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Abstract 
Sediments play an important role in maintaining water quality. This review describes 

methods of investigating element binding in sediments, and assesses the value of each for 

characterising sediment contamination. Although easy to obtain, data from ‘bulk’ tests such 

as fractionation schemes or fitting adsorption isotherms cannot describe binding or phase 

composition definitively. Modern spectroscopic techniques can investigate the sediment 

surface on a molecular scale, but are not yet used routinely for sediment analysis. Proper 

assessment of the implications of sediment contamination normally requires more than one 

method to be used. Comparing contaminant remobilisation rates to the timescales of 

environmental factors causing remobilisation is also important. 
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I. Introduction 
Anthropogenic contamination in the environment is a growing concern. Worldwide, the 

increasing number of water bodies with elevated concentrations of heavy metals and other 

toxic elements threaten human health and cause degradation of the surrounding environment. 

Sediments often play an important role in maintaining water quality by removing 

contaminants from the water column. However, subsequent contaminant remobilisation from 

the sediment can keep dissolved concentrations elevated long after the initial source has been 

removed. The manner in which sediment contamination is treated ultimately depends on the 

sediment’s chemical reactivity. Choosing the most appropriate treatment requires an 

understanding of how the contaminant binds to the sediment and the conditions under which 

the contaminant will be released back into the water column. 

Sediments are heterogeneous mixtures that include both mineral phases (e.g., Fe oxides, Mn 

oxides) and detrital organic matter.46 Contaminants may bind to these phases by adsorption, 

precipitation, and coprecipitation4,23 and element mobility is controlled by both the binding 

phase and binding mechanism. Researchers originally presumed that, once retained in the 

sediment, a contaminant was trapped forever. However, it is now appreciated that 

contaminants can cycle across the sediment-water interface many times. In general, a 

contaminant is not fixed permanently and many physical and chemical variables can 

influence contaminant mobility. This review describes current methods used to investigate 

element binding in sediments and assesses the information that each method is able to 

provide. Sediment contamination may be examined from two perspectives, either focussing 

on how contaminants partition between different sediment phases or the conditions that cause 

contamination to remobilise back into solution. Proper assessment of the implications of 

sediment contamination requires investigation of both aspects, as well as consideration of the 

environmental factors causing remobilisation. 



 

 
Kathryn L. Linge 
Investigating trace element binding in sediments 3 

II. Factors Affecting Remobilisation from Sediments 
Contaminant remobilisation occurs when altered conditions create a gradient to drive the 

remobilisation. Common driving gradients are changes in redox potential and pH, often 

caused by the degradation of organic matter and biological activity.47,48 Mimicking such 

gradients exactly in a laboratory is difficult. The development of driving gradients is 

controlled by the size and depth of the water body, as well as the surrounding climate. The 

complexity of trace metal distributions in lake waters and sediments is often attributed to the 

dynamic nature of lakes, where inputs, mixing and removal processes vary on a variety of 

time scales. Contaminant remobilisation has been well studied in deep lakes and 

estuaries.10,25,42,184 A predictable sequence of events occurs: temperature stratification 

develops during summer, isolating the bottom waters from the mixed surface layer and 

limiting oxygen transport to the sediment. These anoxic conditions can last for weeks, 

promoting the dissolution of Fe and Mn oxides and the precipitation of sulphide minerals.29,65 

Deep lakes often reach equilibrium. However, in shallow lakes the sequence of driving forces 

is less predictable. While stratification can develop, often on a diurnal pattern,9,63 regular 

wind events ensure that the lake rarely remains stratified for more than a day. The 

development of anoxic conditions at the sediment-water interface is therefore less frequent 

and occurs for a shorter period of time. Obviously the rate of contaminant remobilisation 

becomes more important in these circumstances. 

Sediment resuspension is another process in which remobilisation rates may control release. 

Waves, currents and dredging can all resuspend the bottom sediments of a lake. Sediment 

resuspension releases interstitial porewater111,126 and may lead to contaminant release from 

the sediment as well.20,37,93 Benthic organisms also facilitate the movements of contaminants 

into and out of sediment by burrowing, respiration or feeding.18,85,108,128 

The chemical composition of lakewater can change temporally and spatially and this also 



 

 
Kathryn L. Linge 
Investigating trace element binding in sediments 4 

affects the extent of remobilisation from sediments. Dissolved organic matter (DOM) is 

generally assumed to increase the solubility of elemental contaminants, either because the 

element is complexed by the DOM, preventing adsorption, or because DOM competes for 

sorption sites.124,186 However DOM can comprise many varied compounds and determination 

of the mechanisms involved in reactions between metals and DOM is difficult.77,96,145 The 

microbial degradation of DOM to carbon dioxide will affect the redox potential as the process 

requires an electron acceptor to complete the reaction.158 In well mixed waters, oxygen is the 

most likely electron acceptor because oxygen reduction releases the largest amount of energy. 

However, in waters depleted in dissolved oxygen (e.g., in sediments or flooded soils) other 

electron acceptors are active, usually in a predictable sequence (Table 1). These reactions 

determine the redox potential of the sediments and affect both ion speciation and redox 

sensitive minerals. Iron redox cycling and the reductive dissolution of Fe and Mn minerals, in 

particular, is significant in controlling contaminant concentrations in deep lakes.29,144 These 

reactions are often depicted as a one dimensional series but usually occur in a two or three 

dimensional matrix because sediment heterogeneity produces localised areas where only one 

or two electron acceptors are present.45,136,189  

Redox reactions also alter pH. Water pH can change both naturally and as a result of human 

activity. Several studies have shown that the pH of waters with significant biological 

production fluctuates in response to changes in algal biomass on both diel and seasonal 

timescales.30,39,100 Photosynthesis and respiration cause changes in the dissolved carbon 

dioxide concentrations of a water body, leading to pH fluctuations.161 pH changes arising 

from anthropogenic causes, for example the effect of acid mine drainage, are more 

dramatic.41 Large pH changes initiate the dissolution of sediment minerals, releasing 

incorporated contaminants; Fe oxides will dissolve at both low and high pH. Even small pH 

changes can affect the extent of adsorption of a solute on a surface. pH controls the 
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protonation of dissolved species and functional groups present on the sediment surface. This 

is the principal source of variable charge in sediments and so affects the extent of 

contaminant adsorption.143,153 

III. Characterising Contaminant Partitioning in Sediments 
Using total concentrations to measure elemental availability is normally inappropriate 

because this approach includes the assumption that all phases have equal control of the 

element and that all phases act identically in different environments. Instead, the sediment 

phase (or phases) that are involved in elemental binding should be identified. Sediments are 

complex mixtures of both mineral phases and detrital organic matter and current 

characterisation techniques often produce ambiguous results. Most often chemical extraction 

and statistical studies have been used to characterise sediments. These ‘bulk’ analyses tend to 

lead to oversimplified interpretations that do not take sediment complexity into account. 

Sediment complexity also means that experiments using model minerals or phases are unable 

to mimic the behaviour of real sediments. In recent years, however, numerous spectroscopic 

techniques have allowed analysis at a molecular level, finally providing direct evidence of 

surface composition and bonding. 

Chemical Extraction 

The most popular method of investigating contaminant partitioning in sediments is by the use 

of chemical extraction, which is usually employed in one of two ways. A single extraction 

solution might be applied to a sediment sample in order to mimic a specific set of 

environmental conditions.101 In particular, many solutions have been devised to determine 

element ‘bioavailability’, although often the choice of extractant is largely empirical.129,151,173 

Extractants to measure bioavailability can be devised on a more mechanistic basis, however, 

such as those containing the gastric and intestinal enzymes of organisms likely to come into 

contact with the sediment.171,172 
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The second application of chemical extractions is to investigate sediment mineralogy and 

contaminant partitioning and the most popular way of doing this by the use of sequential 

extraction, or fractionation, schemes.23,44,53,73,116 Element partitioning between sediment 

phases is evaluated by treating the sediment with a series of sequential extracting solutions, 

each targeting a different phase. Analysing each final extractant quantifies the element 

concentration associated with each targeted phase. In general the same extraction 

mechanisms are used in all schemes and include ion exchange, acid and base dissolution, 

reduction, oxidation, and complexation. Each mechanism affects different sediment phases, 

although some extractants utilise more than one extracting mechanism. What is actually 

extracted ultimately depends on which extraction solution is used and the sediment being 

investigated. Many schemes for metals are based on that devised by Tessier et al.,168 although 

trace element partitioning of anions like As can be more successful with a schemes 

specifically developed for P.22,132,185 Table 2 lists a number of extraction solutions that have 

been used in fractionation schemes. A huge variety of different ‘recipes’ have been devised to 

extract the same phase, and this variety is an indication of the impossibility of finding one 

extractant that is entirely specific for one fraction. 

The popularity of fractionation schemes stems from the fact that these schemes are simple, 

accessible, and seemingly straightforward to interpret. However, this is rarely the case. 

Chemical extraction is unlikely to be completely selective for only one phase. Results are 

influenced by both reagent choice and extraction time,23 as well as the conditions under 

which the sediment is manipulated.121 As a result, different extraction schemes may give 

different interpretations of partitioning in the same sediment.14,57,64,89 Extracted contaminants 

can also readsorb onto other phases during the procedure and demonstrating post-extraction 

readsorption experimentally is difficult. Different approaches have yielded widely varying 

results.12,56,62,127,167 Deionised water or ion exchangeable washes between extractions132 or 
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determining correction factors using trace element spikes56 have attempted to address the 

issue. However there is no consensus on whether these measures improve data interpretation. 

Despite the pitfalls, researchers continue to use fractionation schemes and sometimes without 

due care. Some researchers argue that optimisation and validation is required every time a 

fractionation scheme is applied to a new sediment.58,109 Testing to see whether repeated 

extraction is required to extract the entire fraction is also suggested.11,117 However, the 

intrinsic nature of the method means that interpretation of results is always influenced by the 

fractionation scheme used. If the data are intended solely to indicate differences in sediment 

behaviour or as a tool to compare different sites this may be unimportant.11,95,149 However, in 

most cases, interpretations from fractionation schemes should be corroborated by other 

methods. Combining fractionation data with spectroscopic and diffraction techniques has 

been used to monitor the extraction of crystalline phases34,84 or speciation142 but does depend 

on crystalline material being present in the sediment for the former. Such experiments are 

generally not suited to large numbers of analysis either. Fractionation analysis is enhanced by 

measuring major elements like Fe, Al, and Ca, which influence dissolution/precipitation and 

adsorption/desorption equilibria180 or comparison to statistical trends in total metal 

concentrations.95 

In order to eliminate some variability and to allow standardisation between laboratories, the 

Community Bureau of Reference (BCR, now EC Standards, Measurements and Testing 

Programme) devised a three-step fractionation scheme that was tested in interlaboratory trials 

and applied to a sediment reference material (BCR CRM 601).73,119,174 However, even this 

method has shown variable recoveries for some samples,26,133 as well as variability between 

analysts.27 Modifications to the scheme were made to overcome analyst bias and an aqua 

regia digestion of both the residual and the whole sample was added as a measure of internal 

consistency.122 This has resulted in improved precision and assessment of new reference 
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materials continues.87,164 

Statistical Analysis 

The analysis of statistical relationships between total element concentrations is another ‘bulk’ 

method that has been used to identify phase associations.98,130,135 The approach is most 

successful when a single substrate acts as the main binder of a trace element as correlations 

are less evident when two or more phases influence binding. The technique has been used to 

both identify general trends in contaminant binding over a large number of different sites98,181 

and investigate processes in a single waterbody.67,95 Statistical relationships have also been 

used to demonstrate that different mineralogy can exist at related sites.135 Whilst the existence 

of a correlation does not prove that a phase association actually exists, the correlation may 

augment fractionation information and aid in identification of phases important in binding an 

element.95 As well as using raw data, statistical trends can be investigated after normalization 

by the concentration of an element such as Al, to account for the dilution effect of minerals 

that the element does not associate with.95 Normalization does require that the coefficient of 

variation (V = standard deviation divided by the mean) of the normalising element is similar 

or better than that of the trace element as otherwise correlation results will be 

compromised.176 Principal component analysis (PCA) is another way of determining the 

influence of different sediment phases by identifying a set of components that encapsulates 

the maximum amount of variation in a dataset.130,135  

Sediment heterogeneity may make assessment of sediment contamination difficult and 

normalization can be used to account for environmental variation as well.81 The enrichment 

factor (EF) is a method commonly used to determine if element concentrations in sediment 

are above background.15,79,134,135,188 Here, element concentrations are first normalised against 

the concentration of a representative matrix element, such as Al, Li, Fe and then ratioed to 

normalised values from a reference sediment.130  An EF greater than one may then suggest 
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the sediment is contaminated with that element. Investigators must ensure, however, that the 

normalizing element is not subject to anthropogenic enhancement as well. The resulting EF 

will also be greatly influenced by the reference point and choosing an appropriate reference 

sediment is essential.130,188  

Molecular scale techniques 

Molecular scale techniques have been used to study elemental binding on surfaces since the 

early 1990s.19,104,110,154 In particular X-ray Adsorption Spectroscopy (XAS) techniques such 

as X-ray Adsorption Fine Structure (EXAFS) and X-ray Adsorption Near-Edge Structure 

(XANES) can give direct evidence for surface species of oxidation state, number and type of 

near neighbours, coordination state and bond distance.43,102,113,120,163 For a long time, 

however, these techniques lacked the sensitivity required to analyse contaminant binding in 

most environmental samples and application was limited to the most contaminated 

sediments137,142 or to characterising adsorption on model phases.43,102,120,163 While elemental 

adsorption has been confirmed on model sediment phases, there is no assurance that these 

studies actually mimic what is happening in the natural environment. Sorption experiments 

are usually performed over short timescales and there may be little similarity between the 

results from such tests and what actually occurs over months or even years in natural 

sediments. Long term studies of adsorption have demonstrated that sorption can occur in 

several steps, with rapid surface exchange or adsorption followed by a very slow continuous 

uptake.2 This slower uptake has been interpreted as entrainment of the ion into the solid phase 

through aging. Thus application of results from short term studies must be applied with 

caution. Recently detection limits of XAS techniques have improved and more studies of real 

sediments are now appearing.51,52,114,165 However access to facilities providing such 

techniques is not always available. 



 

 
Kathryn L. Linge 
Investigating trace element binding in sediments 10 

IV. Binding Processes in Sediments 
Sediments bind and release contaminants by one of two basic mechanisms: 

adsorption/desorption or precipitation/dissolution. However, to properly model partitioning 

between dissolved and particulate phases in a natural system requires very detailed 

information that is not always available.99 As well as quantifying binding intensities, 

capacities, and the relative abundance of each important sediment component, the effect of 

particle coatings and of multi-component aggregation on the binding capacity of each 

substrate must also be assessed. The kinetics of redistribution among sediment components 

and the effect of major competitors should also be considered. Quantitative models have been 

employed to describe adsorption on well defined component surfaces, but such models have 

seldom been extended to the multicomponent systems typical of nature. Again, the advent of 

molecular scale techniques does help provide this information, but many experimenters still 

rely on empirical or macroscopic models and experiments. 

Adsorption/Desorption 

Adsorption is a process where a solute in the liquid phase becomes bonded to the surface of a 

solid, usually on a specific site. Metal adsorption to sediments is analogous to the formation 

of soluble complexes, with the surface site acting as the ‘ligand’ in the reaction.32 The 

strength of the bond between the solute and surface site will vary.6 Solutes can be weakly 

bound by non-specific forces (e.g., van der Waals forces) or by electrostatic attraction 

between a charged solute and the surface site. Solutes are strongly bound by specific 

adsorption, which occurs when chemical forces of attraction create covalent bonds between 

the solute and the surface site. Specific adsorption is slower than electrostatic adsorption and 

is sometimes partly irreversible. The process of adsorption is highly dependent on pH, Eh, 

temperature, and the composition of both the solid surface and the solution.  

Contaminant sorption onto a solid at equilibrium, Γ (mol g-1), can be expressed by the 
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equation: 

sed

sed
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n
=!

 [1] 

where nsed is the number of moles of a substance i bound per gram of sediment (msed).  

If the equilibrium governing the partitioning of i between the dissolved and solid phases is 

disturbed, then the change in partitioning can be expressed using a mass balance: 
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i
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where no
sed is the number of moles of i sorbed and no

wat the number of moles of i dissolved 

before the disturbance, and ni
sed and ni

wat the partitioning of i between the solid and dissolved 

phase after equilibrium has been reattained. If we express nsed in terms of Γ, nwat in terms of 

dissolved concentration, c, and the mass of sediment (msed) and volume of solution (v) in 

terms of slurry density S = msed/v then: 

iioo
cScS +!=+!  [3] 

This concept has been widely used in experiments where adsorption is measured by adding a 

solid substrate to a solution of known composition. The amount of i sorbed onto the solid is 

calculated by measuring concentration changes in the solution.155 Most commonly, values of 

Γi from a series of experiments are plotted against the final equilibrium aqueous concentration 

attained, ci, producing an adsorption isotherm at a known temperature and pressure. These 

isotherms have been fitted to an array of empirical models, including Henry’s Law, and the 

Langmuir and Freundlich equations.86,161 Henry’s law was initially an observational model 

used for partitioning of volatile substances between liquid and gaseous phases36,86,182 and 

represents a situation where the affinity of the solute to the surface (KH) remains constant: 
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iHi
cK=!  [4] 

This model is valid at very low concentrations,86 but increasing coverage of the surface by 

solute at higher concentrations usually supresses the sediment’s adsorption capacity and the 

adsorption isotherm is no longer linear.  

The Langmuir isotherm was derived using the assumption that adsorption sites on the surface 

of a solid become occupied by a solute with 1:1 stoichiometry. The isotherm assumes that 

sorption stops at monolayer coverage and that all sites have the same binding energy, 

regardless of how much surface has been covered.159 The Langmuir equation has proved 

useful for summarising adsorption isotherm data and has been used extensively to provide 

modelling input68 and is generally written as: 

i

i

i

ac

abc

+
=!
1

 [5] 

where a is a measure of the site binding strength and b is a measure of the capacity of the 

surface.178 At dilute solutions (i.e., aci < 1) the Langmuir equation [5] reduces to the same 

form as Henry’s law [4].  

The Freundlich isotherm is based on similar assumptions to the Langmuir isotherm except 

that the binding energy changes with increasing adsorption, i.e., the bonding strength of 

available sites is not constant. The equation is actually equivalent to the integral of a 

continuum of Langmuir equations with a log-normal distribution of Langmuir constants:155,159 

n

ii
Ac

/1
=!   [6] 

where A is a measure of bonding strength, and n is a measure of surface heterogeneity and 

always > 1. The Freundlich equation models solids with heterogeneous surface properties 

very well over a wide concentration range,159 but is inappropriate for c → 0 because it does 



 

 
Kathryn L. Linge 
Investigating trace element binding in sediments 13 

not reduce to Henry’s law [4].  

Many investigators have used the fit of data to particular isotherms to make mechanistic 

interpretations about metal sorption on surfaces.3,21,38,83,97,169,170 However, Γ can describe any 

type of sediment binding and these isotherms fit several different binding mechanisms, 

including precipitation.31,90,107 Conformity to a particular isotherm does not prove that a 

particular mechanism is operational and sorption models that use macroscopic data are 

basically curve fitting exercises, useful for summarising and comparing experimental data but 

not accurately describing the phenomena occurring in the solid-liquid system.59,178 Care must 

be taken when interpreting adsorption/desorption results to elucidate binding mechanisms or 

when fitting more flexible equations such as the Constant Capacitance model,54 the Triple 

Layer model,182 or the Basic Stern model.159 These models incorporate so many parameters 

that almost any given set of data can be made to fit.8,55,82,106,166 In some cases the ion 

adsorption has been correctly described, but using hypothetical surface species that do not 

necessarily exist.72 Dispute also remains over whether variables determined for single ion 

systems can be used in multi adsorbate systems.49 The results of surface complexation models 

will be improved by using the correct surface structure and number and types of surface sites 

involved and surface spectroscopy must be used to determine conclusively how a solute is 

adsorbed.140 

Precipitation/dissolution 

Precipitation occurs when one or more dissolved species accumulate and form a solid. This 

process has a Gibbs free energy of reaction, ΔGo
f, expressed as thermodynamic solubility 

product, Ksp:161 

sp

o

f KRTG ln!="  [7] 

where R is the gas constant (8.314 J K-1 mol-1) and T is temperature (°K). The solubility 
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product for the reaction where the precipitate A is in equilibrium with dissolved species B 

and C is: 

aA(s)! bB(aq) + cC(aq)  

a

cb

sp
A

CB
K

}{

}{}{
=  [8] 

where the {} denote species activity. The activity of a pure phase is unity, and in solutions of 

low ionic strength, the activity of a dissolved species can be approximated by concentration. 

For illustration, thermodynamic data for some common sediment minerals are given in Table 

3. 

Similar to Ksp is the ion activity product (IAP), which describes the relationship between the 

activity (or concentration) of the reactants and products of a reaction at a given time. 

Comparing the IAP with Ksp is often used to test whether precipitation has occurred. 

However, this approach is not always valid. Separate trace elements can become included in 

the crystal structure of precipitating solids, a process known as chemical substitution or 

coprecipitation. Replacement of a foreign constituent in a crystalline lattice causes decreases 

in the activity of the solid phase to less than one, therefore decreasing the solubility of the 

phase.161 In many cases the observed occurrence of elements binding to sediments in 

solutions that appear to be formally unsaturated can be explained by the formation of a solid 

solution.138,139,141 The formation of solid micro-niches within sediment can also occur, 

regardless of the bulk solution composition.28 

The converse situation, where IAP that is larger than Ksp, does not guarantee precipitation 

either if the precipitated particles are small (e.g., < 1 µm) or if the supersaturation is too low 

to overcome the activation energy required to nucleate a new phase.161 The rate is also a 

consideration as precipitation that is thermodynamically favoured can take geological 
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timespans to occur.155 

Differentiating between adsorption/desorption and precipitation/dissolution 

Distinguishing between adsorption and precipitation can be difficult. Adsorption on a surface 

is inherently two-dimensional, while precipitation produces a three-dimensional solid with 

thermodynamic properties.155 Adsorption is limited by the amount of available surface and 

generally occurs faster than precipitation. However, both cause a loss of material from 

solution and the chemical bonds formed in each case can be very similar.156 

Comparison of typical adsorption/desorption and precipitation/dissolution reactions shows 

that the equilibrium constant (Ks for adsorption/desorption and Ksp for 

precipitation/dissolution) for each has a similar form (Table 4). However, while [S-L], the 

concentration of ions adsorbed on a surface, depends on the mass of solid present, [SL] is an 

intrinsic property that is constant if the solid has a constant composition, as illustrated in 

Figure 1. Therefore one possible approach to conclusively differentiate dissolution from 

desorption is an analysis of the effect of S on trace metal remobilisation at fixed pH, Eh and 

temperature. For precipitation/dissolution control, the final solution concentration in a given 

medium is independent of S. However, if adsorption/desorption controls remobilisation the 

final solution concentration should vary with S. This method of differentiation is easily 

applied to natural sediments, but has only had limited application.94 The differentiation is 

made by testing the mass balance equation [3] against the assumption that remobilisation is 

controlled by adsorption or dissolution. 

For dissolution, the final concentration ci will always be constant, except for very low S when 

the amount of solid that is available for dissolution is too small to reach equilibrium 

concentration. In this case, all of the solid will dissolve. Hence ci will increase as S increases 

to Ssat, at which the constant saturation concentration (csat) is reached. If co is negligible and 

the amount of soluble mineral per gram of material is k9, then: 
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sati
  S<SSkc               

9
=  [9a] 

satsati
SScc !=                  [9b] 

To model desorption a suitable isotherm must be chosen to describe the desorption. At trace 

concentrations, Henry’s law [4] applies for equilibrium partitioning, and KH (L g-1) may be a 

summed term if the element is involved in more than one distinct equilibrium. If co is 

negligible, then rearrangement of equations [3] and [4] for the in terms of final equilibrium 

concentration and slurry density gives: 

1+

!
=

SK

S
c

H

o

i
 [10] 

More complex equations can be derived for more concentrated solutions using the Langmuir 

and Freundlich equations. Figure 2 demonstrates the relationship between ci and S for 

different cases of dissolution, described by equation [9], and desorption, described by 

equation [10]. In some cases, the form of the lines for dissolution and desorption can be very 

similar and experimental data may be fitted by both. A more incisive test of the suitability of 

the assumption of desorption versus dissolution is to calculate sets of Γi, ci from the 

experimental data using equation [3]. Figure 3 shows the resulting plots of Γi versus ci for the 

cases presented in Figure 2 and the difference between dissolution and desorption can be seen 

clearly. Henry’s law produces straight line plots with a slope of KH (and any curved Γ-c 

dependence would indicate any deviation from Henry’s Law). For dissolution, Γi must remain 

near zero until csat is reached. This method has been used to examine As remobilisation from 

the sediment of a shallow lake.93-95 Combined with other rate and adsorption studies, the 

protocol demonstrated that As remobilisation was controlled by the solubility of a thin, non-

stoichiometric FePxFeAsy oxyhydroxide surface and values of Γi, ci deviated grossly from the 
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line representing Henry’s law or any other adsorption isotherm.94 This conclusion was further 

confirmed because As addition systematically decreased remobilisation from the sediment, as 

expected from the common ion effect on salt solubility. This result diverges from the 

generally held assumption that As mobility in the environment is controlled by 

adsorption/desorption, rather than precipitation/dissolution. Arsenic sorption experiments 

consistently fit ‘adsorption’ isotherms21,38,97,169,170 and concentrations are usually 

undersaturated with respect to most pure As minerals, leading to the assumption that As 

precipitation cannot control As solubility.97,103 In the case described, the data fitted all these 

common assumptions and therefore the dissolution mechanism would not have been 

discovered if Γi, ci had not been plotted. 

V. Characterising Remobilisation Rates 
Contaminant remobilisation is governed by both thermodynamic and kinetic processes. 

Chemical reactions can take place on timescales ranging from milliseconds to years.153,154 

Equilibrium studies alone are often inappropriate to simulate conditions in dynamic water 

bodies and kinetic investigations are necessary to properly understand contaminant release 

and mobility. The rate of contaminant remobilisation should always be compared with the 

timescales of remobilisation events.  

Like the equilibrium sorption studies previously discussed, most kinetic methods are devised 

on the macroscopic scale and cannot intrinsically provide the mechanism of contaminant 

remobilisation. In simple systems, kinetic data can be used to determine the mechanisms by 

which a reaction proceeds.161 However, in heterogeneous systems, reactions may take place 

in many steps and the resulting rate equation is often too complex to solve experimentally. 

For most laboratory experiments, mixing rates in the bulk solution are fast and therefore do 

not influence measurements of reaction rate.7 The overall reaction rate will incorporate 

multiple chemical surface reaction steps and mass transfer, meaning the experiment will 
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produce apparent rate laws unless the overall reaction rate is controlled by a single step.1 

Experimental kinetic data from heterogeneous systems are usually fitted to simple (often 

empirical) equations, such as those listed in Table 5. These equations have been applied to 

both adsorption/desorption and precipitation/dissolution and cannot distinguish between the 

two mechanisms. Apart from the Empirical First order equation, all these equations retain a 

time dependence, meaning that, strictly, these equations are unable to fit dissolution data one 

the solution reaches saturation. 

Regardless of whether the mechanism is dissolution or desorption, remobilisation must 

always involve the diffusion of a species from the solid surface to the solution bulk through 

the Nernst hydrodynamic boundary layer.157,179 The thickness of this layer is determined by 

hydrodynamic factors such as solution stirring. If stirring is vigorous, the boundary layer 

thins and this step may then no longer influence the measured reaction rate. The rate of 

transport (j, mol s-1) obeys Fick’s first law: 

j =
DA!C

"
 [11] 

where D is the ion diffusion constant, A the surface area of the solid, δ the Nernst layer 

thickness and ΔC (mol cm-3) the concentration difference between the surface and the bulk. 

For most ions, D/δ ~ 10-2 cm s-1 in vigorously stirred solutions at 25 °C.91,179 Comparison of 

measured rates with the rate estimated by Fick’s first law is a good indication of whether 

transport across the boundary layer is controlling the overall rate. The role of transport is 

more complicated in porous solids, as mass transport within pores must also be considered. 

Many of the empirical equations in Table 5 arise from rate control by this step, depending on 

the complexity, or pore geometry, of the system. A unified treatment of this step has been 

provided using plots of rate-1 versus time.1,153 The most simple demonstration of the 

relevance of ‘pore’ diffusion to rate analysis in a system is the ‘interruption’ test.69 
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Simple adsorption/desorption reactions are usually fast, unless stereochemical or complex 

bonding rearrangements are involved.60,61,153 Such rearrangement has been described (for 

desorption or dissolution) as the detachment of an activated species [≡S],70,160-162 assuming 

that only one functional group on the surface is involved. Far from equilibrium (i.e., when 

back reactions are negligible), the initial reaction rate is: 

][12 Sk
dt

dc
!=  [12] 

where k12 is constant, generally dependent on the surface morphology, crystallographic 

orientation, nature or density of defects, and the presence of impurities in the solid.158 Many 

mineral reactions have been shown to obey equation [12].71 A more general rate equation for 

dissolution of a crystal is:17,159,161 

n

s
cck

dt

dc
)(13 !=  [13] 

where cs is the crystal solubility, c the solution concentration, and k13 and n constants, with n 

= 1 for most crystals (except close to saturation). cs depends on both the solid and solution 

composition, including pH and any dissolved complexing agents.70,161 The constant k13 

depends on surface area and will vary if the crystal surface area changes during the reaction.17 

k13 must also vary when a thin scale layer dissolves completely or when the dissolving phase 

activity changes continuously (e.g., proportional to the mole fraction of dissolving phase 

present in a solid solution on the surface). Rate analysis for these last conditions has been 

uncertain,70 however it has recently been demonstrated94 that a possible equation is: 

)1(1413 Fkk !=  [14] 

where F = c/cE is the fraction of solid dissolved at time t, and cE is the limiting concentration 

csat. Combined with other data, this rate constant may allow more appropriate modelling of 



 

 
Kathryn L. Linge 
Investigating trace element binding in sediments 20 

thin scale dissolution. 

VI. Conclusions 
This review has described techniques commonly used to characterise sediments and trace 

element binding to sediments. However, readers should keep in mind the implicit assumption 

that the sediment sample being studied is representative of the field site of interest and has 

not been chemically altered during sampling, storage or treatment. In any environmental 

study involving sediment characterisation, it is extremely important that an appropriate 

sampling scheme is used and that the handling procedures adopted minimise sediment 

alteration.16,131 

Although easy to obtain, data from established ‘bulk’ tests cannot independently provide 

definitive information regarding contaminant binding or sediment phase composition. Ideally 

data from modern techniques like XAS, which describe the sediment surface on a molecular 

scale, should be used in conjunction with macroscopic tests. However, spectroscopic 

techniques are much less accessible, more expensive, and still may not be sensitive enough 

for some natural sediments. Despite the inherent drawbacks, chemical fractionation schemes 

will remain a popular tool for solid phase characterization until surface techniques can be 

routinely applied. Results from these schemes are useful when comparing different sediments 

or the behaviour of different elements, even if a definitive interpretation may be elusive. The 

analysis of statistical relationships between total elemental concentrations can also help 

identify trends in elemental associations and may help identify which phases are most 

important in binding an element. Most importantly, an independent analysis serves as a 

reminder of the complexity of natural sediments and that fractionation data usually gives an 

oversimplified account of sediment partitioning. Determining the mechanism by which 

remobilisation occurs can be difficult because traditional methods, such as fitting data to 

adsorption isotherms or the calculation of IAP, do not conclusively distinguish between 
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adsorption/desorption and precipitation/dissolution. However, studies in which sediment 

slurry density (S) is varied may provide a ‘bulk’ method that is capable of differentiating 

between dissolution and desorption. Finally, kinetic studies of remobilisation must not be 

overlooked and rates of remobilisation should be compared to the rate of processes 

controlling remobilisation like sediment resuspension and the development of anoxic 

conditions.  
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IX. Figure Captions 
Figure 1. Schematic diagram illustrating the difference between dissolution and desorption. 

 

Figure 2. Relationships between final equilibrium concentration (ci) and slurry density (S) for 

cases of both dissolution and desorption. The black line illustrates dissolution using equations 

[9a] and [9b] with k9 = 4 µg g-1 and csat = 133.3 µg L-1. The grey lines illustrate desorption 

using Henry’s Law and equation [10]. In case A Γo = 4 µg g-1 and KH = 0.03 L g-1, in case B 

Γo = 40 µg g-1 and KH = 0.3 L g-1, and in case C Γo = 400 µg g-1 and KH = 3 L g-1. Dissolution 

and desorption could be experimentally indistinguishable for some cases when a limited 

amount of soluble solid is present 

 

Figure 3. Relationships between final equilibrium sorption density (Γi) and solution 

concentration (ci) for cases of both dissolution and desorption. The black line illustrates 

dissolution using equations [9a] and [9b], while the grey lines illustrate three cases of 

desorption, all using equation [10]. The parameters used for each case are the same as those 

in Figure 2. Plots of Γi against ci can always experimentally distinguish between dissolution 

and desorption. 
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Kathryn L. Linge, Figure 1, Top edge.  
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Kathryn L. Linge, Figure 2, Top edge.  
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Kathryn L. Linge, Figure 3, Top edge.  
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X. Tables 

Table 1. Redox half reactions for common electron acceptors, adapted from Emerson et al.40 
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Table 3. Thermodynamic data at 25 °C. -ΔGf
o is the standard free energy of formation, while K is 

the equation constant.  

Reaction log K -ΔGf
o 

(solid) 
Reference 

Fe
2+
+ 2H

2
O! Fe(OH)

2
(s) + 2H

+  -13.9 487 183 

! 

Fe
3+

+ 2H
2
O" FeOOH(s) + 3H

+  -41.7 490 183 

FeCO
3
(s)! Fe

2 +
+ CO

3

2 "  -8.2 667 161 

CaCO
3
(s)! Ca

2+
+ CO

3

2"  -8.5 1129 161 

Fe
3
(AsO

4
)
2
(s)! 3Fe

2+
+ 2AsO

4

3"  -34.1 1766 183 

! 

Fe
2
SiO

4
(s) + 4H

+
" 2Fe

2+
+ Si(OH)

4
 3.7 1379 161 

!!+
++" OHPOCasOHPOCa 2610)()()( 3

4

2

26410  -114 6338 161 

Fe
3
(PO

4
)
2
(s)! 3Fe

2+
+ 2PO

4

3"  -26 2457 161 

FeS(s) + H
+
! Fe

2+
+HS

"  -5 (-3) 100 161 

FeS
2
(s) + H

+
! Fe

2+
+HS

"
+ S  -14.2 160 161 

 



 

 
Kathryn L. Linge 
Investigating trace element binding in sediments 45 

Table 4. Typical adsorption/desorption and precipitation/dissolution reactions. 

 Typical Reaction Equilibrium 
constant 

Adsorption/Desorption S ! L
(s) " S

(s ) + L(aq)  
][

]][[

LS

LS
K
s

!
=  

Precipitation/Dissolution SL
(s ) ! S

(aq) + L(aq)  Ksp =
[S][L]

[SL]
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Table 5. Simple kinetic equations.7,50,123 C is concentration at time t, Co is initial concentration, Ce is 
equilibrium concentration, and A, b, v, and k are constants. 

Number Equation Rate form Integrated form 
1 Elovich  

C = A+
1

b
ln(t + t

o
)  

2 Two constant rate equation  lnC = lnC
o
+ k ln t  

3 Power Function/Freundlich   C = kt
v  

4 Zero order dC

dt
= k  C = kt  

5 Linear/First order  dC

dt
= kC  lnC = lnC

o
+ kt  

6 Empirical First order dC

dt
= k(C

e
! C)  

ln
C
e
! C

C
e
! C

o

" 

# 
$ $ 

% 

& 
' ' = !kt  

7 Parabolic Diffusion Equation dC

dt
=

k

2 t
 C = C

o
+ k t  

 


