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Abstract

The performance of six different density functionals (LDA, PBE, PBESOL,

B3LYP, PBE0 and WC1LYP) in describing the infrared spectrum of forsterite,

a crystalline periodic system with orthorhombic unit cell (28 atoms in the prim-

itive cell, Pbmn space group), is investigated by using the periodic ab initio

CRYSTAL09 code and an all-electron gaussian-type basis set. The transverse

optical (TO) branches of the 35 IR active modes are evaluated at the equilibrium

geometry together with the oscillator strengths and the high frequency dielec-

tric tensor ǫ∞. These ingredients permit to compute the dielectric function ǫ(ν),

and then the reflectance spectrum R(ν), which is compared with experiment. It

turns out that hybrid functionals perform better than LDA and GGA, in gen-

eral; that B3LYP overperforms WC1LYP and, in turn, PBE0; that PBESOL is

better than PBE; that LDA is the worst performing functional among the six
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under study.

1. Introduction

In the last decade quantum-mechanical methods have been shown to be

capable of accurate prediction of many properties of crystalline compounds,

including equilibrium geometries and vibrational frequencies.

One of the crucial ingredients of the simulation is the adopted hamiltonian.

The opinion that LDA and GGA perform quite well for any crystalline system is

widespread in the solid state community [1, 2, 3, 4]. In the last years, however,

it has been shown that a fraction of Hartree-Fock (HF) exchange improves the

description of many properties of solids substantially [5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15], so that very recently “hybrid” functionals have been implemented in

many periodic codes [15, 16, 17, 18]. It is at the same time commonly accepted

that B3LYP [19, 20, 21], the most popular “hybrid” functional in the quantum-

chemistry molecular community, is not suitable for the description of crystalline

solids [15, 22]. While this is certainly true for metallic systems, experience shows

that B3LYP can provide excellent results for many properties, and in particular

for the vibrational spectra of insulating systems, such as calcite [11], quartz [23],

katoite [24], garnets [8, 10, 25, 26, 27, 28, 29, 30, 31].

So far, a detailed comparison of various exchange-correlation (XC) func-

tionals for crystalline systems is limited to simple ionic, covalent and metallic

solids with one or two atoms in the unit cell [1, 2, 3, 4]. A similar comparison

for more complex crystalline systems, or properties other than binding energy,

lattice parameter, bulk modulus and band gap is still unavailable.

In the present work we perform an accurate comparison of simulated and

experimental infrared (IR) data (wavenumbers and intensities), and of the re-

flectance spectrum R(ν), that is the primary information from which experi-

mentalists extract IR wavenumbers and intensities. Equilibrium geometries and

dielectric properties are also included in the comparison.

R(ν) can be simulated by combining different ingredients available in the
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CRYSTAL09 periodic ab initio code, which uses a gaussian-type basis set: (i)

the Coupled Perturbed Kohn-Sham scheme (CPKS), recently implemented, is

used for the accurate calculation of the high frequency dielectric tensor ǫ∞

[32, 33, 34], contributing to the frequency dependent dielectric function ǫ(ν); (ii)

Born charges, the key quantities for the evaluation of IR intensity, are evaluated

through a Berry phase approach [35, 36, 37]; (iii) vibrational modes are obtained

by diagonalizing the hessian matrix, whose elements are the second derivatives

of the total energy with respect to the atomic cartesian coordinates; the latter

are evaluated numerically from analytical gradients [5, 23].

Olivines (XII
2 SiO4), due to their relatively large unit cell (28 atoms) and

high symmetry, and thanks to the availability of excellent experimental data

[38, 39, 40, 41], represent a challenging test for a modern periodic quantum-

mechanical code. Forsterite is one of the end-members of the olivine family,

with the Mg2+ cation in the X position. Previous theoretical studies on this

compound concern both Raman [42] and infrared spectra, the latter both for

pure [43] and H-substituted systems [44, 45, 46], the adopted techniques being

molecular dynamics and/or density functional theory.

In a previous preliminary investigation of the IR spectrum of forsterite [47],

the B3LYP[19, 20, 21] hybrid functional was adopted. The same functional was

adopted for the study of thermophysical properties of Mg2SiO4 polymorphs

[48]. In this work we extend the analysis to five other functionals, namely to

Local Density Approximation (LDA), early (PBE [49]) and newly (PBEsol [1],

developed for solids) Generalized Gradient Approximation functionals (GGA),

and two other hybrid functionals, namely PBE0 [50] (also known as PBE1PBE

or PBEh) and WC1LYP [51]. The availability of very high quality experimental

reflection spectra R(ν) [40], collected by the Japanese infrared beamline of the

synchrotron radiation facility SPring8, provides a quite reliable set of data for

the comparison of the quality of the results provided by the six functionals.

These data, which were published just after our preliminary study [47], are

not limited to the peak positions, but also include oscillator strengths, high

frequency dielectric tensor and the reflectance spectrum R(ν). This large set of
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data permits a very accurate comparison between experiment and simulation,

and particularly between various flavors of the density functional theory.

2. Computational details

Calculations have been performed with the CRYSTAL09 [52] code.

An all-electron basis set is used for all atoms. Silicon, oxygen and magnesium

are described by (8s)−(6311sp)−(1d), (8s)−(411sp)−(1d), (8s)−(511sp)−(1d)

contractions. The exponents (in bohr−2 units) of the most diffuse sp shells are

0.32 and 0.13 (Si), 0.59 and 0.25 (O), 0.68 and 0.22 (Mg); the exponents of the

single gaussian d shell are 0.6 (Si), 0.5 (O), 0.5 (Mg) [51, 47].

The level of accuracy in evaluating the Coulomb and Hartree-Fock exchange

series is controlled by five parameters [52] that have been set to 7,7,7,7,14.

The threshold on the SCF energy was set to 10−8 hartree for the geometry

optimization, and to 10−10 hartree for the frequency calculations. The reciprocal

space was sampled according to a regular sublattice with shrinking factor [52]

equal to 6 that corresponds to 64 independent k points in the irreducible part

of the Brillouin zone.

The DFT exchange-correlation contribution is evaluated by numerical in-

tegration over the unit cell volume. In CRYSTAL, radial and angular points

of the grid are generated through Gauss-Legendre radial quadrature and Lebe-

dev two-dimensional angular point distributions. In the present calculations,

a (75,974) grid has been used (XLGRID keyword in the CRYSTAL09 manual

[52]), which corresponds to a pruned grid with 75 radial and 974 angular points.

Details about the grid generation, number of points in the reciprocal space and

their influence on the accuracy and cost of calculation can be found in Refs. 10

and 25.

The structure was optimized by using the analytical energy gradients with

respect to atomic coordinates and unit-cell parameters [53, 54, 55], within a

quasi-Newton scheme combined with the BFGS algorithm for Hessian updating

[56, 57, 58, 59]. Convergence was checked on both gradient components and
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nuclear displacements, for which the default values [52] are chosen. The cal-

culation of the TO vibrational frequencies at the Γ point has been performed

within the harmonic approximation; the mass-weighted Hessian matrix W is

constructed by numerical differentiation of the analytical gradients with respect

to the atomic cartesian coordinates. The calculated (optimized) equilibrium ge-

ometry is taken as reference. Details on the calculation of vibrational frequencies

can be found in Refs. 5 and 23.

The strength of the nth oscillator, fn, is defined as:

fn,ij =
4π

Ω

Z̄n,iZ̄n,j

ν2n
(1)

where Ω is the unit cell volume, i and j indicate the three Cartesian components,

νn is the frequency of the nth mode and

Z̄n,i =
∑

A,j

tn,AjZ
∗

A,ij

1√
MA

. (2)

Z∗

A,ij is the Born effective charge tensor associated with atom A, evaluated

through a Berry phase approach [35, 36, 37]; tn,Ai is an element of the eigen-

vectors matrix T of the mass-weighted Hessian matrix W, that transforms the

cartesian atomic directions into the nth normal coordinate directions; MA is the

mass of atom A.

The ionic components to the static dielectric tensor ǫ0,ij are evaluated as the

sum of the oscillator strengths: Fij =
∑

n fn,ij . The electronic high frequency

components ǫ∞,ij are calculated through the Coupled-Perturbed KS/HF (Kohn-

Sham/Hartree-Fock) scheme ([32, 33, 34, 60, 61]).

Manipulation and visualization of structures have been performed with the

Jmol 3D engine [62, 63]. Molecular drawings have been rendered with the

Inkscape program [64] using input files prepared with Jmol.

2.1. The reflectance spectrum

The reflectance spectrum R(ν) is defined as follows [65]:

R(ν) =

∣

∣

∣

∣

∣

√

ǫ(ν)− sin2(θ)− cos(θ)
√

ǫ(ν)− sin2(θ) + cos(θ)

∣

∣

∣

∣

∣

2

(3)
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where θ is the incidence angle of the infrared beam; in the present work, we have

set θ = 10◦, according to the experimental setup of our reference work [40].

In the case of orthorhombic systems, the complex dielectric function turns

out to be a diagonal tensor, with diagonal elements defined as follows:

ǫ(ν)ii = ǫ∞,ii +
∑

j

fj,iiν
2
j

ν2j − ν2 − iνγj
, (4)

where νj, fj and γj are the TO peak position, the oscillator strength and the

damping factor. The electronic high frequency contributions ǫ∞,ii are almost

constant with respect to frequency in the IR range, as electronic transition

energies are very large compared to IR transition energies.

A microscopic approach to the calculation of the dielectric function permits

to rewrite Equation 4 as [66, 67, 68]:

ǫ(ν)ii = ǫ∞,ii +
4π

Ω

∑

j

Z
2

j,i

ν2j − ν2 − iνγj
(5)

where the definition of the oscillator strength fj,ii according to eq. 1 has been

used.

As the harmonic model is used in our simulation, we are unable to compute

the γj damping factors. We used then three different strategies for computing

Rcalc(ν):

(i) the γfit
j values resulting from the fit of Rcalc(ν) to Rexp(ν) are used;

(ii) the experimental values γexp
j are used;

(iii) the average γexp of the experimental γexp
j is used, that is 3 cm−1.

The influence of the three choices on the root mean square (RMS) between

Rcalc(ν) and Rexp(ν) will be discussed in the next Section.

From the experimentalists’ point of view [40], the digitalized Rexp(ν) func-

tion, through eq. 3 and 4, provides by best fit the “experimental” values for

νj, fj and γj. In the present case, 10, 10 and 7 experimental IR peaks were

identified for the x, y, and z directions, respectively; then the fitting function

contains 30, 30 and 21 parameters, respectively.

The comparison among theory and experiment can be performed both at

the R(ν) level, or by comparing calculated and measured νj and fj .
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3. Results

3.1. Geometries

Table 1 refers to the equilibrium geometry, and shows that LDA underesti-

mates the three lattice parameters with respect to the liquid nitrogen experimen-

tal datum [69] by -0.4, -1.5 and -1.3 % respectively, whereas PBE overestimates

them by about the same amounts, +1.2, +1.0 and +0.9 %. B3LYP overesti-

mates the three parameters by less than 1.0 %. PBE0, WC1LYP and PBESOL

provide by far the best geometry with percentage errors smaller than 0.5 %.

3.2. Infrared modes: wavenumbers and intensities

Forsterite, as all olivines, is orthorhombic (space group Pbnm, n. 62). There

are 28 atoms (four formula units) in the unit-cell, 6 of which symmetry inde-

pendent, giving rise to 84 vibrational modes. Symmetry analysis shows that:

Γtotal = 11Ag ⊕ 11B1g ⊕ 7B2g ⊕ 7B3g ⊕ 10Au ⊕ 10B1u ⊕ 14B2u ⊕ 14B3u. (6)

A total of 35 IR active modes (9B1u ⊕ 13B2u ⊕ 13B3u) and 36 Raman active

modes (11Ag⊕11B1g⊕7B2g⊕7B3g) is then expected, plus 10 Au inactive modes.

Three additional B1u, B2u and B3u modes correspond to rigid translations.

The calculated and experimental [40] IR-active TO modes are shown in

Table 2; in the last four lines statistical indices resulting from the comparison of

the various functionals with the experimental data are given. It turns out that

B3LYP overperforms the other functionals, featuring a mean absolute error |∆ν|
as small as 4.7 cm−1, to be compared to 14.3 (LDA), 12.4 (PBE), 8.4 (PBESOL),

12.3 (PBE0) and 8.1 (WC1LYP).

The B3LYP good agreement is probably a combination of two factors, the

better quality of the hybrid functionals with respect to LDA and GGA, in par-

ticular in describing the short range repulsion, and the B3LYP overestimation

of the lattice parameters, that compensates the too hard walls of the poten-

tial surface expected at the experimental geometry. As a consequence B3LYP

frequencies are in all cases very close to experiment; only in two cases the dif-

ferences are larger than 10 cm−1: mode 6 along the b axis (11.8 cm−1), mode 7

along the c axis (10.8 cm−1).
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WC1LYP and PBESOL, besides providing excellent geometries, produce

good vibrational frequencies. PBESOL overperforms standard GGA function-

als as it recovers the exact condition of the gradient expansion for solids [1].

WC1LYP implements the WC exchange functional, that was specifically de-

signed for solids.

PBE0 provides excellent geometrical data; however, it overestimates the

vibrational frequencies systematically (∆ν is +12.3 cm−1).

When considering the largest absolute difference, |∆νmax|, the |∆ν| trend is

confirmed, with B3LYP being the best performing (|∆νmax| = 11.8 cm−1), fol-

lowed by WC1LYP (18.1), PBE0 (21.8) and PBESOL (24.9). LDA (|∆νmax| =
33.4 cm−1) and PBE (39.1) are by far the least performing.

It is interesting to investigate whether |∆ν| is a result of many uncorrelated

errors for the different modes, or a consequence of systematic errors, such as,

for example, the use of a local exchange term, that in turn might produce a

wrong geometry. To this aim all calculated frequencies have been shifted by the

mean difference (ν∗i = νi − ∆ν), and the mean absolute difference computed

again to give |∆ν|∗ (the star in the table reminds this rigid shift). |∆ν|∗ is

around 4 cm−1 for the three hybrid functionals (see table 2), and between 8

and 10 cm−1 for LDA, PBE and PBESOL, providing additional evidence of the

intrinsic superiority of hybrids with respect to LDA and GGA.

As regards the oscillator strengths (OS), we can start the analysis by looking

at the integrated quantity F =
∑

j fj , shown in the lowest part of Table 3. The

agreement with experiment is in general satisfactory for all functionals, the

differences ranging from 0.8 to 8.3% for the a axis, from 0.6 to 13.5% for the b

axis, and from 2.5 to 10.3 % for the c axis. The difference between computed

and experimental Σ, that is the sum of F values along a, b and c, is as large

as -1.37 for LDA, drops to -0.64 for PBESOL and to -0.49 for PBE0; it is

minimum for PBE and the two hybrids B3LYP and WC1LYP (0.32, 0.31 and

-0.30, respectively).

The sum of the absolute differences for each direction, ∆F =
∑

j |∆fj |, and
their sum ∆Σ (the overall sum extends to 31 peaks), are also given in Table
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3. For all functionals but LDA, ∆F for the c direction is much larger than for

a and b, possibly indicating problems on the experimental side, as there is no

reason for a different performance of the simulation for the different directions.

∆Σ is as large as 5.84 for LDA (46.2% of Σexp); it slightly reduces for PBESOL

(5.12), then drops below 3 for the four other functionals. The best performing

is WC1LYP (2.19; 17.3 % of Σexp). The largest individual difference |∆fmax|
confirms that LDA and PBESOL are the worst performing.

A careful analysis shows that quite large contributions to ∆F come from

modes that are very close in frequency (see lines grouped in the f columns of

Table 3). This suggests that the one-to-one correspondence between calculated

and experimental peaks, performed, within a given symmetry, on the basis of

the sequential order of the frequencies, might be wrong when peaks are very

close to each other. A second source of discrepancy is the following: when

modes are close in frequency (and then the corresponding peaks overlap), the

deconvolution of the experimental spectrum through a best fit process can be

affected by large errors, due to the strong correlation between the parameters

describing the intensity of these peaks. This is evident in the couples of modes

(5,6) of the a and c axis: ∆f for one peak is large and positive; for the other large

and negative, so that their sum becomes very small. For this reason, f belonging

to two (or more) frequencies with ∆ν ≤ 10 cm−1, or with ∆ν ≤ 30 cm−1 and

fcalc ≥ 0.5 were grouped before comparison among theory and experiment.

This strategy reduces the absolute difference ∆Σ, (and |∆fmax| as well), that

for WC1LYP is now 1.39 (11.0% of Σexp) and slightly larger for PBE, PBE0

and B3LYP (from 1.51 to 1.71), whereas it remains quite large for PBESOL

and LDA.

3.3. The R(ν) reflectance spectrum

As anticipated in Section 2.1, the digitalized reflectance spectrum Rexp(ν)

has been used by experimentalists [40] to obtain by best fit the “experimen-

tal” frequencies νexpj , intensities fexp
j and damping factors γexp

j of the observed

peaks (see eq. 3 and 4; we remind that with this procedure only a fraction of
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the expected peaks is identified). The quality of this fit can be estimated by

recomputing the “experimental fitted” reflectance spectrum Rfit(ν) with these

data. The root mean square RMS deviation between Rfit(ν) and Rexp(ν) is

reported in the last column of Table 4; the corresponding curve is shown in

the last panel of Figure 2, in the case of the a axis. We notice the very good

agreement between the two spectra, in spite of the fact that 2, 1 and 1 modes

are missing for the three axes, respectively (see the lists of νexp and fexp in

Tables 2 and 3); this is not surprising, as it has been shown in Section 3.2 that

these modes feature very low calculated intensities. The low value of RMSfit

also indicates that the model described through eq. 3 and 4 is adequate.

As regards simulation, ǫ∞ ( see eq. 4) has been evaluated through the CPHF

scheme. Table 5 shows that hybrid functionals underestimate by about 9% the

experiment, whereas LDA and PBE come very close to it.

In order to build-up our “computed” reflectance curve Rcalc(ν), besides the

calculated ǫ∞, νj and fj , we also require the γj damping factors. As anticipated

in Section 2.1, our harmonic model does not provide them, so that we must rely

on the experimental data. Three different γj values have been used, the aim

being to avoid that a particular choice could bias the analysis of the relative

performance of the six functionals. The simulated spectrum has been generated

by using the γ
exp
j values mentioned above, or the mean value of these (γexp,

equal to 3 cm−1), or γfit
j , obtained by best fit between the digitalized reflectance

spectrum Rexp(ν) and Rcalc(ν) itself, the latter containing γ
fit
j as parameters.

The effect of the choice of the damping factor on the reflectance curve is shown

graphically in the top panel of Figure 1, in the case of the a axis and the B3LYP

functional.

Table 4, that provides the RMS deviation between the various Rcalc(ν)

curves and Rexp(ν), shows that:

a) for a given choice of γj and functional, the RMS deviation is not very differ-

ent for the three directions, so that the mean value RMS can be used for the

comparison among functionals.

b) The differences among the RMS obtained with the three choices for γj are
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not very large, so that the relative merits of the various functionals are essen-

tially the same, independently from the choice of γj (see also Refs. 30, 31).

c) B3LYP and PBESOL provide the smallest RMS, followed by WC1LYP. On

the other hand, PBE, PBE0 and LDA provide about the same and larger RMS

values.

Examples of Rcalc(ν) curves computed with different γj choices, for the

three crystallographic axes and with the various adopted functionals are given

in Figures 1 and 2.

4. Conclusions

The vibrational properties and the reflectance IR spectrum of forsterite have

been calculated at an ab initio quantum-mechanical level with six different

hamiltonians, and compared with the available highly accurate experimental

data.

The large set of data makes the comparison among the functionals difficult,

because the relative performance varies with the considered property. For this

reason we summarized the most relevant statistical indices discussed in the

previous Section in a single table (see Table 6): the percentage error on the

volume (∆V ), the mean absolute difference between calculated and experimental

wavenumbers (|∆ν|), the equivalent quantity for the oscillator strengths (∆Σ

“after grouping”, see data in parentheses in Table 3), the difference among the

integrated oscillator strengths (σ = Σcalc − Σexp) and the root mean square

among reflection spectra (RMS).

The agreement is excellent when the B3LYP functional is used, with respect

to most of the studied properties: vibrational frequencies in particular, oscillator

strengths, reflectance curves, whereas the volume is slightly too large. WC1LYP

performs very well, too, for all properties; the same is true for PBESOL, with

the exception of the IR intensities and related properties. WC1LYP, PBESOL

and PBE0 provide better geometries than B3LYP; PBE0 yields good oscillator

strengths, but poorer wavenumbers than B3LYP. LDA and PBE provide the

worst geometries, poor vibrational frequencies; LDA intensities are the worst
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ones determined, whereas the PBE ones are in line with the results from hybrid

functionals. As regards the R(ν) spectrum, LDA, PBE and PBE0 are the worst

performing.

Overall, then, hybrid functionals for the present system perform better than

GGA, and B3LYP and WC1LYP better than PBE0. For particular properties

PBE or PBESOL can be competitive. LDA is the worst in all cases.

The present study highlights the relevance of either the exact exchange con-

tribution (B3LYP, WC1LYP, PBE0) or a specific design for the solid state

(PBESOL, WC).

These results confirm previous studies [8, 10, 25, 27, 28, 29, 30, 31, 70, 71, 72]

referring to a large family of silicates, including hydroxides, showing that B3LYP

produces in general excellent vibrational spectra.
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Figure 1: Reflectance spectrum R(ν) along the three axes of forsterite, computed at the
B3LYP level. In the case of a axis, different sets of damping factors γj have been used:

γfit
j (dashed line), γexp

j (dotted line), γexp (solid line); see caption to Table 4 for further

details. Experimental Rexp(ν) from Ref. 40 is also shown (thick gray solid line), for sake of
comparison. In the case of b and c axes, only the experimental [40] and the γexp calculated
curves are reported.
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Figure 2: Calculated (γexp, continuous line) and experimental (dotted line) [40] reflectance
spectrum R(ν) along the a-axis of forsterite. In the last box the fitted and instrumental
experimental spectra, both from Ref. 40, are compared.
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LDA PBE PBESOL B3LYP PBE0 WC1LYP Exp.a

a 4.726 ( -0.4 ) 4.804 ( +1.2 ) 4.769 ( +0.5 ) 4.789 ( +0.9 ) 4.760 ( +0.3 ) 4.771 ( +0.5 ) 4.746
b 10.030 ( -1.5 ) 10.280 ( +1.0 ) 10.165 ( -0.1 ) 10.254 ( +0.7 ) 10.175 ( 0.0 ) 10.183 ( 0.0 ) 10.18
c 5.898 ( -1.3 ) 6.032 ( +0.9 ) 5.973 ( 0.0 ) 6.009 ( +0.6 ) 5.970 ( -0.1 ) 5.974 ( 0.0 ) 5.976

Vol. 279.58 ( -3.2 ) 297.85 ( +3.2 ) 289.55 ( +0.3 ) 295.10 ( +2.2 ) 289.14 ( +0.2 ) 290.23 ( +0.5 ) 288.7

Si-Omin 1.621 ( +0.3 ) 1.640 ( +1.5 ) 1.633 ( +1.0 ) 1.628 ( +0.8 ) 1.623 ( +0.4 ) 1.626 ( +0.6 ) 1.616
Si-Omax 1.665 ( +1.0 ) 1.685 ( +2.2 ) 1.677 ( +1.7 ) 1.673 ( +1.4 ) 1.665 ( +1.0 ) 1.670 ( +1.3 ) 1.649
Mg1-Omin 2.043 ( -1.2 ) 2.080 ( +0.5 ) 2.064 ( -0.2 ) 2.073 ( +0.2 ) 2.062 ( -0.4 ) 2.064 ( -0.2 ) 2.069
Mg1-Omax 2.093 ( -1.6 ) 2.136 ( +0.5 ) 2.117 ( -0.4 ) 2.131 ( +0.2 ) 2.117 ( -0.4 ) 2.120 ( -0.3 ) 2.126
Mg2-Omin 2.017 ( -1.1 ) 2.065 ( +1.2 ) 2.042 ( +0.1 ) 2.063 ( +1.1 ) 2.047 ( +0.3 ) 2.048 ( +0.4 ) 2.040
Mg2-Omax 2.171 ( -1.7 ) 2.221 ( +0.6 ) 2.198 ( -0.5 ) 2.222 ( +0.6 ) 2.200 ( -0.3 ) 2.208 ( 0.0 ) 2.208

Table 1: Calculated and experimental geometry of forsterite (Pbnm space group, 28 atoms
in the unit cell, 6 of which symmetry independent). a, b and c are the cell parameters. The
maximum (max) and minimum (min) Si-O and Mg-O bond distances are reported. Percentage
differences with respect to experimental values are given in parentheses. Distances are in Å,
volumes in Å3. aRef. [69].
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LDA PBE PBESOL B3LYP PBE0 WC1LYP Exp.a

I ν ∆ν ν ∆ν ν ∆ν ν ∆ν ν ∆ν ν ∆ν νexp
1 214.1 11.5 202.4 -0.2 206.3 3.7 206.2 3.6 209.4 6.8 209.9 7.3 202.6
2 283.5 6.8 269.0 -7.7 275.8 -0.9 274.9 -1.8 281.9 5.2 279.6 2.9 276.7
3 302.2 6.2 286.7 -9.3 293.1 -2.9 293.7 -2.3 300.6 4.6 299.9 3.9 296.0
4 332.5 11.4 314.1 -7.0 321.2 0.1 322.2 1.1 327.6 6.5 324.6 3.5 321.1
5 416.6 33.4 382.9 -0.3 398.5 15.3 387.8 4.6 400.3 17.1 398.0 14.8 383.2
6 425.6 20.4 399.4 -5.8 410.0 4.8 411.6 6.4 419.7 14.5 416.4 11.2 405.2

a 7 492.6 – 463.4 – 476.6 – 475.9 – 484.7 – 481.9 – –
8 522.2 17.4 497.5 -7.3 507.4 2.6 513.4 8.6 520.5 15.7 517.3 12.5 504.8
9 547.9 – 521.7 – 532.4 – 540.0 – 547.6 – 543.2 – –
10 603.8 -2.3 587.8 -18.3 592.5 -13.6 613.7 7.6 616.6 10.5 612.3 6.2 606.1
11 835.7 -5.6 802.6 -38.7 816.4 -24.9 838.1 -3.2 849.9 8.6 839.1 -2.2 841.3
12 967.1 7.2 931.1 -28.8 947.4 -12.5 961.9 2.0 981.7 21.8 963.5 3.6 959.9
13 992.6 14.4 947.4 -30.8 967.2 -11.0 982.4 4.2 997.9 19.7 986.8 8.6 978.2

1 150.3 5.5 140.7 -4.1 144.8 0.0 143.1 -1.7 147.0 2.2 146.1 1.3 144.8
2 291.8 13.1 273.0 -5.7 281.9 3.2 277.2 -1.5 286.0 7.3 283.3 4.6 278.7
3 308.2 17.3 288.9 -2.0 297.3 6.4 292.2 1.3 301.2 10.3 297.9 7.0 290.9
4 377.8 25.8 347.3 -4.7 361.7 9.7 350.2 -1.8 364.6 12.6 359.1 7.1 352.0
5 414.9 17.8 391.0 -6.1 401.2 4.1 403.3 6.2 410.3 13.2 408.9 11.8 397.1
6 448.7 28.8 419.0 -0.9 431.2 11.3 431.7 11.8 439.1 19.2 438.0 18.1 419.9

b 7 479.4 21.4 454.4 -3.6 464.9 6.9 464.8 6.8 473.2 15.2 470.1 12.1 458.0
8 512.0 4.4 498.2 -9.4 502.4 -5.2 517.3 9.7 521.5 13.9 518.5 10.9 507.6
9 545.7 16.9 517.1 -11.7 529.2 0.4 534.5 5.7 541.0 12.2 537.7 8.9 528.8
10 631.5 – 611.7 – 618.3 – 637.6 – 641.1 – 637.6 – –
11 835.4 -3.3 802.5 -36.2 816.6 -22.1 835.1 -3.6 850.6 11.9 835.8 -2.9 838.7
12 874.1 0.9 839.4 -33.8 855.4 -17.8 870.3 -2.9 887.6 14.4 871.7 -1.5 873.2
13 1003.4 16.9 957.6 -28.9 978.0 -8.5 988.9 2.4 1005.0 18.5 994.7 8.2 986.5

1 198.3 – 197.9 – 195.9 – 206.5 – 206.0 – 205.3 – –
2 287.7 9.4 268.7 -9.6 276.9 -1.4 277.6 -0.7 282.7 4.4 283.9 5.6 278.3
3 305.8 13.1 281.6 -11.1 292.7 0.0 290.3 -2.4 297.0 4.3 298.7 6.0 292.7
4 338.1 31.8 311.2 4.9 323.7 17.4 313.0 6.7 324.6 18.3 321.3 15.0 306.3

c 5 442.9 31.3 411.7 0.1 426.1 14.5 419.6 8.0 428.8 17.2 427.2 15.6 411.6
6 444.6 25.8 419.2 0.4 430.0 11.2 427.9 9.1 436.7 17.9 434.5 15.7 418.8
7 486.8 8.1 470.1 -8.6 474.8 -3.9 489.5 10.8 492.3 13.6 489.4 10.7 478.7
8 515.2 9.7 494.9 -10.6 501.6 -3.9 513.4 7.9 517.2 11.7 513.9 8.4 505.5
9 878.7 4.4 835.2 -39.1 854.4 -19.9 874.4 0.1 887.2 12.9 878.5 4.2 874.3

|∆ν| 14.3 12.4 8.4 4.7 12.3 8.1

∆ν 13.5 -12.1 -1.2 3.3 12.3 7.7

|∆ν|∗ 8.4 10.2 8.5 4.2 4.3 4.3
|∆νmax| 33.4 39.1 24.9 11.8 21.8 18.1

Table 2: Calculated and experimental vibrational frequencies ν (cm−1) of the IR active trans-
verse optical (TO) modes along the three axes of forsterite (featuring B2u, B3u and B1u

symmetries, respectively). ∆ν is the difference between calculated and experimental quan-

tities. Statistical indices (x is either ν or f): |∆x| =
∑N

i=1
|∆xi|/N is the mean absolute

difference, ∆x =
∑N

i=1
∆xi/N is the mean difference, |∆xmax| is the maximum absolute dif-

ference, |∆x|
∗

=
∑N

i=1
|∆xi −∆x|/N is the mean absolute difference computed after shifting

the frequencies by ∆x; N is the number of available experimental data, on which statistics
are performed; N = 31, over the three axes. aRef. [40].
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LDA PBE PBESOL B3LYP PBE0 WC1LYP Exp.a

I f ∆f f ∆f f ∆f f ∆f f ∆f f ∆f fexp νTO
exp

1 0.02 0.00 0.04 0.01 0.03 0.01 0.02 0.00 0.03 0.00 0.02 0.00 0.02 202.6
2 0.01 -0.04 0.03 -0.02 0.02 -0.03 0.06 0.01 0.03 -0.02 0.04 -0.01 0.05 276.7
3 0.10 -0.22 0.33 0.01 0.17 -0.15 0.44 0.12 0.30 -0.02 0.33 0.01 0.32 296.0
4 0.21 0.12 0.14 0.06 0.20 0.12 0.06 -0.03 0.13 0.04 0.12 0.03 0.08 321.1
5 0.08

2.10

]

-0.88 0.99
1.57

]

0.03 0.44
1.92

]

-0.51 1.25
1.27

]

0.29 0.98
1.40

]

0.02 0.98
1.42

]

0.02 0.96 383.2
6 0.61 0.09 0.44 -0.21 -0.09 -0.07 1.49 405.2

a 7 0.01 – 0.01 – 0.01 – 0.01 – 0.02 – 0.01 – – –
8 0.32 -0.03 0.33 -0.02 0.32 -0.03 0.34 -0.01 0.33 -0.02 0.35 0.00 0.35 504.8
9 0.06 – 0.04 – 0.06 – 0.00 – 0.01 – 0.02 – – –
10 0.27 0.05 0.22 -0.01 0.25 0.02 0.20 -0.02 0.22 0.00 0.22 -0.01 0.23 606.1
11 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 841.3
12 0.08 -0.09 0.14 -0.03 0.10 -0.07 0.23 0.06 0.24 0.07 0.17 0.00 0.17 959.9
13 0.40 0.07 0.35 0.03 0.38 0.06 0.24 -0.08 0.22 -0.10 0.30 -0.02 0.32 978.2

1 0.06 -0.01 0.10 0.03 0.08 0.01 0.08 0.01 0.08 0.01 0.07 0.00 0.07 144.8
2 0.14 0.05 0.10 0.02 0.13 0.05 0.08 -0.01 0.09 0.01 0.08 0.00 0.08 278.7
3 0.82 -0.78 1.35 -0.25 1.02 -0.58 1.62 0.02 1.29 -0.32 1.34 -0.26 1.61 290.9
4 0.91 -0.32 1.39 0.17 1.09 -0.13 1.47 0.24 1.28 0.06 1.38 0.15 1.22 352.0
5 0.91 0.39 0.49 -0.03 0.78 0.26 0.27 -0.25 0.45 -0.07 0.41 -0.11 0.52 397.1
6 0.12 -0.12 0.23 -0.02 0.15 -0.09 0.29 0.05 0.23 -0.01 0.26 0.01 0.24 419.9

b 7 0.35 0.16 0.23 0.04 0.29 0.10 0.17 -0.02 0.21 0.02 0.20 0.01 0.19 458.0
8 0.16 0.10 0.10 0.05 0.14 0.09 0.04 -0.01 0.11 0.06 0.10 0.04 0.05 507.6
9 0.05 -0.10 0.13 -0.03 0.07 -0.08 0.21 0.06 0.14 -0.01 0.15 0.00 0.16 528.8
10 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – 0.00 – – –
11 0.08 -0.03 0.08 -0.03 0.07 -0.04 0.13 0.02 0.07 -0.04 0.14 0.03 0.11 838.7
12 0.43 0.03 0.43 0.03 0.44 0.04 0.35 -0.04 0.41 0.01 0.36 -0.04 0.40 873.2
13 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 986.5

1 0.01 – 0.01 – 0.01 – 0.00 – 0.00 – 0.00 – – –
2 0.16 0.07 0.17 0.08 0.17 0.08 0.21 0.12 0.19 0.10 0.16 0.07 0.09 278.3
3 0.63 -0.58 1.23 0.03 0.85 -0.36 1.36 0.15 1.07 -0.14 1.12 -0.09 1.21 292.7
4 0.11 0.08 0.08 0.04 0.12 0.08 0.01 -0.02 0.07 0.04 0.03 -0.01 0.03 306.3

c 5 0.53
0.61

]

-0.09 1.12
0.17

]

0.50 1.12
0.08

]

0.50 0.98
0.30

]

0.35 1.08
0.16

]

0.45 1.00
0.25

]

0.38 0.63 411.6
6 -0.20 -0.64 -0.73 -0.51 -0.65 -0.56 0.81 418.8
7 0.63 0.45 0.34 0.16 0.52 0.34 0.24 0.06 0.34 0.17 0.35 0.17 0.18 478.7
8 0.29 -0.15 0.39 -0.04 0.34 -0.09 0.41 -0.02 0.38 -0.05 0.37 -0.06 0.43 505.5
9 0.61 0.00 0.63 0.02 0.62 0.01 0.60 -0.02 0.59 -0.03 0.60 -0.02 0.62 874.3

F

a 3.67 -0.33 4.19 0.19 3.91 -0.09 4.13 0.13 3.91 -0.09 3.97 -0.03 4.00
b 4.03 -0.63 4.63 -0.03 4.28 -0.38 4.73 0.07 4.37 -0.29 4.49 -0.17 4.66
c 3.58 -0.41 4.15 0.16 3.82 -0.17 4.10 0.11 3.88 -0.11 3.89 -0.10 3.99
Σ 11.28 -1.37 12.97 0.32 12.01 -0.64 12.96 0.31 12.16 -0.49 12.35 -0.30 12.65

∆F

a 2.12(0.90) 0.31(0.31) 1.44(0.57) 0.84(0.41) 0.40(0.35) 0.18(0.14)
b 2.11 0.69 1.48 0.74 0.61 0.67
c 1.61(1.61) 1.51(0.51) 2.19(1.20) 1.26(0.56) 1.62(0.71) 1.34(0.59)
∆Σ 5.84(4.62) 2.51(1.51) 5.12(3.25) 2.84(1.71) 2.63(1.68) 2.19(1.39)

|∆fmax| 0.88 (0.78) 0.64 (0.25) 0.73 (0.58) 0.51 (0.25) 0.65 (0.32) 0.56 (0.26)

Table 3: Calculated and experimental oscillator strengths f (adimensional) of the IR active
transverse optical (TO) modes along the three axes of forsterite. ∆f is the difference between
calculated and experimental quantities. F =

∑
j fj is the sum of the oscillator strengths;

∆F =
∑

j |∆fj | is the sum of the absolute differences between calculated and experimental

oscillator strengths; these two quantities are computed for each crystallographic axis (a,b,c)
and summed over the three axes (Σ and ∆Σ, respectively). |∆fmax| is defined as in Table 2;
in this case, N is equal to 31 (29 for the reduced set with grouped values for f). Oscillator
strengths are grouped either when the corresponding calculated frequencies differ (δν) by less
than 10 cm−1, or when δν ≤ 30 cm−1 and fcalc ≥ 0.5; values in parentheses refer to this
“amended” set of data. aRef. [40].
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LDA PBE PBESOLa B3LYP PBE0 WC1LYPa Exp. fit

γ
fit
j

0.2150 0.1757 0.1302 0.1366 0.2340 0.1806 –

a γ
exp
j

0.2150 0.1757 0.1383 0.1606 0.2411 0.1810 0.0187

γexp 0.2351 0.1823 0.1465 0.1647 0.2450 0.1837 –

γ
fit
j

0.2320 0.1830 0.1477 0.1398 0.2419 0.1883 –

b γ
exp
j

0.2390 0.1914 0.1583 0.1687 0.2600 0.2002 0.0165

γexp 0.2335 0.1955 0.1600 0.1701 0.2570 0.1952 –

γ
fit
j

0.1851 0.2146 0.1637 0.1220 0.1713 0.1391 –

c γ
exp
j

0.1956 0.2176 0.1691 0.1539 0.2027 0.1454 0.0185

γexp 0.1927 0.2241 0.1695 0.1466 0.2046 0.1396 –

γ
fit
j

0.2107 0.1911 0.1472 0.1328 0.2157 0.1693 –

RMS γ
exp
j

0.2165 0.1949 0.1552 0.1611 0.2346 0.1755 0.0179

γexp 0.2204 0.2006 0.1587 0.1605 0.2355 0.1728 –

Table 4: Root mean square RMS of the difference between calculated (Rcalc(ν) or Rfit(ν))
and experimental (Rexp(ν)) reflectance curves for the three crystallographic axes (a,b,c);
mean value among the three axes (RMS). The first six columns refer to Rcalc(ν) computed
in the present work; the last column refers to Rfit(ν) obtained by experimentalists in Ref.

40. Rcalc(ν) is obtained with three different choices for the damping factors: γfit
j : values

obtained in the present work by best-fit with respect to Rexp(ν); γexp
j : experimental values

from Ref. 40; γexp: average of experimental values (3 cm−1) [40]. The investigated range is
130÷1200 cm−1, and includes 2636, 2952 and 2274 points for the a, b and c axes, respectively.
aExperimental values [40] of the optical dielectric tensor are used in the case of PBESOL and
WC1LYP functionals.

LDA PBE PBESOLa B3LYP PBE0 WC1LYPa Exp. fitb Exp.c

ǫ0 6.487 6.972 – 6.702 6.499 – 6.77 6.87
x ǫ∞ 2.819 2.779 – 2.571 2.590 – 2.77 2.789

F 3.669 4.193 3.910 4.131 3.909 3.966 4.00 4.08

ǫ0 6.682 7.236 – 7.149 6.815 – 7.32 7.39
y ǫ∞ 2.653 2.606 – 2.423 2.445 – 2.66 2.673

F 4.029 4.629 4.285 4.726 4.370 4.488 4.66 4.72

ǫ0 6.284 6.811 – 6.577 6.377 – 6.70 6.74
z ǫ∞ 2.708 2.665 – 2.473 2.493 – 2.71 2.726

F 3.576 4.147 3.824 4.104 3.884 3.893 3.99 4.01

Table 5: Calculated and experimental static dielectric tensor (ǫ0) and its components: the elec-
tronic high frequency (ǫ∞) and the ionic one, evaluated as the sum of the oscillator strengths
(F =

∑
j fj). The three cartesian directions correspond to the crystallographic ones, so that

the dielectric tensor turns out to be diagonal. aCPHF calculation of optical dielectric tensor
currently not available for PBESOL and WC1LYP functionals. bValues obtained through a
fitting procedure [40]. cValues for ǫ0 from Ref. 73; values for ǫ∞ from Ref. 74.

LDA PBE PBESOL B3LYP PBE0 WC1LYP

∆V -3.2 +3.2 +0.3 +2.2 +0.2 +0.5

|∆ν| 14.3 12.4 8.4 4.7 12.3 8.1
σ -1.37 0.32 -0.64 0.31 -0.49 -0.30
∆Σ 4.62 1.51 3.25 1.71 1.68 1.39

RMS 0.2204 0.2006 0.1587 0.1605 0.2355 0.1728

Table 6: Summary of the main statistical indices discussed in the present work. ∆V (Å3)

is the percentage error on the volume (from Table 1); |∆ν| (cm−1) is the mean absolute
difference for the frequencies (Table 2); σ = Σcalc − Σexp (dimensionless) is the difference
among integrated oscillator strengths (Table 3); ∆Σ (dimensionless) is the sum of the absolute
differences for the oscillator strengths, “after grouping” (data in parentheses in Table 3); RMS
is the root mean square between calculated (with γexp) and experimental reflectance spectra
R(ν), averaged among the three axes (Table 4).
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