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Abstract 

 

Introduction Preterm nutritional audits have previously been conducted using assumed milk composition.  

We audited protein and energy intakes in the first 28 days of preterm life using both assumed milk 

composition and milk analysis to assess their effect on weight gain and to determine if the recommended 

reasonable range of intakes (ReasNI) were met.  

Methods  Parenteral (PN) and enteral (EN) intakes and weight gain were recorded daily for infants (n=63) 

born <33 weeks gestation, using assumed milk composition. Macronutrient composition was determined 

by milk analysis for a subset of infants (n=36).  Linear mixed models analysis was used to assess the 

influence of energy and protein intakes on weight gain. 

Results  [Data median (range)]: Infants (n=63) gestation and birth weight were 30 (24-32) weeks and 

1400 (540-2580) g, respectively.  Macronutrient milk composition was variable: protein 16.6 (13.4-27.6) 

g/L, fat 46.1 (35.0-62.4) g/L, lactose 68.0 (50.9-74.8) g/L, energy 3074 (2631-3761) kJ/L.  Intakes based 

on measured composition differed from assumed. Protein intake was significantly associated with weight 

gain.  Compared to infants with longer gestations, those born <28 weeks gestation were fed lower 

volumes, were more reliant on PN, took an additional seven days to transition to fortified feeds and 

median weight gain velocity took a fortnight longer to reach targets.   

Conclusion  Preterm milk composition is variable and routine fortification using assumed composition 

may result in inappropriate nutrition.  Fortification regimens stratified by birth gestation may be 

necessary to achieve preterm nutrition and growth targets.  Milk analysis is required for accurate 

nutritional audit. 
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What is already known about this topic: 

 

1. Preterm nutritional audits are commonly based on assumed milk composition. 

2. Macronutrient composition of human milk is variable. 

3. Growth retardation is common in very preterm infants at discharge. 

 

 

What this article adds: 

 

1. Routinely fortifying milk on assumed composition may result in inappropriate nutrition for 

preterm infants due to the variable macronutrient composition of preterm human milk. 

2. Milk fortification regimens targeted to gestational age groups may better assist in achieving 

nutrition and growth targets for preterm infants.   

3. Safe upper levels of fortification, based on milk analysis, need to be determined. 

 

Introduction 

Over the past decade, preterm nutrition research has been directed towards addressing poor growth 

outcomes that are common at discharge1 and which are related to nutritional intakes, especially in the first 

few weeks of life2.   

 

Routine nutrition practice is to fortify human milk (HM) using an assumed macronutrient milk 

composition and to audit nutritional intakes using assumed data3-5.  Prior to 2005, the standard enteral 

feeding practice in the tertiary neonatal clinical care unit (NCCU) in Western Australia was to 

preferentially feed infants their own mother’s milk (MOM) and to fortify the milk using commercial 

fortifiers, as directed by manufacturers.  Glucose polymer was further added when weight gain velocity 

was below target.  Term and preterm infant formula (IF) was fed when MOM was unavailable.   

 

A review of routine practice revealed that these fortified feeds were unlikely to meet the reasonable 

nutrient intakes (ReasNI) for protein6 and energy7 recommended in 2005 for very preterm infants8.  Thus, 

the fortification practice was revised to reflect more accurately the needs of the neonatal population9, the 

osmolalities of the feeds were measured10, and the feeds were integrated into standard clinical practice. In 

2006, using assumed macronutrient composition data, the intakes and weight gain of infants achieved 



with these feeds during the first 28 days of life was audited.  In a subset of infants, samples of milk were 

measured to determine macronutrient composition, allowing a comparison to be made between assumed 

and measured protein and energy intakes on days when milk supply permitted sampling of an infant’s 

milk feeds. 

 

Materials and Methods 

Infants born <33 weeks gestation, who were admitted to the NCCU at King Edward Memorial Hospital 

(KEMH) in Perth, Western Australia within the first 24 hours of life and who remained in the nursery for 

at least seven days, participated in this observational study.  Infants with congenital abnormalities were 

excluded.  Milk samples (when available), daily weights and feeding data were prospectively collected 

for one to four weeks for each infant, depending on length of stay.  Informed consent was obtained from 

each infant’s primary carer prior to commencing the study, which was approved by the Ethics Committee 

at KEMH. 

Feeding Protocol 

Infants were fed according to the NCCU’s 2005 feeding protocol, which was to provide intravenous (IV) 

glucose on admission to all infants and to progress to parenteral nutrition (PN) (Baxter, Glucose 20% 1L, 

Baxter Primine™ 10% 1L; Baxter™ Intralipid™ 20% 1L) and initiation of minimal enteral feeds (MEF), 

usually within two to five days, or, if clinically stable, to progress directly to enteral feeding (HM or IF).  

Amino acids in parenteral solution and lipid emulsion were initially infused at 0.5 g kg-1d-1, with step-

wise daily increments until parenteral ReasNI targets were met8.  If mothers own milk (MOM) was 

unavailable, formula was provided. Once 150 mL kg-1d-1 was achieved, human milk was fortified to 

Level I (Table I) using an assumed macronutrient composition (protein 12 g L-1, fat 38 g L-1, lactose 70 g 

L-1, energy 2800 kJ L-1, 20 kcal 30 mL-1).  Level I fortification was fed up to a maximum of 180 mL kg-

1d-1 and Level II fortification was introduced if an infant was growing poorly and was fluid restricted to 

≤150 mL kg-1d-1.  The anticipated protein and energy intakes achieved with these levels of fortification 

are summarised in Table I.  Fortification was ceased near discharge. 

HM Feeds and Sampling 

Mothers began expressing milk for their infants soon after giving birth (usually within 24 hours).  For 

quality control in the nursery, mothers used one container per milk expression, but in the home, mothers 

pooled their milk.  A mother’s milk was delivered to the hospital’s central milk room, and depending on 

stage of lactation and volume, frozen in 14 mL, 50 mL or 200 mL containers until commencement of 

enteral feeding, upon which time, it was thawed, pooled if necessary, and dispatched to the nursery as 



required.  The infant’s first milk feed was matched with the earliest milk the mother expressed and, if 

available, frozen milk continued to be fed sequentially for at least the first 14 days of feeding, after which 

time, mother’s fresh or frozen milk was fed.  This practice was to ensure infants received the colostrum 

and high protein content of the preterm mother’s early milk11, 12 and because freezing may reduce the risk 

of postnatal transmission of cytomegalovirus13. On the days when supply permitted, a well-mixed sample 

(1-3 mL) from each infant’s unfortified milk feed was collected in 5 mL polypropylene vials (Disposable 

Products Pty Ltd, Adelaide, Australia) and frozen in a commercial freezer at -200 C until analysed.   

Biochemical HM Analysis 

Macronutrient composition of milk feed was determined by routine laboratory assay in the Hartmann 

Human Milk Research Laboratory at The University of Western Australia (Perth, Australia).  Each assay 

has been described previously by Mitoulas et al14.  Protein: The protein content of the milk feeds was 

determined by a modified Bradford method15 using a commercial protein reagent (Bio-Rad Laboratories, 

Richmond. CA, USA).  The Bio-Rad Protein Assay is a dye-binding assay in which a differential colour 

change of a dye occurs in response to various concentrations of protein.  Protein standards were prepared 

from an aliquot of human milk and the protein concentration determined by the Kjeldhal method, as 

described by Atwood and Hartmann16.  The detection limit of the assay was 0.75 g L-1 (n=12) and the 

inter-assay coefficient of variation (CV) was 2.76% (n=12).  Fat: The fat concentration of unfortified 

human milk feeds was determined using the spectrophotometric method of Stern and Shapiro17. The 

detection limit of the assay was 0.82 g L-1 (n=12) and the inter-assay CV was 4.9 % (n=24). Lactose:  

The concentration of lactose in human milk feeds was determined using the modified method of Kuhn18. 

The recovery of a known amount of lactose added to milk samples was 99.04 ± 3.2% (n=10).  The 

detection limit of the assay was 0.98 g L-1 (n=12) and the inter-assay CV was 6.5% (n=12).  Energy:  The 

metabolisable energy content of unfortified milk was calculated using the Atwater conversion factors:  

protein (16 kJ g-1), fat (37 kJ g-1) and lactose (16 kJ g-1). 

Macronutrient Intake Data  

Protein and energy intakes for each infant were calculated using assumed macronutrient milk composition 

data and product nutrient composition data.  Data relating to parenteral (separated into nutritional and 

non-nutritional) and enteral fluid intakes were obtained from the daily observational charts from midnight 

on day two of life up to four completed weeks.  Intake data on day one were excluded as these were not 

representative of a complete 24-hour period.  If breastfed, and the feed was recorded as ‘breastfeed 

without top-up’, the volume consumed during a breastfeed was estimated to be equal to the infant’s 

prescribed feed volume.  If a top-up was required, the amount given was subtracted from the prescribed 



volume and the balance estimated to be the volume of milk consumed during the breastfeed.  The 

composition data obtained from the protein, fat and lactose assays were used to recalculate nutrient 

intakes for comparison between measured and assumed intake.   

Growth Data 

In keeping with nursery protocol, infants requiring intensive care (NICU) were weighed daily either in 

their incubator or with digital scales (g; SECA, Germany 10/20 kg) and those in special care were 

weighed twice weekly, with daily weight derived by interpolation between the two time points.  Daily 

weight gain velocity (g kg-1d-1) was calculated each week of the audit using an exponential model that has 

been validated in preterm infants:  [1000*Ln(Wn/W1)]/(Dn - D1)], where Ln is the natural logarithm, W is 

the weight in grams, D is day, 1 is the beginning of the time interval and n is the end of the time interval19, 

20.  Birth weight was converted to z-score using Australian national birth weight data21.  

Statistical Analysis 

Descriptive statistics for continuous data were based on medians, interquartile ranges (IQR) and ranges 

(R) or mean and standard deviation, according to normality.  Categorical data were summarised using 

frequency distributions.  Univariate comparisons between gestation groups, <28 weeks vs. ≥ 28 weeks, 

were made using Mann-Whitney tests for continuous data and Chi-square or Fisher exact tests for 

categorical outcomes.  Linear mixed models regression analysis was used to determine the association of 

weight gain with nutritional intake across the four weeks of the audit.  Candidate predictors of growth 

included energy and protein intakes and clinical factors such as respiratory support, antibiotics and days 

to full enteral feeds were also assessed for their influence on growth.  Adjustment was made for 

gestational age, birth weight z-score and days to fortification of feeds.  All tests were two-sided and p-

values <0.05 were considered statistically significant.  SPSS© 14.01 statistical software was used to 

analyse the data. 

 

Results 

Subjects 

Seventy-two infants born <33 weeks were admitted to the NCCU during the two-month recruitment 

period between 1 October and 30 November 2006.  Within the first week of life, five infants died and 

four infants were transferred to the NCCU’s surgical unit at Princess Margaret Hospital for Children, 

Perth. The median (IQR; R) gestation and birth weight of infants (n=63) were 30 weeks (27-32; 24-32) 

and 1400 g (965-1750; 540-2580), respectively.  Their clinical data, stratified by gestational age (<28 

weeks;  28 weeks), are described in Table II. 



Feeding 

Infants received nutrition from various combinations of sources [parenteral nutrition (PN), intravenous 

dextrose (IV), human milk (HM), infant formula (IF)]:  PN, IV & HM (n=30), PN, IV & IF (n=2), IV & 

HM (n=12), IV, HM & IF (n=18) and IV & IF (n=1).  Parenteral nutrition was the predominant source in 

the first two weeks of life for infants born <28 weeks gestation and continued to provide over 40% and 

20% of nutrition to these infants during the third and fourth weeks of life, respectively.  Conversely, no 

more than 20% of the nutrition provided to older infants in the first week of life came from PN and by 

week two, infants born ≥ 28 weeks gestation received over 80% of their nutrition enterally (Figure I).  

Relative to older infants, those born < 28 weeks gestation were delayed in commencing (minimal) enteral 

feeds by two days, took an additional 12 days to achieve full enteral feeds and an additional seven days 

before transitioning to fortified feeds (Table II). 

 

Milk Composition 

Three hundred and forty-one samples of human milk feeds were collected for 36 infants. The number of 

samples collected for each infant ranged from 1 to 17, and sampling was dictated by a mother’s milk 

supply, the number of days an infant was enterally milk-fed in the first 28 days of life and by the number 

of weeks the infant participated in the audit.  The macronutrient compositions of the milk feeds were 

variable over the four-week audit period and median values for protein and fat (and therefore energy) 

were higher than the assumed values (Table III).  

 

ASSUMED Protein and Energy Intakes and Weight Gain  

The assumed protein and energy enteral and combined intakes of infants during each week of the audit 

are described in Table IV.  Based on the assumed macronutrient composition of milk feeds, median 

estimated enteral and combined energy and protein intakes of infants born <28 weeks gestation did not 

meet recommended ReasNI for any week of the audit.   Furthermore, fluid intakes were low in weeks two 

to four, relative to levels to which fortification was targeted, to the levels achieved by older infants and to 

those recommended8.  The median protein energy ratio (PER) of enteral feeds did not fall within the 

recommended range until week four but the PER achieved with combined nutrition was within the range 

recommended for all weeks. 

 



Conversely, after week one, older infants were mostly enterally fed and although fluid intakes did not 

reach the levels to which fortification was targeted, fluid and energy intakes, and the PER were within the 

recommended ranges of ReasNI.  Infants met the ReasNI for protein by week three. 

 

Infants born <28 weeks gestation did not reach the third trimester fetal rate of weight gain until week four 

of the audit [week 1: -2.7 (-24.1-10.8 g, week 2: 8.1 (-8.8-29.5) g, week 3: 12.0 (-7.1-25.0) g and week 4: 

17.2 (0.0-28.9) g, whereas the weight gain of infants born ≥ 28 weeks gestation approached the fetal rate 

by week two (week 1: -10.0 (-28.2-9.2) g, week 2: 14.6 (2.2-25.2) g, week 3: 15.0 (-2.9-30.4) g and week 

4: 16.6 (1.5-22.2) g].   

 

MEASURED Protein and Energy Intake   

The measured enteral intakes of 36 infants, calculated on days when milk samples were available, were 

compared to assumed intakes on corresponding days (Table V).  Only one of these 36 infants transitioned 

to Level II fortification during the audit period.  Generally, measured enteral protein and energy intakes 

were greater than those assumed for infants in both gestational age groups.  Infants born <28 weeks 

achieved the ReasNI for enteral protein in week three but not week four of the audit, and the energy 

ReasNI was met by week three.  An enteral PER of at least 2.8, which is within the recommended range, 

was achieved throughout the four-week audit period.  Conversely, older infants met the ReasNI for 

energy in week two of the audit and exceeded it in weeks three and four.  In these latter weeks, protein 

ReasNI was met and from week two, the achieved PER was within the range recommended (Table V).  

 

The combined measured macronutrient intakes for these 36 infants were modelled against their weekly 

weight gain. Combined measured protein intake was found to have a positive effect on weight gain, after 

adjustment was made for gestational age, birth weight z-score and day of fortification; i.e. for every g 

increase in total protein intake there was an associated average 1.0 g kg-1d-1 increase in weight gain (95% 

CI 0.07-1.84, p=0.035).  

 

Discussion 

To our knowledge, this is the first Australian audit22 to assess the influence of protein and energy intakes 

on weight gain in the first four weeks of preterm life using measured macronutrient milk analyses.  



 

The mean macronutrient composition of the milk feeds was higher than the assumed values upon which 

our routine fortification was based, including protein, which was 5.1 g/L (42%) higher than the assumed 

value.  This disparity in the mean value for protein is not surprising, as the assumed value more closely 

represents the protein content of preterm milk expressed after two23 to three24 months of lactation or of 

term milk25, rather than of milk feeds made from milk expressed in the early weeks after preterm delivery, 

which was when the milk used for the feeds measured in this study was expressed.  The measured protein 

content of the milk feeds, was in close agreement with that of others who have measured the composition 

of preterm human milk during the first 1523, 26-28 to 3023, 28 days of lactation.  

 

Lai23 measured the macronutrient content of preterm mothers' individual milk samples from left and right 

breasts of each expression within a 24-hour period on several days spanning the first 60 days of lactation, 

and found it varied considerably between and within mothers, between milk expressions and between 

breasts.  Similar variations were found in the 24-hour unfortified milk intakes of the infants in this study 

which were made up from their own mothers’ individual and pooled collections of expressed milk and 

may have included milk from different days.  This variation in the composition of the feeds has 

implications for some infants if the milk feeds are then routinely fortified using an assumed composition 

as this study has shown. Nutritional intakes were not always within recommendations and measured 

intakes were different from those that were assumed.  In this audit, the majority of infants prescribed 

Level I consumed lower fluid volumes than anticipated.  It is noteworthy that at least 25% of protein 

intakes in infants ≥ 28 weeks gestation were at or above the upper limit of the reasonable recommended 

range; thus, had fluid intakes reached anticipated upper targets the potential existed for infants to 

consume protein in amounts exceeding requirements and possibly, even metabolic capacity.   

 

The risk of over-feeding may be avoided by fortifying milk on measured milk composition and new 

methods have been evaluated29-31 and are now available to facilitate its easy measurement.  However, 

milk analysis is a time-consuming task and, in a busy tertiary neonatal unit, its clinical application in 

routine practice may be limited.  Adjusting protein fortification on blood urea nitrogen (BUN) and using 

assumed macronutrient composition has proven a relatively simple and successful strategy for fortifying 

milk and for ensuring the metabolic capacity of infants is not exceeded; however, retrospective milk 

analysis, in a trial utilising this method, revealed that infants often received less protein than 

recommended and intakes were lower than assumed32.  Safe upper limits of fortification need to be 



determined and then easily implemented and safe fortification regimens need to be developed to facilitate 

clinicians in maximising fortification to achieve nutrition and growth targets. 

 

It is noteworthy that in the first week of life, infants born <28 weeks lost a smaller amount of weight than 

older infants.  This disparity is not entirely unexpected given the infants’ clinical history and the Unit’s 

nursing and feeding protocols.  Younger infants are more likely to be nursed in humidified incubators and 

to have a delayed diuresis33.  They are also more likely to be fed PN in the first week of life, compared to 

older infants.  In the last trimester of pregnancy, the age-matched fetus accrues protein at a rate of 

approximately 1.5 g kg-1d-134 to 2.0 g kg-1d-135, 36, and most of the nitrogen reaching the fetus is supplied 

as amino acids.  Approximately 1% of body protein stores is lost daily if no exogenous nitrogen is fed in 

the days following birth
37

.  In this study, infants born <28 weeks gestation were fed at a higher PER and 

their nitrogen intakes, mainly from the amino acids in parenteral solutions, were higher than those of 

older infants, whose N intakes were mainly from the protein and free amino acids in unfortified HM.  The 

amino acid preparation in the parenteral solution was an attempt to mimic the amino acid concentration in 

the cord blood of the last trimester of pregnancy (Baxter Primene™ 10%).  Early high dose amino acid 

infusions soon after birth (targets: day 1: 3.5 g kg-1d-138; on day 2: 2.4 g kg1d139 or 2.5 g kg-1d-140) have 

been shown to reverse negative nitrogen balance without adverse effect38-40 and improve short-term 

growth outcomes41-43.  Indeed, data suggest that early parenteral nutrition of only a few days may 

influence later cognition42, 44.  In this audit, over 30% of total fluid intake in the first week of life for all 

infants came from intravenous fluids other than PN, mostly due to the delay in prescribing PN or to 

ensure fluid targets were achieved whilst upgrading to full enteral feeds.  Adopting recent 

recommendations to commence PN earlier and more aggressively
45

 may improve growth of infants during 

the first week of life, avoiding the need for catch-up growth and the concerns relating to it46-49, including 

increased risk of metabolic alterations and later chronic health outcomes50-52.  

 

The short audit period limited the capacity of this study to determine the influence of macronutrient 

intake and PER on discharge and longer-term preterm growth outcomes, including body composition.  

Given that the rate of weight gain of some infants did not match the fetal rate, it is possible that the 

preterm infants in this audit may have had an altered phenotype at term corrected age, compared to the 

infant born at term53.  Further studies of longer duration are required to assess this outcome.  However, 

based on milk analysis, routinely fortifying on assumed milk composition may result in inappropriate 



nutritional intakes for some preterm infants, due to the variable macronutrient composition of preterm 

human milk. Safe upper levels of fortification, based on milk analysis, need to be determined and milk 

fortification regimens stratified by gestational age may better assist in achieving nutrition and growth 

targets. 
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Table I Routine Fortification Practice and Targeted Nutrient Intakes, Based on Assumed Milk 

Composition 

FORTIFICATION 

Level 1 – target volume 160-180 mL kg-1d-1 HMF (4g) + Promod (0.3 g) 

Level 2 – target volume 130-150 mL kg-1d-1 HMF (4 g) + Promod (0.8 g) + Duocal (3 g) 

 

EXPECTED NUTRIENT INTAKES BASED ON ASSUMED COMPOSITION  

(Protein: 12 g L-1; Energy: 2800 kJ L-1) 

 

kg
-1

d
-1 

Energy 

(kJ) 

Protein (PER) 

(g) 

  

Fluid restricted 

120 to 

≤150 mL 

 

Non-fluid 

restricted 

>150 to 180 mL 

 

Fluid restricted 

120 to 

≤150 mL 

 

Non-fluid restricted 

>150 to 

180 mL 

     

EBM 335-419 448-507 1.4-1.8 (1.9) 1.9-2.2 (1.9) 

 

Level 1 

 

n/a 

 

557-624 

 

n/a 

 

3.9-4.4 (2.9) 

 

Level 2 

 

502-628 

 

n/a 

 

3.4-4.2 (2.8) 

 

 

n/a 

 



Table II Clinical history 

  

<28 weeks 

n=15 

 

  

≥28 weeks 

n=48 

 

Variable 

 

n (%) Median (IQR, R)  n (%) Median (IQR, R) p-value 

Male 

 

7 (47%)    26 (54%)   0.905 

Gestation (wk) 

 

 26 (25-27; 24-27)   31 (30-32; 28-32)  <0.001 

Birth weight (g) 

 

 740 (635-965; 540-1185)   1545 (1263-1917; 775-2580) <0.001 

Discharge weight (g) 

 

 2850 (2360-3060; 1910-3280)    2050 (1832-2361; 1430-2935)  <0.001 

Corrected discharge gestation (wk) 

 

 39 (37-41; 36-54)    35 (34-36; 32-40) <0.001 

Days in neonatal unit (d) 

 

 85 (68-114; 57-215)    25  (15-36; 9-73)  <0.001 

Days requiring ventilation and/or CPAP                           

<28 w n=14; ≥ 28 w n=17 

 

 48 (27-65; 1-90)   11 (3-21; 1-34)  0.001 

Courses of antibiotics ≥ 2    (n (%)) 

 

11 (73%)    7 (15%)   <0.001 

Days on parenteral nutrition 

<28 w n=15; ≥ 28 w n=18 

 

 19  (8-26; 4-39)    7 (4-12; 1-23)  0.003 

Days to minimal enteral feeds 

 

 4 (3-8; 3-11)   2 (2-3; 1-10) <0.001 

Days to full enteral feeds 

 

 17 (10-28; 8-40)    5 (3-9; 2-41)  0.001 

Days to fortification of feeds 

<28 w n=11; ≥ 28 w n=42 

 

 16 (14-22; 10-27)    9 (6-14; 1-46)  0.008 

 



Table III Composition of Unfortified Milk Feeds Fed During the First Four-Weeks of Life 

 

 Measured (n=341 feeds) Assumed 

  

Mean (SD) 

Median (IQR; R) 

 

 

Mean 

 

Protein (g L
-1

) 

 

 

 

17.1 (2.6) 

16.6 (15.4-18.2; 13.4-27.6) 

 

12 

Fat (g L
-1

) 

 

 

46.4 (6.2) 

46.1 (42.2-50.9; 35.0-62.4)  

38 

Lactose (g L
-1

) 

 

 

68.1 (4.4) 

68.0 (66.4-71.1; 50.9-74.8)  

70 

Energy (kJ L
-1

) 

 

 

3080 (255) 

3074 (2913-3193; 2631-3761) 

2800 

Energy (kcal 30 mL
-1

) 

 

 

22 (2) 
22 (21-24; 19-28) 

20 
 

PER (1 g:419 kJ) 

 

 

2.4 (0.3) 

2.3 (2.2-2.5; 1.8-3.2) 

1.8 

 

Values - Mean (SD) and Median (range), PER - protein to energy ratio; 4.184 kJ = 1 kcal 



Table IV Estimated intakes for all infants (n=63) calculated using assumed milk composition, compared with ReasNI for transitional and growing periods  

 

<28 Weeks Gestation Audit 

week 

Infants 

(n) 

Fluid 

(mL kg
-1

d
-1

) 

Energy 

(kJ kg
-1

d
-1

) 

Protein 

(g kg
-1

d
-1

) 

PER 

(g protein:100 kcal) 

Transition 

Parenteral ReasNI 

Enteral ReasNI 

   

90-140 

90-140 

 

314-356 

377-419 

 

3.5 

3.5 

 

Enteral Feed 1 15 1 (0-18) 4 (0-50) 0.0 (0.0-0.2) 0.6 (0.0-1.5) 

Combined Nutrition Sources 134 (116-165) 199 (145-255) 1.4 (0.6-2.4) 2.4 (1.4-4.2) 

Stable-Growing       

Parenteral ReasNI 

Enteral ReasNI 

  140-180 

160-220 

440-482 

545-629 

3.5-4.0 

3.8-4.4 

3.0-3.8 

2.5-3.4 

Enteral Feed 2 15 8 (0-133) 5 (0-100) 0.1 (0.0-2.6) 1.5 (0.3-2.5) 

Combined Nutrition Sources 140 (124-162) 333 (237-476) 2.2 (1.6-4.1) 3.0 (1.8-5.0) 
       

Enteral Feed 3 15 90 (1-170) 295 (3-591) 1.5 (0.0-4.1) 1.8 (0.8-2.9) 

Combined Nutrition Sources 141 (101-170) 421 (222-591) 3.3 (1.5-4.3) 2.9 (1.7-5.2) 

       

Enteral Feed 4 15 139 (0-159) 477 (0-550) 3.2 (0.0-3.8) 2.8 (0.3-2.9) 

Combined Nutrition Sources 139 (120-159) 477 (304-550) 3.4 (2.2-4.0) 2.9 (2.7-5.5) 

≥28 Weeks Gestation       

Transition 

Parenteral ReasNI 

Enteral ReasNI 

   

90-140 

90-140 

 

251-293 

314-377 

 

3.5 

3.5 

 

Enteral 1 48 74 (8-93; 0-125) 210 (1-393) 1.0 (0.0-2.2) 1.8 (0.0-2.6) 

Combined  128 (101-145) 271 (172-405) 1.2 (0.1-2.2) 1.4 (0.1-3.2) 

Stable-growing       

Parenteral ReasNI 

Enteral ReasNI 

  120-160 

135-190 

377-419 

461-545 

3.2-3.8 

3.4-4.2 

3.2-4.2 

2.6-3.8 

Enteral 2 40 149 (8-171) 482 (24-586) 2.7 (0.1-4.0) 2.3 (1.5-2.9) 

Combined  153 (121-171) 485 (270-586) 2.9 (0.9-4.0) 2.6 (0.1-4.2) 

       
Enteral 3 32 151 (37-169) 518 (105-584) 3.5 (0.4-4.1) 2.8 (1.5-2.9) 

Combined  152 (124-169) 518 (259-584) 3.5 (1.2-4.1) 2.9 (1.8-3.3) 

       

Enteral 4 19 153 (3.0-166) 525 (8-576) 3.6 (0.1-4.0) 2.9 (1.0-2.9) 

Combined  153 (128-166) 525 (223-576) 3.6 (1.7-4.0) 2.9 (2.5-2.9) 

 

Combined intake (parenteral, enteral (assumed composition) and IV); PER protein to energy ratio; ReasNI Reasonable nutrient intakes8; 4.18 kJ = 1 kcal; Data are median (range). 



Table V Comparison of enteral intakes of a subset of infants (n=36), using assumed vs. measured macronutrient milk composition 

 

 

 Week Infants Milk Samples Fluid Energy  Protein PER 

 

  (n) (n) (mL kg
-1

d
-1

) (kJ kg
-1

d
-1

) (g kg
-1

d
-1

) (g protein:100 kcal) 

Assumed  

    

23 (9-38) 

64 (22-107) 0.3 (0.1-0.5) 1.8 (1.8-1.8) 

Measured  

1 2 2 

54 (18-90) 0.4 (0.1-0.7) 3.2 (3.0-3.4) 

Assumed     

111 (3-156) 

319 (9-486) 1.4 (0.0-3.4) 1.8 (1.8-2.9) 

Measured  

2 8 33 

314 (8-565) 1.9 (0.1-4.0) 2.8 (2.5-3.9) 

Assumed     

147 (17-170) 

504 (48-588) 3.5 (0.2-4.1) 2.9 (1.8-2.9) 

Measured 

3 8 30 

571 (48-642) 3.9 (0.2-4.4) 2.8 (1.9-3.1) 

Assumed      

143 (99-159) 

 

491 (277-550) 3.4 (1.2-3.8) 2.9 (1.8-2.9) 

Measured 

4 11 52 

574 (283-592) 3.7 (1.2-4.4) 2.8 (1.8-3.3) 

Infants ≥ 28 weeks gestation 
 

 
     

Assumed      

73 (4-148) 

205 (10-474) 0.9 (0.0-2.8) 1.8 (1.8-2.5) 

Measured  

1 6 9 

256 (12-703) 1.4 (0.1-4.3) 2.3 (2.0-4.1) 

Assumed     
146 (3-169) 

 

474 (10-580) 2.4 (0.0-4.1) 2.2 (1.8-2.9) 

Measured  

2 23 77 

527 (9-762) 3.3 (0.1-5.6) 2.8 (2.3-3.8) 

Assumed     

152 (73-171) 

 

513 (206-593) 3.5 (0.9-4.2) 2.9 (1.8-2.9) 

Measured 

3 18 70 

610 (258-693) 4.1 (1.2-5.6) 2.9 (1.9-3.5) 

Assumed      

155 (131-166) 

 

538 (501-578) 3.7 (3.3-4.1) 2.9 (2.7-2.9) 

Measured 

4 14 63 

592 (517-699) 4.1 (3.7-4.8) 2.8 (2.4-3.3) 

PER - protein to energy ratio; ReasNI - Reasonable nutrient intakes8; 4.18 kJ = 1 kcal; Data are median (range)  

 




