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Abstract

Introduction In previous studies carried out in our laboratory,
abile acid (BA) formulation exerted a hypoglycaemic effect in
a rat model of type-1 diabetes (T1D). When the antidiabetic
drug gliclazide (G) was added to the bile acid, it augmented the
hypoglycaemic effect. In a recent study, we designed a new
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formulation of gliclazide-cholic acid (G-CA), with good struc-
tural properties, excipient compatibility and exhibits
pseudoplastic-thixotropic characteristics. The aim of this study
is to test the slow release and pH-controlled properties of this new
formulation. The aim is also to examine the effect of CA on G
release kinetics at various pH values and different temperatures.
Method Microencapsulation was carried out using our Buchi-
based microencapsulating system developed in our laboratory.
Using sodium alginate (SA) polymer, both formulations were
prepared: G-SA (control) and G-CA-SA (test) at a constant
ratio (1:3:30), respectively. Microcapsules were examined for
efficiency, size, release kinetics, stability and swelling studies
atpH 1.5, pH 3, pH 7.4 and pH 7.8 and temperatures of 20 and
30 °C.

Results The new formulation is further optimised by the ad-
dition of CA. CA reduced microcapsule swelling of the mi-
crocapsules at pH 7.8 and pH 3 at 30 °C and pH 3 at 20 °C,
and, even though microcapsule size remains similar after CA
addition, percent G release was enhanced at high pH values
(pH 7.4 and pH 7.8, p<0.01).

Conclusion The new formulation exhibits colon-targeted de-
livery and the addition of CA prolonged G release suggesting
its suitability for the sustained and targeted delivery of G and
CA to the lower intestine.

Keywords Artificial-cell microencapsulation - Diabetes -
Bile acid - Gliclazide
Introduction

Diabetes mellitus is a metabolic disorder classified as type 1
(T1D) or type 2 (T2D). T1D is an autoimmune disease marked
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by the destruction of the (3-cells of the pancreas resulting in a
partial or complete lack of insulin production and the inability
of the body to control glucose homeostasis [1]. T2D develops
due to genetic and environmental factors that lead to tissue
desensitization to insulin [2]. Despite strict glycaemic control
and the fact that new and more effective antidiabetic drugs are
continuously appearing in the market, diabetic patients still
suffer from the disease and its complications. Antidiabetic
drugs are effective in minimizing variations between peaks
and troughs of blood glucose levels in diabetic patients. Com-
mon antidiabetic drugs include sulphonylureas, such as
glipizid that enhances insulin production and improve insulin
sensitivity, and bigvanides such as metformin which reduces
glucose production in the liver and low-density lipoprotein.
However, the risks of hypoglycaemia and toxin build up in the
gut remain as major issues associated with diabetes especially
in the presence of compromised liver and kidney functions
[3]. Some drugs used for T2D, such as gliclazide (G), have
beneficial extrapancreatic effects that include antiplatelet, an-
tiradical and antioxidants effects, so some T2D patients con-
tinue to use gliclazide (G) after the loss of insulin secretion
since it provides better glycaemic control than insulin alone
[4-6]. In addition, the slow release kinetics of G formulation is
favourable in order to prevent a sudden increase in blood
glucose level after food intake. Thus, despite the availability
of slow release G formulations, its PK and PD parameters in
diabetic patients remain variable [7, 8].

In previously published work, significant changes in the
gut segmental pH and the composition and amount of luminal
bile acids (BAs) have been shown to alter the oral absorption
characteristics of G [9, 10]. BAs are naturally produced in
humans and, recently, have shown great potential in the treat-
ment of diabetes [10]. Recent studies in our laboratory dem-
onstrate significant hypoglycaemic and antidiabetic activities
of G-BA formulations [11-13]. In order to design a novel and
stable oral delivery system for the targeted delivery of G and
optimise its efficacy through the incorporation with BAs, a
suitable polymer-based matrix is needed [14, 15].

Sodium alginate (SA) is a biodegradable polymer with
desirable biocompatible, biodegradable, hydrophilic and pro-
tective properties and have shown great stability, compatibility
and delivery potentials in various targeted delivery slow re-
lease formulations [16, 17]. The properties of the alginate vary
from one species to another and it depends on its origin [18].
Accordingly, the variability in its physical characteristics,
being a natural polymer, in terms of viscosity, molecular
weight, biocompatibility and other properties, can impact its
functionality in a formulation and drug release profile. This is
anticipated to have an impact on our formulation and has been
thoroughly investigated to select a specific alginate polymer
for best outcome in terms of stability and release studies [19].

SA has well-established pH-release kinetics and is signifi-
cantly influenced by the viscosity of its matrix [20]. Recent

studies have demonstrated a faster and well-controlled drug
release from the low-viscosity SA (LVSA) compared with
high-viscosity SA (HVSA) suggesting superior performance
of LVSA especially when targeting distal sites of the GIT such
as the cecum [21].

pH is known to significantly influence the physicochemical
properties of LVSA [22], thus, this should be examined when
designing a new G-CA-SA formulation. In gastric fluid, the
hydrated LVSA is converted into a porous, insoluble acid
matrix. Theoretically, alginate shrinks at low pH and the
encapsulated G and CA are not released. Once passed into
higher pH of the GIT, the alginic acid matrix is converted to a
soluble viscous layer. In our recently published work, a basic
formulation of G-CA-SA was absorbed poorly from the ileum
of diabetic rats [11] suggesting a great potential for a new and
enhanced absorption when targeting the cecum using LVSA.
Since LVSA is substantially influenced by the change in pH
[22], the newly designed formulation should be tested for drug
release at various pH values. We have also shown that various
formulations of bile acids and G have great potential in the
treatment of T1D [9, 11]. Accordingly, a successful oral
delivery system needs to be developed which consists of G
formulated in a pH-controlled LVSA biodegradable polymer
mixed with the bile acid, CA, using artificial-cell microencap-
sulation (ACM) technology (Buchi-based microencapsulating
system) which we optimised in our laboratory. Parameters
were set in frequency range of 1,000—1,500 and a flow rate
of 4 ml/min under consistent air pressure of 1.5 bar. A newly
designed formulation of LVSA microcapsules containing G
and the CA has been recently produced and characterised
(unpublished data). These new microcapsules exhibit good
microcapsule morphology and rheological parameters suitable
for oral delivery. Accordingly, this study aims at
characterising this formulation and examining the effect of
CA on G release kinetics at various pH and temperature
values.

Materials and Methods

Materials

Gliclazide (99.92 %), low-viscosity sodium alginate (99 %)
and cholic acid (98 %) were purchased from Sigma Chemical
Co, USA. Calcium chloride dehydrate (98 %) was obtained
from Scharlab S.L, Australia. All solvents and reagents were
supplied by Merck (Australia) and were of HPLC grade and
used without further purification.

Drugs Preparations

Stock suspensions of G (20 mg/ml) and CA (1 mg/ml)
were prepared by adding the powder to 10 % ultra
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water-soluble gel. The CaCl, stock solution (2 %) was
prepared by adding CaCl, powder to HPLC water. All
preparations were mixed thoroughly at room tempera-
ture, for 4 h, stored in the refrigerator and used within
48 h of preparation.

Preparation of Microcapsules

Microcapsules of G-loaded low-viscosity sodium algi-
nate (LVSA) were prepared using our Buchi-390-based
microencapsulating system. Polymer solutions containing
SA and G with or without CA were made up to a final
concentration (of G-CA-SA) in a ratio of 1:3:30, respec-
tively [9, 11]. Microcapsules were collected from our
microencapsulating system, and for each formulation,
three independent batches were prepared and tested sep-
arately (n=3). All microcapsules (unloaded microcap-
sules, G-loaded microcapsules and G-CA-SA-loaded mi-
crocapsules) were prepared and treated in the exact
same way. Microcapsules were dried by using the sta-
bility chambers (Angelantoni Environmental and Climat-
ic Test Chamber, Italy). The weight of the recovered dry
particles was recorded, and the G contents, production
yield, the microencapsulation efficiency, zeta potentials
and mean particle size of each preparation were all
measured and compared, as described below.

Calculated amount of G in the microcapsules

Characterization of Loaded Microcapsules

Drug Content, Production Yield, Microencapsulation
Efficiency and Stability Studies

Drug Content, Production Yield and Microencapsulation
Efficiency One gram of microcapsules were carefully
weighed, ground and dissolved in 200 ml of phosphate buffer
(pH 7.8), and the suspension was stirred by a magnetic stirrer
for 6 h. Two millilitres of the solution was transferred to a
100 ml flask and diluted with phosphate buffer (vehicle) to
100 ml. Aliquots of the dissolution medium (2 ml) were
withdrawn at predetermined time points (every 200 s) and
filtered through Millipore, 0.22 um filter. Amount of dis-
solved drug was determined spectrophotometrically at
229 nm against the buffer as blank [23, 24]. The measure-
ments were performed under sink conditions, and average
values were calculated. Validated method for UV-G analysis
was developed [25] for both formulations, G-SA and G-CA-
SA, and method’s accuracy and precision was confirmed
using previously published HPLC methods [11]. Absorbances
were measured using UV spectrophotometer (Shimatzu UV—
Vis spectrophotometer 1240, Japan). G concentrations were
calculated from the calibration curve. All analyses were car-
ried out in triplicate (n=3). We calculated the drug contents,
production yield and microencapsulation efficiency from the
following equations [26]:

%D tent =
pLTug comien Total weight of microcapsules

Total weight of the microcapsules

%Production yield =
oProduction yie Total weight of the polymers

Drug content
eoretical content

%Encapsulation efficiency = T 100

x 100 (1)

x 100 (2)

(3)

Physical and Chemical Stability The stability test was carried
out by placing predetermined amounts of freshly prepared
microcapsules onto sterile petri dishes (30 microcapsules in
each) and storing them in thermostatically controlled ovens at
—20, 5, 25 and 40 °C with relative humidity set at 35 % for
3 days. The experiment was conducted using stability cham-
ber as described above. A temperature and humidity regulator
was used to ensure constant experimental conditions. At the
end of the experiment, the microcapsules were analysed for
any changes in appearance and for the determination of the
amount of drug remaining in each formula using a validated
UV-Vis stability-indicating method. Briefly, the dosage forms
were crushed and dissolved in 200 ml phosphate buffer at pH
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7.8. The solution was filtered and the first 20 ml of the solution
was removed, and 10 ml of'the filtrate was diluted to 100 ml in
a volumetric flask. One-millilitre aliquot of the prepared solu-
tion was transferred to a 10-ml volumetric flask, and the
volume was completed with the buffer. A calibration curve
was constructed for G in phosphate buffer across the concen-
tration range of 0.1 to 40 mg/ml with R*=0.99 (data not
shown).

Zeta Potential and Size Analysis To determine the electroki-
netic stability and size uniformity of the microcapsules in the
colloidal system, zeta potential and size distribution for the
microencapsulated formulations of G-SA and for G-CA-SA
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were measured by photon correlation spectroscopy using a
Zetasizer 3000HS (Malvern Instruments, Malvern, UK) and
by Mie and Fraunhofer scattering technique using Mastersizer
2000 (Malvern Instruments, Malvern, UK). The measure-
ments were performed at 25 °C with a detection angle of
90", and the raw data were subsequently correlated to Z
average mean size using a cumulative analysis via
OmniSEC-Zetasizer software package. Each sample was mea-
sured 10 times. All analyses were performed on samples
appropriately diluted with filtered deionized water. All deter-
minations were performed in triplicate. Results are reported as
mean+SD.

Drug Release Studies (In Vitro Dissolution Test)

A weighed sample (2 g) of G- and CA-loaded microcapsules
were suspended in 200 ml of phosphate-buffered solution at
pH values of 1.5, 3, 7.4, and 7.8 for 2 h, as appropriate. The
dissolution medium was stirred at 200 rpm. Sink conditions
were maintained throughout the assay period. All the experi-
ments were carried out at 25 °C. All absorbances of the
solution were measured every 200 s using our Hewlett-
Packard-based time-controlled UV-Spec mounted with
close-loop flow system. All analyses were carried out in
triplicate (n=3).

Swelling Studies

To determine the swelling properties of the microcapsules,
50 mg dry microcapsules were weighed and placed in 20 ml of
two pH values (3 and 7.8) and two temperatures (20 and
30 °C) for 6 h. The choice of two temperature points were
based on previously published work and a 10° difference
needed for comparison [27, 28]. The swollen microcapsules
were then removed at periodically predetermined intervals
(hourly). The wet weight of the swollen microcapsules was
determined by blotting them with filter paper to remove
moisture adhering to the surface, immediately followed by
weighing on an electronic balance. All experiments were done
in triplicate. The percentage of swelling of the microcapsules
was calculated from the following formula [26]:

Final weight

Weight ratio = —————— X
CIEM A0 = Titial weight

100 (4)

Statistical Analysis

Values are expressed as means+SD. Drug content, production
yield and microencapsulation efficiency were assessed using
Student’s ¢ test. Statistical comparisons between gliclazide
concentrations in different microencapsulated formulations

were carried out by repeated measures analysis of variance
(ANOVA) using each formulation excipients as fixed terms.
Swelling studies were assessed using two-way ANOVA to
assess the main effects of microcapsule formulation and pH
and their two-way interaction. Tukey HSD post hoc compar-
ison of means was done only when the associated main effect
or interaction was statistically significant. The best fit model
was derived using GraphPad Prism software (v6; GraphPad
Software, Inc., USA). Statistical significance was set at
p<0.05. For all statistical analysis, the program SPSS (IBM
SPSS, version 20, USA) was used.

Results and Discussion

Drug Content, Production Yield, Microencapsulation
Efficiency and Stability Studies

As shown in Table 1, the results for percentage drug content of
initially added drug for both formulations revealed consistent
drug-microcapsule content with very low variations. As ex-
pected, there is less G in the G-CA-SA microcapsules com-
pared with G-SA microcapsules (p=0.04). The total produc-
tion yield of G-SA and G-CA-SA microcapsules prepared
ranged from 78 to 90 % with no significant difference between
both formulations. Good levels of G-loading
(microencapsulation) efficiency were achieved for all micro-
capsules, with values averaging 90+10 %.

Stability, Zeta Potential and Size Analysis

Accelerated stability studies were carried out over a 3-day
period, testing both formulations at —20, 5, 25 and 40 °C and
relative humidity at 35 %. Upon visual examination, both
formulations (G-SA and G-CA-SA) retained their original
morphological characteristics (sphericity and homogenous
particle size distribution) across the experimental conditions.
However, there were some changes in the colour, overall size
and quality of the microcapsule surfaces at higher tempera-
ture. Specifically, at =20 °C, microcapsules retained their
original size and some had formed agglomerates which were
easily re-dispersed. At this temperature, microcapsules were
white and spherical and had retained their original quality (soft
and flexible). At the higher temperatures, the microcapsules
changed colour due to oxidation of the alginate from cream to
orange at 5-25 °C and brown at 40 °C, and whilst retaining
their spherical changes and even homogenous particle size
distribution, they had shrunk in size by 50 %, with the smallest
microcapsules being at the highest temperature of 40 °C. This
may be explained by the loss of moisture content, reducing the
overall surface area and volume of each microcapsule. In
addition, the microcapsules at all temperatures (except at
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Table 1 Drug contents, production yield, encapsulation efficiency, zeta potential and mean particle size (n=3)

Formulation = Formula composition Drug content  Production Encapsulation Zeta potential ~ Mean particle size
code (%)+SD yield (%)£SD efficiency (%)+SD  (mV)=SD (um)=SD
G-SA Gliclazide-low-viscosity sodium 54+0.2 8345 95+7 —66+1.6 900+1
alginate microcapsules
G-CA-SA Gliclazide-cholic acid-low-viscosity ~ 3+0.1" 8446 83+6 —46+1 938+1
sodium alginate microcapsules
" p<0.05

—20 °C) had become harder and more brittle owing to loss of
moisture within the microcapsules.

Upon UV analysis, the amount of G remaining in freshly
prepared microcapsules revealed an average percentage drug
content compared with initially added drug of five for G-SA
microcapsules and three for G-CA-SA (Table 1). This
complemented the visual characterisation of the microcap-
sules following accelerated stability testing and confirmed
uniformity of drug contents and is in line with the used drug:
polymer ratios (G-SA 1:30 and G-CA-SA 1:3:30). Neither
any peaks for a biodegradable polymer nor any alteration of
the chromatographic pattern of G was observed, indicating
that the experimental conditions for the microencapsulating
process did not compromise drug analysis. Furthermore, the
results of the drug content and encapsulation efficiency
showed minimum variation among repeated samples which
confirms the reproducibility and of our developed microen-
capsulation method.

The dispersion of microcapsules is stable as shown by zeta
potential values ranging from —45 to —68 mV, whilst the mean
particle size remained within a narrow range of 900-939 pm
suggesting significant uniformity in the size distribution of the
microcapsules and no significant difference after the incorpo-
ration of CA to G-microcapsules (Table 1).

Drug Release Studies and In Vitro Dissolution

Gliclazide release from the microcapsules was studied in
triplicate across 4 pH values (1.5, 3, 7.4 and 7.8) at 20 °C
using both formulations G-SA and G-CA-SA. However, it is
worth stating that, another approach would have been to use
gradient pH medium which will also give improved findings.
pH values were chosen based on our previous studies exam-
ining best sites of drug absorption in the GIT [9, 11, 13,
29-32]. The release of G was slower and largely dependent
on both the pH and the composition of the coating. As shown
in Figs. 1 and 2 and Table 2, G release was smaller at low pH
values (1.5 and 3) and the bile acid coating in the G-CA-SA
formulation allowed for a slower rate of drug release. As
expected, the release of G was increased at higher pH values
(especially at pH 7.8) for both formulations. Notably, at pH 7.4
and 7.8, more than 80% of the G was released in the first hour
(3,600 s) at pH 7.4 (Fig. 2) (and similar or higher amounts
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were released at pH 7.8 (Fig. 1) for the formula coded G-CA-
S4). This has important ramifications for diabetes therapy, as
previous work in our laboratory has confirmed the distal ileum
as the intended site of G absorption where pH values are in the
range of 7-7.8 [9, 11, 13, 15, 30-32]. Our results demonstrate
that the CA-reinforced microcapsules stipulated controlled
drug release at the targeted pH of 7.8.

The mechanisms responsible for such differences in the
release profiles are affected by the pH of the medium. At low
(stomach) pH, the hydrated SA is modified to a porous struc-
ture known as alginic acid skin [9, 11, 13, 15, 30-32]. This
insoluble structure results in the shrinkage of alginate and thus
encapsulated drugs are not completely released [24]. However
at higher pH (intestine) such as the distal end of the small
intestine, the alginic acid forms a soluble viscous layer due to
the rapid dissolution and solubilisation of the alginate matrix
resulting in the burst of encapsulated drugs [19, 24]. As
evident from the G-SA dissolution graphs (Figs. 1 and 2), this
release profile is not in a sustained, controlled pattern and may
result in reduced bioavailability of G.

Whilst there is substantial evidence regarding bile salt-
reinforced microcapsules used to ensure controlled drug re-
lease from microcapsules, little is known about the incorpora-
tion of bile acids rather than bile salts in the
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Fig. 1 Gliclazide release over time from G-SA and G-CA-SA micro-
capsules at pH 1.5 and pH 7.8
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Fig. 2 Gliclazide release over time from G-SA and G-CA-SA micro-
capsules at pH 3 and pH 7.4

microencapsulation formulation [24, 33—35]. In this study, the
bile acid cholic acid was used. In our previous work, we used a
similar formulation (without microencapsulation) and have
shown an antidiabetic effect in an animal model of type-1
diabetes [9, 11, 13, 15, 30-32, 36]. We have also shown
through ex vivo studies that the cholic acid derivative does
enhance G permeation through the ileal mucosa of diabetic
rats [9, 11, 13, 15, 30-32].

Our dissolution and release studies using microcapsules
from both formulations may provide an explanation as to
why the CA derivative has improved the G absorption through
theileum [9, 11, 13, 15, 30-32]. We therefore hypothesize that
the bile acid, CA, reinforces the soluble polymer alginate
matrix by such that rapid burst of drug is evaded at higher
pH values, and this brings about a partial prolonged release
targeting the lower intestine facilitating better absorption and
less gut metabolism. However, due to the fact that in our
previous work, we did not microencapsulate our G-CA-SA
formulation, the improvement of G permeation by CA was
rather limited. Additionally, unlike bile salts which contain
both hydrophilic and hydrophobic ends due to their zwitter-
ionic structure, bile acids lack good solubility and, thus, resist
greater dissolution and solubilisation at higher pH values
whilst retaining cross-linking (ionotropic bridging) with the

Table 2 Statistical analysis of Figs. 1 and 2

Group comparison pH p values
% G-SA pH 7.8 (control) % G-CA-SA pH 7.8 7.8 0.042
% G-SA pH 1.5 (control) % G-CA-SApH 1.5 1.5 0.068
% G-SA pH 7.4 (control) % G-CA-SA pH 7.4 7.4 <0.001
% G-SA pH 3 (control) % G-CA-SA pH 3 3 0.79

alginate formulation of the microcapsules [9, 11, 13, 15,
30-32, 36-39]. It is worth stating that a limitation to our
findings is that the release of the microcapsules was studied
over a period of only 2 h at each particular pH value. Having
said that, our results provide some explanation to our pub-
lished work, where a G-bile acid mixture produced small but
significant increase in the release kinetics and absorption of G
in diabetic rats [11]. In addition, the results suggest that a
LVSA-microencapsulated G-CA-SA formulation produced
using a 1:30 ratio exhibit a slow release and optimum G
delivery in pH 7.8 at 30 °C. One of the potential advantages
of using bile acids over bile salts is that they are far less
soluble whilst still forming cross-links with the matrix and
help to stabilise the membrane from rapid disintegration, as
shown in Figs. 1 and 2 and Table 2. Accordingly, this formu-
lation is promising as a platform for antidiabetic drug delivery.

Swelling Studies

Figures 3 and 4 and Table 3 show that the formulation
type, pH of the medium and the temperature do have an
effect on the swelling characteristics of the microcap-
sules. In line with G release studies, the percentage of
microcapsule swelling was reduced by the addition of
CA. CA reduced microcapsule swelling at low and high
pH (at 30 °C, Fig. 3) and to a less extent, at lower
temperature (at 20 °C, Fig. 4). CA exerted a stronger
reduction in microcapsule swelling, at higher tempera-
ture suggesting better control of G release across the
stomach and lower proximal site of the intestine, whilst
still maintaining targeted delivery at pH 7.4 and pH 7.8
(Figs. 1 and 2). This may be due to the fact that even
though alginate has been shown to undergo substantial
swelling at higher pH and temperature due to higher
water uptake [24, 40, 41], CA reduces such a swelling

Gliclazide bead-swelling % after 6 hours (at 30°C)

p<0.01

150 « 1

125 4 p<0.01
g’ 100 I ] EE G-SA pH 7.8 (control)
% Bl G-CA-SApH78
g 751 mm G-SA pH 3 (control)
T 5. G-CA-SA pH3
3
= 254

5 G-CA-SA
Tcsac.casa 6sa
254

Fig. 3 Swelling characteristics of G-SA and G-CA-SA microcapsules
(pH 3 and pH 7.8) at 30 °C
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G G-CA G G-CA
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Fig. 4 Swelling characteristics of G-SA and G-CA-SA microcapsules
(pH 3 and pH 7.8) at 20 °C

effect and thus brought about a stronger control of G
release. Moreover, at high pH values, the porosity and
solubilisation of the polymer matrix are expected to be
also higher [19, 24, 42]. Temperature also plays a key
part in swelling and water uptake as higher temperatures
causes erosion and disintegration of the matrix wall
allowing for greater water penetration [7, 40, 41,
43-45]. At pH 7.8 and higher temperature (30 °C), the
G-SA microcapsules (without CA) experienced greater
swelling than the G-CA-SA microcapsules. Again, at pH
3.0 and 30 °C, G-SA-CA microcapsules underwent
greater swelling due to enhanced water uptake. This
clearly supports our hypothesis that the bile acid used
in the formulation has enhanced membrane stabilisation
most likely via cross-linking and ionic interactions with
the alginate matrix. Another possible explanation is that
the free carboxyl groups of primary bile acids CA act
as water binding sites allowing for greater water uptake
and thus weight gain and more microcapsule-swelling
capacity [9, 11, 13, 15, 30-32, 36-39]. This swelling
characteristic property of bile acid-reinforced microcap-
sules is desirable in forming a controlled release system,
especially when it does not adversely influence produc-
tion yield or system stability (Table 1).

Table 3 Statistical analysis of Figs. 3 and 4

Group comparison temp pH p values
G-SA pH 7.8 (control) G-CA-SApH 7.8 30 7.8 0.003
G-SA pH 3 (control) G-CA-SApH 3 3 <0.001
G-SA pH 7.8 (control) G-CA-SApH7.8 20 7.8 0.931
G-SA pH 3 (control) G-CA-SApH 3 3 <0.001

@ Springer

Conclusion

Our microencapsulation method of G and CA at the set ratio is
novel for G and CA oral delivery. It produces microcapsules
which display appropriate stability, release kinetics and uni-
formity. The formed microcapsules ensure optimal targeted
delivery to the site of action (lower intestine) with enhanced
stability and high consistency provided via bile acid-
reinforced microcapsules. An interesting future investigation
will incorporate a less polar bile acid, such as deoxycholic
acid, to optimise further the release kinetics and efficacy of the
antidiabetic drug, gliclazide.
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