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Abstract 
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Abstract 

 

 

Mixing plays a substantial role in determining the overall performance of a 

bioreactor. Well mixing in bioreactor, especially for ethanolic fermentation process 

is important for the homogenization of miscible and immiscible liquids, gas 

dispersion and suspension of solid particles. Improper mixing will eventually affect 

the biological and kinetics reactions occurring in the bioreactor and subsequently 

deteriorate the bioreactor performance. Currently, most modeling and control 

applications of bioreactors have been devoted to ideally mixed assumption, for 

simplicity. This is not realistic in practical applications. Furthermore, the strength 

and accuracy of the bioreactor models reflect their performance and subsequently its 

control strategy. Therefore, it is vital to consider the imperfect mixing for the control 

of bioreactor.  

 

In this study, a batch, micro-aerobic bioreactor for ethanolic fermentation process 

will be considered for modeling. Up to date, not much study has been conducted in 

exploiting the mixing mechanism for controlling this type of bioreactor. 

Traditionally, only the bioreactor conditions such as temperature and pH are 

controlled for such a batch bioreactor. Other parameters, such as aeration rate and 

stirrer speed are not used to control the bioreactor. Thus, it is difficult to improve the 

bioreactor performance as the bioreactor performance is less sensitive to both 

temperature and pH than to the mixing mechanism. However, the mixing behaviour 

of the bioreactor needs to be captured if we are to employ both aeration rate and 

stirrer speed for the control of such a batch bioreactor. It is known that aeration rate 

and stirrer speed could significantly affect the biological and kinetics reactions. 

Therefore, both aeration rate and stirrer speed are suggested in this work as 
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manipulated variables in the modeling of batch bioreactor. Thus, with this approach 

the ideally mixed assumption will be relaxed. 

The models proposed will be implemented for control studies. New control strategies 

will be established for continuous bioreactor, whereby dilution rate and substrate 

concentration are considered as disturbance variables and both aeration rate and 

stirrer speed are suggested as manipulated variables. With this approach, the 

practicability of the proposed models could be investigated.  

 

The aims of this research have therefore been as follows: 

1. To experimentally study the impact of aeration rate and stirrer speed on the 

bioreactor performances, i.e. yield and productivity. 

2. To develop an integrated bioreactor model to allow us to employ the aeration 

rate and stirrer speed as manipulated variables for control design. 

3. To establish new control strategies for bioreactor without the ideally mixed 

assumption. 

 

A systematic approach has been proposed to develop the non-ideally mixed 

bioreactor model and to design the control strategy of the lab-scale fermentation 

process. Three modeling approaches are employed, i.e. data-based, kinetics hybrid 

and kinetics multi-scale models for the analysis of the impacts of both aeration rate 

and stirrer speed on the performance of bioreactor. Using the three models, the 

aeration rate and stirrer speed are also used to analyze the mixing mechanism in the 

bioreactor. 

 

Furthermore, new control strategies are then proposed for the bioreactor. By using 

the proposed control strategies, the effect of both aeration rate and stirrer speed on 

the overall performance could be analyzed in the face of disturbances on other 

process parameters. Furthermore, the stability and achievable performance of the 

control strategies could be compared for different models. Hence, the proposed 

control strategies would lead to a better operation of the bioreactor. 

 

The study highlighted the following main findings: 

1. It is identified that both aeration rate and stirrer speed could affect 

significantly the overall performance of the bioreactor. Therefore, both 
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aeration rate and stirrer speed rather than temperature and pH could be used 

as manipulated variables for controlling the bioreactor. The ideally mixed 

assumption is relaxed where the mixing mechanism of the bioreactor is 

included in the proposed model.     

2. The main issue in modeling is the complexity of the microbial reactions and 

kinetics of the bioreactor performance for the non-ideally mixed behaviour of 

the bioreactor. Thus, it is important to identify the main reactions and kinetics 

which actually affect the bioreactor performance. In this study, Monod’s 

kinetics has been employed with the implementation of both aeration rate and 

stirrer speed. It is shown that the kinetics multi-scale model demonstrated 

good predictions of the mixing mechanism of bioreactor. Different conditions 

of aeration rate and stirrer speed influence the mixing mechanism and thus, 

contribute to the dynamics and kinetics within the bioreactor. These show 

that both aeration rate and stirrer speed play important role in studying the 

non-ideally mixed mechanism of the bioreactor. 

3. Optimization results, however, suggest that the kinetics hybrid model gives 

the most comparable values of maximum yield and productivity. Thus, this 

model is suggested for the determination of the optimum conditions of the 

bioreactor operation due to its simplicity in model construction, as compared 

to the kinetics multi-scale model.  

4. The control strategy of bioreactor using the data-based model does not always 

produce good performance, especially in the face of large disturbances. This 

implies that the use of models with ideally mixed assumptions would not 

always give good overall performance. Therefore, the controllability of the 

bioreactor performance is further improved with the implementation of the 

proposed non-ideally mixed bioreactor model. It is observed that both data-

based and kinetics hybrid models are able to keep the controlled variables in 

their set-point values by manipulating both aeration rate and stirrer speed for 

low disturbance changes.  

 

Hence, this research contributes on the understanding of mixing phenomena in 

micro-aerobic fermentation process from which a set of optimal operational 

conditions and control strategies to enhance its performance are developed. 
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1.1 BACKGROUND AND MOTIVATION 

The modeling and control of a bioreactor for ethanol production has been of interest 

many researchers due to its complexity of biological and mechanical processes. The 

biological process involves the kinetics of the fermentation process, which is 

determined by the properties of microorganisms as well as the cultivation conditions 

and media. On the other hand, the mechanical process involves the mixing 

mechanism of the bioreactor, whereby the metabolic activities of microorganisms are 

highly affected by the distribution of nutrients to the microbial cells via a mixing 

process. The engagement of both processes leads to a very complex dynamics of the 

microbial cells. This makes the bioreactor performance difficult to achieve a high 

operational stability of the fermentation process, as well as constant product quality 

and yield. Therefore, it is vital to simultaneously consider both kinetics and mixing 

mechanism of the bioreactor to achieve a better bioreactor performance so as to 

attain a better yield and productivity of the fermentation process.  

 

Depending on the flow of medium to or from the bioreactor, or the supply of oxygen, 

the operational mode of a bioreactor can be classified into several groups, i.e. batch, 

fed-batch and continuous cultivation. Each mode demonstrates complex interaction 

between mixing and transport, fast metabolic reactions and cellular growth [1]. In 

practice, fed-batch and continuous operations are preferable. These operations can 

avoid problems with strain stability and sterility that may arise during prolonged 

cultivations. On the other hand, a batch cultivation is limited because there is no 

continuous feeding of nutrients into the culture medium. After inoculation, the 

microbial cells are growing continuously until the essential medium component is 



Chapter 1 Introduction 

2 

 

exhausted or the accumulation of inhibiting products ceases the growth. Therefore, 

fed-batch cultivation is often operated since nutrients such as oxygen and nitrogen 

source, are continuously fed for continuous microbial growth and product formation 

[1].  

 

In order to study the operation of a batch bioreactor, it is important to investigate 

which parameters are involved in a batch bioreactor operation. Figure 1-1 shows a 

general schematic diagram of a batch bioreactor operation.  

 

 

 

 

 

 

 

 

Figure 1-1 Schematic Diagram of a Batch Bioreactor Operation 

 

Referring to Figure 1-1, there are generally four parameters that are involved in 

operating a batch cultivation, i.e. temperature, pH, aeration rate and stirrer speed. In 

previous studies, only temperature and pH are manipulated in order to achieve 

desired bioreactor performance. Aeration rate and stirrer speed are not used and often 

maintained at constant rate throughout the fermentation process. It is known that both 

temperature and pH are less sensitive in the mixing intensity of bioreactor as 

compared to that of both aeration rate and stirrer speed. Both aeration rate and stirrer 

speed are affecting the mixing intensity of bioreactor since both could disperse and 

increase the interface between gas and liquid phases in a bioreactor with momentum 

transfer. High turbulence is necessary for high mixing intensity, which could ensure 

uniform environmental conditions in the bioreactor for optimum growth of 

microorganisms [1]. Since in the previous work both temperature and pH are 

manipulated instead of aeration rate and stirrer speed, the mixing behaviour of the 

bioreactor is not captured. Ideally mixed assumption is therefore considered.  

 

Batch 

Bioreactor 

pH Temperature 

Aeration Rate 
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Up to date, no studies have been conducted to investigate the manipulation of both 

aeration rate and stirrer speed in modeling and control a bioreactor. This is due to the 

complexity of dealing with the mixing mechanism of bioreactor whereby it is very 

difficult to adequately describe the kinetics and dynamics of the fermentation 

process. With the manipulation of both aeration rate and stirrer speed for the control 

of a bioreactor, the mixing mechanism should be considered. Hence, non-ideally 

mixed mechanism is assumed for both modeling and control of bioreactor, and thus, 

further improvement could be made in the operation of the bioreactor.  

 

Nowadays, researchers are still investigating how to incorporate the detailed mixing 

knowledge in modeling and control of a bioreactor. The understanding and modeling 

of the complex interactions between biological reaction and hydrodynamics are a key 

problem when dealing with a non-ideally mixed bioreactor. It is fundamental to 

accurately predict the hydrodynamics behaviour of bioreactors, especially with 

different bioreactor size and environmental conditions, and its interaction with the 

biological reaction. Since the detailed mixing effects of bioreactor are not being 

explored efficiently, it is imperative to explore ways and approaches in dealing with 

this matter. 

 

One of the ways to incorporate the non-ideally mixed behaviour in bioreactor is by 

utilizing Computational Fluid Dynamics (CFD). CFD has been used over the decades 

for the integration of mixing details. The mixing details are obtained computationally 

and an efficient process simulation would allow the exploration of detailed mixing 

effects in a variety of new ways. For example, a detailed representation of a 

bioreactor could be feasibly embedded into the upstream and downstream of the 

bioreactor. The entire process in the bioreactor can be divided into three stages: 

 

Stage I: Upstream processing which involves preparation of liquid medium, 

separation of particulate and inhibitory chemicals from the culture medium, 

sterilization, air purification, etc. 

 

Stage II: Fermentation which involves the conversion of substrates to desired product 

with the help of biological agents such as microorganisms; and 
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Stage III: Downstream processing which involves separation of cells from the 

fermentation broth, purification and concentration of desired product and waste 

disposal or recycle. 

 

Therefore, the effects of detailed flow, temperature and composition involved could 

be addressed efficiently. Such application has been pursued to modeling complex 

product distributions and controller design [2]. This approach has shown its 

substantial benefits in process modeling and control design. However, the integration 

of both aeration and agitation has not been considered using such methods. 

Furthermore, to accurately describe situations in which aeration and agitation greatly 

influence the biological reactions, combining mixing details with CFD would be 

advantageous. This would allow the prediction of the mixing behaviour that depends 

highly on spatial variations in the multiphase environment. Thus, the possible 

benefits gained from this approach would be significant for the control of non-ideally 

mixed bioreactor. 

 

1.2 CASE STUDY 

For the proposed research, a case study based on available equipment and facilities in 

the laboratory is proposed and described here. In this study, a micro-aerobic batch 

fermentation process is suggested as a case study for the development of models.  

Micro-aerobic process is a preferable pathway in ethanol production. This process 

can improve the viability of the yeast and the bioreactor performance. 

Saccharomyces cerevisiae is used as the cultivation microbe since this type of yeast 

is the most commonly utilized for cell growth in fermentation [1]. Saccharomyces 

cerevisiae is used as the cultivation microbe since this type of yeast is the most 

commonly utilized for cell growth in fermentation. This is due to the fact that this 

type of yeast has an active glucose transport system, whereby it metabolizes glucose 

through the glycolytic pathway, a metabolic pathway to convert glucose to pyruvate, 

Reduced Nicotinamide Adenine Dinucleotide (NADH) and energy [3]. Next, the 

yeast cells will convert pyruvate to acetaldehyde and carbon dioxide, then to ethanol. 

Roughly 98% of glucose is metabolized during fermentation, while the remaining 

2% of it is made into cell materials. Due this factor, Saccharomyces cerevisiae is 
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used in fermentation to enhance the cell growth and productivity for maximum yield 

and productivity. 

 

On the other hand, continuous fermentation process is suggested as a case study for 

control. This is to investigate the potential of the proposed models as controllers with 

the manipulation of aeration rate and stirrer speed with the account of disturbance 

variables, i.e. dilution rate and substrate concentration. Both dilution rate and 

substrate concentration are required to be supplied continuously into the fermentation 

medium for continuous growth. Without any supply of dilution rate and substrate 

concentration into the medium, the microorganisms’ growth will deteriorate and the 

production rate will cease.  

 

In order to conduct such study, a 2 litre, BIOSTAT® A Plus, double impeller 

Rushton turbine bioreactor is utilized in the laboratory, which is shown in Figure 1-2.  

 

 

 

 

Figure 1-2 Schematic Diagram of a Double Impeller Rushton Turbine Bioreactor [4] 

 

The bioreactor is fully instrumented to measure and maintain optimum conditions for 

the microbial cells. The related control loops for temperature and pH control as well 
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as air pump for sufficient supply of oxygen are ensured throughout the whole 

fermentation process. Figure 1-3 shows the operational system of the bioreactor 

utilized in the laboratory. 

Figure 1-3 General Layout of the Laboratory Ethanolic Fermentation Process 

Bioreactor 

 

The operation of the bioreactor for ethanol production begins with the addition of 

inoculum, i.e. a small amount of actual living cells (Saccharomyces cerevisiae), to 

the culture medium containing essential nutrients required for the growth of 

microbial cells.  

 

In this study, glucose and cassava are used as the main substrates of ethanol 

production, in two separate case studies. This is to compare the yield and 
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productivity of the fermentation process for different substrates. In addition to that, it 

is also vital to study and compare the dynamics and kinetics of both substrates for the 

same mixing. The inoculum is added through the feeding tube and is pumped into the 

culture medium. The inoculum is only added during the beginning of the process 

since the fermentation process is operated at batch mode. The inlet oxygen 

concentration is limited to 1LPM for the cultivation and growth of the 

microorganisms since the fermentation process is operated under micro-aerobic 

operation. During the cultivation process, both aeration rate and stirrer speed are 

continuously controlled according to the desired optimum criterion in order to 

achieve maximum yield and productivity. Throughout the fermentation process, both 

acid and base are added in the case of maintaining the pH of the culture medium at 5. 

Temperature is also maintained at 30°C throughout the whole process with 

continuous supply of cooling water. Anti foam is, however, not added throughout the 

cultivation process, but we monitor the bubble foaming condition throughout the 

fermentation process. Monitoring and controlling the bioreactor is done throughout 

the cultivation process with the aid of a centralized computer system which is 

connected to the bioreactor.  

 

1.3 RESEARCH QUESTIONS 

To achieve the objectives of the research, some research questions are raised as 

follows: 

 

1.3.1 Could we employ the aeration rate and stirrer speed for controlling the 

bioreactor performance? 

In order to know this, we have to study how sensitive the bioreactor performance is 

to both aeration rate and stirrer speed. A set of experiments under different 

conditions of aeration rate and stirrer speed are to be conducted. Other parameters, 

such as temperature and pH are maintained at constant values throughout the 

fermentation process. The bioreactor performance, i.e. yield and productivity, are to 

be measured and evaluated at the end of each experiment. If the bioreactor 

performance of each conditions of aeration rate and stirrer speed differ significantly, 

thus it is suggested that both aeration rate and stirrer speed would be good candidates 

as manipulated variables as the bioreactor performance are sensitive to their changes.  
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Therefore, it is essential to study and investigate the influence of both aeration rate 

and stirrer speed to the bioreactor performance by evaluating its yield and 

productivity. We will experimentally investigate this.  

 

The results will be presented and discussed in Chapter 3, where this chapter provides 

a detailed experimental methodology to study the effect of both aeration rate and 

stirrer speed on bioreactor performance. Also, the dynamics of the fermentation 

process with a non-ideal mixing condition will be exploited.  

 

1.3.2 How to incorporate both aeration rate and stirrer speed as manipulated 

variables into the dynamic modeling of the batch bioreactor system? 

By employing aeration rate and stirrer speed as manipulated variables for bioreactor 

control, the mixing mechanism of the fermentation process should be considered. 

From the experimental data, the kinetic parameters of substrate concentration, 

product concentration and biomass growth could be determined. The kinetic 

parameters will be used for the development of kinetics model. The kinetics model 

will be used to develop the non-ideally mixed bioreactor model, which will be 

validated against the experimental data in predicting the bioreactor performance. 

Three strategies, namely data-based, kinetics hybrid and kinetics multi-scale 

modeling, will be adopted in the development of new bioreactor models. As a result, 

the traditional assumption of ideally mixed bioreactor is relaxed. The developed 

dynamic model of the bioreactor will then be used for designing a model-based 

controller for the bioreactor, whereby the bioreactor performance will be controlled 

by manipulating both aeration rate and stirrer speed. The results of this work will be 

presented and discussed in Chapter 4. 

 

1.3.3 How to apply the developed models for the optimization and control of 

bioreactor? 

In the current study, a number of parameters, including yield, productivity, aeration 

rate and stirrer speed are determined to optimize the performance of the integrated 

system. Using the developed models, the optimum conditions of both aeration rate 

and stirrer speed in achieving maximum yield and productivity will be determined 

and compared to previous studies whereby optimization is done using models with 

ideally mixed assumption. Statistical methods using experimental design and the 
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Response Surface Methodology (RSM) will be employed to analyze the optimization 

results. The validation of the RSM-based optimization will be carried out 

experimentally. The results of this work will be presented and discussed in Chapter 

5. 

 

For the obtained optimum operating conditions, further studies will be directed 

towards the control of bioreactor. Previous studies to address the non-ideally features 

of bioreactor have been found in literatures. However, due to the complexity of the 

microbial activities and experimental difficulties associated with large-scale 

identification of enzyme kinetics, the employed models are limited to primary 

metabolic pathways. These models are not suitable for capturing the whole-cell 

metabolism, which has some impacts on the cellular growth and product synthesis 

rates. As a result, these models have not been used for bioreactor control design.  

 

With the proposed non-ideally mixed bioreactor models, the control strategy for 

bioreactor control could be implemented. Nonlinear control is considered in this 

study as a control strategy for the non-ideally mixed bioreactor. This is due to the 

highly nonlinear operation of bioreactor which consists of multi-cellular activities of 

microorganisms. Chapter 6 illustrates a detailed application of the models for 

bioreactor control.  

 

1.4 SPECIFIC OBJECTIVES AND GOALS OF THE THESIS 

Specific objectives and goals of this thesis can be summarized as follows: 

• To study the use of both aeration rate and stirrer speed as manipulated 

variables to control the bioreactor performance, i.e. yield and productivity.  

• To develop new dynamic models of a bioreactor with the incorporation of 

both aeration rate and stirrer speed so that the assumption of ideally mixed 

behaviour in the bioreactor is relaxed.  

• To determine the optimal operating conditions of both aeration rate and stirrer 

speed using the developed models, and to validate the results experimentally. 

• To develop new control strategy for the bioreactor by employing both the 

aeration rate and stirrer speed as manipulated variables.  
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All of these specific objectives can ensure in achieving the goals of the thesis: 

• To develop new dynamic models of batch bioreactor without assuming 

ideally mixing conditions  

• To develop new approaches of controlling a bioreactor 

 

1.5 ASSUMPTIONS AND SCOPE 

The kinetics, dynamics, optimization and control analysis presented in this thesis are 

based on both macroscopic and microscopic biological models of the ethanolic 

fermentation process. The validity of the analysis depends on how well these models 

represent the true dynamic behaviour of the process, i.e. the non-ideally mixed 

mechanism of the overall ethanolic fermentation process. 

 

Due to the nonlinearities and complexity of the bioreactor system, it is assumed that 

the bioreactor operation is constrained to operate within aeration rate of 1.0 to 

1.5LPM and stirrer speed of 150 to 250rpm, whereby the system dynamics are 

represented by the proposed non-ideally mixed bioreactor model. Two case studies 

are carried out, i.e. with the utilization of glucose and cassava respectively, and are 

prepared in a 2 litre bioreactor. These case studies are carried out to investigate the 

dynamic behaviour of both substrates under the non-ideally mixing conditions in the 

bioreactor. 

 

This thesis only addresses the effect of aeration rate and stirrer speed in the proposed 

model. Other parameter interactions such as temperature, pH, volume and substrate 

concentration, are beyond the scope of this thesis as they are set at constant values. 

Both glucose and cassava are utilized as the main substrate for experimental 

investigation, but only experimental results on glucose are used for kinetics modeling 

due to the incompatibility of cassava experimental results with the proposed kinetics 

model. Hence, the process optimization analysis is aimed at the interaction of both 

aeration rate and stirrer speed to achieve maximum yield and productivity. In 

addition, the application of the designed control systems for the glucose as the main 

substrate is also studied. In control studies, the continuous fermentation system is 

investigated. 
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1.6 THESIS STRUCTURE 

This thesis is organized into seven chapters as outlined below. The structure of the 

thesis is graphically presented in Figure 1-4. 

 

• Chapter 1 defines the motivation, overall aim, scope and the structure of this 

thesis. This chapter also reviews the research questions, whereby the issues and 

gaps to be addressed in this thesis are discussed. 

• Chapter 2 reviews the issues in modeling and control of non-ideally mixed 

bioreactor. Included in this chapter is a review of relevant literatures, previous 

work on modeling and control design, and control strategies for bioreactor. In 

this chapter, we also identify the existing research gaps. As a result, a framework 

for the modeling and control analysis is proposed and is used as a basis of the 

work presented in subsequent chapters of this thesis.  

• Chapter 3 summarizes the research methodology, as well as experimental and 

analytical techniques employed in this study. Two case studies are conducted to 

compare the yield and productivity between glucose and cassava as the main 

substrate for ethanol production. Further, the dynamics and kinetics of both case 

studies are studied with respect to their mixing behaviour within the bioreactor. 

• Chapter 4 discusses the modeling approach, model development and its 

validation against experimental data. The models are developed for the 

implementation of both aeration rate and stirrer speed as manipulated variables.  

• Chapter 5 presents the study on the optimization of yield and productivity with 

respect to both aeration rate and stirrer speed. The Response Surface Method 

(RSM) is employed for this purpose. 

• Chapter 6 addresses the model-based control strategies to achieve a better 

bioreactor performance in the face of disturbances. The achievable performance 

of the control strategies using different models is examined in this chapter.  

• Chapter 7 draws conclusions from this study and outlines the recommendations 

for future research. 
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Figure 1-4 Thesis Presentation
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2.1 INTRODUCTION 

A fermentation process, either small or large scale, is made up of bioreactor. 

Generally, the operation of bioreactor is classified into batch, fed-batch and 

continuous cultivation. Each bioreactor operation consists of oxidation and/or 

reduction of feed (or substrate) by microorganisms, such as yeast or bacteria. The 

complexity of the bioreactor operation and their interactive nature presents an 

extraordinary challenge in modeling and control of bioreactor. Nevertheless, such a 

challenge needs to be accounted for, in order to obtain satisfactory bioreactor 

operation and control over the entire fermentation process. 

 

Batch and fed-batch cultivations are preferable in ethanol production in practice. 

However, most studies in modeling and control has been done in fed-batch 

cultivation rather than batch and continuous cultivations. Not much study has been 

conducted to improve the batch and continuous bioreactor operations. Additionally, 

in the previous studies the mixing behaviour of the bioreactor was not captured, 

instead an ideally mixed assumption was considered. This assumption is valid for a 

small scale of bioreactor, hence it is very difficult to achieve a well mixed behaviour 

for a large scale of bioreactor. Our study is therefore focused on the dynamical 

behaviour of a batch bioreactor with the assumption of non-ideally mixed mechanism 

in modeling. In the control of bioreactor, it would be interesting to investigate the 

practicability of the proposed model in continuous fermentation cultivation. Such 

difference is made due to the necessary implementations of continuous feed into the 

bioreactor in order to ensure continuous growth of microbial cells. Not only could 
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this describe the complexity of the mixing mechanism of bioreactor, but also 

improve the bioreactor performance. 

 

Motivated by this idea, the major challenge faced in bioreactor operation is the 

complexity of the interrelation between the growth of microbial cells and their 

physical and chemical environment. It is impossible to apply linear model and 

control theory without severely sacrificing performance robustness properties. It is 

not trivial to develop reasonable accurate mathematical models with reliably 

estimated parameters. This is essential for optimization and design of a high 

performance control system. Mismatch between the developed model and the true 

process dynamics may degrade the bioreactor performance and can lead to serious 

control stability problems, especially when the process is nonlinear. Therefore, it is 

our objective to integrate the process nonlinearity such as the mixing mechanism of 

bioreactor into the modeling and control of bioreactor.  

 

In this chapter, the issues in mixing mechanism of bioreactor are addressed. The 

fundamental bioreactor problems and challenges are reviewed. Issues and approaches 

to addressing the mixing mechanism of bioreactor are reviewed. This review 

includes previous work on the modeling and control of bioreactor with respect to the 

inclusion of mixing process. Finally, suitable kinetic models and alternative control 

strategies are proposed in order to address the non-ideally mixed mechanism of 

bioreactor. 

 

2.2 MIXING AND CHALLENGES OF BIOREACTORS  

The bioreactor performance of an ethanolic batch fermentation process is complex 

due to the complicated interrelations between the microbial cells and the governing 

environment. The exact description of flow movement by a simple model is not 

possible since the flow caused by the stirrer/impeller is overlapped by turbulence 

fluctuations. The situation is more complicated with the presence of two or more 

phases. Therefore, a more accurate description of the biological, chemical and 

physical processes and their interrelation in mixing environment is impossible [1]. 

Considerable abstraction is necessary which is based on the knowledge of the 

influence of various parameters on the bioreactor performance.  
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Early attempts to handle mixing in batch bioreactor were done by considering single-

phase flow, i.e. perfect mixing is assumed and density variations are neglected [5]. It 

is only through this assumption that it is possible to achieve effective response to 

large bioreactor variations and thus achieving overall control objective. To do so, 

traditionally, operating conditions, such as temperature and pH are manipulated to 

achieve desirable bioreactor performance. The operation of bioreactor is often based 

on an off-line optimized profile for the manipulated variables. In this situation, all 

dynamics and chemical reactions occurring in the cultivation media conforms over 

all the ranges of temperature and pH.  

 

In view of the ideally mixed assumption considered in bioreactor, numerous work 

has been done in studying the non-ideally mixed mechanism of bioreactor in terms of 

kinetics. Most kinetics is limited to macro-kinetics, i.e. the interactions of the 

microenvironment around the microbial cells with its dependency of the biological 

reaction are not taken into account. The metabolism of microorganisms is very 

complex, whereby the metabolism varies during the cycle of cell growth and 

replication. These phenomena cause inhomogeneity of the microorganisms’ 

population. There might be morphological differentiation of microbial cells 

accompanied by changes in the cell metabolisms. Thus, what is observed is only an 

averaged behaviour over a great number of cells in different states. It is tough to 

establish a very detailed model to describe all the microbial metabolic activities. This 

will influence the control strategy of the bioreactor performance. It is hard to obtain 

precise kinetics in describing the inhomogeneous conditions of the microorganisms.  

 

Further, in view of the difficulties faced in kinetics modeling, it is obvious that it is 

impossible to apply linear control theory. This is due to the highly nonlinear 

behaviour of the bioreactor operation. In this situation, other schemes such as 

nonlinear control or other forms of robust control are considered in tackling with the 

trajectory problem of bioreactors. The control of bioreactors demands extra design 

effort to compensate for their inherent time varying process characteristics. In 

fermentation cultivation, the biomass increases during the course of fermentation. 

Thus, the amount of heat generated and the total amount demand of oxygen increase 

as well [6]. Therefore, growth related process variables such as substrate 

concentration and temperature, are not sufficient to monitor the bioreactor 
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conditions. This situation is only applicable to systems that are mildly nonlinear [7].  

Therefore, it is required to distinguish other process variables which affect the 

bioreactor conditions due to changes in dynamics.  

 

Operating conditions such as aeration rate and stirrer speed other than temperature 

and pH are yet to be considered as manipulated input variables in bioreactor system. 

According to García-Ochoa, Santos and Alcón (1995) [8], pH does not seem to affect 

the production rate significantly. Comparing to that of temperature, the influence of 

temperature has been studied even more intensively [9]; [10]; [11]; [12]; [13]; [14]; 

[15]; [16]; [17]; [18]; [19]; [20]; [21]; [22]. However, according to García-Ochoa and 

Gomez (2009) [23], the most important among them are aeration rate and stirrer 

speed used in an aerated bioreactor. This is because in stirred tank bioreactor, high 

values of mass and heat transfer rates are attained. Oxygen mass transfer is 

influenced by both aeration rate and stirrer speed [8]. On the other hand, stirrer speed 

is used to carry out cell growth but not for production because dissolved oxygen will 

be exhausted. Thus, a compromise between oxygen mass transfer and mechanical 

stress in cells resulting from stirrer speed must exist [8]. Therefore, both aeration and 

stirrer speed offer more effect via the mixing mechanism of bioreactor as compared 

to temperature and pH since both affect the mass, heat and oxygen transfer 

throughout the bioreactor and both provide more turbulence in the bioreactor. 

 

As the influence of mixing towards fermentation conditions cannot be 

overemphasized, it is very important to relax the ideally mixed assumption [24]. The 

control problems will be further enhanced by the implementation of non-ideally 

mixed mechanism in developing mathematical models of bioreactor.  

 

2.3 CONTROL OF BIOREACTORS  

Considering the problems and challenges faced in the bioreactor operation, automatic 

control for the optimization of product efficiency, product quality improvement and 

detection of disturbances in fermentation process operation is required. Schugerl and 

Bellgardt (2000) [1] as well as Rani and Rao (1999) [25] suggest that automatic 

control of biotechnological processes such as fermentation process, is developing 

slowly and there are two reasons for this: 
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• Accurate process models are rarely available due to the complexity of the 

underlying biochemical processes. Many problems of methodology in 

modeling remain to be solved. In order to produce reliable model, the 

modeling effort is often tedious as a great number of experiments are 

required. It is tough to reproduce experiments due to the difficulty in 

obtaining the same environmental conditions, as these processes involve 

living microorganisms. Their dynamic behaviour is strongly nonlinear and 

unsteady. Thus, lack of accuracy of measurements will lead to identifiability 

problems. 

• In most cases, cost is one of the considerations which are taken into account, 

especially in purchasing cheap but reliable instrumentation and equipment. 

To date, the market offers very few sensors which are capable of providing 

reliable online measurements of the biological and biochemical parameters in 

order to implement high performance automatic control strategies. The cost 

and duration of analyses limit the frequency of the measurements. However, 

basic sensors such as pH, temperature, foam/level and dissolved oxygen (DO) 

probes, are necessary for monitoring the bioreactor. 

 

Therefore, many design issues in dealing with this matter have been proposed to 

capture model uncertainties. The current strategy for dealing with this matter is by 

the utilization of adaptive control approach [1]. The application of this approach has 

greatly improved the bioreactor performance of control systems. But it has soon 

become apparent that due to the highly nonlinear behaviour of the microbial 

activities in the bioreactor, there is a problem in plant-model mismatch. Accurate 

models are not routinely available or even impossible to obtain, especially current 

models in mixing bioreactors are mostly ideally-mixed assumed. It had become clear 

that dealing with plant modeling errors in model-based control design is required. 

Therefore, as proposed, it is important to study how sensitive aeration rate and stirrer 

speed in the control of bioreactor performance. 

 

2.3.1 Agitation and Aeration Rate for Bioreactor Control  

In this study, both aeration rate and stirrer speed are considered as manipulated 

variables for bioreactor control. Practically, mechanically agitated aerated bioreactors 

are widely used rather than aerated only bioreactors. It is identified that aerated only 
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bioreactors are insufficient to promote medium turbulence necessary for air bubble 

generation. This is because the interactions of both aeration and agitation are 

important for fully mixed bioreactor to promote cell growth in order to achieve 

higher yields. Both aeration and agitation supply oxygen for the microbial cells in 

fermentation processes and to mix the fermentation medium, in order to make a 

uniform suspension of the microbes and nutrients [26].  

 

In fermentation context, aeration is the process by which air is circulated through the 

mixed fermentation medium. Aeration is normally facilitated by using an air sparger, 

whereby air is allowed into the culture medium from the bottom of the bioreactor 

tank. The aeration efficiency depends on the oxygen solubility and diffusion rate into 

the fermentation medium on the bioreactor capacity to satisfy the oxygen demand of 

the microorganisms. The efficiency of aeration depends on oxygen solubilization, 

diffusion rate into cultivation media and bioreactor capacity to satisfy the oxygen 

demand of microbial population. These processes are important as microorganisms 

require oxygen for growth. It is also beneficial for the performance of the microbial 

cells to meet their requirements at any stage in the fermentation process [27]. For 

example, with the utilization of yeasts, like Saccharomyces cerevisiae in 

fermentation process, the microbial yeast cells require molecular oxygen. Oxygen is 

required especially in the synthesis of sterols and unsaturated fatty acids that are 

present at suboptimal concentrations [24]. The yeasts can only synthesize sterols and 

unsaturated fatty acids when there is exogenous supply of these compounds under 

strict anaerobic conditions and aerobic conditions. Failure to supply sufficient 

amount of oxygen may lead to undesirable changes in enzymatic makeup [28] or 

death of the living cells, with lower yield of the desired product [27]. Therefore, it is 

important to note the importance of aeration in fermentation process.  

 

Besides aeration, agitation also plays important role in the mixing mechanism of the 

bioreactor. In fermentation context, agitation is the process whereby the fermentation 

medium is put into motion by shaking or stirring, with the aid of a stirring device 

known as a stirrer. Agitation is very important in mixing the fermentation medium to 

ensure that the medium is in homogeneous state. This is vital for equal distribution of 

nutrients and oxygen to the microbial population, as well as uniform distribution of 

energy. Energy introduced by the rotation of the stirrer, is converted into kinetic 
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energy of liquid and subsequently lost as turbulence dissipation. Energy balance 

around the stirrer is of interest since energy dissipation rate is the key variable that 

influences the characteristics of the impeller stream. Eventually, this also influences 

the characteristics of the rest of the bioreactor tank. Agitation also increases the 

interfacial area between the gas and liquid which improves the efficiency of aeration 

[26]. Shear forces are created which affect the microbial cells in several ways, 

causing morphological changes, growth variation and product formation [29]. 

Although agitation could maintain the oxygen available in the fermentation medium, 

poor oxygen transfer will be attained without appropriate agitation rates. The oxygen 

diffusion would deviate away from optimal conditions if the agitation rates are either 

too high or too low. This can inhibit microbial cell growth due to the heterogeneous 

mixing and shear stress effect [30]. 

 

Numerous biochemical reactions and interactions could not be captured entirely by 

experiments and computer simulations subjected to both aeration rate and stirrer 

speed. The complexity of the multiphase interactions and biochemical reactions even 

with relatively simple geometries, requires intensive research in detail. In addition, 

the unavailability of the related flow distribution under dynamic inflow modulation 

has not been reported in open literature [31]. The development of the non-ideally 

mixed bioreactor models is implemented in stages. However, it requires heavy 

modeling and computational effort to properly engaging microbial activities along 

with mixing. Such approach could not provide rational explanations for the 

performance enhancements. Thus, the target in achieving the overall production and 

control objective is not possible. 

 

2.3.2 Control Strategies for Continuous Bioreactor 

Control strategies for continuous bioreactors have had limited success since they are 

only applicable to systems that are mildly nonlinear that are not applicable in some 

practical situations. These approaches relatively included less robustness properties 

since the only manipulated variable considered is either feed or dilution rate. In this 

situation, control structures based on a nominal model without taking into account 

the inherent nonlinearities of the fermentation process. On the other hand, lack of 

measurements, difficulty to define product quality and the uncertainties or failure in 
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variations in the parameter values are also encountered [7]. Thus, it is expected to 

improve the operation of bioreactors by using nonlinear model-based strategy. 

  

Model-based control is strategically using an explicit, separately identifiable 

dynamic model to successfully model a wide range of nonlinear processes [32]. With 

the inherent nonlinear nature of chemical processes, the utility of a control structure 

which incorporates fundamental process models becomes evident. In the past three 

decades, model-based controller design has attracted much attention in the control 

field. This is due to the fact that this control technique could greatly improve the 

performance of controlled systems compared with traditional PID controllers [33]. 

Implementation of linearized model based control may cause a lack of robustness or 

even instability within the operating range of these processes [34]. Thus, nonlinear 

model-based control has created vast interest to yield robust control for a wide range 

of process nonlinearity and a degree of process mismatch. Several control techniques 

have been proposed, engaging particular features to improve the control processes by 

employing a process model, for instance Model Predictive Control (MPC) [35]; [36] 

and Generic Model Control (GMC) [37]. 

 

Numerous advancements have been made in model-based process control. The use of 

this strategy strongly depends on how strong the interactions between variables, i.e. 

aeration rate and stirrer speed, which affect the overall bioreactor performance and 

the process-model mismatch. This implies that the effect of interactions and 

robustness on the overall performance needs to be measured.   

 

2.3.3 Control Algorithms for Continuous Bioreactors  

Using model-based control techniques, a nonlinear control algorithm is presented in 

this section. Before presenting the nonlinear control strategy, previous control 

strategies for continuous bioreactors are studied first in order to gain an insight on 

the control problem. Conventional fixed gain PID feedback controllers have been 

used in continuous bioreactor system [38]. Due to the inherent non stationary 

behaviour of a bioreactor, proper tuning of the PID controller to provide satisfactory 

regulatory performance is required. Oxygen uptake rate (OUR) and dissolved oxygen 

(DO) are chosen as measured variables. The change due to process dynamics, 

however could not be compensated completely solely through PID control action. 
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Therefore, it is suggested to apply two simple controller designs, feedforward-

feedback (FF-FB). In this approach, a feedforward controller is added to detect any 

load changes and to take corrective action in an existing feedback control system. 

Figure 2-1 shows a block diagram to illustrate this control scheme.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 Block Diagram of a Feedforward-Feedback (FF-FB) PID Controller 

 

Since the OUR increases monotonically, an offset in the controlled variable is 

expected from classical control theory. A controller purposely tuned for low OUR to 

ensure system stability throughout the fermentation process become sluggish as time 

progresses. On the other hand, a controller tuned for high OUR that produces good 

response and small offset may be unstable at the beginning of the process. This 

clearly indicates the need for the increasing of the controller gain as a function of 

OUR to maintain good control performance. Therefore, the addition of a feedforward 

controller is to detect any load changes and to take corrective action. The OUR will 

be monitored and the controller will adjust according to the desired values 

accordingly. Therefore, OUR measurement is fed to feedforward block. On the other 

hand, the DO setpoint is fedforward to make the plant automation system respond 

immediately towards the setpoint value. The feedforward element can move the 

process to match the flow and conditions, for example temperature and composition, 

of all important process streams on a process flow diagram (PFD) for a given product 
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and production rate. Thus, this will enforce material, component and energy balances 

for continuous processes [39]. The feedforward element not only provides corrective 

action for production rate enabling PID controllers to provide consistent product 

quality, but also provide immediate achievement of optimum conditions. 

 

Based on this control approach, results suggest that the response of the process is 

greatly enhanced by the addition of the feedforward loop. However, unsatisfactory 

regulatory performance is observed. The stability of the process is unaffected. In 

addition, the FF-FB controller is unable to diminish the process offset. The offset in 

the dissolved oxygen concentration decreases with increasing controller gain, and 

that the FF-FB controller cannot compensate for this offset. The FF-FB controller is 

also rather insensitive to small errors in modeling. This is observed when the 

performance remains the same when the OUR is purposely underestimated or 

overestimated. Subject to this effect, this eventually erodes controller performance 

since it is left uncompensated [6]. On the other hand, the control problems are further 

deteriorated by the fact that the mathematical models describing the process is 

assumed to be well-mixed. Thus, the control approach is unable to measure or predict 

the desired set-points accurately. 

 

Given these problems, it is suggested to propose a control strategy, which could 

address the desired set-points implemented into the control system for a continuous 

bioreactor process. Therefore, the parameters which significantly affect the mixing 

mechanism of the bioreactor are identified.  

 

In this study, a multivariable control (multiple-input and multiple-output MIMO) 

strategy is used, whereby both aeration rate and stirrer speed are varied in response to 

yield and productivity. In these control loops, temperature and pH are not allowed to 

be manipulated and to be remained constant. All the control loops have the objective 

of achieving optimum yield and productivity at the end of the fermentation process. 

Model-based control is utilized instead of PID control, in order to describe the non-

ideal features of bioreactor by using mathematical models. Figure 2-2 shows the 

illustration of the proposed control strategy for non-ideally mixed continuous 

bioreactor control design in this study. 
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Figure 2-2 Block Diagram of Proposed Control Strategy for Non-Ideally Mixed 

Continuous Bioreactor 

 

Based on Figure 2-2, the proposed algorithm for modeling non-ideally mixed 

bioreactor can be formulated as follows. 

 

Procedure 1: 

Step 1: Generate non-ideally mixed batch bioreactor model by considering aeration 

rate and stirrer speed as manipulated variables. The algorithm of the development of 

non-ideally mixed bioreactor model will be discussed in the next section.  

 

Step 2: Ensure that the proposed non-ideally mixed bioreactor model is accurate and 

precise by performing statistical analysis. Next, investigate the effect of interaction 

for both aeration rate and stirrer speed on overall bioreactor performance. Statistical 

analysis and experimental validations are required to study the interaction. In the 

case whereby there is interaction between aeration rate and stirrer speed on 

bioreactor performance, this indicates that both interact with one another, affecting 

the mixing mechanism of bioreactor. Therefore, this interaction affects the bioreactor 

performance.  

 

Step 3: Next, set both aeration rate and stirrer speed as input variables; yield and 

productivity as output variables; initial feed substrate and dilution rate as disturbance 

variables. These setups are set to investigate the controllability of both aeration rate 

and stirrer speed in the highly nonlinear bioreactor performance, i.e. yield and 

productivity, with the presence of disturbances.   

 

Step 4: To design the nonlinear model-based controller, an optimization approach is 

employed which requires an explicit nonlinear model in the form of [40]: 
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 ),,( 11 θ−−= ttt uyfy                      (1) 

 

where yt is the current predicted output and yt-1 is the past predicted outputs; ut-1 is 

the past inputs; Ө is the process parameters.  

 

Equation 1 is used in solving a constrained or unconstrained nonlinear optimization 

problem that minimized the following objective function: 

 

})()(arg{min 22*

tttut ueyu
t

∆+−∆=∆ ∆                    (2) 

Subject to: 

 

mttt yyy −=∆                        (3)  

maxmin uuu t ≤≤                        (4) 

 

maxmin uuu t ∆≤∆≤∆                       (5) 

 

where mty are the current measurements of the outputs; *

1 ttt uuu ∆+= − are the 

optimal inputs and et is the current error trajectory defined as: 

 

∫ −=
T

mtspt dtyyke
0

)(                      (6) 

 

ysp is the set-point of the outputs and k is the tuning parameter for desired closed-loop 

responses. 

 

Step 5: The proposed nonlinear model-based controller is implemented in a closed-

loop system. This nonlinear model-based controller has the following control 

structure implementation as follows: 
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Figure 2-3 Nonlinear Model-Based Controller of Fermentation Process 

 

Note that when there are no constraints, i.e. Equation 4 and Equation 5 do not exist, 

the optimal solution for the nonlinear optimization will have an explicit form as 

follows: 

 

])([
0

* ∫ −−∆−=∆
T

msptt dtyykyu
t

                     (7) 

 

which is a PI type controller, but the gain is adjusted using the nonlinear model of 

Equation 1 so it is nonlinear gain. 

 

It is noted that the nonlinear gain as shown in Equation 7 is obtained by comparing 

the measured and predicted outputs, as indicated in Equation 3. In the case of no 

plant-model mismatch, a pure integrator controller with the design parameter k, can 

be used to achieve the desired close-loop performance, i.e. zero offset. But, it is clear 

that no plant-model mismatch is an ideal situation model. 

 

On the other hand, the higher the value of ty∆ , the higher the plant-model mismatch. 

This implies that a lower gain is required to make the system more robust, subject to 

modeling errors. This would limit the choice of k that represents the desired closed-

loop performance. 

 

As a summary, if Equation 1 is implemented to design the nonlinear controller, the 

optimization problem should be solved as follows: 

1. Given 11;; −− ttm uyy
t

 

2. Compute 
tmtt yyy −=∆ −1    

3. Solve the optimization problem for *

tu∆   

 
Eq. 6 Eq. 2-5 
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PLANT 
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4. Use *

tu∆  to compute *

1 ttt uuu ∆+= −  and then apply it in the steady 

state model, i.e. Equation 1,  to get ty  

5. Repeat 2 and 3. 

 

In the implementation of Procedure 1, the following modeling problem is defined: 

 

Problem 1: 

1. How to develop the non-linear model for fermentation process by considering 

both aeration rate and stirrer speed as manipulated variables. 

 

2.4 MODELING OF BATCH BIOREACTORS  

With the account of the control strategy and algorithm identified from Section 2.3, it 

is vital to study previous work done in modeling of non-ideally mixed bioreactor. 

This is to make further enhancements and progression in developing the non-ideally 

mixed bioreactor, without engaging perfect mixing assumption. 

 

2.4.1 Previous Modeling Work on Batch Bioreactors 

Despite of the complexity of developing non-ideally mixed bioreactor models, efforts 

have been done over these decades. Subsequently, there are advancements in 

modeling the mixing mechanism of bioreactor. In this section, previous modeling 

work in the non-ideally mixed bioreactor mechanism is addressed.  

 

For example, Harvey III and Rogers (1996) [41] utilize a multi-block grid generation 

to generate computation of mixing bioreactors. This approach indicates that there are 

limitations in attaining results accuracy for unsteady and multiphase flows. This is 

because the laminar flow is considered throughout the computation process. 

Therefore, single phase flow is assumed and thus, ideally mixed assumption is 

considered.  

 

On the other hand, Venneker et al. (2002) [42] evaluate that the mass, momentum 

and turbulence transport properties, such as density variations and mixture heat 

capacity are assumed to be constant. Each of these properties has to be solved for 

each individual phase by utilizing the population balance modeling. The use of this 
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approach would face a difficulty in defining the properties for each individual phase. 

This is due to the lack of universal agreement as to provide a generally valid 

formulation of the interfacial transfer terms. From an application point of view, this 

method is applicable, but problems arose due to the complexity of the actual 

microbial activities which is hard to be captured. Therefore, up to date, ideally mixed 

assumption is still considered.  

 

Up to date, in batch fermentation process, Monod expression has been used to 

describe the microbial kinetics of bioreactor. Yet, ideally mixed assumption is still 

considered in describing the dynamics of the biomass, substrate and dissolved 

oxygen concentrations. On the other hand, the inlet air flowrate is assumed to be 

equal to the outlet air flowrate. For simplicity in process modeling, the Monod 

expression is solely dependent on the substrate concentration, which is employed to 

describe the cell growth. Thus, all assumptions are made without comprising the 

dynamics and bioreactor performance.   

 

Based on the review of previous work on process modeling of non-ideally mixed 

bioreactor, the following remarks can be made. 

1. Mixing has been an extensive research in the field of bioreactor in both single 

and multiphase flows. 

2. Ideally mixed assumption is still considered in current practice for 

computation simplicity purposes in terms of modeling. This is because it is 

hard to capture and define all microbial activities in modeling and control. 

3. The implementation of both aeration rate and stirrer speed has yet to be 

investigated in process modeling in batch bioreactors. Therefore, the mixing 

mechanism of bioreactor has yet to be implemented in process modeling. Due 

to this fact, the effects on the achievable overall objective, i.e. achieving 

maximum yield and productivity, have not been met. It would be of great 

interest to investigate the effect of both in process modeling and indicate the 

need for both variables to maintain good control performance. 
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2.4.2 Computational Fluid Dynamics (CFD) for Batch Bioreactors 

Despite on the ideally mixed assumption on bioreactor modeling, computational fluid 

dynamics (CFD) is being utilized over the years to aid in solving mixing problems in 

bioreactor. This is due to its ability in establishing the relationship between the 

hardware and resulting fluid dynamics. CFD has proven to be useful in engineering 

fluid flow systems [43] which have been used for modeling mixing problems in 

recent years [44]. It is a useful tool that has become well-liked in the study of 

industrial fluid flow processes recently, which involves the usage of high-speed 

digital computer [41]. CFD codes normally facilitate the visualization of flow 

phenomena. It is beneficial when it is impractical within the fluid domains for the 

measurement of parameters such as pressure and velocity [45]. On the other hand, 

CFD requires relatively few restrictive assumptions and gives a complete description 

of the flow field for all variables [46]. Complex configurations can be treated and the 

methods are relatively easy to apply, whereby a variety of processes can be 

incorporated simultaneously.  

 

The current approach in investigating the mixing mechanism of bioreactor through 

the utilization of CFD is by simulating flow within and outside the impeller region. 

This is done either with the combination of moving and deforming or sliding mesh 

[47;48;49;50;51] or iterative methods using rotating coordinate system [50;52]. 

These approaches show a promising view of utilizing CFD as a design tool without 

requiring any experimental inputs. However, it soon became apparent that these 

approaches could not be used as design tool due to the following reasons. 

1. These approaches rely on solution of full-varying flow in mixing bioreactors. 

Thus, the computational requirements of these are much greater than those 

required by the steady-state simulations. Therefore, the utilization of such an 

approach as a design tool to screen various configurations becomes tough. 

2. There are restrictions on number of computational cells that can be used for 

simulations due to excessive computational requirements. Such limitations 

will allow some variable predictions difficult. 

3. Results obtained using these approaches are yet to be validated. According to 

Harris et al., (1996) [50], it is reported that there is severe underprediction of 

turbulence characteristics in simulations of flow generated by stirrer using 

sliding mesh approach.    
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In order to overcome these limitations, computational snapshot approach has been 

suggested to simulate flow generated in a fully baffled bioreactor [51]. This approach 

has been proven to be useful in capturing the key features of flow in single phase 

applications. However, this approach has yet to be extended in the application of 

multiphase flows. This is due to the fact that in the present computational model, 

coalescence is not modeled. Hence, the model is not able to simulate the formation of 

gas cavities behind impeller blades. This suggests that it is worthwhile to explore the 

potential of snapshot approach by considering the possibility of simulating flow 

within stirrer blades without excessive computations. 

 

Another alternative approach to study the mixing mechanism in bioreactors is the 

general hybrid multizonal methodology. This method is proposed by Bezzo, 

Macchietto and Pantelides (2003) [53], whereby the non-ideally mixed behaviour in 

a bioreactor is represented by a multizone, which divides the equipment volume into 

a network of interconnected zones. Each zone is addressed to be ideally mixed and a 

population balance equation is incorporated to describe the phenomena in detail.  

 

A general structure for hybrid multizonal approach is illustrated in Figure 2-4 below. 

 

 
 

Figure 2-4 General Structure of Multizonal Approach [53] 

 

Based on the general structure of the multizonal approach, fluid-flow prediction is 

solely being focused by dividing the space into a relatively large number of cells and 

solving total mass and momentum conservation equations only. Thus, intensive 
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properties such as composition and temperature are ignored. Superficial air velocity 

is assumed to be constant and uniform throughout the domain. Based on this 

ignorance, fluid-flow phenomena operate on a shorter time scale than other 

phenomena. Although the computational burden has been decreased, but the results 

attained would not be able to deal simultaneously with multiphase flow and non-

Newtonian liquid behaviour.  

 

Another technique which is employed to study the mixing behaviour of bioreactor is 

Compartment Model Approach (CMA). Several compartment models are available 

from literature, but most of them were based on artificial flow parameters without 

relation to the hydrodynamics of the process [54]. This approach is not feasible in the 

study of non-ideally mixed bioreactor as it does not provide independent knowledge 

of hydrodynamics. Therefore, it is difficult to extend this model with respect to non-

ideality of mixing bioreactor. Vrabel (1999) [54] identifies that CMA is based on 

simple compartment structure and is expressed by fundamental correlations of fluid 

dynamics. Studies are well verified on small scale bioreactors. However, for large 

scale bioreactors, it is not sufficient to draw conclusions about the effect of model 

predictions. 

 

Based on the review of previous work of CFD in mixing bioreactor, the following 

statements can be made. 

• Numerous innovations and advancements have been made in CFD approach 

to study the non-ideally mixed behaviour of bioreactor. Considerable effort 

has been applied to develop efficient way for the simulation of complex 

multiphase flows of a bioreactor. However, up to date, most results obtain are 

only well validated on steady single phase flow, whereby most of these 

investigations have treated the rotating stirrer as a black box.  

 

As a conclusion, considerations are required to be done in terms of high effort of 

modeling if CFD were to be considered for further studies in the non-ideally mixed 

behaviour of bioreactor. Considering the advances made in CFD application in single 

phase flow, it would be therefore a challenge to apply advanced technique in the 

analysis of multiphase flow of bioreactor. In addition, the design of control strategies 

to deal with nonlinear kinetics of fermentation process is also a challenge to be faced.  
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2.4.3 Modeling Approach for Batch Bioreactors 

Based on the previous work done in modeling mixing mechanism of bioreactor, an 

algorithm is proposed in this section for the integration of modeling the non-ideality 

of mixing in bioreactor. The integration of modeling the mixing mechanism of 

bioreactor is done by considering the characteristics of stirred bioreactor, to achieve 

optimum yield and productivity. Models are proposed and generated by the analysis 

of the effects of interactions, i.e. aeration and agitation on the achievable bioreactor 

performance. Based on critical literature review and by considering the 

characteristics of the non-ideally mixed behaviour of bioreactor, CFD will be 

implemented. On the other hand, CFD will be used as a basis of the control strategy 

development. Hence, the proposed model would lead to a systematic approach to 

control analysis. 

 

The proposed algorithm for modeling non-ideally mixed bioreactor can be 

formulated as follows. 

 

Procedure 1: 

Step 1: Study the bioreactor setup and determine the operating conditions. In this 

study, both aeration rate and stirrer speed are considered as input variables. Yield and 

productivity are considered as output variables. These setups are proposed to study 

the effects of both aeration rate and stirrer speed on the mixing mechanism and 

performance of bioreactor. To determine how well the performance of bioreactor is, 

both yield and productivity are measured. High yield and productivity indicate good 

bioreactor performance.  

 

Step 2: Based on literature studies, Monod kinetic expressions such as growth rate, 

substrate utilization rate and product formation rate are suggested to describe the 

reaction rates of bioreactor. Monod kinetic expressions are utilized since it is the 

simplest kinetic formulation. Mass and heat transfer bioreactor models are identified 

as well to describe the dynamics of bioreactor.  

 

Step 3: Both aeration rate and stirrer speed are implemented into the kinetic models 

by using linear regression analysis. Three modeling approaches are implemented to 

develop the non-ideally mixed bioreactor model, i.e. data-based, kinetics hybrid and 
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kinetics multi-scale models. The proposed models are regarded as non-ideally mixed 

bioreactor model since both aeration rate and stirrer speed are implemented as input 

variables to describe the mixing mechanism of the bioreactor.  

 

Step 4: Next, it is important to investigate whether a bioreactor, no matter small or 

large scale, exerts non-ideally mixed behaviour in any operating conditions of 

aeration rate and stirrer speed. This step is important as many consider small scale 

bioreactors to be well-mixed. Therefore, it is vital to determine whether both small 

and large scale bioreactors exhibit insufficient mixing, in order to successfully 

validate the non-ideally mixed bioreactor models by using experimental data. 

Experimental validation is important to ensure that the proposed non-ideally mixed 

bioreactor models are accurate and precise, before implementation into control 

strategy. Once validated, the proposed non-ideally mixed bioreactor models are 

ready to be utilized for control purposes.  

 

In the implementation of the above steps, the following problems are considered: 

 

Problem 2: 

1. Identification of kinetic and general bioreactor models for developing non-

ideally mixed bioreactor model. 

2. Effect of both aeration rate and stirrer speed in the mixing mechanism of 

bioreactor. This effect is to be observed in CFD. 

3. Prediction quality of bioreactor performance using the developed models. 

 

2.5 REMARKS 

Based on the reviews, we noted the following remarks: 

 

• Knowledge on modeling the mixing mechanism of batch bioreactor is still 

limited due to the complexity of the microbial activities. The dynamics of 

fermentation process is still not fully understood. A better approach to the 

modeling of bioreactors remains open for research. In order to produce a 

reliable model, the modeling effort is often tedious as a great number of 

experiments are required. It is tough to reproduce experiments due to the 
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difficulty in obtaining the same environmental conditions as these processes 

involve living organisms. Their dynamic behaviour is strongly nonlinear and 

unsteady. Thus, lack of accuracy of measurements will lead to identifiability 

problems. 

• Since only temperature and pH are considered as manipulated variables, the 

bioreactor model is often assumed to be ideally mixed. All microbial cell 

activities are assumed to be identical. This will lead to severe loss in yield 

and changes in microbial physiology since the mixing mechanism is not 

considered for control.  

• Both aeration and agitation play important roles in the mixing mechanism of 

bioreactor. Aeration is beneficial to the growth and performance of the living 

cells. This is done by the improvement of the mass transfer characteristics 

with respect to substrate and product, as well as providing the amount of 

oxygen to the yeast strain and its growth requirements. On the other hand, 

agitation satisfies the oxygen demand of a fermentation process.  

• Implementation of linearized model based control may cause a lack of 

robustness or even instability. The implementation of nonlinear model-based 

control would be of great advantage, in order to yield robust control for a 

wide range of process nonlinearity and a degree of process mismatch. 

• So far, temperature and pH are considered as manipulated variables in the 

control system. Other operating conditions such as aeration rate and stirrer 

speed are yet to be considered. It is identified that both aeration rate and 

stirrer speed has more effect on the mixing mechanism of bioreactor as 

compared to pH. Thus, it is suggested to utilize both aeration rate and stirrer 

speed as manipulated variables in the control system. This leads subsequently 

to the need of the development of non-ideally mixed bioreactor model. 

• Most of the previous work done on CFD for mixing bioreactors are based on 

steady state analyses. Thus, the required degree of accuracy of predicted 

results will be affected.  

 

Despite different models investigated in literature, no single model seems adequate 

to describe the non-ideally mixed behaviour of bioreactor. Therefore, it would be of 

our interest to investigate the effects of both aeration rate and stirrer speed in the 



Chapter 2 Literature Review 

34 

 

mixing mechanism of bioreactor. Through previous studies performed on 

investigating the mixing mechanism of bioreactor, it is vital to understand how its 

effect on a fermentation process. Therefore, there is a need to perform further 

research studies to investigate the non-ideally mixed behaviour of bioreactor. 

 

The specific objectives of the present study are therefore: 

• To study the mixing mechanism of bioreactor with the account of both 

aeration and agitation experimentally. 

• To develop non-ideally mixed bioreactor models with the implementation of 

both aeration rate and stirrer speed as manipulated variables. 

• To investigate the application of CFD in the development of non-ideally 

mixed bioreactor model.   

• To develop control strategies for the implementation of non-ideally mixed 

bioreactor model into fermentation processes. 

 

Finally, the outcomes of the present research will be integrated bioreactor model and 

control, which is evaluated against experimental data and practical needs. This is 

important so that the understanding and applicability of non-ideally mixed bioreactor 

model can be explored. The subsequent chapters (Chapters 4-6) will focus on the 

development of mathematical models to solve Problem 2. In addition, the issue of 

control analysis will be addressed in developing the control strategy on the 

development of an approach to solve Problem 1. Hence, both problems would lead to 

a systematic approach to modeling and control of non-ideally mixed bioreactor. 
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Chapter 3 Effects of Aeration Rate and Stirrer Speed 

on Bioreactor Performance 

 

 

3.1 INTRODUCTION 

The objective of this chapter is to study the effect of both aeration rate and stirrer 

speed on batch bioreactor performance. This chapter outlines the methodology, 

experimental design and analytical techniques from which the effects of both 

aeration rate and stirrer speed on the micro-aerobic batch fermentation process are 

investigated experimentally.  

 

Two case studies are considered, i.e. the use of glucose and cassava as main 

substrates. Two-factor factorial designs are conducted to design experiments for both 

case studies, whereby in each experiment, the substrate, product, byproduct and 

biomass concentrations are measured. These experimental results will also be used 

for kinetics modeling, optimization and control strategy in the following chapters.  

 

This chapter is divided into four sections. Section 3.2 explains the definition of the 

parameters involved in experimental studies. Section 3.3 describes the experiment 

design approach to study the effect of aeration rate and stirrer speed on bioreactor 

performance. Section 3.4 outlines the case studies involved in the experimental 

investigation. In Section 3.5, the experimental results for both case studies are 

presented. In this section, the effect and interaction of aeration rate and stirrer speed 

on the bioreactor performance for the case studies are discussed. Finally, concluding 

remarks are presented at the end of this chapter.  
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3.2 DEFINITIONS 

In our study, there are a number of parameters employed in the experimental study of 

bioreactor performance. It is imperative to define those parameters for clarity. Listed 

below is the definition of those parameters: 

 

• Aeration rate (AR) is defined as the rate of air circulating through mixed 

fermentation medium. Unit used is LPM (liter per minute).  

• Stirrer speed (SS) is defined as the speed of the bioreactor impeller to mix the 

fermentation medium in circular motions. Rushton turbine is utilized in our 

study. Unit used is RPM (revolution per minute).  

• Biomass concentration is defined as microbial cell density in the fermentation 

medium. Unit used is g/L. 

• Glucose concentration is defined as the amount of feed supplied into the 

fermentation medium for microbial growth. Unit used is g/L.  

• Ethanol concentration is defined as the amount of ethanol produced in the 

fermentation medium. Unit used is g/L. 

• Glycerol concentration is defined as the amount of glycerol produced in the 

fermentation medium. Unit used is g/L. 

• Dissolved oxygen (DO) is defined as the relative measure of the amount of 

oxygen that is dissolved or carried in a given fermentation medium 

• Oxygen Uptake Rate (OUR) is defined as the microorganisms consumption 

rate of oxygen  

• Yield is defined as the highest amount of product obtained from initial 

amount of substrate introduced in a fermentation process. It is calculated as: 

Yield %100
0

×
−

=
SS

P
                            (8) 

 

where P is the product concentration, S0 is the initial substrate concentration 

and S is the final substrate concentration (g/L) of the fermentation medium 

• Productivity is defined as the measured product concentration within the 

fermentation process time. It is calculated as: 

Productivity 
BT

P
=                        (9) 
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where P is the product concentration (g/L) and BT is the batch time of the 

whole fermentation process  

• Bioreactor performance is referred to as the amount of yield and productivity. 

High amount of yield and productivity indicate that the bioreactor 

performance is good, and vice versa.  

 

3.3 EXPERIMENTAL DESIGN 

The effect of aeration rate (AR) and stirrer speed (SS) on the bioreactor performance 

will be studied experimentally. In this section, the theoretical background of the 

design experiment will be presented for completeness, and then applied to our case 

studies to generate sets of experimental data. Statistical test, i.e. “Prob > F” is applied 

to the experiment data from which the effect of aeration rate and stirrer speed on 

bioreactor performance are studied and analyzed. “Prob” indicates probability and 

“F” indicates F test. F test is a statistical test to identify the effect of a factor on a 

response [55]. The “Prob > F” value is required to be less than 0.05 for significance. 

The smaller the “Prob > F”, the more significant is the corresponding coefficient 

[56]. The significance of the “Prob > F” value will imply that both aeration rate (AR) 

and stirrer speed (SS) have significant effects towards the output variables.  

 

3.3.1 Preliminaries 

In the design experiment, the selection of response variables, factors, levels and 

ranges play an important role in generating reliable data sets. The selection depends 

on the objective of the study by viewing the process or system as follows: 

 

          

 

 

 

Figure 3-1 General Model of a Process or System 

 

The objectives of the experiment may include the following [57]: 

1. Determining which variables X are most influential on the response Y. 

2. Determining where to set the influential X’s so that Y is almost always near 

the desired nominal value. 

Y1, Y2… Yn 

Outputs 

X1 X2… Xn 

Inputs 
Process 
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3. Determining where to set the influential X’s so that the variability in Y is 

small. 

 

For our micro-aerobic fermentation process, previous work suggest that both aeration 

rate and stirrer speed are the most influential variables on the response of yield and 

productivity on bioreactor performance [58]. Therefore, both aeration rate (X1) and 

stirrer speed (X2) are chosen as the input variables while Yield (Y1) and Productivity 

(Y2), on the other hand, are chosen as output responses. As a result, the process yield 

or productivity can be modeled as a function of the levels of aeration rate and stirrer 

speed, i.e.: 

 

ε+= ),( 21 XXfYn                         (10) 

 

where ε represents the error in the response Yn, i.e. Yield (Y) or Productivity (P). If 

the expected response is denoted by η== ),()( 21 XXfyE , then the surface 

represented by ),( 21 XXf=η  is called as a response surface.  
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Once the factors are determined, the next step is to determine the specific levels and 

ranges over these factors. Both levels and ranges are determined based on the 

equipment limitations in the laboratory. Particularly, it is based on the limitations of 

both aeration rate and stirrer-speed so that the bioreactor could achieve the desired 

bioreactor performance.  

 

3.3.2 Factorial Design 

The choice of experimental design involves the consideration of sample size (number 

of replicates), the selection of suitable run order for experimental trials, and the 

determination of whether randomization is involved. In general, factorial designs are 

the most efficient in the study of the effects of two or more factors. It reveals 

interactions of factors. Furthermore, factorial designs also allow the effects of a 

factor to be estimated at several levels of the other factors, yielding conclusions that 
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are valid over a range of experimental conditions. All possible combinations of the 

levels of the factors in each complete replication of the experiment are investigated. 

For example, if there are a levels of factor A and b levels of factor B, each replicate 

contains all ab treatment combinations.  

 

In the general case, let yijk be the observed response when factor A is at the ith level (i 

= 1, 2,…, a) and factor B is at the jth level (j = 1, 2,…, b) for the kth replicate (k = 1, 

2,…, n). A two-factor factorial experiment will appear as in Table 3-1. The order in 

which the abn observations are taken is selected at random so that this design is 

completely randomized design. 

 

Table 3-1 General Arrangement for a Two-Factor Factorial Design    

 

 

                                               Factor B 

Factor A 

 1 2 … b 

1 
y111, y112, 

…, y11n 

y121, y122, 

…, y12n 

 y1b1, y1b2, 

…, y1bn 

2 
y211, y212, 

…, y21n 

y221, y222, 

…, y22n 

 y2b1, y2b2, 

…, y2bn 

…     

a 
ya11, ya12, 

…, ya1n 

ya21, ya22, 

…, ya2n 

 yab1, yab2, 

…, yabn 

 

 

In our study, a regression model is used since this model is useful when one or more 

of the factors in the experiment are quantitative [57]. A regression is performed to 

describe the data collected whereby an observed response is approximately based on 

a functional relationship between the estimated variable, y and one or more input 

variable X1, X2, …, Xi.  

 

Since there are two manipulated variables taken into account in this research, i.e. 

aeration rate and stirrer speed, it would be easier to utilize 2
nd

 order terms instead of 

3
rd

 order terms in developing the regression model. On the other hand, it is of interest 

to fit the developed model by using Central Composite Design (CCD) for 
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optimization purpose. CCD is chosen for optimization in this research since it is the 

most commonly used method for optimizing fermentation processes. Furthermore, 

CCD is known to be the most popular class of designs used for fitting 2
nd

 order 

models efficiently [57]. 

 

Thus, a regression model representation of the two-factor factorial experiment could 

be written as: 

 

εββββ ++++= 211222110 XXXXy
                    

(12) 

 

where y is the response, the β’s are parameters whose values are to be determined, X1 

is a variable that represents factor A, X2 is a variable that represents factor B, X1X2 

represents the interaction between X1 and X2. ε is a random error term.   

 

The parameter estimates in this regression model turn out to be related to the effect 

estimates. Specifically, it is of interest in testing hypotheses about the equality of row 

treatment effects, i.e. 

 

0...: 210 ==== aH τττ
 

H1 : at least one τi ≠ 0                   (13) 

 

and the equality of column treatment effects, i.e. 

0...: 210 ==== bH βββ
  

H1 : at least one βj ≠ 0                      (14) 

 

It is also of interest in determining whether row and column factors (or treatments) 

interact. Thus,  

0)(:0 =ijH τβ
   

for all i, j 

H1 : at least one (τβ)ij ≠ 0                                        
(15) 

On the other hand, there must be at least two replicates (n > 2) to obtain an error sum 

of squares. The total corrected sum of squares can be written as: 

 

EABBAT SSSSSSSSSS +++=
                    

(16) 
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The number of degrees of freedom associated with each sum of squares is: 

 

Effect Degrees of Freedom 

A a – 1 

B b – 1 

AB interaction (a - 1) (b - 1) 

Error ab (n – 1) 

Total anb - 1 

 

Each sum of squares divided by its degrees of freedom is a mean square. The 

expected values of the mean squares are: 
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and 

 

2)
)1(

()( σ=
−

=
nab

SS
EMSE E

E                                     (20) 

 

 

Notice that if the null hypotheses of no row treatment effects, no column treatment 

effects, and no interaction are true, then the expected values of the mean squares are 

all estimate of σ
2
.  However, if there are differences between row treatment effects, 

then MSA will be larger than MSE. Similarly, if there are column treatment effects or 

interaction present, then the corresponding mean squares will be larger than MSE. 

Thus, to test the significance of both main effects and their interaction, divide the 

corresponding mean square by the error mean square. Large values of this ratio 

imply that the data do not support the null hypothesis. 

 

If the model (see Equation 12) is adequate and that the error terms are normally and 

independently distributed with constant variance, then each of the ratios of mean 
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squares are distributed as F with (a – 1), (b – 1) and (a – 1)(b – 1) numerator degrees 

of freedom, respectively and ab(n – 1) denominator degrees of freedom.  

 

3.4 APPLICATION AND CASE STUDIES 

In our study, a two-factor factorial design is selected since aeration rate and stirrer 

speed is the two factors of interest to study on the effect of bioreactor performance. 

Aeration rate (X1, LPM) and stirrer speed (X2, rpm) are considered as input variables. 

Yield (Y1, %) and productivity (Y2, g/L.hr) are considered as output variables. The 

levels of the input variables are selected based on the range of reasonable 

formulations since the interpretation of the results are valid only within experimental 

limits in the laboratory available. Three levels are coded as -1, 0 and +1, which 

corresponded to the lower, middle and higher values respectively. The experiments 

are chosen to realize every possible combination between the variables, with the 

levels coded. 

 

Based on the above two-factor factorial design theory, the two-factor factorial design 

of experiment for this study is proposed. Aeration rate is varied between 1.0 LPM 

and 1.5LPM and stirrer speed ranged between 150 rpm and 250rpm. Both aeration 

rate and stirrer speed ranges are set according to the specifications and limitations of 

the bioreactor in the laboratory. Table 3-2 shows the input variables and levels 

employed. 

 

Table 3-2 Input Variables and Their Levels Employed in Two-Factor Factorial 

Design 

Factor Variable Units Low  

Level (-) 

Middle 

Level (0) 

High  

Level (+) 

X1 Aeration 

Rate 

LPM 1.0 1.25 1.5 

X2 Stirrer 

Speed 

rpm 150 200 250 
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A total of seven experiments are conducted based on the randomized order from 

factorial design application. Table 3-3 summarizes the aeration rate and stirrer speed 

setups for the seven experimental runs, whereby all the experiments are conducted. 

 

Table 3-3 Factorial Design Layout 

Standard Order Run Order X1: Aeration Rate 

(LPM) 

X2: Stirrer Speed 

(rpm) 

7 1 1.25 200 

1 2 1.0 150 

5 3 1.25 200 

6 4 1.25 200 

3 5 1.0 250 

4 6 1.5 250 

2 7 1.5 150 

 

 

From Table 3-3, the experiments are randomized in order to make the experimental 

error as small as possible. Standard Order is the order of treatment combinations 

based on the level indicated in Table 3-2. As observed from Table 3-3, replicates are 

required to be conducted for the baseline values. However, there are no replicates 

required for other conditions. It is designed in such a way in order to reduce the 

modeling error structures among the input variables [59]. Since there is no 

replication for other conditions, the error variance can be used as a measure of 

precision or accuracy of experiments [60]. This can be measured by investigating the 

“Prob > F” value, which has been discussed in Section 3.3 in this chapter. As long as 

the “Prob > F” value is significant, the experiments conducted are precisely accurate, 

even though the experiments are designed in such a way that there is no replication 

for some conditions. For a two-factor factorial design, the treatment combinations 

begin with the order of: 
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Table 3-4 Standard Order Interpretation for a Two-Factor Factorial Design  

Standard Order X1: Aeration Rate (LPM) X2: Stirrer Speed (rpm) 

1 - - 

2 + - 

3 - + 

4 + + 

 

Any replicates for the baseline values are to be included after the fourth standard 

order. Since there are two replicates, the baseline values are set at Standard Order 5, 

6 and 7 respectively. On the other hand, Run Order is the randomized order of the 

Standard Order. Experiments are conducted based on the Run Order. Experimental 

data, i.e. glucose, ethanol, glycerol and biomass concentrations are to be measured 

and recorded in order to investigate the impact of both aeration rate and stirrer speed 

on the micro-aerobic batch fermentation process in laboratory scale.  

 

Two case studies are chosen to measure the effects of aeration rate and stirrer speed 

on bioreactor performance, namely either glucose or cassava is used as the main 

substrate of the fermentation medium. Glucose is chosen due to its ability in 

producing a high amount of ethanol. Cassava, on the other hand, is chosen since it is 

of interest to study the effect of aeration rate and stirrer speed on more complex 

structure than glucose, and it is much cheaper to conduct experiments by using 

cassava. The experimental procedures for both case studies are available in Appendix 

A. 

 

3.5 MATERIALS AND EQUIPMENTS 

3.5.1 Bioreactor (BIOSTAT® A Plus 2L, MO-ASSEMBLY) 

In this study, a 2 litre bioreactor, BIOSTAT® A Plus is employed, which is shown in 

Figure 3-2.  
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Figure 3-2 Bioreactor BIOSTAT® A Plus 2L, MO Assembly [61] 

 

The height of the bioreactor is 0.24m, whereas the diameter of the bioreactor is 

0.128m. To have a clearer view of the bioreactor, Figure 3-3 shows the top view of 

the bioreactor which indicates the location of the probes, inoculation port, sample 

injection pipe, sparger, aeration fitting and cooling fingers. 
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Figure 3-3 Bioreactor Top Plate 

 

Basically, this bioreactor is a solid, autoclavable laboratory bioreactor system which 

is suitable for a wide range of research and industrial applications. Additionally, this 

bioreactor has oxygen enrichment capability, efficient agitation system for high cell 

densities as well as automatic dissolved oxygen (DO) control via agitation, substrate 

addition and optional oxygen. This bioreactor is applicable for:  

• Microbial culture for the growth of bacteria, yeast and fungi.  

• Cell culture for the growth of animal, insect and plant cells.  

• Transition from shaker or tissue culture flask.  

• Small scale protein expression. 

 

Thus, this bioreactor is suitable to be utilized for the study of both aeration and 

agitation in mixing mechanism of bioreactor for an ethanolic fermentation process.  

 

3.5.2 Agitation System (Rushton Turbine) 

To study the effect of agitation, Rushton turbine is utilized since it is one of the most 

common agitator utilized in fermentation process. This type of agitator is suitable for 

efficient mixing and maximum oxygen transfer within the bioreactor since it could 
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break up a fast air stream without itself becoming flooded in air bubbles [58];[62]. 

Figure 3-4 shows the Rushton turbine, which is utilized in the laboratory. It consists 

of six discs turbine, with a series of rectangular vanes set in a vertical plane around 

the circumference. The diameter of the turbine is 0.03m and the thickness of the 

turbine is 0.001m.  

 

A dual impeller combination is utilized in the laboratory to ensure good mixing and 

aeration could be achieved. The lower impeller acts as the gas dispenser and the 

upper impeller acts primarily as a device for aiding circulation of medium contents 

[58]. 

 

 

 

Figure 3-4 Rushton Turbine 

 

3.5.3 Aeration System (Sparger) 

To study the effect of aeration, a sparger is utilized as the aeration system in this 

study. Figure 3-5 shows a ring sparger utilized in the laboratory, whereby air from 

the sparger hit the underside of the Rushton turbine. Air bubbles are broken up into 

smaller bubbles. This type of sparger is suitable under the operation of high aeration 

rates.  
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Figure 3-5 Ring Sparger 

 

3.6 RESULTS AND DISCUSSION 

3.6.1 Glucose Substrate 

3.6.1.1 Effect of Aeration Rate and Stirrer Speed on Glucose Concentration 

Figure 3-6 shows the glucose concentrations measured under different conditions of 

aeration rate and stirrer speed.  

 

 

Figure 3-6 Glucose Concentration vs. Batch Age for Different Sets of Experiments 

 

It is observed that the glucose concentrations are relatively comparable for all sets of 

aeration rate and stirrer speed conditions. The trends of the glucose concentrations 
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for all experimental conditions are expected to decrease due to the consumption of 

glucose throughout the fermentation process. It is also observed that the consumption 

of glucose is high for all conditions of aeration rate and stirrer speed. Results show 

that the microorganisms utilize a large amount of glucose with oxygen consumption 

to produce ethanol. Aerating and agitating mixed the nutrients together along with 

oxygen throughout the fermentation medium for microbial growth.  

 

Based on ANOVA analysis (Refer to Appendix B.1), it is identified that there is 

effect of aeration rate and stirrer speed on glucose concentration. The “Prob > F” 

interaction value for glucose concentration is 0.0070. This value indicates that both 

aeration rate (AR) and stirrer speed (SS) have significant effects on glucose 

concentration since the “Prob > F” is less than 0.05.  

 

3.6.1.2 Effect of Aeration Rate and Stirrer Speed on Ethanol Concentration 

Figure 3-7 shows the ethanol concentration profiles under different conditions of 

aeration rate and stirrer speed.  

 

 

Figure 3-7 Ethanol Concentration vs. Batch Age for Different Sets of Experiments 

 

As expected, the ethanol concentration for different conditions of aeration rate and 

stirrer speed increase throughout the fermentation process. It is noticed that the 

ethanol concentration for aeration rate of 1.5LPM and stirrer speed of 250rpm is the 

highest among all the conditions of aeration rate and stirrer speed. Therefore, it is 

suggested that in order to produce high amount of ethanol, higher aeration rate and 

stirrer speed is to be implemented. This phenomenon could be due to more efficient 
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mixing, whereby higher aeration rate and stirrer speed generate better mixing. Thus, 

the microbial culture is supplied with oxygen during growth at a rate sufficient to 

satisfy the microorganisms demand [58]. Both aeration rate and stirrer speed satisfy 

the oxygen demand and thus, ethanol productivity is higher.  

 

Based on ANOVA analysis (Refer to Appendix B.1), it is identified that there is 

effect of aeration rate and stirrer speed on ethanol concentration. The “Prob > F” 

interaction value for ethanol concentration is 0.033. This value indicates that both 

aeration rate (AR) and stirrer speed (SS) have significant effects on ethanol 

concentration since the “Prob > F” is less than 0.05. 

 

3.6.1.3 Effect of Aeration Rate and Stirrer Speed on Glycerol Concentration 

Figure 3-8 displays how the glycerol concentration profile varies with different 

conditions of aeration rate and stirrer speed. The highest production rate of glycerol 

is found to coincide with the highest production rate of ethanol, i.e. at aeration rate of 

1.5LPM and stirrer speed of 250rpm.  

 

 

Figure 3-8 Glycerol Concentration vs. Batch Age for Different Sets of Experiments 

 

The production of glycerol is highly affected by aeration rate. At aeration rate of 

1.5LPM, the rate of glycerol productions at stirrer speed of 150rpm and 250rpm are 

almost comparable. This suggests that glycerol production seems to be dependent on 

aeration rate more rather than on the stirrer speed. This result shows that it is 

important to operate the bioreactor at lower aeration rate and stirrer speed to have 

minimum glycerol production since glycerol is only a byproduct.  
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Based on ANOVA analysis (Refer to Appendix B.1), it is identified that there is 

effect of aeration rate and stirrer speed on glycerol concentration. The “Prob > F” 

interaction value for glycerol concentration is 0.046. This value indicates that both 

aeration rate (AR) and stirrer speed (SS) have significant effects on glycerol 

concentration since the “Prob > F” is less than 0.05. 

 

3.6.1.4 Effect of Aeration Rate and Stirrer Speed on Biomass Concentration 

Figure 3-9 shows the biomass concentration profiles of various conditions of aeration 

rate and stirrer speed. 

 

 

Figure 3-9 Biomass Concentration vs. Batch Age for Different Sets of Experiments 

 

It is observed that under different conditions of aeration rate and stirrer speed, the 

biomass concentrations are significantly similar. The microbial growth increase 

steadily until the 20
th

 hour before approaching to the stationary phase, whereby there 

is no net growth. This could be due to either exhaustion of substrate, or due to a 

balance of growth and lysis processes. The lag phase is extremely short, whereby the 

microbial cells grow rapidly. The more probable explanation in this case could be 

due to the links of growth rate and ethanol production rate to cell viability. It has 

been known that the higher the rate of ethanol formation during the fermentation 

process, the lower is the cell viability which could be due to the inhibition of ATP 

synthesis or leakage of metabolites from the cells while the yeast cells are 

metabolically inactive [63]; [64]; [65]; [66]; [67]. This activity will cause the loss of 

plasma membrane integrity and thus, results in the damage of the plasma membrane. 

The membrane integrity plays an important role in ethanol tolerance, whereby with 
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the loss of membrane integrity, it will lead to the decrease in phospholipid content. 

This will affect the level of ethanol tolerance which will eventually cause cell death 

[64]; [66]; [67]; [68]; [69]. Thus, both aeration rate and stirrer speed play important 

role in the supply of sufficient amount of oxygen for cell growth.  

 

Based on ANOVA analysis (Refer to Appendix B.1), it is identified that there is 

effect of aeration rate and stirrer speed on biomass concentration. The “Prob > F” 

interaction value for biomass concentration is 0.033. This value indicates that both 

aeration rate (AR) and stirrer speed (SS) have significant effects on glucose 

concentration since the “Prob > F” is less than 0.05. 

 

3.6.1.5 Effect of Aeration Rate and Stirrer Speed on Yield and Productivity  

In order to study the effect of aeration rate and stirrer speed on bioreactor 

performance of glucose substrate, the measurements of yield and productivity are 

required to be measured. Experiments are conducted based on the randomized 

experimental layout as shown in Table 3-5.  

 

Table 3-5 Summary of Yield and Productivity with Respect to Aeration Rate and 

Stirrer Speed (Glucose Substrate) 

Standard 

Order 

Run  

Order 

X1:  

Aeration 

Rate  

(LPM) 

X2:  

Stirrer 

Speed  

(rpm) 

Y1:  

Yield  

(%) 

Y2: 

Productivity 

(g/L.hr) 

7 1 1.25 200 21.500 0.180 

1 2 1.0 150 14.788 0.099 

5 3 1.25 200 21.050 0.176 

6 4 1.25 200 21.250 0.178 

3 5 1.0 250 15.105 0.102 

4 6 1.5 250 24.040 0.160 

2 7 1.5 150 16.392 0.106 

 

As shown in Table 3-5, different conditions of aeration rate and stirrer speed show 

different measurements of yield and productivity. From the experimental results, 
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yield measurement is the highest at aeration rate of 1.5LPM and stirrer speed of 

250rpm, i.e. the maximum level for both aeration rate and stirrer speed. Productivity 

measurement is the highest at the centre point or baseline value, i.e. at aeration rate 

of 1.25LPM and stirrer speed of 200rpm. In particular, maximum yield and 

productivity are observed for different experimental conditions. Maximum 

productivity is not achieved for highest aeration rate and stirrer speed. Based on 

results presented in Figure 3-7, the final amount of ethanol produced is the highest 

among all the experimental conditions. However, the final amount of glycerol 

produced is among the highest, as observed in Figure 3-8. Therefore, it is suggested 

that maximum productivity is not achievable for highest aeration rate and stirrer 

speed due to the high production of glycerol which affect the productivity of ethanol.  

 

In general, as ethanol productivity increases with the increment in aeration rate and 

stirrer speed, the production of glycerol increases as well. This statement is validated 

on the basis of knowledge of the biological role of glycerol by Saccharomyces 

cerevisiae. Glycerol is produced during fermentation of glucose to ethanol in order to 

maintain the redox balance and osmoregulation in yeast cells [67]; [70]. The yeast 

cells will increase the rate of glycerol productivity with respect to decreased 

extracellular water activity. Under this phenomenon of hyperosmotic stress in the 

yeast cells, glycerol is conserved within the cells to maintain osmotic equilibrium 

with the external environment. Thus, with the increment of ethanol production in the 

fermentation medium, glycerol production will also increase at the same time (but 

selectivity depends strongly on aeration rate). This is to overcome hyperosmotic 

stress within the yeast cells. This statement could be well justified, whereby a 

decrease in ethanol yield was observed when the glycerol formation is reduced in a 

micro-aerobic ethanolic fermentation by proper controlled oxygenation [67]; [71]. 

Therefore, with higher aeration rate and stirrer speed, higher ethanol and glycerol 

production is observed.  

 

Comparing both experimental conditions, it is suggested to operate the bioreactor at 

higher aeration rate and stirrer speed in order to achieve maximum yield. On the 

other hand, for maximum productivity to be achieved, it is suggested to operate both 

aeration rate and stirrer speed at the baseline conditions. These results show that 
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aeration rate and stirrer speed play important roles in achieving high yield and 

productivity.  

 

Based on ANOVA analysis (Refer to Appendix B.1), it is identified that there is 

effect of aeration rate and stirrer speed on yield and productivity. The “Prob > F” 

interaction value for yield is 0.0049. On the other hand, the “Prob > F” interaction 

value for productivity is 0.0096. These values indicate that both aeration rate (AR) 

and stirrer speed (SS) have significant effects on yield and productivity since the 

“Prob > F” values are less than 0.05. Aeration rate (AR) and stirrer speed (SS) have 

higher effect on yield than productivity as the “Prob > F” value for yield is lower 

than productivity.  

 

3.6.1.6 Effect of Aeration Rate and Stirrer Speed on Dissolved Oxygen (DO) and 

Oxygen Uptake Rate (OUR) 

Figure 3-10 shows the dissolved oxygen (DO) profiles for different conditions of 

aeration rate and stirrer speed conditions. 

 

 

Figure 3-10 Dissolved Oxygen (DO) Profile vs. Batch Age for Different Sets of 

Experiments 

 

As expected, the DO measurements tend to decrease with respect to time. The DO 

profiles are typically similar for all experimental conditions, except for conditions 

under aeration rate of 1.5LPM and stirrer speed of 250rpm. This phenomenon shows 

that the oxygen demand is so high under this condition that the DO measurement 
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does not increase further [72]. It is suggested that both aeration rate and stirrer speed 

lead to drastic shift from micro-aerobic to aerobic condition.  

 

On the other hand, Figure 3-11 shows the profiles of oxygen uptake rate (OUR), 

whereby the OUR for each conditions of aeration rate and stirrer speed increase 

throughout the fermentation process.  

 

 

Figure 3-11 Oxygen Uptake Rate (OUR) Profile vs. Batch Age for Different Sets of 

Experiments 

 

OUR increase in the exponential growth phase because in this step, a high substrate 

consumption rate takes place [72]. This phenomenon suggests that OUR value is 

higher at higher aeration rate while stirrer speed is maintained. At the same time, 

OUR value is also higher at lower stirrer speed when aeration rate is maintained. 

Thus, results suggest that in order to achieve high OUR value, higher aeration rate 

and lower stirrer speed are to be implemented. It is vital to ensure that OUR should 

not decrease because this action will decrease the metabolic activity of cells [72]. 

Interestingly, there is a drastic decrease of OUR under experimental conditions of 

1.0LPM and 250rpm as well as 1.25LPM and 200rpm at the beginning of the 

fermentation process. This phenomenon could be due to the drastic change of oxygen 

requirement for cell growth. After inoculation at the initial stage of the fermentation 

process, there is a period during which it appears that no growth takes place. This 

period is referred to as lag phase and is considered as a time of adaptation [58]. 

Therefore, it is suggested that during this time, the cells are adapting to the new 

environment whereby oxygen requirement is considered, either low or high oxygen 
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requirement. Since there is a drastic decrease of OUR, it is suggested that there is no 

cell growth due to the adaptation period. 

 

Based on ANOVA analysis (Refer to Appendix B.1), it is identified that there is 

effect of aeration rate and stirrer speed on DO and OUR. The “Prob > F” interaction 

value for DO is 0.0268. On the other hand, the “Prob > F” interaction value for OUR 

is 0.0421. These values indicate that both aeration rate (AR) and stirrer speed (SS) 

have significant effects on DO and OUR since the “Prob > F” values are less than 

0.05. Based on these values, aeration rate (AR) and stirrer speed (SS) have higher 

effect on DO than OUR as the “Prob > F” value for DO is lower than OUR. This 

shows that aeration rate (AR) and stirrer speed (SS) highly affect the amount of 

oxygen that is carried in the fermentation medium. 

 

3.6.2 Cassava Substrate 

3.6.2.1 Effect of Aeration Rate and Stirrer Speed on Glucose Concentrations 

Figure 3-12 shows the profiles of glucose concentrations under different conditions 

of aeration rate and stirrer speed for cassava substrate. 

 

 

Figure 3-12 Glucose Concentration vs. Batch Age for Different Sets of Experiments 

 

Results show that despite of the complicated structure of cassava comparing to 

glucose, aeration rate and stirrer speed have significant effect on glucose 

concentrations. Under different conditions of aeration rate and stirrer speed, different 

glucose concentrations are obtained. More dynamics are observed comparing to that 

of the glucose concentration profile for glucose substrate.  
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Based on ANOVA analysis (Refer to Appendix B.2), it is identified that there is 

effect of aeration rate and stirrer speed on glucose concentration. The “Prob > F” 

interaction value for glucose concentration is 0.0239. This value indicates that both 

aeration rate (AR) and stirrer speed (SS) have significant effects on glucose 

concentration since the “Prob > F” is less than 0.05. 

 

3.6.2.2 Effect of Aeration Rate and Stirrer Speed on Ethanol Concentrations 

Figure 3-13 shows the ethanol concentration profiles under different conditions of 

aeration rate and stirrer speed for cassava substrate. 

 

 

Figure 3-13 Ethanol Concentration vs. Batch Age for Different Sets of Experiments 

 

It is observed that the highest ethanol concentration achieved is at the baseline value 

of the experimental range. In order to achieve high ethanol concentration, it is 

suggested to operate the bioreactor under high aeration rate and low stirrer speed. 

Different conditions of aeration rate and stirrer speed produce different amount of 

ethanol concentration. Therefore, overall results suggest that both aeration rate and 

stirrer speed rate have significant effects on ethanol concentration. Despite of the 

complicated structure of cassava substrate, ethanol concentration is higher, 

comparing to that of glucose substrate.  

 

Based on ANOVA analysis (Refer to Appendix B.2), it is identified that there is 

effect of aeration rate and stirrer speed on ethanol concentration. The “Prob > F” 

interaction value for ethanol concentration is 0.0063. This value indicates that both 
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aeration rate (AR) and stirrer speed (SS) have significant effects on ethanol 

concentration since the “Prob > F” is less than 0.05. 

 

3.6.2.3 Effect of Aeration Rate and Stirrer Speed on Glycerol Concentrations 

Figure 3-14 displays the glycerol concentration profiles, which varied significantly 

with different experimental conditions of aeration rate and stirrer speed.  

 

 

Figure 3-14 Glycerol Concentration vs. Batch Age for Different Sets of Experiments 

 

Based on the profiles, it is observed that different amount of glycerol is produced 

with respect to different conditions of aeration rate and stirrer speed. In order to 

achieve minimum amount of glycerol, it is suggested to operate the bioreactor under 

high aeration rate and low stirrer speed. Other conditions of aeration rate and stirrer 

speed will lead to higher amount of glycerol produced, which is not desirable.  

 

Based on ANOVA analysis (Refer to Appendix B.2), it is identified that there is 

effect of aeration rate and stirrer speed on glycerol concentration. The “Prob > F” 

interaction value for glycerol concentration is 0.0329. This value indicates that both 

aeration rate (AR) and stirrer speed (SS) have significant effects on glycerol 

concentration since the “Prob > F” is less than 0.05. 

 

3.6.2.4 Effect of Aeration Rate and Stirrer Speed on Biomass Concentrations 

Figure 3-15 shows the biomass concentration profiles for cassava substrate, whereby 

the biomass concentrations for each condition of aeration rate and stirrer speed are 

similar. 
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Figure 3-15 Biomass Concentration vs. Batch Age for Different Sets of Experiments 

 

The microbial growth increase steadily until the 40
th

 hour before approaching to the 

stationary phase, whereby there is no net growth. However, for glucose substrate, the 

microbial growth increase steadily until the 20
th

 hour. Meaning, for cassava 

substrate, the microorganisms require another 20 hours to grow. This is due to the 

complicated structure of cassava substrate, whereby both aeration rate and stirrer 

speed play important role in the supply of sufficient amount of oxygen throughout 

the fermentation process.  

 

Based on ANOVA analysis (Refer to Appendix B.2), it is identified that there is 

effect of aeration rate and stirrer speed on biomass concentration. The “Prob > F” 

interaction value for biomass concentration is 0.0074. This value indicates that both 

aeration rate (AR) and stirrer speed (SS) have significant effects on biomass 

concentration since the “Prob > F” is less than 0.05. 

 

3.6.2.5 Effect of Aeration Rate and Stirrer Speed on Yield and Productivity  

Table 3-6 summarizes the results of yield and productivity measured for cassava 

substrate, with respect to different conditions of aeration rate and stirrer speed.  
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Table 3-6 Summary of Yield and Productivity with Respect to Aeration Rate and 

Stirrer Speed (Cassava Substrate) 

Standard 

Order 

Run  

Order 

X1:  

Aeration 

Rate  

(LPM) 

X2:  

Stirrer 

Speed  

(rpm) 

Y1:  

Yield  

(%) 

Y2: 

Productivity 

(g/L.hr) 

7 1 1.25 200 48.322 0.922 

1 2 1.0 150 19.577 0.280 

5 3 1.25 200 48.500 0.980 

6 4 1.25 200 48.952 0.990 

3 5 1.0 250 44.432 0.701 

4 6 1.5 250 25.597 0.450 

2 7 1.5 150 5.404 0.130 

 

Different conditions of aeration rate and stirrer speed produce different 

measurements of yield and productivity for cassava substrate. The highest yield and 

productivity are measured at the centre point or baseline value, i.e. at aeration rate of 

1.25LPM and stirrer speed of 200rpm. Comparing to other aeration rate and stirrer 

speed operating conditions, yield and productivity attained are quite low especially 

for conditions under aeration rate of 1.5LPM and stirrer speed of 150rpm. Thus, 

results suggest that, it is preferable to operate the bioreactor at the baseline value if 

cassava substrate is to be used as the main substrate, in order to achieve higher yield 

and productivity. 

 

It is interesting to consider cassava as the main substrate, as it is possible to obtain 

higher yield and productivity as compared to that of glucose. Considering glucose as 

the main substrate, high yield and productivity are attained at high aeration rate and 

stirrer speed. However, high yield and productivity are obtained at the baseline value 

if cassava is considered as the main substrate. Lower aeration rate and stirrer speed 

are essential to operate the bioreactor in order to obtain high yield and productivity if 

cassava is considered. The operating conditions required by cassava to produce high 

yield and productivity are different than glucose could be due to the more complex 

structure of cassava. Since cassava has been hydrolyzed acidically before the 
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fermentation process to release their constituent glucose and maltooligosaccharides, 

both of these constituents are easily transported across the cell membrane and 

metabolized by the yeast cells [73]. According to Ejiofor, Chisti and Moo-Young 

(1996) [73], by using cassava to produce ethanol, it is expected to develop a low 

energy-requiring process to convert cassava starch to a fermentable medium and an 

exponential feeding strategy for yeast cells. Therefore, based on the results presented 

in Table 3-6, lower aeration rate and stirrer speed are suggested to produce high yield 

and productivity.  

 

Furthermore, the yield and productivity obtained are twice the amount of yield and 

productivity obtained by utilizing cassava as the main substrate. Therefore, both 

aeration rate and stirrer speed highly affect the yield and productivity of the 

fermentation process, subject to different substrate. These show that both aeration 

rate and stirrer speed affect the yield and productivity of the fermentation process 

due to the complicated structure of cassava. More mixing might be required for 

sufficient transfer of oxygen to be absorbed by the microorganisms.  

 

Based on ANOVA analysis (Refer to Appendix B.2), it is identified that there is 

effect of aeration rate and stirrer speed on yield and productivity. The “Prob > F” 

interaction value for yield is 0.0189. On the other hand, the “Prob > F” interaction 

value for productivity is 0.0303. These values indicate that both aeration rate (AR) 

and stirrer speed (SS) have significant effects on yield and productivity since the 

“Prob > F” values are less than 0.05. Aeration rate (AR) and stirrer speed (SS) have 

higher effect on yield than productivity as the “Prob > F” value for yield is lower 

than productivity.  

 

3.6.2.6 Effect of Aeration Rate and Stirrer Speed on Dissolved Oxygen (DO) and 

Oxygen Uptake Rate (OUR) 

Figure 3-16 shows the effect of aeration rate and stirrer speed on dissolved oxygen 

(DO). As observed from this figure, the DO concentrations decrease with time. 
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Figure 3-16 Dissolved Oxygen (DO) Profile vs. Batch Age for Different Sets of 

Experiments 

 

The DO measurements decrease towards the end of the fermentation process. 

However, under certain conditions of aeration rate and stirrer speed, different profiles 

are observed. At aeration rate of 1.0LPM and stirrer speed of 150rpm, the DO 

measurement increased and lead to steady state. On the other hand, under aeration 

rate of 1.5LPM and stirrer speed of 250rpm, there is an increment of DO 

measurement during the 20
th

 to 40
th

 hour followed by a drastic measurement decrease 

towards the end of the fermentation process. It is obvious that different conditions of 

aeration rate and stirrer speed lead to different DO measurements. This will 

subsequently lead to different mass transfer rate and mechanism within the 

bioreactor. Besides, the dynamics of the DO are also affected by the accumulation of 

biomass and synthesized products, addition of acid and base solutions as well as 

sampling of the culture which will affect the activities of the microorganisms [74]. 

All of these factors affect the DO measurements, which is difficult to control 

accurately, owing to its intrinsic nonlinear and time variant dynamics.  
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Figure 3-17 shows the profile of oxygen uptake rate (OUR) for cassava substrate. 

 

 

Figure 3-17 Oxygen Uptake Rate (OUR) Profile vs. Batch Age for Different Sets of 

Experiments 

 

As observed from the figure, OUR increase in the exponential growth phase because 

in this step, a high substrate consumption rate takes place [72]. Results suggest that 

in order to achieve high OUR value, higher aeration rate and lower stirrer speed 

should be implemented. This trend is similar as OUR profile produced by using 

glucose as the main substrate, whereby there is a drastic decrease of OUR under 

experimental conditions of 1.0LPM and 250rpm as well as 1.25LPM and 200rpm at 

the beginning of the fermentation process. Therefore, it is suggested that there is no 

cell growth due to the adaptation period. Both aeration rate and stirrer speed show 

significant effects on OUR, since different conditions of aeration rate and stirrer 

speed lead to different OUR measurements.  

 

Based on ANOVA analysis (Refer to Appendix B.2), it is identified that there is 

effect of aeration rate and stirrer speed on DO and OUR. The “Prob > F” interaction 

value for DO is 0.0268. On the other hand, the “Prob > F” interaction value for OUR 

is 0.0452. These values indicate that both aeration rate (AR) and stirrer speed (SS) 

have significant effects on DO and OUR since the “Prob > F” values are less than 

0.05. Based on these values, aeration rate (AR) and stirrer speed (SS) have higher 

effect on DO than OUR as the “Prob > F” value for DO is lower than OUR. This 

shows that aeration rate (AR) and stirrer speed (SS) highly affect the amount of 

oxygen that is carried in the fermentation medium. 
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3.7 CONCLUSIONS 

From our experimental studies, both glucose and cassava substrates show different 

dynamical behaviour and potential in producing ethanol under different aeration rate 

and stirrer speed conditions. Statistical analysis has showed that there is significant 

effect of aeration rate and stirrer speed on glucose, ethanol, glycerol and biomass 

concentrations as well as yield, productivity, DO and OUR measurements. The “Prob 

> F” values for all variables are less than 0.05, which indicate that there is significant 

effect of aeration rate and stirrer speed on each variable. Thus, there is significant 

effect of both aeration rate and stirrer speed on bioreactor performance. Specific 

findings from this study can be summarized as follows: 

 

• Aeration rate and stirrer speed have effect on the glucose, ethanol, glycerol 

and biomass concentrations for both case studies as supported by the 

statistical analysis. The amount of ethanol produced from cassava substrate is 

around four times more than the amount of ethanol produced from glucose 

substrate. Glycerol production from cassava substrate is two times more than 

the amount of glycerol produced from glucose substrate. Based on statistical 

analysis, for glucose substrate, aeration rate and stirrer speed have high effect 

on glucose concentration compared to other concentrations since the “Prob > 

F” value is the lowest. For cassava substrate, aeration rate and stirrer speed 

have high effect on ethanol concentration instead as the “Prob > F” value is 

the lowest. These results show that both aeration rate and stirrer speed have 

different effects on the glucose, ethanol, glycerol and biomass concentrations, 

despite different substrates utilized.   

• Aeration rate and stirrer speed have effect on yield and productivity for both 

case studies as well as supported by the statistical analysis. Cassava substrate 

is able to produce high yield and productivity, almost double the amount of 

yield and five times the amount of productivity as compared to that of 

glucose substrate. However, different conditions of aeration rate and stirrer 

speed are required to achieve such performance due to the difference in 

substrates utilized. Based on statistical analysis, aeration rate and stirrer speed 

has higher effect on yield than productivity as the “Prob > F” value for yield 

is lower than productivity for both substrates. These results show that both 

aeration rate and stirrer speed have higher effects on yield than productivity 
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regardless of the different types of substrate utilized. Overall, both aeration 

rate and stirrer speed have significant effects on the bioreactor performance.   

• DO and OUR results show that there is significant effect of aeration rate and 

stirrer speed on DO and OUR measurements. Under different conditions of 

aeration rate and stirrer speed, different DO and OUR data are measured. 

Similarly, there is interaction between aeration rate and stirrer speed for both 

case studies as supported by the statistical analysis. The “Prob > F” value for 

DO is lower than that of OUR for both substrates, thus indicate that aeration 

rate and stirrer speed have higher effects on DO than OUR.  

 

Both substrates result in different glucose, ethanol, glycerol and biomass 

concentrations, yield and productivity as well as DO and OUR profiles within the 

same experimental setups of aeration rate and stirrer speed. Thus, it would be 

interesting to explore the dynamics and kinetics of each glucose and cassava 

substrates. It is also observed that both aeration rate and stirrer speed have significant 

effects on each concentrations, yield, productivity, DO and OUR. In the next chapter, 

kinetics modeling of each glucose and cassava substrates are investigated and 

proposed to study the dynamical performance of each substrate. All of the 

experimental results obtained will be used for the development of kinetics models. It 

is to investigate the dynamical performance in order to study the non-ideally mixed 

effect of both aeration rate and stirrer speed within the bioreactor.  
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4.1 INTRODUCTION 

This chapter addresses the development of kinetics modeling with the account of 

both aeration rate and stirrer speed, to develop steady state and dynamic models of 

batch bioreactors. One major limitation of current kinetics models of bioreactor is 

that they do not take into account how the aeration rate and stirrer speed affect the 

kinetics. Currently, fermentation kinetic models are most commonly expressed in 

terms of: (1) medium temperature, and (2) medium pH. Thus, based on these facts, it 

is of interest to develop kinetics model, whereby both aeration rate and stirrer speed 

are taken into account.  

 

The kinetics model development is based on experimental results presented in 

Chapter 3. The scope and assumptions of the kinetics model development are 

presented in Section 4.2. The modeling approach is presented in Section 4.3. Three 

modeling approaches are considered, i.e. data-based, kinetics hybrid and kinetics 

multi-scale models. Two case studies are suggested and outlined in Section 4.4, 

whereby the developed models are to be implemented into the case studies. This is to 

investigate the applicability of the developed models into batch bioreactors. 

Analytical results for the modeling approaches are discussed in detail in Section 4.5. 

In section 4.6, discussions on model applications are made. Finally, concluding 

remarks were presented at the end of this chapter.  

 

4.2 SCOPE AND ASSUMPTIONS 

Traditionally, aeration rate and stirrer speed have not been considered in the kinetics 

model development for batch bioreactors. Therefore, in our study, it is of interest to 
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investigate the applicability of both aeration rate and stirrer speed in kinetics model 

development for batch bioreactors. Figure 4-1 shows the schematic diagram of a 

batch bioreactor operation, whereby both aeration rate and stirrer speed are 

considered as input variables. Yield and productivity are considered as output 

variables. The developed models are only applicable within the experimental range 

since the models are developed by using experimental data within the experimental 

range.  

 

 

 

 

 

Figure 4-1 Schematic Diagram of Batch Bioreactor Kinetics Model Development 

 

4.3 MODELING APPROACH 

The majority kinetics of ethanol fermentation utilize a formal (macro) approach to 

describe microbial growth, whereby they are empirical and based on either Monod’s 

equation or on its numerous modifications which take into account the inhibition of 

microbial growth by a high concentration of product and/or substrate [75].  

 

4.3.1 Data-Based Model 

A data-based model is a theory or specification to express a set of operations that can 

be performed on the data available. In engineering perspective, a data-based model is 

proposed based on regression analysis, whereby it is a general approach to fitting 

empirical models, i.e. an interpolation equation for the response variable in the 

process. Figure 4-2 shows a schematic diagram of an ethanol fermentation data-

based model which is utilized in this study, whereby both aeration rate and stirrer 

speed are considered as the inputs of the fermentation process.  
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Figure 4-2 Schematic Diagram of Ethanolic Fermentation Data-Based Model 

 

Data-based model is developed based on a correlation model from experimental data 

obtained. This is the simplest model for yield and productivity predictions. 

Experimental data obtained are implemented for the development of regression 

model. Response Surface Method (RSM) is utilized in the analysis of problems in 

which the response of interest is influenced by variables, i.e. aeration rate and stirrer 

speed, and the objective is to optimize these responses.  

 

In our study, supposed that the levels of aeration rate (X1) and stirrer speed (X2) to 

maximize the yield or productivity of the fermentation process, the process yield or 

productivity is a function of the levels of aeration rate and stirrer speed, say: 

 

ε+= ),( 21 XXfy                        (21) 

 

where ε represents the error in the response y, i.e. Yield (Y) or Productivity (P). If the 

expected response is denoted by η== ),()( 21 XXfyE , then the surface represented 

by ),( 21 XXf=η  is called a response surface.  
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As a first approximation, a quadratic model (see Equation 23) is used to fit the 

experimental data, whereby β0, β1 and β2 values are to be generated based on 

experimental data. β’s are estimated in such that the sum of the squares of the errors 

(the ε’s) are minimized. Thus, predicted yield and productivity as well as optimum 

aeration rate and stirrer speed are obtained. 
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The quadratic model as a first approximation utilized as follows: 

 

εβββ +++= 2

210 xxy                      (23) 

 

where β0, β1 and β2 are unknown parameters to be estimated and ε is a random error 

term.  
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Full factorial design experiments are conducted and experimental results are to be 

proven to be significant with the kinetic parameters. In order to proceed to 

optimization, statistical analysis is required to be conducted by using Analysis of 

Variance (ANOVA). Results must be significant along with the analysis of curvature. 

Curvature analysis is vital to indicate whether the experimental results could fit well 

into the proposed model. If the curvature is significant, i.e. the curvature lies in the 

region of the desired optimum response, thus optimization could proceed. If the 

curvature is insignificant, optimization could not be preceded yet. Path of Steepest 

Ascent (POA) is required to be done and curvature is to be indicated again until 

curvature is shown to be helpful or significant. Once results and curvature analysis 

are significant, augmentation or further analysis is required in order to proceed to 

RSM for optimization stage. 

      

4.3.2 Kinetics Hybrid Model 

In the kinetics hybrid model development, experimental data of substrate, product 

and biomass concentrations for different conditions of aeration rate and stirrer speed 

is used to predict kinetics parameters, k1, k2, …, k6 using the Herbert’s concept of 

endogenous metabolism. In our study, the byproduct concentration is not included in 

order to concentrate in the study of aeration rate and stirrer speed towards substrate, 

product and biomass concentrations and finally yield and productivity predictions. 

Herbert’s concept is chosen in our study since it has been used in numerous studies 

to describe the kinetics of ethanolic fermentation [75]. An optimization approach is 

formulated for the identification of the kinetic parameters.  
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Equation 25 below expresses the linear regression model, which is then utilized for a 

set of identified kinetics parameter data for different conditions of aeration rate and 

stirrer speed:  

 

Variable = β1 + β2
R

RR

r

rr

∆
−

+
∆
− )()(

3β                               (25) 

 

whereby Variable represents predicted k1 to k6,  r represents aeration rate (AR), R 

denotes stirrer speed (SS), whereas r  and R  represent the baseline values for 

aeration rate (AR) and stirrer speed (SS). β1, β2 and β3 values will be obtained through 

least squares optimization. 

 

The Herbert’s kinetics model embedded with the linear regression model is then 

combined with the macro-scale bioreactor model to produce the so-called kinetics 

hybrid model as depicted in Figure 4-3. Clearly in this approach, mixing is integrated 

by including both aeration rate and stirrer speed in the model development. 

 

 

Figure 4-3 Schematic Diagram of Ethanolic Fermentation Kinetics Hybrid Model 

 

4.3.2.1 Herbert’s Kinetics Model 

The kinetics parameter data is estimated using the experimental data of substrate, 

product and biomass concentrations for different aeration rate and stirrer speed 

conditions. For this purpose, the Herbert’s concept is applied as follows: It is 

assumed that the observed rate of biomass formation comprised of the growth rate 

and the rate of endogenous metabolism:  

 

 endxgrowthxx rrr )()( +=                       (26)   

 

Combine 

Kinetic Model (Herbert’s Concept of 

Endogenous Metabolism & Linear 

Regression Model)  

Predicted Yield 

Predicted Productivity 

Aeration Rate 

Stirrer Speed 

Macro-Scale Bioreactor Model 



Chapter 4 Kinetics Modeling of Batch Bioreactor   

71 

 

where        
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It is also assumed that the rates of substrate consumption and product formation are 

proportional to the biomass growth rate: 

 

growthxgrowthss rkrr )()( 3−==
                     

(28)
 

                                                                                                                                                                             

growthxgrowthpp rkrr )()( 4==
                                                                                      

(29)
  

 

The rate of growth due to endogenous metabolism by a linear dependence is shown 

below: 

 

Xkr endx 6)( −=
                       

(30)

        
                                                                                                       

Given the initial values of the kinetic parameters obtained from the literature data, an 

optimization problem is formulated to predict the kinetic parameters for each 

aeration rate and stirrer speed conditions. The obtained kinetic parameters are then 

used to obtain the linear regression model. 

 

4.3.2.2 Macro-scale Bioreactor Model 

A macro-scale bioreactor model is formulated to compare the prediction of yield and 

productivity using the kinetics hybrid model in Figure 4-3 with experimental data: 

 

Biomass formation: xrdtdX =/                     (31)           

                                                                        

Substrate consumption: srdtdS =/                               (32)      

                                                                          

Product formation: prdtdP =/                       (33)    
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P
=                       (35)                                                                              

             

where S0 is the initial substrate concentration (g/L) of the medium and BT is the 

batch time (hrs) allocated for the fermentation process. 

 

4.3.3 Kinetics Multi-Scale Model 

The kinetics multi-scale bioreactor model is developed using a slightly different 

approach from the kinetics hybrid model. The developed Herbert’s kinetics model 

(Section 4.3.2.1), macro-scale bioreactor model (Section 4.3.2.2) and mixing model 

are combined, which is called the kinetics multi-scale model. The mixing model is 

proposed based on the k-ε turbulence model, Navier-Stokes equations and general 

balance over an element of reactor volume. The resulted model is illustrated in 

Figure 4-4.  

 

 

 

 

Figure 4-4 Schematic Diagram of Ethanolic Fermentation Kinetics Multi-Scale 

Model 

 

4.3.3.1 k-ε turbulence model 

One of the models used to develop the mixing model is the k-ε turbulence model 

(governing turbulence). The standard k-ε turbulence model is used since it is proven 

to be most successful in past works [76]. The k-ε turbulence model is normally used 
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to describe the mixing behaviour and to compute turbulence in the bioreactor. The 

following is the standard k-ε turbulence model: 

 

The energy dissipation can be expressed as:  

 

)/()(/)( ρε xpumpFu ∆=∆=                    (36)                                                                                   

 

where ∆p denotes the pressure drop, m the mass, F the tube cross-section and x the 

axial coordinate. 

 

The fluid flow equations to be solved for a constant density fluid are [58]: 
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whereby G is the dissipation function  τijτij/(2µeff); Cµ = 0.09; C1 = 1.44; C2 = 1.92; σk 

= 1.0; σΓ = 1.3. 

 

4.3.3.2 Navier-Stokes Equation 

The Navier-Stokes equation is the most commonly used flow equations in describing 

the instantaneous behaviours of turbulent liquid flow in ethanolic fermentation 

process [1]. The resulting Reynolds equations and the continuity equation are 

summarized below: 
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For model accuracy and computational expense, a reasonable compromise are eddy 

viscosity models relating the individual Reynolds stresses to mean flow gradients: 
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where vturb is the turbulent eddy viscosity. The transport of momentum which is 

related to turbulence, is thought of as turbulent eddies, which like molecules, collide 

and exchange momentum. 

 

4.3.3.3 General Balance Over an Element of Reactor Volume Model 

Another model used in developing the mixing model is the general balance over an 

element of reactor volume model [46], which is adopted as a reactor model as 

follows: 
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where ρ is the density of fluid, ø is the concentration of any component, Ui is the 

local velocity in the xi direction, Γø is the effective diffusivity of ø and Sø is a 

volumetric source term (rate of production of ø per unit volume) of ø.  
 

 

The source term will be equal to the rate based on intrinsic kinetics, i.e. there are no 

concentrations or temperature gradients within the volume element under 

consideration. Due to the complexity of the mixing model, Computational Fluid 

Dynamics (CFD) software aided in the prediction of yield and productivity since 

macro-scale model, k-ε turbulence model, Navier-Stokes equations and the general 

balance over an element reactor volume model are already embedded in the CFD 

software, by solving Equations 31-44. Thus, data such as ε and uΓ are obtained. 

Along with the multi-scale model, the rates of substrate consumption, product 

formation and biomass formation which are predicted from the kinetics model are 
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substituted into Equations 26-30, for yield and productivity prediction. Predicted 

results of yield and productivity are then be used to predict the optimum aeration rate 

and stirrer speed.  

 

4.4 CASE STUDIES  

Two case studies are performed to develop the kinetics model based on the three 

modeling approaches. Experimental data obtained from glucose and cassava 

substrates are utilized to develop the data-based, kinetics hybrid and kinetics multi-

scale models. The data-based and kinetics hybrid models are developed for both 

glucose and cassava substrates. However, the kinetics multi-scale model is only 

developed for glucose substrate. This is due to the complexity of the cassava 

structure, whereby more information, such as density, molecular weight is required 

to be imbedded into CFD. Therefore, for the development of the kinetics multi-scale 

model, only glucose substrate is considered. Statistical analysis is conducted for 

validation purposes.  

 

4.5 RESULTS AND DISCUSSION  

4.5.1 Model Development 

The data-based, kinetics hybrid and kinetics multi-scale models are developed by 

using different approaches, as outlined in Section 4.3. In this section, the model 

development of each model is presented.   

 

4.5.1.1 Data-Based Model 

To develop the data-based models for both case studies, it is important to conduct 

factorial design analysis at the initial stage. This is to perform preliminary screening 

analysis, to investigate whether there is interaction between aeration rate and stirrer 

speed on bioreactor performance. If interaction is available, therefore both aeration 

rate and stirrer speed have significant effects on the bioreactor performance. 

 

To aid with the design analysis, experimental data collected are analyzed by 

following the steps as follows [77]:  
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1. Choose a transformation if desired. Otherwise, leave the option at “None”. 

2. Perform ANOVA for analysis of residuals and outlier detection. 

3. Inspect various diagnostic plots to statistically validate the model. 

4. Generate model graphs for interpretation if the model looks good. The 

analysis and inspection performed in steps (3) and (4) above will show 

whether the model is good or otherwise. A good model must be significant 

and curvature must be significant too. The various coefficient of 

determination, R
2
 values should be close to 1.  

 

By following the guidelines stated above, this will assist in quantifying the 

relationships between the output variables (yield and productivity) and the input 

variables (aeration rate and stirrer speed). Data must be collected and analyzed in a 

statistically sound manner using regression in order to determine if there exist a 

relationship between the factors and the response variables. 

 

Therefore, based on the experimental data collected for both glucose and cassava 

substrates (Refer to Table 3-4 and Table 3-5), the data are subjected to be analyzed 

statistically by following the above guidelines before the data-based models for both 

substrates are developed. 

 

Based on statistical results, the data-based models for both glucose and cassava 

substrates proposed are as follows: 

 

Glucose Substrate: 

 

SSARSSARdYiel **147.0*143.0*785.18098.33ˆ +−−=                  (45) 

 

SSARESSEARyoductivit *302.1*4900.9*139.0234.0ˆPr −+−−−=
       

       (46) 

 

 

 

Cassava Substrate: 

 

SSARSSARdYiel **093.0*342.0*360.14346.3ˆ −+−−=                (47) 
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SSARESSEAREyoductivit *3020.2*3230.6*3000.3355.0ˆPr −−−+−+−=  (48) 

 

 

Both data-based models for glucose and cassava substrates are proposed based on 

satisfactory statistical results (Refer to Appendix C.1 for statistical results). For 

glucose substrate, the proposed data-based models for both yield and productivity are 

significant, which indicates that both aeration rate and stirrer speed have significant 

effect on yield and productivity. The curvature is significant as well. This is desirable 

as it is important to ensure that the model fits before proceeding to optimization. The 

R
2 

value for yield is 0.9973, i.e. close to 1, which is desirable. Same goes to 

productivity, whereby the R
2 

value is 0.9950. Results show that the proposed data-

based models are precisely accurate.  

 

For cassava substrate, it is also indicated that the proposed data-based models for 

yield and productivity are significant. On the other hand, the curvature is significant 

too. Additionally, the R
2 

values for yield and productivity are 0.9997 and 0.9852 

respectively.  

 

For detailed information on the significance of the data-based models for both 

glucose and cassava substrates, model graphs for each data-based model can be 

observed in Appendix C.1. 

 

4.5.1.2 Kinetics Hybrid Model 

The analysis of kinetics hybrid model is slightly different than data-based model. By 

using linear regression, model fitting is conducted in order to check whether the 

experimental data fit into the proposed kinetics model, i.e. Herbert’s kinetics model. 

This kinetics model is developed to capture the kinetics in the batch bioreactor. 

Finally, statistical analysis is conducted to check the adequacy of the proposed 

kinetics model. 

 

Based on the Herbert’s model, experimental data of biomass (X), substrate (S) and 

product (P) concentrations are required. All data is used to generate a set of kinetics 

parameter data, i.e. k1, k2,…,k6. Linear regression analysis is then performed.  
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Experiments are conducted under different conditions of aeration rate (AR) and 

stirrer speed (SS) for both glucose and cassava substrates. Table 4-1 and Table 4-2 

summarize the experimental data for glucose and cassava substrates respectively.  

 

Table 4-1 Summary of Experimental Data at Different Aeration Rate and Stirrer 

Speed Conditions (Glucose Substrate) 

Run Order 

X1:  

Aeration 

Rate  

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

X (g/L) S (g/L) P (g/L) 

1 1.25 200 37.0 4.75 9.10 

2 1.0 150 30.0 4.67 6.33 

3 1.25 200 37.5 4.85 9.20 

4 1.25 200 36.5 4.50 9.30 

5 1.0 250 39.9 2.59 6.39 

6 1.5 250 34.3 1.99 9.91 

7 1.5 150 37.4 4.32 6.80 

 

 

Table 4-2 Summary of Experimental Data at Different Aeration Rate and Stirrer 

Speed Conditions (Cassava Substrate) 

Run Order 

X1:  

Aeration 

Rate  

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

X (g/L) S (g/L) P (g/L) 

1 1.25 200 36.5 5.61 45.49 

2 1.0 150 39.0 8.64 18.43 

3 1.25 200 39.7 6.79 47.98 

4 1.25 200 36.4 4.85 35.67 

5 1.0 250 34.0 4.66 41.06 

6 1.5 250 32.9 6.91 24.76 

7 1.5 150 37.5 5.18 5.18 
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Based on the experimental data as presented in Table 4-1 and Table 4-2, the linear 

regression results are presented for both glucose and cassava substrate respectively. 

 

The linear regression results for glucose substrate are given as: 

 

211 3692.02852.04085.1ˆ XXk +−=                    (49) 

0010.0ˆ
2 =k                        (50) 

213 0220.00148.06631.0ˆ XXk +−=                    (51) 

214 0128.00142.01040.0ˆ XXk ++=                      (52) 

215 0211.01019.07558.0ˆ XXk −−=                     (53) 

216 0019.00001.00143.0ˆ XXk −−=                    (54) 

 

where 
25.0

)25.1(
1

−
=

AR
X  and 

50

)200(
2

−
=

SS
X . 

 

On the other hand, the linear regression results for cassava substrate are given as: 

 

211 6978.05218.09950.0ˆ XXk +−=                     (55) 

0010.0ˆ
2 =k                       (56) 

213 2098.01276.03825.1ˆ XXk +−=                     (57) 

214 1745.05722.03434.0ˆ XXk ++=                    (58) 

215 1123.02093.03906.0ˆ XXk −−=                     (59) 

216 0185.00005.00149.0ˆ XXk −−=                     (60) 

 

where 
25.0

)25.1(
1

−
=

AR
X  and 

50

)200(
2

−
=

SS
X . 

 

With the utilization of the developed kinetics model which is based on Equations 49-

54 (glucose substrate) and Equations 56-60 (cassava substrate), the kinetics 

parameters, k1, k2,…,k6 are predicted with the implementation of different conditions 

of aeration rate (AR) and stirrer speed (SS). Table 4-3 and Table 4-4 show the 
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summary of predicted kinetics parameters for different aeration rate (AR) and stirrer 

speed (SS) conditions calculated based on the developed kinetics model for glucose 

and cassava substrates respectively.         

   

Table 4-3 Summary of Predicted Kinetics Parameters (Glucose Substrate) 

Run 

Order 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

1k̂  2k̂  3k̂  
4k̂  5k̂  6k̂  

1 1.25 200 1.4085 0.0010 0.6631 0.1040 0.7558 0.0143 

2 1.0 150 1.3245 0.0010 0.6559 0.0770 0.8788 0.0163 

3 1.25 200 1.1257 0.0010 0.6533 0.0909 0.7252 0.0173 

4 1.25 200 1.2591 0.0010 0.6731 0.0879 0.7127 0.0179 

5 1.0 250 2.0629 0.0010 0.6999 0.1026 0.8366 0.0125 

6 1.5 250 1.4925 0.0010 0.6703 0.1310 0.6328 0.0123 

7 1.5 150 0.7541 0.0010 0.6263 0.1054 0.6750 0.0161 

 

 

Table 4-4 Summary of Predicted Kinetic Parameters (Cassava Substrate) 

Run 

Order 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

1k̂  2k̂  3k̂  
4k̂  5k̂  6k̂  

1 1.25 200 1.5934 0.0010 0.9362 0.3854 0.9347 0.0093 

2 1.0 150 1.2870 0.0010 1.5745 0.3130 0.3974 0.0034 

3 1.25 200 1.6921 0.0010 0.9127 0.2589 0.9014 0.0059 

4 1.25 200 1.1359 0.0010 0.8536 0.2479 0.8217 0.0104 

5 1.0 250 0.9272 0.0010 1.5371 0.6936 0.1253 0.0101 

6 1.5 250 0.4467 0.0010 1.0329 0.3010 0.1429 0.0256 

7 1.5 150 1.3191 0.0010 1.3854 0.0658 0.8968 0.0205 
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4.5.1.3 Kinetics Multi-Scale Model 

As explained in Section 4.3.3, the kinetics multi-scale model is developed with the 

combination of the developed Herbert’s kinetics model (Section 4.3.2.1), macro-scale 

bioreactor model (Section 4.3.2.2) and mixing model. The mixing model is proposed 

based on the k-ε turbulence model, Navier-Stokes equations and general balance over 

an element of reactor volume. Due to the complexity of the kinetics multi-scale 

model, this model is implemented into CFD to aid in solving this model and also to 

observe the mixing profile of the batch bioreactor under different conditions of 

aeration rate and stirrer speed. Table 4-5 shows the summary results for both 

experimental and CFD simulated data for yield under different conditions of aeration 

rate (AR) and stirrer speed (SS).  

 

Table 4-5 Summary of Experimental and CFD Simulated Yield (%) (Glucose 

Substrate) 

 Yield (%)  

Standard 

Order 

Run 

Order 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

Experimental 

Data 

CFD 

Simulated 

Data 

% 

Difference 

7 1 1.25 200 21.500 21.700 0.922 

1 2 1.0 150 14.788 18.600 20.494 

5 3 1.25 200 21.050 21.250 0.941 

6 4 1.25 200 21.250 21.500 1.163 

3 5 1.0 250 15.105 15.900 5.000 

4 6 1.5 250 24.040 23.100 3.910 

2 7 1.5 150 16.392 17.000 3.576 

 

Results show that within the experimental range, the kinetics multi-scale model is 

capable in predicting yield within 20% error. Despite of the complexity of the 

kinetics multi-scale model, CFD is able to predict yield under different conditions of 

aeration rate and stirrer speed. Next, the CFD mixing profile in terms of yield for 

each experiment based on experimental conditions from Table 4-5 is shown in Figure 

4-5 to Figure 4-14. Samples are taken at the sampling point as shown in each figure, 



Chapter 4 Kinetics Modeling of Batch Bioreactor   

82 

 

Sampling 
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Point 

whereby the sampling point is similar for each experiment for consistency.  

 

 

 

 

 
Figure 4-5 Velocity Vectors of Yield 

(1.0LPM AR, 150rpm SS) 

 

 

 

 

 
Figure 4-6 Contours of Yield (1.0LPM 

AR, 150rpm SS) 

 

 
Figure 4-7 Velocity Vectors of Yield 

(1.5LPM AR, 250rpm SS) 

 

 

 

 
Figure 4-8 Contours of Yield (1.5LPM 

AR, 250rpm SS) 

 

 

 
Figure 4-9 Velocity Vectors of Yield 

(1.25LPM AR, 200rpm SS) 

 

 

 

 

 
Figure 4-10 Contours of Yield 

(1.25LPM AR, 200rpm SS) 
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Figure 4-11 Velocity Vectors of Yield 

1.5LPM AR, 150rpm SS) 

 

Figure 4-12 Contours of Yield 

(1.5LPM AR, 150rpm SS)    

  

 

  

        
Figure 4-13 Velocity Vectors of Yield 

(1.0LPM AR, 250rpm SS)  

Figure 4-14 Contours of Yield 

(1.0LPM AR, 250rpm SS)  

  

Each profile demonstrates different mixing behaviours, especially for experiment 

under aeration rate (AR) of 1.0LPM and stirrer speed (SS) of 150rpm. As shown in 

Figure 4-5 and Figure 4-6, yield is concentrated around the stirrer blades and at the 

bottom of the bioreactor vessel. These show that mixing is concentrated around the 

stirrer blades and beneath the bioreactor vessel. Thus, aeration rate (AR) and stirrer 

speed (SS) play an important role in the mixing mechanism within the bioreactor, and 

also the bioreactor performance. 

 

Comparing to experiments under aeration rate (AR) of 1.25LPM and stirrer speed 

(SS) of 200rpm as well as aeration rate (AR) of 1.5LPM and stirrer speed (SS) of 

150rpm, the profiles are slightly different, whereby yield is concentrated by the sides 

of the impeller blades too but not around the bottom of the bioreactor vessel.  From 

Figure 4-9 to Figure 4-12, the mixing profiles are comparably similar. The difference 

is that yield is more concentrated around the stirrer blades for aeration rate (AR) of 

Sampling 

Point 

Sampling 

Point 

Sampling 

Point 
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1.25LPM and stirrer speed (SS) of 200rpm as compared to aeration rate (AR) of 

1.5LPM and stirrer speed (SS) of 150rpm. These show that at lower aeration rate 

(AR) and higher stirrer speed (SS), yield is more concentrated around the impeller 

blades and towards the bottom of the bioreactor vessel, but with lower value of yield. 

It is suggested that, high percentage yield could be obtained at aeration rate (AR) of 

1.25LPM and stirrer speed (SS) of 200rpm, which is the baseline of the experimental 

range. The difference between experimental and simulated yield for this condition is 

also the lowest, thus it is suitable to predict yield under this condition. 

 

As observed from each figure, the glucose substrate flows upwards and downwards 

repeatedly and forms a circular flow pattern throughout the bioreactor. The flow 

concentrates at the sides of the impeller blades, whereby yield is highest at the 

impeller blades surrounding regions. On the other hand, all figures show the potential 

strength of CFD, whereby the internal distribution of the medium inside bioreactor 

could be calculated. Thus, the model utilized for simulation is capable of predicting 

the essential features of this particular flow regime: high concentration beneath the 

impeller; concentration of ethanol in the upper part of the stirred vessel; and the 

accumulation of ethanol at the middle and lower part of the vessel near the vessel 

wall. The impeller causes circulation flow patterns in the bioreactor below and above 

the impeller plane if the liquid rotation is hindered by baffles.  

 

At the same time, bubbles are dispersed and re-dispersed by the impeller. Large 

bubbles quickly escape from the bioreactor, and small bubbles are dragged along 

with the liquid and recirculated. Oxygen is gradually exhausted in the bubbles along 

with the recirculation loop at high cell concentrations when the oxygen consumption 

is high. These mixing phenomena are expected as in the impeller region, whereby the 

oxygen transfer rate is high. Oxygen is consumed along the passage of the liquid 

elements, but only a low amount of oxygen is transferred from the gas phase into the 

liquid during this passage. The nutrient has to be quickly distributed to avoid local 

growth inhibitions and limitations [1].  All contours of yield and productivity show 

similar flow patterns, despite having differences in their respective phases and 

measurement values. These results show that all have mixing effects within the 

bioreactor which is embedded with impeller, as all show similar flow patterns. Thus, 

the integration of the kinetics multi-scale model is effective in describing the mixing 
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behaviour of ethanolic fermentation process, despite of the complexity of the 

fermentation process. Both aeration rate and stirrer speed show effects on the 

bioreactor performance.  

 

Besides yield predictions, productivity is also predicted based on the kinetics multi-

scale model. Similar to yield, both experimental and CFD simulated results for 

productivity are compared. Table 4-6 shows the summary results for both 

experimental and CFD simulated data for productivity under the same experimental 

conditions for yield.  

 

Table 4-6 Summary of Experimental and CFD Simulated Productivity (g/L.hr) 

(Glucose Substrate) 

 Productivity (g/L.hr)  

Standard 

Order 

Run 

Order 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

Experimental 

Data 

CFD 

Simulated 

Data 

% 

Difference 

7 1 1.25 200 0.180 0.203 11.330 

1 2 1.0 150 0.099 0.139 28.777 

5 3 1.25 200 0.176 0.199 11.558 

6 4 1.25 200 0.178 0.202 11.881 

3 5 1.0 250 0.102 0.113 9.735 

4 6 1.5 250 0.160 0.153 4.375 

2 7 1.5 150 0.106 0.110 3.636 

 

The percentage differences observed are higher than yield, thus this model is more 

precise in predicting yield. The integration of both aeration rate (AR) and stirrer 

speed (SS) into the kinetics multi-scale model improve the classical kinetics model as 

the non-ideally mixed behaviour of the bioreactor is described. This proves that the 

integration of aeration rate and stirrer speed into kinetics modeling is important and 

could further improve the reliability of predictions.  
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Figure 4-15 to Figure 4-24 represent the CFD mixing profile in terms of productivity 

for each experiment based on experimental conditions from Table 4-2. Similarly, 

samples are taken at the sampling point as shown in each figure, whereby the 

sampling point is similar for each experiment for consistency.  

 

 

 

 
Figure 4-15 Velocity Vectors of 

Productivity (1.0LPM AR, 150rpm SS)   

Figure 4-16 Contours of Productivity 

(1.0LPM AR, 150rpm SS) 

 

 

 

 

       
Figure 4-17 Velocity Vectors of 

Productivity (1.5LPM AR, 250rpm SS)         

Figure 4-18 Contours of Productivity 

(1.5LPM AR, 250rpm SS)         
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Figure 4-19 Velocity Vectors of 

Productivity (1.25LPM AR, 200rpm 

SS)  

Figure 4-20 Contours of Productivity 

(1.25LPM AR, 200rpm SS)  

       

 

 

 

 
Figure 4-21 Velocity Vectors of 

Productivity (1.5LPM AR, 150rpm SS)  

Figure 4-22 Contours of Productivity 

(1.5LPM AR, 150rpm SS) 

 

 

 

 

 
Figure 4-23 Velocity Vectors of 

Productivity (1.0LPM AR, 250rpm SS)   

                                               

Figure 4-24 Contours of Productivity 

(1.0LPM AR, 250rpm SS) 

Results show that the kinetics multi-scale model is able to predict the productivity of 

the fermentation process within 29% error. These show that both aeration rate (AR) 

and stirrer speed (SS) are vital parameters in the prediction of productivity. It is 

observed from the mixing profiles that the impeller causes circulation flow patterns 
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in the bioreactor below and above the impeller plane if the liquid rotation is hindered 

by baffles. At the same time, bubbles are dispersed and re-dispersed by the impeller. 

Large bubbles quickly escape from the bioreactor, and small bubbles are dragged 

along with the liquid and recirculated. Oxygen is gradually exhausted in the bubbles 

along with the recirculation loop at high cell concentrations when the oxygen 

consumption is high. These mixing phenomena are expected as in the impeller 

region, the oxygen transfer rate is high. Oxygen is consumed along the passage of the 

liquid elements, but only a low amount of oxygen is transferred from the gas phase 

into the liquid during this passage. The nutrient has to be quickly distributed to avoid 

local growth inhibitions and limitations [1]. Thus, with the integration of both 

aeration rate (AR) and stirrer speed (SS) into the kinetics multi-scale model, the 

bioreactor performance is able to be predicted and could decrease experimental and 

computational burden. This is further investigated statistically, whereby the kinetics 

multi-scale model is proven to be significant (refer to Appendix C.3 for statistical 

results).  

 

4.5.3 Model Validations 

Model validation is important to ensure that the developed model is able to predict 

the bioreactor performance accurately. Each model is validated by undergoing 

confirmation run experiments. 

 

4.5.3.1 Data-Based Model 

For data-based model, confirmation run experiments are performed and results are 

tabulated in Table 4-7 and Table 4-8 for glucose substrate. For cassava substrate, 

results are tabulated in Table 4-9 and Table 4-10.  
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Table 4-7 Summary of Confirmation Experimental Data and Model Predicted Yield 

Data (Glucose Substrate) 

 Yield (%)  

Standard 

Order 

Run 

Order 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

Experimental 

Data 

Model 

Predicted 

Data 

Error 

(%) 

7 1 1.25 200 22.500 17.767 21.036 

1 2 1.0 150 15.900 14.913 6.208 

5 3 1.25 200 22.050 17.767 19.424 

6 4 1.25 200 21.750 17.767 18.313 

3 5 1.0 250 16.115 15.313 4.977 

4 6 1.5 250 24.658 24.296 1.468 

2 7 1.5 150 17.214 16.546 3.881 

 

 

Table 4-8 Summary of Confirmation Experimental Data and Model Predicted 

Productivity Data (Glucose Substrate) 

 Productivity (g/L.hr)  

Standard 

Order 

Run 

Order 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

Experimental 

Data 

Model 

Predicted 

Data 

Error 

(%) 

7 1 1.25 200 0.185 0.117 36.757 

1 2 1.0 150 0.105 0.100 4.762 

5 3 1.25 200 0.187 0.117 37.433 

6 4 1.25 200 0.170 0.117 31.176 

3 5 1.0 250 0.110 0.103 6.364 

4 6 1.5 250 0.165 0.161 2.424 

2 7 1.5 150 0.114 0.107 6.140 
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Table 4-9 Summary of Experimental and Model Predicted Yield Data (Cassava 

Substrate) 

 Yield (%)  

Standard 

Order 

Run 

Order 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

Experimental 

Data 

Model 

Predicted 

Data 

Error 

(%) 

7 1 1.25 200 48.962 23.854 51.281 

1 2 1.0 150 19.961 19.644 1.588 

5 3 1.25 200 48.550 23.854 50.867 

6 4 1.25 200 47.921 23.854 50.222 

3 5 1.0 250 44.971 44.544 0.950 

4 6 1.5 250 26.357 25.739 2.345 

2 7 1.5 150 5.917 5.489 7.233 

 

 

Table 4-10 Summary of Experimental and Model Predicted Productivity Data 

(Cassava Substrate) 

 Productivity (g/L.hr)  

Standard 

Order 

Run 

Order 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

Experimental 

Data 

Model 

Predicted 

Data 

Error  

(%) 

7 1 1.25 200 0.955 0.336 64.817 

1 2 1.0 150 0.293 0.269 8.191 

5 3 1.25 200 1.045 0.336 67.847 

6 4 1.25 200 0.995 0.336 66.231 

3 5 1.0 250 0.751 0.601 19.973 

4 6 1.5 250 0.496 0.362 27.016 

2 7 1.5 150 0.127 0.112 11.811 
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As observed, the percentage error is as high as 68%. Therefore, to investigate the 

model accuracy and to determine whether such errors are acceptable for data-based 

model, statistical analysis is conducted for both data-based models for glucose and 

cassava substrates. Statistical results indicate that both the data-based models are 

significant (See Appendix C). Therefore, there are significant effects of both aeration 

rate and stirrer speed on the bioreactor performance for both glucose and cassava 

substrates. 

 

4.5.3.2 Kinetics Hybrid Model 

Based on the predicted kinetic parameters, predicted rates of substrate consumption, 

product formation and biomass formation as well as the predicted yield and 

productivity are calculated. Table 4-11 and Table 4-12 summarize the experimental 

and predicted results for both yield and productivity for glucose substrate. On the 

other hand, Table 4-13 and Table 4-14 summarize the experimental and predicted 

yield and productivity values for cassava substrate.  

 

Table 4-11 Summary of Experimental and Model Predicted Yield Data (Glucose 

Substrate) 

 Yield (%)  

Standard 

Order 

Run 

Order 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

Experimental 

Data 

Model 

Predicted 

Data 

Error  

(%) 

7 1 1.25 200 21.500 13.270 38.279 

1 2 1.0 150 14.788 12.006 18.813 

5 3 1.25 200 21.050 13.050 38.005 

6 4 1.25 200 21.250 13.100 38.353 

3 5 1.0 250 15.105 17.214 12.252 

4 6 1.5 250 24.040 21.099 12.234 

2 7 1.5 150 16.392 13.011 20.626 
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Table 4-12 Summary of Experimental and Model Predicted Productivity Data 

(Glucose Substrate) 

 Productivity (g/L.hr)  

Standard 

Order 

Run 

Order 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

Experimental 

Data 

Model 

Predicted 

Data 

Error  

(%) 

7 1 1.25 200 0.180 0.121 32.778 

1 2 1.0 150 0.099 0.083 16.162 

5 3 1.25 200 0.176 0.115 34.659 

6 4 1.25 200 0.178 0.119 33.146 

3 5 1.0 250 0.102 0.092 9.804 

4 6 1.5 250 0.160 0.144 10.000 

2 7 1.5 150 0.106 0.086 18.868 

 

 

Table 4-13 Summary of Experimental and Model Predicted Yield Data (Cassava 

Substrate) 

 Yield (%)  

Standard 

Order 

Run 

Order 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

Experimental 

Data 

Model 

Predicted 

Data 

Error  

(%) 

7 1 1.25 200 48.322 19.040 60.598 

1 2 1.0 150 19.577 16.220 20.369 

5 3 1.25 200 48.500 18.790 61.258 

6 4 1.25 200 48.952 19.917 59.314 

3 5 1.0 250 44.432 37.603 15.369 

4 6 1.5 250 25.597 20.383 20.369 

2 7 1.5 150 5.404 3.490 35.415 
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Table 4-14 Summary of Experimental and Predicted Productivity (g/L.hr) (Cassava 

Substrate) 

 Productivity (g/L.hr)  

Standard 

Order 

Run 

Order 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

Experimental 

Data 

Model 

Predicted 

Data 

Error  

(%)  

7 1 1.25 200 0.922 0.454 50.741 

1 2 1.0 150 0.280 0.212 24.361 

5 3 1.25 200 0.980 0.477 51.347 

6 4 1.25 200 0.990 0.466 52.951 

3 5 1.0 250 0.701 0.614 12.392 

4 6 1.5 250 0.450 0.337 25.123 

2 7 1.5 150 0.130 0.090 30.961 

 

Similar to data-based model for glucose and cassava substrates, results show that the 

percentage error is as high as 61%. The percentage error for kinetics hybrid model is 

slightly lower than data-based model, which show better predictions.  To investigate 

the model accuracy and to determine whether such errors are acceptable for kinetics 

hybrid model, model fitting is conducted to investigate the kinetic dynamics of 

glucose, ethanol and glycerol concentrations.  

 

Therefore, with the combined analysis of the linear regression results (see Equations 

49-54 for glucose substrate; Equations 55-60 for cassava substrate), Herbert’s 

kinetics model (see Equations 26-30) as well as the macro-scale bioreactor model 

(see Equations 31-35), glucose and ethanol concentrations are predicted. These 

predictions are then validated against the experimental data of another set of aeration 

rate (AR) and stirrer speed (SS) conditions, whereby the conditions chosen are within 

experimental range. This is to investigate the capability of the proposed kinetics 

model in predicting other conditions within experimental range, since the kinetics 

model is more complicated than the data-based model. Thus, experimental conditions 

of aeration rate of 1.2LPM and stirrer speed of 175rpm are chosen as these 

conditions are within the experimental range.  
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Figures 4-25 to 4-27 show the model fitting analysis based on experimental data for 

glucose substrate. As observed, the kinetics hybrid model reasonably fit the 

experimental data of aeration rate of 1.2LPM and stirrer speed of 175rpm. These 

prove that the linear regression results (see Equations 49-54) and Herbert’s kinetics 

model (see Equations 26-30) can be used to describe the kinetics of the fermentation 

process and predict both yield and productivity.  
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Figure 4-25 Model Fitting for Actual Glucose Concentration (g/L solution) (Glucose 

Substrate) 
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Figure 4-26 Model Fitting for Actual Ethanol Concentration (g/L solution) (Glucose 

Substrate) 
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Figure 4-27 Model Fitting for Actual Biomass Concentration (g/L solution) (Glucose 

Substrate) 
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Based on the model fitting analysis, it is predicted that the kinetics hybrid model for 

glucose substrate is able to predict the yield and productivity adequately. It is 

indicated statistically that the kinetics hybrid model is significant, whereby the value 

of “Prob > F” is less than 0.05 which is desirable. This indicates that the terms in this 

model, i.e. aeration rate and stirrer speed, have a significant effect on the response, 

i.e. yield and productivity. Further, the Lack of Fit is insignificant. Thus, statistical 

results indicate that the kinetics hybrid model is suitable to be used for prediction and 

thus, optimization could proceed. More detailed statistical results are subject to view 

at Appendix C.2. 

 

On the other hand, for cassava substrate, by using the linear regression results (see 

Equations 55-60), the Herbert’s kinetics model (see Equations 26-30) as well as the 

macro-scale bioreactor model (see Equations 31-35), the glucose and ethanol 

concentrations are predicted. These predictions are then validated against the 

experimental data for another set of aeration rate (AR) and stirrer speed (SS) 

conditions. Same conditions, i.e. aeration rate of 1.2LPM and stirrer speed of 175rpm 

are utilized as glucose substrate in order to compare the kinetics for both glucose and 

cassava substrate. Figures 4-28 to 4-30 show the model fitting analysis. 
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Figure 4-28 Model Fitting for Actual Glucose Concentration (g/L solution) (Cassava 

Substrate) 
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Figure 4-29 Model Fitting for Actual Ethanol Concentration (g/L solution) (Cassava 

Substrate) 
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Figure 4-30 Model Fitting for Actual Biomass Concentration (g/L solution) (Cassava 

Substrate) 

 

As observed in Figures 4-28 to 4-30, the kinetics hybrid model for cassava substrate 

does not reasonably fit the experimental data of aeration rate of 1.2LPM and stirrer 

speed of 175rpm. These proved that the linear regression results (see Equations 55-

60) and Herbert’s kinetics model (see Equations 26-30) could not be used to describe 

the kinetics of the fermentation process of cassava accurately. Furthermore, from 

each figures, the kinetics model could not predict well, especially during the 

exponential phase of the process. The predictions deviate a lot from the experimental 

data until towards the end of the fermentation process. These results show that the 

microbial activities during the exponential phase are very complex. Since mixing is 

engaged in the fermentation process, there is a need to describe the microbial 

activities, whether the cells are growing at a constant or maximum rate. All these 

activities are influenced by the mixing mechanism in the bioreactor. Thus, both 

aeration rate and stirrer speed have significant effects on the bioreactor performance. 

Glucose and cassava are both very different substrates, therefore the Herbert’s 

kinetics model is suggested to be suitable for glucose substrate, but not for cassava 

substrate.  
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To further interpret whether the kinetics hybrid model is suitable for cassava, 

statistical analysis is conducted. Statistical results show that the kinetics hybrid 

model is not significant and the Lack of Fit is significant. Thus, these show that the 

kinetics hybrid model is not suitable for cassava. Therefore, only glucose substrate 

will be considered for the proposed multi-scale kinetics model since the kinetics 

hybrid model is suitable for glucose substrate but not cassava substrate. 

 

4.6 MODEL APPLICATIONS 

Based on results and discussions presented, the data-based, kinetics hybrid and 

kinetics multi-scale models are able to predict the bioreactor performance. The data-

based model is able to predict the bioreactor performance for glucose and cassava 

substrates. However, it is not suitable to use the kinetics hybrid and kinetics multi-

scale models for bioreactor performance predictions for cassava substrate. Therefore, 

all three modeling approaches are suitable in predicting the optimum conditions of 

aeration rate and stirrer speed for glucose substrate and to be used for control 

strategy purposes.  

 

4.7 CONCLUSIONS 

Three modeling approaches are proposed, i.e. data-based, kinetics hybrid and 

kinetics multi-scale models for the prediction of bioreactor performance by varying 

both aeration rate and stirrer speed. Statistical analysis is conducted for each 

modeling approach to ensure that the developed models are accurate in prediction of 

bioreactor performance. 

 

It is concluded that: 

• The data-based model is the simplest model to be developed. This model is 

able to predict the bioreactor performance for both glucose and cassava 

substrates. Statistical analysis show that this model does not predict the best 

among all the three modeling approaches, i.e. around 67% difference. 

• The kinetics hybrid model is developed based on Herbert’s kinetics. Model 

fitting is required to predict the kinetics parameters. This model is able to 

predict the bioreactor performance for glucose substrate. However, it is not 
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suitable to predict the bioreactor performance for cassava substrate. The 

experimental data for cassava substrate do not fit into the kinetics hybrid 

model. Statistical analysis show that this model predicts better than the data-

based model, i.e. around 61% difference.  

• The kinetics multi-scale model is the most complicated model, whereby more 

complex models are taken into account, i.e. the mixing model. Due to its 

complexity, CFD is required to aid in the prediction of bioreactor 

performance. CFD simulations demonstrate the mixing behaviour under 

different conditions of aeration rate and stirrer speed. Thus, this shows the 

effects of aeration rate and stirrer speed on bioreactor performance. Statistical 

analysis shows that this model predicts best bioreactor performance, i.e. 

around 28% difference. Thus, the kinetics multi-scale model is suitable to 

predict the bioreactor performance for glucose substrate. This model has 

potential in predicting the optimum operating conditions of aeration rate and 

stirrer speed for control. 

 

In the next chapter, the optimization approach is analyzed and the optimum points 

obtained will then be used as a basis for control strategy development. Only glucose 

substrate will be considered for optimization since the kinetics hybrid model and 

kinetics multi-scale model are not competent to cassava substrate. 
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Chapter 5 Optimization of Batch Bioreactor Using 

Response Surface Methodology (RSM) 

 

 

5.1 INTRODUCTION 

The objective of this chapter is to obtain the optimum conditions of aeration rate and 

stirrer speed of a batch bioreactor to achieve maximum bioreactor performance. The 

optimum conditions obtained will be used for control strategy purpose. This chapter 

outlines the optimization approach from which the optimum conditions of both 

aeration rate and stirrer speed on the batch bioreactor are obtained. 

 

In this study, only glucose substrate will be considered for optimization analysis. 

Central Composite Design (CCD) is considered as the optimization approach in this 

study since it is the most commonly method used in the optimization of fermentation 

processes. 

 

This chapter is organized as follows. Section 5.2 presents an approach for designing 

and analyzing the optimization problem. The case studies involve in the optimization 

process is also outlined in this section. In Section 5.3, the optimization results 

obtained are presented and discussed. Finally, concluding remarks are presented in 

Section 5.4. 

 

5.2 APPLICATION AND CASE STUDIES 

In fermentation studies, the most commonly used Response Surface Method (RSM) 

is Central Composite Design (CCD) since this design provides a solid foundation for 
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the generation of a response surface map [78]. Thus, CCD is suggested to be utilized 

in our study.  

 

In our study, glucose substrate is considered as case study for optimization. Cassava 

substrate is not considered due to the incompatibility of the model fitting (See 

Figures 4-28 to 4-30). It is important to ensure that the optimum conditions obtained 

are compatible with the kinetics model so that the optimum conditions could be used 

for control strategy purpose adequately. 

 

To create a CCD, it is important to locate new points along the axes of the factor 

space. For maximum efficiency, the axial or star points are to be located a specific 

distance outside the original factor range. The factorial design displayed in Table 3-3 

is augmented, whereby additional centre points provide a link between the blocks 

and added more power to the estimation of second-order effects needed to 

characterize curvature.  

 

Table 5-1 shows the augmented design, whereby the new points are designated as 

block 2. Additional experiments are conducted based on the new points. Results are 

then analyzed via ANOVA analysis. 
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Table 5-1 CCD Matrix Employed for Two Independent Variables, i.e. Aeration Rate 

and Stirrer Speed  

Standard 

Order 

Run 

Order 
Block 

X1: 

Aeration 

Rate 

(LPM) 

X2: 

Stirrer 

Speed 

(rpm) 

Y1: 

Yield 

(%) 

Y2: 

Productivity 

(g/L.hr) 

7 1 1 1.25 200 21.500 0.180 

1 2 1 1.0 150 14.788 0.099 

5 3 1 1.25 200 21.050 0.176 

6 4 1 1.25 200 21.250 0.178 

3 5 1 1.0 250 15.105 0.102 

4 6 1 1.5 250 24.040 0.160 

2 7 1 1.5 150 16.392 0.106 

13 8 2 1.25 200 24.000 0.230 

12 9 2 1.25 200 23.500 0.200 

14 10 2 1.25 200 22.000 0.190 

10 11 2 1.25 129.29 18.511 0.115 

9 12 2 1.60 200 22.250 0.195 

11 13 2 1.25 270.71 23.500 0.210 

8 14 2 0.90 200 20.500 0.165 

 

As shown in Table 5-1, the experimental tests involve fourteen trials and the 

response variables measured are yield and productivity. For each experimental trial, 

new conditions of aeration rate and stirrer speed are utilized. These results are 

subjected for further analysis following the steps outlined as follows [77]:  

 

1. Choose a transformation if desired. Otherwise, leave the option at “None”. 

2. Select the appropriate model to be used. The Fit Summary button displays the 

sequential F-tests, Lack of Fit tests and other adequacy measures that could 

be used to assist in selecting the appropriate model. 

3. Perform ANOVA for analysis of residuals and outlier detection. 

4. Inspect various diagnostic plots to statistically validate the model. 
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5. Generate model graphs for interpretation if the model looks good. The 

analysis and inspection performed in steps (3) and (4) above will show 

whether the model is good or otherwise. A good model must be significant 

and curvature must be significant too. The various coefficient of 

determination, R
2
 values should be close to 1.  

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Data-Based Model 

5.3.1.1 Statistical Analysis 

In order to obtain the optimum conditions of both aeration rate and stirrer speed by 

using the data-based model, ANOVA analysis is conducted by utilizing the 

experimental results as shown in Table 5-1. The ANOVA results of the response 

surface model are shown in Table 5-2 for yield, whereby AR indicates aeration rate 

and SS indicates stirrer speed. 

 

Table 5-2  ANOVA Results for CCD on Yield 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 90.10 5 18.02 9.73 0.0047 Significant 

A – AR 21.17 1 21.17 11.44 0.0117  

B – SS 28.20 1 28.20 15.24 0.0059  

AB 13.44 1 13.44 7.26 0.0309  

A
2
 12.76 1 12.76 6.90 0.0341  

B
2
 16.60 1 16.60 8.97 0.0201  

Residual 12.96 7 1.85    

Lack of 

Fit 
10.64 3 3.55 6.12 0.0563 

Not 

Significant 

Pure 

Error 
2.32 4 0.58 

   

Cor Total 132.31 13     
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As shown in Table 5-2, all terms are significant with “Prob > F”, which is less than 

0.05. The smaller the “Prob > F”, the more significant is the corresponding 

coefficient [56]. This implies that the quadratic effects of both aeration rate (AR) and 

stirrer speed (SS) are highly significant, as is evident from their respective “Prob > F” 

values. The coefficient of AB (“Prob > F” = 0.0309) indicates that both aeration rate 

(AR) and stirrer speed (SS) have significant effects on yield since the “Prob > F” is 

less than 0.05. The Fisher variance ratio, F value, is a statistically valid measure of 

how well the factors describe the variation in the data about its mean. The greater the 

F value from unity, the more certain it is that the factors explain adequately the 

variation in the data about its mean and the estimated factor effects are real [56]. 

ANOVA results of the model demonstrate that the model is highly significant, as is 

evident from the Fisher’s F test (Fmodel = 9.73) and a low “Prob > F” value (Pmodel > F 

= 0.0047).  

 

On the other hand, the Lack of Fit is not significant relative to the pure error when 

“Prob > F” = 0.0563 > 0.05, also supports the fitness of the model. In addition, the 

goodness of the fit of the model is also checked by the determination coefficient (R
2
). 

In this case, the value of the determination coefficient (R
2
 = 0.8743) indicates that 

87.43% of the sample variation in yield is attributed to the independent variables. 

The R
2
 value is higher than 0.80, indicating that the regression model explains the 

experiment well. The fit degree of the model is high enough to explain 87.43% of 

yield, thus this model is statistically adequate to be applied to predict the yield within 

the experimental setting range. To further investigate the adequacy of the developed 

model, a check of the response surface plots are available at Appendix D.1.  

 

Next, the interpretation of ANOVA results for productivity is conducted as well. 

Table 5-3 shows the ANOVA for productivity, whereby the ANOVA of the model 

demonstrate that the model is highly significant, and is evident from the Fisher’s F 

test (Fmodel = 9.30) and a low “Prob > F” value (Pmodel > F = 0.0054). 
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Table 5-3 ANOVA Results for CCD on Productivity 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 0.015 5 2.986E-3 9.30 0.0054 Significant 

A – AR 1.443E-3 1 1.443E-3 4.49 0.0718  

B – SS 4.577E-3 1 4.577E-3 14.25 0.0069  

AB 6.503E-4 1 6.503E-4 2.02 0.0780  

A
2 

2.868E-3 1 2.868E-3 8.93 0.0203  

B
2
 5.981E-3 1 5.981E-3 18.62 0.0035  

Residual 2.248E-3 7 3.212E-4    

Lack of 

Fit 
1.369E-3 3 4.563E-4 2.08 0.2461 

Not 

Significant 

Pure 

Error 
8.793E-4 4 2.198E-4 

   

Cor Total 0.024 13     

 

Based on the ANOVA results, the Lack of Fit is not significant relative to the pure 

error when p-value = 0.2461 > 0.05, also supports the fitness of the model. The 

coefficient of AB (“Prob > F” = 0.0780) indicates that both aeration rate (AR) and 

stirrer speed (SS) have significant effects on yield since the “Prob > F” is less than 

0.05. The value of the determination coefficient (R
2
 = 0.8691) which indicates that 

86.91% of the sample variation in productivity is attributed to the independent 

variables. Thus, this model is statistically adequate to be applied to predict the 

productivity within the experimental setting range. Thus, the optimum conditions for 

both aeration rate and stirrer speed could be determined to achieve maximum yield 

and productivity. 

 

5.3.1.2 Analysis of Response Surfaces 

Based on the ANOVA results, optimization is preceded and is represented in 3D 

response surface plots. The response surface plots are made as a function of aeration 

rate (AR) and stirrer speed (SS). The effect of the two variables on yield and 

productivity are illustrated in Figure 5-1 and Figure 5-2 respectively.  
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Figure 5-1 Response Surface Plot for the Effect of Aeration Rate (AR) and Stirrer 

Speed (SS) on Yield  
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Figure 5-2 Response Surface Plot for the Effect of Aeration Rate (AR) and Stirrer 

Speed (SS) on Productivity 

 

Based on Figure 5-1 and Figure 5-2, both aeration rate (AR) and stirrer speed (SS) 

demonstrate a quadratic effect on the response surface. Within the experimental 

range, the suggested optimum value of aeration rate (AR) and stirrer speed (SS) to 

maximize yield is aeration rate (AR) of 1.47LPM and stirrer speed (SS) of 

242rpm. Under these conditions, it is expected to yield a maximum of 24.5% 
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ethanol and 0.2g/L.hr maximum productivity. It is indicated from the ANOVA 

analysis that 97.8% desirable that these optimum values would be able to yield and 

produce maximum amount of ethanol, i.e. well above the 80% satisfactory limit.  

 

On the other hand, the response, yield, is found to increase with the increase in stirrer 

speed (SS) from 150rpm and reached its peak at 242rpm. There is a significant 

increase in yield with increase in aeration rate (AR) too. It reaches optimum at 

aeration rate (AR) of 1.47LPM, showing less significant difference in yield 

thereafter. Based on the results obtained, both aeration rate (AR) and stirrer speed 

(SS) contribute to the mixing mechanism of the bioreactor, as both yield and 

productivity differ with different aeration rate (AR) and stirrer speed (SS) conditions. 

Thus, both aeration rate (AR) and stirrer speed (SS) have significant effect on the 

batch bioreactor performance. Therefore, the data-based model demonstrates good 

predictions of yield and productivity by considering both aeration rate (AR) and 

stirrer speed (SS) in the data-based model.  

 

5.3.2 Kinetics Hybrid Model 

5.3.2.1 Statistical Analysis 

The analysis of yield and productivity based on the proposed kinetics hybrid model is 

analyzed. Similar to the analysis of the data-based model, without performing any 

transformation on the responses, examination of the Fit Summary output reveals that 

the kinetics hybrid model is statistically significant. The ANOVA results for yield 

are shown at Table 5-4 below. 

 

Table 5-4 ANOVA Results for CCD on Yield 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 44.40 2 22.20 7.20 0.0115 Significant 

Residual 30.81 10 3.08    

Lack of 

Fit 
27.76 6 4.63 6.06 0.0514 

Not 

Significant 

Pure 

Error 
3.05 4 0.76 
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As shown in Table 5-4, ANOVA results of the model demonstrate that the model is 

highly significant, as it is evident from the Fisher’s F test (Fmodel = 9.73) and a low 

“Prob > F” value (Pmodel > F = 0.0047). This analysis indicates that both aeration rate 

(AR) and stirrer speed (SS) have significant effects on yield since the “Prob > F” is 

less than 0.05. On the other hand, the Lack of Fit is not significant relative to the 

pure error when “Prob > F” = 0.0514 > 0.05, also supports the fitness of the model. 

The value of the determination coefficient (R
2
 = 0.8591) indicates that 85.91% of the 

sample variation in yield is attributed to the independent variables. Thus, this model 

is statistically adequate to be applied to predict yield within the experimental setting 

range. To further investigate the adequacy of the developed kinetics hybrid model, a 

check of the response surface plots can be done which is available at Appendix D.2. 

 

Next, the interpretation of ANOVA results for productivity is vital as well. Table 5-5 

shows the ANOVA for productivity, whereby the ANOVA of the model demonstrate 

that the model is highly significant, and is evident from the Fisher’s F test (Fmodel = 

11.97) and a low “Prob > F” values (Pmodel > F = 0.0022). 

 

Table 5-5 ANOVA Results for CCD on Productivity 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 8.180E-3 2 4.090E-3 11.97 0.0022 Significant 

Residual 3.417E-3 10 3.417E-4    

Lack of 

Fit 
2.974E-3 6 4.956E-4 4.47 0.0844 

Not 

Significant 

Pure 

Error 
4.433E-4 4 1.108E-4 

   

   

The Lack of Fit is not significant relative to the pure error when “Prob > F” = 0.0814 

> 0.05, also supports the fitness of the model. This analysis indicates that both 

aeration rate (AR) and stirrer speed (SS) have significant effects on productivity since 

the “Prob > F” is less than 0.05. The value of the determination coefficient (R
2
 = 

0.8754) indicates that 87.54% of the sample variation in productivity is attributed to 

the independent variables. Thus, this model can be used to predict the productivity 

within the experimental setting range. Overall, the developed kinetics hybrid model 
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is significant and the optimum conditions of aeration rate (AR) and stirrer speed (SS) 

could be determined.  

 

5.3.2.2 Analysis of Response Surfaces 

Figure 5-3 and Figure 5-4 show the response surface plots for both yield and 

productivity as a function of both aeration rate (AR) and stirrer speed (SS).  
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Figure 5-3 Response Surface Plot for the Effect of Aeration Rate (AR) and Stirrer 

Speed (SS) on Yield 
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Figure 5-4 Response Surface Plot for the Effect of Aeration Rate (AR) and Stirrer 

Speed (SS) on Productivity  
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The 3D surface plots of yield and productivity show that both yield and productivity 

are affected by aeration rate (AR) and stirrer speed (SS) respectively. Based on the 

surface plots, yield and productivity increase with an increase in aeration rate (AR) 

and stirrer speed (SS). Thus, both aeration rate (AR) and stirrer speed (SS) influence 

the level of both yield and productivity of the batch fermentation process. Yield 

increases when aeration rate (AR) increases from 1.0LPM and peaks at 1.43LPM, 

whereas stirrer speed (SS) increases from 150rpm and hits the highest point at 

250rpm. 

 

In order to obtain maximum yield and productivity, the optimum conditions for both 

aeration rate (AR) and stirrer speed (SS) are suggested at 1.43LPM and 250rpm. 

With these optimum conditions, it is suggested that the maximum yield is 21.150% 

and maximum productivity is around 0.150g/L.hr.  It is indicated that 96.6% 

desirable that these optimum values could achieve maximum yield and productivity. 

Thus, these optimum values of aeration rate (AR) and stirrer speed (SS) are 

recommended to achieve maximum yield and productivity. Based on the results 

obtained, both aeration rate (AR) and stirrer speed (SS) have significant effects on the 

bioreactor performance. Thus, the kinetics hybrid model demonstrates good 

predictions of yield and productivity by considering both aeration rate (AR) and 

stirrer speed (SS) in the kinetics hybrid model. 

 

5.3.3 Kinetics Multi-Scale Model 

5.3.3.1 Statistical Analysis 

The statistical analysis of the kinetics multi-scale model is done predict the optimum 

conditions of both aeration rate and stirrer speed to achieve maximum yield and 

productivity. The ANOVA results of the model fitting are shown in Table 5-6 for 

yield.  
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Table 5-6 ANOVA Results for CCD on Yield 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 52.65 5 10.53 7.10 0.0115 Significant 

Residual 10.38 7 1.48    

Lack of 

Fit 
6.75 3 2.25 2.48 0.2003 

Not 

Significant 

Pure 

Error 
3.63 4 0.91 

   

 

As shown in Table 5-6, it is indicated that the kinetics multi-scale model is highly 

significant, as it is evident from the Fisher’s F test (Fmodel = 7.10) and a low “Prob > 

F” value (Pmodel > F = 0.0115). This analysis indicates that both aeration rate (AR) 

and stirrer speed (SS) have significant effects on yield since the “Prob > F” is less 

than 0.05. On the other hand, the Lack of Fit is not significant relative to the pure 

error when “Prob > F” = 0.0115 > 0.05, also supports the fitness of the model. The 

value of the determination coefficient (R
2
 = 0.8353) indicates that 83.53% of the 

sample variation in yield is attributed to the independent variables. Thus, this model 

is statistically ample for the prediction of yield within the experimental setting range.  

 

Next, the interpretation of ANOVA results for productivity is vital as well. Table 5-7 

shows the ANOVA for productivity, whereby the ANOVA of the model demonstrate 

that the model is highly significant, and is evident from the Fisher’s F test (Fmodel = 

4.74) and a low “Prob > F” values (Pmodel > F = 0.0328). 
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Table 5-7 ANOVA Results for CCD on Productivity 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 0.016 5 3.144E-3 4.74 0.0328 Significant 

Residual 4.641E-3 7 6.630E-4    

Lack of 

Fit 
3.159E-3 3 1.053E-3 2.84 0.1693 

Not 

Significant 

Pure 

Error 
1.481E-4 4 3.703E-4 

   

 

The Lack of Fit is not significant relative to the pure error when “Prob > F” = 0.1693 

> 0.05, also supports the fitness of the model. This analysis indicates that both 

aeration rate (AR) and stirrer speed (SS) have significant effects on productivity since 

the “Prob > F” is less than 0.05. The value of the determination coefficient (R
2
 = 

0.8021) indicates that the fit degree of the model is high. Thus, this model can be 

applied to predict the productivity within the experimental setting range. Therefore, 

the model is statistically adequate for productivity prediction. A check of the 

response surface plots can be done which is available at Appendix D.3, to further 

investigate the adequacy of the developed kinetics multi-scale model. 

 

5.3.3.2 Analysis of Response Surfaces 

In the analysis of the response surfaces of both yield and productivity, both 3D 

surface plots of yield and productivity are made as a function of aeration rate (AR) 

and stirrer speed (SS). The effect of both variables is illustrated in Figure 5-5 and 

Figure 5-6.  
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Figure 5-5 Response Surface Plot for the Effect of Aeration Rate (AR) and Stirrer 

Speed (SS) on Yield  
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Figure 5-6 Response Surface Plot for the Effect of Aeration Rate (AR) and Stirrer 

Speed (SS) on Productivity  

 

The responses show that both yield and productivity are affected by both aeration 

rate (AR) and stirrer speed (SS) respectively. Based on the surface plots, yield and 

productivity increase with an increase in aeration rate (AR) and stirrer speed (SS). 

Thus, both aeration rate (AR) and stirrer speed (SS) influence the yield and 

productivity of the fermentation process. Within the experimental range, the 
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suggested optimum values of aeration rate (AR) and stirrer speed (SS) to maximize 

yield are 1.45LPM AR and 240rpm SS. Under these conditions, it is expected to 

yield a maximum of 24.128% ethanol and produce a maximum of 0.207g/L.hr 

ethanol. It is indicated that 81.3% desirable that these optimum values could be able 

to achieve maximum yield and productivity.  

 

Yield is found to increase with the increase in stirrer speed (SS) from 150rpm and 

reach its peak at 240rpm. On the other hand, there is a significant increase in yield 

with increase in aeration rate (AR). It reaches optimum at 1.45LPM showing less 

significant difference in yield thereafter. The trend of the 3D mesh generated for 

productivity is found to be different to that of yield. The productivity is found to 

increase with the increase in aeration rate (AR) and stirrer speed (SS) but there is a 

drop in activity with further increment in aeration rate (AR) and stirrer speed (SS), i.e. 

to 1.5LPM and 250rpm. It reaches optimum showing less significant difference in 

productivity. Based on the results obtained, both aeration rate (AR) and stirrer speed 

(SS) have significant effects on the bioreactor performance. Thus, the kinetics multi-

scale model demonstrates good predictions of yield and productivity by considering 

both aeration rate (AR) and stirrer speed (SS) in the model. 

 

5.3.4 Model Validation 

Model validation is important to be performed once optimization has been 

conducted. The goal is to check the results of the response surface experimentally, in 

order to ensure that the suggested optimum conditions are valid. The methods and 

experimental procedures conducted are similar to previous experiments presented in 

Chapter 3 for consistency. 

 

Table 5-8 and Table 5-9 show the summary results of the optimum aeration rate (AR) 

and stirrer speed (SS) as well as the maximum predicted yield and productivity for 

each model.  
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Table 5-8 Summary of Model Predicted and Experimental Verified Results for Yield 

Model 

Optimum 

Aeration 

Rate 

(LPM) 

Optimum 

Stirrer 

Speed 

(rpm) 

Model 

Predicted 

Maximum 

Yield (%) 

Experimental 

Verified 

Maximum 

Yield (%) 

Error (%) 

Data- 

Based 

1.47 242 24.495 23.720 3.164 

 

Kinetics 

Hybrid 

1.43 250 21.150 20.950 0.946 

Kinetics 

Multi-Scale 

1.45 240 24.128 24.570 1.799 

 

 

Table 5-9 Summary of Model Predicted and Experimental Verified Results for 

Productivity 

Model 

Optimum 

Aeration 

Rate 

(LPM) 

Optimum 

Stirrer 

Speed 

(rpm) 

Model 

Predicted 

Maximum 

Productivity 

(g/L.hr) 

Experimental 

Verified 

Maximum 

Productivity 

(g/L.hr) 

Error (%) 

Data- 

Based 

1.47 242 0.198 0.185 6.566 

Kinetics 

Hybrid 

1.43 250 0.150 0.148 1.333 

Kinetics 

Multi-

Scale 

1.45 240 0.207 0.210 1.429 
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Based on the summarized results tabulated above, the kinetics hybrid model predicts 

the least amount of yield and productivity despite having the lowest percentage error. 

Interestingly, the kinetics multi-scale model could predict the maximum yield and 

productivity although higher percentage error is measured for both experimental and 

model predicted data. Therefore, further analysis is to be conducted statistically in 

order to decide which kinetics model is suitable to be utilized for maximum yield and 

productivity prediction. Table 5-10 presents the summary of the Prob > F values for 

all the three models. 

 

Table 5-10 Summary of “Prob > F”: Values for Yield and Productivity  

Model Yield Productivity 

Data-Based 0.0047 0.0054 

Kinetics Hybrid 0.0115 0.0022 

Kinetics Multi-Scale 0.0115 0.0328 

 

Based on the statistical results obtained, the kinetics hybrid measures lower “Prob > 

F” value for both yield and productivity as compared to that of the kinetics multi-

scale model. These predictions show that the kinetics hybrid model offer better 

predictions compared to kinetics multi-scale model. Even though the “Prob > F” 

value for data-based model is lowest among the three models, however it would be 

more practical to utilize the kinetics model. This is because the kinetics model 

describes the combined mechanistic information about the fermentation process in 

the form of general mass balance expressions and kinetics obtained from 

experiments.  

 

From this point of view, the kinetics Monod expression would be a preferable choice 

for optimization. The input and output relationships are formulated in such a way 

that the kinetics hybrid model can be fitted to the experimental data. Further, in 

practical terms, a kinetics hybrid model is easier to evaluate than the complicated 

kinetics multi-scale model [79]. Thus, it would not be necessary to evaluate such 

complex model to study the effect of aeration rate and stirrer speed on bioreactor 

performance, as this would save computational burden. Therefore, the 

implementation of the kinetics hybrid model by using CCD approach is sufficient to 
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obtain the optimum conditions of both aeration rate and stirrer speed to achieve 

maximum bioreactor performance.   

 

5.4 CONCLUSIONS 

As a conclusion, the optimization problem formulated is to achieve maximum 

bioreactor performance with the account of both aeration rate and stirrer speed in 

batch bioreactor. Optimization results present satisfactory optimal solutions for both 

yield and productivity. The incorporation of a more detailed kinetics model alleviates 

the need for constant yield and productivity coefficients and parameterization of 

cellular growth into distinct pathways [80]. Based on the optimal results: 

 

• CCD approach is effective in determining the optimum conditions of both 

aeration rate and stirrer speed to achieve maximum bioreactor performance. 

ANOVA results for all three modeling approaches show significance and 

adequacy in each model proposed.  

• The kinetics hybrid model is suggested to be utilized for maximum yield and 

productivity predictions by using the optimum conditions predicted. This 

model is suggested due to its simplicity in model construction and better 

accuracy. On the other hand, there are significant effects of aeration rate and 

stirrer speed on bioreactor performance based on statistical analysis. Thus, 

both aeration rate and stirrer speed are important to be taken into account to 

study its effect on bioreactor performance and future predictions.   

 

Based on the optimization analysis, it is observed that both aeration rate and stirrer 

speed have significant effects on yield and productivity, i.e. bioreactor performance. 

Due to the accuracy of the kinetics hybrid model in bioreactor performance 

prediction, this model shows potential in the application of control strategy in batch 

bioreactor. The optimum conditions of aeration rate and stirrer speed will be 

considered as input variables for the control of the bioreactor performance since 

aeration rate and stirrer speed show significant effects on the bioreactor performance. 

Investigations in control strategy will be further discussed in the next chapter. 
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6.1 INTRODUCTION 

The objective of this chapter is to explore the potential and practicability of the 

proposed models for control strategy of bioreactor. The optimum conditions of both 

aeration rate and stirrer speed are considered as input variables to achieve maximum 

bioreactor performance. Considering these input variables, a nonlinear model-based 

controller is designed, with the implementation of the proposed models. Therefore, 

both aeration rate and stirrer speed will be the manipulated variables to control the 

bioreactor system in order to achieve maximum bioreactor performance and to 

maintain the desired bioreactor performance. 

 

In this chapter, the control strategy designed is implemented into a continuous 

bioreactor system instead of a batch bioreactor system. It is implemented in such a 

way since continuous bioreactor is widely used in chemical and biological processes 

in the pharmaceutical, food and chemical industries. Therefore, it is suggested to 

investigate the viability of the proposed control strategy in a continuous bioreactor 

system first in order to ensure that this strategy is useful and practical to be 

implemented into the industry.  

 

This chapter is divided into five sections. Section 6.2 outlines the control strategy 

scope and assumptions to study the effect of aeration rate and stirrer speed on 

bioreactor performance. Section 6.3 explains the control strategy approach to 

investigate the potential of aeration rate and stirrer speed in the control of bioreactor 

performance. The controller design specifications are proposed in this section. 

Section 6.4 outlines the case studies involved in the control strategy investigation. In 
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Section 6.5, the control strategy results for the case studies are analyzed. Finally, 

concluding remarks are presented at the end of this chapter. 

 

6.2 SCOPE AND ASSUMPTIONS 

In our study, the control design objective is to investigate the potential of the 

proposed models in the control of continuous bioreactor. Aeration rate and stirrer 

speed are considered as manipulated variables. Both feed concentration, So and 

dilution rate, D are considered as disturbance variables, since both interact to affect 

the microbial growth in the fermentation process [81]. Biomass, substrate and 

product concentrations as well as yield and productivity are considered as output 

variables.  

 

Figure 6-1 outlines the feedback control of a continuous fermentation process with 

the implementation of aeration rate and stirrer speed as manipulated variables, 

whereby sp is the set-point of the output variables. The set-point measurements are 

the optimum conditions of both aeration rate (AR) and stirrer speed (SS) obtained.  

 

 

Figure 6-1 System Layout of Continuous Fermentation with the Implementation of 

Aeration Rate and Stirrer Speed as Input Variables 

 

In our study, the data-based and kinetics hybrid models are employed in the 

nonlinear model-based controller. The control performances for both models are 

compared to investigate the potential of each model in the control of continuous 

bioreactor. It is of interest to investigate the potential of the kinetics model due to the 

versatility of the Monod’s model. Thus, it is possible to control the system at any 

Biomass Concentration 

So         D 
AR 

SS 

Product Concentration 

Nonlinear 

Model-

Based 

Controller 

Bioreactor 

sp

. 
Substrate Concentration 
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steady state by manipulating the disturbance variables, i.e. feed concentration, So and 

the dilution rate, D [82].  

 

The kinetics multi-scale model is considered as the bioreactor plant due to its best 

prediction on yield and productivity as explained in Chapter 5. The goal of these 

implementations is to investigate the potential of aeration rate and stirrer speed in 

controlling the bioreactor system to achieve maximum yield and productivity, i.e. 

bioreactor performance. 

 

6.3 CONTROL STRATEGY APPROACH 

In our study, Generic Model Control (GMC) is suggested for feedback control to 

describe the nonlinear bioreactor performance. This control law emphasizes integral 

action, which can be motivated by the presence of unmeasured disturbances. The 

additional of integral action in nonlinear control designs can improve the robustness 

and disturbance rejection properties of the controller. On the other hand, error 

trajectory is also considered, as the choice of an estimation error trajectory also arises 

in the design of nonlinear control. Through this kind of control system, it is 

suggested that the nonlinear properties of the bioreactor system could be investigated 

by controlling the input variables, i.e. aeration rate and stirrer speed, with respect to 

manipulated variables. Therefore, it is important to design the controller based on the 

specifications required to be taken into account in this study. The controller design 

specifications for the bioreactor are discussed earlier in Chapter 2 (Section 2.3.3). 

 

6.4 CASE STUDIES 

With the proposed control strategy, two case studies are considered. Case study 1 

involves a +10% step perturbation of disturbance variables to be employed to the 

bioreactor system. On the other hand, in case study 2, a +30% step perturbation of 

disturbance variables is considered. The steady state conditions for all the input, 

output and manipulated variables, used for both case studies are summarized in Table 

6-1. These conditions are the optimum conditions obtained from the optimization of 

the kinetics hybrid model. These conditions are considered at the open-loop and 

closed loop dynamics. 



Chapter 6 Bioreactor Control Strategy 

122 

 

Table 6-1 Summary of Steady State Conditions for All Variables 

Description Steady State Conditions 

Yield 21.150% 

Productivity 0.150g/L.hr  

Biomass Concentration 30.0g/L solution  

Substrate Concentration 48.0g/L solution  

Product Concentration 5.2g/L solution  

Aeration Rate (AR) 1.43LPM  

Stirrer Speed (SS) 250rpm  

 

6.5 RESULTS AND DISCUSSION 

6.5.1 Open-Loop Dynamics 

The open-loop dynamics of both case studies are investigated to analyze the 

robustness, stability and rough estimation of the input and output derivatives before 

proceeding to the closed-loop analysis, whereby GMC will be employed in the 

control structure. 

 

6.5.1.1 +10% Step Perturbation Disturbance Variables (Case Study 1) 

Table 6-2 shows the disturbance variables values after step perturbation of +10%. 

The open-loop dynamics of the bioreactor performance are simulated based on the 

conditions presented in Table 6-2. Results of the open-loop dynamics are shown in 

Figure 6-2.  

 

Table 6-2 +10% Step Perturbation Values of Disturbance Variables (Case Study 1) 

Description Up  Down 

Feed Concentration (S0) 55 45 

Dilution Rate (D) 1.1 0.9 
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Figure 6-2 Open-Loop Dynamics of Yield, Productivity, Biomass Concentration, 

Substrate Concentration, Product Concentration, Aeration Rate and Stirrer Speed for 

+10% Step Perturbation (Case Study 1) 

 

As observed in Figure 6-2, the dynamics of productivity is faster than yield. Based 

on the responses of the magnitude, yield and productivity can be controlled by 

manipulating the feed concentration (S0) and dilution rate (D). Furthermore, the 

dynamics of substrate concentration is the fastest as compared to that of biomass and 

product concentrations. Only slight changes in substrate concentrations are observed 

after the initial period.  Gradual dynamical observations can be seen during the 20
th

 

to 40
th

 hour of the open-loop system for biomass concentration. These results show 

that the manipulation of dilution rate (D) have a big impact on the open-loop 

performances, especially for biomass, substrate and product concentrations during 

the 20
th

 to 40
th

 hour of the process. Thus, it is of interest to observe the closed-loop 

dynamics of the bioreactor system to investigate the potential of the nonlinear model-

based controller to control the bioreactor system in order to achieve and maintain the 

desired conditions of the bioreactor. 
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6.5.1.2 +30% Step Perturbation Disturbance Variables (Case Study 2) 

Table 6-3 summarizes the step perturbation values of the disturbance variables for 

case study 2. Results of the open-loop dynamics are shown in Figure 6-3.  

 

Table 6-3 +30% Step Perturbation Values of Disturbance Variables (Case Study 2) 

Description Up  Down 

Feed Concentration (S0) 65 35 

Dilution Rate (D) 1.3 0.7 
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Figure 6-3 Open-Loop Dynamics of Yield, Productivity, Biomass Concentration, 

Substrate Concentration, Product Concentration, Aeration Rate and Stirrer Speed for 

+30 Step Perturbation (Case Study 2)  

 

As observed from Figure 6-3, the dynamics of productivity is faster than other 

variables, which is similar as case study 1. The productivity increases much more 

rapidly when dilution rate (D) is set at -30% compared to +30% while maintaining 

feed concentration (S0) at +30%.  On the other hand, not much dynamical changes is 

observed for productivity when feed concentration (S0) was maintained at -30%. 

Thus, these results demonstrate that the decrease in dilution rate (D) gives large 

impact to the dynamics of productivity in the bioreactor system. Different 
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observations are seen for yield instead, whereby during the 20
th

 to 40
th

 hour, yield 

increases gradually and reaches steady state. The dynamics for dilution rate (D) at 

+30% is faster than -30% when feed concentration (S0) is maintained at +30%. More 

dynamics is observed especially during the 20
th

 to 40
th

 hour of the bioreactor system 

as compared to the dynamics of case study 1. These results suggest that the 

percentage of step perturbation and the manipulation of dilution rate (D) have a big 

impact on the yield performance. For productivity, the dynamics is experiencing 

similar trend in regardless of the changes in step perturbation. Thus, both yield and 

productivity performances are highly dependent on the manipulation of dilution rate 

(D).  

 

Apart from yield and productivity, the control of dilution rate (D) towards biomass, 

substrate and product concentrations affect the bioreactor performance as well. More 

dynamics is observed for biomass concentration during the 20
th

 hour when dilution 

rate (D) is manipulated at -30%. When dilution rate (D) is manipulated at +30%, not 

much dynamical performances are observed. The biomass concentration decreases 

rapidly until reaches steady state. These show the need of controlling the bioreactor 

performance in order to achieve steady state conditions of the bioreactor. Therefore, 

it is crucial to investigate the effect of both aeration rate (AR) and stirrer speed (SS) 

in the control of bioreactor performance and the potential of the proposed nonlinear 

model-based controller in achieving the steady state bioreactor performance. 

 

6.5.2 Closed-Loop Dynamics 

The performances of the closed-loop dynamics are investigated and comparisons are 

made with the open-looped dynamics for both case studies.  

 

6.5.2.1 +10% Step Perturbation Disturbance Variables (Case Study 1) 

The respective closed-loop dynamics of both data-based and kinetics hybrid models 

are shown in Figure 6-4.  
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Figure 6-4 Closed-Loop Responses for Case Study 1 (+10% S0, +10% D)  

 

Results show that both controllers are able to achieve and maintain the output 

variables to their set-point values, by manipulating both aeration rate (AR) and stirrer 
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speed (SS). A step change of +10% is made to the feed concentration (S0) and 

dilution rate (D) at the 20
th

 hour.  It is observed that both controllers perform well, 

whereby there are not much oscillation observed in the closed-loop dynamics of 

yield but more dynamics is observed for productivity. The kinetics hybrid model 

controller shows lesser oscillations with higher overshoot and requires longer time to 

return to the set-point. On the other hand, the performance of the simple data-based 

controller is slightly better.  

 

Overall, both controllers are able to achieve and maintain the output variables to their 

set-point values for 10% changes. These results show that both aeration rate (AR) and 

stirrer speed (SS) can be operated at the suggested optimum conditions to achieve 

desired yield and productivity. Thus, both aeration rate (AR) and stirrer speed (SS) 

have significant effects on the control of bioreactor performance to achieve desired 

control performance. 

 

Further analysis is done for other responses in order to investigate the potential of 

both data-based and kinetics hybrid models in the control performance of bioreactor. 

The closed-loop analysis is done for the responses under (+10% S0, -10% D) which 

are shown in Figure 6-5.  
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Figure 6-5 Closed-Loop Responses for Case Study 1 (+10% S0, -10% D)  

 

Results indicate that both controllers are able to maintain the output variables to their 

set-point values by the manipulation of aeration rate (AR) and stirrer speed (SS). But 

more dynamics is observed for each variable compared to that of the previous case 

(+10% S0, +10% D). Both the data-based and kinetics hybrid model controller 

perform more aggressively before reaching steady state during the 20
th

 hour. On the 

other hand, the data-based model controller demonstrates and shows better 

performance in achieving higher productivity. The kinetics hybrid model controller 

does not perform well as compared to that of the data-based model controller. More 

oscillations are observed for the kinetics hybrid model controller. More time is 
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required to return to the set-point, especially for substrate concentration, whereby it 

reaches the set-point at the 80
th

 hour. Therefore, the data-based model controller 

performs better than the kinetics hybrid model controller.  Figure 6-6 shows the 

closed-loop responses of (-10% S0, +10% D). 
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Figure 6-6 Closed-Loop Responses for Case Study 1 (-10% S0, +10% D)  

 

Overall, both data-based and kinetics hybrid model controllers are able to control the 

bioreactor performance with lesser oscillations. The simple data-based model 

controller demonstrates better performance as compared to that of the complex 

kinetics hybrid model controller. The dynamics of productivity is observed to be 

faster than other variables. This shows that the performance of productivity is highly 

influenced by the manipulation of feed concentration (S0) and dilution rate (D).  

 

As a whole, the data-based model controller performs better than the kinetics hybrid 

model controller. The manipulations of both feed concentration (S0) and dilution rate 

(D), strongly influence the dynamics of the bioreactor system. Thus, aeration rate 

(AR) and stirrer speed (SS) play an important role in counterbalance the effects of 

both manipulated variables. The data-based model controls the effects and manages 

to reach set-point. Thus, with the use of nonlinear model-based controller, it is 

possible to assess the dynamic behaviour of the fermentation process and control the 

performance of bioreactor despite of the complicated system of the bioreactor [83]. 

 

6.5.2.2 +30% Step Perturbation Disturbance Variables (Case Study 2) 

Figure 6-7 shows the closed-loop responses for both data-based and kinetics hybrid 

model-based controllers for +30% step perturbation of disturbance variables.  
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Figure 6-7 Closed-Loop Responses for Disturbance for Case Study 2 (+30% S0, 

+30% D)  
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Overall, both controllers are able to maintain the output variables to their set-point 

values. However, the kinetics hybrid model controller performs much better than the 

data-based model controller. It is observed that the data-based model controller 

shows more oscillations and demands longer period of settling time to bring the 

process back to the set-point. Besides, higher overshoot is observed especially for 

yield, productivity, biomass concentration and substrate concentration.  

 

Note that both aeration rate (AR) and stirrer speed (SS) hit their upper limits, 

indicating nonlinear dynamics of the bioreactor system. Due to the highly nonlinear 

dynamics of the bioreactor system, the kinetics hybrid model controller produces 

better closed-loop performance as compared to the data-based controller. The 

kinetics hybrid model controller has potential in controlling the bioreactor 

performance, especially when the fermentation process is experiencing more 

dynamics and nonlinearity as demonstrated by a higher step perturbation. This shows 

that the kinetics hybrid model could capture the nonlinear dynamics of the bioreactor 

system. However, if the manipulation effect is not “big”, the simple data-based 

controller should be sufficient. To further investigate the dynamics of case study 2, 

further analysis is done under the settings of (+30% S0, -30% D) which are shown in 

Figure 6-8.  
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Figure 6-8 Closed-Loop Responses for Disturbance for Case Study 2 (+30% S0, -

30% D)  

 

In this case, results indicate that both controllers are also able to maintain the output 

variables to their set-point values. The kinetics hybrid model controller shows lesser 

oscillations and reaches to the set-point faster than the data-based model controller. 

These results show the ability of the kinetics hybrid model controller in responding 

to the manipulation of feed concentration (S0) and dilution rate (D), thus affecting the 

behaviour of the controller. The tuning procedure is able to adjust the behaviour of 

the output variables, avoiding oscillations.  



Chapter 6 Bioreactor Control Strategy 

136 

 

Finally, Figure 6-9 shows the dynamical performances of the data-based and kinetics 

hybrid model controllers under the settings of (-30% S0, +30% D).  
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Figure 6-9 Closed-Loop Responses for Disturbance for Case Study 2 (-30% S0, 

+30% D)  

 

All variables show more dynamics under the control of the data-based model 

controller. It is suggested that the kinetics hybrid model controller offers better 

performance for higher step perturbation. More oscillations are observed at higher 

step perturbation, but the set-points are able to be achieved within the process time. It 

is recommended that the data-based model performs better in lower step perturbation 

and the kinetics hybrid model provides better control performance in higher step 

perturbation. These show that it is necessary to intricate suitable control strategies to 

deal with different conditions of manipulated and output variables in order to predict 

the dynamic behaviour of the complex bioreactor system [83]. Different 

perturbations provide different kinetics and dynamics into the bioreactor system. 

Thus, it is suggested to engage nonlinear control to achieve the best control 

performance. Especially for fermentation process, the process is highly nonlinear due 

to the complexity of the microbial activities. Therefore, the implementation of both 

integral action and error trajectory offer improved nonlinear model-based controller 

designs.  

 

In addition, the control strategy proposed demonstrates that both feed concentration 

(S0) and dilution rate (D) have significant effects on the bioreactor performance. Both 

data-based and kinetics hybrid models could be used to control the bioreactor 

performance. Both controllers are able to regulate the operating conditions in order to 

accommodate the perturbations with the lowest possible alterations in the process 

outputs. Thus, the proposed control strategy is useful in treating the highly nonlinear 

bioreactor system. 
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6.6 CONCLUSIONS 

A new model-based control design for non-ideally mixed fermentation process has 

been presented, whereby models with different complexity are employed for the 

controller design. Both feed concentration (S0) and dilution rate (D) are considered as 

disturbance variables. Studies have revealed that: 

 

• Model-based nonlinear control strategy, i.e. Generic Model Control (GMC) 

has been incorporated directly into a controller structure, whereby it is 

suitable to be implemented into a fermentation process [84]. The controller 

structure is simple, disturbances can be compensated easily and the controller 

parameters can be easily tuned [85], in regardless of the complexity of the 

fermentation process. 

• The choice of the nonlinear controller would depend on the expected 

disturbances on the process. For a relatively small manipulation scenario, the 

data-based controller is sufficient. However, for a significantly large 

manipulation, the kinetics hybrid model controller is able to enhance the 

closed-loop performance. These show that it is necessary to perform suitable 

control strategies to deal with different conditions of disturbances and output 

variables in order to predict the dynamic behaviour of the complex bioreactor 

system. 

• Both data-based and kinetics hybrid models are able to achieve and maintain 

the output variables to their set-point values, by manipulating both feed 

concentration (S0) and dilution rate (D). Therefore, both aeration rate (AR) 

and stirrer speed (SS) play important role in counterbalance the effects of 

both manipulated variables. Thus, with the use of nonlinear model-based 

controller, it is possible to predict and control the dynamic behaviour of the 

continuous bioreactor system. 

 

The proposed data-based and kinetics hybrid model in the control strategy of  

bioreactor show the importance in engaging aeration rate (AR) and stirrer speed (SS) 

in the modeling and control of bioreactor. Both aeration rate (AR) and stirrer speed 

(SS) play important role in counterbalance the effects of both manipulated variables. 

Therefore, there is potential of engaging the data-based and kinetics hybrid models in 

the control of bioreactor. 
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Chapter 7 Conclusions and Recommendations 

 

 

7.1 CONCLUSIONS 

This thesis has addressed the modeling and control strategies of a non-ideally mixed 

bioreactor for fermentation process. The presence of such modeling and control 

system has considerably improved the evaluations and implications of the bioreactor, 

whereby ideally mixed assumption has been implemented over the decades. These 

interactions have therefore been a key issue in modeling and control discussed in this 

thesis. 

 

The main contribution of this thesis has been a systematic approach in modeling and 

control of non-ideally mixed bioreactor for an ethanolic micro-aerobic fermentation 

process. Both modeling analysis and control strategy design are performed in a 

systematic manner by following procedures proposed in Chapters 4, 5 and 6. 

 

By using the procedures, three modeling approaches are proposed based on 

evaluations done experimentally. Both aeration rate and stirrer speed are taken into 

account in each modeling approach in order to describe the non-ideally mixed 

mechanism of the bioreactor. The interactions resulting from each approach are then 

analyzed to observe their effect on the overall achievable bioreactor performance. As 

a result of this analysis, the control strategy is designed in such a way that the 

proposed models are able to control the whole bioreactor performance. Hence, the 

challenge has been to investigate which proposed model will result in achievable 

bioreactor performance. 
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Results from this study has indicated that the kinetics hybrid model is the best model 

to control the overall bioreactor performance, satisfying the achievable yield and 

productivity of the fermentation process. Other contributions of this work are 

summarized as follows: 

1. New approaches to non-ideally mixed bioreactor analysis in which the 

interactions of both aeration rate and stirrer speed are taken into account. This 

is because previous studies were only done on temperature and pH as 

manipulated variables. 

2. The use of cassava as main substrate to measure the achievable yield and 

productivity as compared to that of glucose as main substrate. Cassava is able 

to achieve higher yield and productivity compared to glucose. 

3. The use of Central Composite Design (CCD) in process optimization as 

indicators for optimum conditions determination for the proposed non-ideally 

mixed bioreactor models. CCD is simple to be utilized and effective in 

determining the optimum conditions for the fermentation process due to its 

flexibility. 

4. Alternative control strategies to improve the overall bioreactor performance 

are investigated. Both aeration rate and stirrer speed are considered as input 

variables and controlled to achieve desirable yield and productivity. Non-

ideally mixed bioreactor model is implemented into the control system to 

describe the nonlinear behaviour of the bioreactor. On the other hand, it is 

also used as controllers to achieve desirable bioreactor performance. 

 

Furthermore, some insights into modeling and control strategy have been gained 

from the application of the proposed methodology to the two case studies: glucose 

and cassava substrates. These are summarized as follows: 

 

7.1.1 Strategies Developed for Modeling and Control of Non-Ideally Mixed 

Bioreactor 

• This study describes three modeling approaches potentially utilized in 

portraying the non-ideality of a mixing bioreactor, i.e. the data-based, kinetics 

hybrid as well as kinetics multi-scale model. Both aeration rate and stirrer 

speed are taken into account in each modeling approach in order to describe 

the non-ideally mixed mechanism of the bioreactor. 
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• Statistical results indicate that among the three modeling approaches, the 

data-based model is significant for both glucose and cassava substrates. The 

kinetics hybrid model and kinetics multi-scale model are significant for 

glucose substrate but not significant for cassava substrate. On the other hand, 

statistical results also show that by engaging both aeration rate and stirrer 

speed into the kinetics model, the existing Herbert’s kinetics model is 

improved. Glucose and cassava substrates show different kinetic behaviours 

by fitting the respective experimental data into the kinetics model. Glucose 

substrate show good model fitting but for cassava substrate, it does not fit 

well into the kinetics model. Thus, only glucose is considered for the 

extension studies of kinetics multi-scale model buildup.  

• The kinetics hybrid model shows good competence with the experimental 

data of glucose substrate. CFD simulations demonstrate the mixing behaviour 

within the bioreactor, whereby different conditions of aeration rate and stirrer 

speed influence the mixing mechanism. Thus, different conditions of aeration 

rate and stirrer speed contribute to the differences in dynamics and kinetics 

within the bioreactor. These differences show that both aeration rate and 

stirrer speed play important role in the non-ideally mixed mechanism of the 

bioreactor. 

• Model-based nonlinear control strategy, i.e. Generic Model Control (GMC) 

has been incorporated directly into a controller structure, whereby it is 

suitable to be implemented into an alcoholic fermentation process [84]. The 

controller structure is simple, disturbances can be compensated easily and the 

controller parameters can be easily tuned [85], in regardless of the complexity 

of the fermentation process. 

 

7.1.2 Experimental and Modeling Analysis of Glucose and Cassava Substrates 

• Experimental results show that with the utilization of glucose as the main 

substrate, ethanol production is highest at the maximum settings of 

experimental range, i.e. at aeration rate of 1.5LPM and stirrer speed of 

250rpm. It is observed that under these settings, approximately 24% of 

ethanol yield and 0.16g/L.hr productivity. On the other hand, for cassava as 

the main substrate, ethanol production is highest at the baseline settings, i.e. 
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at aeration rate of 1.25LPM and stirrer speed of 200rpm, with approximately 

49% of ethanol yield and 0.99g/L.hr productivity. These results show that 

different substrates produced different amount of yield and productivity under 

different conditions of aeration rate and stirrer speed. Different conditions of 

aeration rate and stirrer speed demonstrated different mixing mechanism in 

order to achieve desired yield and productivity. 

• Experimental and modeling analyses show that aeration can greatly improve 

the ethanol yield and productivity [66]; [86] as well as reduce the formation 

of by-product, i.e. glycerol [87]. On the other hand, low stirrer speed can lead 

to poor mixing in the bioreactor causing poor yield. In addition to that, 

excessively high stirrer speed can cause physiological stress to the microbial 

cells which in turn leads to poor yield [88];[89]. Thus, both aeration rate and 

stirrer speed affect the mixing mechanism in a bioreactor and directly affect 

the yield and productivity of the desired end products. It is important to 

incorporate both aeration rate and stirrer speed into process models in order 

to describe the non-ideally mixed mechanism of the bioreactor, as the 

traditional assumption of ideally mixed mechanism is no longer valid. 

 

7.1.3 Optimization of Ethanolic Fermentation Process 

• Central Composite Design (CCD) is effective in determining the optimum 

conditions for the fermentation process due to its flexibility and simplicity. 

Three modeling approaches which had been proposed, i.e. data-based, 

kinetics hybrid and kinetics multi-scale models are statistically analyzed and 

the optimum of each models are obtained.  

• Statistical results show significance and adequacy in all the models proposed. 

This ensured that the optimization procedure could proceed and optimum 

results proposed are statistically accurate. 

• Predicted and experimental/verified results are comparable for all three 

modeling approaches, thus this demonstrated the usefulness and efficiency of 

this method in optimization. It is suggested that the kinetics hybrid model 

give the most comparable results of maximum yield and productivity among 

the three proposed models. Thus, this model is suggested for the 

determination of both maximum yield and productivity due to its simplicity in 
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model construction, as compared to the data-based and kinetics multi-scale 

models.  

 

7.1.4 Bioreactor Control Strategy 

• The choice of the nonlinear controller would depend on the expected 

manipulations done on the process. For a relatively small manipulation 

scenario, the data-based controller is basically sufficient. However, for a 

significantly large manipulation effect, the kinetics hybrid controller is able to 

enhance the closed-loop performance.  

• The manipulation of dilution rate has a big impact on the open-loop 

performances, especially for biomass, substrate and product concentrations 

for relatively small disturbance scenario. For large disturbance scenario, both 

yield and productivity are influenced by the manipulation of dilution rate 

instead.  

• Both data-based and kinetic hybrid models are able to maintain the controlled 

variable in their set-point values, by manipulating both aeration rate and 

stirrer speed. On the other hand, the kinetics multi-scale model is used to 

describe the nonlinear behaviour of the bioreactor. Results show that both 

aeration rate and stirrer speed play an important role in counterbalance the 

effects of both manipulated variables, i.e. substrate concentration and dilution 

rate. The kinetics multi-scale model is able to demonstrate the nonlinearity of 

the bioreactor. Therefore, the mixing mechanism of the bioreactor is 

demonstrated despite of the nonlinear behaviour of the bioreactor. Thus, with 

the use of mathematical model, it is possible to assess the dynamic behaviour 

of the fermentation process. Both aeration rate and stirrer speed are important 

variables in describing the mixing mechanism of the bioreactor.  

 

7.1.5 Evaluations and Implications of Present Study 

• The combination investigations of aeration rate and stirrer speed could be 

employed to study the mixing behaviour of a bioreactor in order to explore 

the kinetics and dynamic behaviour of a mixing bioreactor. 

• It is proven from experiments and statistical analysis that different aeration 

rate and stirrer speed provide significant differences in kinetics and mixing 
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behaviour of bioreactor. Oxygen supplied affects the metabolite formation 

since the reaction of product formation, i.e. ethanol, is dependent on oxygen 

[90];[91]. Agitation, on the other hand, improves the mass transfer 

characteristics with respect to substrates, products, byproducts and oxygen, 

which results in better mixing of the fermentation medium [91]. Thus, both 

aeration rate and stirrer speed are factors which affect a bioreactor’s 

efficiency in supplying microbial cells with oxygen and mass transfer within 

the bioreactor by agitation. There is a need to describe the mixing mechanism 

of a fermentative bioreactor with respect to aeration rate and stirrer speed.  

• Strategies developed in modeling and control of bioreactor is suitable in 

evaluating and investigating the non-ideality behaviour of the mixing 

mechanism within a fermentative bioreactor.  Statistical results imply that the 

non-ideally mixed bioreactor models proposed are significantly appropriate 

and adequate in describing the mixing behaviour of a bioreactor. On the other 

hand, the control strategy developed show that the mixing mechanism of a 

fermentative bioreactor is able to be controlled. This could be done with the 

adjustments of both aeration rate and stirrer speed, in order to meet the 

desired set-points. The tolerable range of both aeration rate and stirrer speed 

is set in order to evaluate its effects on the kinetic and dynamic behaviours of 

the system. 

 

7.2 RECOMMENDATIONS 

In addition to some promising results, this study also indicates a number of 

challenging problems that needed further investigations. These issues are 

recommended for future work and summarized as follows: 

 

1. Extend Kinetics Modeling and Control Analysis to Cassava Substrate 

Although the strategies developed have been successful in evaluating the mixing 

mechanism of a bioreactor, investigation is not performed further for cassava 

substrate in kinetics modeling. This is due to the differences in chemical structure 

between glucose and cassava, as well as the more complicated composition of 

cassava. The metabolism and kinetics of cassava by Saccharomyces cerevisiae has 

yet to be investigated in depth to date. Thus, further work needs to be performed to 
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have a comprehensive understanding of cassava in the mixing mechanism and non-

ideality of a bioreactor of an ethanolic fermentation process.  

 

2. Expand the Current Proposed Kinetics Models to a Number of Further 

Case Studies 

The optimization of the performance of the existing bioreactor requires screening of 

various mixing configurations. This would allow researchers to spend more time on 

evolving creative and innovative mixer configurations rather than validating and 

screening the established configurations [51]. It is suggested to conduct more studies 

in the future, especially in scaling up the bioreactor system so that the system could 

be utilized in practice in industry in the future.  

 

In this research, three modeling approaches, i.e. data-based, kinetics hybrid and 

kinetics multi-scale models have been proposed. These three models have been 

implemented for control studies for continuous bioreactor. In this research, as the 

control strategy has only been tested by using simulations, it is suggested to conduct 

experimental verification of the proposed controller for further validation. On the 

other hand, further work could be considered to simulate more mathematical models 

in order to further improve the comprehensiveness and limitations of the models 

proposed in this research. The control studies can be extended for application in 

batch bioreactor. This would not only expand the tolerable range but also to widen 

the range of applications, for example, models proposed could be utilized in any 

operating conditions and substrates. This would not only save time in terms of 

computational burden, but also diversify the experimental applications to various 

substrates.                            
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Appendix A 

 

Experimental Procedures and Analysis 

 

 

A.1 Experimental Procedures (Glucose and Cassava Substrates) 

In this study, two case studies are conducted by utilizing different substrate for each 

case study, i.e. glucose and cassava respectively. Basically, the experimental 

procedure for both glucose and cassava substrates are the same except that cassava is 

required to be hydrolyzed before experiment begins. Generally, for both glucose and 

cassava, 1.5 litre of the medium culture is prepared based on the medium formulation 

for each glucose and cassava, which is presented in Section 3.2.1.2 and Section 

3.2.1.3. The medium formulation is based on Thatipamala, Rohani and Hill (1992) 

[92] whereby the culture medium is sterilized at 121
o
C and subsequently to be cooled 

down under room temperature.  

 

For glucose, the medium is sterilized for 20 minutes whereas for cassava, the 

medium is sterilized for 45 minutes to further breakdown the complex structure of 

cassava to simple glucose. 0.040 litre of inoculum is added to the fermentation 

medium (See Table 3-2 for glucose fermentation medium formulation). Temperature 

and pH conditions are maintained and controlled at 30°C and pH 5 respectively.  The 

fermentation process is stopped after approximately 72 hours and the samples are 

taken in every 2-3 hours for biomass, substrate (glucose), product (ethanol) and 

byproduct (glycerol) concentrations analysis. Ethanol, glucose and glycerol are 

analyzed using R-Biopharm test kits and UV-spectrophotometer, right after samples 
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are taken from the medium culture. Analysis is done right after the samples are taken 

from the medium culture in order to avoid further contamination and to obtain better 

accuracy of measurements. All analytical methods are done according to the 

instructions stated in the R-Biopharm instruction guides, including the determination 

of wavelength to be set at the UV-spectrophotometer. The fermentation process is 

considered finished when the glucose concentration is less than 5g/L at the end of the 

process, whereby the microbial cells are subjected to death. 

 

For cassava, acid hydrolysis is done to modify the cassava starch granule structure in 

order to produce soluble products with altered gelatinization behaviour [93]. 0.75 

litre of 0.1M of sulphuric acid solution is mixed with cassava. Next, the medium is 

mixed with other nutrients (See Table 3-3 for cassava fermentation medium 

formulation) before the addition of 0.040 litre of inoculum. Both temperature and pH 

conditions are maintained and controlled at 30°C and pH 5 respectively.  The 

fermentation process is stopped after approximately 72 hours and the samples are 

taken in every 2-3 hours for biomass, substrate (glucose), product (ethanol) and 

byproduct (glycerol) concentrations analysis. By using R-Biopharm test kits and UV-

spectrophotometer, ethanol, glucose and glycerol are analyzed right after samples are 

taken from the medium culture in order to avoid contamination and to obtain better 

accuracy of concentration measurements. All analytical methods are done according 

to the instructions stated in the R-Biopharm instruction guides, including the 

determination of wavelength to be set at the UV-spectrophotometer. The 

fermentation process is considered finished when the glucose concentration is less 

than 5g/L at the end of the process. 

 

A.2 Inoculum Preparation 

Before experiments begin, it is important to prepare inoculum to be inoculated in the 

fermentation medium for microbial growth. It is vital to note that the inoculum is to 

be prepared in a contamination free environment since the physiological condition of 

the inoculum has a major effect of performance of the fermentation when it is 

transferred to the fermentation medium. 
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In this study, inoculum preparation is done based on the formulation by Thatipamala, 

Rohani and Hill (1992) [92] which are outlined in Table A-1, along with an addition 

of 1g of Baker’s yeast.  

 

Table A-1 Inoculum Preparation Formulation 

Constituents Amount (g/L) 

Glucose 50 

Yeast extract 5.0 

NH4Cl 2.5 

Na2HPO4 2.91 

KH2PO4 3.0 

MgSO4 0.25 

CaCl2 0.08 

Citric acid 4.3 

Sodium citrate 3.0 

 

Before preparing the inoculum, it is important to ensure that the conical flask is 

sterilized before use in order to ensure that the flask is not contaminated. Steam is 

used for sterilization and is applied at 15psi for an hour. 0.25 litre of inoculum is 

prepared in the sterilized conical flask and is mixed thoroughly before allowing the 

inoculum to stand for around 8 hours for microbial growth. To prevent 

contamination, the conical flask is wrapped and covered with cotton wool and 

aluminium foil. Figure A-1 shows the inoculum appearance after 8 hours. 
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Figure A-1 Appearance of Inoculum after 8 hours 

 

A.3 Medium Preparation (Glucose) 

In this section, the preparation of glucose medium is outlined. Table A-2 summarizes 

the glucose medium formulation of the fermentation medium prepared in the 

laboratory. 

 

Table A-2 Glucose Fermentation Medium Formulation 

Constituents Amount (g/L) 

Glucose 50 

Yeast extract 5.0 

NH4Cl 2.5 

Na2HPO4 2.91 

KH2PO4 3.0 

MgSO4 0.25 

CaCl2 0.08 

Citric acid 4.3 

Sodium citrate 3.0 
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Based on the fermentation medium formulation summarized in Table A-2, the 

medium culture is prepared and stirred thoroughly after sterilization of the 

bioreactor. Steam is used to sterilize the culture medium and is applied at 15psi for 

an hour. Figure A-2 shows the glucose medium culture after the medium is mixed 

thoroughly. It can be observed that the medium culture is yellowish in colour. 

 

 

Figure A-2 Glucose Culture Medium 

 

After the medium culture is prepared in the sterilized bioreactor, the medium is 

sterilized and allowed to cool down under room temperature for approximately 4 

hours for the bioreactor and the medium culture to be completely cooled down. 

Experiment begins right after the bioreactor and medium culture are cooled down to 

avoid any contaminations of the bioreactor and medium culture.  

 

A.4 Medium Preparation (Cassava) 

In this section, the cassava medium preparation is outlined, whereby Table A-3 

summarizes the cassava medium formulation of the fermentation medium. The 

formulation is similar to that of glucose medium, except that the amount of cassava is 
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twice as more as glucose in order to generate more ethanol due to the more complex 

structure of cassava which is tougher to breakdown. Yeast, on the other hand is 

reduced to 1g/L instead of 5g/L in order to investigate the ability of cassava in 

producing ethanol. All of these constituents are then be hydrolyzed with the addition 

of 0.75 litre of 0.1M (i.e. 0.2N) sulphuric acid solution. 

 

Table A-3 Cassava Fermentation Medium Formulation 

Constituents Amount (g/L) 

Cassava 100 

Yeast extract 1.0 

NH4Cl 2.5 

Na2HPO4 2.91 

KH2PO4 3.0 

MgSO4 0.25 

CaCl2 0.08 

Citric acid 4.3 

Sodium citrate 3.0 

 

Based on the fermentation medium formulation summarized in Table A-3, the 

medium culture is prepared and stirred thoroughly after sterilization of the 

bioreactor. Steam is used to sterilize the medium culture and is applied at 15psi for 

an hour. Figure A-3 shows the cassava medium culture, whereby the medium culture 

is orange yellowish in colour. 
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Figure A-3 Cassava Medium Culture 

 

The bioreactor along with the hydrolyzed cassava starch is sterilized and cooled 

down under room temperature for approximately 4 hours for complete cool down of 

the bioreactor and medium culture. Experiment begins right after the bioreactor and 

medium culture are cooled down to avoid any contaminations of the bioreactor and 

medium culture.  

 

A.5 Analytical Methods 

In order to measure the biomass, glucose, ethanol and glycerol concentrations, a UV-

spectrophotometer is utilized, aided with R-Biopharm test kits whereby different test 

kits are required for each concentration measurements. Figure A-4 shows the UV-

spectrophotometer (Lambda 25) used for analysis in the laboratory.  
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Figure A-4 UV Spectrophotometer (Lambda 25) 

 

On the other hand, Figure A-5 shows the test kits for glucose, ethanol and glycerol 

concentrations. Preparations are done according to the test kits manuals allocated for 

different concentration measurements. Glass cuvettes are utilized during the 

analytical process.  

 

 

Figure A-5 R-Biopharm Test Kits for Glucose, Ethanol and Glycerol Concentrations 

 

A.5.1 Biomass Concentration Measurements 

For the biomass concentration measurements, cells are diluted in 0.8% (w/v) sodium 

chloride (NaCl) solution before the biomass concentrations are measured by using 

UV- spectrophotometer at optical density of OD600nm.  
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A.5.2 Substrate (Glucose and Cassava) Concentration Measurements 

Glucose concentration measurements are done according to the glucose test kit 

manual, whereby a wavelength of 340nm is used under a temperature of 20°C. 

Absorbance values are recorded for the concentration calculation, which is based on 

the general equation below: 

 

blanksample AAAAA )()( 2121 −−−=∆                                                  (61) 

 

where A1 is the absorbance value upon reaction after approximately 3 minutes 

 A2 is the absorbance value upon reaction after approximately 10-15 minutes 

 

A
vd

MWV
c ∆×

×××
×

=
1000ε

 [g/L]                           (62) 

 

where V = final volume [mL] 

 v = sample volume [mL] 

 MW = molecular weight of the substance to be assayed [g/mol] 

 d = light path = 1 [cm] 

 ε = extinction coefficient of NADPH at 340nm = 6.3 [L ×  mmol
-1

 ×  cm
-1

] 

 

A.5.3 Ethanol Concentration Measurements 

To measure the concentration of ethanol, similar analysis is done based on the 

analysis of glucose concentration, except for certain calculations. 

 

blanksample AAAAA )()( 2121 −−−=∆                                (63) 

 

where A1 is the absorbance value upon reaction after approximately 3 minutes 

 A2 is the absorbance value upon reaction after approximately 5-10 minutes 

 

A
vd

MWV
c ∆×

××××
×

=
10002ε

 [g/L]                     (64) 

 

where V = final volume [mL] 
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 v = sample volume [mL] 

 MW = molecular weight of the substance to be assayed [g/mol] 

 d = light path = 1 [cm] 

 ε = extinction coefficient of NADPH at 340nm = 6.3 [L ×  mmol
-1

 ×  cm
-1

] 

 

A.5.4 Glycerol Concentration Measurements 

For glycerol concentration measurements, similar analysis is utilized as compared to 

that of ethanol and glucose concentrations measurements. Calculations are similar to 

that of glucose concentration. 

 

blanksample AAAAA )()( 2121 −−−=∆                     (65) 

 

where A1 is the absorbance value upon reaction after approximately 5-7 minutes 

 A2 is the absorbance value upon reaction after approximately 5-10 minutes 

 

A
vd

MWV
c ∆×

×××
×

=
1000ε

 [g/L]                               (66) 

 

where  V = final volume [mL] 

 v = sample volume [mL] 

 MW = molecular weight of the substance to be assayed [g/mol] 

 d = light path = 1 [cm] 

 ε = extinction coefficient of NADPH at 340nm = 6.3 [L ×  mmol
-1

 ×  cm
-1

] 
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Appendix B 

 

Statistical Analysis (Experimental Data) 

 

 

B.1 GLUCOSE SUBSTRATE 

Table B-1 to Table B-8 show the ANOVA results for glucose, ethanol, glycerol and 

biomass concentrations, as well as yield, productivity, DO and OUR for glucose 

substrate.  

 

Table B-1 ANOVA Results for Glucose Concentration (Glucose Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 14.44 1 14.44 179.28 0.0070  

 

 

   

Table B-2 ANOVA Results for Ethanol Concentration (Glucose Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 16.51 1 16.51 219.18 0.0330  

 

 

Table B-3 ANOVA Results for Glycerol Concentration (Glucose Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 16.51 1 16.51 219.18 0.0460  
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Table B-4 ANOVA Results for Biomass Concentration (Glucose Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 213.44 1 213.44 77.18 0.0330  

 

 

 

Table B-5 ANOVA Results for Yield (Glucose Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 63.61 1 63.61 179.48 0.0049  

 

 

 

Table B-6 ANOVA Results for Productivity (Glucose Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 27.96 1 27.96 277.18 0.0096  

 

 

 

Table B-7 ANOVA Results for DO (Glucose Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 25.19 1 25.19 139.57 0.0268  

 

 

 

Table B-8 ANOVA Results for OUR (Glucose Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 10.56 1 10.56 167.85 0.0421  
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B.2 CASSAVA SUBSTRATE 

Table B-9 to Table B-16 show the ANOVA results for glucose, ethanol, glycerol and 

biomass concentrations, as well as yield, productivity, DO and OUR for cassava 

substrate.  

 

Table B-9 ANOVA Results for Glucose Concentration (Cassava Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 64.96 1 64.96 279.28 0.0239  

    

 

Table B-10 ANOVA Results for Ethanol Concentration (Cassava Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 116.51 1 116.51 248.18 0.0063  

 

 

 

Table B-11 ANOVA Results for Glycerol Concentration (Cassava Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 95.12 1 95.12 119.18 0.0329  

 

 

 

Table B-12 ANOVA Results for Biomass Concentration (Cassava Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 33.44 1 33.44 57.18 0.0074  

 

 

Table B-13 ANOVA Results for Yield (Cassava Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 53.45 1 53.45 199.12 0.0189  
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Table B-14 ANOVA Results for Productivity (Cassava Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 67.45 1 67.45 296.18 0.0303  

 

 

 

Table B-15 ANOVA Results for DO (Cassava Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 135.19 1 135.19 239.74 0.0268  

 

 

 

Table B-16 ANOVA Results for OUR (Cassava Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

AB 20.12 1 20.12 159.34 0.0452  

 

 

 

 

 



Appendix C 

169 

 

 

 

Appendix C 

 

Statistical Analysis (Kinetics Modeling) 

 

 

C.1 DATA-BASED MODEL 

C.1.1 Glucose Substrate 

 

Table C-1 below shows the ANOVA results for yield for glucose substrate. Results 

show that the data-based model for yield is significant. 

 

Table C-1 ANOVA Results for Yield (Glucose Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 57.06 3 19.02 250.83 0.0040 Significant 

A – AR 27.77 1 27.77 366.17 0.0027  

B – SS 15.86 1 15.86 209.15 0.0047  

AB 13.44 1 13.44 177.18 0.0049  

Curvature 22.86 1 22.86 301.51 0.0033 Significant 

Pure 

Error 
0.15 2 0.076 

   

Cor Total 80.08 6     
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Figure C-1 shows the half-normal plot for yield, obtained from glucose substrate. 

Figure C-1 reveals that the residuals, i.e. aeration rate (AR) and stirrer speed (SS) 

generally fall further away from the straight line, implying that both have interactions 

and important in terms of modeling. The interaction of AB, i.e. aeration rate (AR) and 

stirrer speed (SS) show response and this indicates that both show importance in 

interaction. Thus, both aeration rate (AR) and stirrer speed (SS) need to be engaged 

together in order to show better performance.   
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Figure C-1 Half-Normal Plot of Effects for Yield Data (Glucose Substrate) 

 

Also, Figure C-2 shows the interaction between aeration rate (AR) and stirrer speed 

(SS), whereby within experimental range, there is contribution of interaction effect 

which is one of the significant model term. Results predict that yield is expected to 

be within 21% to 22%, which is the desired amount of yield. The curvature value as 

indicated in ANOVA, also supports this statement whereby the curvature is 

significant. Thus, both interaction of aeration rate (AR) and stirrer speed (SS) is 

predicted to be able to contribute to the desired amount of yield within experimental 

range.    
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Figure C-2 Interaction Plot between Aeration Rate (AR) and Stirrer Speed (SS) for 

Yield Data (Glucose Substrate) 

 

On the other hand, Figure C-3 shows the plot of residuals vs. predicted response for 

yield for glucose substrate. This figure reveals that they have no obvious pattern and 

unusual structure. The three design points are within both red lines which imply that 

there is no reason to suspect any violation of the independence or constant variance 

assumption.  
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Figure C-3 Plot of Residuals vs. Predicted Response for Yield Data (Glucose 

Substrate) 
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Results from ANOVA and plots indicate that yield gave significant curvature results. 

The probability values for yield fall below the acceptable threshold of 0.05. The 

curvature F-value of 301.51 for yield implies that there is significant curvature, as 

measured by the difference between the average of the centre points and the average 

of the factorial points in the design space. There is only a 0.33% chance that a 

curvature F-value for yield this large could occur due to noise. Overall, curvature is 

significant and therefore, augmentation of the design could proceed for optimization. 

 

Table C-2 shows the ANOVA results for productivity, obtained from glucose 

substrate. Results indicate that the data-based model for productivity is significant.  

 

Table C-2 ANOVA Results for Productivity (Glucose Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 2.519E-3 3 8.396E-4 132.57 0.0075 Significant 

A – AR 1.056E-3 1 1.056E-3 166.78 0.0059  

B – SS 8.122E-4 1 8.122E-4 128.25 0.0077  

AB 6.503E-4 1 6.503E-4 102.67 0.0096  

Curvature 6.361E-3 1 6.361E-3 1004.44 0.0010 Significant 

Pure 

Error 
1.267E-5 2 6.333E-6 

   

Cor Total 8.893E-3 6     

 

To further investigate the adequacy of the data-based model for productivity, a check 

of the plots in Figures C-4 to C-6 reveals the predicted responses for productivity in 

terms of aeration rate (AR) and stirrer speed (SS) for glucose substrate. Figure C-4 

reveals that the residuals, i.e. aeration rate (AR) and stirrer speed (SS) generally fall 

further away from the straight line, implying that both have interactions and 

important in terms of modeling. The interaction of AB, i.e. aeration rate (AR) and 

stirrer speed (SS) shows response and this indicates that both shows importance in 

interaction. Thus, both aeration rate (AR) and stirrer speed (SS) need to be engaged 

together in order to show better performance.   
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Figure C-4 Half-Normal Plot of Effects for Productivity Data (Glucose Substrate) 

 

Also, Figure C-5 shows the interaction between aeration rate (AR) and stirrer speed 

(SS), whereby within experimental range, there is contribution of interaction effect 

which is one of the significant model term.  
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Figure C-5 Interaction Plot between Aeration Rate (AR) and Stirrer Speed (SS) for 

Productivity Data (Glucose Substrate) 
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Results predict that productivity is expected to be within 0.17% to 0.18%, which is 

the desired amount of productivity. The curvature value as indicated in ANOVA, 

also supports this statement whereby the curvature is significant. Thus, both 

interaction of aeration rate (AR) and stirrer speed (SS) is predicted to be able to 

contribute to the desired amount of productivity within experimental range.    

 

On the other hand, Figure C-6 shows that they have no obvious pattern and unusual 

structure. The three design points are within both red lines which imply that there is 

no reason to suspect any violation of the independence or constant variance 

assumption.  
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Figure C-6 Plot of Residuals vs. Predicted Response for Productivity Data (Glucose 

Substrate) 

 

Results from ANOVA and plots indicate that productivity gives significant curvature 

results. The probability values for productivity fall below the acceptable threshold of 

0.05. The curvature F-value of 1004.44 for productivity implies that there is 

significant curvature, as measured by the difference between the average of the 

centre points and the average of the factorial points in the design space. There is only 

a 0.75% chance that a curvature F-value for productivity this large could occur due to 

noise. Overall, curvature is significant and therefore, augmentation of the design 

could proceed for optimization. 
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C.1.2 Cassava Substrate 

Table C-3 shows the ANOVA results for yield, obtained from cassava substrate. 

Results show that the data-based model for yield is significant for cassava substrate. 

 

Table C-3 ANOVA Results for Yield (Cassava Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 785.15 3 261.72 2481.15 0.0004 Significant 

A – AR 272.38 1 272.38 2582.28 0.0004  

B – SS 507.33 1 507.33 4809.67 0.0002  

AB 5.43 1 5.43 51.51 0.0189  

Curvature 1057.66 1 1057.66 10026.98 <0.0001 Significant 

Pure 

Error 
0.21 2 0.11 

   

Cor Total 1843.02 6     

 

To further investigate the adequacy of the model, a check of the plots in Figures C-7 

to C-9 reveals the predicted responses for yield in terms of aeration rate (AR) and 

stirrer speed (SS) for glucose substrate. Figure C-7 reveals that the residuals, i.e. 

aeration rate (AR) and stirrer speed (SS) generally fall further away from the straight 

line. For the two-level interaction of AB, i.e. the interaction of both aeration rate (AR) 

and stirrer speed (SS), is located close to the straight lime, implying that both have 

interactions but the interaction is not as strong as compared to glucose substrate. 

Regardless of this interaction, the interaction of both aeration rate (AR) and stirrer 

speed (SS) is still important in terms of modeling since there is a sign of interaction.  

Thus, both aeration rate (AR) and stirrer speed (SS) need to be engaged together in 

order to show better performance.   
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Figure C-7 Half-Normal Plot of Effects for Yield Data (Cassava Substrate) 

 

Also, Figure C-8 shows the interaction between aeration rate (AR) and stirrer speed 

(SS), whereby within experimental range, there is contribution of interaction effect 

which is one of the significant model term. Results predict that yield is expected to 

be around 49%, which is the desired amount of yield. The curvature value as 

indicated in ANOVA, also supports this statement whereby the curvature is 

significant. Thus, both interaction of aeration rate (AR) and stirrer speed (SS) is 

predicted to be able to contribute to the desired amount of yield within experimental 

range.    
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Figure C-8 Interaction Plot between Aeration Rate (AR) and Stirrer Speed (SS) for 

Yield Data (Cassava Substrate) 

 

On the other hand, Figure C-9 reveals that they have no obvious pattern and unusual 

structure. The three design points are within both red lines which imply that there is 

no reason to suspect any violation of the independence or constant variance 

assumption.  
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Figure C-9 Plot of Residuals vs. Predicted Response for Yield Data (Cassava 

Substrate) 
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Further, results from ANOVA and plots indicate that yield gives significant 

curvature results. The probability values for yield fall below the acceptable threshold 

of 0.05. The curvature F-value of 10026.98 for yield implies that there is significant 

curvature, as measured by the difference between the average of the centre points and 

the average of the factorial points in the design space. There is only a 0.04% chance 

that a curvature F-value for productivity this large could occur due to noise. Overall, 

curvature is significant and therefore, augmentation of the design could proceed. 

 

The interpretation of ANOVA results for productivity for cassava substrate is 

presented in Table C-4. Results indicate that the model is significant.  

 

Table C-4 ANOVA Results for Productivity (Cassava Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 0.18 3 0.060 44.52 0.0221 Significant 

A – AR 0.040 1 0.040 29.82 0.0319  

B – SS 0.14 1 0.14 101.83 0.0097  

AB 2.550E-3 1 2.550E-3 1.89 0.0303  

Curvature 0.56 1 0.56 418.64 0.0024 Significant 

Pure 

Error 
2.696E-4 2 1.348E-3 

   

Cor Total 0.75 6     

 

 

To further investigate the adequacy of the model, a check of the plots in Figures C-

10 to C-12 reveals the predicted responses for productivity in terms of aeration rate 

(AR) and stirrer speed (SS) for glucose substrate. Figure 4-10 reveals that the 

residuals, i.e. aeration rate (AR) and stirrer speed (SS) generally fall further away 

from the straight line. However, the two level interaction of AB, i.e. aeration rate 

(AR) and stirrer speed (SS) is nearer to the straight line, implying that both have 

interactions but not as strong as compared to that of glucose substrate. The 

interaction of AB shows response and this indicates that both show importance in 

interaction. Regardless of this interaction, the interaction of both aeration rate (AR) 

and stirrer speed (SS) is still important in terms of modeling since there is a sign of 



Appendix C 

179 

 

interaction.  Thus, both aeration rate (AR) and stirrer speed (SS) need to be engaged 

together in order to show better performance.   
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Figure C-10 Half-Normal Plot of Effects for Productivity Data (Cassava Substrate) 

 

Also, Figure C-11 shows the interaction between aeration rate (AR) and stirrer speed 

(SS), whereby within experimental range, there is contribution of interaction effect 

which is one of the significant model term. Results predict that productivity is 

expected to be within 0.17% to 0.18%, which is the desired amount of productivity. 

The curvature value as indicated in ANOVA, also supports this statement whereby 

the curvature is significant. Thus, both interaction of aeration rate (AR) and stirrer 

speed (SS) is predicted to be able to contribute to the desired amount of productivity 

within experimental range.    
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Figure C-11 Interaction Plot between Aeration Rate (AR) and Stirrer Speed (SS) for 

Productivity Data (Cassava Substrate) 

 

On the other hand, Figure C-12 reveals that they have no obvious pattern and unusual 

structure. The three design points are within both red lines which imply that there is 

no reason to suspect any violation of the independence or constant variance 

assumption.  
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Figure C-12 Plot of Residuals vs. Predicted Response for Productivity Data (Cassava 

Substrate) 
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Further, results from ANOVA and plots indicate that productivity gives significant 

curvature results. The probability values for productivity fall below the acceptable 

threshold of 0.05. The curvature F-value of 418.64 for productivity implies that there 

is significant curvature, as measured by the difference between the average of the 

centre points and the average of the factorial points in the design space. There is only 

a 2.21% chance that a curvature F-value for productivity this large could occur due to 

noise. Overall, curvature is significant and therefore, augmentation of the design 

could proceed for optimization. 

 

C.2 KINETICS HYBRID MODEL 

Table C-5 shows the ANOVA results for kinetics hybrid model for glucose substrate, 

whereby the model is significant. 

 

Table C-5 ANOVA Results for Kinetics Hybrid Model (Glucose Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 99.19 2 49.59 16.24 0.0007 Significant 

Lack of 

Fit 
30.54 2 15.27 5.29 0.0707 

Not 

Significant 

Pure 

Error 
1.35 4 0.34 

   

 

 

Table C-6 shows the ANOVA results for kinetics hybrid model for cassava substrate. 

Results indicate that the model is not significant. 
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Table C-6 ANOVA Results for Kinetics Hybrid Model (Cassava Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 544.84 2 272.42 7.96 0.0632 
Not 

Significant 

Lack of 

Fit 
12.28 1 12.28 0.27 0.6542 

Not 

Significant 

Pure 

Error 
90.40 2 45.20 

   

 

C.3 KINETICS MULTI-SCALE MODEL 

Table C-7 shows the ANOVA results for kinetics multi-scale model for glucose 

substrate. Results indicate that the model is significant. 

 

Table C-7 ANOVA Results for Kinetics Multi-Scale Model (Glucose Substrate) 

Source Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

 

Model 138.40 5 27.68 29.49 0.0001 Significant 

Lack of 

Fit 
4.19 4 1.05 1.26 0.4136 

Not 

Significant 

Pure 

Error 
3.32 4 0.83 
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Appendix D 

 

Statistical Analysis (Optimization) 

 

 

D.1 DATA-BASED MODEL 

Figures D-1 to D-2 reveal the predicted responses for yield in terms of aeration rate 

(AR) and stirrer speed (SS) for glucose substrate. Figure D-1 reveals that the residuals 

generally fall on the straight line implying that the errors are distributed normally. 

This implies that the model proposed is adequate and there is no reason to suspect 

any violation of the independence or constant variance assumption. 
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Figure D-1 Normal Probability Plot of Residuals for Yield Data 
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On the other hand, Figure D-2 shows the plot of residuals vs. predicted response for 

yield data. A check of the plot reveals that they have no obvious pattern and unusual 

structure. All the design points are within both red lines which imply that there are 

no outliers present, in accordance to the quadratic model fitted. 
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Figure D-2 Plot of Residuals vs. Predicted Response for Yield Data  

 

Further, results from ANOVA and plots indicate that yield gives significant results. 

The probability values for yield fall below the acceptable threshold of 0.05. The 

model F-value of 9.73 for yield implies that there is significance, as measured by the 

difference between the average of the centre points and the average of the factorial 

points in the design space. As indicated by the analysis, there is only a 0.47% chance 

that a model F-value for yield this large could occur due to noise.  

 

To further investigate the adequacy of the developed model, a check of the plots in 

Figures D-3 to D-4 reveals the predicted responses for yield in terms of aeration rate 

(AR) and stirrer speed (SS) for glucose substrate. Figure D-3 reveals that the residuals 

generally fall on the straight line implying that the errors are distributed normally. 

This implies that the model proposed is adequate and there is no reason to suspect 

any violation of the independence or constant variance assumption. 
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Figure D-3 Normal Probability Plot of Residuals for Productivity Data 

 

On the other hand, Figure D-4 shows the plot of residuals vs. predicted response for 

productivity data. A check of the plot reveals that they have no obvious pattern and 

unusual structure. All the design points are within both red lines which imply that 

there are no outliers present, in accordance to the quadratic model fitted. 
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Figure D-4 Plot of Residuals vs. Predicted Response for Productivity Data  

 

Further, results from ANOVA and plots indicate that productivity gives significant 

results. The probability values for yield fall below the acceptable threshold of 0.05. 

The model F-value of 9.30 for productivity implies that there is significance, as 
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measured by the difference between the average of the centre points and the average 

of the factorial points in the design space. There is only a 0.54% chance that a model 

F-value for productivity this large could occur due to noise. Overall, the developed 

model is significant and the optimum conditions of aeration rate (AR) and stirrer 

speed (SS) could be located, which is to be discussed in the next section of this 

chapter. The percentage differences between experimental and the developed model 

data are calculated in order to make comparisons on the credibility of the developed 

data-based model for productivity.  

 

D.2 KINETICS HYBRID MODEL 

Figures D-5 to D-6 reveal the predicted responses for yield in terms of aeration rate 

(AR) and stirrer speed (SS) for glucose substrate. Figure D-5 reveals that the residuals 

generally fall on the straight line implying that the errors are distributed normally, 

except for a point which is located slightly away from the straight line. This implies 

that the model proposed is quite adequate but there could be slight suspicion of any 

violation of the independence or constant variance assumption. 

Design-Expert® Software

Yield

Color points by value of

Yield:

21.099

12.006

Internally Studentized Residuals

N
o
rm

a
l 
%
 P
ro
b
a
b
ili
ty

Normal Plot of Residuals

-1.74 -0.68 0.38 1.45 2.51

1

5

10

20

30

50

70

80

90

95

99

 

Figure D-5 Normal Probability Plot of Residuals for Yield Data 

 

On the other hand, Figure D-6 shows the plot of residuals vs. predicted response for 

yield data. A check of the plot reveals that they have no obvious pattern and unusual 

structure. All the design points are within both red lines which imply that there are 

no outliers present, in accordance to the model fitted. 
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Figure D-6 Plot of Residuals vs. Predicted Response for Yield Data  

 

Further, results from ANOVA and plots indicate that yield gives significant results. 

The probability values for yield fall below the acceptable threshold of 0.05. The 

model F-value of 7.20 for yield implies that there is significance, as measured by the 

difference between the average of the centre points and the average of the factorial 

points in the design space. From the analysis, it is indicated that there is only a 1.15% 

chance that a model F-value for yield this large could occur due to noise.  

 

To further investigate the adequacy of the developed kinetics hybrid model, a check 

of the plots in Figures D-7 to D-8 reveals the predicted responses for productivity in 

terms of aeration rate (AR) and stirrer speed (SS) for glucose substrate. Figure D-7 

reveals that the residuals generally fall on the straight line implying that the errors 

are distributed normally. This implies that the model proposed is adequate and there 

is no reason for suspicion of any violation of the independence or constant variance 

assumption. 
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Figure D-7 Normal Probability Plot of Residuals for Productivity Data 

 

On the other hand, Figure D-8 shows the plot of residuals vs. predicted response for 

yield data. A check of the plot reveals that they have no obvious pattern and unusual 

structure. All the design points are within both red lines which imply that there are 

no outliers present, in accordance to the model fitted. 
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Figure D-8 Plot of Residuals vs. Predicted Response for Productivity Data 
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D.3 KINETICS MULTI-SCALE MODEL 

To further investigate the adequacy of the developed kinetics multi-scale model, a 

check of the plots in Figures D-9 to D-10 reveals the predicted responses for yield in 

terms of aeration rate (AR) and stirrer speed (SS) for glucose substrate. Figure D-9 

reveals that the residuals generally fall on the straight line implying that the errors 

are distributed normally. This implies that the model proposed is adequate and there 

is no reason that there is suspicion of any violation of the independence or constant 

variance assumption. 
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Figure D-9 Normal Probability Plot of Residuals for Yield Data 

 

On the other hand, Figure D-10 shows the plot of residuals vs. predicted response for 

yield data. A check of the plot reveals that they have no obvious pattern and unusual 

structure. All the design points are within both red lines which imply that there are 

no outliers present, in accordance to the model fitted. 
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Figure D-10 Plot of Residuals vs. Predicted Response for Yield Data  

 

Further, results from ANOVA and plots indicate that yield gives significant results. 

The probability values for yield fall below the acceptable threshold of 0.05. The 

model F-value of 7.10 for yield implies that there is significance, as measured by the 

difference between the average of the centre points and the average of the factorial 

points in the design space. It is indicated from the analysis that there is only a 1.15% 

chance that a model F-value for yield this large could occur due to noise.  

 

To further investigate the adequacy of the developed kinetics hybrid model, a check 

of the plots in Figures D-11 to D-12 reveals the predicted responses for productivity 

in terms of aeration rate (AR) and stirrer speed (SS) for glucose substrate. Figure D-

11 reveals that the residuals generally fall on the straight line implying that the errors 

are distributed normally. This implies that the model proposed is adequate and there 

is no reason for suspicion of any violation of the independence or constant variance 

assumption. 
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Figure D-11 Normal Probability Plot of Residuals for Productivity Data 

 

On the other hand, Figure D-12 shows the plot of residuals vs. predicted response for 

yield data. A check of the plot reveals that they have no obvious pattern and unusual 

structure. All the design points are within both red lines which imply that there are 

no outliers present, in accordance to the model fitted. 
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Figure D-12 Plot of Residuals vs. Predicted Response for Productivity Data  

 

Further, results from ANOVA and plots indicate that productivity gives significant 

results. The probability values for yield fall below the acceptable threshold of 0.05. 
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The model F-value of 4.74 for productivity implies that there is significance. There is 

only a 3.28% chance that a model F-value for productivity this large could occur due 

to noise.  
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Appendix E 

 

C Programming Language Codes for User-Defined 

Functions (UDFs) 

 

 

A user-defined function (UDF) is a function that can be dynamically loaded with the 

FLUENT solver to enhance the standard features of the code. For example, a UDF 

can be used to define desired boundary conditions, material properties and source 

terms for desired flow regime. On the other hand, customized model parameters can 

be specified, for example multiphase flows, and to enhance post-processing. UDFs 

are written in the C programming language using any text editor. This appendix 

describes the C programming language codes utilized to describe the non-ideally 

mixed bioreactor model. The C programming language codes below is an example to 

describe the mixing mechanism under aeration rate of 1LPM and stirrer speed of 

150rpm.  

 

 

#include "udf.h" 

#include "sg.h" 

 

#define FLUID_ID 1 

#define ua1 1.5158 

 

#define va1 1.5158 

 

#define ka1 2.2723e-2 

#define ka2 6.7989 

#define ka3 -424.18 



Appendix E 

194 

 

#define ka4 9.4615e3 

#define ka5 -7.7251e4 

#define ka6 1.8410e5 

 

#define da1 -6.5819e-2 

#define da2 88.845 

#define da3 -5.3731e3 

#define da4 1.1643e5 

#define da5 -9.1202e5 

#define da6 1.9567e6 

 

#define kb1 1.4085 

#define kb2 1.4768 

#define kb3 -5.704e-3 

#define kc1 0.0001 

#define kd1 0.6631 

#define kd2 0.0878 

#define kd3 -2.95e-4 

#define ke1 0.10398 

#define ke2 0.0511 

#define ke3 2.835e-4 

#define kf1 0.75582 

#define kf2 -0.08432 

#define kf3 -2.0376e-3 

#define kg1 0.01425 

#define kg2 -7.6e-3 

#define kg3 -1e-6 

#define AR 1 

#define SS 150 

 

 

DEFINE_PROFILE(fixed_u, thread, np) 

{ 

  cell_t c; 

  real x[ND_ND]; 

  real r; 

 

  begin_c_loop (c,thread) 

    { 

/* centroid is defined to specify position dependent profiles*/ 

      C_CENTROID(x,c,thread); 

      F_PROFILE(c,thread,np) =  

   ua1; 

} 

  end_c_loop (c,thread) 

} 

 

 

DEFINE_PROFILE(fixed_v, thread, np) 

{ 
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  cell_t c; 

  real x[ND_ND]; 

   

  begin_c_loop (c,thread) 

    { 

/* centroid is defined to specify position dependent profiles*/ 

      C_CENTROID(x,c,thread); 

      F_PROFILE(c,thread,np) =  

   va1; 

} 

  end_c_loop (c,thread) 

} 

 

 

 

DEFINE_PROFILE(fixed_ke, thread, np) 

{ 

  cell_t c; 

  real x[ND_ND]; 

  real r; 

 

  begin_c_loop (c,thread) 

    { 

/* centroid is defined to specify position dependent profiles*/ 

      C_CENTROID(x,c,thread); 

      r =x[1]; 

      F_PROFILE(c,thread,np) =  

      ka1+(ka2*r)+(ka3*r*r)+(ka4*r*r*r)+(ka5*r*r*r*r)+(ka6*r*r*r*r*r); 

 

    } 

  end_c_loop (c,thread) 

} 

 

 

 

DEFINE_PROFILE(fixed_diss, thread, np) 

{ 

  cell_t c; 

  real x[ND_ND]; 

  real r; 

 

  begin_c_loop (c,thread) 

    { 

/* centroid is defined to specify position dependent profiles*/ 

      C_CENTROID(x,c,thread); 

      r =x[1]; 

      F_PROFILE(c,thread,np) =  

      da1+(da2*r)+(da3*r*r)+(da4*r*r*r)+(da5*r*r*r*r)+(da6*r*r*r*r*r); 

 

    } 
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  end_c_loop (c,thread) 

} 

DEFINE_PROFILE(fixed_kinetics, thread, np) 

{ 

  cell_t c; 

  real x[ND_ND]; 

  real K1; 

  real K2; 

  real K3; 

  real K4; 

  real K5; 

  real K6; 

  real X; 

  real S; 

  real P; 

  real rgrowth; 

  real rx; 

  real rend; 

  real rs; 

  real rp; 

     

   

  begin_c_loop (c,thread) 

    { 

/* centroid is defined to specify position dependent profiles*/ 

      C_CENTROID(x,c,thread); 

      F_PROFILE(c,thread,np) =  

      K1 = kb1 + kb2*(AR-1.25) + kb3*(SS-200); 

      K2 = kc1; 

      K3 = kd1 + kd2*(AR-1.25) + kd3*(SS-200); 

      K4 = ke1 + ke2*(AR-1.25) + ke3*(SS-200); 

      K5 = kf1 + kf2*(AR-1.25) + kf3*(SS-200); 

      K6 = kg1 + kg2*(AR-1.25) + kg3*(SS-200); 

      rgrowth = ((K1*X*S)/(K2+S))*exp(-K5*P); 

      rend = (-K6)*X; 

      rx = rgrowth + rend; 

      rs = (-K3)*rgrowth; 

      rp = (K4)*rgrowth; 

    } 

  end_c_loop (c,thread) 

} 
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Appendix F 

 

Matlab Software Codes 

 

 

The function below is to analyse the effect of interactions of a bioreactor. 

 
 

function [sys,x0,str,ts]= sfbioreactor(t,x,u,flag,X0,S0,P0) 
% 
switch flag 
case 0 % Initialization 

     
    str = []                        ; 
    ts  = [0 0]                     ; 

     
    s   = simsizes                  ; 

     
        s.NumContStates     = 3     ; 
        s.NumDiscStates     = 0     ; 
        s.NumOutputs        = 3     ; 
        s.NumInputs         = 4     ; 
        s.DirFeedthrough    = 0     ; 
        s.NumSampleTimes    = 1     ; 

         
    sys = simsizes(s)               ; 

     
    x0  = [X0,S0,P0]       ; 

     
case 1  % derivatives 

     
    D   = u(1);     % dilution rate 
    So  = u(2);     % substrate concentration 
    AR  = u(3);     % aeration rate 
    SS  = u(4);     % stirrer speed 

   

  
   % 
      sys =   biore(t,x,D,So,AR,SS) ;    
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case 3  % output 

     
    sys = x                ; 

     
case {2 4 9}        % 2: discrete 
                    % 4: calcTimeHit 
                    % 9: termination 
    sys = []; 

     
otherwise 

     
    error(['unhandled flag =',num2str(flag)]); 

     
end 
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The function below is used to describe the bioreactor model and to calculate the 

bioreactor dynamics behaviour. 

 

 
function dx = biore(t,x,D,So,AR,SS) 
% ================================================================ 
% This function is to calculate the bioreactor dynamics behaviour  
%  
% ---------------------------------------------------------------- 
%                   Process Variables - Outputs 
% ---------------------------------------------------------------- 
% 
X       = x(1);     % Biomass optical concentration [-] 
S       = x(2);     % Substrate concentration [g/L] 
P       = x(3);     % Product concentration [g/L] 

  

  
% ---------------------------------------------------------------- 
%                   Kinetic Parameters 
% ---------------------------------------------------------------- 
% Model 6 
k1 = 1.4085 - 0.2852*((AR-1.25)/0.25) + 0.3692*((SS-200)/50);    
k2 = 0.0010;    
k3 = 0.6631 - 0.0148*((AR-1.25)/0.25) + 0.0220*((SS-200)/50); 
k4 = 0.1040 + 0.0142*((AR-1.25)/0.25) + 0.0128*((SS-200)/50); 
k5 = 0.7558 - 0.1019*((AR-1.25)/0.25) - 0.0211*((SS-200)/50); 
k6 = 0.0143 - 0.0001*((AR-1.25)/0.25) - 0.0019*((SS-200)/50); 
% 
% Function to calculate growth, substrate consumption and product 

formation rates 
% ------------------------------------------------------------------

------- 
rxgrowth = ((k1*X*S/(k2+S))*exp(-k5*P)); 
rxend = -k6*X; 
rx = rxgrowth + rxend; 
rs = k3*rxgrowth; 
rp = k4*rxgrowth; 
% 
% -------------------------------------------- 
% 
% ------------------------------------------------------------------ 
% Initialization - Initial values (Assume initially at steady-state) 
% ------------------------------------------------------------------ 
%dX = 0; 
%dS = 0; 
%dP = 0; 
% ================================================================= 
%                       Solve ODE 
% ----------------------------------------------------------------- 
% Substrate mass balance: 
% 
dX = -D*X + rx; 
% 
dS = D*(So-S) - rs; 
% 
dP = -D*P + rp; 
% 
% 
dx  = [dX;dS;dP]; 
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% 
% END ------------------------------------------------------------- 
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This function is used to analyse the effect of interactions of a data-based model 

controller.  

 

 
function [sys,x0,str,ts]= sfcontroller1(t,x,u,flag) 
% 
switch flag 
case 0 % Intialization 

     
    x0  = []                        ; 
    str = []                        ; 
    ts  = [0 0]                     ; 

     
    s   = simsizes                  ; 

     
        s.NumContStates     = 0     ; 
        s.NumDiscStates     = 0     ; 
        s.NumOutputs        = 2     ; 
        s.NumInputs         = 4     ; 
        s.DirFeedthrough    = 4     ; 
        s.NumSampleTimes    = 1     ; 

         
    sys = simsizes(s)               ; 

     

     

     
case 3  % derivatives 

     
    Y   = u(1);      
    Prod  = u(2);     
    Ey  = u(3);      
    Ep = u(4);     

   

  
   % 
      sys =   controlcostError(Y,Prod,Ey,Ep); 

  

     

     
case {1 2 4 9}        % 2: discrete 
                    % 4: calcTimeHit 
                    % 9: termination 
    sys = []; 

     
otherwise 

     
    error(['unhandled flag =',num2str(flag)]); 

     
end 

 

 

 

 
function K = controlcostError(Y,Prod,Ey,Ep) 
% 
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ARo=evalin('base','ARo'); 
SSo=evalin('base','SSo'); 
% 
u0=[ARo SSo]; 
lb=[1 150]; 
ub=[1.5 250]; 
% 
% 
%If  Error >= 0.01; 
options = optimset('Display','iter','LargeScale', 

'off','MaxIter',1e4,... 
  'MaxFunEvals',1e4,'TolCon',1e-8,'TolFun',1e-8,'TolX',1e-8); 
% 
[K,fval,exitflag,output]=fmincon(@Jcost,u0,[],[],[],[],lb,ub,[],opti

ons); 
% 
function C = Jcost(K) 
% 
AR=K(1); 
SS=K(2); 
% Data-based model 
Yp = 33.09800 – 18.78500*AR - 0.14307*SS + 0.14670*AR*SS;  
Prodp = 0.23400 - 0.13900*AR - 0.00099*SS + 0.00102*AR*SS;  
% 
deltaY2= (Yp-Y-Ey)/(24.044-13.357); 
deltaP2= (Prodp-Prod-Ep)/(0.198 - 0.1); 
deltaAR=(AR-ARo)/(1.5-1); 
deltaSS=(SS-SSo)/(250-150); 
% 
C = ((deltaAR^2)+(deltaSS^2))+((deltaY2^2)+(deltaP2^2)) 
%  
end 
end 
% 
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This function is used to analyse the effect of interactions of a kinetics hybrid model 

controller.  

 

 
function K = controlcosthybridTest3(Y,Prod,Ey,Ep,X,S,P,D) 
% 
ARo=evalin('base','ARo'); 
SSo=evalin('base','SSo'); 
% 
u0=[ARo SSo]; 
lb=[1 150]; 
ub=[1.5 250]; 
% 
% 
%If  Error >= 0.01; 
options = optimset('Display','iter','LargeScale', 

'on','MaxIter',1e4,... 
  'MaxFunEvals',1e4,'TolCon',1e-10,'TolFun',1e-10,'TolX',1e-10); 
% 
[K,fval,exitflag,output]=fmincon(@Jcost,u0,[],[],[],[],lb,ub,[],opti

ons); 
% 
function C = Jcost(K) 
% 
AR=K(1); 
SS=K(2); 
% Hybrid model 
k1 = 1.4085 - 0.2852*((AR-1.25)/0.25) + 0.3692*((SS-200)/50);    
k2 = 0.0010;    
k3 = 0.6631 - 0.0148*((AR-1.25)/0.25) + 0.0220*((SS-200)/50); 
k4 = 0.1040 + 0.0142*((AR-1.25)/0.25) + 0.0128*((SS-200)/50); 
k5 = 0.7558 - 0.1019*((AR-1.25)/0.25) - 0.0211*((SS-200)/50); 
k6 = 0.0143 - 0.0001*((AR-1.25)/0.25) - 0.0019*((SS-200)/50); 
% 
rxgrowth = ((k1*X*S/(k2+S))*exp(-k5*P)); 
rxend = -k6*X; 
rx = rxgrowth + rxend; 
rs = k3*rxgrowth; 
rp = k4*rxgrowth; 
% 
Yp=D*P/rs; 
Prodp=rp/D; 
% 
deltaY2= (Yp-Y-Ey)/(24.044-13.357); 
deltaP2= (Prodp-Prod-Ep)/(0.198 - 0.1); 
deltaAR=(AR-ARo)/(1.5-1); 
deltaSS=(SS-SSo)/(250-150); 
% 
C = ((deltaAR^2)+(deltaSS^2))+((deltaY2^2)+(deltaP2^2)) 
%  
end 
end 
% 
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Figure F-1 below shows the bioreactor system used for Matlab simulations. 

 

 
 

 Figure F-1 Simulink Diagram for Bioreactor System 


