, i, n, k) (5.11)

Next, similar to the fully observed case, as a direct result of theorem 2.1 (Lagrange

multiplier), in the M-step the estimation solutions are set to the normalized ESS's.

For instance, given 〈T (µp,in )〉 in Eq. (5.11), the re-estimated formula for the Coxian

initial phase parameter µp,in is given by:

µ̂p,in =
〈T (µp,in )〉∑
n

〈
T
(
µp,in
)〉

Finally, the full set of re-estimated formulas is shown in Tab. (5.5).

5.5.3 Learning with missing observations or labeled states

The e�ect of missing observations and the presence of labeled states is taken care of

during inference (section 4.3.5.3). Consequently consistency over observations has

been ensured during the computation of all ESS's, except for the emission proba-

bility
〈
T
(
Bv|i

)〉
as the observation arises again in a separate term. The M-step is

essentially a normalization of ESS's, hence the presence of labeled states or missing
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Expected su�cient statistics

At the top level〈
T
(
π∗p
)〉

= Pr(zp1 | y1:T )〈
T
(
A∗
pq

)〉
=
∑T−1

t=1 Pr(zqt+1, z
p
t , ε

1
t | y1:T )

At the bottom level

〈T (πpi )〉 = Pr (xi1, z
p
1 | y1:T ) +

∑T−1
t=1 Pr(xit+1, z

p
t+1, ε

1
t , e

1
t | y1:T )〈

T
(
Apij
)〉

=
∑T−1

t=1 Pr(xjt+1, x
i
t, z

p
t+1, ε

0
t , e

1
t | y1:T )〈

T
(
Api,end

)〉
=
∑T−1

t=1 Pr(ε1t , x
i
t, z

p
t , e

1
t | y1:T )

〈T (µp,im )〉 = Pr (mn
1 , z

p
1 , x

i
1 | y1:T ) +

∑T−1
t=1 Pr

(
mn
t+1, z

p
t+1, x

i
t+1, e

1
t | y1:T

)
〈T (λp,in )〉 =


∑T−1

t=1 Pr(mn+1
t+1 ,m

n
t , x

i
t+1, z

p
t+1, e

0
t | y1:T ) n <M∑T

t=1 Pr(e1t ,m
n
t , x

i
t, z

p
t | y1:T ) n = M〈

T
(
Bv|i

)〉
=
∑T

t=1 Pr(xit | y1:T )δ(v)
yt

Re-estimation formulae

At the top level

π̂∗p =
〈
T
(
π∗p
)〉/∑

p

〈
T
(
π∗p
)〉

Â∗
pq =

〈
T
(
A∗
pq

)〉/∑
q

〈
T
(
A∗
pq

)〉
At the bottom level

π̂pi = 〈T (πpi )〉 /
∑

i 〈T (πpi )〉
Âpij =

〈
T
(
Apij
)〉/[∑

j

〈
T
(
Apij
)〉

+
〈
T
(
Api,end

)〉]
Api,end =

〈
T
(
Api,end

)〉/[∑
j

〈
T
(
Apij
)〉

+
〈
T
(
Api,end

)〉]
µ̂p,in = 〈T (µp,in )〉 /

∑
n 〈T (µp,in )〉

λ̂p,in =


〈T(λp,i

n )〉∑T−1
t=1 Pr(mn

t ,x
i
t+1,z

p
t+1,e

0
t | y1:T )

n <M
〈T(λp,i

n )〉∑T
t=1 Pr(mn

t ,x
i
t,z

p
t | y1:T )

n = M

B̂vi =
〈
T
(
Bv|i

)〉 /∑
v

〈
T
(
Bv|i

)〉
Table 5.5: EM solutions for the CxSHSMM. The ESS's are marginalized from γt (.)

and ξt (.).
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observations plays no role. Therefore, all re-estimation formulae, apart from B̂v|i,

for the CxSHSMM in section 5.5.2 remain valid.

The emission probability is re-estimated similar to the CxHSMM case, as shown

below:

〈
T
(
Bv|i

)〉
=
∑
S1:T

T∑
t=1

δ(v)
yt
δ(i)
xt
Pr (S1:T | g1:T )

=


∑T

t=1 Pr (xit | g1:T ) δ
(v)
yt
, yt ∈ gt∑

τ={1:T}\t Pr (xiτ | g1:T ) δ
(v)
yτ
, yt /∈ gt

Then:

B̂v|i =

〈
T
(
Bv|i

)〉∑
v

〈
T
(
Bv|i

)〉
5.5.4 Learning with duration models other than Coxian

Section 5.3.2 shows that a SHSMM whose state duration at the bottom level is mod-

eled by distributions such as the Multinomial, or more generally the Exponential

Family, can be expressed in a generic DBN as shown in Fig. (5.8). Hence, its param-

eters can be estimated iteratively by the EM algorithm. This section concentrates on

estimating the duration parameterDp
i (τ) as other parameters are very similar to that

of the CxSHSMM. Since a generic DBN is used, the (expected) su�cient statistic

computed in the E-step is the same regardless of which distribution from the Expo-

nential Family is used. The su�cient statistic for Dp
i (τ) = Pr

(
mτ
t+1 | m1

t , z
p
t+1, x

i
t+1

)
is collected over the con�guration

{
mτ
t+1 | m1

t , z
p
t+1, x

i
t+1

}
in the DBN; hence:

T (Dp
i (τ)) =

T−1∑
t=1

δ(τ)
mt+1

δ(1)
mt
δ(p)
zt+1

δ(i)
xt+1

leading to:

〈T (Dp
i (τ))〉 =

∑
S1:T

Pr (S1:T | y1:T )T (Dp
i (τ))

=
T−1∑
t=1

Pr
(
mτ
t+1,m

1
t , z

p
t+1, x

i
t+1 | y1:T

)
The next step (M-step), however, depends on the choice of duration distributions.

For example, if we work with a Multinomial: Dp
i ∼Mult (Dp

i (1), . . . , D
p
i (M)), with
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the constraint
∑M

τ=1D
p
i (τ) = 1; then theorem 2.1 can be used to maximize the

expected complete log likelihood associated with the duration parameter 〈LD〉 =∑
p,i,τ 〈T (Dp

i (τ))〉 log {Dp
i (τ)} resulting in:

D̂p
i (τ) =

〈T (Dp
i (τ))〉∑

τ 〈T (Dp
i (τ))〉

Other distributions from the Exponential Family may require a bit more e�ort in the

maximization step, and some can be re-estimated only by approximation methods

(readers may refer back to section 3.2.2 for optimization examples when distributions

such as Poisson and Inverse Gaussian are used in the (�at) HSMM).

5.6 Deep Hierarchical Models

In this thesis we mainly focus on a class of rather �shallow� hierarchical models since

they have been adequate for the applications we consider (chapter 6). Also, from

existing work in activity recognition and video surveillance (chapter 2), we rarely

see a case where the depth of the hierarchical model is more than two or three. This

is largely attributed by the overwhelming computational cost when doing inference

in �deep� hierarchical models, which is often exponential in depth, and thus hinders

applicability in real-world problems. For example, for D-levels Hierarchical Hidden

Markov Models, the complexity is O
(
|Q|2D T

)
when the inference process is done

as in a standard DBN framework [Murphy and Paskin, 2001]. While being linear in

time, it is exponential in D and thus could be a serious bottleneck. Alternatively

one can follow a linear-in-D algorithm as in [Fine et al., 1998, Bui et al., 2004,

Phung, 2005b] with the complexity of O (D |Q|T 3) where the inference follows an

inside-outside-style algorithm adopted from the probabilistic context free grammar

(PCFG) community. This comes with the cost of cubic time complexity.

Nonetheless, deep hierarchical models seem bene�cial and attractive for other do-

mains such as: computer simulation where inference can be sidestepped and the

interest is in the random phenomena presented hierarchically, e.g., game simulation;

parsing in natural language processing, where the depth can be unbounded; parsing

and summarizing web contents where again the depth (e.g., from XML structure) can

be high; plan recognition where the deep policy hierarchy is desirable. The inference

bottleneck in these works is usually overcome by incorporating further constraints
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and information, and often a �xed tree topology is assumed, i.e., segmental informa-

tion for each state at every level is assumed, or observing more states are observed.

Next, we present two ways to extend the CxSHSMM into a deep hierarchy.

The Coxian Hierarchical Hidden Markov/semi-Markov Model

The �rst approach continues to build Markovian layers on top of the CxSHSMM6.

States at the production level have theirs own Coxian duration distributions, while

states at any upper levels have durations inferred from the lower ones. To be more

precise, a parent state p is forced to �nish its duration when the p-initiated (semi-

) Markov chain in the immediate lower level ends. This structure is named the

Coxian Hierarchical Hidden Markov/semi-Markov Model (CxHHMsMM), since the

lowest layer is a series of concatenated CxHSMMs, while upper layers (apart from

the highest modeling a single HMM) are a series of HMMs. Each CxHSMM at the

bottom layer or each HMM at higher layers (except for the top layer) is represented

by a state at its immediate upper layer. Fig. (5.9) shows the DBN structure, which

is built based on the following network assumptions:

• At the semi-Markov level (d = D): Since its duration follows a Coxian

distribution, a state must carry on to the next time slice if the associated

Coxian has not reached its last phase M:

mt <M⇒ eDt = 0 (assumption 1)

On the other hand, when the Coxian leaves its last phase and goes to the

absorbing state, it signals the end of the current state, opening two possibilities

at the next time slice: (i.) the semi-Markov chain carries on to the next time

slice (eD−1
t = 0), and the current state makes a transition to a new state

with probability
AD,p

ij

1−AD,p
i,end

, or (ii.) the semi-Markov chain ends with probability

AD,pi,end, and a new semi-Markov chain is initiated with probability πD,pi .

• At the Markov levels (1 ≤ d < D): A state at level d cannot �nish if its

child state at the immediate lower level (d+ 1) is still active:

ed+1
t = 0 ⇒ edt = 0 (assumption 2)

6Muncaster and Ma [Muncaster and Ma, 2007] have also discussed extensions to our CxSHSMM

in this fashion, however, the author only presented the DBN representation and semantics for a

shallow hierarchical, which a two-layer structure, and thus identical to our CxSHSMM.
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At level d = 1:

πdi = Pr
(
xdt = i

)
, t = 1

Adij = Pr
(
xdt+1 = j | xdt = i, edt = 1

)
,∀t ∈ [1, T − 1]

At level 2 < d ≤ D:

πd,pi = Pr
(
xdt+1 = i | xd−1

t+1 = p, edt = 1, ed−1
t = 1

)
,∀t ∈ [0, T − 1]

Ad,pij = Pr
(
xdt+1 = j, ed−1

t = 0 | xdt = i, xd−1
t+1 = p, edt = 1

)
,∀t ∈ [1, T − 1]

Ad,pi,end = Pr
(
ed−1
t = 1 | xd−1

t = p, xdt = i, edt = 1
)
,∀t ∈ [1, T ]

Also for d = D:

Dp
i = Cox

(
µp,i,λp,i

)
µp,in = Pr

(
mt+1 = n | xd−1

t+1 = p, xdt+1 = i, edt+1 = 1
)
,∀t ∈ [0, T − 1]

λp,in<M = Pr
(
mt+1 = n+ 1 | mt = n, xd−1

t+1 = p, xdt+1 = i, edt = 0
)
,∀t ∈ [1, T − 1]

λp,iM = Pr
(
edt = 1 | xd−1

t = p, xdt = i,mt = M
)
,∀t ∈ [1, T ]

Bv|i = Pr
(
yt = v | xdt = i

)
,∀t ∈ [1, T ]

Table 5.6: Mapping from the CxHHMsMM's model parameters to its DBN param-

eters.

Alternatively, when ed+1
t = 1 there are three (or two if d = 1) di�erent scenarios

at the next time slice: (i.)
{
edt = 0, ed−1

t = 0
}
, the current state xdt = i proceeds

to the next time slice, (ii.)
{
edt = 1, ed−1

t = 0
}
, state xdt = i switches to a new

state xdt+1 = j with probability
Ad,p

ij

1−Ad,p
i,end

, and (iii.) if d > 1,
{
edt = 1, ed−1

t = 1
}
,

a new Markov chain is initiated at the next time slice with probability πd,pi for

an arbitrarily i.

Based on the above assumptions, the mapping of parameters is easily obtained and

the full results are shown in Tab. (5.6). Finally, for this DBN structure standard

inference would result in a complexity of O
(
|Q|2DM2T

)
, which can be reduced to

O
(
|Q|2DMT

)
as the phase variable always moves upwards: mt+1 ∈ [mt,mt + 1].

On the other hand, if the inside-outside-style algorithm is adopted, the inference

complexity is O ((D − 1 +M) |Q|T 3).

The Coxian Hierarchical Hidden Semi-Markov Model

The second approach is to allow state durations to be modeled at each level, and

the resulting structure is then called the Coxian Hierarchical Hidden Semi-Markov
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Figure 5.9: The Coxian Hierarchical Hidden Markov/semi-Markov model

(CxHHMsMM).
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Model (CxHHSMM). To achieve this, the direct link pointing from state variable xdt
to the ending variable of the immediate upper level ed−1

t (in Fig. (5.9)) is discarded.

Consequently, the probability Ad,pi,end of child state i ending (i.e. terminating the p-

initiated semi-Markov chain or equivalently ending the parent state p) is dismissed,

and any parent state decides on its own ending based on its Coxian duration. Nev-

ertheless, a parent state still cannot end unless its child does so �rst. The model's

DBN representation is shown in Fig. (5.10), and at each layer the following two

assumptions must hold:

md
t <M ⇒ edt = 0, ∀d ∈ [1, D]

ed+1
t = 0 ⇒ edt = 0, ∀d ∈ [1, D − 1]

Similar to the previous structure, at each time slice, the set of ending variables e1:Dt
decide how the next time slice is derived from the current time slice. For a given

con�guration
{
e1:d
t = 1, ed+1:D

t = 0
}
, at next time slice t+ 1:

• At any levels d′ ≤ d− 1, new semi-Markov chains are initiated.

• At level d, state xdt = i makes a transition to a new state j 6= i with probability

Ad,pij .

• At any level d′ > d, the same states continue.

The complete list of parameter mappings is shown in Tab. (5.7). It is important

to note the di�erence between the transition probabilities Ad,pij de�ned in Tab. (5.6)

and Tab. (5.7). Also, the expressive power of having duration models at each layer

comes with expensive inference complexity. The standard DBN inference becomes

O
(
|Q|2DMDT

)
in comparison with O

(
|Q|2DMT

)
in the previous case. The

inside-outside-style inference complexity also increases from O ((D − 1 +M) |Q|T 3)

in the former case to O (DM|Q|T 3). The choice between the standard inference

and the inside-outside-style is application-driven. Standard inference is preferable

when the hierarchy is not deep and data sequence is long, while the latter algorithm

is more appealing for deep hierarchies with reasonable observation lengths. Never-

theless, both approaches bene�t by the Coxian duration parameterization. Existing

duration models such as Multinomial and Exponential Family distributions would

lead to complexities of O
(
|Q|2DMDT

)
for standard inference and O (DM |Q|T 3)

for inside-outside-style (in which the maximum duration spanM is possibly as large

as T , resulting in complexities of O
(
|Q|2D TD+1

)
and O (D |Q|T 4), respectively).
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Figure 5.10: The Coxian Hierarchical Hidden Semi-Markov model (CxHHSMM).
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At level d = 1:

πdi = Pr
(
xdt = i

)
, t = 1

Adij = Pr
(
xdt+1 = j | xdt = i, edt = 1

)
,∀t ∈ [1, T − 1]

At level 2 < d ≤ D:

πd,pi = Pr
(
xdt+1 = i | xd−1

t+1 = p, edt = 1, ed−1
t = 1

)
,∀t ∈ [0, T − 1]

Ad,pij = Pr
(
xdt+1 = j | xdt = i, xd−1

t+1 = p, ed−1
t = 0, edt = 1

)
,∀t ∈ [1, T − 1]

For all 1 ≤ d ≤ D

Dp
i = Cox

(
µp,i,λp,i

)
µp,in = Pr

(
mt+1 = n | xd−1

t+1 = p, xdt+1 = i, edt+1 = 1
)
,∀t ∈ [0, T − 1]

λp,in<M = Pr
(
mt+1 = n+ 1 | mt = n, xd−1

t+1 = p, xdt+1 = i, edt = 0
)
,∀t ∈ [1, T − 1]

λp,iM = Pr
(
edt = 1 | xd−1

t = p, xdt = i,mt = M
)
,∀t ∈ [1, T ]

Emission probability

Bv|i = Pr
(
yt = v | xDt = i

)
,∀t ∈ [1, T ]

Table 5.7: Mapping the CxHHSMM's model parameters to its DBN parameters.

5.7 The SHSMM in literature

This section presents a selective review of the SHSMM [Duong et al., 2005] in cur-

rent literature. In particular, the expressive power and computational e�ciency of

the proposed SHSMM and CxSHSMM have been recognized by other researchers.

Muncaster and Ma [Muncaster and Ma, 2007] discuss hierarchical extensions to the

CxSHSMM and specify necessary constraints in constructing DBN representations

for such models. Natarajan and Nevatia [Natarajan and Nevatia, 2007b], on the

other hand, aim for applications involving multiple agents. Hence, they argue for

the importance of incorporating multi-channel modeling into the HMM. They em-

ploy a similar structure as our SHSMM but replace the HSMM at the bottom layer

by multi-channel HSMMs to form the Hierarchical Parallel HSMMs, or accept a less

rich structure at the ease of having less parameters by moving duration modeling

to the top level and using multi-channel HMMs at the bottom level, building the

Hierarchical-Semi Parallel HMMs. Nevertheless, both structures do not allow the

top-layer states to share child states at the bottom level, thus lessening �exibility.

More importantly, state durations are modeled explicitly, causing model complexity
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to be dependent on the maximum duration span. Consequently, duration has to

be restricted to a certain range to avoid costly computation. Also, Zhu et al. [Zhu

et al., 2007] propose an undirected generalization of our SHSMM for the problem of

integrated web-page understanding. Their model was an integration of Hierarchical

Conditional Random Fields and Semi-Markov Conditional Random Fields for both

web-page structure and text content understanding, respectively.

5.8 Closing Remarks

This chapter provides a formulation and thorough analysis of the two-layer CxSHSMM

and demonstrates that the model can be extended to hierarchical models with arbi-

trary depths7. With this theoretical analysis, the next chapter presents applications

of the CxSHSMM to the problem of classifying, segmenting activities of daily livings

(ADLs) and detecting abnormal behaviors, as well as topic transition detection in

educational videos.

7Note that all the proposed models are able to handle multiple observations, even though it is

not discussed in this thesis.



Chapter 6

Applications with Coxian Switching

Hidden Semi-Markov Models

The HMM and related models have been applied in human activity recognition

and anomaly detection as well as detection of semantic concepts in video data (as

shown in chapter 2). These works su�er from two major drawbacks. First, they

do not allow automatic modeling of both the natural hierarchical decomposition

(with sub-structure sharing) and temporal variations in activities and video top-

ics. Second, existing temporal modeling methods are computationally ine�cient,

making them undeployable in many real-life applications. To overcome these lim-

itations, we have introduced the Coxian duration Switching Hidden Semi-Markov

Model (CxSHSMM) in the previous chapter. In this chapter, we detail two main

applications of the CxSHSMM: (1) activity recognition and anomaly detection in

activities of daily living (ADLs), and (2) topic transition detection in educational

videos.

As empirically shown in chapter, temporal information plays an important part in

accurate learning and recognition of ADLs. In addition, study in psychology [Zacks

and Tversky, 2001] shows that human actions are naturally hierarchical, and this

is even more evident in the familiar every day tasks such as �cooking dinner� or

�doing dishes�. For example, �cooking dinner� would involves a number of related

steps such as preparing the ingredients (e.g. cutting, washing, etc.), seasoning,

cooking, setting up table, and �doing dishes� would consists of bringing dishes to

sink, washing, drying and carrying dishes to cupboard. Also, both activities share

the use of the sink, but �doing dishes� would generally occupy the sink only once but
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for a long period while �cooking dinner� may need the sink for a number of times

and each over a relatively shorter duration. The experiments in this chapter set out

to explore deeply into these inherent characteristics of ADLs and our contributions

are:

• The �rst to investigate both hierarchical and duration properties of complex

high-level ADLs, which leads to signi�cant improvements in activity recogni-

tion performance as compared to using only either hierarchical or duration

knowledge.

• A novel scheme to detect anomalies in durations of ADLs � a more subtle form

of anomaly � which is practically important in elderly-care and has usually

been overlooked in literature.

• An application of the semi-supervised CxSHSMM with limited labeled data to

deal with more di�cult real world problems. With a small number of labeled

data, our framework is shown to cope well with uncertainties and failures in a

vision tracking system on a rich class of complex activities.

Next, the topic detection problem for professionally made videos is partially chal-

lenging due to the following three reasons, as identi�ed in [Sundaram, 2002]: (i.)

the di�erences in directional styles, (ii.) the semantic relationships of neighbour-

ing scenes, and (iii.) the world knowledge of the viewer. While the last aspect is

beyond the scope of this work, the �rst two clearly imply that e�ective modeling

of high-level semantics requires the domain knowledge (directional style) and the

modeling of the complex correlations of the video dynamics (neighboring semantic

relationship). The modeling problem, however, is di�cult as the underlying seman-

tics naturally possess a hierarchical decomposition with possible existence of tight

structure sharing between high-level semantics. In addition, the typical duration

for these structures usually varies for each of its higher semantic. This thesis con-

centrates on the class of education-oriented videos because its hierarchy of semantic

structure is more de�ned, exposing strong temporal correlation in time, and thus

make it more desirable to probabilistic modeling, while organization of content in

generic videos (e.g. movies) is too diverse to be fully characterized by statistical

models. Our contributions are:

• A coherent hierarchical probabilistic framework for topic detection in educa-

tional videos, which can be readily applied to other similar video genres such
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as news and documentaries.

• The �rst to investigate and e�ectively exploit both hierarchical and duration

information in video segmentation in a uni�ed framework. Similar to the

ADL case, incorporating both duration and hierarchical properties results in

superior performance.

The rest of the chapter is organized as follows. In section 6.1.1, we present an ap-

plication of the CxSHSMM to automatically learn, segment, and recognize complex

ADLs, in which the problem of phase number selection for the Coxian is also ad-

dressed. Section 6.1.2 uses the activity models learned in section 6.1.1 to construct

a scheme to detect any deviation in the durations of unseen ADLs. Next, we tackle

activity recognition in more challenging scenarios using partially labeled data in sec-

tion 6.1.3. We then explore the use of the CxSHSMM in topic transition detection

in educational videos in section 6.2. Finally, the chapter concludes in section 6.3.

6.1 Activity Recognition with the SHSMM

In chapter 4 we have experimented with �at models. In this section we set out to

tackle more complex and hierarchical data, aiming to recognize and segment complex

ADLs at multiple levels as well as to identify abnormal activity segments.

6.1.1 Recognition and Segmentation of Activities in Sequences

Given a morning routine consisting of sequential, but unlabeled and unsegmented

ADLs such as “reading morning newspaper”, “preparing breakfast”, “having breakfast”,

etc., our objective is to be able to query what the occupant is doing and to detect

when she changes activities. The CxSHSMM performance will be compared with

that of a Multinomial duration SHSMM (MuSHSMM), a two-layer HHMM, and

a �at Multinomial duration HSMM (MuHSMM). Also, we present the results of

applying a cross-validated model selection to pick the best number of phases for the

Coxian.

6.1.1.1 Descriptions of High-Level Activities

We consider a typical morning routine consisting of six high-level activities:
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• (a.1)“entering the room & making breakfast”

• (a.2)“having breakfast”

• (a.3)“washing dishes”

• (a.4)“making coffee”

• (a.5)“reading morning newspaper & having coffee”

• (a.6)“leaving the room”.

The routine generally follows the sequence �(a.1)-(a.2)-(a.3)-(a.4)-(a.5)-(a.6)� or

�(a.1)-(a.2)-(a.4)-(a.5)-(a.3)-(a.6)�, depending on whether the person washes the

dishes before or after having co�ee. The six activities and their typical trajectories

are shown in Fig. (6.1). The shaded regular polygons in Fig. (6.1)(c) in the walking

path imply that the person does not simply walk past the cell, but actually spends

some time in the region (the darker the polygons, the longer the time). For exam-

ple, in the �rst activity (“entering the room & making breakfast”), the occupant �rst

walks into the room, then spends some time taking food from the fridge, as indicated

by a dark polygon in cell number 13, and later spends more time cooking breakfast

at the stove, as illustrated by a darker polygon in cell number 5. Also, some com-

mon landmarks are used by di�erent activities for di�erent time spans. For example,

both the fridge and the stove are shared between activities (a.1) (cooking breakfast)

and (a.4) (making co�ee). Further, except activity (a.1) (“entering the room”), all

other activities start almost in the same region (i.e. cell number 6 and its neighbors),

making the segmentation task more interesting and challenging.

The above morning routine of approximately 130−140(s) was recorded several times.

The length, however, is not the same for all activities. Activity (a.5)“reading morning

newspaper & having cofee” was the longest (about 35(s)), while activity (a.6)“leaving

the room” was the shortest (approximately 7(s)). Activities (a.1) to (a.4) were

around 28, 26, 16 and 20(s), respectively. In each activity, most of the time was

usually spent at special landmarks such as the fridge, stove, sink, etc. For instance,

in activity (a.1), the occupant spends about 5 − 7(s) at the fridge, 10 − 15(s) at

the stove, and the remaining time, around 10(s), was for moving between these

designated places. A total of 62 unsegmented sequences of cells are returned from

the tracking module (appendix A). Each consists of six activities with a total length
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of around 135 sample points. To ensure an objective evaluation, we construct three

di�erent data sets, each consisting of 40 training and 22 testing sequences randomly

partitioned from the 62 sequences.

6.1.1.2 Training Assumptions

We train four di�erent kinds of models: a �at MuHSMM, a two-layer HHMM, a

MuSHSMM and a number of M-ph.CxSHSMMs with M ranging from 2 to 7. For

the hierarchical models (CxSHSMM, MuSHSMM and HHMM), we set the number

of states at the top level equal to the number of activities: |Q|∗ = 6, and at the bot-

tom level to the number of quantized cells in the kitchen: |Q| = 28. More precisely,

activities presented by top level states p ∈ Q∗ are high-level activities1, such as

(a.1)“entering the room & making breakfast”, while activities carried within a desig-

nated cell in the kitchen �oor, such as “cooking at stove” (cell 5), are referred to as

atomic activities and presented by bottom level states i ∈ Q. We use the estimated

spatial extent of each high-level activity p to de�ne the set of its children ch(p), as

well as the sets of children it is allowed to start with (chS(p)), or end with (chE(p)).

For example, activity (a.1)“entering the room & making breakfast” (Fig. (6.1)) pre-

sumably start in the door region consisting of cell 26 and any of its immediate neigh-

bors: chS(1) = [21 22 23 25 26 27]; activity (a.2)“having breakfast” is carried out

within the stove and dining table areas: ch(2) = [1 2 3 4 5 6 7 8 9 10 11 12 14 15 16];

and activity (a.3)“washing dishes” is assumed to end when the occupant leaves the

sink area: chE(3) = [1 2 5 6]. For the MuSHSMM, the maximum duration M is

set to 35 time-slices, which is the maximum time span of any individual activity

(assumed to be known in advance). The �at HSMM has only a single layer with

|Q| = 28. The same observation model obtained o�ine as in [Nguyen et al., 2004]

(appendix A) is used. Except for the constraints outlined, all other parameters of

these models are initialized randomly or uniformly.

Smoothing the Multinomial duration: A simple moving-average can roughly

smooth out the learned Multinomial to avoid the over�tting problem. In addition

to the learned MuSHSMM (i.e., the Multinomial duration has not been smoothed),

we maintain a smoothed duration version to empirically test the e�ect of smoothing

on the model performance. Henceforth, the learned duration MuSHSMM is denoted

as M̃uSHSMM, while its smoothed version as MuSHSMM.

1For simplicity, in obvious context we refer high-level activities as only activities.
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6.1.1.3 Recognition Results

First, by empirically examining the learned parameters of these models after train-

ing, we �nd that while both the CxSHSMM and the MuSHSMM can capture the

patterns in the training data adequately, the two-layer HHMM has failed to do so.

The left matrix below shows the transition of the six high-level activities A∗
pq ob-

tained from the MuSHSMM (the CxSHSMM yields similar results), while the right

matrix is obtained from the two-layer HHMM. While the SHSMM variants have

learned reasonable transitions, for example from activities (a.2) to (a.3) or (a.4);

from activities (a.3) to (a.4) or (a.6); and from activities (a.5) to (a.3) or (a.6),

the HHMM has failed to capture these transitions.

0 1 0 0 0 0

0 0 0.8 0.2 0 0

0 0 0 0.8 0 0.2

0 0 0 0 1 0

0 0 0.27 0 0 0.73

1 0 0 0 0 0





0 1 0 0 0 0

0 0.88 0.01 0.01 0.1 0

0 0 0.91 0.07 0 0.02

0 0 0 0 1 0

0 0.32 0.19 0.01 0.29 0.19

1 0 0 0 0 0


Fig. (6.2) shows the duration spent at the stove in activity (a.1), whose �true� du-

ration is usually centered at 14(s), learned by a 5-ph.CxSHSMM and a MuSHSMM.

Both models capture the duration reasonably well. The Coxian model tends to lean

to the left as compared to the Multinomial model; however, it does an adequate

job at smoothing out the spikes in the Multinomial model. For comparison, we

also smooth the Multinomial duration distribution using a simple moving-window

averaging method.

Fig. (6.3) demonstrates the ability of the CxSHSMM at accurately capturing dif-

ferent temporal properties of a shared sub-structural unit. The atomic activity

“cooking at stove” is shared by both activities (a.1)“entering the room & making

breakfast” and (a.4)“making coffee”, and the CxSHSMM has successfully learned

that “making breakfast” requires more time at the stove than “making coffee”.

Next, we compare the performances of the trained models ( variousM-ph.CxSHSMMs,

a MuSHSMM, and a two-layer HHMM) in terms of segmentation accuracy, early de-

tection and running time on unseen and unsegmented sequences from the three data
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Figure 6.2: Duration �at-stove� learned by (a) a M̃uSHSMM, (b) a MuSHSMM,

and (c) a 5-ph.CxSHSMM.
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Figure 6.3: Durations �at stove� spent to make co�ee (a) in activity (a.4) and to

cook breakfast (b) in activity (a.1) learned by the 5-ph.CxSHSMM.
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Models
Segmentation accuracy (%) of activities (a.1) → (a.6)

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) Avg.

M = 2 56.06 66.67 80.30 100 93.94 95.45 82.07

M = 3 100 0 100 100 98.48 96.97 82.58

M = 4 0 98.48 100 100 93.94 90.91 80.56

M = 5 100 98.48 100 100 96.97 90.91 97.73

M = 6 100 98.48 100 92.42 100 89.39 96.72

M = 7 100 98.48 100 100 100 87.88 97.73

M̃uSHSMM 98.48 98.48 100 100 95.45 65.15 92.93

MuSHSMM 98.48 98.48 100 100 100 65.15 93.69

HHMM 19.69 100 100 19.69 77.27 68.18 64.14

Table 6.1: Activity Segmentation on unseen data with the CxSHSMMs (M =

2, . . . 7), the originally learned duration MuSHSMM (M̃uSHSMM), the smoothed

duration MuSHSMM (MuSHSMM), and 2-layer HHMM.

sets2. We use the learned models for segmenting and classifying segments of the test

sequences into the six high-level activities (the �at HSMM is not included in the

test since it cannot model the high-level activities). The �ltering distributions of

the top-level state given the observation Pr(zt|y1:t) (Fig. (5.3)) and the most likely

label zt are computed for each time t. The labels zt at the end of each true segment

are used to measure segmentation accuracy. Early detection rate (EDR) is the ratio

t0/activityLength where t0 is the earliest time from which the activity label zt0 stays

accurate.

Tabs. (6.1) and (6.2) present the segmentation and early detection results averaged

across the three data sets. Firstly, Tab. (6.1) shows that while the 2-ph.CxSHSMM

su�ers from low accuracy for the �rst two activities, the 3-ph.CxSHSMM and the

4-ph.CxSHSMM completely fail to recognize activities (a.2), and (a.1), respectively.

More speci�cally, plots of online recognition in Fig. (6.4) show that the 2-phase

model sometimes segments activity (a.1) earlier than its true ending time, while

the 4-phase always does so. One possible explanation is that the last two states of

activity (a.1) (corresponding to cells 9 and 5 in Fig. (6.1)) are also included in the

2Our de�nition of �segmentation accuracy� is somewhat similar to �classi�cation accuracy� in

de�nition 4.3 (section 4.4.2), except that with segmentation we use one hierarchical model instead

of a separate number of �at models as in classi�cation case.
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Models
Early Detection Rate (%) of activities (a.1) → (a.6)

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) Avg.

M = 2 0 0.84 13.44 10.68 14.89 21.39 10.21

M = 3 0 NA 6.97 14.36 4.18 25.93 10.29

M = 4 NA 0 13.95 9.98 1.09 28.66 10.74

M = 5 0 0.41 12.29 10.19 1.23 21.22 7.56

M = 6 0 0.46 12.94 8.88 2.68 29.76 9.12

M = 7 0 0.46 10.84 10.41 2.78 31.77 9.38

M̃uSHSMM 0 0.91 11.88 9.86 2.99 36.04 10.28

MuSHSMM 0 0.60 9.77 9.54 2.86 37.77 10.09

Table 6.2: Early detection rate on unseen data with the CxSHSMMs (M = 2, . . . 7),

the originally learned MuSHSMM (M̃uSHSMM), the smoothed duration MuSHSMM

(MuSHSMM), and 2-layer HHMM.

starting children set chS(2) of activity 2. As a result, the 2-phase and 4-phase vari-

ants may have inaccurately learned that these cells are in activity (a.2) even though

the probabilities of having these cells as the starting cells for activity (a.2) are ini-

tialized to low values. Also, the confusion matrix obtained from the 3-ph.CxSHSMM

shows all test cases of activity (a.2) as having been mistakenly classi�ed as activ-

ity (a.3). This could be because most of ch(2) are in ch(3), and activities (a.2)

and (a.3) also have the same starting children set, chS(2) ≡ chS(3). The 3-phase

Coxian is not strong enough to separate them based mainly on the di�erences at

the ending states chE(2) and chE(3). For M≥ 5, the CxSHSMM yields consistent

and adequate segmentation across all activities, and achieves above 96% accuracy,

on average. It is, however, observed that the model performance does not continue

to increase after M reaches 5. In fact, M = 5 achieves the best performance in

both segmentation accuracy (97.73%) and early detection (7.56%) (Tab. (6.2)). The

MuSHSMM, with the disadvantage of having far more parameters, now su�ers no-

ticeable degradation in recognizing activity (a.6) (only 65.15% accuracy as compared

with 90.91% achieved by the 5-ph.CxSHSMM). Also, smoothing does not help the

Multinomial enough to win over the Coxian model. Finally, as expected, the two-

layer HHMM, without duration knowledge, has not learned an adequate transition

model at the high level (i.e. the transition matrix A∗
pq), resulting in its poor and

inconsistent performance, i.e. occasionally correctly detecting some activities, such

as (a.2), (a.3), and (a.5), while generally failing to detect the others.
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Figure 6.4: Recognition accuracy averaged over three data sets obtained from the

CxSHSMMs (M = 2, . . . , 7), the M̃uSHSMM (M̃ul) and the MuSHSMM (Mul).

The x axis shows the true segmentation of each activity from the start → the end

(i.e., 0 → 1). The y axis shows the accuracy rate.

Fig. (6.5) illustrates an example of activity recognition with the 5-ph.CxSHSMM

and the two-layer HHMM. While the CxSHSMM sharply segments each activity

right at the end of each true segmentation, the HHMM does not have clean cuts

between activities and tends to make early transitions (e.g., (a.1) → (a.2) and

(a.4) → (a.5)), or wrong transitions (e.g., (a.5) to (a.2) near to the end of the

sequence).

With respect to computational e�ciency, Fig. (6.6) shows running time required to

complete one EM iteration by a 5-ph.CxSHSMM and a MuSHSMM in our MATLAB

implementation tested on ten randomly chosen sequences. The CxHSMM has made

the EM process faster by more than a thousand times, which is much larger than
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the theoretical factor de�ned by M/M. This can be understood as in real implemen-

tations the true saving time is also a�ected by other factors such as the reduction in

memory stacks required for the storage and manipulation of variables (e.g. the two

time-slices smoothing distributions of the MuSHSMM are very high-dimensional as

compared to that of the CxSHSMM). The more data that is required to be stored,

the slower the program. Thus, in addition to having a favorable performance result,

the Coxian duration modeling has reduced the process of learning and �ltering by

a signi�cant factor which makes it feasible for real-world applications.

To round up this section, we make four important remarks: (i.) Our experiment

demonstrates that both duration and hierarchical modeling (with substructure shar-

ing) are vital for learning ADLs and that the SHSMM is a powerful model to deal

with this type of data, (ii.) The two-layer HHMM has completely failed to tackle

data with complicated durations and by having a �at structure the HSMM is un-

able to perform hierarchical decomposition as expected. (iii.) The Coxian duration

model is bene�cial in that a relatively small phase CxSHSMM (M = 5) needs much

fewer parameters, thus requiring signi�cantly less computation time, however, it

maintains robustness and outperforms the Multinomial; and (iv.) Smoothing the

Multinomial duration results in an improvement; nevertheless, this improvement is

not substantial.

6.1.2 Detecting Anomalies in Durations of Activities

Anomaly in the duration of activities, if detected, can provide important information

in alert systems. For example, in the care of the elderly, a person staying at a location

for a longer duration than usual might indicate the onset of an illness. Therefore,

given a daily routine consisting of several activities in sequence, our aim is to be able

to and learn and query if the occupant is performing her daily patterns normally

at each location and detecting any anomaly in activity sequences. For evaluation of

anomaly detection, we capture 18 abnormal morning routine sequences (the morning

routine is as de�ned in section 6.1.1.1), which are also unlabeled and unsegmented.

In the abnormal data the activity trajectories are kept unchanged with respect to

the normal data (i.e., the morning routine in section 6.1.1.1), but the duration spent

at each cell has been altered so that a person spends too little or too much time at

some locations. We attempt to use the SHSMMs, including the CxSHSMMs and

the MuSHSMMs trained in section 6.1.1.2, to serve as models for normal data.
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6.1.2.1 The Duration Anomaly Detection Scheme

We implement an online anomaly detection scheme as follows. Suppose that at time

t, the online classi�cation algorithm has recognized that p is the winning activity

in the period starting from some tp ≤ t. The decision to classify p as normal or

abnormal is based on examining the likelihood ratio Rp(t) =
Pr(ytp:t|θp)

Pr(ytp:t|θ̄p)
where θp is

the parameter of the p-initiated semi-Markov sequence (the learned normal model

for p), and θ̄p is the abnormal model for p. The abnormal model θ̄p is the same as

θp except for the duration parameter.

For the M-ph.CxSHSMM, the duration parameter D̄p
i of θ̄p is a randomly gener-

ated 2-phase Coxian which satis�es: mean(D̄p
i ) = mean(Dp

i )−0.5M , if mean(Dp
i ) >

0.5M ; otherwise mean(D̄p
i ) = mean(Dp

i ) + 0.5M . In other words, we try to �shift�

the Coxian towards the less likely part in the duration domain. The 2-phase Coxian

is chosen to represent the abnormal data, not only because it involves least compu-

tation, but more importantly it is known to have a very high variance [Osogami and

Harchol-Balter, 2003] which may suit the variable characteristics of anomalies. For

comparison, we also perform anomaly detection with D̄p
i , being a randomly gener-

ated M-phase Coxian (M is the number of phase of Dp
i ) whose mean is equal to

that of the 2-phase Coxian D̄p
i . These two detection schemes are then compared

against the background scheme, where D̄p
i is a uniform Multinomial distribution.

For the MuSHSMM, we intend to set the duration parameter D̄p
i of θ̄p to be either

uniform or �inverted�, where the �inverted� distribution of Mult(µn) is Mult(µ̄n)

with µ̄n = max(µ1:M )−µn

M×max(µ1:M )−
∑M

n=1 µn
= max(µ1:M )−µn

M×max(µ1:M )−1
.

We argue that the abnormal model θ̄p, constructed by only changing the duration

model, su�ces to capture anomalies since our aim is to focus on detecting a more

subtle form of anomaly, which is the anomaly only in the state durations and not in

the sequential order. In addition, by automatically constructing a general abnormal

model for each normal activity class, our scheme o�ers two immediate advantages: it

saves the network from excessive growth by the need to add new abnormal models

in response to unseen data, and it removes the laborious and practically di�cult

task of manually constructing abnormal models using prior knowledge about the

data and speculations on possible abnormal scenarios. Furthermore, by deriving an

abnormal model θ̄p and taking the likelihood ratios Rp(t), we avoid the unsettling

problem of having to normalize the likelihood after setting a threshold because of
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the uneven length in observation sequences. Further, we can examine the anomaly

for every p-initiated semi-Markov sequence independently instead of considering

the whole morning routine of six activities. This is to avoid the residual e�ects

of previous activities in the likelihood, which is especially important in the case

where only some activities in the routine are abnormal as it is common that peo-

ple sometimes deviate from normal behavior in a short time, and then come back

to normal. For example, instead of skimming through the morning newspaper in

activity (a.5)“reading morning newspaper & having coffee”, the occupant may want

to enjoy a good book, consequently spending more time at the table, before leav-

ing the room (activity (a.6)). Thus, by examining every p-initiated semi-Markov

sequence independently, our scheme can reset the anomaly measure when the occu-

pant switches to a new activity and conducts it normally. The ability to point out

when the behavior has become abnormal or returned to normal is equally impor-

tant in issuing timely and necessary alerts to carers. To illustrate the capability of

our model in solving this di�cult problem, some of the 18 abnormal test sequences

(each captures the entire morning routine) have only one or two activities containing

abnormal durations.

6.1.2.2 Online Segmentation of Activities with Abnormal Durations

We aim to construct di�erent abnormal models for di�erent p-initiated semi-Markov

chains. This requires that our detection scheme must �rst be able to segment the

abnormal sequences into di�erent activities. Thus, our model is expected to be ro-

bust to temporal disturbance so as to perform adequate online segmentation at the

top level, and yet be sensitive enough to detect duration abnormality at the bottom

level. In particular, given any morning routine, our objective is to determine if any or

all of its comprised activities are abnormal. Our approach involves two steps. First,

we use the trained models, including the M-ph.CxSHSMM with M = 2, . . . , 7 and

the MuSHSMM, trained in section 6.1.1 to perform online classi�cation at the top

level. As soon as an activity p is identi�ed, we move to the second step, which is to

apply our detection scheme that involves only the trained model for the p-initiated

semi-Markov chain θp and its inverted counterpart θ̄p, to determine if p is abnormal.

Tab. (6.3) shows the average segmentation results obtained in the �rst step when

testing the set of 18 abnormal sequences using the CxSHSMM and the MuSHSMM

trained with the three normal data sets in section 6.1.1. Similar to the case of
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Models
Segmentation accuracy (%) of activities (a.1) → (a.6)

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) Avg.

M = 2 75.93 62.96 77.78 100 100 87.04 83.95

M = 3 100 0 94.44 100 100 92.59 81.17

M = 4 29.63 94.44 87.04 100 100 87.04 83.02

M = 5 100 98.15 83.33 100 100 87.04 94.75

M = 6 100 100 83.33 100 100 85.19 94.75

M = 7 100 100 83.33 100 100 87.04 95.06

M̃uSHSMM 100 96.30 77.78 100 100 66.67 90.12

MuSHSMM 100 96.30 79.63 100 100 66.67 90.43

Table 6.3: Activity segmentation on unseen abnormal data with the CxSHSMMs

(M = 2, . . . , 7), the originally learned duration MuSHSMM (M̃uSHSMM), and the

smoothed duration MuSHSMM (MuSHSMM).

normal data (Tab. (6.1)), all the CxSHSMMs with M ≤ 4 fail to segment the

activities adequately. The MuSHSMM segments reasonably accurately for activities

(a.1), (a.2), (a.4), and (a.5), but fails to accurately recognize (a.6) one third of the

time, and occasionally fails for (a.3); hence its segmentation performance cannot be

viewed as satisfactory, and thus is not competent for duration anomaly detection

(and hence removed in the next step). All the CxSHSMMs with M ≥ 5, however,

still accurately segment the six activities and are thus the sole models competent

of anomaly detection. On average, the 7-phase Coxian gives a marginally better

segmentation results (95.06%). With respect to EDR (Tab. (6.4)), the 5-phase

Coxian o�ers the smallest EDR upper bound of all activities (31.45% - activity (a.6))

while the 6-phase Coxian delivers a slightly better average EDR (12.89%). Hence,

we conclude that forM≥ 5-phase, the CxSHSMMs give similar performance. This

result is consistent with the normal case in the previous section.

6.1.2.3 Duration Anomaly Detection with CxSHSMM

Our objective is to �nd the most e�ective anomaly detection scheme for the CxSHSMMs

empirically. The detection e�ectiveness is measured based on the true positive and

the false positive rates. The true positive rate (TP) is the ratio of the abnormal

activities, which are correctly identi�ed as abnormal, to the total abnormal activi-

ties tested; while the false positive rate (FP) is the percentage of normal activities,
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Models
Early Detection Rate (%) of activities (a.1) → (a.6)

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) Avg.

M = 2 0 30.84 28.84 3.97 14.64 29.64 17.99

M = 3 0 NA 23.04 10.55 6.29 34.15 14.81

M = 4 0 15.98 23.54 6.67 3.46 32.35 13.67

M = 5 0 17.96 19.83 6.74 3.42 31.45 13.23

M = 6 0 14.69 20.31 5.17 2.68 34.49 12.89

M = 7 0 14.18 17.22 7.22 2.99 37.67 13.21

M̃uSHSMM 0 13.18 27.44 8.10 5.91 46.41 16.84

MuSHSMM 0 12.50 22.18 7.10 4.31 45.68 15.30

Table 6.4: Early detection rate on unseen normal data with the CxSHSMMs

(M = 2, . . . 7), the originally learned duration MuSHSMM (M̃uSHSMM), and

the smoothed duration MuSHSMM (MuSHSMM).

which are incorrectly recognized as abnormal, to the total normal activities tested.

Fig. (6.7) presents the Receiver Operating Characteristic (ROC) curves obtained

from the three data sets in which the learned normal models used areM≥ 5-ph.CxSHSMMs.

The ROC is obtained by varying the threshold for the likelihood ratio Rp(t) with

t being set to the true ending time of each activity. All the three data sets yield

similar results. The detection scheme using the D̄p
i as a randomly generated M-

phase Coxian with shifted mean (in which M is the number of phase of Dp
i and

M = 5, 6, 7) is the least e�ective. On the other hand, both the schemes using 2-

phase Coxian D̄p
i and background uniform Multinomial D̄p

i perform reasonably well

as all their ROC curves follow closely the left-hand border and the top border of

the ROC spaces. Nevertheless, the inverted 2-phase Coxian model is better as its

ROC curves generally rise faster and stay above those of the uniform Multinomial

model at the upper left corners of the ROC spaces. The advantages of our proposed

inverted 2-phase Coxian model is more evident in Tab. (6.5) as all the top perfor-

mances highlighted in red fall in the 2-phase Coxian scheme. More speci�cally, in

the region of false alarm not greater than 10% (i.e. FP ≤ 10%), the 2−phase Cox-
ian D̄p

i scores best with TP ∼ 77% → 91% compared with TP ∼ 73% → 80% of

the background uniform Multinomial. Given that duration is a very subtle form of

anomaly, an anomaly detection rate of 77% → 91% is a promising result.
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Figure 6.7: Data set 1: plots (a)-(b)-(c), data set 2: plots (d)-(e)-(f), and data set

3: plots (g)-(h)-(i). The ROC curves are obtained from the likelihood ratios set by

the learned 5-ph.CxSHSMM - plots (a)-(d)-(g), 6-ph.CxSHSMM - plots (b)-(e)-(h),

and 7-ph.CxSHSMM - plots (c)-(f)-(i) and their respective inverted models. The

legends �M-ph�, and �uniMul� mean the state durations of the inverted models are

M-phase Coxian, and uniform Multinomial distributions, respectively.
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Best True Positive Rates (%)

Learned models 5-ph.CxSHSMM 6-ph.CxSHSMM 7-ph.CxSHSMM

Inverted models 2-ph. 5-ph. Mul. 2-ph. 6-ph. Mul. 2-ph. 7-ph. Mul.

Data set 1 84.09 81.82 77.27 77.27 25.00 72.73 79.55 36.36 75.00

Data set 2 79.55 79.55 77.27 79.55 15.91 75.00 79.55 45.45 72.73

Data set 3 81.82 79.55 79.55 79.55 38.64 75.00 90.91 40.91 79.55

Table 6.5: Best TPs selected from the ROCs in the region of �FP ≤ 10%�. For each

data set and each learned model, the highest TPs crossed three inverted models are

highlighted in red.

6.1.2.4 SHSMM vs. HSMM

We also compare the use of the SHSMM versus a �at HSMM in anomaly detection.

Since the HSMM cannot segment the sequence into the six activities, it learns only

a normal duration model at each cell location for the entire morning routine. This

makes the HSMM less �exible and unable to isolate the abnormal segments in a

sequence. Fig. (6.8) shows an example of a sequence comprising activities in order

(a.1) → (a.6), in which the �rst two activities (a.1) and (a.2) are abnormal, while

the rest ((a.3) → (a.6)) are normal. While the 5-ph.CxSHSMM successfully deals

with this scenario by pointing out only the �rst two activities are abnormal, the

HSMM continues to label the sequence as abnormal until the sequence is about to

end. The ability of the SHSMM to recognize early that activities have returned to

normal is practically important in the context of monitoring ADLs in a smart home

(e.g. for the aged) as it prevents unnecessary alerts.

In short, this section demonstrates other advantages of the CxSHSMM. First, by

accurately learning normal temporal patterns, it is capable of detecting anomalies

in activity durations. Second, by having a hierarchical structure with substruc-

ture sharing, it is able to recognize and isolate abnormal segments in the activity

sequence. Further, the experiment has veri�ed the e�ectiveness of our proposed

anomaly detection scheme, especially the use of �inverted� 2-phase Coxian models

to capture abnormal durations.
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Figure 6.8: Anomaly detection with (a) the 5-ph.CxSHSMM and its inverted 2-

phase duration model, and (b) the �at HSMM and its inverted duration model.

6.1.3 Improvement in Activity Recognition and Segmenta-

tion with Partially Labeled Data

In previous sections, care has been taken in the course of data capture such that

missing trajectories are minimized. In this section we move to tackle noisy data in

which the occupant is free to move or sit where he prefers, which includes sitting

behind tables (and thus occluded), staying still for long periods on the sofa (and

thus getting confused with the background as the tracking algorithm tends to classify

still objects as belonging to the background), and occasionally moving fast between

places (cameras may fail to track) or out of camera range. This leads to a signi�cant

portion (35.34% on the average) of the tracks being lost. Further, we aim for a more

realistic scenario in which the trajectories of high-level activities overlap considerably

(more as compared to those in section 6.1.1), and for some activities, they are totally

overlapping. Thus, although our objectives remain as in section 6.1.1 (i.e., classifying

and segmenting high-level ADLs), we set out to explore the more challenging task

of handling noisy tracking data and overlapping activities. We again employ our

CxSHSMM and compare it with the standard two-layer HHMM at recognizing and
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segmenting high-level activities. The MuSHSMM is not included here because of

its costly computation. Furthermore, we use partially labeled data to assist the

learning phase in dealing with the catastrophic nature of our data set.

6.1.3.1 Data Descriptions

In this experiment we use the same environment as in previous sections (Fig. (6.1)(a,b))

and capture an evening routine consisting of seven high-level activities:

• (a.1)“walking into kitchen & taking food out for cooking”

• (a.2)“cooking dinner”

• (a.3)“having dinner”

• (a.4)“relaxing on sofa & watching tv”

• (a.5)“cleaning stove”

• (a.6)“sweeping floor”

• (a.7)“emptying bin”

The occupant does not strictly follow the sequential order from activity (a.1) to

(a.7), but occasionally makes a deviation, such as choosing to clean the stove (a.5)

before/after watching television (a.4). Firstly, the segmentation tasks at high-level

activities is challenging because the time slots are not distributed fairly among

activities, for instance emptying the bin takes noticeably less time than sweeping the

�oor or watching television, and thus is possibly overlooked by the model. Another

challenge is due to the limitation of the tracking module which occasionally loses

the path. Every sequence (including unseen test sequences) su�ers from missing

observations ranging from ∼ 22% to ∼ 44%, except for two sequences: one has

only 14% missing trajectories, while another fully loses 60% of its track. Fig. (6.9)

shows an example of trajectories returned by the tracking system in which missing

observations are shown by the discontinuities in the plot. Finally, a total of 63

sequences are captured, of which 39 (accounting for about 60%) are used for training,

and the remaining 24 sequences are for testing.
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Figure 6.9: An example of sequence of the designated cells, which were sequentially

visited by the occupant, returned by the tracking system. The discontinuities in the

graph show missing observations.
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Figure 6.10: Illustrations for path, starting, and ending regions for activity

(a.5)`cleaning-stove' and (a.6)`sweeping-�oor' .

6.1.3.2 Training Assumptions

We run �ve di�erent cases. In the �rst case, training data (39 sequences) are unla-

beled. In the next four cases, each sequence in the training set is randomly labeled at

rates of 1%, 4%, 8% and 16%, respectively. In each case, we employ the CxSHSMM

to learn the training data, and then perform activity classi�cation and segmen-

tation on unseen and unlabeled test data, and compare its performance with the

two-layer HHMM. Again we run the tests on di�erent M−phase CxSHSMMs (for

M ∈ [2, 10]) for phase selection. Similar to section 6.1.1, for both the CxSHSMMs

and HHMM we set the number of parent states at the top level to the number

of high-level activities |Q∗| = 7, and the number of children states at the bottom

level is mapped to the number of quantized cells in the kitchen �oor |Q| = 28.

The children set ch(p), the starting children set chS(p), and the ending children set

chE(p), for p ∈ Q∗, are then de�ned by our prior knowledge of the activities (i.e.,

these sets contain the kitchen regions where corresponding activities may occur).

There are signi�cant overlaps between these sets for di�erent p. For instance, Fig.

(6.10) shows the estimated spatial extents of activities (a.5)“cleaning stove” and

(a.6)“ sweeping floor”. We observe that ch(5) ⊂ ch(6) as “cleaning stove” concen-

trates only around the stove area while “sweeping floor” is done on the whole �oor.

There are also major overlaps between chS(5) and chS(6), and between chE(5)and

chE(6) as sweeping starts and ends around the stove area.

6.1.3.3 Decoding learned sequences of activities

Fig. (6.11) shows the most likely trajectories obtained from the 6-ph.CxSHSMM

trained with 8% labeled data. As the observation matrix B, which is not updated
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duration the floordoor 28272625 16
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(c) Activity 6: sweeping-�oor.

Figure 6.11: The most likely trajectories learned by the 6-ph.CxSHSMM using 8%

labeled data. The red, green and cyan cells mark the child sets (ch(p)) of activity

(a.1), activity (a.2) and activity (a.6), respectively; whereas the blue cells show

states not belonging to the child sets of the corresponding activities.



6.1. Activity Recognition with the SHSMM 181

during learning, has non-zero entries mainly in its diagonal (i.e., the �oor cell num-

bers returned by the tracking module are mostly corresponding to the respective

state numbers at the bottom level), it can be stated that the bottom state se-

quences decoded generally can be directly mapped into the �oor cell numbers, and

they more or less show the occupant's walking paths. Thus, the walking path (wp)

of an activity p can be inferred from the learned parameters πpi and Apij , while

its state durations are the Coxian means computed from the learned parameter

Dp
i = Cox (µp,i, λp,i).

wp = {i∗1:N} where i∗n =


argmax

i

{πpi } n = 1

argmax
i

{
Api∗n−1i

}
n = 2, . . . , N

Api∗N ,end = max
i

{
Api∗N i

}

Despite the fact that the training data su�ers a large portion (∼ 35%) of miss-

ing observation, and the activities are quite complex with overlap trajectories (e.g.,

activity (a.2) is totally overlapped by activity (a.6), and partially overlapped by ac-

tivity (a.1)), Fig. (6.11) shows that the CxSHSMM has correctly identi�ed not only

the most likely cells that would be visited in each activity but also their visiting du-

rations. In both activities (a.1)“walking into kitchen & taking food out for cooking”

and (a.2)“cooking dinner”, the model accurately learns that the occupant spends

signi�cant time at predesignated locations to complete some speci�c tasks, i.e., stop-

ping at the fridge (19.73 time units) to take out food in (a.1) or standing at the

stove (34.08 time units) to cook dinner in (a.2); whereas the trajectory scatters in

(a.6)“sweeping floor” without notable durations at any particular area.

6.1.3.4 Recognition Results with Unlabeled and Partially Labeled Data

We compare the performance of variousM-ph.CxSHSMMs and the standard HHMM

on segmentation accuracy, and early detection. The segmentation accuracy and early

detection rates are de�ned as in section 6.1.1.3. We train the CxSHSMMs and the

HHMM on unlabeled data as well as on 1% to 16% labeled data and test them

on unseen, unsegmented, and unlabeled data that contains 36.30% missing trajec-

tories on the average. Tab. (6.6) shows that without labeling, even though the

3-ph.CxSHSMM signi�cantly outperforms the HHMM (49% accuracy vs. 29%), it
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Trained with unlabeled data

HHMM (Avg. 29.17%) 3−phase CxSHSMM(Avg. 49.40%)

25.0 0 0 0 75.0 0 0

0 12.5 0 87.5 0 0 0

0 0 4.2 95.8 0 0 0

0 0 0 100 0 0 0

0 12.5 0 87.5 0 0 0

0 0 0 100 0 0 0

0 0 0 37.5 0 0 62.5





100 0 0 0 0 0 0

8.3 79.2 8.3 0 0 4.2 0

0 0 8.3 79.2 0 12.5 0

0 0 0 100 0 0 0

4.2 16.7 8.3 66.7 0 4.2 0

4.2 0 0 95.8 0 0 0

0 0 0 41.2 0 0 58.3


Trained with 1% labeled data

HHMM (Avg. 31.55%) 3−phase CxSHSMM(Avg. 73.81%)

25.0 0 0 0 75.0 0 0

0 37.5 0 62.5 0 0 0

0 0 29.2 70.8 0 0 0

0 0 0 100 0 0 0

0 16.7 4.2 79.2 0 0 0

0 0 0 100 0 0 0

4.2 0 0 29.2 0 37.5 29.2





95.8 4.1667 0 0 0 0 0

0 100 0 0 0 0 0

0 0 45.8 54.2 0 0 0

0 0 0 95.8 0 4.2 0

0 8.3 58.3 20.8 12.5 0 0

0 0 0 29.2 0 70.8 0

0 0 0 0 0 4.2 95.8


Table 6.6: Confusion matrices showing the segmentation accuracy of the 7 activities.

does not deliver a satisfactory performance with this catastrophic data. However,

when we supply labels, as little as 1%, the 3-ph.CxSHSMM dramatically increases

its accuracy to 73% as compared with a modest rise of only 2%, from 29% to 31%,

for the HHMM.

The signi�cant advantages of the CxSHSMM over the HHMM are con�rmed by the

full results in Tabs. (6.7) - (6.8) and by the average results illustrated in Fig. (6.12).

In particular, Fig. (6.12) shows that the HHMM (M = 1) stays at only around 60%

segmentation accuracy even though we supply it with data being labeled from 4%

up to 16%. On the contrary, with 4% labels and above, as we add in more geometric

phases into the state durations (M = 2, 3, . . .) the CxSHSMMs continue to improve

their performance until stabilizing around 90% for M≥ 4.

With only 1% labels, some CxSHSMMs, such as M ∈ [4, 5, 6, 9, 10], perform

reasonably well with an average of around 80% (Fig. (6.12)); nevertheless they occa-

sionally fail to recognize some activities as illustrated by their worst performance in

Fig. (6.14). For example, with 1% labels (Tab. (6.7)) the 4-ph.CxSHSMM has an av-

erage segmentation accuracy of 79.76%, but it often mislabels activity (a.3) (41.67%
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1% labeled data used in training

Models
Segmentation accuracy (%) of activities (a.1) → (a.7)

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) (a.7) Avg.

HHMM 25.00 37.50 29.17 100 0 0 29.17 31.55

M = 2 100 87.50 58.33 100 0 33.33 50.00 61.31

M = 3 95.83 100 45.83 95.83 12.50 70.83 95.83 73.81

M = 4 100 91.67 41.67 95.83 41.67 91.67 95.83 79.76

M = 5 100 100 75.00 100 0 83.33 91.67 78.57

M = 6 100 100 58.33 83.33 58.33 79.17 83.33 80.36

M = 7 100 95.83 58.33 95.83 0 50.00 83.33 69.05

M = 8 100 95.83 33.33 100 66.67 8.33 58.33 66.07

M = 9 100 100 70.83 95.83 79.17 75.00 75.00 85.12

M = 10 100 100 79.17 100 8.33 100 66.67 79.17

4% labeled data used in training

HHMM 93.83 100 45.83 95.83 4.17 20.83 54.17 59.52

M = 2 100 100 66.67 100 70.83 95.83 79.17 87.50

M = 3 95.83 100 91.67 100 66.67 95.83 95.83 92.26

M = 4 100 87.50 95.83 100 79.17 91.67 83.33 91.07

M = 5 100 91.67 95.83 100 62.50 95.83 91.67 91.07

M = 6 100 100 79.17 100 87.50 87.50 54.17 86.90

M = 7 100 100 54.17 95.83 79.17 95.83 75.00 85.71

M = 8 100 100 95.83 100 70.83 66.67 79.17 87.50

M = 9 100 100 95.83 95.83 83.33 100 54.17 89.88

M = 10 95.83 83.33 91.67 91.67 83.33 91.67 87.50 89.29

Table 6.7: Segmentation Accuracy Results obtained from the HHMM and the

CxSHSMM (M = 2, 3, . . . , 10) trained with 1% and 4% labeled data when tested

on unseen data with missing observations.
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8% labeled data used in training

Models
Segmentation accuracy (%) of activities (a.1) → (a.7)

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) (a.7) Avg.

HHMM 95.83 100 58.33 95.83 4.17 20.83 58.33 61.90

M = 2 100 87.50 91.67 91.67 4.17 75.00 66.67 73.81

M = 3 95.83 100 70.83 100 62.50 91.67 91.67 87.50

M = 4 100 95.83 91.67 91.67 75.00 95.83 95.83 92.26

M = 5 100 91.67 91.67 91.67 83.33 91.67 87.50 91.07

M = 6 100 100 91.67 95.83 91.67 87.50 91.67 94.05

M = 7 95.83 95.83 95.83 100 70.83 91.67 91.67 91.67

M = 8 100 100 87.50 100 41.67 91.67 95.83 88.10

M = 9 100 100 95.83 91.67 79.17 100 75.00 91.67

M = 10 100 100 100 100 66.67 95.83 83.33 92.26

16% labeled data used in training

HHMM 95.83 100 66.67 95.83 0 20.83 50.00 61.31

M = 2 100 83.33 91.67 91.67 4.17 75.00 66.67 73.21

M = 3 100 83.33 79.17 91.67 45.83 83.33 79.17 80.36

M = 4 100 83.33 91.67 91.67 66.67 95.83 95.83 89.30

M = 5 100 87.50 91.67 91.67 83.33 91.67 87.50 90.48

M = 6 100 100 95.83 83.33 79.17 87.50 87.50 90.48

M = 7 100 91.67 95.83 91.67 75.00 95.83 87.50 91.07

M = 8 100 100 100 100 70.83 83.33 79.17 90.48

M = 9 100 91.67 100 100 70.83 91.67 91.67 92.26

M = 10 100 100 79.17 95.83 66.67 91.67 75.00 86.90

Table 6.8: Segmentation Accuracy Results obtained from the HHMM and the

CxSHSMM (M = 2, 3, . . . , 10) trained with 8% and 16% labeled data when

tested on unseen data with missing observations.
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Figure 6.12: Average segmentation accuracy obtained from the HHMM (M = 1)

and the CxSHSMMs (M = 2, 3, . . . , 10) trained with 1%, 4%, 8% and 16% labeled

data.
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Figure 6.13: The lowest segmentation accuracy among (a.1) to (a.6) (Tabs. (6.7) &

(6.8)) obtained from the HHMM (M = 1) and the CxSHSMMs (M = 2, 3, . . . , 10)

trained with 1%, 4%, 8% and 16% labeled data.
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Figure 6.14: Average early detection rates obtained from the HHMM (M = 1) and

the CxSHSMMs (M = 2, 3, . . . , 10) trained with 1%, 4%, 8% and 16% labeled

data.

accuracy) and (a.5) (41.67% accuracy). Another example is the 5-ph.CxSHSMM

(Tab. (6.7)), which has ∼ 79% average accuracy but totally misses activity (a.5).

As the activities mostly overlap, some activities are easy to be mislabeled, thus an

overall satisfactory performance does not guarantee individual success.

We also observe from Fig. (6.12) that on average there is no noticeable di�erence

among 4%, 8% or 16% labeled data when the models used areM≥ 4-ph.CxSHSMMs,

even though the segmentation accuracy is more stable across all activities (Fig.

(6.13)) when trained with 16% labeled data. This is similar for early detection

rates, as shown in Fig. (6.14). On average, allM≥ 4-ph.CxSHSMMs can correctly

identify activities around 15% to 20% of their executable time, which is reasonable

in terms of applicability.

Finally, the experiment again con�rms one of the advantages of the Coxian duration

model is that it can work well with a small number of phases (M is as small as 4),

thus requiring minimal increase in computation cost as compared with the two-layer

HHMM with dramatic increase in the model performance. Also, the incorporation

of both duration and hierarchical properties in our CxSHSMM leads to good results
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even on complicated and overlapping ADLs. Lastly, our CxSHSMM models can

directly handle noisy data returned from tracking systems with the help of a small

amount of labels (as little as 4%) being supplied in training.

6.2 Topic Transition Detection in Educational Videos

with the SHSMM

In this section we present an application for the CxSHSMM in a completely di�erent

area, that is, to detect topic transitions in educational videos. Our topic detection

framework consists of two phases. The �rst phase performs shot detection and low

level feature extraction and then classi�es a shot in a meaningful label set Σ. This

phase is described in section 6.2.1. In the next phase we train a HHMM and a

CxSHSMM over the alphabet space Σ from the training data and use them in con-

junction with the Viterbi to perform segmentation and annotation. The architecture

of the framework is depicted in Fig. (6.15).

6.2.1 Short-based semantic classi�cation

In this section we detail the �rst phase of the detection framework. This includes

the formulation of an alphabet set Σ for shot labeling, low-level feature extraction

and shot classi�cation.

6.2.1.1 Short labels set: Σ

Existing work on the educational videos analysis (e.g., [Phung and Venkatesh, 2005,

Phung, 2005a]) has studied the nature of this genre carefully. As noted in [Phung

and Venkatesh, 2005], the axiomatic distinction of the educational genre is in its

purpose: teaching and training. Further, a well-crafted segment that moves view-

ers to actions, or retains a long-lasting message, requires elaborate directing skills 3.

Based on a narrative analysis used in the educational domain and observed rules and

conventions in the production of this media, the authors in [Phung and Venkatesh,

2005] propose a hierarchy of narrative structures at the shot level as shown in Fig.

3We note that the two closest video genre to educational videos is news and documentaries. In

the description of what follows on educational genre, we can spot several similarities across these

genres.
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Figure 6.16: The hierarchy of narrative structures in educational videos proposed in

[Phung and Venkatesh, 2005].

(6.16).

In this work we select the �ve most meaningful structures from this hierarchy for

experimentation. This set Σ includes: direct-narration (DN), assisted-narration

(AN), voice-over (VO), expressive-linkage (EL), and functional-linkage (FL). Direct-

narration (DN) and assisted-narration (AN), referred to jointly as on-screen narra-

tion, refer to segments with the appearance of the narrator. The purpose of these

sections is to speak to viewers with the �voice of authority�, and is commonly used to

demarcate a new topic or subtopic, to clarify a concept or to lead viewers through

a procedure with examples. DN is a more strict form of on-screen narration. It

involves eye-to-eye contact where the narrator speaks to the viewers directly. An

analogy from news video is the anchor-shot. AN refers to parts of the video when

a narrator appears in a more diverse style, and the attention of the viewers is not

necessarily focused on him or her. Here, the purpose is not only to talk to the

viewers, but also to emphasize a message by means of text captions and/or to con-

vey an experience via background scenes. A similar structure from news for AN is
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the reporting shot. Assisted narration can be used both in the introduction of a

topic or in the main body, and thus this structure should be shared4 by both higher

semantics `introduction' and `main body'. As we see later, this knowledge is explic-

itly modeled and incorporated in the design of the topology for the SHSMM. An

important feature is that although the semantics of AN is shared, typical durations

are di�erent when it is used in the introduction or the main body respectively. An

AN section used to demarcate a new topic usually contains only one, and sometimes

two shots, while an AN section used in the main body is typically long, spanning

a number of shots. Conditioning on the parent (i.e., introduction or main body),

the typical duration distribution of the AN section is learned automatically for each

case by our model.

The voice-over (VO) structure is identi�ed as sections where the audiotrack is dom-

inated by the voice of the narrator, but without his or her appearance. The purpose

of these segments is to communicate with the viewers via the narrator's voice. Ad-

ditional pictorial illustration is usually further shown in the visual channel.

Expressive linkage (EL) and Functional linkage (FL) belong to the same broader

linkage group in the hierarchy in Fig. (6.16). The purpose of the linkage structure is

to maintain the continuity of a story line but there is neither on-screen nor voice-

over narration involved. Functional linkage contains transition shots encountered in

switching from one subject to the next. Usually, large superimposed text captions

are used and the voice narration is completely stopped, with possibly music playing

in the background. Expressive linkage, on the other hand, is used to create `mood'

for the subject being presented. For example, in the video presenting the �re safety

topic, there is a segment in which the narration is completely stopped and then a

sequence of pictures of the house on �re is shown. These scenes obviously do not

give any direct instruction, rather they create a sense of `mood' that helps the video

to be more appealing and interesting.

6.2.1.2 Feature extraction and shot classi�cation

The feature set and method for shot classi�cation described in [Phung and Venkatesh,

2005] is employed in this work. The feature set is extracted from both visual and

audio streams at the shot-based level. From the image sequence, we choose to de-

4In terms of parameterization, it is a form of parameter tying.
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tect the frontal faces to re�ect the appearance of the narrator using the CMU face

detection algorithm [Rowley et al., 1998]; and captioned texts as one of the common

means of conveying information in educational videos using the algorithm described

in [Shim et al., 1998]. In order to classify a shot into direct-narration, voice-over,

linkage, etc., further information is sought from the audio stream. Audio features

are computed as the percentage of the following audio classes within a shot: vocal

speech, music, silence, and non-literal sound. A shot is then classi�ed into one of

the elements of Σ = {DN,AN, V O,EL, FL} using the classi�cation framework

reported in [Phung and Venkatesh, 2005]. Since we claim no contribution at this

stage we shall refer readers to [Phung and Venkatesh, 2005] for full details on this

classi�cation scheme.

6.2.2 Experimental Results

6.2.2.1 Data and Shot-based classi�cation

Our dataset D consists of 12 educational and training videos containing di�erent

types of subjects and presentational styles, and thus this constitutes a relatively

noisy set of data. We manually provide groundtruth for these videos with topic

transitions. In some cases, the groundtruth for topic transitions comes directly from

the hardcopy guidelines supplied by the producer.

At the pre-processing stage, Web�ix [Mediaware-Company, 1999] is used to perform

shot transition detection and all detection errors are corrected manually. Since our

contribution from this work is at the semantic level, the latter step is to ensure

an error at the shot detection does not in�uence the performance of the system at

higher levels. Since educational videos mainly contain cut and dissolve transitions,

the shot detection accuracy is found to be very high with rare cases being erroneous.

Given shot indices, each video is processed as described in section 6.2.1, and then

each shot S is labeled as one of the elements of Σ = {DN,AN, V O,EL, FL}.

6.2.2.2 Model topology and parameterization

We will use four models in this experiment: the �at HMM and CxHSMM (as the

baseline cases), the HHMM and the CxSHSMM. The observation space is set to

Σ for every model. We train the �at HMM and CxHSMM with di�erent numbers

of states ranging from 2 to 5, where 2 is intended to be the minimum number of
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states required (like `intro' and `main body') and 5 is the number of alphabets (i.e.,

in the relaxed way that the number of states equates to the number of alphabets).

The semi-Markov version CxHSMM is further parameterized by a 3-phase Coxian

distribution as the duration distribution of the states.

The topology shown in the top of Fig. (6.15) is used to construct the HHMM and

the CxHSMM in this experiment. This topology speci�es Q∗ = 2 states at the top

level where states 1 and 2 correspond to the introduction and the main body of

the topic, respectively. The Markov chain at this level is similar to the �at HMM

used in [Chaisorn et al., 2004] for news story segmentation5. We incorporate the

assumed prior knowledge that a topic usually starts with either direct-narration,

assisted-narration or functional linkage, thus state 1 has {1, 2, 5} as its child set.

Similarly, the main body can contain assisted-narration, voice-over or expressive

linkage, hence its child set is {2, 3, 4}. Here state 2 (assisted narration) is shared

by both parent state 1 (`intro') and 2 (`main body'). The bottom level has 5 states

corresponding to 5 shot labels. To map the labels to the bottom states, we construct

a diagonal-like B observation matrix and �x it, i.e., we do not learn B. The diagonal

entries of B are set to 0.99 to relax the uncertainty during the classi�cation stage.

The duration models in the CxSHSMM are used with M = 3 (3-ph.CxSHSMM)

and M = 5 phases Coxian (5-ph.CxSHSMM).

6.2.2.3 Detection Results

Given the dataset D, our evaluation employs a leave-one-out strategy to ensure an

objective cross-validation. We sequentially pick out a video V and use the remain-

der set {D \ V } to train the model, and then use V for testing. In the results that

follow, this method is used for all cases including the �at HMM, the �at CxHSMM,

hierarchical HMM, and the CxSHSMMs. A topic transition is detected when the

introduction state at the top level is reached during the Viterbi decoding. Examples

of Viterbi decoding with the 3-ph.CxSHSMM and HHMM are shown in Fig. (6.17).

To measure the performance, in addition to recall (RECALL) and precision (PREC)

metrics, we include the F-score (F− SCORE) metric de�ned as:

5They called `transition' and `internal' states instead of `introduction' and `main body'.
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Figure 6.17: Example of Viterbi decoding for the 3-ph.CxSHSMM and the HHMM

for the �rst 45 shots of video `EESafety'. Readers may view these results in accor-

dance with Fig. (5.3) for a clearer picture of the semantics of the DBN structure.

F− SCORE = 2× RECALL× PREC

RECALL + PREC
= 2×

(
1

RECALL
+

1

PREC

)−1

While the recall rate measures how well the system can recover the true topic

transitions, and a high precision ensures that it does not over-segment the video,

the F-score shows the overall performance of the system. The ideal case is when

RECALL = PREC = 100%, F− SCORE = 1, i.e., the highest performance the

system can achieve.

The baseline cases: �at HMM and CxHSMM

Since initialization is crucial during EM learning, we apply multiple random restart

points when conducting the experiments, including a uniform initialization. Al-

though several restarts were used, the �at HMM is found to yield extremely poor

results in all cases. Even when we train and test on the same dataset the �at HMM

still produces poor detection results, proving unsuitable for our topical transition

detection settings.

The �at CxHSMM gives slightly better results than the �at HMM, but still in all
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RECALL (%) PREC (%) F− SCORE (%)

HHMM

Uniform 42.58 81.48 0.559

Random 1 83.23 84.47 0.840

Random 2 83.23 84.87 0.840

Random 3 83.23 84.87 0.840

Random 4 41.29 80.00 0.545

Random 5 83.87 83.87 0.839

3-ph SHSMM

Uniform 84.52 87.92 0.862

Random 1 84.52 88.51 0.865

Random 2 83.87 87.25 0.855

Random 3 84.52 88.51 0.865

Random 4 83.87 87.25 0.855

Random 5 84.52 88.51 0.865

5-ph SHSMM

Uniform 84.52 87.92 0.862

Random 1 83.87 88.44 0.861

Random 2 83.87 88.44 0.861

Random 3 83.87 88.44 0.861

Random 4 83.87 88.44 0.861

Random 5 83.87 88.44 0.861

Table 6.9: Detection Performances for the SHSMMs and the HHMM. Best per-

formance for each case is highlighted in red (we note that best performances are

attained in multiple cases and we select one of them to highlight).

ten runs the performance is still very low (RECALL = 7.74% and PREC = 48% in

the best case). The poor performance of the HMM and CxHSMM is not surprising,

since their forms are too strict to model a rather high level concept - the `topic'.

Furthermore, with the �at structures, they o�er no mechanism to incorporate prior

domain knowledge such as those that we use in the topology of the CxSHSMM and

HHMM. This clearly shows that hierarchical models are much more suitable for

video analysis than the �at ones. Given the poor results in the �at structure cases,

we will omit the HMM and CxHSMM in the discussion that follows.



6.2. Topic Transition Detection in Educational Videos with the SHSMM 195

RECALL (%) PREC (%) F− SCORE (%)

HHMM 83.23 84.87 0.840

3-ph SHSMM 84.52 87.92 0.862

5-ph SHSMM 83.87 88.44 0.861

Table 6.10: Best model selection at detection performances for the SHSMMs and

the HHMM.

Video

TP FP Miss

GTCxSHSMM

HHMM

CxSHSMM

HHMM

CxSHSMM

HHMM

3-ph. 5-ph. 3-ph. 5-ph. 3-ph. 5-ph.

1 - EESafety 10 10 8 1 1 3 3 3 5 13

2 - SSFall 4 3 4 1 1 1 2 3 2 6

3 - ElectS 6 6 6 2 2 1 2 2 2 8

4 - TrainHaz 18 18 20 2 2 2 3 3 1 21

5 - EyeS 10 10 10 0 0 1 0 0 0 10

6 - FootS 10 10 10 1 1 1 1 1 1 11

7 - HKeeping 11 11 11 3 3 3 1 1 1 12

8 - Maintn 9 9 8 1 1 3 4 4 5 13

9 - HandS 9 9 9 1 1 1 1 1 1 10

10 - SBurning 19 19 19 1 1 1 2 2 2 21

11 - HeadProt 6 6 5 1 1 3 1 1 2 7

12 - WeldingS 19 19 19 3 3 3 4 4 4 23

Sum 131 130 129 17 17 23 24 25 26 155

Table 6.11: Detection results for each video in the best performance cases of the

CxSHSMMs and the HHMM (TP: True Positive, FP: False Positive, GT: Ground

Truth).
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Detection with the CxSHSMM and HHMM

The recall rate, precision and F-score for representative runs are reported in Tab.

(6.9), in which the best performances are highlighted in red. The detection results for

each individual video for the best case are shown in Tab. (6.10). With di�erent ran-

dom restarting points, including the uniform initialization, the performance of the

HHMM ranges from poor to very good: 41.29% → 83.23% for recall and 80.00% →
84.47% for precision. On the contrary, both the CxSHSMMs consistently yield good

results: the 3-ph.CxSHSMM has a recall rate ranging from 83.37% → 84.52% and

precision from 87.92% → 88.51%, especially the 5-ph.CxSHSMM returning identi-

cal results across all the 5 di�erent random initializations.

Since testing examples are not used during training, we also report in Tab. (6.10)

the performances of the HHMM and CxSHSMMs in a likelihood-based `best model

selection' scheme. This scheme works as follows. As in the leave-one-out strat-

egy, let V be a video selected from D, and N is the number of times we train

the model using the dataset {D \ V } (i.e., without V ). Let θi(V ) and Li(V )

(i = 1 . . . N) respectively be the learned model and the likelihood (at convergence)

obtained for i-th run. We then use the model θi∗ to test on the unseen video V where

i∗ = argmax
i=1...N

Li(V ). Simply speaking, we sequentially `throw away' a video V , then

select the best model (i.e., highest likelihood) among all runs to test on V . For the

HHMM, the result stays the same as when we choose the best performance based on

the F-score. For the 3-ph.CxSHSMM, the recall stays the same, while the precision

slightly decreases from 88.51% to 87.92%. On the other hand, the 5-ph.CxSHSMM

results are the same as best results in Tab. (6.9) as its performance is una�ected by

random initialization. Both the CxSHSMMs are superior to the HHMM.

Tabs. (6.9) - (6.11) show that the 3-ph.CxSHSMM and 5-ph.CxSHSMM perform

comparably and both are better than the HHMM in both recall and precision rates.

As a result, the F-score improves from 0.840 to 0.861 (3-ph.CxSHSMM) and 0.865

(5-ph.CxSHSMM). While the recall rate improves only slightly, the ∼ 4% improve-

ment in the precision indicates that the HHMM tends to over-segment the video

more frequently than the CxSHSMM. Also, the CxSHSMM is highly stable over ran-

dom initialization while the HHMM's F-score �uctuates from 0.545 to 0.840. This

con�rms our belief that duration information is an important factor in our topic

transition detection settings. The semi-Markov modeling has e�ectively overcome
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the limitation of the strict Markov assumption of {future ⊥ past | present}6} in

the �at HMM, allowing longer temporal dependencies to be captured via the du-

ration of the state. In addition, this experiment con�rms the e�ectiveness of the

Coxian duration model at exploiting the temporary dependency in the data, and

furthermore shows its robustness to initialization.

Nevertheless, given a somewhat more contained set of data used in this experiment,

the results from both the CxSHSMM and HHMM are better than the previous

detection results of news story reported in [Chaisorn et al., 2004] (which came �rst

in TRECVIC2003 testbed) and the heuristics and Bayesian approaches on topic

detection in [Phung et al., 2002, Phung and Venkatesh, 2005]. Thus, it is also worthy

to noting that our experiments not only imply the advantages of the CxSHSMM over

the HHMM, but also show the contribution of hierarchical modeling alone.

6.3 Closing Remarks

In this chapter, we have presented two applications of the SHSMM: the �rst is

for the problem of automatic learning and recognizing human daily activities and

detecting anomalies in activity durations, and the second for detecting topic tran-

sitions in educational videos. Our contributions �rst include the construction of a

robust and computationally e�cient probabilistic framework for ADLs recognition

and segmentation. We also build a novel detection scheme that is capable of de-

tecting deviations in durations of activities - a very subtle form of activity anomaly.

In addition, our novel topic transition detection framework proves to be e�cient in

working with educational videos and is potentially useful for other video types, such

as news and documentaries.

6i.e., the future is conditionally independent of the past given the present



Chapter 7

Conclusion

7.1 Summary

This thesis has presented an investigation into modeling complex temporal data. It

tackles two main inherent properties, namely duration and hierarchy, in a coherent

and uni�ed probabilistic graphical model. These properties arise naturally in many

applications, and our study has focused on two important realms: recognition of

activities of daily living in surveillance videos and high-level segmentation of profes-

sionally made educational videos. The common theme running through this thesis

is the achievement of the discrete Coxian distribution and the integration of tem-

poral and hierarchical inforamtion in our modeling framework and their successful

applications. We start with a theoretical analysis in chapter 3 to address duration

modeling problems in Markov models, while the next two chapters 4 and 5 propose

solutions to this problem and bring together the duration and hierarchical model-

ing tasks under one framework, respectively. The applications of these models are

presented in chapters 4 and 6.

Recognizing that critical to semi-Markov modeling is the choice of distributions to

model state durations, our �rst contribution begins in chapter 3. It revises and

re-represents existing modeling choices, being either discrete or continuous, in the

HSMM under the same DBN representation. This study helps to shed light on

the computation involved and shows that computational cost scales in order of the

maximum possible duration and could grow unmanageable in many cases. It also

brings to attention the problem of numerical instability for parameter estimation if

continuous distribution is used.

198
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This motivates us to the novel use of Coxian distribution, a mixture of geometric

distributions ordered in phases, presented in chapter 4. The choice of Coxian has

proven to be a good answer in many cases: it is dense in the �eld of non-negative dis-

tributions, and thus very �exible; it has analytical solutions for learning; it possesses

a low number of parameters; and most importantly inference complexity does not

depend on duration lengths but instead on the number of phases, which is typically

much smaller.

Chapter 4 constitutes the �rst key theoretical contribution in the thesis. It intro-

duces the Coxian duration Hidden Semi-Markov Model (CxHSMM) together with a

full analysis, including its dynamic Bayesian network representation, inference and

maximum likelihood estimation using EM. To make the CxHSMM more applicable

to address real-world problems, we have also addressed how inference and learning

can be achieved when there are missing observations (i.e. intermittent losses in

tracking data) and when some part of the state sequence can be observed, for ex-

ample, via the availability of other sensory data. We then presented an application

of the CxHSMM to learn and recognize a set of behaviors in a smart home. We

evaluated it against existing models (Geometric, Multinomial, Poisson and Inverse

Gaussian). The results indicate that performance is greatly improved from explicit

modeling of a state lifetime. In addition, our Coxian modeling is consistently su-

perior to the Poisson and Inverse Gaussian cases. It further achieves a comparable

performance with the Multinomial, whilst gaining a substantial improvement in

computation time, which is a constant proportional to the maximum observation

length. Our experiment ran approximately 25 times faster with the CxHSMM, but

this factor could be much more in larger scales.

In addition to being sequential, latent structures found in real data are often re-

cursive and hierarchical. This observation motivates the next theoretical contri-

bution presented in chapter 5. In this chapter we introduce a novel and tractable

form of stochastic model, termed the Coxian Switching Hidden Semi-Markov Model

(CxSHSMM), that incorporates both duration and hierarchical modeling. The

CxSHSMM has a shallow structure: the bottom layer can be viewed as a con-

catenation of many CxHSMMs, each initiated by di�erent top-layer states switching

in a Markovian manner. An important feature is that each child CxHSMMs at the
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lower can share multiple parental states at the top while its duration model can

be parameterized conditionally on the parent. This results in parameter compact-

ness, and more importantly, reduces training sample complexity greatly � a similar

advantage achieved by structure sharing in the HHMM presented in [Bui et al.,

2004]. When duration distributions other than the Coxian are used, this modelling

process reduces to a normal Switching Hidden Semi-Markov Model (SHSMM). We

formalize inference and parameter estimation for these models under di�erent set-

tings and again point out the advantage of the Coxian parameterization. Finally,

notwithstanding shallow structures, we note that deep hierarchical models could

potentially be useful in some other applications (e.g., game simulation and parsing

in natural language processing). We, thus, show how our models can be extended

to full hierarchical hidden semi-Markov models of arbitrary depth and discussed

relevant inference methods, in particular, the use of the Asymmetric Inside/Outside

algorithm when the depth is high.

The latter part of this thesis presents our application contributions, organized in

chapter 6. The �rst part is a framework for learning, segmenting, recognizing and

detecting anomalies in activities of daily livings (ADLs) in the smart home environ-

ment using the CxSHSMM. States at the bottom layer are used to represent atomic

activities (such as cooking-at-the-stove) while the top level represents �ner activi-

ties made of sub-activities (such as preparing-breakfast). Prior domain knowledge

is further incorporated into the structural topology of the model. The �rst experi-

ment is carried in a standard supervised setting: models for complex ADLs are �rst

learned from unlabeled data and later used to segment and recognize activities on-

line. Again, it is shown empirically that hierarchical modeling, but without duration,

as in the standard HHMM performs much worse than the proposed CxSHSMM. In

addition we observe that the CxSHSMM delivers a more robust performance across

activities (e.g. as compared with the Multinomial duration SHSMM). This may be

attributed to the fact that our modeling is more compact in the parameter and thus

less sensitive to initialization and data variations.

Detection of abnormalities is important from a surveillance perspective and is ad-

dressed in our next experiment. In particular, we focus on the duration aspect of

anomalies, which is more subtle and harder to detect, but important in the elderly-

care domain. We believe that this kind of abnormality is yet addressed explicitly
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in the literature. Our detection scheme is built on top of the previous `normal' ac-

tivity recognition framework where trained models on normal data are utilized and

adapted for the tasks. Our framework o�ers the following advantages: the ability to

automatically infer models for abnormal behaviours from the learned normal mod-

els, hence there is no need to train on abnormal data, and thus be able to deal with

the scarcity of negative training data as abnormalities are rare and varied; a general

abnormal model is generated for each activity class, thus preventing the network

from continuing to grow by adding new abnormal models for any unseen data; and

the ability to detect when the abnormal activities return to normality, therefore

minimizing false alarms.

Our last experiment in the ADL domain is to tackle more challenging scenarios

including lossy observations (occlusion, out of camera view, etc.) and overlaps in

activities' trajectories1, and we set out to automatically learn, segment and classify

a richer set of activities in sequences. The experiment shows that the CxHSMM can

robustly handle lossy data (35% of observations missing) and overlapping activities,

delivering an average recognition accuracy of 91% with the help of a small amount

of labels (as little as 4%) supplied in training.

Chapter 6 continues to explore the CxSHSMM in a di�erent domain, but related

modeling issues: segmentation of educational video into topical units. In this frame-

work states at the bottom layer are mapped into shots while states at the top layer

represent higher-order semantics such as introductions or main body sections of a

video segment about a particular topic. We evaluate the CxSHSMM against di�er-

ent modeling issues including no hierarchy with duration (�at HSMM) or without

duration (�at HMM) and hierarchy without duration (HHMM). As expected the

�at structure has delivered relatively poor results. The CxSHSMM detects topic

transitions most accurately (88.44% precision achieved with 5-ph.CxSHSMM), even

though the HHMM also delivers a relatively good performance. This result demon-

strates that the modeling of duration, together with hierarchy, is a powerful tool

in the extraction of higher level semantics. In addition, although the experiments

are carried out on educational and training �lm genres, the method can easily be

applied to other genres. We believe that the promise of the approach lies in its uni-

�ed probabilistic handling of temporal properties and shared hierarchical structures,

1Overlap is shown by the excessive share of common child states in the CxSHSMM topology.
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allowing it to handle long video sequences with inherent variability and complicated

semantics. Finally, our last important remark is that under di�erent settings in all

our experiments in both activity recognition and topic detection domains, the Cox-

ian duration models deliver good performances whilst requiring a relatively small

number of phases (e.g. 5 phases) and thus saving huge computational costs. Thus,

Coxian modeling is a promising choice for real-life deployments in the concerned

domains and potentially for many other applications.

7.2 Future work

Opportunities for further work lie in several directions. From a theoretical point of

view, some extensions stand out. One is to address interleaved executions in activity

modeling. It is common in daily life that we often pursue multiple plans concur-

rently. That is to suspend the current activity, start on a new one, then come back

to the previous activity at a later point. For example, cooking can be interrupted by

a phone call. This problem is known to be di�cult and little work has been done.

In [Avrahami-Zilberbrand et al., 2005], agents are allowed to have interleaved plans,

but learning of either plan durations or interleaving is not supported. The work in

[Marhasev et al., 2006] is somewhat related to this issue by allowing non-stationary

transition modeling, but nonetheless still su�ers from the huge number of parame-

ters required. The biggest challenge in handling interleaving is perhaps the expense

of modeling and computational cost because as soon as suspension happens, infor-

mation for the entire current execution needs to be stored for later resumption. By

having fewer parameters and computational e�ciency, we speculate that the Coxian

distribution can be a good candidate for this task. For example, instead of putting

the entire state information of the interrupted activity on the stack for later resump-

tion, we may only need to remember the `phase' at which the activity is interrupted.

That could be the current phase of Coxian distribution (as an indication of time

spent) associated with the interleaving activity. When resuming, the activity only

needs to return the next phase of its execution. In fact, it would be interesting to

see the work of [Avrahami-Zilberbrand et al., 2005] and [Marhasev et al., 2006] to

extend in this direction.

Shallow hierarchical modelling has proven to work well in this thesis for the ap-

plications of activity recognition and video segmentation. However, as mentioned
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earlier, deep hierarchical probabilistic models can potentially be useful in some par-

ticular domains, in particular, in computer simulation, such as to simulate moving

behaviours of an agent whose plan is decomposed in deep hierarchy, or the problem

of parsing in natural language processing. Since the HHMM can be shown as a spe-

cial kind of stochastic context free grammar (SCFG) with bounded stack [Phung,

2005b], our full hierarchical hidden semi-Markov models presented in chapter 5 can

also be represented as a form of SCFG, but clearly richer than that of the HHMM.

This raises a very interesting question since, to our knowledge, no work has ad-

dressed duration modeling with tractable computation and numerical stability. An

exception is the recent work of the dynamic conditional random �eld (DCRF) for

text parsing and chunking in [Sutton et al., 2007] which can potentially incorpo-

rate duration information. But the DCRF is parameterized as undirected graphical

models and duration distribution is hard to learn, in addition, it lacks probabilistic

interpretation. An application of our theoretical development in section 5.6 could

potentially be attractive for the natural language processing community.

Our current setting in this thesis is essentially non-Bayesian. Even though we have

shown empirically via cross-validation model selection that a small number of phases

in the Coxian is often su�cient for our experiment, more robust schemes can be de-

veloped by further `smoothing' the model by going Bayesian, very similar to Bayesian

extension made to the standard HMM in [Beal, 2003]. Essentially, the parameters

are further endowed with conjugate prior distributions and are integrated out dur-

ing inference to achieve embedded smoothing behaviours, making it more robust

against over�tting. However, this is done at the cost of losing tractability for exact

inference. However, approximate inference such as Gibbs sampling or variational as

presented in [Beal, 2003] can still be applied. Such Bayesian extension would expect

to deliver a better version of the Bayesian HMM in [Beal, 2003].

Finally, we are particularly interested in seeing the direct applications of the CxHSMM

and CxSHSMM in three domains: speech processing, computational biology and

desktop activity recognitions. Speech recognition has been a holy-grail in research

and it is well known that the state-of-the-art modeling choice is the HMM and its

semi-Markov extension. It has been reported that semi-Markov extension delivers

more robust solutions than the HMM in various speech recognition tasks. How-

ever, as we have mentioned repeatedly, computation hinders its applicability. Our
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CxHSMM can be an excellent replacement for this task. Secondly, there is a recent

surge in modeling biological data with the HMM [Durbin, 1998, Koski, 2001] and

good results have been reported. But, again, these schemes have di�culty with

capturing long-range correlations, which is often the case in biological data. It is

natural to wonder how our modeling would help improving modelling accuracy in

this domain. Lastly, activities on the desktop are closely aligned to the work done in

the thesis. The recent CALO project2 is an example of the need for recognizing and

detecting `outlier' activities performed on the desktop [Stumpf et al., 2005]. Our

models are again particularly attractive for this domain since human behaviours on

the desktop often have peculiar duration distribution, e.g., checking emails would

be much shorter than composing a talk slide. Activities are also often interleaved;

for example, we often pause to read an email or surf the web for information while

programming.

2http://caloproject.sri.com/



Appendix A

Data Collection and Observation

Model

Generally there are two steps in a complete activity recognition framework. The

�rst step involves activity tracking and data conversion. That is to detect the oc-

currence of activities via the use of video cameras or various sensors and algorithms

to convert the sensory data to appropriate features. The next step is activity anal-

ysis on the feature data and includes modeling, synthesis, prediction, recognition

and anomaly detection. Since the focus of this thesis lies in the second step (i.e.

modeling, recognition and anomaly detection), we brie�y describe the distributed

surveillance system used for data collection in our work as well as the interface be-

tween this low level tracking module and our high-level activity recognition scheme.

The distributed tracking system, developed by [Nguyen, 2004b], is chosen for data

collection because of its reliability, low cost and its availability. The tracking module

consists of cheap static cameras positioned at ceiling corners of the kitchen environ-

ment (dubbed the vision laboratory in [Nguyen, 2004b]). Each camera has a Camera

Processing Module (CPM) connected to a Central Module (CM). The CM maintains

an in-the-scene object database and coordinates di�erent CPMs. The CPM �rst per-

forms a blob segmentation by background subtraction and then tracking. At each

time slice the CM receives the matched blobs and tracked states output from the

CPM to form trajectories of tracked objects. When an object is in the overlapping

of di�erent cameras' �eld of views (FOVs), the CM correlates the tracking between

CMPs by choosing the most suitable camera to track. That is the nearest camera

to the object that provides a non-occluded view. When an object is lost (whether
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due to occlusion or out of cameras' FOVs), a matching procedure is performed at

the CM to recover the track.

Nguyen [Nguyen, 2004b] also speci�es a compressed observation model for each

camera from manually labeled ground truth, which is to serve as an interface between

the tracking module and the high-level activity recognition module. Assuming the

statistics are spatially invariant, a compressed observation model for camera C is a

3 × 3 matrix Bo | s = Pr (o | s, C), in which o is the tracked position returned by

the tracking system and s is the true position.

Bo|s =

 Pr (onorthwest | C) Pr (onorth | C) Pr (onortheast | C)

Pr (owest | C) Pr (ocenter | C) Pr (oeast | C)

Pr (osouthwest | C) Pr (osouth | C) Pr (osoutheast | C)


where Pr (onorthwest | C) is the probability that the tracked location falling into the

north-west region of the true location and so on. The environment �oor is divided

into grids of 1m2 squared cells, and the observation model is obtained by comparing

100 coordinate samples returned from the tracking system with the manually ac-

quired true positions. We observe that the di�erences between observation models

of di�erent cameras are not very noticeable, hence, the observation model employed

in this thesis is simply the average of those associated with the used cameras. It

provides emission probabilities of the production layer (the lowest semi-Markovian

layer) in our high-level activity recognition module, and is not updated during learn-

ing.

Apart from using cameras (e.g. [Grimson et al., 1998, Zhong et al., 2004, Du et al.,

2006, Cheng et al., 2006]) like us, current work on tracking employs various kinds

of sensors ranging from GPS [Liao et al., 2004] to simple and ubiquitous sensors

including pressure mats, contact switches, heat sensors, current sensors, and break-

beam sensors [Wilson, 2005]; or wearable sensors like accelerometers [Huynh et al.,

2007] and RFID [Wyatt et al., 2005]; or sensors for detecting user's ambient condi-

tions such as humidity and temperature[Wang et al., 2007]. Our high-level activity

recognitions scheme is able to incorporate new knowledge from various sensory in-

formation if available by extending the observation model. In addition, readings

from cameras and other sensors are commonly subjected to intermittent lost sig-

nals, however, as shown in experiments our models are also capable of e�ectively

handling data with missing observations.
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