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Abstract The time-honored convention of concentrating aqueous samples by solid-phase 

extraction (SPE) is being challenged by the increasingly wide spread use of large-volume 

injection (LVI) liquid chromatography-mass spectrometry (LC-MS) for the determination of 

traces of polar organic contaminants in environmental samples. Although different LVI 

approaches have been proposed over the last 40 years, the simplest and most popular way of 

performing LVI is known as single column LVI (SC-LVI), in which a large-volume of an 

aqueous sample is directly injected into an analytical column.  For the purposes of this critical 

review, LVI is defined as an injected sample volume that is ≥ 10% of the void volume of the 

analytical column. Compared to other techniques, SC-LVI is easier to set up, as it only 

requires small hardware modifications to existing autosamplers and, thus, will represent the 

main focus of the current review.  Although not new, SC-LVI is gaining acceptance and the 

approach is emerging as a technology that will render SPE nearly obsolete for many 

environmental applications.  In this review, we discuss 1) the history and development of 

various forms of LVI, 2) the critical factors that one needs to consider when creating and 

optimizing SC-LVI methods and 3) example applications that demonstrate the range of 

environmental matrices, to which LVI is applicable such as drinking water, groundwater and 

surface water including seawater as well as wastewater. Furthermore, we give responses to 

answer a set of ‘frequently asked questions’ typically encountered from audiences and we 

indicate future directions and areas that need to be addressed to fully delineate the limits of 

SC-LVI.     

 

Keywords   Large-volume injection • Direct injection • Liquid chromatography • LC-MS/MS 

• Soil • Solid-phase extraction • Sample preparation • Water • Wastewater 

Abbreviations 

LC-MS/MS Liquid chromatography-tandem mass spectrometry 

CC-LVI coupled column large-volume injection 

SC-LVI single column large-volume injection 

LOQ Limit of quantification 

LVI Large-volume injection 

ON-E On-line enrichment 

MS Mass spectrometer 

UV-Vis Ultraviolet-visible absorption 

SPE Solid-phase extraction 
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Introduction 

 

It is a widely held belief among chemists, instrument manufacturers and companies that 

produce solid-phase extraction media that solid-phase extraction (SPE) is needed to extract 

analytes from aqueous samples, to reduce the complexity of the matrix and to increase analyte 

concentrations in the final extract.   The authors of this critical review represent three 

generations of analytical environmental chemists, all of whom have performed SPE during 

their careers (e.g.[1-5]).  We too have held the belief that SPE is a ‘necessary evil’ that 

protects our analytical columns and sensitive mass spectrometers.  By one way or the other, in 

some cases by serendipity, we have reached the conclusion that for many applications, large-

volume injection (LVI) is chemically redundant with SPE.  As a result, we posit that LVI will 

render SPE obsolete as a sample preparation step, especially for aqueous environmental 

samples.   

 

Analytical chemists, by their very nature, tend to be cautious especially when it comes to 

protecting their valuable instrumentation.  The desire to protect analytical columns and mass 

spectrometers has created, in our view, a ‘folklore’ that sample pre-treatment by SPE is 

needed to keep analytical columns and mass spectrometers clean and fully operational.  Cur-

rent opinion indicates that if SPE were eliminated one would experience shorter column 

lifetimes and the need for more frequent instrument cleaning and maintenance.  In addition, 

SPE is thought to reduce matrix effects and many argue that SPE is required to avoid negative 

impacts on signal-to-noise and sensitivity.   Such perceived advantages are the rationale for 

including SPE, which has many costs both time and financial to laboratories.  The costs start 

from purchasing the SPE media that typically are used once and discarded.  In addition, there 

are costs associated with solvent usage and disposal. However, one of the largest costs is for 

the labor required to perform SPE.  The time required to add and optimize a SPE pre-

concentration step is substantial.  Additionally, if performed on a stand-alone SPE apparatus 

or by on-line SPE instruments, one also incurs costs due to the equipment and the additional 

labor to optimize, operate and maintain SPE instrumentation. SPE typically is performed with 

sample volumes usually ranging from milliliters to liters and the costs associated with 

shipping samples of such volumes increase the costs of SPE further.   

Besides costs, the multi-step nature of SPE, which includes media preparation, sample 

application, wash steps, elution, evaporation and reconstitution is laborious and results in 
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variable accuracy and precision.  Artifacts from SPE media and support material are 

problematic for those analyzing for analytes associated with common laboratory materials 

such as PTFE (e.g., fluorochemicals) and hydrophobic analytes that are prone to losses 

(negative artifacts) [6]. As we will discuss, the chemical processes occurring during SPE and 

LVI are equivalent and, thus, no net advantage in terms of column and instrument 

performance or reduction in matrix effects are realized by performing SPE.  LVI can appear 

to have pitfalls when LVI performed without a thorough understanding of how it works and 

which factors must be controlled. Methods are developed faster without SPE and have similar 

or even improved accuracy and precision due to the simple nature of the process with the 

least amount of materials and handling involved.  In the end, SPE uses time and resources 

that could be allocated elsewhere, while it is not offering the perceived advantages held by so 

many researchers in academia and in the analytical industry. The objectives of this critical 

review are: 

 

1. To describe the history and development of LVI,  

2. To discuss the factors that one needs to consider when creating and optimizing LVI 

methods,   

3. To provide examples of applications for environmental matrices including surface, 

ground, drinking and waste water as well as for vegetables and soil, 

4. To offer responses to answer a set of ‘frequently asked questions’ typically 

encountered from audiences and   

5. To propose future directions and areas that need to be addressed for fully explore the 

limits of LVI and how environmental analytical chemistry can be drastically improved 

by LVI.   

 

With this critical review, we offer the chance to challenge analytical chemists to think outside 

the ‘classical chromatography’ box and to put their instruments to full use without the labor 

and costs of SPE.   

 

The history of large-volume or direct-injection 

   

In the late 1970s, Little and Fallick [7] reported what they called “new ways” of using 

refractometers and ultraviolet-visible (UV-Vis) detectors coupled to modular LC systems 
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consisting of pumps and hand-operated injectors for analysis of trace organic pollutants 

(Table 1). For the first time, chemists were using LC systems as enriching devices to 

concentrate trace organics in place of other pre-extraction/concentration/clean-up procedures 

that existed at that time (e.g., liquid-liquid extraction). The “on-line enrichment” (ON-E) 

technique consisted of pumping a sufficient quantity of a filtered aqueous sample (200 mL) 

through a C18 column using an off-line or standalone pump.  A solvent of greater elutropic 

strength was delivered by a second pump to elute the analytes for UV-VIS detection. The 

authors also pointed out that in cases where concentrations were sufficiently high that “only 

0.5 to perhaps 2 mL of sample and pumping that across the column is sufficient to 

concentrate enough organics for detection” [7]. To the best of our knowledge, this is among 

one of the first publications demonstrating the possibility of analyzing samples through LC-

UV-VIS without the need of a pre-concentration and/or a clean-up step. Since the early 

1970s, several scientists started to look deeply into this attractive option and consequently 

were able to produce a number of reports on LVI methods for the analyses of a variety of 

chemicals in different matrices.  

 

The second approach that developed in the late 1970s and early 1980s utilized a single 

analytical column (SC-LVI) was developed and consisted of simply injecting a large-volume 

of sample into an analytical column. Two early examples include Gloor and Johnson [8] who 

described the direct injection of 250 μL of wastewater for determination of linear 

alkylbenzene sulfonate (LAS) by ion-pair LC with UV-VIS detection (Table 1). Kiso et al. 

[9] reported a method employing 5 mL sample volumes for the analysis of 15 pesticides listed 

in the Japanese guidelines for potable water down to 40 – 500 ng/L levels (Table 1).   Up to 

this point, UV-VIS was the detector of choice since routine and quantitative detection by 

mass spectrometry had not yet been developed. 

 

In the 1980s throughout the 1990s, pesticides along with other organic contaminants were a 

major environmental concern. The urgency of developing fast and reliable analytical methods 

able to match environmental regulation without or with minimal sample preparation became 

soon clear.  In the early 1990s, Hogendoorn and co-authors, published a series of papers [10-

14]dealing with the analysis of various pesticide residues in a range of environmental samples 

using a coupled columns large-volume injection (CC-LVI) technique. The columns switching 

and on-line clean up approach they developed consisted of 1) pre-separation of the sample on 
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a low efficiency column, 2) diverting the analyte-containing fraction into a second column 

and 3) final analysis of the sample fraction containing the analyte by LC-UV-VIS. For 

example, Hogendoorn et al. analyzed methyl isothiocyanate at 1,000 ng/L levels by injecting 

770 μL of aqueous sample onto a low efficiency column and then diverting the analyte-

containing fraction into second analytical column followed by UV detection [11].  The 

elutropic strength of water allowed injection of large sample volumes into the column and the 

analyte’s capacity factors (k’) influenced the optimal injection volume. By correctly timing 

the divert valve that was positioned between the low efficiency column and the analytical 

column, only the analyte-containing fraction was sent to the analytical column. Other 

examples of CC-LVI include the injection of 2 [15-17] to 4 mL [13] of groundwater, drinking 

water and surface water containing pesticides and achieved limits of detection in the range < 

20 -1,000 ng/L (Table 1).  

 

Between the 1990s and the 2000s, LCs coupled to mass spectrometers emerged but the 

capacity of the vacuum systems permitted only low mobile phase flow rates. Low LC flow 

rates (μL/min rather than mL/min) required reduced LC column diameters (0.25-0.5 mm I.D. 

rather than 2.1-4.6 mm I.D.) and low injection volumes (nL rather than mL) [18]. Therefore, 

with the emergence of the first LC-MS systems, the development and application of LVI 

methods took a step backward.  Limits of detection were confined by the restricted injection 

volumes that were compatible with narrow-bore columns used at that time [18, 19].  With the 

advent of commercialized mass spectrometers fitted with multiple stage vacuum systems and 

with more efficient atmospheric pressure ionization (API) sources, higher LC flow rates, 

larger column diameters and larger injection volumes were made possible. An increasing 

number of publications have since appeared in the scientific literature that describe SC-LVI 

for use with mass spectrometry for the determination of pesticides in vegetables [20], water 

[21-29], and soil [30-33]; fluorochemicals in wastewater, groundwater and surface water [33-

37]; neurotoxins in surface water,  groundwater and drinking water [38, 39]; pharmaceuticals 

(legal and/or illicit) in surface, ground, and waste water [25, 33, 40-44]; corrosion inhibitors 

in surface, ground, and waste water [33, 45]; chelating agents in surface, drinking, and waste 

water [46]; iodinated chemicals in waste water and treated water [47-49]; artificial sweeteners 

in ground, waste, and treated water [50]; biocides in surface and waste water [51]; bisphenol 

A in soil [33]; steroids in waste water [52]; and surfactants in seawater  (unpublished) (Table 
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2). The success and popularity of SC-LVI compared to ON-E and CC-LVI are most likely 

due to its simplicity.   

 

SC-LVI: factors for creating and optimizing methods  

 

The purpose of this section is to walk readers through SC-LVI.  For the purposes of this 

review, our working definition of SC-LVI is applied to those applications involving the direct 

introduction of sample volumes that are ≥ 10% of the void volume of the analytical column 

used for separations (Table 2).  While reporting the % of void volume injected is convenient 

for comparing disparate LVI applications, the % of void volume injected cannot be used to 

predict analyte retention or capacity on a given column because additional factors are 

important such as particle size, column composition and sample solvent matrix.  SC-LVI 

differs from ON-E and CC-LVI because SC-LVI is performed without the use of off-line or 

on-line sample pre-concentration steps or equipment and does not require additional pumps, 

sorbents, or analytical columns.    In this section, a view of the factors involved in creating 

and optimizing SC-LVI methods is offered.  The order and function of each step involved in 

SC-LVI are discussed relative to the analogous steps used in treating the sorbent in SPE 

(Table 3).   

 
Enrichment and analytical column conditioning step 

   

The first step in SPE is to condition or ‘wet’ the SPE media using μL to mL of non-aqueous 

solvents to ensure reproducible retention and sample flow [53] (Table 3).  The organic solvent 

also serves to reduce or eliminate sorbent impurities.  The analogous situation in SC-LVI 

occurs only when a new enrichment/separation column is first installed and must be 

conditioned.  Once the columns are conditioned and properly stored after use, no subsequent 

‘wetting’ steps are needed since the column is not allowed to dry and the normal operation of 

the LC re-equilibrates the enrichment/separation column. 

   

Sample loading   

  

The goal is to concentrate analytes onto both SPE media and reverse-phase analytical 

columns during SC-LVI from aqueous samples or samples composed of a solvent/water 

mixture of lower elutropic strength relative to the mobile phase.  Although most of the 
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applications listed in Table 2 involve the direct injection of aqueous samples, several indicate 

that extracts of vegetables [20] or soil [30-32] are analyzed by SC-LVI  (Table 2). The final 

organic solvent-based extracts were diluted with water and the injected samples ranged in 

composition from 25% organic solvent (acetonitrile or methanol)/75% up to 70% organic 

solvent/30% water and then analyzed by SC-LVI. These examples indicate that SC-LVI can 

be used with samples that are not 100% aqueous and that analytes can be focused on the 

analytical column in the presence of organic solvent.    In SC-LVI, sample loading where the 

sample volume is the mobile phase is equivalent to isocratic separations with a very 

elutropically-weak solvent (e.g., 100% aqueous). The injected sample volume and flow rate 

determine the duration of the isocratic loading conditions.  For example, a 4.5 mL injection at 

1 mL/min would be equivalent to an isocratic separation of about 4.5 min.  

 

Sample volumes for SPE and SC-LVI are selected as a function of analyte concentration and 

detector sensitivity.  For SPE applications, the sample volumes processed range from < 1 mL 

to 1,000 mL while volumes up to 5 mL are employed in SC-LVI (Table 2).  In both cases, 

sample volumes should not exceed the breakthrough volume of analytes [11, 53-56].   In the 

case of SC-LVI, maximum injection volumes are determined by the injection assemblies 

consisting of syringe plungers and sample loops.  Syringes plungers and sample loops are 

matched by volume in order to ensure that the sample withdrawn by the syringe can be 

accommodated by the sample loop. For example, applications that consist of injecting 100 μL 

can be accomplished with a 100 μL analytical head and sample loop without hardware 

modification.   

 

For sample volumes that exceed the analytical head capacity (e.g., 100 μL), it is necessary to 

make simple hardware modifications.  For some commercial LCs, analytical heads can be 

exchanged for larger-volume models.  For example, [35, 36] replaced 100 μL syringes for 

900 μL syringe and installed a 1,400 μL sample loop. They operated the LC in a ‘multi-draw’ 

mode, which allowed for multiple injections to give a total volume that exceeds the syringe 

and sample loop volumes.  To achieve injection volumes of 1,800 µL, two cycles of 900 µL 

injections are performed [41].  Backe et al. used a 5,000 μL sample loop and five cycles of 

900 µL to achieve an injection volume of 4,500 µL for anabolic steroids in water [52].    
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Flow rates 

 

The application of high pressure for SC-LVI maintains flow rates despite the small particle 

size while offering increased efficiency compared to SPE.  SPE systems typically have a 

smaller number of theoretical plates and therefore efficiency owing to the relatively large 

particle size and short column length when compared to analytical columns that have smaller 

particle sizes and greater lengths.  The optimum flow rate range during the application of 

samples processed by SPE is narrow and typically 1-10 mL/min.  This upper flow rate is 

dictated by the small pressure drop than can be maintained by vacuum over the typically short 

SPE column beds (e.g., 1 cm) and larger particle sizes (e.g., 40 µm) of SPE media [53].  One 

can directly compare the minutes required to transfer large-volume sample to the analytical 

column during SC-LVI to the time and equipment is takes to prepare an extract by SPE, 

which ranges from minutes to hours (Table 3).  This shift in sample preparation time onto the 

LC and away from laboratory personnel results in costs saving because labor costs are much 

greater than those associated with running the LC for a few extra minutes. 

 

Programmed flow rates can be used in SC-LVI to load large-volumes of samples into the 

enrichment/separation column quickly in order to reduce analysis time [52]. For example, 

Backe et al. transferred sample from the sample loops to the analytical column at 1 mL/min 

after which the flow rate was reduced to 0.5 mL/min to separate anabolic steroids in 

wastewater.  It is important to note that if the analytes of interest do not have a sufficiently 

high capacity factor in the sample solvent, changes in relative retention and resolution can 

occur when using a high flow rate to load the sample and a slower flow rate for separation. 

 

Dwell volume: chromatographic control and minimizing run times  

 

At the point where the analytical head/needle and sample loops are loaded (chromatographic 

‘time zero’), the total sample volume is then pushed onto the enrichment/separation column 

by the mobile phase flow.  Note that it takes time to transfer the sample from the large-

volume of injector tubing onto the column and this time must be taken into account when 

designing the gradient program. The initial gradient conditions, whether it is 100% aqueous 

or a solvent/water combination, will not reach the analytical column until the total sample 

volume in the injector sample loops are transferred onto the enrichment/separation column. 
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Sample load time can be calculated by using the mobile phase flow rate, the volume of the 

capillary and tubing before the column and the volume of the sample in the needle loop 

before the sample capillary. For example, at a flow rate of 0.5 mL/min, the column loading 

time for a 1,800 µL sample should be (1,400 µL + 900 µL total injection volume)/500 µL/min 

injection rate= 4.6 min total injection time.  This simple calculation may not fully account for 

the entire volume of the injection system, therefore further experiments are typically 

necessary to determine the exact loading time.   A more empirical method for determining 

sample load times is to map the pressure isotherm for samples, whose composition has a 

significantly different viscosity than the mobile phase.  For example, water has a lower 

elutropic strength and higher viscosity than mobile phases containing methanol or 

acetonitrile. As aqueous samples are loading on the column, fluctuations occur in pressure.  

After initiating an injection, the return in pressure to the initial starting pressure indicates that 

the aqueous sample has completely passed through the guard/analytical column. Another 

method to calculate sample loading times is to monitor the presence of an unretained (k` = 0) 

analyte, such as thiourea or acetone [41, 57].  The arrival time of unretained peaks takes into 

account the time it takes for the sample to pass from the column to the detector, which is 

negligible for a well designed system.  

 

All of these methods assume that the analytes in the sample are not interacting (e.g., retained) 

with the materials in the injection assembly. If this is the case, additional mobile phase may 

need to be run through the injection assembly to quantitatively transfer all the analytes to the 

column after the sample loading phase [52] .  Understanding the time it takes for large-

volumes (e.g., mLs) of sample to completely transfer into an analytical column is important 

when creating gradient programs and to minimize run times. In autosamplers, the system 

dwell volume, which is the volume the mobile phase occupies after the point of mixing to the 

head of the analytical column [58], can be quite large compared to normal systems due to 

increased volume associated with sample loops (e.g., hundreds of µLs).  Initial attempts to 

control SC-LVI for sample volumes of 900 and 1,800 μL were conducted without taking 

advantage of the mainpass/bypass valve that is present in the Agilent 1100 [41].  SC-LVI 

systems may appear to be unresponsive to changes in gradient settings unless the dwell time 

and volume of the injector is taken into account.  Further, six-port injection valves that are 

positioned after the sample loops (e.g., seat capillary) and before the guard/analytical column,  

can be used to direct mobile phase flow around the injection assembly after the sample has 
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been loaded into the column in order to significantly reduce dwell volumes and analysis 

times.  In ‘mainpass mode’, the mobile phase is routed through the entire network of injector 

tubing and this mode is used to transfer sample onto the analytical column.  ‘Bypass” mode is 

used after the sample is transferred to the column and is achieved by rotating the valve so that 

mobile phase goes directly to the analytical column, thus bypassing the injector.  

 

Washing SC-LVI columns  

 

In SPE, the sorbent is often washed with a solvent or mixture of solvents of elutropic strength 

less than that required to elute the analytes of interest [56].  Wash steps are performed by 

incorporating a high percent aqueous isocratic wash step to eliminate salts followed by a 

wash with sufficient percent organic so as to elute all components from the SPE sorbent 

without eluting the analytes of interest.  In SC-LVI, wash steps are potentially important.  It is 

our experience that successful SC-LVI must include a wash step.  For example, without a 

wash step, Chiaia et al. observed relative standard deviations (RSDs) of ≥ 30% for illicit 

drugs in wastewater [41].  Once a one min wash (at 0.5 mL/min) consisting of 90 % (0.1 % 

acetic acid in 5% aqueous methanol/acetonitrile 90:10 (v/v) reduced RSDs to < 12%.   

Analysts actually have more control over the wash step in SC-LVI compared to SPE because 

the retention of the analytes is simultaneously monitored.  In addition, matrix components 

that elute earlier and later than the analytes of interest are discarded to waste by use of a post-

column divert valve, which will be discussed in more detail.  Note that while wash steps can 

eliminate salts and their potential for causing matrix effects, wash steps cannot eliminate co-

eluting matrix components during either SPE or SC-LVI.   

 

Post-column divert valve   

 

If a mass spectrometer is used as a detector for LVI analysis, the authors of this paper 

recommend the addition of a post-column valve. The purpose of the post-column valve is to 

divert early eluting matrix components, like salts and highly polar organic interferences away 

from the mass spectrometer to waste. This is especially important for mass spectrometers, 

whose interface spray is not orthogonal or off axis to the capillary inlet. Diverting unwanted 

sample components protects the mass spectrometer from non-volatile sample components that 

might otherwise clog capillaries or eventually build up on optics. A divert-valve also reduces 
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the amount of non-dissolved aerosol droplets sprayed directly or indirectly onto capillaries 

and orifices by diverting to waste the high aqueous fraction of the mobile phase gradient, 

which is more resistant to desolvation.  

  

Eliminated and redundant steps in SPE 

 

No analogous steps are needed in SC-LVI that correspond to the drying of SPE sorbent beds 

and extract concentration.  The elution of SPE media is accomplished as part of SC-LVI 

whereas in SPE the sorbent media is eluted and then the analytes are eluted again from the 

analytical column, effectively repeating the same task twice when performing SPE followed 

by LC-MS analysis.  In addition, typically only a small portion of the SPE extract generated 

is actually injected.  Therefore, much of the time, materials and labor required to generate the 

SPE extract is wasted.  By contrast, SC-LVI is more cost and time efficient since the entire 

sample is used.   

 

In conventional SPE, a typical volume of water to extract by SPE is 100 mL.  If 100% of a 50 

ng/L solution were extracted and ended up in a 1 mL final extract, the concentration would be 

increased 100 fold.  However, when only 10 µL is injected of the final extract, 0.05 ng is 

injected, which is only 1% of the original mass isolated by SPE.  In contrast, if 1,800 µL the 

same 50 ng/L solution of analyte were directly injected, 0.09 ng is injected onto the column 

and is a greater amount of mass introduced than that by the SPE approach. 

 
Practical aspects of LVI  
 

A good starting point would be to check the maximum allowable injection volume by the 

LC’s syringe pump and sample loops (seat capillaries).  Often larger analytical heads and seat 

capillaries can be purchased for use with existing systems that allow for multiple ‘draws’ of a 

single sample.   The concentration ranges of the analytes in the crude samples, the required 

limits of detection for the specific application and MS sensitivity should be taken into 

account. One needs to consider the instrumental detection limits in terms of the total mass 

(e.g., pg or ng) injected onto analytical columns that are currently detected based on the 

injection of analytical standards in the system. This is providing information on 1) what 

volume to inject and 2) if an upgrade of the LC system with a multi-draw injection kit is 

needed.  For the starting configuration, it is important to estimate or measure the system’s 
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dwell time, which is the time it takes for a selected volume of sample to be transferred to the 

column. 

 

Sample preparation for aqueous and solid samples 

  

For aqueous samples, minimal sample preparation such as centrifugation is sufficient to 

prolong column life and avoid contamination from SPE or filtration materials. Samples to be 

injected by SC-LVI onto enrichment/separation columns still must be as particle free as 

possible to avoid plugging the system.     Filtration is commonly used [23, 25, 26, 37, 45, 47, 

48].   Centrifugation is simple, requires no specialized training, uses common equipment, 

generates no solid waste and samples can be treated in batches [35, 41, 52].  

 

There are a limited number of cases where SC-LVI is used for the analysis of pesticides 

extracted using organic solvents such as methanol from soil [31, 32] and vegetables [20].  In 

each of these cases, the methanol extracts first are diluted to water to give sample 

compositions ranging from 25:75 to 70:30 (methanol:water).  The diluted extracts are then 

analyzed by the injection of 900 to 1,000 µL (Table 2) with good retention and peak shape.  

The retention of analytes under SC-LVI conditions for organic solvent extracts diluted with 

water of varying elutropic strength is likely analyte dependent. 

 

LC columns and MS conditions  

 

If an LC separation uses 100% aqueous phase at the beginning of the chromatographic run, 

then fully end-capped stationary phases should be employed that are designed to not collapse 

at 100% aqueous phase and that favor retention of highly polar compounds. Column 

diameters, LC flow rates and mobile phase composition should be used that are compatible 

with the vaporization efficiency of the MS source. For example, most ESI sources can 

accommodate 100% aqueous phase at 200-300 μL/min for 2.1-3.0 mm I.D. columns.  Chiaia 

et al. increased the ESI source and desolvation temperatures to 150 and 450 oC, respectively 

to accommodate the higher flow rates of 0.5 mL/min [41]. Alternatively, APCI can 

accommodate mL/min 100% aqueous phase flow rates with 4.6 mm I.D. columns. Increasing 

the percentage of organic phase in the initial mobile phase composition will increase 

desolvation efficiency and decrease LC backpressure, so that higher flow rates can be used.  
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At high flow rates, it should also be considered to “move away” the probe from the mass 

spectrometer entrance. This could result in increased desolvation efficiency due to an increase 

in the desolvation path. 

 

Speed and injection speed  

 

Samples draw speed and injection speed will affect the time that it takes to load sample onto 

the enrichment/separation column. For aqueous samples, draw speed and injection speed can 

be set up to 900 µL/min [52].  However, due to the viscosity of water, very high draw speed 

and injection speed are not recommended due to the possibility of creating suction during 

sample withdrawal. To check this, initial injection tests should be performed at low 

draw/injection speeds (e.g. 100 µL/min) on vials containing known amounts (by mass or 

volume) of water. The volume effectively injected by the system can be assessed by 

difference in weight and/or volume. If this test does not reveal any problem, then the 

draw/injection speeds should be increased to 500 µL/min or higher. 

 

Operation of SC-LVI LC-MS methods under accredited conditions and long time 

performance 

 

Several methods using SC-LVI LC-MS were successfully operated in an analytical laboratory 

accredited according to ISO 17025 [33]. According to this contract laboratory, rigorous 

requirements regarding method validation including quality assurance and quality control 

performance were met with by the SC-LVI LC-MS approach. Column life times were 

reported to be more than 300 days with 2,800 to 3,700 SC-LVI runs per column. In 

comparison to conventional LC-MS procedures, neither shorter column lifetimes nor a faster 

decrease of the MS sensitivity were observed. 

 

Impact of matrix effects on SC-LVI LC-MS analysis 

 

Matrix effect components present in contaminated water samples are known to be responsible 

for suppressing and, less frequently, for enhancing the absolute analyte response [59].  This 

often results in variable detection limits and, more importantly, erroneous quantitative results. 

It should be born in mind that matrix effects do exist both for SPE or SC-LVI LC-MS 
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methods [45]. Therefore, the ‘tools’ that are used to address matrix effects are the same for 

both approaches and include 1) tunable LC gradients for on-line clean-up [35, 41, 52]; 2) 

deuterated standards [43]  3) standard addition and matrix-matched calibration curves [25, 43, 

47]; 4) sample dilution [60]. Although matrix effects are compound and sample dependent, it 

has been shown to be moderate to minimal for SC-LVI [25, 45, 47].  

 

Instrumental background and LVI  

 

Several reports indicate problems with instrumental background for fluorochemical analytes 

that is due to part of the LC systems such as PTFE frits, seals and tubing [35, 61-63] and for 

plasticizers in solvents [64].  For the purposes of this discussion, ‘ghost’ peaks are described 

as chromatographic peaks with retention times and MS transitions that correspond to the 

analyte of interest and increase the overall detection limits. Such ‘ghost’ peaks result from 

instrumental background contamination of the LC system and its parts [64] and are 

differentiated from peaks resulting from sample contamination (e.g., the presence of analytes 

within blank standards) or due to carryover from previously injected samples. 

 

With the injection of large-volumes, background contamination arising from LC systems 

parts can be much more apparent than for smaller injection volumes due to the longer sample 

loading phase with high aqueous samples and resulting contact with LC systems parts that 

can lead to the buildup of hydrophobic analytes on the head of the analytical column. A ‘no 

injection run’, which simulates the entire injection sequence without actually introducing any 

sample, is a useful method for differentiating background contamination from contamination 

associated with samples [61].  If multiple no-injection runs give a constant ghost peak it then 

indicates background system contamination while decreasing peak areas indicate carryover 

from prior sample injections.      

 

In the development of a SC-LVI method for the surfactants present in the oil dispersant use 

on the Gulf of Mexico oil spill, a ghost peak for the dioctylsulfosuccinate (DOSS) surfactant 

was observed that had an identical retention time MS transitions as those of the DOSS 

standard.  For this method, 1,800 µL of seawater were injected onto a C18 column (Table 2) 

and the divert valve was used to direct the highly saline sample matrix to waste instead of to 

the mass spectrometer.  The ghost DOSS peak was identified as originating from the LC 
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pump assembly.  A second column was installed after the LC mixer but before the injector 

assembly as described in Powley et al. [61].  The presence of this column shifts the ghost 

peak in time so that the ghost peak is separated from the analyte peaks. In our experience, we 

have found that it is especially important that the column located between the LC pumps and 

the injector possesses equal or greater retentive capabilities than the analytical column to 

affect separation of ghost and sample analyte peaks.  This finding indicates that a LVI can be 

performed for applications in which background contamination is present.     

  

UPLC with LVI 

 

The main reason for using a UPLC over HPLC is the speed advantage. Ultra performance 

liquid chromatography (uHPLC or UPLC) employs sub 2 μm particles to achieve improved 

speed of analysis (5-10 times faster) and separation efficiency. A net advantage of UPLC over 

HPLC is also an increased MS sensitivity. Because of sub 2 μm particles size and the mL/min 

flow rates that are typically adopted, the UPLC equipment must accommodate back pressures 

up to 1.03 x 108 Pa (15,000 psi). Smaller particles size (e.g. 1.8 μm and lower) are more prone 

to blockages as gaps between particles are extremely small. For this reason, a potential 

problem area for UPLC is the direct analysis of crude samples. To reduce columns plugging 

and for longer columns lifetime, ultra in-line filters are now sold with UPLC columns and 

sample filtration through filter membranes are strongly recommended. However, this may be 

problematic for analytes that are retained by filters or are artifacts of filter manufacture.  As 

an alternative to UPLC, columns containing 2.5 μm fused core particles offer similar 

efficiencies to the smaller 1.8 μm UPLC columns without the high requisite high back 

pressure such that they can be used in conventional HPLC systems [43]. Mass spectrometers 

coupled with UPLC systems must deliver high speed acquisition rates for the narrow UPLC 

peaks.  High speed acquisition rates are also desirable to allow screening of wider lists of 

known analytes and unknown analytes in a single chromatographic run without 

compromising sensitivity and sampling rate across chromatographic peaks.   

 

Future perspectives 

 

Despite the benefits of SC-LVI, there is an apparent reluctance within the environmental 

analytical chemistry community to adopt this practice.  Although SC-LVI applications date 
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back to 1977 [8], the development of SC-LVI applications results from serendipity rather 

from guidance based in theory. Research is needed to systematically define the limits of SC-

LVI for complex environmental and biological matrices to make SC-LVI more generalizable, 

which is likely to lead to a fundamental understanding of the technology and its widespread 

application. 

 

Existing literature describes peak shapes as a function of injection volume, analyte physical 

chemical properties, column dimensions and sample composition under isocratic (loading and 

elution) conditions for clean water systems [65-68].  However, research is needed to 

determine if relationships that hold true under clean systems also apply to complex matrices, 

such as wastewater, urine and blood. For example, research is needed that relates the capacity 

(k’) of chemicals under isocratic loading conditions to the maximum amount of a sample that 

can be injected for a specific analyte while maintaining acceptable peak shape. This is 

important as the capacity of an analyte under loading conditions is likely to be the limiting 

factor that determines the maximum injection volume for complex environmental sample, and 

therefore maximum attainable sensitivity. To date, research on maximum loading volume 

focuses on microbore columns and on how sample solvent composition and injection volume 

effect efficiency and area counts [68, 69]. As indicated earlier, LVI is compatible with the 

injection of extracts from environmental solids with appropriate dilution of extracts with 

water.  However, this approach for the analysis of organic solvent-containing extracts has yet 

to be fully exploited. 

 

Matrix components from environmental samples may limit the amount of sample volume that 

can be directly injected on the column. Matrix components may interact with analyte 

molecules in the column in a way that cannot be predicted by experiments in clean systems. 

Furthermore, matrix components may have the ability to displace analytes and adversely 

affect peak shape, especially analytes that co-elute with large amounts of matrix components. 

Further, more detailed experiments, such as those employing 2D chromatography, are needed 

to differentiate matrix effects due to column overloading from those associated with 

ionization.  Direct comparisons of area counts for SPE extracts of environmental samples 

with those obtained by SC-LVI are needed to quantify any reduction or enhancement in 

matrix effects under SC-LVI conditions when compared to SPE.  Undoubtedly, increased 
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mass spectrometer sensitivity can offset the need for large-volume injections so that direct 

injections of smaller volumes will provide equivalent or better sensitivity.   
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Table 1.  On-line enrichment (ON-E), coupled column (CC-LVI) and single-column (SC-LVI) applications for environmental matrices based on 
UV-Vis detection and early MS detectors.  Entries are grouped by date of publication and then by analyte class and cover the years 1975 to 
1999. 
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Chemical 

class 

 
Sample 
matrix 

Injection 
technique 

Injected 
volume 

(µL) 

Column void 
volume (µL) 

% of 
Column void 

volume 
injecteda 

Detection LODs Reference 

Polycyclic 
aromatic 
hydrocarbons 

River water ON-E 200,000  
 

2,400 
 

8,333 UV-Vis NA [7] 

 
Surfactants Waste water SC-LVI 250  

605 41 UV-Vis NA [8] 

 
Pesticides  

Surface 
water SC-LVI 5,000  

1,587-2,645 189-315 UV-Vis 40-500 
ng/L [9] 

 Ground 
water CC-LVI 200  

1,058 19 UV-Vis 1,000 ng/L [10] 

  Surface 
water CC-LVI 770 

 
529-1,058 73-146 UV-Vis 1,000 ng/L 

100 ng/L [11] 

  Surface 
water CC-LVI 2,000 

 
1,058 189 UV-Vis 100 ng/L [12]  

  

Surface, 
ground, 
drinking 

water 

CC-LVI 4,000 

 
 

529-1,058 378-756 UV-Vis 100 ng/L [13] 

  
Surface, 
drinking 

water 
CC-LVI 6,000 

 
1,587 378 UV-Vis 100 ng/L [14] 

  Surface 
water CC-LVI 2,000 

 
1,058 189 UV-Vis 100 ng/L [15] 

  
Surface, 
drinking 

water 
CC-LVI 2,000 

 
317-1,058 189-630 UV-Vis 100 ng/L [16] 

 



Table 1.  On-line enrichment (ON-E), coupled column (CC-LVI) and single-column (SC-LVI) applications for environmental matrices based on 
UV-Vis detection and early MS detectors.  Entries are grouped by date of publication and then by analyte class and cover the years 1975 to 
1999. 
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 Surface, 
drinking 

water 
CC-LVI 2000 

 
1,000 200 UV-Vis 500 ng/L [17] 

 Drinking 
water SC-LVI 

 
50 

 
7.8 640 MS <20 ng/L [19] 

Pharmaceuticals  Drinking 
water SC-LVI 50  

 
7.8 640 MS <20 ng/L [18] 

 

ON-E: on-line enrichment; CC-LVI: coupled column large-volume injection; SC-LVI: single column LVI; NA not available 
a  Only applications are reported if the % of column void volume injected was ≥ 10%.  The % of column void volume injected was calculated as (5 x 

10-4x column length (mm) x column ID (mm)2  x 1000 [70].    



Table 2.  SC-LVI MS applications for environmental matrices (organized by earliest date of publication for individual classes of analytes that 
then occur by alphabetical order when the first year of publication is equivalent) covering the time from 2000 to 2010. 
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Chemical 
Class Matrix Sample 

preparation 

Maximum 
injected 
volume 

(µL) 

Column void 
volume (µL) 

% of Column 
void volume 

injecteda 

LODs 
(LOQs*) Reference 

Pesticides Vegetables 

Solvent 
extraction, 

dilution with 
water 

900 530 170 0.5-2 µg/kg [20] 

 Surface,  ground,  
drinking water Filtration 11,700 1,058 1,106 10-200 ng/L [21] 

 Drinking water None 250-2,000 80-530 113-646 100 ng/L [22] 

 Surface,  ground,  
drinking water 

Filtration, 
acidification 

 
1,000 1,590 63 10-20 ng/L [23] 

 Surface,  ground,  
drinking water Dilution 100 793 13 100 ng/L [24] 

 
Surface,  ground,  
drinking, waste 

water 
Filtration 100 100 

 

100 

 

10-100 ng/L [25] 

 Surface,  
drinking water Filtration 100 529 19 <15 ng/L [26] 

        



Table 2.  SC-LVI MS applications for environmental matrices (organized by earliest date of publication for individual classes of analytes that 
then occur by alphabetical order when the first year of publication is equivalent) covering the time from 2000 to 2010. 
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 Mineral water Degassed 100 100 100 100-1,000 ng/L [27] 

 Drinking water Centrifugation 100 330 30 <100 ng/L [28] 

 Surface,  ground,  
drinking water None 50 220 23 10 ng/L [29] 

 Soil 

Solvent 
extraction, 

centrifugation, 

evaporation 

20 10 

 

296 

 

300-500 μg/kg [30] 

 Soil 

Solvent 
extraction, 

dilution with 
water 

1,000 1,000 100 300 µg/kg [31] 

 Soil 

Solvent 
extraction,   

dilution with 
water 

1,000 1,000 100 7-18 μg/kg [32] 

 Soil 

Solvent 
extraction, 

dilution with 
water 

100 221 45 0.23–0.69 
µg/L* [33] 

Fluorochemicals Ground water Centrifugation 900 300 300 150-1,800 ng/L 
[34] 

 



Table 2.  SC-LVI MS applications for environmental matrices (organized by earliest date of publication for individual classes of analytes that 
then occur by alphabetical order when the first year of publication is equivalent) covering the time from 2000 to 2010. 
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 Waste water 

 

Centrifugation 

 

500 300 167 0.5 ng/L* 

 

[35] 

 

 Surface,  waste 
water Centrifugation 900 331 272 1-300 ng/L [36] 

 Surface,  waste 
water Filtration 100 110 

91 

 
0.3-1.6 ng/L 

[37] 

 

 
Surface,  ground,  
drinking, waste 

water 

Water: none 

Soil: extraction, 
activated carbon 

500 221 227 4– 8 ng/L* [33] 

Neurotoxins Drinking water Filtration 500 2,000 25 200 ng/L [38] 

 Surface,  ground,  
drinking water Centrifugation 750 1,058 71 30 ng/L [39] 

Pharmaceuticals
-illicit and/or 

legal 

Surface,  ground, 
drinking water Filtration 25 0.8 3,125 50 ng/L [40] 

 
Drinking, 

ground, surface, 
and waste waters 

Filtration 100 100 100 10-100 ng/L [25] 

 Waste water 
  Centrifugation 

 
1,800 1,587 113 2.5-10 ng/L [41] 
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 Surface water Filtration, 
dilution 3000 44 6,803 2-10 ng/L [42] 

 Surface water Filtration 100 300 33 0.2-100 ng/ L [43] 

 Waste water Filtration 5,000 22 22,676 3-8,130 ng/L [44] 

 Waste water filtration 500 221 227 9 – 18 ng/L* [33] 

 

Corrosion 
inhibitors 

 

Surface,  ground,  
drinking water Filtration 60 300 20 33 ng/L 

 

[45] 

 

 
Surface,  ground,  
drinking, waste  

water 
Filtration 500 221 227 32– 7 ng/L* [33] 

Chelating 
Agents 

Drinking, 
surface, and 
waste waters 

Filtration 50 300 17 (600-1,000) 
ng/L [46] 

Iodinated 
contrast media 

Waste, post-
membrane 

filtration and 
reverse osmosis 

water 

Filtration 

 
100 675 15 110-970 ng/L [47, 48]} 
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Wastewater, 

post-reverse 
osmosis water 

Filtration, 

dilution 

 

100 675 15 <500 ng/L [49] 

Artificial 
sweeteners 

Ground, waste, 

post-
microfiltration 

reverse osmosis 
water 

Filtration 100 330 30 0.7-2.4 µg/L [50] 

Biocide 
Surface, waste, 

membrane 
flushing water 

Filtration 2000 2910 69 30-100 ng/L [51] 

Bisphenol A Soil Solvent 
extraction 

100 22 227 610 ng/L [33] 

 

Steroids 
Surface, waste 

water Centrifugation 1,800 – 4,500 1,587 113-284 1.2–360 ng/L [52] 

 

Surfactants 
Sea water Centrifugation 1,800 331 272 

 

NA 

 

Place et 
al. in 

preparatio
n 

∗Limit of quantification NA = not available 
a Only applications are reported if the % of column void volume injected was ≥ 10%.  The % of column void volume injected was calculated as (5 x 10-4x 
column length (mm) x column ID (mm)2  x 1000[70] 
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Table 3.  Comparison of steps in solid-phase extraction (SPE) and in single column 

large-volume injection (SC-LVI)  

  

Steps SPE SC-LVI 

1. Conditioning μL to mL organic solvent(s) Performed by mobile phase 

2. Sample volume; time 1 – 1,000 mL; minutes to hours Up to 5 mL; minutes 

3. Wash μL to mL of water and/or solvent Performed by mobile phase 

4. Drying often but not always included NA 

5. Elution μL to mL of organic solvent Performed by mobile phase 

6. Extract concentration Extracts typically concentrated 

under stream of N2 

NA 

7. Extract injection 5-100 μL of final extract injected NA 

NA = not applicable 
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