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Abstract 
Dimensional variations are induced during the processing of composite materials.  General curved 

components are commonly used in composite structures.  Their performance is affected by the 

dimensional variations associated with the manufacturing process.  This paper presents a piece-

wise approach for predicting the dimensional variations of general curved composite components 

and assemblies.  For a general curved composite component, it is first divided into a number of 

pieces of simple geometry.  For each piece, the dimensional variation, i.e. spring-in, is calculated 

using the effective coefficients of thermal expansion.  Based on the dimensional variation of each 

piece, the dimensional variations of the general curved component are calculated sequentially.  This 

approach was validated against the finite element analysis.  It shows that it offers excellent 

accuracy while avoiding time-consuming numerical computations.  Besides general curved 

components, this approach can also be applied to composite assemblies.  It provides the foundation 

for the tolerance analysis/synthesis of composites. 

Keywords: Composites; general curved components; assemblies; dimensional variation; spring-in; 

effective coefficient of thermal expansion 
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1 Introduction 
The last four decades have seen a tremendous advancement in the science and technology of fiber-

reinforced composites.  The low density, high strength, high stiffness to weight ratio, excellent 

durability, and design flexibility of composites are the primary reasons for their use in many 

structural components in aircraft, automotive, marine, and other industries [1].  Despite all these 

advantages, composite materials have not been as widely used as expected because of the 

complexity and cost of the manufacturing process.  They are mainly used in the strength design 

such as aircraft, spacecraft and vehicles [2].  Poor dimensional control is one of the reasons causing 

these disadvantages.  Dimensional variations lead to difficult assembly, costly rework, high waste 

rate, and structural failure, which limit the use of composites.  Additional effort is needed to 

achieve better dimensional control.  For example, NASA investigated the feasibility of SCRIMP to 

produce aircraft quality heavily-loaded primary structures.  Additional technology development is 

required to achieve dimensional control and acceptable fiber volume fraction for thick structural 

elements [3]. 

Unlike processing of metals, composite processing is a net-shape process.  The material and 

product form at the same time.  Typical manufacturing processes are liquid composite molding 

processes, e.g. resin transfer molding and vacuum-assisted resin transfer molding processes.  First, 

fiber preform is loaded into the mold cavity and the mold is closed.  Second, resin is injected into 

the mold cavity by pressure or vacuum.  Third, the filled mold is heated to some temperature often 

higher than the room temperature and resin is cured.  Finally, the cured part is demolded from the 

mold.  During the curing process, resin shrinks due to the chemical reaction (crosslinking).  During 

the cooling-down process, the part is contracted.  Due to the anisotropic nature of the material, 

dimensional variations are induced by coefficient of thermal expansion (CTE) mismatch and curing 

shrinkage of resin. 
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“Spring-in” is the typical dimensional variations of angled parts, which is the decrease in the 

enclosed angle, as shown in Figure 1.  Hahn and Pagano [4] performed an elastic analysis of the 

residual stresses in a thermoset matrix composite.  Radford and Diefendorf [5] developed a simple 

mathematical formula to predict the spring-in of curved shaped parts, which was used by Huang 

and Yang [6] in their experimental studies.  Kollar [7] presented an approximate analysis of spring-

in.  Jain and Mai [8, 9] developed a mechanics-based model using modified shell theory.  Yoon and 

Kim [10] developed a computational method by applying the characterized properties to the 

classical lamination theory.  All of these studies considered simple structures such as an L-shape.  

For predicting the spring-in of complex shapes, numerical simulation tools, e.g. finite element 

method or finite difference method, are often employed.  Wang et al. [11] conducted a finite 

element analysis of spring-in using ABAQUS.  Ding et al. [12] developed a 3-D finite element 

analysis procedure to predict spring-in resulting from anisotropy for both thin and thick angled 

composite shell structures. 

 

 

Figure 1: Spring-in 
 

The mechanical behavior of composite materials is better represented by a viscoelastic model.  

Clifford et al. [13] developed a 3-D thermo-viscoelastic model by FEA to predict the residual stress 

and dimensional stability of large complex composite parts.  Weitsman [14] developed a method 

for evaluating the residual stresses in cross-ply graphite-epoxy laminates which incorporated linear 

viscoelasticity throughout the cooldown stage.  Wang et al. [15] studied residual stresses and 
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warpage in multi-directional woven glass/epoxy laminates.  The in-plane stresses and curvatures 

were calculated using a convolution integration form in the lamination theory expression.  All the 

aforementioned studies neglected the stresses developed before cooldown.  A few studies also 

addressed the residual stresses developed before cooldown, i.e. during the curing process.  White 

and Hahn [16, 17] studied the residual stress development during the curing of thin laminates 

numerically and experimentally.  A 2-D finite difference thermo-chemical model was developed.  

The cure-dependent material properties were incorporated into a generalized plane-strain finite 

element model to predict the residual stress development in a graphite-epoxy composite.  Li et al. 

[18] used a plane-strain, linearly elastic finite element model with temperature-dependent matrix 

properties to analyze the evolution of residual stresses in graphite-PEEK composites during curing.  

Wiersma et al. [19] developed a thermo-elastic model and extended it into a thermo-viscoelastic 

model.  A plane-strain finite element process model COMPRO was developed to simulate the 

spring-in and warpage in the autoclave process [20, 21].  Zhu et al. [22] developed a fully 3-D 

coupled thermo-chemo-viscoelastic finite element model to simulate the heat transfer, curing, and 

residual stress development during the manufacturing cycle of thermoset composite parts.  Wisnom 

et al. [23] presented a shear-lag analysis for the spring-in of curved thermoset composites to study 

the influence of part thickness on spring-in. 

From the literature, it can be seen that the process induced dimensional variations for composites 

such as spring-in were studied either analytically or numerically.  The application of analytical 

models is limited to simple geometries such as an L-shape.  For complex shapes such as general 

curved composite components, the analytical models for spring-in cannot be applied 

straightforwardly.  In this study, a piece-wise approach for predicting the dimensional variations of 

general curved composite components and assemblies was developed.  This approach was validated 

against the finite element analysis. 
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2 Spring-in Model Based on Effective Coefficients of Thermal 
Expansion 

2.1 Spring-in model 
In the beginning of a typical liquid composite molding process, resin is fully uncured and behaves 

as viscous fluid.  During the curing process, resin is heated up to a temperature usually above the 

glass transition temperature.  A significant increase in modulus and a reduction in specific volume 

begin to occur.  When the curing is complete, resin exhibits traditional viscoelastic behavior at 

elevated temperatures and approaches elastic behavior at lower temperatures.  After demolding, the 

composite is usually post-cured at an elevated temperature above Tg.  During this process, the 

stresses induced by curing can be significantly relaxed [24-26].  For some resin systems, such as 

epoxy, the curing strain during conversion can be neglected in the analysis of residual stress [27].  

Thus, the residual stresses and dimensional variations are assumed to be mainly due to the 

mismatch of thermal contraction during the cooling-down process.  Since the mechanical properties 

of resin are highly dependent on temperature, the mechanical properties and CTE of laminates are 

also dependent on temperature. 

As shown in Figure 2Figure 2, the mechanism of spring-in is illustrated by using an L-shape 

structure.  The enclosed angle is denoted as φ and the radius of the curved section is denoted as r.  

The original arc length is given by ( )φ−= 180rs . 
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Figure 2: Mechanism of spring-in 
 

When the part is cooled down from the curing temperature Tc to the room temperature T0, the radius 

and arc length after deformation are [6] 
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Eqn. (3) shows that because of the mismatch of the in-plane CTE αI and the through-thickness CTE 

αT, the enclosed angle decreases after the composite part is cured, which is commonly called 

“spring-in”. 

 

2.2 Derivation of effective coefficients of thermal expansion 
As shown in Figure 3Figure 3, in order to describe the elastic properties of a thin lamina, two right-

handed coordinate systems, namely the 1-2-z system and the x-y-z system, are defined.  Both are in 

the plane of the lamina, and the z axis is normal to this plane.  In the 1-2-z system, axis 1 is along 

the fiber length and represents the longitudinal direction of the lamina, and axis 2 is normal to the 

fiber length and represents the transverse direction for the lamina.  Together, they constitute the 

principal material directions in the plane of the lamina.  In the x-y-z system, x and y axes represent 

the loading directions.  Fibers are aligned at an angle θ with the positive x direction [1]. 
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Figure 3: Definition of principal material axes and loading axes for a lamina 
 

For a thin lamina in the 1-2-z coordinate system, its stiffness matrix can be expressed by C.  The 

elements of C are given in [28].  The stiffness matrix in the x-y-z system is TTCTC = , where T is 

the transformation matrix. 

The CTE in the x-y-z system are related to the longitudinal CTE α11 and transverse CTE α22 as 
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For a symmetric laminate, the constitutive relationship when only thermal stresses are considered is 

given by 
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where e
ijC  is the equivalent stiffness of the laminate [29], and Txx, Tyy, and Tzz are given as 
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εxx, εyy, and εzz can be solved from (6).  The effective coefficients of thermal expansion were 

derived as 
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where αxx and αyy are the in-plane CTE and αzz is the through-thickness CTE. 

The effective coefficients of thermal expansion given by Eqn. (7) were validated against the finite 

element analysis using a representative volume element, since FEA is a well-accepted method to 

model composites on a layer-by-layer basis.  An AS4 graphite/epoxy cross-ply laminate was 

assumed.  The fiber volume fraction is 49% and the stacking sequence is [0/90]8s.  A commercial 

FEA package MSC.Marc Mentat was employed in this study.  The boundary conditions used in 

FEA were as follows: The model was restricted to move in the i (i = x, y, z) direction along the 

plane i = 0.  Periodic boundary conditions were applied along the opposite planes, which were 

achieved by defining links in MSC.Marc Mentat.  The model underwent a unit temperature drop.  

The resulting deformation is as shown in Figure 4Figure 4.  The CTE of the composite in the 

direction i (i = x, y, z) is given by 

Tl
l

i

i
ii ∆

∆
=α           (8) 

where ∆li is the displacement in the i direction and li is the original length.  The effective CTE 

calculated by the current method and FEA are as shown in Table 1.  Good agreement is found. 
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Figure 4: Prediction of effective CTE by FEA 
Left: mesh; right: displacement.  The contour shows the displacement in the x direction in mm. 
 

Table 1: Effective CTE calculated by the current method and from FEA 
 αxx (10-6/°C) αyy (10-6/°C) αzz (10-6/°C) 

Current method 3.50 74.27 3.50 
FEA 3.50 74.27 3.50 

 

3 Dimensional Variations of General Curved Components 
For general curved composite components, the dimensional variations due to spring-in could not be 

calculated from Eqn. (4) directly.  In this study, a piece-wise approach was developed to solve this 

problem.  Because of the constant cross-section, this is a generalized plain strain problem.  Thus, it 

can be solved in 2-D.  This approach is illustrated by an example as shown in Figure 5. 
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Figure 5: Dimensional variations of a general curved component 
 

This general curve is decomposed into two arc sections OA and BC connected by a straight section 

AB.  The global coordinate system is oxy.  The coordinates of A, B, and C are A = [xA, yA, 1]T, B = 

[xB, yB, 1]T, and C = [xC, yC, 1]T.  The enclosed angle and radius are denoted as φOA and rOA for OA; 

and φBC and rBC for BC.  Because of the process-induced shrinkage and spring-in, A, B, and C move 

to A', B', and C'. 

For convenience, the concept of rotational angle is introduced.  As shown in Figure 6, if the starting 

and end points of a general curve is denoted as Pi-1 and Pi, respectively, the rotational angle is given 

by 
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The rotational angle can be positive or negative.  As shown in Figure 6, if the spring-in causes 

counter-clockwise rotation, the rotational angle is defined as positive; if the spring-in causes 

clockwise rotation, the rotational angle is defined as negative.  This is in accordance to the 

Cartesian rule.  Eqn. (3) was modified using β as 
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Unlike Eqn. (3), where ∆φ is always negative, ∆φ in Eqn. (10) can be positive or negative.  This is 

for the convenience of the derivation of the dimensional variations of the whole structure. 
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Figure 6: Definition of rotational angle (Left: positive; right: negative) 
 

As shown in Figure 7, considering the arc section OA, a local coordinate system oξ1η1 is 

constructed by rotating oxy clockwise.  The angle χOA is defined as 
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The coordinate of A' in oxy can be derived by coordinate transformation as 
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Substituting Eqn. (11) into (12), the coordinate of A' in oxy is given by 
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Figure 7: Dimensional variation of OA 
 

As shown in Figure 8, considering the straight section AB in ox1y1 where A is the origin, there is no 

spring-in but only shrinkage induced.  Without considering the rotation caused by OA, the 

coordinate of B' in ox1y1 is derived as 
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Since the spring-in of OA causes all the following pieces to rotate by ∆φOA, the coordinate of B' in 

oxy is 
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Figure 8: Dimensional variation of AB 
 

As shown in Figure 9, a local coordinate system oξ2η2 was constructed for arc BC.  Likewise, the 

coordinate of C' in ox2y2 is derived as 
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The coordinate of C' in oxy is 

( ) ( )
( ) ( )ABOACBABOACBBC

ABOACBABOACBBC

yxyy
yxxx

φφφφ
φφφφ

∆+∆′+∆+∆′+′=′
∆+∆′−∆+∆′+′=′

cossin
sincos

    (17) 

A 
A' 

B B' 
∆φOA 

O x 

y 



 15 

i.e. 
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Figure 9: Dimensional variation of BC 
 

In the vector form, Eqns. (13), (15), and (18) can be rewritten as 
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For the convenience of practical applications, a sequence plot is constructed as shown in Figure 10.  

The spring-in angles of each piece are marked on the sequence plot.  For piece i, its spring-in angle 

∆φi will cause all the consequent pieces i + 1, i + 2, ..., n to rotate by ∆φi.  Figure 10 can be 

B B' 

C 
C' 

y2 η2 

ξ2 
χBC 

O x 

y 



 16 

correlated with Eqn. (19).  Based on the sequence plot, the dimensional variations of each node can 

be solved in a sequential way. 

 

 
Figure 10: Sequence plot for the example part 
 

The dimensional variations of this general curved component were calculated assuming AS4 fiber 
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The rotational angles are βOA = 45°, βAB = 0, and βAB = -45°.  The spring-in angles were calculated 

as ∆φ1 = -0.41°, ∆φ2 = 0, and ∆φ3 = 0.41°.  The dimensional variations of A through C calculated by 
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where the unit is mm.  For comparison, the dimensional variations of A through C from FEA are 









−
−

=
23.0
17.0

ΔA  







−
−

=
57.0
54.0

ΔB   







−
−

=
68.0
63.0

ΔC     (23) 

It shows that good agreement exists between the developed piece-wise approach and FEA. 
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By expanding this example, a general approach for the computation of dimensional variations of 

general curved components is derived.  First, a Cartesian global coordinate system is defined, e.g. 

oxy in the example.  Secondly, in oxy, the part can be divided into n arc-like pieces with n+1 nodes 

P0, P1,…, Pn.  The spring-in and shrinkage of each piece can be calculated accordingly.  A 

sequence plot for the general structure is as shown in Figure 11. 

 

 

 

Figure 11: Sequence plot for a general part 
 

By expanding Eqn. (19) and Figure 11, the deformed position of Pi is given by 
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where i1i PP ′′−  is the dimensional variation of Pi in the local coordinate system with Pi-1 as the origin.  

i1i PP ′′−  can be found by 
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The dimensional variation is given by 
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In coordinate form, Eqn. (23) can be written as 
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4 Conclusions 
A piece-wise approach for calculating the dimensional variations of general curved composite parts 

is presented in this paper.  The effective coefficients of thermal expansion were derived and 

validated by FEA.  The curved structure was divided into a number of pieces and the dimensional 

variations were calculated sequentially using the effective CTE.  The approach was validated by 

FEA.  It shows that the accuracy is satisfactory.  Besides general curved components, this approach 

can be also applied to composite assemblies.  This approach presented in this paper is potentially 
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useful for the design of composite structures.  Because of the simple and straightforward 

mathematical form, the statistical distributions of the dimensional variations can be calculated 

efficiently by incorporating the uncertainties of the spring-in without going through many cycles of 

numerical computationsit is more efficient when the calculation of dimensional variations needs to 

be repeated.  Thus, it provides the foundation for the tolerance analysis/synthesis of composite 

components and assemblies.  For example, when the geometry of the component e.g. radius, 

enclosed angle, etc. is changed, a new geometric model and mesh need to be created when FEA is 

used, while only a few input numbers need to be changed when the approach presented in this 

paper is used.  The savings in modeling and computation time are significant.  Thus, it provides the 

foundation for the design optimization and tolerance analysis/synthesis of composite components 

and assemblies.  The limitation of the current approach is that it is unable to calculate the 

dimensional variations of 3-D free-form surfaces, and this will be addressed in our future work. 
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