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Abstract  With the help of a digital image correlation technique, fracture strength 

and fracture toughness of freestanding 8wt% Y2O3-ZrO2 (8YSZ) coatings were 

directly measured by single edge notched bending (SENB) tests. An extended finite 

element model (XFEM) was established to simulate the fracture process of notched 

8YSZ samples. Its energy release rate was estimated by the known fracture strength 

and Young’s modulus. Within the linear elastic brittle fracture, the calculated energy 

release rate was transformed into the corresponding fracture toughness, which is in 

good agreement with the experimental results by SENB. The obtained material 

properties of XFEM in this work would play a crucial role in predicting the reliability 

and durability of TBCs with irregular geometry in future.  
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1.  Introduction 

Thermal barrier coatings (TBCs) have attracted an increasing attention in aircrafts 

and gas-turbines owing to their excellent wear resistance, corrosion resistance and 

thermal insulation. They can prolong the operation life of metal substrate and enhance 

the thermal efficiency of engines. A TBC system usually consists of ceramic coating 

(generally 8wt% Y2O3-ZrO2 or 8YSZ), thermally grown oxide, bond coat and 

substrate [1]. However, the mechanical properties evolution and premature adhesion 

failure of the ceramic coatings subjected to the mechanical loads, thermal/residual 

stresses, sintering and thermal shock in service have strongly affected their 

reliabilities and applications [2,3]. Recently, various experimental and simulation 

methods have been developed to evaluate the fracture strength and interface adhesion 

of different coating systems. In particular, the mechanical properties and fracture 

characteristics of 8YSZ coating have been widely studied by using tensile [4-8], 

indentation [9-13], compressions [14], shear [15] and bending tests [16-19]. Because 

most of TBC systems, frequently used in turbine blades and vans, have complex and 

irregular geometrical structures, it is inconvenient and difficult to use experimental 

methods and theoretical models to estimate their reliability and durability under 

severe environments. Thus, we have to resort to numerical analysis such as the finite 

element method (FEM), which has been used to the analysis of stress-strain fields, 

temperature distribution, cracking nucleation and propagation of TBC systems. The 

corresponding mechanical parameters such as critical energy release rate, stress 

intensity factor were evaluated [15,20,21]. For example, Sadowski et al. have 
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discussed the damage and progressive fracturing process of the most dangerous 

cross-sections of a blade under real working conditions by an extended finite element 

method (XFEM) [22]. In judgment of the initiation and propagation of cracks in 

ceramic coatings during finite element simulations in previous works, the criterion is 

generally assumed that the maximum principal stress in coating exceeds its fracture 

strength. Furthermore, to validly predict the damage accumulation, cracking and 

fracture process of a TBC system by XFEM, several important material parameters 

such as Young’s modulus E, fracture strength σb and critical energy release rate GI 

must be determined with the aid of experiments. To the best of our knowledge, 

however, only a few attempts have been made in the earlier work to directly study 

these material parameters of XFEM of air plasma sprayed (APS) TBCs by precise 

experimental tests.  

In this work, freestanding 8YSZ coating samples were prepared by APS technique 

and their mechanical properties including σb and fracture toughness KIC before and 

after thermal cycling were determined by single edge notched beam (SENB) and 

digital image correlation (DIC) techniques. Using the measured E, σb and assumed GI, 

various simulated loading-deflection curves corresponding to a given 8YSZ sample 

were obtained by commercial ABAQUS software. In comparison with the simulated 

and experimental curves, the most appropriate GI value can be estimated and then it 

was transformed into the corresponding KIC by linear elastic brittle fracture mechanics. 

It was found that KIC deduced by XFEM were consistent well with that by SENB tests. 

For different types of freestanding 8YSZ coatings with thermal cycling, the 
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corresponding material parameters of XFEM would be helpful in predicting the 

damage, cracking and spallation of TBCs deposited on turbine blades under complex 

service conditions. Finally, the fracture morphologies of 8YSZ samples were 

observed by scanning electronic microscope (SEM) and the effect of heat treatment 

on mechanical properties was discussed in briefly.  

2.  Experimental details 

2.1  Sample preparation 

To prepare the stand-alone thick 8YSZ coating, the 8YSZ powder with grain 

sizes of 20  60 μm was directly sprayed on an aluminum substrate with a size of 160 

 25  10 mm
3
 by a Metco-Triplex I plasma gun (Sulzer Metco, Winterthur, 

Switzerland). During the air plasma spraying, the substrates were cooled with 

compressed air resulting in deposition temperatures between 200 and 250 °C. After 

completing the spraying process and cooling to the room temperature in air, the coated 

aluminum substrate was carefully incised into small bars by a commercial cutting 

machine (IsoMet® 4000). The top 8YSZ coating for each bar was obtained after the 

aluminum substrate was etched with potassium hydroxide. And then these 

freestanding 8YSZ coating were cut into many rectangular shape samples with 20  3 

 4 mm
3
. To consider the sintering effect, most of them were subjected to heat 

treatments in a high temperature furnace. Each thermal cycling consists of 10 min. 

heating to the desire surface temperature of 1273 K, and then holding at this 

temperature for 60 min., followed by a 10 min. forced-air-quenching. The type of 

thermal cycle includes 0, 50, 100, 150, 200 and 300 times. The number for each type 
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sample is 7 and the total number of sample is 42. All samples were polished with 2.5 

μm diamond paste. The SENB samples were fabricated and loaded according to the 

ASTM standard E1820-05a [23], where the notch was cut across the 3 mm face, 

perpendicular to the length of the bending bar. The narrow notch tip radii are about 5 

– 10 μm by a commercial cutting machine with a thin diamond saw blade. The notch 

depths of ~ 1.5 mm were used, as shown in Fig. 1. The samples were handled by 

hydrochloric acid to reduce the influence of surface work hardening. They were also 

carefully cleaned by ultrasonic oscillator with distilled water and completely dried.  

2.2 SENB tests 

SENB tests were performed by a universal testing machine (No. WDTI-5) with the 

displacement rate control mode at a speed of 0.01 mm/min. The bending loads 

increase linearly up to the maximum load at which the notched 8YSZ samples break 

down. A DIC technique was used to real-time monitor the strain evolution near the 

notch tip region, as shown in red dashed region of Fig. 1. The strain data burst can 

accurately reflect the crack nucleation and propagation of the notched sample under 

bending, and then the corresponding load can be determined as the critical bending 

load [5]. Prior to the DIC test, patterns were prepared by spraying a thin layer of black 

and white paint with airbrush guns. A 1624×1236 pixels charge coupled device 

camera equipped with a lens of 50 mm focal length was used to in-situ measure the 

macroscopic morphology and strain evolution of the monitored region (4 × 3 mm
2
) 

with a sampling rate of two images per second (see Fig. 1). The relevant 

post-processing was achieved with the commercially available DIC software 
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(ARAMIS) to analyze the evolution of strain field data. The measuring error in strain 

is limited less than 0.05% by the specifications and settings [24]. All experimental 

data, including the critical bending load, strain field, crack initiation and propagation 

path, were in-situ recorded by computers, which were used to estimate other material 

properties of 8YSZ samples. For SENB tests, σb and KIC can be obtained by the 

following formulae [25,26], respectively, 

b 2

3

2 ( )

FL

B W a
 


                              (1) 

IC 2

3

2

FL
K Y a

BW
                              (2) 

where F denotes the bending load. a is the length of the notch. B and W are, 

respectively, the width and highness of the sample. L is the span between the two 

lower supporting points. Y is a factor by a/W. In the case of L/W = 4, Y can be 

represented by the following exponential polynomial [27],  

2 3 4

1.93 3.07 14.53 25.11 25.8
a a a a

Y
W W W W

     
             

     
        (3) 

3.  Extended finite element model (XFEM)   

As we know, for the finite simulations of two-dimensional fracture problem of 

brittle APS coatings with much inter-lamellar pores and micro cracks [28], the effect 

of microstructure factor on the estimation of mechanical properties of ceramic has 

been considered by the object oriented finite element modeling [29,30]. But it is 

usually limited to a two-dimensional fracture problem of brittle APS coatings. For 

simplicity, the effects of microstructure features on the mechanical properties of 

8YSZ samples were ignored during XFEM in this work. Fig. 2 shows a 
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three-dimensional XFEM of bending fracture process of freestanding 8YSZ sample, 

which consists of 6840 8-node linear brick reduced integration elements (C3D8R). 

Further refining of the current mesh shows little improvement in calculation accuracy. 

The indenter of the universal testing machine is regarded as a rigid surface and its 

motion under bending loads is controlled by a reference point. The bending loads 

during FEM were applied by controlling the displacement of the reference point. In 

order to simulate the brittle fracture process, the maximum principal stress criterion 

was introduced and it can be represented as [31] 

max

max

o
f




                                   (4) 

where σo 

max represents the allowable maximum principal stress of ceramic coatings, 

which is usually equal to σb. σmax is the maximum principal stress under bending. 

Bracket < > in Eq. (4) indicates that a purely compressive stress state does not induce 

damage. Thus, damage is assumed to initiate once f reaches 1.0.  

To reasonably set the material parameters of XFEM, E, σb and GI must be given. In 

this work, E of all 8YSZ samples were determined by nanoindentation [32]. All 

indentations with Berkovich indenter were performed with the load control (dP/dt = 

30 mN/s) at 300 K. The maximum load was set at 3 N and the dwelling time was 20 s. 

The 20 perfect indentations were carried out for each sample [32]. The σb of all 8YSZ 

samples were measured from the above SENB tests. The simulated load-deflection 

curves by XFEM were obtained by attempting different GI values. Finally, an 

acceptable GI value can be evaluated by comparing with the corresponding 

experimental curve in SENB test. The detailed XFEM procedure is shown in Fig. 3. 
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According to the linear elastic brittle fracture, the corresponding KIC can be deduced 

by GI above [33] 

1/2

I( )CK EG                                  (5) 

4.  Results 

4.1 Determination of σb and KIC by SENB 

A typical stain evolution near the pre-existed notch is shown in Fig. 4. As the 

bending load increases, DIC patterns reveal that the deformation on the cross-section 

becomes more heterogeneous (see inset (a)). When the test time t reaches 172 s, a 

strain concentration region appears around the notch tip in inset of Fig. 4, which 

slowly propagates along the y direction. As t = 201 s, the stain concentration region 

become more obvious and forms a small crack, as shown in inset (c) of Fig. 4. 

Furthermore, the crack starts to propagate parallel to the y axis at t = 217 s. The 

experimental data including the bending load, strain and time were recorded by a 

computer, which were used to evaluate σb and KIC. For example, when the bending 

load tardily increases up to about 17.77 N, the DIC analysis shows that a crack begins 

to propagate. Therefore, the corresponding σb and KIC can be obtained as 25.92 MPa 

and 1.66 MPa·m
1/2

 by Eqs. (1) and (2), respectively. The average σb and KIC for 

samples before and after heat-treatments are listed in Table 1. The relevant KIC 

changes from 1.12 MPa·m
1/2

 to 2.45 MPa·m
1/2

 prior to N = 150 thermal cycles, 

decreased to 1.62 MPa·m
1/2

 as N = 300.  

4.2  Evaluation of GI by XFEM 

As shown in Fig. 5, many simulated load-deflection curves by assuming different 
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GI during XFEM match progressively with the true experimental curve, respectively. 

Here, the geometry size of the 8YSZ sample are L = 18.5 mm, W = 4.5 mm, B = 1.4 

mm, and a = 1.6 mm, respectively. And E = 32.4 GPa, ν = 0.1 and the average value 

of σb equals about 24.5 MPa. Comparing and analyzing the difference between the 

experimental and simulated load-deflection curves, GI for freestanding 8YSZ coating 

after 300 thermal cycles can be evaluated as about 84 J/m
-2 

(see Fig. 5). Using the 

similar method, the GI of other freestanding 8YSZ samples were evaluated and listed 

in Table 1.  

4.3 SEM observations of fracture morphology  

Fig. 6 displays several SEM images of typical fracture surface of as-sprayed and 

aged freestanding 8YSZ coatings after SENB tests. It can be seen that there are a large 

amount of pores in conjunction with splat structures for as-received sample, as shown 

in Fig. 6(a). It exhibits mainly inter-splats fracture mode. After 100 thermal cycles, a 

noticeable sintering phenomenon occurs owing to the phase transformation and 

substantial grain growth of 8YSZ ceramic [28] (see Fig. 6(b)). It may result in the 

increase of these mechanical properties, E, σb and KIC of 8YSZ coating. The similar 

experimental phenomena have been reported in previous works [34-36]. As N = 200, 

partial regions shows more noticeable sintering, densification and micro cracks 

nucleation (see Fig. 6(c)). When N increases up to 300, more apparent macro-cracks 

and typical lamellar structure are observed, as displayed in Fig. 6(d). These micro 

cracks deduced from heat treatments would result in the decrease of the E, σb and KIC 

of 8YSZ coating.  
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5.  Discussion 

5.1 Evolution of σb and KIC  

It is seen from Table 1 that b  by SENB tests increases from 35.66 ± 6.13 MPa 

at as-received to 71.76 ± 7.25 MPa at N = 50 with the increasing of thermal aging 

time. The main reason may result form high-temperature sintering, grain growth and 

phase transformation. Especially, the sintering process increases the fracture strength 

and decreases the fracture strain remarkably [37]. The velocity of sintering activity is 

affected by the diffusion of the different atomic species determines in freestanding 

8YSZ coating. In this work, the increase in fracture strength upon annealing occurs in 

a short period of time of about 50 h, which is similar to 20 h reported by Choi et 

al.[37]. In the earlier works, for freestanding 8YSZ samples, Ahmaniemi et al. have 

reporsted that b  by four-point bending changes from 39.70 ± 2.70 MPa at 

as-received to 91.30 ± 3.90 MPa after heat treatment 5 h at 1250 
o
C. Choi et al. have 

also found that b  starts from 37.0 ± 4.00 MPa and increases rapidly to about 80 

MPa within 100 h, and then it keeps a steady state [37]. However, in this work, b  

gradually decreases to 24.70 ± 0.40 MPa at N = 300. The reason may be due to the 

possible differences of spraying process parameters, heat treatment temperatures and 

experimental test methods. Although annealing can provide a sintering effect, it may 

also result in microcracks and micropores healing, grain growth, and densification 

[37]. Many tests show that most of mechanical properties for plasma-sprayed zirconia 

coatings increase significantly in 5 – 100 h, and then reach a plateau above 100 h or 

slightly decrease to some value.  
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It is found in Table 1 that the relationship of fracture toughness and annealing 

time follows the similar trend of the fracture strength in the as-sprayed as well as in 

the heat treated samples. In the previous studies, KIC for as-received APS freestanding 

8YSZ coatings is about is 1.15 ± 0.07 MPa·m
1/2

 by asymmetric four-point bending 

tests at room temperature. On annealing, KIC increased significantly within 100 h and 

reached a plateau value 2.60 ± 0.20 MPa·m
1/2

 [38]. Mao et al. have studied the 

evolution of microhardness, fracture toughness and residual stress of APS TBCs 

system under thermal cycles by a modified Vickers indentation instrument coupled 

with three kinds of indentation models. They found that KIC at the cross-section 

coating as a function of annealing time ranges from 0.7 – 1.2 MPa·m
1/2

 by Vickers 

indentation tests [9]. In this work, the initial value of KIC is 1.12 ± 0.03 MPa·m
1/2

 and 

the maximum value is 2.45 ± 0.12 MPa·m
1/2

, as listed in Table 1. Thus, the results are 

in agreement with these available data.   

5.2 Critical energy release rate  

In Table 1, GI for freestanding 8YSZ samples annealed different aging time 

firstly increases from 115 J/m
-2

 at as-received to 175 J/m
-2

 as N = 150, but it gradually 

decreases to 84 J/m
-2

 when N = 300. The critical aging time is about 150 h. The 

evolution of GI in our work is qualitatively agreement with that obtained from 

four-point bending tests by Yamazaki et al. [39]. For as-received APS TBCs, GI = 115 

J/m
-2

 in this work is close to 140 J/m
-2

 [39] and slight higher than the available 

experimental data, 50 ~ 70 J/m
-2

 [40-42]. The difference in measured strain energy 

release rate may be attributed to APS processing parameters, 8YSZ microstructure 
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and test method. To compare with KIC by SENB tests, the obtained GI is, respectively, 

transformed into KIC by Eq. (5) and also shown in Table 1. Because the E of 8YSZ 

coating changes with thermal cycle due to the sintering effect, the KIC value by XFEM 

increases from the as-sprayed value of 1.06 MPa·m
1/2

 to 2.33 MPa·m
1/2

 as N = 150, 

and then decreases to 1.65 MPa·m
1/2

 when N = 300. Although test method and aging 

temperature have difference, our results are similar to that by four-point bending tests 

[39]. For as-received APS TBC coatings, the fracture toughness in our work is slightly 

higher than the range of 0.4 ~ 1.2 MPa·m
1/2

 in TBCs systems [9,37,38,43]. It indicates 

that the evaluation of material properties of freestanding 8YSZ coating used in XFEM 

is credible, which are useful for predicting the failure behavior and lifetime of TBCs 

with irregular geometry. 

6.  Conclusions  

The evolution and accurately measurements of mechanical parameters of 

freestanding 8YSZ coating play an important role in appraising the reliability and 

durability of TBCs. The freestanding 8YSZ samples were successfully prepared by 

APS technique. The corresponding mechanical properties were measured by SENB 

and DIC techniques. The bending failure process of 8YSZ was simulated by XFEM. 

Using the determined experimental data and attempting different energy release rate, 

the material parameters of XFEM were evaluated, which would be used to predict the 

delamination and spallation of TBC with irregular geometry. The main conclusions 

can be summarized as follows, 

(1) The KIC of freestanding 8YSZ coatings by SENB tests changes from 1.12 
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MPa·m
1/2

 to 2.45 MPa·m
1/2

 before N = 150, and then decreases to 1.62 MPa·m
1/2

 as N 

= 300. The corresponding b  firstly increases from 35.66 ± 6.13 MPa at as-received 

to 71.76 ± 7.25 MPa at N = 50 due to the sintering and densification, and then it 

slightly decreases to 24.70 ± 0.40 MPa when N = 300 because of the formation of 

much micro cracks. 

(2) The GI of 8YSZ coatings estimated by XFEM ranges from 71 to 175 J/m
-2

 for 

different heat-treated 8YSZ samples. The corresponding KIC was deduced within the 

linear elastic fracture mechanics, which consists well with that by the SENB tests.  
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Figure captions 

Fig. 1 Schematic of SENB test by the aid of DIC. The rectangle with dashed red line 

was defined as a region for DIC monitoring. 

Fig. 2 Three-dimensional XFEM of a notched 8YSZ sample under SENB test.  

Fig. 3 The procedure of XFEM for estimating GI. 

Fig. 4 A typical loading-deflection-time curve of 8YSZ under bending. A series of 

strain map insets show the evolution of strains in the monitored area with the 

increase of bending loads.  

Fig. 5 The evaluation of critical energy release rate of 8YSZ sample by progressively 

comparing the experimental and simulated load-deflection curves, where N = 

300. Inset shows the propagation of the pre-existed notch under bending. 

Fig. 6 Typical SEM micrographs of fracture surfaces of freestanding 8YSZ samples 

after SENB tests, (a) as-received, (b) heat-treated (100 cycles), (c) heat-treated 

(200 cycles), and (d) heat-treated (300 cycles). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 17 

Table 1.  Comparison of the experimental and numerical results of freestanding 

8YSZ coatings. 

N E (GPa) 
cri

xx  σb
*
 (MPa)  

KIC
**

  

(MPa·m
1/2

) 

GI
***

  

(J/m
-2

) 

KIC
****

  

(MPa·m
1/2

) 

0 9.78±1.00 0.28±0.02 35.66±6.13 1.12±0.03 115 1.06 

50 22.41±1.20 0.23±0.03 71.76±7.25 1.73±0.15 117 1.62 

100 29.68±2.23 0.19±0.02 53.90±1.87 2.00±0.20 120 1.89 

150 31.01±1.34 0.18±0.02 56.05±0.72 2.45±0.12 175 2.33 

200 34.66±1.57 0.15±0.02 31.62±1.21 1.71±0.22 71 1.57 

300 32.41±2.68 0.17±0.04 24.70±0.40 1.62±0.10 84 1.65 

*
 σb was tested by SENB with Eq. (1). 

**
 KIC was directly deduced by SENB with Eq. (2).  

***
 GI was evaluated by XFEM with the known E and σb.   

****
 KIC was directly obtained by the simulated GI and Eq. (5).  
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Highlights 

 

Fracture toughness and fracture strength of freestanding 8YSZ were measured by 

SENB.  

The fracture process was simulated by XFEM and energy release rate was estimated. 

The simulated fracture toughness is consistent well with that by SENB.  


