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The LAMBDA method for integer least-squares ambiguity resolution has been widely used in a great variety of 

Global Navigation Satellite System (GNSS) applications. The popularity of this method stems from its numeri-

cal efficiency and its guaranteed optimality in the sense of maximizing the success probability of integer ambi-

guity estimation. In the past two decades, the LAMBDA method has been typically used for the cases where 

the number of ambiguities was generally less than several tens. With the advent of denser network processing 

and the availability of multi-frequency, multi-GNSS systems, it is important to understand LAMBDA’s per-

formance in high dimensional spaces. In this contribution, we will address this issue using real GPS data based 

on the Bernese software. We have embedded the LAMBDA method into the Bernese software and compared 

their ambiguity resolution performances. The 12-day dual-frequency GPS with a sampling interval of 30 s was 

used in the experiment, which was collected from a network of 19 stations in the Perth area of Western Austral-

ia with an average baseline length of 380 km. Different experimental scenarios were examined and tested with 

different observation spans, which represent the different ambiguity dimensions. The results showed that 

LAMBDA is still efficient even when the number of ambiguities is more than 100, and the baseline repeatabili-

ties obtained with the ambiguities resolved from LAMBDA method agreed well with that of Bernese. There-

fore, for the future’s dense network processing, the easy-to-use LAMBDA method should be considered as an 

alternative to baseline-per-baseline methods as those used in e.g. the Bernese software. 
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1. INTRODUCTION. Ambiguity resolution is crucial to precise Global Navigation Satellite System 

(GNSS) applications. It has attracted a great deal of attentions from the GNSS community in the past 

two decades. Various methods have been developed to solve for the integer ambiguities, such as the 

extra-widelaning technique (Wübbena, 1989), ambiguity function method (Counselman and Goure-
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vitch, 1981), fast ambiguity resolution approach (Frei and Beulter, 1990), Cholesky decomposition 

(Euler and Landau, 1992), least squares ambiguity searching technique (Hatch, 1990) and the Least 

squares AMBiguity Decorrelation Adjustment (LAMBDA) (Teunissen, 1993). The popularity of the 

LAMBDA method stems from its numerical efficiency and its guaranteed optimality in the sense of 

maximizing the probability of correct integer ambiguity estimation (Teunissen, 1999). 

In the past two decades, the LAMBDA method has been used for applications in which the ambigu-

ity dimension is in the order of several tens. However, with the advent of denser network processing 

and multi-frequency, multi-GNSS tracking, the dealing with much higher ambiguity dimension is 

required. This contribution is the first attempt to analyse LAMBDA’s performance in high dimen-

sional search spaces. By embedding the LAMBDA method into the Bernese software (version 5.0), 

the ambiguity resolution performance can be compared and evaluated. The evaluation includes the 

numerical efficiency of the decorrelation and the search steps of LAMBDA itself and the effect of the 

LAMBDA integer solution on the baseline precision (i.e. baseline repeatability). It should be noted 

that our analyses in this contribution are only the first step due to the fact that: (i) we use the 

LAMBDA method only as a full ambiguity resolver (i.e. no partial ambiguity resolution is examined) 

and (ii) the LAMBDA results are not validated, e.g. without the fixed failure-rate ratio test (Teunissen 

and Verhagen, 2009). 

The structure of the rest paper is as follows. In Section 2, a brief review is given of integer least-

squares estimation and the LAMBDA method. In Section 3, the Bernese quasi-ionosphere-free (QIF) 

ambiguity resolution method is described. The experimental results and analyses for the LAMBDA’s 

performance are presented in Section 4. Finally, some concise concluding remarks are given in Sec-

tion 5. 

2. INTEGER LEAST SQUARES AMBIGUITY RESOLUTION AND LAMBDA METHOD. 

2.1. Integer least squares ambiguity estimation theory. All the linearized GNSS observation 

equations can be generalized as: 

= + +y Aa Bb e         (1) 

where the observation vector n∈y   contains the observed-minus-computed pseudorange and carrier-

phase observables contaminated by the observation noise vector e which is usually assumed to be 

normally distributed with zero mean and variance-covariance matrix Qy; The vector m∈a   is for 
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unknown carrier-phase integer ambiguities, and the vector p∈b   for other real-valued unknown pa-

rameters, which usually includes baseline components and possibly tropospheric and ionospheric pa-

rameters; The matrices A and B are the known design matrices to a and b, and both of them are gen-

erally full of column rank. Based on the least squares (LS) criterion, the equation system (1) is solved 

by means of the minimization problem 

1

,
min ( ) ( )

m p

T −

∈ ∈
− − − −ya b

y Aa Bb Q y Aa Bb
 

      (2) 

Generally, the following three-step procedure is employed for solving the minimization problem (2). 

In the first step, the integer property of a is disregarded and the float solution and its variance-

covariance matrix are computed 
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In the second step, the float ambiguities are mapped into integers by setting up a new minimization 

problem 

1
ˆˆˆarg min( ) ( )

m

T −

∈
= − −aa

a a a Q a a


       (4) 

In the third step, the real-valued parameters b̂  solved from the first step are updated using the fixed 

integer ambiguities a  from the second step 

1
ˆ ˆˆ

ˆ ˆ( )−= − −abab b Q Q a a


       (5) 

For the ambiguity-fixed solution b


 having a better precision than its float counterpart b̂ , the success 

probability of integer ambiguity solution a  must be sufficiently close to 1 (De Jonge et al, 2000). 

2.2. The LAMBDA method. In the LAMBDA method, the integer solution of (4) is found by means 

of an efficient search over the ellipsoidal search space defined as 

1 2
ˆˆˆ( ) ( )T χ−− − ≤aa a Q a a        (6) 

The search speed depends on the size χ2 and the shape of the ellipsoid. The positive constant χ2 can be 

predetermined according to different strategies (De Jonge and Tiberius, 1996) and then gradually 

shrunk during the search (Chang et al, 2005; De Jonge and Tiberius, 1996; Teunissen, 1993, 1995b). 

The shape and orientation of the ellipsoid is defined by the variance-covariance matrix âQ of the float 

ambiguity estimates. Since a high correlation among the ambiguities may lead to search halting which 

in turn makes the search time-consuming, the decorrelated ambiguities are used instead of the original 
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ones in the LAMBDA method (Teunissen, 1993). After decorrelation, the original ambiguities are 

transformed to the decorrelated ones using z=ZTa, and thereby the search is conducted in the trans-

formed ellipsoid 

1 2
ˆˆˆ( ) ( ) ,     T mχ−− − ≤ ∀ ∈zz z Q z z z        (7) 

where ˆˆ T=z Z a  and ˆˆ
T=z aQ Z Q Z . Let the triangular factorization of the decorrelated variance-

covariance matrix be ˆ
T=zQ L DL , the search over the ellipsoid (7) is then based on the evaluation of 

the scalar intervals 
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with 

1

ˆ ( )
m

i i j j ji
j i

z z z z l
= +

= − −∑        (9) 

where L is a unit lower triangular matrix and lji (j > i) is its element of the jth row and the ith column; 

D is a diagonal matrix whose ith element, 
|

2
ˆi Ii zd σ= , is the conditional variance of the ith transformed 

ambiguity zi conditioned on the transformed ambiguities I={i+1, ···, m}. Based on these bounds (8), 

the search is performed. For more details on the LAMBDA method, one refers to Teunissen (1993, 

1995a, b), De Jonge and Tiberius (1996), Strang and Borre (1997), Teunissen and Kleusberg (1998), 

Hofmann-Wellenhof et al (2001) and Leick (2004). 

3 .  B E R N E S E  A M B I G U I T Y  R E S O L U T I O N  A N D  I T S  T R A N S F O R M A T I O N . 

3.1 Quasi-ionosphere-free ambiguity resolution strategy in Bernese. Several ambiguity resolution 

strategies are available in the Bernese software package. The optimal strategy is determined by many 

factors including the baseline length, session length, and so on. The quasi-ionosphere-free (QIF) strat-

egy is used to solve ambiguities of baselines over several hundred kilometers long. The criterion used 

in the QIF strategy is to minimize the difference between the real-valued and integer ionosphere-free 

biases (IFBs). 

In the QIF algorithm, the L1 and L2 ambiguities are fixed as pair. Firstly, the IFB standard devia-

tions of all pairs of the original DD float ambiguities and the newly formed DD float ambiguities with 

changed reference satellite are computed based on the variance-covariance matrix of float ambiguity 
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estimates. Then the ambiguity fixing process starts from the ambiguity pair with the smallest IFB 

standard deviation. Its integer candidates are defined by the integer candidates of L1 and widelane 

ambiguities. The pair of integer candidates with the smallest difference between the real-valued and 

integer IFBs is accepted as the optimal solution, as long as such difference is smaller than the user-

defined maximum value. Once such a pair of integer candidates is accepted, the entire sequential LS 

adjustment and the procedure described above are repeated so that all or some of the ambiguity pairs 

are fixed. More details can be found in Dach et al (2007). 

3.2 Ambiguity transformation in QIF. The Bernese software works not only with original DD am-

biguities, but also with transformed DD ambiguities with changed reference satellite. Thus, the fixed 

ambiguities in QIF are actually the transformed ambiguities from the original ambiguities. This trans-

formation is symbolized as 

1 1

2 2

ˆˆ
ˆˆ

   
=   

   

z a
Z

z a
        (10) 

where 1â  and 2â  are the original DD float ambiguities at the L1 and L2 frequencies respectively. 

Since the L1 and L2 ambiguities, as a pair, are fixed simultaneously, the Z-transformation matrix has 

structure 

blkdiag( ,   )B B=Z Z Z        (11) 

where ZB is used to transform the DD ambiguities at one frequency by changing the reference satellite. 

All elements in one row of ZB are in either case: (i) 0 except one 1 to retain the original DD ambiguity; 

(ii) 0 except one 1 and one –1 to form the new DD ambiguity. For instance, the ZB is given for the 

four DD ambiguities as 

0 1 1 0
1 0 0 0
1 1 0 0
0 0 0 1

B

− 
 
 =
 −
 
 

Z        (12) 

In this case, the newly formed DD ambiguities, 1,2 1,3ˆˆ( )a a−  and 2,2 2,3ˆˆ( )a a−  with respect to L1 and L2 

frequency, are first fixed simultaneously because their associated IFB standard deviation is smallest. 

It is emphasized that the fixed ambiguities in Bernese are the transformed ambiguities in terms of 

(10) rather than the original DD ambiguities. Furthermore, only part of the transformed ambiguities 
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which meet the user-defined conditions can be fixed. Thus, the dimension of Z is t-by-m with general-

ly t ≤ m. 

4. EXPERIMENT RESULTS AND ANALYSIS. The experiment was conducted using the 24-hour 

dual-frequency GPS data with 30 s sampling interval from a network in Perth of West Australia. As 

illustrated in Figure 1, there are 19 stations in the network, which form 18 baselines in terms of the 

so-called “maximum path algorithm” in Bernese. The maximum, minimum and mean distances of all 

baselines are 695, 225 and 380 km, respectively. 

 

Figure 1. The station distribution and the formed baselines in the GPS network 

 

In Bernese, the default cut-off angle is 3° if an elevation-dependent observation weighting model is 

selected. In this experiment, the cut-off angle is set to 7° in order to exclude the lower-elevation ob-

servables, which suffer from the strong disturbance of unmodelled systematic errors, such as multi-

path effects. Moreover, to avoid the occurrence of ambiguity estimates with extremely large variance 

due to short observation spans in the data processing, we set the minimal observation time span of 

each ambiguity to 30 minutes in the configuration panel of the Bernese software. 

Table 1 lists the baseline number, the station names as well as the total number of ambiguities for 

each baseline in the network. The number of ambiguities per baseline is around 100, which is referred 

to as high dimension. The LAMBDA method was embedded into the “AMBRES” subroutine of the 

Bernese software package. The “RNX2SNX” processing control file (PCF) of Bernese was specified to 

compute the float ambiguity solution of each baseline. Then, both the LAMBDA and QIF methods in 

“AMBRES” are employed to fix the ambiguities, respectively. By comparing the fixed solutions de-

rived from these two methods, the LAMBDA’s performance is evaluated. 

 

Table 1. Baseline numbers, station names and the number of ambiguities (mamb) for each baseline in the network 

 

4.1 Evaluation of LAMBDA numerical efficiency. In this section, the LAMBDA’s performance in 

the ambiguity decorrelation and search was evaluated. The evaluation items include the precision of 

the ambiguity estimates, the decorrelation number, the search speed and the ambiguity spectrum be-

fore and after the decorrelation. 
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4.1.1 Precision of ambiguity estimates. The ambiguity precisions (one sigma), σa and σz, calculated 

before and after the decorrelation are examined and the maximum and minimum ones for all 18 base-

lines are shown in Figure 2. Obviously, both the maximum and minimum precisions of the trans-

formed ambiguities are much smaller. Figure 3 shows the histogram of total 1808 ambiguity preci-

sions of the 18 baselines before and after the decorrelation. From this figure, it can be seen that before 

the decorrelation, the ambiguity precision is distributed over the interval from 0 to 2 cycles. However, 

after the decorrelation, the distribution interval is significantly shrunken to smaller than 0.3 cycles, 

and most of ambiguity precision is distributed over the smaller interval from 0 to 0.1 cycles. There-

fore, the decorrelation has indeed succeeded in pushing the larger ambiguity precisions into much 

smaller values. 

 

Figure 2. The maximum and minimum of the ambiguity precisions (one sigma) before and after the decorrelation 

 

Figure 3. Histogram of the ambiguity precisions (one sigma) of all the 18 baselines before and after the decorrelation 

 

4.1.2 Diagonality of variance-covariance matrix. The main purpose of the aforementioned decor-

relation is to reduce the correlations amongst the ambiguities. However, due to the integer constraints 

on the ambiguity transformation matrix Z, complete diagonality of the transformed ambiguity vari-

ance matrix can generally not be realized. We employ the decorrelation number, r, to measure the 

diagonality (correlation) degree of a matrix, which is defined as a ratio between the product of condi-

tional standard deviations and the product of the standard deviations of this matrix. Thus the decorre-

lation number of the transformed variance-covariance matrix ẑQ  is computed as, 

( )|ˆ

1 ˆ

,      0 1i I

i

m
z

z z
i z

r r
σ

σ=

= ≤ ≤∏      (13) 

where 
|ˆi Izσ  is the standard deviation of the ith ambiguity conditioned on the ambiguities from (i+1) to 

m; 
îzσ  is the standard deviation of the ith ambiguity. The larger the rz is, the more diagonal the matrix 

ẑQ  is. Ideally, rz=1 indicates a full decorrelation (diagonal matrix). For a geometrical interpretation 

on decorrelation number, one can refer to Teunissen et al (1996, 1997). 

To take the dimensional effect into account, we use the m-th root of rz in this paper 
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We have a similar expression to measure the diagonality of the original variance matrix âQ . Accord-

ing to the property, det( ) 1= ±Z , of the decorrelating Z-transformation matrix, we have  

| |ˆˆ1 1i I i I

m m
z ai i

σ σ
= =

=∏ ∏       (15) 

Thus, the decorrelation makes the variance matrix more diagonal, i.e., z ar r>  or ,gm ,gmz ar r> , if 

ˆ ˆi ia zσ σ>  . The gain in decorrelation is defined as (Teunissen, 1993) 

ˆ

1 ˆ

i

i

m
az

ia z

r
r

σ
γ

σ=

= =∏        (16) 

The large γ is associated to the high degree of the decorrelation. For the geometric interpretation of 

the decorrelation gain, one can refer to Teunissen (1993). Again considering the effect of the dimen-

sion, we use the m-th root of the decorrelation gain  

gm ,gm ,gm
m

z a z ar r r rγ = =        (17) 

Figure 4 shows the m-th roots of the decorrelation number and the decorrelation gain for all baselines. 

It shows that the decorrelation indeed makes the ambiguity variance matrix much more diagonal. The 

m-th root of decorrelation number is improved from 0.055 to 0.932 on average for all the baselines 

after the decorrelation. Its corresponding m-th root of the decorrelation gain is as large as 17. 

 

Figure 4. The m-th root of decorrelation number and the decorrelation gain before and after the decorrelation with m denoting 

the number of ambiguities of each baseline 

 

4.1.3 The spectrum of ambiguity conditional standard deviations. The purpose of the ambiguity 

decorrelation is not only to improve the ambiguity precision but also to flatten the spectrum of ambi-

guity conditional variances since the large discontinuities in the spectrum will result in the search 

halting, referring to De Jonge and Tiberius (1996). Figure 5 shows the spectrums of ambiguity condi-

tional standard deviations before (red solid line) and after the decorrelation (blue dashed line) as well 

as the spectrum of ambiguity (unconditional) standard deviations before the decorrelation (black 

dashdot line) for the first baseline. In this case, the ambiguity vector is structured as 1 2ˆˆˆ [ ]T T T=a a a . 

Understandably, the L1 ambiguity standard deviations have a similar variation behaviour to the L2 
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ambiguity standard deviations. The spikes shown in Figure 5 are due to the poor observability of the 

corresponding ambiguities, i.e. they are linked to short observation time spans or poor observation 

quality. The part of single-difference (SD) (between two receivers) satellite visibility plot output from 

Bernese is shown in Figure 6 for the first baseline. The asterisk indicates good quality of observations 

during the corresponding 20 minute interval, while the dash marks the occurrence of missing epochs 

in the corresponding interval. The SD ambiguity A30 is selected as the reference to form DD ambi-

guities. The SD ambiguity A2 can form three DD ambiguities with A30 due to its discontinuity, and 

the first DD ambiguity has an extremely large standard deviation because of its short observation span. 

It is the same as the first DD ambiguity formed between A4 and A30. For more understanding of Fig-

ure 6 and more formation of the DD ambiguities in Bernese, one can refer to Dach et al (2007, p.63 

and p.170). 

 
Figure 5. The spectrum of ambiguity standard deviations before decorrelation and the spectrums of ambiguity conditional stan-

dard deviations before and after decorrelation for the first baseline 

 
Figure 6. SD (between-receiver) satellite visibility plot output from Bernese for the first baseline 

 

For the conditional standard deviations without decorrelation (red solid line) in the Figure 5, they 

have nosier and larger values in the second half part than in the first half part, and also a distinct jump 

exactly at the half-way of the spectrum, which is attributed to the high correlation between the L1 and 

L2 ambiguities and further to the presence of the ionospheric unknowns in the observation equations. 

After the decorrelation, the spectrum of conditional standard deviations (blue dashed line) is effi-

ciently flattened; the spectrum jump vanishes and the magnitude of the spectrum is greatly reduced to 

smaller than 0.3 cycles from 2.5 cycles. The other 17 baselines in the network have the similar spec-

trums of conditional standard deviations without decorrelation to the first baseline in Figure 5. Their 

corresponding spectrums of the conditional standard deviations with decorrelation are illustrated in 

Figure 7, showing that the smooth spectrums have been realized. 

 
Figure 7. The spectrums of ambiguity conditional standard deviations after decorrelation for all baselines in the network (each 

line for one baseline) 
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To further examine the issue that L1 ambiguities are highly correlated with L2 ambiguities, we re-

structure the ambiguity vector 1 2ˆˆˆ [ ]T T T=a a a  as  

new 1,1 2,1 1, 2, 1, 2,ˆ ˆˆˆˆˆˆ[ ]T
i i m ma a a a a a=a       (18) 

where 1,ˆ ia  and 2,ˆ ia  are the ith L1 and L2 ambiguities, respectively. For the restructured ambiguity 

vector newâ  of the first baseline, the spectrums of conditional standard deviations before and after 

decorrelation as well as the spectrum of (unconditional) standard deviations before decorrelation are 

plotted in Figure 8. The spikes also exist in both the conditional and unconditional standard deviations 

before decorrelation, which have the same attribution of poor observability as that in Figure 5. Now, 

we focus on examining the spectrum of the conditional standard deviations before decorrelation (read 

solid line). Considering the ambiguity order in newâ , the elements in the upper subplot of Figure 8 

from right to left are as follows. The first element is the unconditional standard deviation 
2,ˆ maσ  of 

2,ˆ ma , and then the second is the conditional standard deviation 
1, 2,ˆ ˆ|m ma aσ  of 1,ˆ ma  on the condition of 

2,ˆ ma . Analogously, the third element is the conditional standard deviation 
2, 1 1, 2,ˆ ˆ ˆ| ,m m ma a aσ

−
 of 2, 1ˆ ma −  on the 

condition of both 1,ˆ ma  and 2,ˆ ma , and so on. Therefore, the figure has clearly shown (also see the bot-

tom subplot of Figure 8) that L1 and L2 ambiguities from one ambiguity pair are highly correlated, 

while the ambiguities from the different ambiguity pairs are much less correlated. 

 

Figure 8. The spectrum of standard deviations before decorrelation and the spectrums of conditional standard deviations before 

and after decorrelation (upper subplot) as well as the conditional standard deviations of L1 ambiguities after decorrelation 

(bottom subplot) for the restructured ambiguity vector newâ of the first baseline 

 

4.1.4 The numerical efficiency. Up to now, the decorrelation has shown that it works well in the 

high-dimensional cases, i.e., after decorrelation, the ambiguity precision is improved, the variance-

covariance matrix is more diagonal and the spectrum of conditional ambiguity standard deviations is 

flattened significantly. We further evaluate the computational efficiency of LAMBDA in comparison 

with Bernese. After the float ambiguities are solved, both the LAMBDA and QIF methods are used to 

fix the ambiguities. We record their consumed CPU time only in the ambiguity resolution processing 
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for each baseline. The results are illustrated in Figure 9. LAMBDA turned out to be faster for all base-

lines since its results, except one, are less than 20 ms against about 100 ms of Bernese. 

 

Figure 9. The consumed CPU time by LAMBDA and Bernese for the ambiguity resolution of each baseline 

 

4.2. Performance evaluation of LAMBDA. 

4.2.1 Evaluation of LAMBDA performance by comparing its fixed integers with those of Bernese. 

To get an insight on how well LAMBDA works, we may directly compare its fixed integers with 

those of Bernese. However, it should be noted that the LAMBDA method fixes all ambiguities, while 

Bernese usually fix only a subset of ambiguities and the fixed ambiguities are either the original DD 

ambiguities or the difference between two original ambiguities with the same reference SD ambiguity 

(actually, the newly formed DD ambiguities). We transform the fixed DD ambiguities from 

LAMBDA to the new ones that have the same combinations to those from Bernese. Assuming that the 

fixed integer ambiguity vector from LAMBDA is lmda , it is transformed by 

lmd lmd=z Za         (19) 

where Z is the transformation matrix from (10) and it is used to form the new ambiguities that to be 

fixed in Bernese; lmdz  is the transformed integer ambiguity vector, which have the same linear combi-

nations as those in the fixed ambiguity vector berz  from Bernese. Therefore, we can now directly 

compare lmdz  with berz , and count the number of the same integer values. Figure 10 shows the number 

of fixed ambiguities by Bernese (i.e., the dimension of berz ), the number of same integers in both vec-

tors lmdz  and berz  as well as the number of total ambiguities of each baseline. It is observed that, for 

most of baselines, the fixed ambiguities by Bernese can be also fixed by LAMBDA with the same 

integers. Furthermore, considering that some ambiguities fixed by LAMBDA cannot be fixed by Ber-

nese, it is concluded that the fixed ambiguities by Bernese are generally the subset of the fixed ambi-

guities by LAMBDA. 

 

Figure 10. The number of fixed ambiguities by Bernese (blue solid line with squares), the number of same integers in both 

vectors lmdz  and berz  (red solid line with triangles) as well as the number of total ambiguities of each baseline (blue dashed 

line with stars) 
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4.2.2 Evaluation of LAMBDA performance in terms of baseline repeatability. From the test results 

of the previous section, one cannot judge whether the ambiguities fixed by both methods are correct 

or not. Therefore, we further evaluate the LAMBDA performance by analysing the effect of its integ-

er solutions on the baseline repeatability (i.e., empirical baseline precision) in this section. From now 

on, we use a total of 12-day dual-frequency GPS data from the same network in Figure 1. We design 

the different experiment scenarios by specifying the observation spans of 2, 3, 4, 6, 12 and 24 hours, 

respectively. If the session span is 6 hours, the total number of sessions for 12 days is 24/6×12=48, 

which means that we can obtain 48 fixed solutions for each baseline. 

The baseline repeatability is defined as 

( ) 2
1

2
1

ˆ
1 1

n
i ii

x n
ii

x xns
n

σ

σ
=

=

−
=

−
∑
∑

       (20) 

where n is the number of sessions from which the baseline was solved for; xi and σi are the baseline 

component estimate and its standard deviation from the ith session, respectively; x̂  is the weighted 

mean of the baseline component and calculated based on the component estimates of all sessions:  

2
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ˆ
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σ

σ
=

=

= ∑
∑

        (21) 

According to (20), one can compute the baseline repeatabilities with both the float and fixed ambigui-

ties, say, sfloat and sfix. Figure 11 shows the comparison of baseline repeatability between the float so-

lution and the fixed solution of LAMBDA as well as the fixed solution of Bernese, namely, 

Δs = sfloat – sfix        (22) 

A positive Δs value means that the precision of the fixed solution is higher than that of the float solu-

tion. In Figure 11, the results from the first row to the last row are for the observation spans of 2, 3, 4, 

6, 12 and 24 hours respectively, and from left to right column for north, east and up components. 

From all subplots, it can be seen that most of the Δs values are positive, which means that the baseline 

repeatability of the fixed solution is much better than that of the float solution. In addition, with the 

observation span getting longer, the baseline repeatability difference between the float solution and 

the fixed solution becomes smaller. It makes sense, because the baseline estimates solved from a long 

observation span have high precision even using the float ambiguity. It is also observed that the hori-

zontal components (especially the east component in the second column of Figure 11) have significant 
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improvements for all observation spans, while the up component has a moderate improvement and, 

particularly for some baselines, it even degrades after ambiguity fixing although the degradation is 

very small. Such results are consistent with those reported by Blewitt (1989) and Ge et al (2008). 

The difference between the baseline repeatabilities with the fixed ambiguities from LAMBDA and 

Bernese is also calculated 

Δs = sber – slmd       (23) 

where sber and slmd are the baseline repeatabilities with the fixed ambiguities from Bernese and 

LAMBDA, respectively. A positive Δs indicates that the precision of the baseline component with the 

fixed ambiguities from LAMBDA is higher than that from Bernese. As shown in Figure 12, for the 

short observation spans, it seems that LAMBDA is marginally better than Bernese in the up compo-

nent. For the 2-hour observation span, the baseline repeatability differences, i.e. the Δs values, are 

within several millimetres. Also with the observation span getting longer, the differences become 

smaller. The differences are smaller than 1 mm for all the baselines when the observation span is 

longer than 12 hours. Such small difference can be adequately ignored in practice. Therefore, the 

baseline repeatabilities derived from LAMBDA and Bernese can be considered comparable for prac-

tical purposes. 

 

Figure 11. The difference of baseline repeatabilities computed using the float ambiguity estimates and the fixed ambiguity 

estimates derived from LAMBDA and Bernese. The results from the first row to the last row are for the observation spans of 2, 

3, 4, 6, 12 and 24 hours, and from left to right for north, east and up components, respectively. 

 

Figure 12. The difference of baseline repeatabilities computed using the fixed ambiguities from Bernese and LAMBDA. The 

results from left to right and up to bottom are for the observation spans of 2, 3, 4, 6, 12 and 24 hours respectively) 

 

4.2.3 Baseline repeatability with the ambiguity resolved from a network. In the Bernese software, 

one could solve for the float ambiguities of all baselines in a network depending on the size of net-

work and observation span etc, but the ambiguity fixing processing is performed only in baseline-by-

baseline mode. However, it is feasible to use LAMBDA to fix all ambiguities from this network si-

multaneously. In Bernese, the number of unknown parameters is limited for the purpose of computa-

tion efficiency. Thus it is advised to use the baseline mode to solve float ambiguities instead of using 

the network mode, unless the network is small, e.g. it only consists of several baselines along with 

sufficiently short observation spans. In our experiment, a total of 18 baselines are tested and thus we 
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can only solve the network float ambiguities with observation span of 2 hours. Otherwise, the number 

of parameters will exceed the parameter threshold. In the network solution, the number of ambiguity 

parameters generally exceeds 400. First of all, we address whether the LAMBDA method works still 

efficiently in the network mode. Using the 12-day data the same as that used in the subsection 4.2.2, 

the total number of the sessions is 24/2×12=144, which means that there are 144 network ambiguity 

solutions. The spectrum of ambiguity conditional standard deviations from the network ambiguity 

solution mode is very noisy before decorrelation and with magnitude of 2.5 cycles although they are 

not illustrated here. However, after the decorrelation, these values are all smaller than 0.3 cycles as 

shown in Figure 13. This indicates that the decorrelation is still efficient in the high dimensional case 

even with more than 400 ambiguities. 

 
Figure 13. The spectrum of the ambiguity conditional standard deviations from all the 144 network ambiguity solutions after 

the decorrelation (each line for one network solution) 

 

We can also employ the LAMBDA to fix the ambiguities of the network solutions and then com-

pute the baseline component estimates as well as the baseline repeatability snetwork. Let the baseline 

repeatability using the ambiguity resolved from the baseline-by-baseline mode be sbaseline, the differ-

ence between the two baseline repeatabilities are calculated by  

Δs = sbaseline – snetwork       (24) 

A positive Δs value means that the baseline repeatability from the network mode is better than that 

from the baseline-by-baseline mode. It is observed from Figure 14 that, for most of the baselines, the 

results from the two ambiguity resolution modes are similar, whereas for the 1st and 12th baselines, the 

Δs values reach 4 mm and 8 mm. The reason is that these two baselines have poor baseline repeat-

abilities with baseline-by-baseline mode, see the first subplot of Figure 12. Therefore, it is concluded 

that for the baselines that have good baseline repeatabilities from the baseline-by-baseline mode, the 

comparable baseline repeatabilities are achievable from the network mode. However, for the baselines 

with poor baseline repeatabilities from the baseline-by-baseline mode, they may be further improved 

by the network mode. It is emphasized again that the network ambiguity fixing mode is not available 

in Bernese software. 

 

Figure 14. The difference of the baseline repeatabilities based on the fixed ambiguities resolved from LAMBDA using the 

baseline-by-baseline and the network modes, respectively; GPS data session is 2 hours 
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5. CONCLUDING REMARKS. The LAMBDA method has been widely used for carrier phase ambi-

guity resolution with the number of ambiguities up to several tens in the past two decades. With the 

advent of denser network and the availability of multi-frequency, multi-GNSS systems, it is signifi-

cant to understand LAMBDA’s efficiency and performance in high dimensional ambiguity spaces. 

In this contribution, a first attempt was made to analyze the LAMBDA performance in high-

dimensional ambiguity spaces using the real GPS data. We have embedded the LAMBDA method 

into the Bernese software for evaluating and comparing its performance with Bernese approach. The 

performance evaluation includes the numerical efficiency of the decorrelation and search steps of 

LAMBDA itself, and the effect of the LAMBDA optimal integer solution on the baseline precision. 

The experiment results suggest that the LAMBDA method is still efficient in high dimensional ambi-

guity spaces. The results of the LAMBDA’s performance in terms of the baseline repeatability sug-

gest that the baseline repeatabilities resulted from the LAMBDA solution are comparable with those 

from Bernese. However, if the baseline precision obtained from the baseline-by-baseline ambiguity 

resolution mode is poor, one can further improve it by using the network ambiguity resolution mode 

based on LAMBDA. Therefore, for future denser network processing and multi-GNSS tracking, the 

easy-to-use LAMBDA method should be considered as an alternative to those approaches used in 

some prestigious software packages, such as Bernese. 

We note that a further improvement is possible in our analyses, since (i) we used the LAMBDA 

method only as a full ambiguity resolver (i.e. no partial ambiguity resolution was attempted) and (ii) 

the fixed ambiguities in this paper were not independently validated, e.g. the fixed failure-rate ratio 

test was not performed. 
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Table 1. Baseline numbers, station names and the number of ambiguities (mamb) for each baseline in the network 

Baseline number 1 2 3 4 5 6 
Station names 00, AY B5, AY C5, YL CL, YL DH, AY DW, AY 

mamb 100 100 100 106 98 94 
Baseline number 7 8 9 10 11 12 

Station names ID, AY KN, AY NN, AY OK, AY PE, YL RO, AY 
mamb 96 106 96 94 96 98 

Baseline number 13 14 15 16 17 18 
Station names S9, YL WY, AY YB, AY YB, KD YB, YH YB, YL 

mamb 96 104 104 96 112 112 
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Figure 1. The station distribution and the formed baselines in the GPS network 
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Figure 2. The maximum and minimum of the ambiguity precisions (one sigma) before and after the decorrelation 
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Figure 3. Histogram of the ambiguity precisions (one sigma) of all the 18 baselines before and after the decorrelation 
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Figure 4. The m-th root of decorrelation number and the decorrelation gain before and after the decorrelation with m denoting 

the number of ambiguities of each baseline 
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Figure 5. The spectrum of ambiguity standard deviations before decorrelation and the spectrums of ambiguity conditional stan-

dard deviations before and after decorrelation for the first baseline 

 



23 

 

 
 

Figure 6. SD (between-receiver) satellite visibility plot output from Bernese for the first baseline. 
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Figure 7. The spectrums of ambiguity conditional standard deviations after decorrelation for all baselines in the network (each 

line for one baseline) 
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Figure 8. The spectrum of standard deviations before decorrelation and the spectrums of conditional standard deviations before 

and after decorrelation (upper subplot) as well as the conditional standard deviations of L1 ambiguities after decorrelation 

(bottom subplot) for the restructured ambiguity vector newâ of the first baseline 
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Figure 9. The consumed CPU time by LAMBDA and Bernese for the ambiguity resolution of each baseline 
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Figure 10. The number of fixed ambiguities by Bernese (blue solid line with squares), the number of same integers in both 

vectors lmdz  and berz  (red solid line with triangles) as well as the number of total ambiguities of each baseline (blue dashed 

line with stars) 
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Figure 11. The difference of baseline repeatability computed using the float ambiguity estimates and the fixed ambiguity esti-

mates derived from LAMBDA and Bernese. The results from the first row to the last row are for the observation spans of 2, 3, 

4, 6, 12 and 24 hours, and from left to right for north, east and up components, respectively 
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Figure 12. The difference of baseline repeatabilities computed using the fixed ambiguities from Bernese and LAMBDA. The 

results from left to right and up to bottom are for the observation spans of 2, 3, 4, 6, 12 and 24 hours respectively) 
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Figure 13. The spectrum of the ambiguity conditional standard deviations from all the 144 network ambiguity solutions after 

the decorrelation (each line for one network solution) 
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Figure 14. The difference of the baseline repeatabilities based on the fixed ambiguities resolved from LAMBDA using the 

baseline-by-baseline and the network modes, respectively; GPS data session is 2 hours 
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