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Abstract 11 

Coal seams offer tremendous potential for carbon geo-sequestration with the dual benefit of 12 

enhanced methane recovery. In this context, it is essential to characterize the wettability of 13 

the coal-CO2-water system as it significantly impacts CO2 storage capacity and methane 14 

recovery efficiency. Technically, wettability is influenced by reservoir pressure, coal seam 15 

temperature, water salinity and coal rank. Thus a comprehensive investigation of the impact 16 

of the aforementioned parameters on CO2-wettability is crucial in terms of storage site 17 

selection and predicting the injectivity behaviour and associated fluid dynamics. To 18 

accomplish this, we measured advancing and receding water contact angles using the pendent 19 

drop tilted plate technique for coals of low, medium and high ranks as a function of pressure, 20 

temperature and salinity and systematically investigated the associated trends. We found that 21 

high rank coals are strongly CO2-wet, medium rank coals are weakly CO2-wet, and low rank 22 

coals are intermediate-wet at typical storage conditions. Further, we found that CO2-23 

wettability of coal increased with pressure and salinity and decreased with temperature 24 

irrespective of coal rank. We conclude that at a given reservoir pressure, high rank coal 25 

seams existing at low temperature are potentially more efficient with respect to CO2-storage 26 

and enhanced methane recovery due to increased CO2-wettability and thus increased 27 

adsorption trapping. 28 

 29 



1. Introduction  30 

Carbon capture and storage (CCS) is the most promising approach to mitigate anthropogenic 31 

CO2 emissions and thus ensure a cleaner environment [1-5]. The storage of CO2 in depleted 32 

oil and gas reservoirs [6-8] or deep saline aquifers [9-11] allows trapping of enormous 33 

volumes over a long period of time. Another option is injection of CO2 into coal seams [12-34 

15] with the dual benefit of enhanced coal bed methane recovery [16-18]. In conventional 35 

reservoirs, CO2 is held trapped by means of four mechanisms which are structural trapping 36 

[19-22], capillary or residual trapping [8,23-25], dissolution trapping [26,27] and mineral 37 

trapping [28]. In coal seams, however, the dominant storage mechanism is adsorption 38 

trapping of CO2 onto the coal matrix [12,29,30]. Typically the adsorption capacity of CO2 is 39 

higher than that of methane, depending on coal rank [31-33]; consequently, CO2 displaces 40 

methane towards the production well and itself gets sorbed within the micropores of the coal 41 

seam and remains trapped. The preferential adsorption and thus storage of CO2 in coal seams, 42 

by forced migration of methane, is strongly influenced by wettability of the CO2-water-coal 43 

system [12,34], which in turn is generally a function of reservoir pressure [34-37], 44 

temperature and salinity. Moreover, in coal seams wettability is also a function of coal rank, 45 

vitrinite reflectance, fixed carbon and ash content [35,38]. Therefore, it is essential to 46 

describe CO2-wettability of coals of varying ranks, and how reservoir conditions (pressure, 47 

temperature and brine salinity) influences this wettability.  48 

In this context, several studies reported CO2-wettability of coals at ambient conditions [38-49 

41], but only a limited amount of literature data for the more relevant higher pressures have 50 

been reported [34-37,42,43]. Table 1 presents a summary of the major experimental variables 51 

considered in previous studies, and this work.  52 

 53 

 54 

 55 

 56 

Table 1: CO2-wettability of coals: Summary of experimental conditions used. 57 

 58 

Reference  Pressure Temperature  Salinity  Coal type Overall Coal 

rank  

Chi et al. [42] up to 6.2 

MPa 

298K DI water Not mentioned Not mentioned 



Siemons et al. [37] up to 14 MPa 318K DI water Anthracite High 

Sakurovs and 

Lavrencic, [36] 

up to 15 MPa 313 K DI water Bituminous  Medium 

Kaveh et al. [43] up to 16 MPa 318K DI water High volatile 

bituminous 

Medium 

Kaveh et al. [35] up to 16 MPa 318K DI water Semi anthracite, 

High volatile 

bituminous 

High and 

Medium 

Saghafi et al. [34] up to 6 MPa 295K DI water Medium volatile 

bituminous 

Medium 

This study  up to 20 MPa 308K, 323K 

and 343K 

0wt% - 

10wt% 

NaCl 

Semi-anthracite, 

Medium volatile 

bituminous, 

Lignite 

High, Medium 

and Low 

 59 

 60 

Therefore there is a clear lack of data available on CO2-wettability of coals as a function of 61 

coal rank, coal formation pressure, and particularly temperature and salinity (cp. Table 1). 62 

Thus there exists a gap in terms of proper understanding of CO2-wettability of coal seams of 63 

different ranks at reservoir conditions. Moreover, although it is well established that coal 64 

seams offer enormous potential for enhanced methane recovery and CO2 sequestration, yet 65 

certain important questions need to be addressed which are: 1) Which type of coal (low rank, 66 

medium rank, or high rank) are most suitable for CO2 storage and enhanced coalbed methane 67 

recovery under the prevailing geothermal and reservoir pressure conditions? 2) Is the 68 

suitability of CO2 sequestration in coal seams of a particular rank valid for a wide range of 69 

reservoir pressures, temperatures and salinity conditions? 3) What mechanisms are 70 

responsible for long term CO2-storage in coals?  To answer these questions and to generally 71 

improve the characterization of CO2-wettability of coals, we experimentally measured water 72 

advancing and receding contact angles on three coal samples as a function of coal rank (low, 73 

medium and high ranks), vitrinite reflectance and fixed carbon at different CO2 pressures (0.1 74 

MPa to 20 MPa), temperatures (ranging from 308K to 343K), and brine salinities (0wt% 75 

NaCl-10wt% NaCl) using the pendent drop technique. The results of the study lead to a broad 76 

characterization of CO2-wettability of coals and thus help optimize CO2-storage and 77 

enhanced coal bed methane recovery operations. Our results indicate that CO2-wettability of 78 



coals is strongly influenced by coal rank such that the high rank coals are more CO2-wet and 79 

low rank coals are least CO2-wet at a given reservoir pressure, temperature and salinity.   80 

 81 

 82 

2. Materials and methods 83 

 84 

2.1. Coal Samples  85 

Three coal samples [high rank (semi anthracite; from Hazelton, Pennsylvania, USA), medium 86 

rank (medium volatile bituminous; from Morgantown, West Virginia, USA), and low rank 87 

(lignite; from North Dakota, USA; Table 2)] were used in this research. The samples were cut 88 

to cuboid shape (∼1cm x 1cm x 0.5cm) and the surface roughness of each substrate was 89 

measured with an atomic force microscope (AFM instrument model DSE 95-200); note that 90 

surface roughness significantly affects contact angle measurements [44,45]. The RMS surface 91 

roughness of the specific coal substrates used were 840nm, 880nm and 280nm for high, 92 

medium and low rank coals respectively.  93 

 94 

2.2.  Petrology, Ultimate and Proximate Analysis 95 

The results of the proximate, ultimate and petrological analysis and the internal properties 96 

(density and volume) of the coal samples are listed in Table 2. Note that coal samples of 97 

different rank differ mainly in volatile matter, moisture, fixed carbon and vitrinite reflectance 98 

[46,47]. Petrology was analysed in accordance with Australian Standard AS2856 and 99 

ISO7404; proximate analysis were conducted using AS1038.3, ISO11722 and ASTM D3172-100 

07a, and ultimate analysis were performed using AS1038.6 and ISO 609.  101 

 102 

 103 

 104 

 105 

Table 2. Properties of coal samples used.  106 

Sa
m

pl
e Rank Semi-Anthracite 

Medium-volatile 

Bituminous 
Lignite 

Geological Location  Hazelton, Morgantown, North Dakota 



Pennsylvania West Virginia 

Overall rank (used in this work) High rank Medium rank Low rank 
Pe

tro
lo

gy
 

Vitrinite Reflectance (Rr, %*) 3.92 0.82 0.35 

Vitrinite (%)  89.6 73.1 83 

Liptinite (%) 0 3.4 4 

Inertinite (%) 7.6 18.8 10.8 

Minerals (%) 2.8 4.7 2.1 

Pr
ox

im
at

e 

an
al

ys
is 

Moisture (air dried, %) 2.6 2 16.3 

Ash (%) 9.7 6.4 7.8 

Volatile Matter (%) 2.9 32.4 34.8 

Fixed carbon (%) 84.9 59.2 41.1 

U
lti

m
at

e 
an

al
ys

is
 

Ash (%) 9.7 6.4 7.8 

Carbon (%) 82.6 78.6 54.6 

Total Hydrogen (%)  2.35 5.07 5.27 

Hydrogen (%) 2.06 4.85 3.45 

Nitrogen (%)  1.16 1.54 0.62 

Total Sulphur (%) 0.8 0.99 0.66 

Oxygen by difference (%) 3.68 7.62 2.87 

Pr
op

er
tie

s 

Bulk density (g/cc) 1.30 1.28 1.44 

Dry sample volume (cc) 16.55 12.77 4.26 

Dry mass (g) 21.17 16.194 6.159 

RMS Surface Roughness (nm) 840 880 280 
* All percentages in above table represent weight percent  107 

 108 

2.3. Fluids  109 

 110 

99.9 wt% CO2 (from BOC, gas code – 082), de-ionized water (Conductivity: 0.02 mS/cm), 111 

and 5wt% and 10wt% NaCl brine (NaCl Source: Scharlab s.l., Spain, Purity: ≥0.995mass%) 112 

were used in the study. Acetone (99.9 wt%) was used to wash the coal samples.  113 

 114 

 115 

2.3. Contact angle measurements 116 

CO2-brine wettability was measured using the pendent drop tilted plate technique [48]. The 117 

experimental setup is shown in Figure 1; it consists of a high pressure cell (which holds the 118 



sample on a tilted plate), a CO2 cylinder, two high precision syringe pumps (Teledyne D-500, 119 

pressure accuracy of 0.1%FS) for water and CO2 and a video camera. Prior to each 120 

experiment, the coal substrates were washed with acetone and then cleaned in air plasma 121 

(Diemer Yocto instrument) for 2 minutes to ensure that no organic contaminants are 122 

deposited on the sample, which would introduce a bias [49].  123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

 131 

 132 

Figure 1. Experimental setup for contact angle measurements used in this study; (a) CO2 133 

cylinder (b) high precision syringe pump-CO2, (c) high precision syringe pump-water, (d) 134 

high pressure cell with substrate housed on a tilted plate inside, (e) heating unit, (f) liquid 135 

feed/drain system, (g) high resolution video camera, (h) image visualization and 136 

interpretation software, (i) pressure relief valve. 137 

 138 

For each measurement, a clean and dry coal sample was placed inside the pressure cell onto 139 

the tilted plate. The temperature was set to a fixed value (308K, 323K, and 343K), and CO2 140 

pressure in the cell was increased with a high precision syringe pump to pre-determined 141 

values (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, 20 MPa) by injecting CO2 into the cell. 142 

Subsequently a droplet of de-gassed brine (average volume of ~6μL ± 1μL) was allowed to 143 

flow (at 0.4ml/min) and was dispensed onto the substrate through a needle. We note that the 144 

fluids used were not thermodynamically equilibrated, since earlier studies demonstrated that 145 

the contact angle θ is not significantly affected by mass transfer during the first 60seconds of 146 
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exposure (only insignificant change (2o) was observed by [50,51]) and during this time all 147 

measurements were completed. Furthermore, non-equilibrated fluids are most relevant at the 148 

leading edge of the CO2 plume, i.e. when CO2 first encounters under saturated brine. A video 149 

camera (Basler scA 640–70 fm, pixel size = 7.4 μm; frame rate = 71 fps; Fujinon CCTV lens: 150 

HF35HA-1B; 1:1.6/35 mm) recorded the entire process, and contact angles were measured on 151 

images extracted from the movie files. Advancing (θa) and receding water contact angles (θr) 152 

were measured simultaneously at the leading and trailing edges of the droplet, just before the 153 

droplet started to move. The standard deviation of these measurements was ±3° based on 154 

replicate measurements; however for lignite the standard deviation reached ±5°, which is due 155 

to the more complicated nature of the sample.  156 

 157 

 158 

3. Results and Discussion 159 

In order to assess CO2-storage and methane recovery potential, CO2-wettability of coals was 160 

characterized as a function of rank at relevant thermophysical conditions by measuring 161 

advancing and receding contact angles on coal samples of high, medium and low ranks at 162 

various reservoir conditions (pressure range: 0.1-20 MPa, temperature range: 308K-323K and 163 

salinity range: 0wt%-10wt% NaCl). The outcomes of the study led to a precise realisation of 164 

the relationships between coal rank and corresponding CO2 geo-storage and ECBM potential. 165 

The subsequent sections describe the results in detail.  166 

 167 

3.1. Effect of Pressure on CO2-wettability of coal 168 

The effect of pressure was systematically tested on the three (high, medium, low rank) 169 

samples at 0.1 MPa, 5 MPa, 10 MPa, 15 MPa and 20 MPa for three different temperatures 170 

(308K, 323K, and 343K). Both, θa and θr, clearly increased with pressure at all temperatures 171 

for all coal samples (Figure 2-4). High rank coal was water wet (θ<50°, [21]) at ambient 172 

pressure for all temperatures tested (308K-343K; Figure 2). As pressure increased from 0.1 173 

MPa to 20 MPa at 323K, θa increased from 51° to 141° and θr increased from 45° to 129° (red 174 

lines in Figure 2), and thus high rank coal became CO2-wet at high pressure (θ>130°, [21]). 175 

Similarly, at 343K, as pressure increased from ambient to 20 MPa, θa increased from 58° to 176 

118° and θr increased from 52° to 107°. 177 

This increase in contact angle with pressure is consistent with independent experimental data 178 

on coal [34-37,42,43,52]. Specifically, Chi et al. [42] measured contact angles up to 6.2 MPa 179 



at 298K for coals of unknown ranks and found that coal hydrophobicity increased with 180 

pressure. Siemons et al. [37] extended the testing pressure up to 14 MPa at 318K and 181 

analysed CO2-water contact angle for an anthracite coal (high rank) and found that the system 182 

became CO2-wet at 2.6 bar, however, in our case semi-anthracite became weakly CO2-wet at 183 

around 7 MPa (θa > 110°); this difference could be due to difference in rank of the samples 184 

(semi-anthracite in this study) and difference in experimental conditions (temperature and 185 

surface cleaning methods). Sakurovs and Lavrencic [36] experimentally determined CO2-186 

water contact angles using the captive bubble technique up to 15 MPa at 313K for low to 187 

medium rank coals (Rv% of their samples ranged from 0.62-1.4) and found an increase in 188 

CO2-wettability with pressure for all samples. Kaveh et al. [35] compared CO2-wettability of 189 

high volatile bituminous (medium rank) and semi anthracite (high rank) coals up to 16 MPa 190 

and at 318K; and reported that semi-anthracite became CO2-wet (θ = 110°)  at 5.7 MPa which 191 

is close to our result (7 MPa); the slight difference could be due to different surface cleaning 192 

methods and temperature. Saghafi et al. [34] also studied CO2-wettability of high rank coal 193 

up to 6 MPa at 295K, their sample turned CO2-wet at 5 MPa (θ = 110°).  194 

The increase in contact angle with pressure is also consistent with experimental data on pure 195 

minerals such as mica [53-56] and quartz [50,51,55,57]. This transformation of wettability 196 

from water-wet to CO2-wet by an increase in pressure is, apart from increased intermolecular 197 

interactions of CO2 with solid surface [53,58], also related to the increased adsorption of CO2 198 

on the coal surface, which is evident from experimental CO2 adsorption data on coals [33,59-199 

62]. 200 

 201 

Since adsorption is the dominant storage mechanism in coals, and typically accounts for 98% 202 

of the total gas stored [12,63], high pressure storage conditions are preferred as they would 203 

lead to increased storage volumes. Moreover, increased CO2-wettability of coal will lead to 204 

more uniform distribution of CO2 within the micropores of the coal seams and thus improved 205 

displacement of methane towards the production wells. However, at high pressures coal 206 

swells [64-66], which leads to a significant permeability decrease [67], which again limits the 207 

Darcy flow (of the CO2) and thus injectivity.  208 



  209 

 210 

Figure 2.  CO2-DI water contact angles on high rank coal (semi-anthracite) at tested 211 

pressures (0.1 MPa-20 MPa) and temperatures (308K-343K). 212 

 213 

Furthermore, we found that the rate of contact angle increase with pressure is sharper for the 214 

pressure range 0.1 MPa-10 MPa (Figure 2). For example, at 323K, θa measured 51° at 0.1 215 

MPa and 129° at 10 MPa resulting in a net increase of 78°, whereas the net increase in θa for 216 

the pressure range 10 MPa-20 MPa was only 12°. This implies that injection of CO2 in high 217 

rank coals at very high pressure may yield only marginal benefits in terms of additional 218 

volume stored because of only marginal improvement in CO2-wettability. Generally, the 219 

increase in contact angle with pressure flattened out for pressures 10 MPa-20 MPa.  220 

 221 
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 222 

Figure 3. CO2-DI water contact angles on medium rank coal (medium volatile 223 

bituminous) at tested pressures (0.1 MPa-20 MPa) and temperatures (308K-343K). 224 

 225 

 226 

The medium rank coal sample (medium volatile bituminous coal) remained water-wet (at 227 

ambient conditions) with a maximum θa value of 32° (Figure 3). When pressure increased 228 

from 0.1 MPa to 20 MPa at 323K, θa increased from 28° to 122° and θr increased from 18° to 229 

113°. Consequently, the system, which was water-wet at ambient conditions, turned weakly 230 

CO2-wet at reservoir conditions (110° ≤ θ ≤ 130°; [21]). Likewise high rank coal, the increase 231 

in contact angle for medium rank coal was sharp up to 10 MPa; however, the increase 232 

gradually flattened (between 10-20 MPa). The results, therefore, imply that CO2 storage 233 

capacity in medium rank coals increases with pressure at all temperatures owing to the 234 

increased CO2-wetting which implies to increased adsorption trapping; however, this storage 235 

capacity increase is only marginal at higher pressures, e.g. from 15 MPa to 20 MPa. 236 

Therefore, from an economic standpoint, for practical storage purposes an optimal injection 237 

pressure must be selected.  238 

For low rank coals, contact angles increased with pressure at all temperatures as shown in 239 

Figure 4. For example, at 308K, a sharp increase was observed for pressure 0.1 MPa to 10 240 

MPa, and the curve flattened afterwards. However, at 323K, the change in contact angle with 241 

pressure followed a slightly inconsistent trend such that contact angles first increased 242 

gradually up to 5 MPa (θa increased from 38° to 50° when pressure increased from 0.1 MPa 243 

to 5 MPa), then sharply up to 10 MPa (θa measured from 92°), and then a small increase was 244 
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observed up to 20 MPa (θa increased to 116°). The maximum contact angle measured for low 245 

rank coals was 122° (at 20 MPa and 308K) indicating that the most hydrophobic wettability 246 

regime for low rank coals is ‘weakly CO2-wet’ implying reduced CO2 trapping by means of 247 

adsorption. Similar trends were observed for higher temperature (323K and 343K).  248 

 249 

 250 

Figure 4.  CO2-DI water contact angles on low rank coal (lignite) at tested pressures (0.1 251 

MPa-20 MPa) and temperatures (308K-343K). 252 

 253 

 254 

3.2. Effect of temperature on CO2-wettability of coal 255 

 256 

The trends of contact angle variation with temperature are presented in Figures 2-4. For all 257 

coal samples analysed, both, θa and θr, decreased with temperature at all pressures tested, with 258 

the exception that for high rank coal, θa and θr increased with temperature at ambient pressure 259 

(0.1 MPa). For example, when temperature increased from 308K to 343K at 0.1 MPa, θa 260 

increased from 37° to 58° for high rank coal, while it decreased from 32° to 18° for medium 261 

rank coal and from 43° to 27° for low rank coal. At higher pressures (5 MPa-20 MPa), 262 

however, all coal types showed a clear decrease in θa and θr with temperature (Figures 2-4). 263 

For simplicity a summary of contact angle variation with temperature is shown in Figure 5. 264 

At 15 MPa, for high rank coal, when temperature increased from 308K to 323K, θa decreased 265 

from 146° to 119°, implying wettability transformation from strongly CO2-wet to weakly 266 

CO2-wet. Similarly, for medium rank coal, θa decreased from 128° to 102° when temperature 267 

0

30

60

90

120

150

0 5 10 15 20

Co
nt

ac
t A

ng
le

 (°
)

Pressure (MPa)

Advancing at 308K Receding at 308K

Advancing at 323K Receding at 323K

Advancing at 343K Receding at 343K



increased from 308K to 343K. However, for low rank coal, θa first decreased from 112° to 268 

102° when temperature increased from 308K to 323K, and then became constant when 269 

temperature increased further (from 323K to 343K). In summary, CO2-wettability of coal 270 

decreased with increasing temperature irrespective of the coal rank. There is no published 271 

data on the effect of temperature on CO2-water-coal contact angles, however, the decrease in 272 

contact angle with temperature has also been reported for pure minerals such as mica [53,54] 273 

or quartz [56-58].    274 

 275 

We demonstrate that two distinct mechanisms may be held responsible for the decrease in 276 

contact angle with temperature. The first mechanism is the interplay of the three interfacial 277 

tensions [53,58], which is expressed by the Young-Laplace equation as follows: 278 

                                            cosθ =
γsv − γsl
γvl

                            (1) 279 

In eq. (1), γsv and γsl are the solid-CO2 interfacial tension and solid-brine interfacial tension, 280 

respectively, whereas γvl is CO2-brine interfacial tension. Since most of the previous studies 281 

[51,53,57,68] agree that CO2-brine interfacial tension increases with temperature, it is evident 282 

from equation (1) that the difference of solid-CO2 interfacial tension and solid-brine 283 

interfacial tension (numerator of equation) should increase with temperature to cause a 284 

corresponding decrease in contact angle with temperature.  285 

 286 
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 288 

Figure 5.  Effect of temperature on CO2-wettability for all coal samples used in the study. 289 

For simplicity measurements are shown only for 15 MPa.   290 

 291 

Secondly, the decrease in the contact angle with temperature can be attributed to the CO2 292 

adsorption behaviour on coal. The experimental studies on the effect of temperature on CO2 293 

adsorption [69-74] report that there is a clear decrease in CO2 adsorption on coal surfaces 294 

with temperature. This reduced CO2-affinity is thus reflected in the contact angles. Perera et 295 

al. [71] mentioned that the decrease in adsorption capacity with temperature is due to the 296 

increase in kinetic energy and rate of diffusion of CO2, which tend to release gas molecules 297 

from the coal matrix resulting in a corresponding reduction in net amount of adsorbed gas. 298 

We thus conclude that low temperature coal seams have higher CO2 storage capacities in 299 

comparison to high temperature coal seams. 300 

 301 

3.3. Effect of coal rank on CO2-wettability 302 

 303 

In order to demonstrate the impact of coal rank on CO2-wettability and thus on methane 304 

production and CO2 storage potential in coals, we plotted advancing water contact angles 305 

(only for simplicity) as a function of pressure and temperature (Figure 6). It is clear that at 306 

any given CO2 pressure, apart from the ambient, high rank coal offers highest CO2-wetting 307 

potential, and CO2-wettability substantially decreases with rank. Low rank coals (e.g. 308 

Lignite) are least CO2-wet and medium rank coal (e.g. Bituminous) are intermediate. These 309 

results are in agreement with Kaveh et al. [35] who compared CO2-wettability of semi-310 

anthracite and high volatile bituminous coals, and they measured higher contact angles for 311 

semi-anthracite coals, and thus they concluded that hydrophobicity of coals increases with 312 

coal rank. Moreover, Sakurovs and Lavrencic [36] also concluded that high ranks coals were 313 

easier to wet with CO2 at high pressures and that the increase in CO2-wettability promoted 314 

the rate of penetration of CO2 into the coals. It can therefore be established that CO2-315 

wettability of coals is a strong function of coal rank and that high rank coals are more CO2-316 

wet. We point out that this behaviour is related to the increase in CO2 adsorption capacity 317 

with an increase in coal rank as evidenced by the literature data on adsorption isotherms of 318 

coals of varying rank [32,75].  319 

 320 



 321 

 322 

Figure 6. Effect of coal rank on CO2-wettability.  323 

 324 

 325 

3.4.  Effect of brine salinity on CO2-wettability of coal 326 

 327 

Water can exist in coals seams in the form of free water in cleats, chemically bound hydration 328 

water, and water adsorbed onto the surface of the matrix blocks [76,77]. The cleat system is 329 

initially filled with water and it provides the flow path for production by Darcy’s law. We 330 

thus analysed the impact of brine salinity on CO2-brine-coal wettability for various salinities 331 

(0wt% NaCl, 5wt%NaCl and 10wt% NaCl) at 15 MPa and 323K on all the coal samples 332 

studied in this work; as salinity is expected to vary in subsurface coal seams [78]. 333 

Both, θa and θr, increased with salinity for all coal samples (Figure 7). This increase was 334 

stronger for the brine salinity increase from 0wt% NaCl to 5wt% NaCl; e.g. for medium rank 335 

coal, θa increased from 114° to 127° and θr increased from 102° to 112° when salinity 336 

increased from 0wt% NaCl to 5wt% NaCl brine. For the salinity increase from 5wt% NaCl to 337 

10wt% NaCl, the increase in contact angle was very small; e.g. for medium rank coal, θa 338 

increased from 127° to 132° and θr increased from 112° to 116° when salinity increased from 339 

5wt% NaCl to 10wt% NaCl brine. Moreover, we found similar trends for low, medium and 340 

high rank coals (Figure 7). In the literature, there is a lack of data on the effect of salinity on 341 

CO2-wettability of coal, yet our results are consistent with Ibrahim et al. [52], who analysed 342 

contact angles of CO2-brine-coal systems for brine salinities varying between 0 g/L-15 g/L 343 

NaCl), and who reported that contact angles were highest for 15 g/L and lowest for DI water. 344 
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Brine salinity thus does not exhibit major influence on contact angles at typical reservoir 345 

conditions.  346 

 347 

 348 

 349 

Figure 7. Effect of salinity on CO2-wettability of coals at 323K and 15 MPa.  350 

 351 

 352 

3.5. Relation between vitrinite reflectance, fixed carbon and coal wettability 353 

 354 

There is a strong positive correlation between virtinite reflectance and water contact angle. 355 

Similarly, fixed carbon (which is the solid combustible residue that remains after coal is 356 

heated and volatile matter is expelled) strongly correlates with the water contact angle 357 

(Figure 8). Practically, coals with higher vitrinite reflectance are more CO2-wet and thus will 358 

store more CO2 by means of adsorption; coals with higher fixed carbon content also have 359 

better CO2-wetting characteristics. At 20 MPa and 323K, coal with a vitrinite reflectance (Rr, 360 

%) of 3.8 is strongly CO2-wet (θa = 140°), whereas at the same reservoir conditions medium 361 

rank coal (Rr = 0.82) is weakly CO2-wet (θa = 122°) and low rank coal (Rr  = 0.35) is 362 

intermediate-wet (θa = 116°); thus CO2 injection into low rank coals will require higher 363 

injection pressures to completely wet the surface in comparison to medium and high rank 364 

coals. Thus we conclude that coals of higher vitrinite reflectance and fixed carbon exhibit 365 

better CO2 adsorption storage capacity, because of their better CO2-wettability. This effect 366 

80

90

100

110

120

130

140

150

160

0 2 4 6 8 10

Co
nt

ac
t A

ng
le

 (°
)

Salinity (wt% NaCl)

High Rank Coal - Advancing High Rank Coal - Receding
Medium Rank Coal - Advancing Medium Rank Coal - Receding
Low Rank Coal - Advancing Low Rank Coal - Receding



can be attributed to the non-polar nature of vitrinite matter which promotes de-wetting of the 367 

surface. 368 

 369 

 370 

Figure 8. Variation of CO2-wettability with vitrinite reflectance and fixed carbon content.  371 

 372 

4. Implications 373 

 374 

We measured CO2-wettability of coals of varying ranks; which is essential to assess the CO2 375 

storage potential of coal seams, and also to assess enhanced hydrocarbon gas production from 376 

unmineable coal seams. The measured data implies that CO2 storage in coal seams is strongly 377 

influenced by pressure, seam temperature, brine salinity, rank of the coal, vitrinite reflectance 378 

and fixed carbon. As an example, consider three potential candidate coal bed methane 379 

formations of different ranks (high, medium and low) at a depth of 1km and at temperature of 380 

323K. The required CO2 injection pressure will be approximately 10 MPa (estimated using 381 

formation pressure gradient ~ 10 MPa/km). We note that at 10 MPa and 323K, the values of 382 

the receding water contact angles for high, medium and low rank coals are 114°, 95° and 77°, 383 

respectively, implying that high rank coal is weakly CO2-wet, medium rank coal is 384 

intermediate-wet and low rank coal is weakly water-wet at storage conditions (note: θr is 385 

considered here owing to the advancement of the CO2 phase, which displaces brine; or 386 

alternatively ‘drainage’, Broseta et al. [54]). Consequently, the adsorption trapping capacities 387 

will be higher for high rank coal seams and least for low rank coal. Thus high rank coal will 388 
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be more suitable for CO2 storage considering that adsorption of CO2 is the dominant trapping 389 

mechanism [12,63]. Moreover, CO2 injection into high rank coal at 10 MPa and 323K will 390 

wet the surfaces of coal with CO2 better as compared to medium and low rank coals. 391 

Consequently, CO2 will be distributed more uniformly into the micropores and thus recovery 392 

efficiency of methane will improve. It is also important to mention that with the increase in 393 

pressure and thus CO2-wettability, coal will swell inducing a permeability reduction [64-66] 394 

and this effect limits CO2 storage in coal seams. 395 

 396 

In summary, once injected, CO2 will occupy the smallest pores (micropores of coal matrix) 397 

and brine will occupy larger pores (cleats), and as a result brine will be watered-out. In 398 

addition, it is experimentally proven that methane wettability of coal is lower than that of 399 

CO2 [34], and the sorption capacities of CO2 relative to CH4 on the coal surface are 1.1 – 9.1 400 

times higher depending upon the coal rank [31,79-81]. Thus methane, which was adsorbed on 401 

the coal surfaces, will be displaced rather easily by CO2.  402 

   403 

 404 

5. Conclusions 405 

 406 

We measured water contact angles to characterize CO2-wettability of coals of low, medium 407 

and high rank as a function of reservoir pressure (0.1 MPa - 20MPa), temperature (308K-408 

343K) and brine salinity (0wt% - 20wt%NaCl). The results demonstrate that both, θa and θr, 409 

increase with pressure, consistent with [34-37] and the increase is quite rapid up to 10 MPa 410 

and it flattens if pressure is increased further (10 MPa-20MPa, Figure 2-4), implying that 411 

injection pressures must be optimized to ensure economic feasibility. The increase in contact 412 

angles with pressure is attributed to a) increased CO2-mineral intermolecular interactions due 413 

to increased CO2 density [53,58], and b) increased CO2 adsorption at high pressures [33,59-414 

62]. Further we found that θa and θr decrease with temperature which is consistent with 415 

independent experimental CO2-adsorption data [69-74]. The influence of salinity was not 416 

significant, and θa and θr increased only slightly with elevated salt content. Moreover, and 417 

importantly, the CO2-wettability increased with the increase in coal rank, which is in 418 

agreement with other studies [35,36]. Specifically, we found that high rank coals (e.g. semi-419 

anthracite) are strongly CO2-wet at typical storage conditions, while medium rank coals (e.g. 420 

medium volatile bituminous) are weakly CO2-wet and low rank coals (e.g. Lignite) are 421 

intermediate wet, i.e. CO2-wettability showed a positive correlation with vitrinite reflectance 422 



and fixed carbon content. Finally, we predict that high rank coal seams existing at high 423 

temperatures and high pressures are more feasible for CO2 storage due to increased CO2-424 

wettability.  425 

 426 
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