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Thermodynamic information is central to assessment of the stability and reactivity of materials.

However, because of both the demanding nature of experimental thermodynamics and the

virtually unlimited number of conceivable compounds, experimental data is often unavailable or,

for hypothetical materials, necessarily impossible to obtain. We describe simple procedures for

thermodynamic prediction for condensed phases, both ionic and organic covalent, principally via

formula unit volumes (or density); our volume-based approach (VBT) provides a new

thermodynamic tool for such assessment. These methods, being independent of detailed

knowledge of crystal structures, are applicable to liquids and amorphous materials as well as to

crystalline solids. Examples of their use are provided.

1. Introduction

Thermodynamics owes its present form thanks to the genius of

Josiah Willard Gibbs, a determinedly obscure and unassuming

Yale professor of mathematical physics, who also laid the

foundations of both vector analysis and of statistical

mechanics. He developed thermodynamics into such a precise

and workable format that very little of the basic theory has

needed to be changed subsequently or to any degree. While the

subject retains its prominence and importance in the 21st

century, emphasis has now shifted somewhat from a desire to

understand existing processes towards a need to predict

thermodynamic outcomes for newer materials. The com-

pounds involved may represent the first examples of exciting

new compounds with all the promise of displaying unusual or

new chemical or physical properties to form the basis of

modern materials science but, for such materials, we often

have no thermodynamic information whatsoever—and therein

lies the challenge. Some of these materials may be potential

targets for synthetic endeavours, and different possible routes

may need to be explored, for which thermodynamics provides

guidance, as is outlined in the following tutorial review.

Thermodynamics has two faces: its theoretical face deals

with relationships between thermal properties, such as the

relation between entropy, S, and heat capacity, Cv or Cp:

dS 5 (Cv/T)dT + (a/k)dV (1)

dS 5 (Cp/T)dT 2 Vadp (2)
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where a 5 coefficient of cubic thermal expansion:

LVm

LT

� �
p

~Vma (3)

and k 5 coefficient of isothermal compressibility:

LVm

Lp

� �
T

~{Vmk (4)

while its experimental face deals with the data, such as the heat

capacities and corresponding coefficients which are required in

order to calculate an entropy. This data may be supplemented

by statistical and quantum mechanics or by empirical

modelling, which provide theoretical approaches for generat-

ing data. In this way, extensive data tables1,2 have been

generated by thermodynamics practitioners, so providing the

raw basis on which thermodynamics is applied.

Unfortunately, there are severe limitations in data genera-

tion, both in the exacting nature of experimental thermo-

dynamics (coupled with its general demise as a ‘‘worthwhile’’

pursuit, which has seen the closure of numerous first rate

thermochemical laboratories in recent decades!) as well as

the nearly unlimited number of atom combinations which

are available for generating conceivable compounds.

Consequently, there is no possibility of ever producing a

comprehensive set of tables of experimental data, even after

excluding the fact that such tables cannot contain experimental

data for materials which have not yet been prepared!

Nevertheless, assessment of the thermodynamic feasibility of

the potential preparative reactions that might produce new

materials and of their energetics, prior to an actual synthesis,

remains as ever an attractive goal. The remedies available to

tackle such a problem are either the application of theoretical

procedures or development of reliable predictive methods by

which these target data can be produced for materials in

advance of their preparation.3 This situation is akin to problems

currently involved in protein structural studies. There, the ease of

DNA base-pair sequencing (from which protein sequences may

be trivially derived using the genetic code of a triplet of base

pairs encoding for each amino acid residue) as contrasted with

the experimental difficulty of determining the folded structure of

the protein, means that theoretical, predictive methods are

needed and must be sought in order to generate the native

structures of the folded proteins.

The present review is a tutorial presentation of simple,

additive, empirical methods of thermodynamic prediction for

condensed phases, with emphasis on volume-based methods,

rather than consideration of the more theoretical procedures

best suited to application and use by skilled practitioners.

These simple predictive thermodynamic methods have been in

use (although for limited purposes) for a considerable time. As

a pertinent example, all undergraduates are taught the

application of bond energy/enthalpy rules, whereby the

internal energy, U (or enthalpy, H), of a compound is treated

as the sum of the energies of its constituent bonds, so that the

energy of a gas phase reaction can be estimated as the

difference of the energies of the bonds broken and formed

during the reaction.

Beyond such simple bond energy procedures, more sophis-

ticated and reliable group energy methods are available which

have contributed considerably to improved understanding of

reaction thermodynamics. Indeed, the capability of theoretical

thermodynamic predictions for complex inorganic gas-phase

materials, using ab initio molecular orbital procedures,

has developed apace in recent years, notably for prediction

of enthalpies of formation, adiabatic electron affinities,

and ionisation potentials, without reliance on embedded

parameters.4

The required analysis is further complicated by the fact that

kinetic considerations may (and often do) feature in the

conclusions to be reached, but this will necessarily be ignored

in the present context.

For a full understanding of the thermodynamics of

materials, it is necessary also to have access to their entropies,

S, which, together with the enthalpies, H, yield the Gibbs

energies, G, from which thermodynamic prediction may be

made. Although the empirical rules developed by Latimer gave

an early impetus, together with other later developments,5

entropy prediction has been, in general, a more intractable

problem than that of energy/enthalpy prediction and so, for

undergraduates, is sometimes left simply at statements that

entropies of larger, more mobile molecules are greater than

entropies of molecules which are smaller and less mobile.

Again, more sophisticated methods are available, based on

statistical mechanical analysis of the energy levels accessible to

the molecular system, and so most readily applicable to

molecules in the gas phase. Correspondingly, knowledge of the

phonon spectrum of a solid can permit calculation of its heat

capacity and/or entropy.

Even given these powerful procedures, there is a clear

need for simple, straight-forward predictive thermodynamic

methods for general use which will, for example, permit deeper

understanding of chemical synthetic and stability questions,

such as: why do some procedures form the desired products,

while others do not; will an hitherto unprepared material be

stable; what energy is released during the decomposition of a

selected material?

2. Classification of additive predictive methods

The methods of predictive thermodynamics are often additive

approximations, based on summation of the values of

properties of components of the system under consideration,

and we will focus on such methods. We have developed a

classification of additive methods as in Fig. 1, with the higher-

order approximations requiring correspondingly larger num-

bers of empirical parameters for their summation (by contrast,

an earlier classification6 was couched in different terms).

For the purposes of classification we propose that a zero

order approximation is system based—such as focussing on the

class of inorganic solids—and (seemingly paradoxically!)

independent of any molecular parameters. Examples of

such additivity approximations are: Dulong and Petit’s

rule for the molar heat capacities of monatomic metals

(Cp y 25 J K21 mol21); Trouton’s rule for the entropy of

boiling-point (Tb) vaporization of organic molecules (DvapS y
90 J K21 mol21, also implying that DvapH y 90 Tb);

Richards’s rule for the entropy of fusion of rigid spherical

molecules (DfusS y 7–14 J K21 mol21); Walden’s rule for the
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entropy of fusion of rigid non-spherical molecules (DfusS y
20–60 J K21 mol21); and Westwell et al.’s correlations7

between sublimation (DsubH) and vaporization (DvapH)

enthalpies and melting, Tm, and boiling, Tb, temperatures

(see Table S1, in the electronic supplementary information

(ESI){)—as well as a host of others.5 The only information

required for application of a zero order approximation is that

of the general nature of the species involved in the prediction.

The approaches in this category are not simply ‘‘rules of

thumb’’ since they generally have a sound theoretical basis.

A first order approximation depends on a single property

possessed by the set of atoms comprising the chemical unit

under study; for example, molar entropies are found to vary

quite closely linearly with molar volumes.8,9 An important

consideration is that these first order methods are independent

of details of the relative placement of the species, because they

invoke only properties of the molecular entity as a whole. An

implication of this simplifying assumption is that the

procedures should apply equally well to materials in any

condensed phase (crystal, liquid or amorphous). These first

order approximations are now known to be of particular

significance since the properties of mixed systems are

themselves additive: the lattice energies of ionic materials

are weighted sums of the lattice energies of their ‘‘constituent’’

materials (e.g., fluoroapatite, Ca5(PO4)3F, may be taken

to consist of 1/2CaF2 + 3/2Ca3(PO4)2 to a first order

approximation).10–12

A second order approximation corresponds to the additivity

of atomic (or ionic) properties; some properties which can be

evaluated on this basis are molar mass (which, in chemical

terms, is an exact atom summation, but is less successful for

purposes of nuclear physics); molar volume (as in the case of

atom13 or ion additivities,14 or our isomegethic rule15—see

below); atomic heat capacity (Neumann–Kopp rule);5 and

magnetic susceptibility.14

A third order approximation corresponds to the additivity of

local linkages, such as chemical bonds. As previously

mentioned, enthalpies of reaction can be estimated by

reference to differences between the enthalpies of bonds2

formed and bonds destroyed during the course of a reaction.

The most complex (and also most extensively developed) of

the additivity methods is that of fourth order: the group

additivity methods.16 Group methods rely on the identification

of groups (such as methyl, hydroxyl, etc.) within molecular

species, and evaluation of parameters relating to these groups

which are transferable for the property concerned.

Examples3,5,6 are group additivities for: heat capacities;

energies (and enthalpies) of formation; absolute entropies;

enthalpies and entropies of fusion, vaporization and dissolu-

tion; molar volumes (and, hence, densities); and many others,

too many to reference in the present limited review.

As has been noted above, increasing order in this classifica-

tion implies involvement of increasing numbers of the

associated empirical parameters. Thus, for atomic properties

(being of second order), a property value (such as mass) is

required for each element in the periodic table, while bond

additivities (of third order) require values for each of the many

bond types which go towards pairing elemental contributions.

Group properties (fourth order) require not only parameters

for each type of group but also for their varying steric and even

electronic interactions. Accordingly, group property tables

accompanying such methods inevitably contain many fitted

parameters. Furthermore, such group properties have largely

been developed for gas phase systems, while similar properties

of condensed phases have been neglected. However, there are

also extensive tables and group methods for prediction of

sublimation thermodynamics17 which can be paired with the

gas-phase predictions to yield properties for the condensed

phase.

The power of any method used in predictive thermody-

namics is governed by several factors. These include the scope

and versatility of the method (i.e., the number and variety of

thermodynamic systems—real, counterintuitive or even

hypothetical—that can usefully be treated by it); the simplicity

of the approach (i.e., the order of the approximation required,

cf. Fig. 1, where the lower the order, the more the approach is

oriented towards everyday use); the feasibility of the

approach (i.e., whether the necessary parameters/data are

either available or capable of estimation); and the reliability of

the values thereby predicted. In our ‘‘volume-based’’ thermo-

dynamics approach,18,19 we believe that we have optimised

the above four criteria to produce an approach which is

amenable to the exploration of the thermodynamics of new

materials as well as being applicable to more traditional

compounds.

3. Calculation procedure

As is typical of any maturing subject, chemistry is increasingly

quantitative in nature. Thus, if today’s inorganic chemist is

faced with a possible choice of synthetic routes by which to

prepare a new material, s/he might well wish to explore

their thermodynamic feasibilities (i.e., determine the magni-

tude and sign of DG for each route). The main problem

here is the need to acquire the necessary thermodynamic

data for the new material. The problem of estimating DG

Fig. 1 Hierarchy of thermodynamic additivity methods. Note that as

we descend the diagram the number of parameters required to be

specified per molecule increases. N 5 number of atoms; G 5 number

of groups; P 5 number of group-interaction parameters.

868 | Chem. Soc. Rev., 2005, 34, 866–874 This journal is � The Royal Society of Chemistry 2005



for such reactions, where the data is unknowable, can be

tackled from the standpoint of a thermochemical cycle

(Fig. 2) using the subterfuge of introducing alternative steps

in the cycle by which the estimation of data for the new

material becomes possible by procedures outlined in this

review.

DG for the target synthetic reaction is obtained, in principle,

as the difference in the Gibbs energies of formation of

the target salt and the sum of the Gibbs energies of

formation of the starting materials (allowing also for the

Gibbs energies of any other materials produced in the

synthesis). However, since DfGu{MpXq,c} is almost certainly

unknown (the target salt being an entirely new material)

the direct route to obtain DG is not an option. We elect,

therefore, to calculate DH from the above cycle using the

equation:

DH 5 gDfHu{gaseous ions} 2 UPOT{MpXq} 2 nRT 2

gDfHu{starting materials} (5)

The quantity: gDfHu{gaseous ions} may be obtained either

from available literature data, if the ions are already known, or

else by resort to an ab initio computation (see ref. 20, for

example). The quantity: gDfHu{starting materials} is often

known from standard data tables. The lattice enthalpy term

consists of the lattice (potential) energy, UPOT{MpXq}, and

an appropriate number, n, of RT terms, where there is added

(nM/2 2 2)RT for each ion produced, where nM 5 3 for

monatomic gaseous ions, 5 for linear polyatomic ions, and 6

for non-linear polyatomic ions.21 The lattice potential energy is

a function of the assigned charge and 1/Vm
1/3, where Vm can be

estimated by any of the routes shown in Fig. 3.

The entropy change, DS, for a target reaction can be

estimated directly and without resort to a cycle since:

DS 5 S298u{MpXq,c} 2 SSo
298{starting materials}. The

standard entropy for the new material, S298u{MpXq}, can be

estimated (for details, see below, Table S3 in the ESI,{ and

ref. 8,9) from:

S298u{MpXq} 5 k Vm{MpXq} + c (6)

Fig. 2 Born–Haber–Fajans thermochemical cycle, which provides an

alternative (i.e., indirect) route for the estimation of DH for the

preparation of MpXq(c).

Fig. 3 Scheme for the determination of the formula unit volume, Vm. The value obtained may be checked using the atomic data table of D. W. M.

Hofmann.13 Determination of Vm then provides a route to thermodynamic data (as indicated in the lower half of the figure).
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Use of Latimer’s rules5 for the estimation of S298u{MpXq,c}

would offer an alternative approach. DG is then calculated as

DH 2 T DS.

4. Volume-based thermodynamics (VBT)

We now consider how our first order methods may be applied

to such thermodynamic prediction. The VBT method is easy to

apply and can be used for a variety of problems, often leading

to equations which have extremely simple forms. The key

parameter, central to the approach, is that of formula unit

volume, Vm, and Fig. 3 conveniently summarises the various

possible methods available for estimating such data. In most

cases the procedure is self-explanatory, although additional

notes appear below.

There are readily accessible tables22 of ionic and atomic

radii, r, from which ionic volumes may be estimated (54pr3/3,

assuming the ions to be simple spheres). The use of volume as a

size parameter14 instead of radius has the important advantage

that it is more direct, permitting an improved representation of

non-spherical ions.

If we know the unit cell volume, Vcell, and the number of

molecules in the unit cell, Z, then Vm 5 Vcell/Z. Alternatively,

from the density,19 r/g cm23, since densities are inversely

related to molar volumes by a strict mathematical relation

involving the Avogadro constant, we obtain:

Vm/nm3 5 1.66 6 1023 (M/g mol21)/(r/g cm23) (7)

If for solid MpXq (for example), the individual ion volumes,

V{Mq+} and V{Xp2} are known then by, ion volume

additivity:18 Vm{MpXq} # pV{Mq+} + qV{Xp2}. The iso-

megethic rule15 is extremely powerful for generating ion and

formula unit volumes, particularly for hypothetical materials

or for those materials having no other data source (see Section

5 below). Another approach20 is to equate V for an ion as the

volume enclosed inside the 0.001 au electron density contour at

B3LYP/6-31+G* level. The volumes yielded by different

experimental procedures (e.g., those from solution rather than

from solid state sources) are not necessarily equivalent, and

each property must be studied for its own features. Thus, we

have established14 the following relations among various

classes of ionic volumes, using Marcus’s ionic volumes, VM,

(which are derived from ionic radii) as reference.23 VJ here

refers to Jenkins et al.’s volumes (which are the ion volumes

referred to in this paper and included in our database18).

Cation volumes: VJ/nm3 # (1.258 ¡ 0.016) VM/nm3 (8a)

Anion volumes: VJ/nm3 # (1.342 ¡ 0.041) VM/nm3 +
(0.0205 ¡ 0.028) (8b)

Ionic refraction volumes: (RD/NA)/nm3 #
(0.594 ¡ 0.005) VM/nm3 (8c)

Diamagnetic susceptibility volumes: 2106xm/NA #
(10.51 ¡ 0.054) VM/nm3 + (0.022 ¡ 0.004) (8d)

(Clearly, the latter two measures should be taken simply as

empirical correlations.)

In a survey of 182 239 crystal structures from the Cambridge

Structural Database (CSD), Hofmann13 derived average

volumes (in Å3 5 103 nm3) for the elements, as listed in

Table 2 of his paper. An account of local environment for

certain atoms (i.e., C, H, N, O and F) is ideally needed to

prescribe appropriate volumes in all circumstances (by adding

a functional group dependence) and so volumes derived

involving these atoms are not always reliable. In most cases,

our ion additive volumes and those of Hofmann (although

more suited to estimating the total Vm) often agrees quite

well and his approach can be used as an alternative source of

volume generation for the VBT method (e.g., our volume

database17 gives V{Nb2OCl10
22}/nm3 # 0.353 (¡0.015)

for the ion whereas from Hofmann we have:

V{Nb2OCl10
22}/nm3 # [2{37 (¡2)} + 11.39 (¡0.17) +

10{25.8 (¡3)}]/1000 5 0.343 (¡0.010)).

4.1 Enthalpies of condensed phases: ionics: lattice energy

Prediction of the enthalpies of formation of ionic compounds

often relies on evaluation of their lattice energies, UPOT (via the

Born–Haber–Fajans cycle), this being the ionic equivalent of

the enthalpy of evaporation. However, lattice energies for ionic

materials cannot be measured experimentally because they

involve separation into independent gas phase ions of the ions

constituting the condensed phase, whereas ionic materials

generally dissociate experimentally into neutral atoms or

neutral atom groups. Theoretical calculations are possible—

either quantum or empirical modelling—but these are complex

and time-consuming and often apply to relatively small

systems. However, coulombic forces are dominating in ionic

systems, and thus coulomb-based equations which predict

lattice energies work rather well – generally to better than 5%.

Historically, the initial impetuses in this direction were the

Born–Mayer and Born–Landé equations, as adapted by

Kapustinskii and Yatsimirskii initially (and reviewed24 50

years ago next year in the predecessor to Chemical Society

Reviews!) to represent binary ionic solids:

UPOT~
Anjzzz{j

SrT
1{

r

SrT

� �
(9)

where z+,z2/electron units are the integer charges on the

cations and anions, respectively, n is the number of ions per

formula unit, r is a compressibility constant (usually chosen as

r 5 0.0345 nm), <r> is the sum of the cation and anion

thermochemical radii, and A (5121.4 kJ mol21 nm) is an

electrostatic constant. Glasser25 generalized Kapustinskii’s

equation to ionic systems of essentially any complexity by

the substitution:

n zzz{j j[
X

i

niz
2
i ~2I (10)

where I is the ionic strength factor of the formula unit, and

<r> becomes the weighted-mean ionic radius. The generalized

lattice energy equation is then:

UPOT~
2AI

SrT
1{

r

SrT

� �
(11)

It is in this context that thermochemical radii are generated

and used.
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Avoiding the unnecessary assumption of sphericity, we have

more recently established18 the general lattice energy relation

to the inverse-cube root of the formula unit volume, Vm:

UPOT~2I
a

V
1=3
m

zb

 !
(12)

where a and b are empirical constants (see Table S2 in the

ESI{), determined by fitting to extensive experimental data.

The presence of the inverse cube root is convenient since it

means that we can tolerate small errors in estimates of the

volume, Vm, without compromising the resultant lattice energy

estimate.

The linear correlation for the above relation, eqn (12),

applies satisfactorily only to lattice energies less than

5 000 kJ mol21, making it unsuitable for the more complex

ionic materials, including most minerals. However, a limiting

version of the equation (for UPOT . 5 000 kJ mol21), which

contains no empirical constants whatsoever and yet satisfacto-

rily predicts lattice energies beyond 5 000 kJ mol21 up to

70 000 kJ mol21 (and probably beyond), takes the form:26

UPOT 5 AI(2I/Vm)1/3 (13)

From the relation of formula unit (or molecular) volume to

density (see eqn (7)), the above equations can also readily be

applied using densities, either experimental or estimated.

4.2 Hydrate, MpXq?nH2O, and solvate, DfHu MpXq?nS

thermodynamics

The lattice energies of hydrates, UPOT{MpXq?nH2O}, on the

other hand, are evaluated using equations based on our

thermodynamic Difference Rules:10,11

UPOT{MpXq?nH2O} 5 UPOT{MpXq} + nhU{H2O} (14)

where hU{H2O} 5 54.3 kJ mol21, as empirically determined.

Lattice energies of solvates, UPOT{MpXq?nS}, in general can be

obtained in a similar way:

UPOT{MpXq?nS} 5 UPOT{MpXq} + n hU{S} (15)

It is important to note that eqn (12) does not return a value

of UPOT{MpXq?nH2O} if Vm{MpXq?nH2O} is substituted for

Vm, since lattice energies are not simply additive as are the

volumes (see Scheme 3 in ref. 10, offering guidance as to which

equations are appropriate to use in various circumstances).

The Difference Rule has also provided a more extensive set

of thermodynamic relationships, of the form:

[P{n-solvate} 2 P{parent}] 5 nhP{S,s-s} (16)

[P{n-solvate} 2 P{n9-solvate}]/(n 2 n9) 5 hP{S,s-s} (17)

where P 5 DfHu, DfGu, DfSu or S298u (in addition to UPOT and

Vm) both solvate and parent being in the solid (condensed)

state, s-s, such that it is only necessary to know pairs of values

P{parent} and P{n-solvate} or else P{n-solvate} and

P{n9-solvate} in order to be able to estimate either the

remaining data for all hydrates in the series or for all the

solvates and the missing parent (MpXq) value. Values of

hP{S,s-s} have been established11 for the following: S 5 H2O

(hydrates)(P 5 DfHu, DfGu, DfSu, S298u, UPOT and Vm); D2O

(P 5 DfHu); NH3 (P 5 DfHu, DfGu, DfSu, S298u); ND3

(P 5 DfHu, DfGu, DfSu, S298u); (CH3)2O (P 5 DfHu, DfGu, DfSu,
S298u); NaOH (P 5 DfHu); CH3OH (P 5 DfHu); C2H5OH

(P 5 DfHu); (CH2OH)2 (P 5 DfHu); H2S (P 5 DfHu) and SO2

(P 5 DfHu).

4.3 Entropies of condensed phases. Standard entropies, S298u

One of the set of six Maxwell relations can be derived from

eqns (1) and (2), namely:

LS

LVm

� �
T

~
Lp

LT

� �
V

~
a

k
(18)

Since a/k is approximately constant for condensed phases of

similar type (whether ionics or organics), this equation

suggests that entropy is linearly correlated with formula unit

(molar) volume. We have found that the correlation implied is

obeyed rather well over sets containing hundreds of ionic

materials8 (Fig. 4 and Table S3a in the ESI{), minerals8

( Table S3b{), and thousands of organic liquids and solids9

( Table S3c{). We have observed no systematic violations of

these correlations (at this level of approximation) among any

of the materials studied.

We ascribe the reliability of these correlations to the fact

that the derivative (hp/hT)V represents the increase in pressure,

p (at fixed volume, V), arising from a rise in absolute

temperature, T. This increase in pressure results from attempts

at reduction in the intermolecular spaces (rather than of the

excluded volumes of the molecular groups themselves, which

are largely incompressible) against the intermolecular forces,

where forces acting in the intermolecular spaces are similar

within a given group of materials.

Specializations for groups of related materials ( Table S3a of

the ESI{) should be studied if greater accuracy is required. For

silicate minerals ( Table S3b of the ESI{), for example, the very

simple linear correlation against formula unit volume can be

improved by adopting different entropy/volume parameters

Fig. 4 S298u/J K21 mol21 plotted versus formula unit volume, Vm, for

137 anhydrous and hydrated inorganic salts. See Table S3a in the ESI{
for regression parameters.
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for each different coordination site within the mineral—this, of

course, implies that the mineral structure is known (or

guessed), which is not required for the linear correlation.

5. The isomegethic (mecehoz {megethos} 5 size)
rule15

The recently-developed and extremely powerful isomegethic

rule is used for the estimation of ion volumes and is formulated

as follows:

Ionic salts of the same chemical formula and, with very few

exceptions, having identical charge states (i.e., lattice ionic

strength factors, I), will have approximately equal formula unit

volumes, Vm.

Immediately, since their volumes are approximately equal,

so also (according to relations and correlations already

considered) will be their densities, r, lattice potential energies,

UPOT, and standard absolute entropies, S298u.
We choose the estimation of volume data for S2

+ salts as an

example of the application of the isomegethic rule. The volume

is needed for S2
+, but no salts of this cation have ever been

prepared, so there is neither crystal structure data nor density

information available, nor are there species of the ion in

solution which might provide correlations14 with the solid

state. This leaves us (see Fig. 3) with the choice of using

ab initio or isomegethic routes. The isomegethic rule provides

estimates by approximating:

V{S2
+} # KV{S4

2+} (19)

or

V{S2
+} # V{S2N+} + V{O2

2} 2 V{NO2
2} (20)

Since there are salts of the S4
2+ and S2N+ cations, with

crystal structure data available so that both V{S4
2+} and

V{S2N+} may be estimated and, since both V{O2
2} and

V{NO2
2} appear in our database,18 we can obtain V{S2

+}

and proceed.

Other relationships (by no means exhaustive) which can be

invoked using the rule are illustrated by the following diverse

examples:

V{Ti4F18
22} # 4V{TiF4} + 2V{F2} (21)

here involving a neutral molecular species, or for the species

NOx and ClOy, which can occur either as cations or anions:

Vm{NOx
+ClOy

2} # Vm{NOy
+ClOx

2} #
Vm{ClOy

+NOx
2} # Vm{ClOx

+NOy
2}

(22)

Numerous examples of the application of the rule for different

species and properties have been presented.15

6. Quantitative predictions for thermodynamic data
using VBT

If there ever was a field where thermodynamic data are

difficult to come by experimentally it is that of inorganic

fluorine chemistry—for the obvious reasons of the instability

of the compounds, their tendency to be hygroscopic or to

hydrolyse in solution, and their inherent reactivity or tendency

to spontaneously detonate, and other properties. It is not

surprising therefore that it was partly within this area that our

method found its origins, as a response to the practical

problems and needs of experimentalists. Thus, in probing this

area our method found useful application in generating

quantitative thermochemical data which has been subse-

quently verified by ab initio calculation.27 Another pertinent

example of the application of our procedures is in the study of

complex inorganic reaction systems, where reactions in the

electrochromic Prussian Blue system have been successfully

elucidated.28 Exploration continues both in fluorine chemistry,

as in other branches of chemistry.

Example application: use of VBT to probe the thermo-

dynamics of the decomposition mode of the (hypothetical)

material N5
+N3

2

The question has recently arisen20 as to whether solid N5
+N3

2

(and indeed N5
+N5

2) can be a stable allotrope of nitro-

gen. We consider the former question here. From the cycle:

DH/kJ mol21 5 UPOT{N5
+N3

2} + 3/2 RT 2
DfHu{N5

+,g} 2 DfHu{N3
2,g} (23)

and taking DfHu{N5
+,g} 5 1478.6 kJ mol21 and

DfHu{N3
2,g} 5 197.5 kJ mol21 (as estimated by ab initio

routes26 and close to the value earlier obtained by Jenkins,29 so

finally resolving an ongoing uncertainty):

DH/kJ mol21 5 UPOT{N5
+N3

2} 2 1672.4 (24)

and taking S298u{N2,g}/J K21 mol215 191.6, then:

DS/J K21 mol21 5 766.5 2 S298u{N5
+N3

2} (25)

V{N5
+} can be estimated from the volume of the reported

crystal structure30 of N5Sb2F11 by assuming that:

V{N5
+}/nm3 # Vm{N5Sb2F11} 2 V{Sb2F11

2} #
0.051 (¡0.020) (26)

taking V{Sb2F11
2}/nm3 5 0.227 (¡0.020).18 Since

V{N3
2}/nm3 5 0.058 (¡0.014) from our database18 then:

hence, Vm{N5
+N3

2}/nm3 # V{N5
+} + V{N3

2} 5

0.109 (¡0.024). For N5
+N3

2 in eqn (10), 2I 5

n|z+z2| 5 2(1)(1) 5 2, hence I 5 1, then (using eqn (12)):

UPOT{N5
+N3

2}/kJ mol21 5 2[a/Vm{N5
+N3

2}1/3 + b] with18

a 5 117.3 kJ mol21 nm and b 5 51.9 kJ mol21, leading to

UPOT{N5
+N3

2}/kJ mol21 # 595 (¡31).

The values calculated from Hofmann’s elemental volumes13

are: V{N5
+}/nm3 # 0.059 (¡0.001) and V{N3

2}/nm3 #
0.035 (¡0.001) leading to Vm{N5

+N3
2}/nm3 # 0.094

(¡0.001), in broad agreement with the value above.
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The value of S298u{N5
+N3

2}/J K21 mol21 # 1360[0.109

(¡0.024)] + 15 5 163.2 (¡32.5). DH/kJ mol21 #
21077.4 (¡31); DS/J K21 mol21 # 603.1 (¡32.5) so that

DG/kJ mol21 # 21257.2 (¡32.4), indicating the massive

thermodynamic instability of the material with respect to

decomposition to nitrogen gas. This agrees with our experi-

mental observations.

Other examples of the application of VBT are included in

the ESI to this tutorial review:{ dioxygen dioxygenyl super-

oxide ion, O2
+O2

2; solid ammonium hydroxide, NH4OH(s);

the formation of LiSbF6(s) and of the unknown LiSb2F11(s);

fluoride ion affinity (FIA) estimation; and complex solid/gas

reactions: the NO/NO2–LiAl(OR)4 reaction.

In attempting to apply these methods, it should always be

remembered that VBT offers us only a rough guide to the

underlying thermodynamics but, in cases where data is

unknown, as in the above examples and those in the ESI,{ it

serves to provide a quantitative estimate of the likely

situation (but does ignore kinetic factors). Crystallographic

data for many known materials may be found in extensive

databases.2,31

6.1 Organic materials

6.1.1 Enthalpies of condensed phases. Direct prediction of the

enthalpy of formation of condensed organic phases is generally

impractible and, instead, the much more accessible procedure

is used of prediction of the enthalpy of formation of the gas-

phase molecule followed by subtraction of the enthalpy of

condensation (the negative of either sublimation from the solid

or vaporisation from the liquid). Many procedures are

available for prediction of the gas-phase enthalpies of

formation, from the simple bond energy/enthalpy summations

mentioned above, to more sophisticated group contribution

methods, to modern computer-based correlations. Extensive

group procedures are available for prediction of enthapies of

sublimation.17 These methods are very successful for members

of oligomeric series, although less successful for multifunc-

tional compounds.16

6.1.2 Entropies of organic liquids. Fig. 5 shows our relation-

ship9 between S298u and Vm for organic liquids.

6.1.3 Entropies of ionic liquids. These equations have recently

been adapted to application for ionic liquids.32

6.2 Covalency

When covalent forces come more prominently into play, so

that the coulombic forces are not absolutely dominant, then

the above equations become increasingly unreliable. Work is

currently proceeding with the aim to improve further our

predictive methods in such circumstances, by strengthening the

theoretical basis.

7. Group methods

Group methods for thermodynamic prediction are many and

varied, ranging from simple addivity of group contributions

(such as of group volumes to generate density33) to complex,

computer-based schemes34 which require structural insight in

order to select best groups and appropriate interactions. If the

simple first order relations discussed above are unsuitable,

then resort to these more complex procedures becomes

necessary.
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