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Abstract

The Gaussian Mixture Probability Hypothesis Density (GM-PHD) recursion is a closed-form solution to the

probability hypothesis density (PHD) recursion, which was proposed for jointly estimating the time-varying number

of targets and their states from a sequence of noisy measurement sets in the presence of data association uncertainty,

clutter and miss-detection. However the GM-PHD filter does not provide identities of individual target state estimates,

that are needed to construct tracks of individual targets. In this paper, we propose a new multi-target tracker based

on the GM-PHD filter, which gives the association amongst state estimates of targets over time and provides track

labels. Various issues regarding initiating, propagating and terminating tracks are discussed. Furthermore, we also

propose a technique for resolving identities of targets in close proximity, which the PHD filter is unable to do on

its own.

Index Terms

Multi-target Tracking, Random Sets, Probability Hypothesis Density (PHD) Filter, Gaussian Mixture.

I. INTRODUCTION

Multi-target tracking (MTT) involves the joint estimation of an unknown and time-varying number of targets as

well as their individual states from a sequence of sets of noisy measurements with uncertain data association [1],

[2]. The number of targets changes over time as new targets appear (i.e., target birth process) or existing targets

disappear (i.e., target death). The number of measurements also varies over time as not all existing targets generate

measurements and a number of measurements may be clutter, i.e., spurious measurements that are not generated

by any of the existing targets. Assuming targets move independently of one another, tracking them with separate
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filters requires correct association of measurements with individual targets over time [1], [2], [3]. The problem of

correctly associating measurements to targets over time is a data-association problem and requires various ad-hoc

methods in practice to stop the associated cost from growing exponentially over time.

Random Finite Set (RFS) theory offers a mathematically elegant and natural representation of finite, time-

varying number of targets and measurements [6], [7], [8], [9]. Using RFSs to model the collections of targets

and measurements, Mahler’s finite set statistics (FISST) provides a rigorous Bayesian framework for multi-target

tracking. This has lead to the development of a number of novel multi-target filters, such as the multi-target Bayes

filter [6], [9], the sequential Monte Carlo (SMC) multi-target Bayes filter [11], [12], [15], [16], the probability

hypothesis density (PHD) filter [9], and the SMC-PHD filter (also known as the particle-PHD filter) [11], [12],

[17], [18].

The optimal multi-target Bayes filter based on RFS theory is, in general, computationally intractable for it requires

evaluating combinatorial sums of integrals of high dimensions with a prohibitively large number of combinations

even for medium number of targets. The PHD filter is a suboptimal but computationally tractable alternative to

the RFS Bayes multi-target filter [9]. It is a recursion that only propagates the PHD or the intensity function of

the RFS of targets. The PHD recursion operates on the single-target state space and avoids the explicit problem of

data association. Though the PHD recursion consists of equations that are considerably simpler than those of the

optimal multi-target Bayes filter, it still requires solving multi-dimensional integrals that do not have closed-form

solutions in general. A generalized SMC implementation of the PHD filter (SMC- or particle-PHD filter) has been

proposed in [11], [12]. Similar SMC implementations of the PHD filter have also been proposed in [17], [18]. Data

association for the SMC-PHD filter has been considered in [19], [20], [21], [22], [23].

Recently, a closed-form solution to the PHD recursion, called the Gaussian-Mixture Probability Hypothesis

Density (GM-PHD) filter, has been derived for jointly estimating the time-varying number of targets and their states

recursively from the sequence of noisy measurements sets in the presence of clutter and association uncertainty for

linear Gaussian multi-target models [13], [14]. The posterior PHD function is approximated by a sum of weighted

Gaussian components whose weights, means and covariances are propagated analytically in time. Interestingly, the

mean and covariance of each Gaussian component are propagated by the Kalman filter. The GM-PHD filter has

been extended to accommodate non-linear target dynamical models, thereby providing a computationally efficient

solution for multi-target filtering problems. However, the GM-PHD filter, like the SMC-PHD filter, only provides

identity-free estimates of target states and hence no temporal association of estimates over time.

This paper addresses the issue of temporal association for state estimates of individual targets. We propose a

GM-PHD filter based multi-target tracker that provides not only the state estimates of targets at each time step but

also association of state estimates to targets over time so that estimates of state trajectories of individual targets

can be obtained. It is shown here that state trajectories of the individual targets can be determined directly from the

evolution of the Gaussian mixture and that single Gaussians within the mixture accurately track individual targets.

The methods proposed here are implemented separately without affecting the GM-PHD recursion. For illustration
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purposes, we demonstrate the ability of the proposed tracker to estimate the correct number of targets and their

trajectories in high density clutter. The performance of the GM-PHD filter is benchmarked against the multiple

hypothesis tracker (MHT) and is shown to outperform the MHT in terms of its ability to pick up the correct number

tracks and their trajectory estimates. Finally, we also consider the issue of resolving identities of targets in proximity

for the PHD filter and propose a technique for doing so.

The rest of the paper is organized as follows. Section II provides a summary of multi-target models and the PHD

filter. Section II also presents the Gaussian linear multi-target models for which the GM-PHD recursion holds and

a summary of the GM-PHD filter. Section III presents the GM-PHD tracker proposed in this paper. For illustration

purposes, simulation results for the GM-PHD tracker have been presented in Section V. Section V also discusses

the performance of the GM-PHD tracker, as benchmarked against the MHT. Section VI proposes a new technique

for resolving the identities of targets in proximity using the GM-PHD filter. Finally, Section VII presents concluding

remarks and outlines future research directions.

II. BACKGROUND

This section describes describes a generic multi-target tracking/filtering problem which applies to wide range of

multi-target tracking problems.

A. Multi-Target Model

In a multi-target tracking scenario, targets appear and disappear randomly. New targets appear in the surveillance

region either due to spontaneous target birth or targets spawned by existing targets. The number of targets born at

each instant is assumed to follow a Poisson distribution with a mean of λb. A target present at time step k may

not survive to the next time step. Target death is modelled with a probability of 1− pS,k(xk−1), where pS,k(xk−1)

represents the probability that a target of state xk−1 at time step (k − 1) will survive to the next time step. For the

duration the target is present in the surveillance region, it moves according to a Markov dynamic model

xk ∼ fk|k−1(·|xk−1), (1)

and if detected, generates at most one observation according to

zk ∼ gk(·|xk) (2)

The probability that a target of state xk being detected is pD,k(xk).

At time step k, let Nk be the number of targets with states, xk,1, . . . , xk,Nk
, and Mk the number of observations

received, zk,1, . . . , zk,Mk
. Then xk,i denotes the state of ith target and zk,j denotes jth observation received. Let

Xk = {xk,1, . . . , xk,Nk
} ⊂ X , (3)

Zk = {zk,1, . . . , zk,Mk
} ⊂ Z, (4)
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denote the collection of targets and observations received at time step k, where X ⊆ R
nx and Z ⊆ R

nz represent the

state and observation space where individual targets and observations, respectively, lie. Some of the Mk observations

may be due to clutter. If zk,i is due to clutter, it follows a clutter probability density ck(·). The number of clutter

points are assumed to be Poisson distributed with a mean of λc. Further assumptions required for the GM-PHD

filter will be given in Section II-C.

B. Random Finite Set (RFS) and the Probability Hypothesis Density (PHD) Filter

In the RFS framework, collections of targets Xk and observations Zk are treated as a multi-target state and

multi-target observation. Uncertainty in a multi-target system is then characterized by modelling Xk and Zk as

random finite sets. A RFS X is a finite set-valued random variable, i.e., individual elements as well as the number

of elements are random. The probability law of the RFS X can be specified by a discrete distribution and a family

of joint distributions [4]. The discrete distribution characterizes the number of elements of X (i.e. |X|) while each

of the joint distributions characterizes the elements in X given its cardinality. Readers should refer to [8], [9], [12],

[14] for details on the formulation of the RFS framework for multi-target state estimation.

For a RFS X on X with a probability distribution P , its first order moment, is a non-negative function υ on X ,

called the intensity or the PHD function, with the property that for any closed subset S ⊆ X [4], [5]∫
S

υ(x)dx =
∫

|X ∩ S|P(dX)

where |X| denotes the cardinality of X . Given the intensity function υ, its integral over any region S gives an

estimate for the number of elements in X that are present in S. The local maxima of the intensity function υ are

points in X with the highest local concentration of expected number of elements, and hence can be used to generate

estimates for the elements of X .

The PHD filter is a less computationally expensive alternative to propagating the multi-target posterior density

recursively in time. It propagates the posterior intensity function of the multi-target RFS as follows [9]: given the

posterior intensity υk−1 at time step k − 1, the intensity function υk|k−1 to time step k is given as

υk|k−1(x) =
∫

[pS,k(ξ)fk|k−1(x|ξ)+

βk|k−1(x|ξ)]υk−1(ξ)dξ + γk(x),
(5)

and the posterior intensity υk at time step k is given as

υk(x) = [1 − pD,k(x)] υk|k−1(x)

+
∑
z∈Zk

pD,k(x)gk(z|x)υk|k−1(x)
κk(z) +

∫
pD,k(ξ)gk(z|ξ)υk|k−1(ξ)dξ

,
(6)

where κk(·) is the intensity of the clutter RFS and equals λcck(·); Zk is the multi-target observation available at

time step k; γk(·) denotes the intensity of spontaneous target birth; βk|k−1(·|ξ) denotes the intensity of the target

RFS spawned by a target of previous state ξ at time step k; and definitions of pS,k(·), fk|k−1(·|·), gk(·|·), ck(·), λc

and pD,k(·) are the same as the ones given in Section II-A.
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For the recursion given in (5)–(6), the following assumptions hold:

1) Each target evolves and generates an observation independently of one another.

2) The clutter RFS is Poisson (or distribution on the number of clutter is Poisson) and is independent of target-

originated observations. A RFS X is a Poisson process with the mean N =
∫

υ(x)dx. Given υ(x), elements

of X are i.i.d. according to υ/N . Thus a Poisson RFS is completely characterized by its intensity function.

3) The predicted multi-target RFS is Poisson.

First two assumptions are common in most multi-target applications [1], [3]. The third assumption is a

simplification needed to derive the PHD update and is a reasonable one in tracking scenarios where interactions

amongst targets are negligible.

The PHD recursion given in (5)-(6) does not admit analytical solutions in general and can be approximated by

some numerical integration methods such as sequential Monte Carlo (SMC) [11], [12], [17]. However, a closed-form

solution, called the Gaussian Mixture PHD (GM-PHD) filter has recently been presented in [13], [14] for linear

Gaussian multi-target models. It is summarized next.

C. Linear Gaussian Multi-Target Models

The linear Gaussian multi-target models for which a closed-form solution to the PHD recursion exists are given

as follows:

1) Each target follows a linear Gaussian model, i.e.,

fk|k−1(x|ζ) = N (x; Fk−1ζ,Qk−1) (7)

gk(z|x) = N (z; Hkx,Rk) (8)

where N (·;m,P ) denotes the Gaussian density with mean m and covariance P , Fk−1 is the state transition

matrix and Qk−1 is the process noise covariance, Hk is the observation matrix, and Rk is the observation

noise covariance.

2) The survival and detection probabilities are both state independent, i.e.,

pS,k(x) = pS,k, (9)

pD,k(x) = pD,k. (10)

3) The intensities of the birth and spawn RFSs are both Gaussian mixtures of the form

γk(x) =
Jγ,k∑
i=1

wi
γ,kN (x; mi

γ,k, P
i
γ,k), (11)

βk|k−1(x|ζ) =
Jβ,k∑
j=1

wj
β,kN (x; F j

β,k−1ζ + dj
β,k−1, Q

j
β,k−1) (12)

where Jγ,k, wi
γ,k,P i

γ,k, P i
γ,k, i = 1, . . . , Jγ,k are given model parameters that determine the shape of the birth

intensity; similarly Jβ,k, wj
β,k, F j

β,k−1, dj
β,k−1, Qj

β,k, j = 1, . . . , Jβ,k determine the shape of the spawning
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intensity of a target with the previous state ζ. Readers should refer to [14] for further remarks on these

assumptions.

D. The Gaussian Mixture PHD (GM-PHD) Filter

For linear Gaussian multi-target models given in Section II-C, the PHD recursion of (5)-(6) yields a closed-form

solution called the GM-PHD recursion which consists of the following prediction and update steps.

Prediction Step: Given that the posterior intensity υk−1 at time step k − 1 is a Gaussian mixture of the form

υk−1(x) =
Jk−1∑
i=1

wi
k−1N

(
x; mi

k−1, P
i
k−1

)
,

the predicted intensity to time step k is also a Gaussian mixture and is given by

υk|k−1(x) = υS,k|k−1(x) + υβ,k|k−1(x) + γk(x), (13)

where γk(x) is given in (11),

υS,k|k−1 = pS,k

Jk−1∑
j=1

wj
k−1N

(
x; mj

S,k|k−1, P
j
S,k|k−1

)
, (14)

mj
S,k|k−1 = Fk−1m

j
k−1, (15)

P j
S,k|k−1 = Qk−1 + Fk−1P

j
k−1(Fk−1)T , (16)

υβ,k|k−1(x) =
Jk−1∑
j=1

Jβ,k∑
l=1

wj
k−1w

l
β,kN

(
x;mj,l

β,k|k−1, P
j,l
β,k|k−1

)
, (17)

mj,l
β,k|k−1 = F l

k−1m
j
k−1 + dl

β,k−1, (18)

P j,l
β,k|k−1 = Ql

β,k−1 + F l
β,k−1P

j
β,k−1(F

l
β,k−1)

T (19)

and [·]T denotes the transpose of the matrix [·].
Update Step: Assuming that the predicted intensity υk|k−1 to time step k is a Gaussian mixture of the form

υk|k−1(x) =
Jk|k−1∑
i=1

wi
k|k−1N

(
x; mi

k|k−1, P
i
k|k−1

)
,

the posterior intensity υk at time step k is also a Gaussian mixture, and is given by

υk(x) = (1 − pD,k) υk|k−1(x) +
∑
z∈Zk

υD,k(x; z), (20)
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where

υD,k(x; z) =
Jk|k−1∑
j=1

wj
k(z)N

(
x;mj

k|k(z), P j
k|k

)
, (21)

wj
k(z) =

pD,kw
j
k|k−1q

j
k(z)

κk(z) + pD,k
∑Jk|k−1

l=1 wl
k|k−1q

l
k(z)

, (22)

qj
k = N (z;Hkm

j
k|k−1, Rk + HkP

j
k|k−1(Hk)T ), (23)

mj
k|k(z) = mj

k|k−1 + Kj
k(z − Hkm

j
k|k−1), (24)

P j
k|k =

[
I − Kj

kHk

]
P j

k|k−1, (25)

Kj
k = P j

k|k−1(Hk)T (HkP
j
k|k−1(Hk)T + Rk)−1. (26)

The expected number of targets N̂k|k−1 and N̂k associated with υk|k−1 and υk are obtained by summing the

appropriate mixture weights. The closed-form recursions for N̂k|k−1 and N̂k are as follows:

N̂k|k−1 = N̂k−1

⎛
⎝pS,k +

Jβ,k∑
j=1

wj
β,k

⎞
⎠ +

Jγ,k∑
j=1

wj
γ,k, (27)

N̂k = N̂k|k−1(1 − pD,k) +
∑
z∈Zk

Jk|k−1∑
j=1

wj
k(z). (28)

The number of Gaussian terms Jk in υk at time step k equals (Jk−1(1 + Jβ,k) + Jγ,k)(1 + |Zk|) and increases

with time. The pruning and merging techniques proposed in [13], [14] can be used to stop Jk from growing with

time. Additional schemes for pruning least likely Gaussians terms are given in Section III. The number of Gaussian

terms is reduced by either eliminating the Gaussian terms with low weights or by keeping only a certain number

of terms with strongest weights. The closely spaced Gaussian terms are also merged into one as they are more

efficiently approximated by a single Gaussian term. It has been shown that the errors introduced in the Gaussian

mixture reduction techniques can be bounded, ensuring a reasonable approximation [25].

1) Multi-target State Estimation: Given the posterior intensity function at time step k as the mixture of weighted

Gaussians with respective means and variances, state estimates of individual targets may be extracted by picking

the means of the Gaussian terms with weights greater than an appropriately chosen threshold, wTh,

X̂k = {mi
k : wi

k > wTh, i = 1, · · · , Jk}. (29)

As a result, the GM-PHD filter avoids the need for standard clustering techniques that are needed for the SMC-PHD

filter. Standard clustering techniques are computationally demanding and their performances suffer when N̂k differs

from the natural number of clusters that is present in the particle approximation of υk.

It should be noted that the GM-PHD filter has also been extended to handle nonlinear target dynamical and

nonlinear measurement models by replacing the Kalman filter1 with its extended and unscented counterparts to

1The Kalman filter consists of the time prediction step given by (15)–(16) and the measurement update step given by (24)–(26).
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propagate means and covariances of Gaussian components [14]. Furthermore, the GM-PHD recursion can also

handle state dependent target detection and target survival probabilities [14].

The GM-PHD filter proposed in [13], [14] does not provide the temporal association of estimates, which are

needed if estimates of individual target trajectories are required. The following section will show how the GM-PHD

filter can be extended into a robust and computationally efficient multi-target tracker that not only provides the state

estimates of individual targets but also their identities, which can be used to obtain estimates of target trajectories.

Preliminary results of the GM-PHD based tracker first appeared in [24], [26].

III. THE GAUSSIAN MIXTURE PROBABILITY HYPOTHESIS DENSITY (GM-PHD) TRACKER

This section presents a multi-target tracker based on the GM-PHD filter, referred to as the GM-PHD tracker

from here onwards. The idea behind the GM-PHD tracker is to assign identities to individual Gaussian terms of the

mixture representing the posterior intensity function and to allow these identities to evolve through time without

affecting the GM-PHD recursion. This formulation of the GM-PHD tracker was motivated by the formulation of

the improved particle PHD filter proposed in [22], which uses additional indices associated with samples to obtain

target identities during the clustering of particles.

A. The GM-PHD tracker

The algorithm for the GM-PHD tracker consists of the following steps:

Step 0: Initialization

At time step k = 0, the intensity function, υ0 is the mixtures of J0 Gaussians as

υ0(x) =
J0∑
i=1

wi
0N (x;mi

0, P
i
0), (30)

where all of these Gaussians are distributed across the state space. A unique identifier (or tag) is assigned to each

Gaussian to form the set

T0 = {τ1
0 , · · · , τJ0

0 } (31)

where τ j
0 denotes the tag of the jth Gaussian term with mean, mj

0 and covariance P j
0 .

Step 1: Prediction

Predict the intensity forward in time according to (13) and construct the set of new tags as follows:

Tk|k−1 = Tk−1 ∪ {τ1
γ,k, · · · , τ

Jγ,k

γ,k } ∪ {τ1,1
β,k, · · · , τ

Jk−1,Jβ,k

β,k } (32)

where mi
k|k−1 retains the tag of its prior mi

k−1, τ i
γ,k is the new tag associated with ith Gaussian term introduced

by birth process and τ i,j
β,k is the tag of jth Gaussian term spawned by ith Gaussian term of the mixture. Here, a

new tag is given to each new spawned Gaussian term.

Step 2: Update

Update the predicted intensity according to (20).
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Each term in the predicted Gaussian mixture gives rise to (1+ |Zk|) terms in the updated mixture and we assign

the same tag to each of the updated Gaussian terms as its associated predicted term, i.e., mj
k(z) gets the same tag

as that of mj
k|k−1 for each z or no observation. As a result, we have a multiple number of updated Gaussian terms

for every predicted Gaussian term and their weights (see Figure 1).

Step 3: Pruning and Merging

Pruning of Gaussian terms is performed by either removing the Gaussian terms with low weights or keeping a

certain number of terms with strongest weights. The Gaussian terms that are within a certain distance of each other

are also merged into one.

Given a truncation threshold TTh, a merging threshold U and a maximum allowable number number of Gaussian

terms Jmax, the number of terms in the Gaussian mixture at each time step is pruned as follow.

Set l = 0, and I = {i : 1 ≤ i ≤ Jk, w
i
k > TTh},

Repeat

l := l + 1

j := arg max
i∈I

wi
k

L := {i ∈ I|(mi
k − mj

k)
T (P i

k)
−1(mi

k − mj
k) ≤ U}

w̃l
k =

∑
i∈L

wi
k

m̃l
k =

1
w̃l

k

∑
i∈L

wi
km

i
k

P̃ l
k =

1
w̃l

k

∑
i∈L

wi
k(P

i
k + (m̃l

k − mi
k)(m̃

l
k − mi

k)
T )

I := I\L
Until I = ∅.

If l > Jmax, replace {w̃i
k, m̃

i
k, P̃

i
k}l

i=1 by those of the Jmax Gaussian terms with largest weights and output

{w̃i
k, m̃

i
k, P̃

i
k}J̃k

i=1 with J̃k = min(Jmax, Jk).

where {w̃i
k, m̃

i
k, P̃

i
k}J̃k

i=1 denote the remaining Gaussian components after merging. The intensity function after

pruning is given by

υ̃k(x) =
J̃k∑
i=1

w̃i
kN (x; m̃i

k, P̃
i
k). (33)

Step 4: Target State Estimation

At time step k, state estimates of individual target states are given by (29). The set of tags associated with target

states is given by

T̂k = {τ i
k : wi

k > wTh}. (34)

A complete and systematic method for the construction and the management of tracks using these tagged Gaussians

is given in the following section.
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IV. TAG AND TRACK MANAGEMENT SCHEME FOR THE GM-PHD TRACKER

This section presents a scheme for initiating, propagating and terminating tracks for the GM-PHD tracker. For

the rest of the paper, a target trajectory means the path in target space followed by a target.

prediction

i
k

ii
k wm 11 ,, −− τ i

kk
ii

kk wm 1|1| ,, −− τ

00 ,, i
k

ii
k wm τ

11 ,, i
k

ii
k wm τ

kMkM i
k

ii
k wm ,,τ

update with 

update with 

update with no z

1z

kMz

Fig. 1. A part of a tree structure for propagating a Gaussian term and its tag from the previous time step k−1 to the time step k given Zk.

A. Tag Management Scheme

As mentioned in Section III, new tags are assigned either for Gaussian terms during initialization or for new

Gaussian terms contributed by the birth term γk. The propagation of tags associated with individual terms in the

Gaussian mixture approximating υk|k−1 is summarized in Figure 1. (Here mil

k denotes the mean of the Gaussian

that results when mi
k|k−1 is updated with measurement zl where l = 0 represents the case of no measurement

update to account for the case of miss-detection). All of the (1 + |Zk|) updated Gaussians are assigned the same

tag as that of its prior, τ i. Over time, each Gaussian initialized at time step k = 0 and contributed by γk form the

root of a tree whose number of branches grows linearly with the number of measurements available at each time

step (see Figure 2). Each tree is identified by its unique label that is the same as the tag of the Gaussian term

at its root. Each branch of a tree is a possible state trajectory of a target. At the end of the GM-PHD recursion

at each time step, we have a number of tree structures where each tree provides a collection of possible tracks of

a target. The likelihood of each track is given by its weight. One solution is to pick the branch with the largest

weight wil

k > wTh from every tree to form a collection individual target tracks and their respective track labels.

For each selected track, its label is the same as that of the tree it belongs to.

For the purpose of devising an efficient scheme for track initiation, propagation and termination, we first classify

tree structures as confirmed and tentative ones. A confirmed tree structure is one that has at least one branch with

its weight wj
k > wTh. Otherwise the tree is classified as tentative. All confirmed trees contribute a track and its

label towards a collection of output tracks called the track set, 
k. Each member of 
k is an estimate of a target

trajectory with its unique label, i.e., ({mi
ki

, · · · ,mi
k}, τ i) where ki denotes the time step at which ith target enters

the surveillance region and {mi
ki

, · · · ,mi
k} represents the trajectory estimate of ith target.
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Fig. 2. An example of track-oriented implementation of the GM-PHD Filter. Z1 = {z1,1, z1,2} and Z2 = {z2,1, z2,2}, υ0 = 0 and a

Gaussian term each is contributed by γk at both time steps k = 1 and k = 2. For simplicity, we denote wi
k by wi.

For illustration purposes, Figure 2 represents a tracking example where there are no Gaussian terms at

initialization. The birth process contributes a Gaussian term each with the mean m1
γ,1 at time step k = 1 and

m2
γ,2 at time step k = 2. A tree with the label τ1 is initialized for m1

γ,1 at time step k = 1 and similarly the label

τ2 is initialized for m2
γ,2 at time step k = 2. At both time steps k = 1 and k = 2, there are two measurements

each. The branch with φ denotes the case of miss-detection. At time step k = 2, tree T2 is a tentative track and

tree T1 is a confirmed track assuming only the branch represented by branch h6 has its weight w6 > wTh.

B. Track Initiation, Propagation and Termination

1) Track Initiation: At time step k = 0, we initialize a tree with mi
0 as its root and τ i

0 as its label for i = 1, · · · , J0.

We also initialize a tree for every Gaussian term mi
γ,k contributed by γk at time step k > 0, with its mean mj

γ,k

as its root and is given a label τ j
γ,k. All trees during initialization are classified as tentative trees.

2) Track Confirmation, Propagation and Termination: At each time step, we classify a tree as confirmed if at

least a branch in a tree has its weight wi
k > wTh. From each of the confirmed trees, a branch with the highest

weight gives the trajectory estimate of a target and is selected into the track set 
k. The label of the selected track

is the same as that of the tree it belongs to. We may also pick a branch with the strongest weight at time step k

from a tree that was previously confirmed at time step k − 1 even though the tree has no branch with wi
k > wTh

at the current time step. This will enable the GM-PHD filter to track target accurately in the presence of target

detection uncertainty. A track that was in 
k−1 and not in the current time step k, can be regarded as being no

longer live in the surveillance region.
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C. Pruning Schemes

Tree based structures for managing tags and tracks leads to a number of pruning schemes that are effective

and easier to use. Pruning schemes reduce the computational load of the recursion by eliminating the Gaussian

components and tracks (represented by the tree branches) that are least likely to represent targets. The likelihoods

of Gaussian terms and tracks are determined by their associated weights. It should be noted that these pruning

techniques are made possible by the introduction of tags in the GM-PHD filter.

In addition to pruning Gaussian terms of smaller weights according to the pruning step outlined in Section III),

we also propose to prune least likely Gaussian terms on the basis of missed detections. We keep a counter nmissed

on each branch of a tree to denote the number of consecutive missed detections on that branch. For example,

nmissed for the branch represented by branch h1 in Figure 2 is two. All branches with an appropriately chosen

value of nmissed (three or more) are removed.

We also propose to implement a pruning scheme similar to the N -scan pruning used in MHT [27]. Once a track

associated with a Gaussian with wj
k > wTh from a tree is chosen as output track, we eliminate all other branches

that shares the same node as the chosen branch (or track) at N time steps back.

For all tentative trees, if weights of none of the Gaussians in it reaches wTh in a carefully chosen number of

time frames (for example five or more), we delete them.

V. SIMULATION RESULTS

For illustration purposes, we consider a two-dimensional scenario with an unknown and time varying number

of targets observed in clutter over the surveillance region [−500, 500] × [−500, 500] (in m). The state xk =

[px,k, ṗx,k, py,k, ṗy,k]T of each target consists of its position (px,k, py,k) and velocity (ṗx,k, ṗy,k), while the

measurement is a noisy version of its position. [·]T denotes a transpose of a matrix [·].
Each target follows the linear Gaussian dynamics

xk =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

xk−1 +

⎡
⎢⎢⎢⎢⎢⎢⎣

T 2/2 0

T 0

0 T 2/2

0 T

⎤
⎥⎥⎥⎥⎥⎥⎦

σ2
v (35)

with pS,k = 0.90 and σv = 1. Each target, if detected, generates an observation according to

zk =

⎡
⎣ 1 0 0 0

0 0 1 0

⎤
⎦xk + σ2

ε , (36)

with the detection probability pD,k = 0.98. The sampling period T = 1 unit in time and σε = diag([5, 5]) .

We assume no spawning, and the spontaneous birth intensity is Poisson with four Gaussian terms distributed

across the surveillance region,

γk(x) =
4∑

i=1

0.05N (x; mγ,i, Pγ)
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giving the mean number of spontaneously appearing targets at any time, λb is 0.2. We use Pγ =

diag([176400, 25, 17600, 25]) and targets are born with mean positions of [250, 0, 250, 0] and [−250, 0,−250, 0].

The detected measurements of targets are immersed in clutter that is typically modelled with as a Poisson RFS

with intensity function

κk(z) = λcV u(z), (37)

where u(·) represents the uniform density over the surveillance region, and λc = 4 × 10−5m−2 is the average

number of clutter returns per unit hyper volume. This translates to 10 clutter measurements per scan.

10 20 30 40 50 60 70 80 90 100
−500

0

500

time step

x

10 20 30 40 50 60 70 80 90 100
−500

0

500

time step

y

Fig. 3. True target positions (star) superimposed on the measurements generated (cross).

In the GM-PHD filter, pruning parameter threshold TTh = 10−5, merging threshold U = 4, weight threshold

wTh = 0.5 and maximum number of Gaussian terms Jmax = 200. We implemented a track-oriented MHT [27]

with a batch of 10 frames, in which the log-likelihood ratio was used to rank tracks and the best global hypothesis

was considered for data outputs. It should be noted that the MHT implemented for comparison is an approximation,

not the full MHT and is for the purpose of benchmarking the GM-PHD tracker.

Figure 3 shows a simulated scenario with true target trajectories together with measurements generated at the

sensor for duration of 100 time steps in the presence of clutter. Figure 4 gives the results of the GM-PHD tracker

and shows that the GM-PHD tracker gives good estimates of true target trajectories. The estimates given by the

GM-PHD tracker is almost free of false tracks. Figure 5 shows estimates of the target trajectories given by a track-

oriented MHT that has been used here to benchmark the performance of the GM-PHD tracker. In comparison, the

MHT picks up more false tracks as well as occasionally failing to pick up some true tracks. The ability to minimize

the number of false tracks picked up by MHT depends on the particular MHT implementation. By choosing a

larger number of target detection-hits for a track to be confirmed during track confirmation will reduce the number

of false tracks albeit causing true tracks to be lost more often. Since only the confirmed tracks are considered for

output in the MHT, any track that does not exist in the surveillance region for long enough will not be picked up
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by MHT.

The performance of the GM-PHD tracker is also benchmarked against that of the MHT in terms the multi-target

miss distance and the error in estimation of target number. Five hundred sets of measurements for these target

trajectories are been generated and average of these simulation runs are presented in the rest of this section.
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Fig. 4. Target tracks obtained using GM-PHD tracker (solid lines) superimposed with the true target positions (crosses).
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Fig. 5. Target tracks obtained using a track-oriented MHT (solid lines) superimposed with the true target positions (crosses).

A. Wasserstein distance

The Wasserstein distance from theoretical statistics was adopted as a means of defining a metric for multi-target

distances since it penalizes when its estimate of the number of targets is incorrect [28]. This metric has been used

for assessing the performance of the PHD filter [12], [19].
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TABLE I

AVERAGE OF WASSERSTEIN DISTANCE FOR DIFFERENT λc PER 4 × 10−6m−2

λc = 5 λc = 10 λc = 15 λc = 20

GM-PHD Tracker 6.2530 40.1625 50.9499 56.8149

MHT 130.5379 150.7159 193.9543 224.0479

Given the multi-target ground truth X = {x1, · · · , x|X|} and its estimate X̃ = {x̃1, · · · , x̃|X|}, the Lp Wasserstein

distance dW
p is defined as follows:

dW
p (X̃, X) = min

C

p

√√√√√ |X|∑
i=1

|X|∑
j=1

Ci,j‖x̃i − xj‖p, (38)

where the minimum is taken over the set of all transportation matrices C = {Ci,j}; and each entry of the matrix

C satisfies the followings: Ci,j ≥ 0,
∑|X|

i=1 Ci,j = 1/|X̃| and
∑|X|

j=1 Ci,j = 1/|X|. In this work, p takes a value of

two.
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Fig. 6. Error in the number of target estimates for the GM-PHD tracker and a track-oriented MHT.

Figure 6 shows the Wasserstein distance averaged over for 500 measurement sets for 100 time steps. The

occasional spikes in the plot of the Wasserstein distance for the GM-PHD tracker is usually due to the fact that

either a new target has entered the surveillance region and has not yet been detected, or a target has just died and

has not yet been eliminated. In comparison, the plot of Wasserstein distance for the MHT has larger peaks more

frequently. Moreover, the Wasserstein distance for the GM-PHD tracker is consistently smaller than that for the

MHT as GM-PHD tracker is more accurate in estimating the number of targets. Table I shows the Wasserstein

distance for different clutter ratios and shows that the Wasserstein distance for the GM-PHD tracker is consistently

smaller than that of the MHT.
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Fig. 7. Mean error in the target number estimates for the GM-PHD tracker and a track-oriented MHT.

TABLE II

ERROR IN TARGET NUMBER ESTIMATE FOR DIFFERENT λc PER 4 × 10−6m−2

λc = 5 λc = 10 λc = 15 λc = 20

GM-PHD Tracker 0.0967 0.1378 0.1769 0.2013

MHT 0.6351 0.8261 1.1786 1.7486

B. Error in Estimating the Number of Targets

Figure 7 shows the absolute error in estimating the number of targets (i.e., E{||Xk| − |X̂k||}), averaged over

results obtained from 500 measurement sets. (Note that standard performance measures such as the mean square

distance error is not applicable to multi-target filters that jointly estimate number of targets and their states.) It

shows that the plot of error in estimating target number for the MHT has peaks higher and more often than that for

the GM-PHD tracker. The absolute error in total target number estimates is consistently smaller for the GM-PHD

tracker than for the MHT. The absolute error in estimating target numbers averaged over 100 time steps is 0.1378

for the GM-PHD tracker and 0.8261 for the MHT. This shows that the GM-PHD tracker provides target number

estimates more accurately than the MHT. This observation can also be made from the Table II that shows error in

the target number for these two tracker for different clutter rates.

C. Remarks

For the linear Gaussian multi-target models, the proposed tracker is an alternative method to the PHD-with-

association filter that is proposed to provide data association for the SMC-PHD filter [19]. In the case of the PHD-

with-association filter, clustering techniques that are needed for the state extraction are computationally demanding

and might add errors in the target states.
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Data association techniques that are proposed for the SMC-PHD filter [19], [20], [23] can also be applied to

the GM-PHD tracker. However, such schemes would require additional steps like prediction and gating, and the

required computational cost would be considerably more than the cost of using tags. However, such techniques could

be employed in conjunction with the GM-PHD tracker in some situations and will be presented in the following

section.
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Fig. 8. Crossing target trajectories with target ‘1’ (dashed room) and ‘target 2’ (solid line).

VI. THE GM-PHD TRACKER AND CROSSING TARGETS

The algorithm presented in Section III has a theoretical limitation in that it is unable to distinguish between any

two targets when they are within a certain distance of each other [9]. Consider a situation where two targets are in

the surveillance region. Ideally the intensity function would be represented by two Gaussians as

υk(x) = w1
kN (x; m1

k, Pk) + w2
kN (x;m2

k, Pk) (39)

(For simplicity, we take the covariance matrix for both Gaussians to be the same.)

Suppose that these two targets cross, then the intensity function υk at time step k is unimodal with the mean

(m1
k + m2

k)/2 when |m1
k − m2

k| < 2|Pk|1/2 [9]. This means that the GM-PHD tracker fails to distinguish between

targets within this separation. Thus, if separate tracks of targets are to be maintained when targets are too close,

alternative methods for data association are needed. Next, we show that the correct target identities can be maintained

by using their past trajectories. Assuming that the targets have been detected and their trajectories up to time step

k − 1 are available, we propose to apply an ‘estimate-to-track’ association scheme similar to the one proposed

in [20] for the SMC-PHD filter.

A. Estimate-to-Track Association for the GM-PHD Tracker

Given the set of target state estimates X̂k and their respective tags T̂k, we first propose to construct X̂1
k and T̂ 1

k

where for every mi
k ∈ X̂1

k there exists at least one other mj
k (i 
= j) for which |mi

k−mj
k| < 2|Pk|1/2 and T̂ 1

k denotes
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Fig. 9. An schematic view of extending the GM-PHD filter to crossing targets.

the set of tags of each mj
k ∈ X̂1

k . Essentially, X̂1
k contains all multiple Gaussian terms that are within merging

threshold. Given the track set 
k−1 at time step k − 1, the estimate-to-track association for the state estimates in

X̂k\X̂1
k are performed according to the scheme presented in Section III.

To resolve the track identities of target state estimates present in X̂1
k , the trajectories of these targets upto time

step k−1 are obtained from the track set 
k−1 and initialized as track hypotheses. The identity of a track hypothesis

is given by the label of the initializing track. For each track hypothesis, we propagate its mean and covariance

as m̃i
k|k−1 = Fk−1m̃

i
k−1, and P̃ i

k|k−1 = Qk−1 + Fk−1P
j
k−1(Fk−1)T . The score of the track is represented by its

log-likelihood ratio (LLR) that is initialized with log(wi
k−1). For each track, an association track hypothesis is

formed by associating it with every mj
k ∈ X̂1

k , and its LLR is incremented as

LLRj
k,i = LLRk−1,i + log

(
N (mj

k; m̃
i
k|k−1, P

j
k + P̃ i

k|k−1)
)

. (40)

Figure 10 shows an example of two crossing targets with |mi
k − mj

k| < 2|Pk|1/2. Trees are initialized with the

previous trajectories and labels at time step k− 1, and association hypotheses are formed with both means mi
k and

mj
k at time steps k and k+1. The objective here is to resolve the labels of mi

k and mj
k at time step k and onwards.

At time step k, we have a number of hypothesis trees and a branch of a tree is an association track hypothesis

and represents the same target. At time step k, a branch of the highest LLR from each hypothesis tree denotes a

possible track. The identity of the track and that of every Gaussian that belongs to it is given by the tree it belongs

to. We propose to recursively extend each tree by forming association hypotheses for every branch with X̂1
k that

arrives next in time. Once |mi
k −mj

k| is no longer smaller than 2|Pk|1/2 for any mi
k and mj

k in X̂1
k , an association

track hypothesis of the the highest LLR is selected from each tree and are passed back to the GM-PHD tracker

along their labels.

B. Example of Crossing Targets

For illustration purposes, Figure 8 shows two targets in the surveillance region whose trajectories cross each

other at time step k = 53s. Figures 11 and 12 show the results of two different simulation runs for the targets given
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Fig. 10. An example of estimate-to-track association for the crossing targets in the GM-PHD filter. wi denotes the log-likelihood ratio

(LLR) of a track hypothesis at the current time step, i.e. k = 2 in this case.
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Fig. 11. Trajectories (identified correctly) given by the GM-PHD tracker for crossing targets.

in Figure 8. While results presented in Figure 11 correctly keep the target identities of two targets, the GM-PHD

tracker fails to correctly keep separate target identities as shown in Figure 12. Another possible outcome would be

the assignment of the same identity to both of these tracks.

Figure 13 shows the results of the improved GM-PHD tracker that consistently resolves the track identities of

the crossing targets. However this will require the computation of distances amongst all target estimates at every

time steps and as a result adds to the computational load of the overall GM-PHD tracker.

VII. CONCLUSION

This paper presents a novel GM-PHD filter based multi-target tracker that can correctly track multiple targets

in noisy sets of measurements in the presence of ambiguous origin and missed detections. The GM-PHD tracker

assigns tags to individual Gaussian terms and uses tree structures for propagating these tags that provide track
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Fig. 12. Trajectories (wrongly identified) given by the GM-PHD tracker for crossing targets.
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Fig. 13. Trajectories given by the GM-PHD tracker that performs track-to-estimate association between time steps 52 and 55.

labels. An efficient track management scheme has been proposed for the tracker to allow track initiation, track

propagation and track termination. The proposed methods and their processing are performed in parallel and do not

affect the GM-PHD recursion. The computational load of initializing the track and performing the track-to-estimate

association is minimal compared with the recursion of the Gaussian mixture components approximating the intensity

function. This paper also includes a number of methods to prune Gaussian terms that are least likely represents

targets. The performance of the GM-PHD tracker is benchmarked against that of the MHT for a multi-target

tracking example. It is shown that the GM-PHD tracker operates with a fewer number of false tracks and smaller

multi-target miss distance. However, we must bear in mind that the performance MHT schemes depend on their

particular implementations and how much computational load they are prepared to tolerate. This paper also includes

a discussion on the theoretical constraints of the proposed tracker in its ability to maintain separate track identities

of targets that are crossing or are in close proximity. We have presented a technique for extending the ability of the

GM-PHD tracker to handle crossing targets. However, further study is needed to study the computational burden of

extending the GM-PHD tracker to crossing targets as we need to calculate distances amongst target state estimates
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to determine which target estimates are to be subjected to track-to-estimate association.
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Table III: Pseudo-code for the Gaussian Mixture PHD Tracker

step 0. (Initialization at k = 0.)

Initialize the algorithm with the weighted sum of J0 Gaussians,

υ0|0 =
∑J0

i=1 wi
0N (x; mi

0, P
i
0),

assign a tag to each Gaussian component,

T0 := {τ i
0, . . . , τ

J0
0 }

initialize the track set with an empty set


0 := ∅

set k = 1.

step 1. (Prediction Step, for k ≥ 1.)

Predict existing Gaussian components with Kalman filter,

υS,k|k−1(x) = pS,k

∑Jk−1
j=1 wj

k−1N (x;mj
S,k|k−1, P

j
S,k|k−1),

Introduce Jγ,k components for the spontaneous birth model,

γk(x) =
∑Jγ,k

i=1 wi
γ,kN (x;mi

γ,k, P i
γ,k),

The intensity, υk|k−1, to time step k is then

υk|k−1(x) = υS,k|k−1(x) + υβ,k|k−1(x) + γk(x),

Concatenate spontaneous birth tag with prediction tags,

Tk|k−1 = Tk ∪ {τ1
γk

, . . . , τ
Jγk
γk } ∪ {τ1

βk
, . . . , τ

Jβk

βk
}.

step 2. (Update Step, for k ≥ 1.)

When measurements, Zk = {zk,1, . . . , zk,|Zk|}, received at time step k, update intensity with Kalman filter,

υk|k(x) = (1 − pD,k)υk|k−1(x) +
∑

z∈Zk

Jk|k−1∑
j=1

wj
k(z)N (x;mj

k|k(z), P j
k|k)
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w
(j)
k (z) =

pD,kwj
k|k−1q

j
k

λcck(z) + pD,k

∑Jk|k−1

�=1 w�
k|k−1q

l
k

.

For each prediction component, assign the label to all the updated Gaussian terms.

step 3. (State Estimation, for k ≥ 1.)

Target states are determined from Gaussians whose weights are above a specific threshold.

T̂k = {τ i
k : wi

k > wth}

The set of estimates is

X̂k = {mi
k : τ i

k ∈ T̂k, i = 1, · · · Jk}.

step 4. (Track-to-estimate Association for k ≥ 1.)

For each τ i
k ∈ T̂k, if there exists a track in 
k−1 with identity r = τ i

k,

append mi
k to the track with identity r = τ i

k and copy it into 
k,

missed-estimate counter = 0,

else

find mi
l with tag τ i

k for l = k − K : k and initialize a track with {mi
k−K:k} with track identity r = τ i

k in 
k,

missed-estimate counter = 0,

end

For each track 
k−1 that is not copied into 
k, if missed-estimate counter = 0,

append the track with mr
k = Fkmr

k|k−1 and copy the track into 
k,

set missed-estimate counter = 0.

end.

step 5. (Output)

Target state estimates: X̂k = {mi
k : τ i

k ∈ T̂k, j = 1, . . . k},

Track valued estimates: 
k.
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