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Abstract

Effluent water from intensive prawn aquaculture systems typically has a high concentration 

of dissolved nutrients such as nitrogen and phosphorus. A study was conducted for 42 days to 

investigate the nutrient flow in a system where brown seaweed (Sargassum sp.) was integrated 

into western king prawn (Penaeus latisulcatus) culture. Three treatments namely, western king 

prawn monoculture (5.48 ± 0.29 g), Sargassum sp. monoculture and seaweed/prawn integrated 

culture were tested for nutrient flow among feed, water and species cultured. The results showed 

that by integrating seaweed into prawn culture, the concentrations of total ammonium nitrogen 

(TAN), nitrite-nitrogen (NO2
-) and nitrate-nitrogen (NO3

-), dissolved inorganic nitrogen (DIN), 

total nitrogen (TN), phosphate (PO4
3-) and total phosphorus (TP) were significantly lower (p < 

0.05) in the integrated culture system than in the prawn monoculture (p < 0.05) and remained 

within non-toxic limits for the duration of the study. In addition, the integration of Sargassum 

sp. with western king prawn culture did not significantly alter the nitrogen and phosphorus 

conversion rates from feed into prawns (approximately 17.69-18.99 and 13.79-14.47%, 

respectively). The specific growth rate (SGR) and survival rate of the prawns in integrated 

treatment did not significantly differ (p > 0.05) from the prawn monoculture. The mean biomass 

of Sargassum sp. in integrated culture increased at the rate of 3.16 ± 0.74% g day-1 after 7 days 

of the study, which was significantly higher than in the monoculture system (5.70 ± 0.82 % g 

day-1). The results suggest that integrating Sargassum sp. into western king prawn culture can 

benefit prawn farming by assisting in the maintenance of optimum water quality and thereby, 

reducing environmental impacts on surrounding areas.

Key words: Brown seaweed, Sargassum sp., western king prawn, Penaeus latisulcatus, 

nutrients, nitrogen, phosphorus.
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1. Introduction

Prawn farming has been developing steadily over the last decade in response to an increasing 

world market demand. Since the 1970s, the western king prawn (Penaeus latisulcatus,  

Kishinouye 1896) has been considered as one of the candidate species for culture (Kathirvel and 

Selvaraj, 1987) and  has been widely cultured in several Asian countries. In recent years, the 

culture systems for prawns have also intensified (Gutierrez-Wing and Malone, 2006) resulting in 

increasing demand for high quality feeds (Shepherd and Bromage, 1988, Seymour and 

Bergheim, 1991, Brzeski and Newkirk, 1997). These feeds account for more than 95% of the 

nutrient input in aquaculture ponds (Krom and Neori, 1989). However, less than one third of 

these nutrients are assimilated into the prawn biomass (Briggs and Funge-Smith, 1994) and the 

remaining portion is lost to the system (Wu, 1995, Piedrahita, 2003), resulting in environmental 

pollution. 

In order to improve effluent water quality, assist in maintaining the sustainable development 

of prawn farming and to mitigate the environmental impacts of prawn farming, various methods 

have been proposed to address the issue of nutrients discharged from intensive prawn 

aquaculture (Troell et al., 2003, Neori et al., 2004). One viable approach is to integrate 

macroalgae with prawn aquaculture where macroalgae are expected to assimilate the nutrients 

from prawn effluents. This approach is based on the use of macroalgae to remove the dissolved 

nutrients from aquaculture pond effluents. The concept of developing an “environmentally 

clean” aquaculture system based on an integrated fish-mollusc and macroalgae system was first 

proposed by Gordin et al. (1981). The system was further tested by Gordin et al. (1990) and 

Shpigel et al. (1991). Other authors have also developed systems integrating fish or prawn and 

macroalgae culture (Liu et al., 1997, Neori et al., 1998, Troell et al., 1999, Jones et al., 2001).

Several macroalgae species such as Ulva, Porphyra and Gracilaria have been proven to 

effectively reduce the nutrient load in effluents under both laboratory and field conditions 

(Troell et al., 2003, Neori et al., 2004). However, this study is the first to integrate Sargassum 

sp. into western king prawn culture. Sargassum sp. are brown seaweed occurring worldwide and 

are distributed in subtidal areas in both warm and temperate water, especially in the Indo-west 

Pacific region and Australia (Tseng et al., 1985). Sargassum sp. communities are considered to 

metabolise nutrients in the pelagic environment (Hanson, 1977, Phlips et al., 1986). The aim of 

this study was to evaluate the efficiency of Sargrassum sp. in assimilating nitrogen (N) and 

phosphorus (P) in effluents from western king prawns and to calculate the N and P  budget  in 

western king prawn (Penaeus latisulcatus) aquaculture system.
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2. Materials and Methods

Western king prawns (size: 5.48 ± 0.29 g) were collected from the mouth of Swan River in 

Bicton,  Western Australia  (320 40”S 1150 13”E). Prawns were acclimated to the laboratory 

conditions  for  14 days  before  commencing the  study.  Brown seaweed (Sargassum sp.)  was 

collected from the Cottesloe coast, Western Australia (310 57”S 1150 05”E). 

Three treatments were used, viz. prawn monoculture (PM), seaweed monoculture (SM) and 

integrated seaweed and prawn culture (ISP). Each treatment consisted of four replicates in the 

form of 0.1m3 plastic tanks. All 12 tanks were arranged in a completely randomised design. The 

study was conducted for 42 days under laboratory conditions. Five prawns were placed into each 

PM and ISP tank and total prawn biomass and survival (Stn) in each tank was recorded. The 

seaweed Sargassum sp. was rinsed with ocean water to remove any epiphytes and was then 

placed into the SM and ISP culture. Seaweed was stocked at the initial biomass of 0.5 kg m-2 

(140 g per tank) in SM and ISP. The feeding rate for the prawns at the commencement of the 

study was 2.5% of the prawn biomass per day. The feed contained 8.12% of N and 1.29% of P. 

Prawn mortalities in each tank were removed immediately and weighed and any sign of 

cannibalism was recorded. 

Salinity levels of the systems were maintained at 28.96-30.19‰ over the study period, which 

is within the optimum range for king prawn culture (Sang and Fotedar, 2004, Prangnell, 2007). 

During the study, evaporation losses of water were compensated by the addition of distilled 

water to maintain the salinity level around 29-30‰.

Prawns were weighed at the commencement of the study and were re-weighed once a week 

to obtain the data required to calculate the specific growth rates (SGR %) by using the following 

formula: 

SGR = 100 (lnWt-lnW0)/t and WG = Wt - W0

where: W0 = initial weight; Wt = weight at time t since the commencement. 

The survival rate (Stn) of the prawns in each tank was also calculated using the formula:

Stn = Ntn x 100/Ni

where: Ntn: number of prawn surviving at the time n; Ni: number of prawn at the beginning of 

the trial.

The concentrations of total ammonia nitrogen (TAN: NH3
- and NH4

+), nitrite nitrogen (NO2
-), 

nitrate nitrogen (NO3
-), total nitrogen, orthophosphate (PO4

3-) and total phosphorus in all tanks 

were measured weekly. TAN, NO2
- and PO4

3- were analysed using standard methods for water 

and waste water analysis (APHA, 1998). NO3
- was analysed by using a DR/890 Colorimeter 
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(Hach Company, the United State). Total nitrogen (TN) in water was determined by the 

indophenol blue method (APHA 1998), after simultaneous persulfate oxidation of unfiltered 

samples and using Devarda alloy to convert nitrogen into ammonium form (Raveh and 

Avnimelech, 1979). Total phosphorus was determined by using the ascorbic acid method 

(APHA, 1998).

Nutrient removal (NR %) in the integrated culture systems was estimated according to the 

following equation: 

  NR = 100*(Ccnl – Cp)/Ccnl

where Ccnl (mg l-1) = nutrient concentration in the prawn monoculture treatment 

       Cp (mg l-1) = nutrient concentration in integrated seaweed-prawn treatment

For nitrogen and phosphorous content analysis, samples of feed, prawns, seaweed and 

sediment wastes (faeces and uneaten feed was collected daily by siphoned method) were oven-

dried at 1050C overnight to a constant weight. Nitrogen content was analysed by the Kjeldahl 

method (AOAC, 1995) using a Tecator 1015 heater block operated by a Tecator autostep 1012 

controller, and a Tecator Kjeltec 1030 Auto Analyser. Dried samples were analysed for 

phosphorus by using the spectrophotometric molybdovanadate method (AOAC, 1995).

In order to find the nutrient (nitrogen and phosphorus) level in the inputs and outputs of each 

treatment, total nutrients of inputs, outputs, uptakes and accumulations in the culture system 

during the rearing cycle were measured.  The nutrient budget of N and P were calculated based 

on inputs and outputs as follows:

Nutrient inputs = Nutrient outputs + Nutrient loss

Where, Nutrient inputs = nutrients in water + nutrients in stocked prawn and/or seaweed 

+ nutrients in feed

Nutrient outputs = nutrients in harvested prawn and/or seaweed + nutrients in 

drained water + nutrients in sediment (faeces, uneaten feed and dead thallus of 

seaweed) 

SPSS (versions 15) and Microsoft Excel were used for data analysis. LSD post hoc tests in One 

way of Analysis of Variance (ANOVA) were used to determine any significant differences 

(p≤0.05) among treatment means. Regression analysis was used to assess relationships between 

SGR of prawn and nutrients in water.

3. Results

 Survival and growth rates of prawns and seaweed
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The mean growth rate of the prawns was not significantly different (p > 0.05) between PM 

and ISP (Figure 1). The presence of the seaweed in prawn culture did not affect the survival of 

the prawns (p > 0.05), with 55% in the PM and 60% in the ISP (Figure 2). 

Culturing Sargassum sp. with prawns resulted in a significantly lower (p < 0.05) growth rate 

than the monoculture of the seaweed (Figure 3). However, the Sargassum began to die after 7 

days of the study and consequently, biomass loss in the subsequent days was observed. Total 

mortality of the seaweed was recorded by day 28 of the study (thallus deterioration and 

disintegration) and then dead seaweed was removed from the tanks. 

 Water quality

Mean water temperature and dissolved oxygen (DO) were 23.60-25.080C and 5.81-6.16 mg 

l-1, respectively over the studyal period. The pH of water ranged from 7.91 to 8.17, which is 

within the optimum range for prawn culture (Allan and Maguire, 1992, Wang et al., 2002). 

 Overall, the mean concentration of nutrients over time was significantly lower (p < 0.05) in 

the ISP and SM than in the PM (Figure 4). The concentration of total nitrogen in the ISP was 

significantly lower (p < 0.05) than the PM, even when no seaweed was present in ISP for the last 

14 days of the study. The total phosphorus concentration of ISP was significantly lower (p < 

0.05) than the PM while seaweed was present in the tanks (that is, until day 28). There was no 

difference in the concentration of PO4
3- between ISP and PM when all seaweed was removed 

from the tanks at day 28 until the conclusion of the study. The total nitrogen, PO4
3- and total 

phosphorus concentrations in SM were significantly lower than PM and ISP for the duration of 

the study.

In all treatments, NO-
3 and total ammonium nitrogen (TAN) were the predominant dissolved 

inorganic nitrogen forms. Both increased significantly at day 28 and then remained stable until 

the end of the study (Figure 4). The NO2
- concentrations peaked at the end of the study and no 

significant difference between PM and ISP was observed.  Following this, the concentration of 

TAN decreased significantly (p < 0.05) in all treatments and was not significantly different 

between ISP and PM. The concentration of NO3
- decreased slightly in PM, while the NO3

- 

concentration in ISP continued to increase until the end of the study. In contrast, NO2
- was 

generally at the lowest concentration and was always lower in ISP than in PM (Figure 4). 

During the study period, nitrogen was the more abundant nutrient when compared to 

phosphorus (Figure 4). At the end of the study, the total nitrogen had increased significantly (p < 

0.05) in all treatments. In ISP the concentrations and total nitrogen were lower than in PM. In 

SM, the concentration of total nitrogen was lower than in PM and ISP. The concentration of 

PO4
3- and total phosphorus increased gradually in all treatments (Figure 4). The maximum 
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concentration of total phosphorus was recorded at the end of study in PM and SM, while the 

highest concentration of total phosphorus in ISP was 1.13 mg l-1 on day 35 of the study.

Nutrient removal

The removal rates of nitrogen metabolites by Sargassum sp. remained constant over the 

studyal period, except for NO2
- which showed a significant decrease and was not detectable after 

day 21 (Table 1). The removal rate of NO3
- generally increased with increasing NO3

- 

concentration, while the removal rate of TAN decreased with increasing TAN concentration 

(Figure 4 and Table 1). Overall, the presence of Sargassum sp. in prawn culture tanks resulted in 

more efficient removal of NO3
- than TAN.  The nutrient removal rate varied over the l period, 

but generally, the removal rate of total nitrogen were higher than those of PO4
3- and total 

phosphorus (Table 1). There was a significant difference between the removal rates of PO4
3- over 

the study period. The highest PO4
3- removal rate was observed on day 14 of the study with a 

65.9% removal efficiency, but decreased significantly thereafter to 5.6% at day 21 and was not 

detectable from day 28 onward (Table 1). The removal rate of total phosphorus did not 

significantly change during the study period. Total phosphorus was removed at an efficiency of 

14.5% to 37.0%.  

Nutrient budget

Most of the nitrogen in the tanks containing prawns came from the formulated prawn feed, 

whereas nitrogen input in SM was primarily from the intake water (Table 3). Within the tank, 

17.69% in PM and 18.99% in ISP of the input N from feed was converted to prawn biomass 

(Figure 5). Wastes, including uneaten feed, faeces and/or dead seaweed, accounted for 27.81% 

of the nitrogen in PM and 24.42% in ISP and only 8.35% in SM. In the present study, 

unaccounted nitrogen was detected (5.00% in PM, 9.12% in ISP and up to 50.30% in SM). 

Phosphorus input in PM and ISP occurred mostly from the prawn feed, while seaweed 

contributed the largest source of P in SM. Prawns contributed about 32.05% in PM and 24.16% 

in ISP. In the ISP, there was about 24.57% of P input coming from seaweeds. (Table 3). The 

phosphorus budget indicated that about 14.47% and 13.79% of the input P as feed was converted 

to prawn biomass (Figure 2). The contribution of phosphorus from wastes that is uneaten feed, 

faeces and/or dead seaweed, averaged 42.63% in PM, 35.67% in ISP and 50.92% in SM. 

Unaccounted input P contributed minor proportions. 

Nitrogen and Phosphorus in tissues

Nitrogen and Phosphorus in prawn tissue

Due to the increment in the prawn biomass, the net N and P biomass increased in both PM 

and ISP. There was no relationship between SGR and the net N biomass gained in tanks of the 
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prawns (r2 = 0.35, p = 0.38; Figure 6). A higher correlation was recorded between the SGR and 

the net P biomass gained (r2 = 0.60, p = 0.02; Figure 6). Over the period of the study, the N:P 

ratio of prawns in both the PM and ISP treatments did not significantly alter. 

Nitrogen and Phosphorus in seaweed tissue

At the end of the study, the seaweed under both monoculture and integrated culture 

conditions showed a decrease in the N and P content from the initial concentrations (Table 2). 

Due to losses of seaweed biomass, the amount of N and P gained in SM and ISP had negative 

values. From day 7 onward, the thallus of the seaweed began to deteriorate and 100% mortality 

was observed by day 28. Therefore, neither N and P contents nor N:P ratio could be determined 

at the end of the study (Table 2).

4. Discussion

Survival and growth 

Survival, growth and biomass increment are the main concerns in the operation of a 

commercial aquaculture farm. Survival of the prawns in all of the study tanks was higher than 

55% which  is higher than another similar study which resulted in 13.64 – 40.91% survival after 

30 days of the study (Sang, 2003). However, inclusion of Sargassum into prawn culture has no 

effect on the survival and growth performance of the prawns. Compared with studies on P. 

monodon (Chen et al., 1989, Thakur and Lin, 2003), the SGR of western king prawns in both the 

monoculture and integrated culture systems in this study was high, possibly as a result of lower 

stocking densities. In the present study, the stocking density of the western king prawns was 18 

prawns per m2, while P. monodon were stocked at approximately 70 post-larvae per m2 (PL25-27) 

by Chen et al. (1989) and 20-25 juveniles per m2 by Thakur and Lin (2003).

The growth rate of Sargassum is different under different environmental conditions 

(Gellenbeck, 1984, Guimaraens, 1999). Integrating seaweed with prawn culture resulted in a 

lower growth rate of seaweed than in the SM. This was probably due to the excessive increase of 

dissolved inorganic nutrient concentrations observed during the last days of the study. There was 

an increase in the nutrient concentration during the last days of study due to decaying and dying 

seaweed. There is evidence from previous studies, using different species of seaweed, that high 

nutrient levels can result in an inhibition in the growth rate of seaweed Ulva and Gracilaria 

(Waite and Mitchell, 1972, Parker, 1982, Marinho-Soriano et al., 2002), and Sargassum 

(Schaffelke and Klimpp, 1998, Diaz-Pulido and McCook, 2005). Furthermore, the nutrient 

thresholds for the optimum growth rate of Sargassum species are low, ranging from 3 to 5 µM 

(equivalent to 0.03-0.05 mg l-1) for TAN,  6-15 µM (equivalent to 0.06-0.17 mg l-1) for (NO3
- + 

NH4
+) and 0.3-0.75 µM (equivalent to 0.014-0.035 mg l-1) for PO4

3- (Schaffelke and Klimpp, 

7



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1998, Ray-Lien Hwang et al., 2004). On day 7 of the present study, concentrations on excess of 

these values were recorded, specifically, 0.67 mg l-1 for TAN, 0.845 mg l-1 for (NO3
- + NH4

+) and 

0.14 mg l-1 for PO4
3-. It seems that the mechanism(s) may involve a toxic effect due to higher 

levels of nutrients. Elevated nutrient concentrations, particularly of ammonium, may inhibit the 

capacity to assimilate nutrients by altering the electron transport chain, and may affect enzyme 

and membrane functions (Peckol and Rivers, 1995, Kevekordes, 2001).

Realistic growth data of seaweed in the present study could be collected only during the first 

seven days of the study due to the deterioration and eventual death of the seaweed at day 28, as 

all thalli began to lose weight. The deterioration of thalli was probably due to differences in the 

physical environmental conditions in the laboratory compared to natural conditions. 

Temperature, salinity and light can play an important role in the growth of marine macroalgae 

(Lobban et al., 1985). Jones (1999) assumed that the temperature, water flow rate or light 

availability under laboratory conditions are not adequate for macroalgae growth, resulting in a 

higher rate of biomass decaying than biomass production. The current study was conducted at a 

temperature of 25-260C, 12:12 h light:dark cycle and salinity level of 28-29 ‰.  As optimum 

temperature was maintained in this study, it is assumed that the temperature in this study did not 

affect the growth performance of Sargassum sp. (Hanisak and Samuel, 1987, Ray-Lien Hwang 

et al., 2004). Therefore, it seems that other factors (e.g. salinity and light) were involved in the 

performance of Sargassum when it was cultivated together with the prawns. Hanisak and 

Samuel (1987) reported that the optimal salinity range for growth of several Sargassum species 

such as S. flutans and S. natans is 36-42‰ and a reduction in salinity to 30‰ caused a reduction 

in the growth rates by almost half. In this study, salinity ranged from 28 to 29 ‰ to optimal 

salinity for prawn growth that could have affected the performance of the seaweed because the 

Sargassum sp. used in this study was collected from Cottesloe beach, Western Australia where 

the salinity is at 35-36 ‰.  Other laboratory conditions, for example, light duration, intensity 

and/or excessive handling might have contributed to the mortality of Sargassum sp. 

Water Quality and Nutrient Removal

Different studies have pointed out that species of the Ulva and Gracilaria are ideal 

candidates for the development of integrated culture. However, using Sargassum sp. to treat 

waste water from aquaculture has been newly applied by Liu et al. (2004) who designed a 

system in which Sargassum enerve reduced the TAN and NO3
- concentrations from 80 µM l-1 to 

20 µM l-1. Therefore, the present study assists in a better understanding of the effects of the 

integration of Sargassum sp. species with western king prawn culture in terms of nutrient flows, 

nutrient removal and the performances of the cultured species.
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The nitrogen metabolite analysis in the present study suggests that NO2
- could have been 

accumulating in the culture system probably due to incomplete nitrification and the kinetic 

reaction could have been controlled by ammonia oxidation over the study period (Timmons et 

al., 2002).The increase in the offloading of the metabolite nitrogen at day 28 of the study was 

probably caused by the decaying thallus of the seaweed (Jones, 1999). This explained the reason 

of the high concentration of TN from day 28 until the end of the study. 

In the present study, Sargassum sp. was more efficient at removing NO3
- than TAN. 

Similarly, green seaweed Codium fragile (Hanisak and Harlin, 1978) and Chaetomorpha linum 

(Menéndez et al., 2002), brown seaweed Laminaria groenlandica (Harrison et al., 1986), 

Laminaria saccharina (Ahn et al., 1998) and red seaweed Porphyra yezoensis (Hafting, 1999) 

removed NO3
- more efficiently than TAN. There is evidence to suggest that under conditions of 

high NO3
- and low salinity, seaweed is able to metabolise NO3

- more rapidly (Lartigue and 

Sherman, 2006, Karmer and Fong, 2000, Karmer and Fong, 2001). In addition, for some 

macroalgal species, ammonium is a less favourable source of nutrients than nitrate because, 

during daylight periods, the pH inside the photosynthetic algae increases thereby reducing the 

pH of the external medium which leads to higher levels of volatile ammonium (Menéndez et al., 

2002). 

The removal efficiency of total nitrogen (TN) by Sargassum in the present study was 

generally higher than the values previously reported in literature. For example, Gracilaria  

tikvahiae only removed approximately 10-14% of the nitrogen in the effluent pond which was 

used for the intensive culture of the Pacific white prawns (Litopenaeus vannamei) (Kinne et al., 

2001). 

Although phosphorus does not constitute a danger to fish or prawn culture, it contributes to 

the eutrophication process. In the absence of Sargassum, the PO4
3- and TP concentration 

remained relatively high and was probably caused from the uneaten feed and excretion by the 

prawns in monoculture systems (Buschmann et al., 1996a). However, integrating Sargassum 

with prawn culture significantly reduced the concentration of phosphorus. Even though all of the 

Sargassum died at day 28 of the study, the concentration of PO4
3- and TP in the integrated 

culture still remained relatively lower than in prawn monoculture. 

Compared with the majority of other seaweeds, the performance of Sargassum in phosphate 

removal in this study was relatively high. For example, integrating Gracilaria chilensis and 

salmon culture resulted in the removal of 32% of the PO4
3- from the fish farm (Buschmann et al., 

1996b),  less than 25% of the PO4
3- from an integrated system by Ulva lactuca and G. conferta 

(Neori et al., 1998) and  27% of the phosphate from salmon cages by G. chinensis (Troell et al., 
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1997). The finding in the present study therefore shows the potential ability of Sargassum to 

effectively reduce the phosphorus concentration when integrated with prawn culture. 

Overall, this study indicates that Sargassum probably absorbed dissolved nutrients in the 

integrated system and thereby significantly reduced the concentrations of nutrients (N and P) in 

the waste water. 

Nutrient budget

Nitrogen

Feed is normally the greatest source of nitrogen in fish or prawn ponds, approximately 92% 

of N as feed in intensive prawn culture (Briggs and Funge-Smith, 1994). In this study, feed was 

also the major source of nitrogen in both PM and ISP. However, the amount of nitrogen 

assimilated into prawn biomass is a minor fraction (17.69% and 18.99%) of the total N applied 

as feed. This result is in close agreement with the findings of Funge-Smith and Briggs (1998) in 

Thailand, Jackson et al. (2003) in Australia and Lemonnier and Faninoz (2006) in New 

Caledonia who reported that about 18-27% of input nitrogen was assimilated into prawn tissue 

in an intensive prawn system. 

Differences in study conditions or techniques may explain the differences in contribution of 

nitrogen sources. Teichert-Coddington et al. (2000) and Shahidul Islam et al. (2004) conducted 

their studies in ponds, while the present study was conducted in the laboratory. During the study, 

although no nutrients were added to the SM, the high proportion (28.99%) of nitrogen lost 

through the water was recorded at the end of the study, probably due to the nitrogen leaching 

from decomposing dead seaweed. This resulted in a decline in water quality (Qian et al., 1996). 

Eventually, nitrogen could escape to the atmosphere in gaseous forms after denitrification 

process was completed.

According to Briggs and Funge-Smith (1994), a significant proportion of the nitrogen output 

is found in the wastes after each culture cycle. When calculating nitrogen budgets for fish or 

prawn ponds, denitrification and diffusion process are two potential losses of N to the 

atmosphere and are rarely measured directly (Briggs and Funge-Smith, 1994, Hopkins et al., 

1995, Jackson et al., 2003). Denitrification is the reduction of nitrate (NO3
-) to gaseous N2. 

Volatilisation is transmission of NH3 from the water column to the atmosphere. Therefore in 

most studies, including the present one, these factors are estimated indirectly as the difference 

between the nitrogen inputs and outputs. In the present study, the large amount of nitrogen in the 

SM was unaccounted for, probably due to nitrogen lost to the atmosphere as N2 or ammonia 

(Funge-Smith and Briggs, 1998). In contrast, only small fraction of the input nitrogen in the PM 

and ISP treatments was unaccounted for in this study. This is probably due to losing nitrogen to 
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the atmosphere via denitrification or volatilization of ammonia (Briggs and Funge-Smith, 1994, 

Martin et al., 1998, Teichert-Coddington et al., 2000, Jackson et al., 2003). 

Phosphorus

The contribution of feed to phosphorus input in the present study was observed to be the 

greatest source of phosphorus to the prawn tanks of both PM and ISP treatments. This is in close 

agreement with Funge-Smith and Briggs (1998) and Teichert-Coddington et al. (2000) who 

reported feed as the principal source of phosphorus in prawn culture. At the conclusion of the 

study, around 13-14% of the phosphorus input as feed was incorporated into prawn biomass in 

both PM and ISP. These results were comparable with those of Briggs and Funge-Smith (1994) 

and Shimoda et al. (2005), indicating that only 13% of the feed input of phosphorus to be 

incorporated into the prawn bodies at harvest. 

According to Munsiri et al. (1995), phosphorus accumulates mostly in the wastes over time. 

In this study, the budget figures have shown that the wastes accounted for a major proportion of 

P loss in the prawn tanks. In this study, a small proportion of phosphorus in waste water was 

observed in PM (14.02%) and ISP (22.91%). This was expected, as waste water from 

aquaculture ponds always contains much less phosphorus than the amount added in feeds 

because most of the phosphorus is lost to the solid wastes (Boyd and Tucker, 1998). A minor 

proportion of input phosphorus was unaccounted for in the budget (1-5%), probably because of 

losing phosphorous through leaching. 

N, P and N:P ratio in prawn and seaweed tissue

The results of this study indicate that the presence of Sargassum in prawn culture does not 

alter the assimilation of N and P into prawn biomass. The results of this study are similar to 

previous studies by Briggs and Funge-Smith (1994) and Teichert-Coddington et al. (2000) who 

found that the nitrogen and phosphorus contents were 11.5% and 1.19% in black tiger prawns 

(P. monodon), and 11.2% and 1.25% in white leg prawns (P. vannamei), respectively. It is 

expected that, most of the nitrogen and phosphorus stripped from the water within an integrated 

culture system be accounted for by subsequent gains in macroalgae biomass. 

The N:P ratio for optimal seaweed growth is within the range of 13-15. A N:P ratio < 13-15 

indicates N limitation and a N:P > 13-15 indicates P limitation. The N:P ratio is also an indicator 

used to assess the efficiency in the removal of nutrients from the aquaculture system. The initial 

N:P ratio of Sargassum used in this study was 9.87, thereby indicating N limitation. Presumably, 

this explains the rapid uptake of P observed after day 7 of the study. Unfortunately, in the 

present study, the tissue N and P content was lost due to the death of the seaweed at day 28, the 

tissue nitrogen and phosphorus contents were released to the tanks water and the total nitrogen 
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and phosphorus biomass of seaweed produced was not determined at the end of the study. 

Therefore, further studies about this problem should be conducted in the future. 

In conclusion, Sargassum sp. can be a potential seaweed species in integrating culture with 

prawns in terms of untilizating nutrient sources and improving the water quality for aquaculture 

activities. The findings of this study are considered as a reference for further studies about using 

Sargassum sp. for integrating with prawn culture.
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Figure 1. Specific growth rate of prawn biomass in treatments (mean ± S.E.). 
Note: PM = Prawn monoculture; ISP = Integrated seaweed-prawn culture. Same letters 
denote no significant difference (p>0.05).
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Figure 2. Survival rate of prawn in treatments (means ± S.E.). 
Note: PM = prawn monoculture; ISP = integrated seaweed-prawn culture. Same letters  
denote no significant difference (p > 0.05).
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Figure 3. Specific growth rate of seaweed in the treatments (mean ± S.E.).  Note: SM = Seaweed 
monoculture; ISP = Integrated seaweed-prawn culture. Different letters (a,b…) denote  
significant difference (p < 0.05). Note: Biomass of seaweed in the first week of the study.
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Figure 4. Water quality parameters in treatments recorded over the experimental period (mean ± 

SE). 
Note: PM = Prawn monoculture; SM = Seaweed monoculture; ISP = Integrated 
seaweed-prawn culture. Different letters denote a significant difference between 
treatments (p < 0.05).
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Figure 5. Nitrogen and phosphorus conversion rates from feed into western king prawn (mean ± 
S.E.). 
Note: PM = Prawn monoculture. ISP = Integrated seaweed-prawn culture. Same letters  
denote no significant difference (p > 0.05).
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Figure 6. Relationship between specific growth rate (SGR) with net N biomass gained (a) and 

with net P biomass gained (b) in culture during the experiment.
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Table 1. Removal rates (%) of nutrients in integrated western king prawn and Sargassum sp. 
culture systems (mean ± S.E.).

Variables Day 7 Day 14 Day 21 Day 28 Day 35 Day 42
TAN 29.21±7.50a 27.78±1.30a 24.96±10.13a 20.75±9.31a 15.96±5.12a 1.31±0.92b

NO2
- 55.58±6.79a 24.10±10.53b 12.87±6.43b nd nd nd

NO3
- 68.10±7.32a 61.79±11.03a 72.19±16.56a 75.04±10.25a 60.37±5.30a 52.50±5.32a

TN 43.76±6.77a 37.42±8.53a 48.75±14.58a 61.94±6.21b 48.02±3.17a 34.68±5.87a

PO4
3- 39.51±15.67a 65.85±9.11b 32.70±9.30a 5.62±3.54c nd nd

TP 24.29±3.29a 32.77±11.48a 27.62±7.72a 20.81±3.35a 14.47±3.32a 37.05±5.57a

Values in any one row not followed by the same superscript letters are significantly different at p<0.05. 
Note: TAN = Total ammonium nitrogen, DIN = Dissolved inorganic nitrogen, TN = Total nitrogen, TP = 
Total phosphorus, nd = not detectable.
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Table 2. N and P concentrations in prawn and seaweed tissue and N:P ratios at the initial and the 
end of the study (mean ± S.E.).

Species Treatments Tissue N (% DM) Tissue P (% DM) N:P ratio
Initial Final Initial Final Initial Final

Prawn PM 10.39±0.09a 10.51±0.14a 1.82±0.01a 1.72±0.20a 13.31±0.13a 14.45±0.89a

ISP 10.39±0.09a 10.89±0.46a 1.82±0.01a 1.63±0.16a 13.31±0.13a 14.13±0.81a

Seaweed SM 1.40±0.03a 1.33±0.07a 0.33±0.08a 0.27±0.03a 9.87±0.25a -
ISP 1.40±0.03a 1.39±0.08a 0.33±0.08a 0.36±0.07a 9.87±0.25a -

Note: PM = Prawn monoculture, SM = Seaweed monoculture, ISP = Integrated seaweed and prawn 
culture. Values in any one row not followed by the same superscript letters are significantly different at  
p<0.05. 
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Table 3. Nitrogen and phosphorus budget for treatments in means ± S.E. (mg per 100L).

Treatments Prawn monoculture Seaweed monoculture Integrated  seaweed  and 
prawns

Nitrogen Phosphorus Nitrogen Phosphorus Nitrogen Phosphorus
Inputs
Water 

223.04±0.09
3.60 ± 0.03 223.04  ± 

0.09
3.60 ± 0.03 223.04  ± 

0.09
3.60 ± 0.03

(%)
(12.09±0.57)

(1.39  ± 
0.07)

(59.26  ± 
2.90)

(4.47  ± 
0.45)

(10.11  ± 
0.62)

(1.15 ± 0.07)

Prawns 
475.46±38.20

83.27 ±6.69 436.25  ± 
32.79

76.40 ± 5.74

(%)
(25.63±1.81)

(32.05 
±2.21)

(19.53  ± 
0.80)

(24.16  ± 
1.31)

Seaweed 156.37  ± 
20.59

80.12  ± 
10.55

499.78 ± 
43.01

76.24 ± 5.74

(%) (40.74  ± 
2.90)

(95.53  ± 
0.45)

(22.84  ± 
2.91)

(24.59  ± 
3.54)

Feed 
1158.67±76.75

173.33  ± 
11.48

1074.87  ± 
147.12

160.80  ± 
22.01

(%)
(62.27±1.99)

(66.55  ± 
2.23)

(47.53  ± 
0.82)

(50.10  ± 
3.13)

Total 1857.16 260.20 379.41 83.72 2233.93 317.03
(%) (100) (100) (100) (100) (100) (100)

Outputs
Water 570.67±70.26 36.13 ± 0.88 113.07  ± 

13.46
24.85 ± 3.07 463.80  ± 

15.24
72.42 ± 5.78

(%) (30.52 ±2.95) (14.02 
±0.88)

(28.99  ± 
6.08)

(30.54  ± 
4.63)

(20.93  ± 
1.01)

(22.91  ± 
1.44)

Prawns 681.64±50.07 108.14  ± 
7.83

642.27  ± 
63.28

97.18 ± 4.65

(%) (36.66 ±1.64) (41.74 
±3.07)

(28.60  ± 
1.12)

(30.82  ± 
1.07)

Seaweed 49.42  ± 
20.88

12.43 ± 5.30 388.35  ± 
74.32

18.59 ± 2.99

(%) (12.36  ± 
4.51)

(13.45  ± 
3.75)

(17.93  ± 
3.77)

(5.79 ± 0.63)

Sediment 513.61 ± 22.60 111.61  ± 
11.52

31.72  ± 
4.48

42.21 ± 4.67 531.16  ± 
90.59

113.14  ± 
8.98

(%) (27.81 ±1.65) (42.63  ± 
2.86)

(8.35  ± 
1.13)

(50.92  ± 
3.57)

(23.42  ± 
2.64)

(35.67  ± 
0.94)

Unaccounted 91.24 ±12.53 4.32 ± 1.16 185.20  ± 
31.89

4.23 ± 0.50 208.34  ± 
45.43

15.72 ± 4.75

(%) (5.00 ±0.79) (1.62  ± 
0.40)

(50.30  ± 
10.66)

(5.09  ± 
0.41)

(9.12  ± 
1.38)

(4.81 ± 1.21)

Total 1857.16 260.20 379.41 83.72 2233.93 317.03
(%) (100) (100) (100) (100) (100) (100)
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