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Abstract

Sediments play an important role in maintaining water quality. This review describes
methods of investigating element binding in sediments, and assesses the value of each for
characterising sediment contamination. Although easy to obtain, data from ‘bulk’ tests such
as fractionation schemes or fitting adsorption isotherms cannot describe binding or phase
composition definitively. Modern spectroscopic techniques can investigate the sediment
surface on a molecular scale, but are not yet used routinely for sediment analysis. Proper
assessment of the implications of sediment contamination normally requires more than one
method to be used. Comparing contaminant remobilisation rates to the timescales of

environmental factors causing remobilisation is also important.
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l. Introduction

Anthropogenic contamination in the environment is a growing concern. Worldwide, the
increasing number of water bodies with elevated concentrations of heavy metals and other
toxic elements threaten human health and cause degradation of the surrounding environment.
Sediments often play an important role in maintaining water quality by removing
contaminants from the water column. However, subsequent contaminant remobilisation from
the sediment can keep dissolved concentrations elevated long after the initial source has been
removed. The manner in which sediment contamination is treated ultimately depends on the
sediment’s chemical reactivity. Choosing the most appropriate treatment requires an
understanding of how the contaminant binds to the sediment and the conditions under which

the contaminant will be released back into the water column.

Sediments are heterogeneous mixtures that include both mineral phases (e.g., Fe oxides, Mn
oxides) and detrital organic matter.*® Contaminants may bind to these phases by adsorption,
precipitation, and coprecipitation** and element mobility is controlled by both the binding
phase and binding mechanism. Researchers originally presumed that, once retained in the
sediment, a contaminant was trapped forever. However, it is now appreciated that
contaminants can cycle across the sediment-water interface many times. In general, a
contaminant is not fixed permanently and many physical and chemical variables can
influence contaminant mobility. This review describes current methods used to investigate
element binding in sediments and assesses the information that each method is able to
provide. Sediment contamination may be examined from two perspectives, either focussing
on how contaminants partition between different sediment phases or the conditions that cause
contamination to remobilise back into solution. Proper assessment of the implications of
sediment contamination requires investigation of both aspects, as well as consideration of the

environmental factors causing remobilisation.
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Il. Factors Affecting Remobilisation from Sediments

Contaminant remobilisation occurs when altered conditions create a gradient to drive the
remobilisation. Common driving gradients are changes in redox potential and pH, often
caused by the degradation of organic matter and biological activity.*”* Mimicking such
gradients exactly in a laboratory is difficult. The development of driving gradients is
controlled by the size and depth of the water body, as well as the surrounding climate. The
complexity of trace metal distributions in lake waters and sediments is often attributed to the
dynamic nature of lakes, where inputs, mixing and removal processes vary on a variety of
time scales. Contaminant remobilisation has been well studied in deep lakes and

. 10,2542,184
estuaries.'**>**18

A predictable sequence of events occurs: temperature stratification
develops during summer, isolating the bottom waters from the mixed surface layer and
limiting oxygen transport to the sediment. These anoxic conditions can last for weeks,
promoting the dissolution of Fe and Mn oxides and the precipitation of sulphide minerals.**®’
Deep lakes often reach equilibrium. However, in shallow lakes the sequence of driving forces
is less predictable. While stratification can develop, often on a diurnal pattern,”® regular
wind events ensure that the lake rarely remains stratified for more than a day. The
development of anoxic conditions at the sediment-water interface is therefore less frequent

and occurs for a shorter period of time. Obviously the rate of contaminant remobilisation

becomes more important in these circumstances.

Sediment resuspension is another process in which remobilisation rates may control release.

Waves, currents and dredging can all resuspend the bottom sediments of a lake. Sediment

111,126

resuspension releases interstitial porewater and may lead to contaminant release from

the sediment as well.”*"** Benthic organisms also facilitate the movements of contaminants

. . . . . . 1 108.1
into and out of sediment by burrowing, respiration or feeding.'®*>1%%:12%

The chemical composition of lakewater can change temporally and spatially and this also
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affects the extent of remobilisation from sediments. Dissolved organic matter (DOM) is
generally assumed to increase the solubility of elemental contaminants, either because the
element is complexed by the DOM, preventing adsorption, or because DOM competes for
sorption sites.'**'* However DOM can comprise many varied compounds and determination
of the mechanisms involved in reactions between metals and DOM is difficult.”””*'* The
microbial degradation of DOM to carbon dioxide will affect the redox potential as the process
requires an electron acceptor to complete the reaction.'™ In well mixed waters, oxygen is the
most likely electron acceptor because oxygen reduction releases the largest amount of energy.
However, in waters depleted in dissolved oxygen (e.g., in sediments or flooded soils) other
electron acceptors are active, usually in a predictable sequence (Table 1). These reactions
determine the redox potential of the sediments and affect both ion speciation and redox
sensitive minerals. Iron redox cycling and the reductive dissolution of Fe and Mn minerals, in
particular, is significant in controlling contaminant concentrations in deep lakes.”"'** These
reactions are often depicted as a one dimensional series but usually occur in a two or three
dimensional matrix because sediment heterogeneity produces localised areas where only one

45,136,1
or two electron acceptors are present,*>' 7%

Redox reactions also alter pH. Water pH can change both naturally and as a result of human
activity. Several studies have shown that the pH of waters with significant biological
production fluctuates in response to changes in algal biomass on both diel and seasonal
timescales.”**”'%° Photosynthesis and respiration cause changes in the dissolved carbon
dioxide concentrations of a water body, leading to pH fluctuations.'® pH changes arising
from anthropogenic causes, for example the effect of acid mine drainage, are more
dramatic.*' Large pH changes initiate the dissolution of sediment minerals, releasing
incorporated contaminants; Fe oxides will dissolve at both low and high pH. Even small pH

changes can affect the extent of adsorption of a solute on a surface. pH controls the
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protonation of dissolved species and functional groups present on the sediment surface. This
is the principal source of variable charge in sediments and so affects the extent of

. . 143,1
contaminant adsorption.'**'*?

M. Characterising Contaminant Partitioning in Sediments

Using total concentrations to measure elemental availability is normally inappropriate
because this approach includes the assumption that all phases have equal control of the
element and that all phases act identically in different environments. Instead, the sediment
phase (or phases) that are involved in elemental binding should be identified. Sediments are
complex mixtures of both mineral phases and detrital organic matter and current
characterisation techniques often produce ambiguous results. Most often chemical extraction
and statistical studies have been used to characterise sediments. These ‘bulk’ analyses tend to
lead to oversimplified interpretations that do not take sediment complexity into account.
Sediment complexity also means that experiments using model minerals or phases are unable
to mimic the behaviour of real sediments. In recent years, however, numerous spectroscopic
techniques have allowed analysis at a molecular level, finally providing direct evidence of

surface composition and bonding.

Chemical Extraction

The most popular method of investigating contaminant partitioning in sediments is by the use
of chemical extraction, which is usually employed in one of two ways. A single extraction
solution might be applied to a sediment sample in order to mimic a specific set of
environmental conditions.'”" In particular, many solutions have been devised to determine
element ‘bioavailability’, although often the choice of extractant is largely empirical.'*'*""'"?
Extractants to measure bioavailability can be devised on a more mechanistic basis, however,
such as those containing the gastric and intestinal enzymes of organisms likely to come into

contact with the sediment.'”"'”?
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The second application of chemical extractions is to investigate sediment mineralogy and
contaminant partitioning and the most popular way of doing this by the use of sequential
extraction, or fractionation, schemes. 24337116 Blament partitioning between sediment
phases is evaluated by treating the sediment with a series of sequential extracting solutions,
each targeting a different phase. Analysing each final extractant quantifies the element
concentration associated with each targeted phase. In general the same extraction
mechanisms are used in all schemes and include ion exchange, acid and base dissolution,
reduction, oxidation, and complexation. Each mechanism affects different sediment phases,
although some extractants utilise more than one extracting mechanism. What is actually
extracted ultimately depends on which extraction solution is used and the sediment being

investigated. Many schemes for metals are based on that devised by Tessier e al.,'®®

although
trace element partitioning of anions like As can be more successful with a schemes
specifically developed for P.**!**!*° Table 2 lists a number of extraction solutions that have
been used in fractionation schemes. A huge variety of different ‘recipes’ have been devised to

extract the same phase, and this variety is an indication of the impossibility of finding one

extractant that is entirely specific for one fraction.

The popularity of fractionation schemes stems from the fact that these schemes are simple,
accessible, and seemingly straightforward to interpret. However, this is rarely the case.
Chemical extraction is unlikely to be completely selective for only one phase. Results are

3 as well as the conditions under

influenced by both reagent choice and extraction time,’
which the sediment is manipulated.”?' As a result, different extraction schemes may give
different interpretations of partitioning in the same sediment.'*"*** Extracted contaminants
can also readsorb onto other phases during the procedure and demonstrating post-extraction

readsorption experimentally is difficult. Different approaches have yielded widely varying

12,56,62,127,1 .. . . 132
results.'>**%*12717 Dejonised water or ion exchangeable washes between extractions'>> or
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determining correction factors using trace element spikes™® have attempted to address the

issue. However there is no consensus on whether these measures improve data interpretation.

Despite the pitfalls, researchers continue to use fractionation schemes and sometimes without
due care. Some researchers argue that optimisation and validation is required every time a
fractionation scheme is applied to a new sediment.’®'®” Testing to see whether repeated
extraction is required to extract the entire fraction is also suggested.'''” However, the
intrinsic nature of the method means that interpretation of results is always influenced by the
fractionation scheme used. If the data are intended solely to indicate differences in sediment
behaviour or as a tool to compare different sites this may be unimportant.'*>'** However, in
most cases, interpretations from fractionation schemes should be corroborated by other
methods. Combining fractionation data with spectroscopic and diffraction techniques has
been used to monitor the extraction of crystalline phases®*®* or speciation'* but does depend
on crystalline material being present in the sediment for the former. Such experiments are
generally not suited to large numbers of analysis either. Fractionation analysis is enhanced by
measuring major elements like Fe, Al, and Ca, which influence dissolution/precipitation and
adsorption/desorption equilibria'® or comparison to statistical trends in total metal

concentrations.”

In order to eliminate some variability and to allow standardisation between laboratories, the
Community Bureau of Reference (BCR, now EC Standards, Measurements and Testing
Programme) devised a three-step fractionation scheme that was tested in interlaboratory trials
and applied to a sediment reference material (BCR CRM 601).”'"*'7* However, even this

. . 26,1
method has shown variable recoveries for some samples,?*'*

as well as variability between
analysts.”” Modifications to the scheme were made to overcome analyst bias and an aqua

regia digestion of both the residual and the whole sample was added as a measure of internal

: 22 . . . ..
consistency.'*” This has resulted in improved precision and assessment of new reference
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materials cont1nues.87’ 6

Statistical Analysis

The analysis of statistical relationships between total element concentrations is another ‘bulk’
method that has been used to identify phase associations.”®'"**!*> The approach is most
successful when a single substrate acts as the main binder of a trace element as correlations
are less evident when two or more phases influence binding. The technique has been used to
both identify general trends in contaminant binding over a large number of different sites’*'®!
and investigate processes in a single waterbody.®””> Statistical relationships have also been
used to demonstrate that different mineralogy can exist at related sites.'>> Whilst the existence
of a correlation does not prove that a phase association actually exists, the correlation may
augment fractionation information and aid in identification of phases important in binding an
element.”” As well as using raw data, statistical trends can be investigated after normalization
by the concentration of an element such as Al, to account for the dilution effect of minerals
that the element does not associate with.”” Normalization does require that the coefficient of
variation (V' = standard deviation divided by the mean) of the normalising element is similar
or better than that of the trace element as otherwise correlation results will be
compromised.'’® Principal component analysis (PCA) is another way of determining the
influence of different sediment phases by identifying a set of components that encapsulates

. .. . 130.1
the maximum amount of variation in a dataset.*%!*?

Sediment heterogeneity may make assessment of sediment contamination difficult and
normalization can be used to account for environmental variation as well.*' The enrichment
factor (EF) is a method commonly used to determine if element concentrations in sediment
are above background.'>">"1**13>1%8 Here  element concentrations are first normalised against
the concentration of a representative matrix element, such as Al, Li, Fe and then ratioed to

normalised values from a reference sediment.'” An EF greater than one may then suggest
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the sediment is contaminated with that element. Investigators must ensure, however, that the
normalizing element is not subject to anthropogenic enhancement as well. The resulting EF
will also be greatly influenced by the reference point and choosing an appropriate reference

. . . 1 1
sediment is essential,!>%!88

Molecular scale techniques

Molecular scale techniques have been used to study elemental binding on surfaces since the
early 1990s.'*1%*11%15% Ty particular X-ray Adsorption Spectroscopy (XAS) techniques such
as X-ray Adsorption Fine Structure (EXAFS) and X-ray Adsorption Near-Edge Structure
(XANES) can give direct evidence for surface species of oxidation state, number and type of
near neighbours, coordination state and bond distance.”'*!'*!2%1% For a long time,
however, these techniques lacked the sensitivity required to analyse contaminant binding in
most environmental samples and application was limited to the most contaminated

. 1 142
sediments'®”

or to characterising adsorption on model phases.**'**'?*!%* While elemental
adsorption has been confirmed on model sediment phases, there is no assurance that these
studies actually mimic what is happening in the natural environment. Sorption experiments
are usually performed over short timescales and there may be little similarity between the
results from such tests and what actually occurs over months or even years in natural
sediments. Long term studies of adsorption have demonstrated that sorption can occur in
several steps, with rapid surface exchange or adsorption followed by a very slow continuous
uptake.” This slower uptake has been interpreted as entrainment of the ion into the solid phase
through aging. Thus application of results from short term studies must be applied with
caution. Recently detection limits of XAS techniques have improved and more studies of real

. . 1.52.114.1 e, ..
sediments are now appearing.”'”>''*!1® However access to facilities providing such

techniques is not always available.
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IV. Binding Processes in Sediments

Sediments bind and release contaminants by one of two basic mechanisms:
adsorption/desorption or precipitation/dissolution. However, to properly model partitioning
between dissolved and particulate phases in a natural system requires very detailed
information that is not always available.”” As well as quantifying binding intensities,
capacities, and the relative abundance of each important sediment component, the effect of
particle coatings and of multi-component aggregation on the binding capacity of each
substrate must also be assessed. The kinetics of redistribution among sediment components
and the effect of major competitors should also be considered. Quantitative models have been
employed to describe adsorption on well defined component surfaces, but such models have
seldom been extended to the multicomponent systems typical of nature. Again, the advent of
molecular scale techniques does help provide this information, but many experimenters still

rely on empirical or macroscopic models and experiments.

Adsorption/Desorption

Adsorption is a process where a solute in the liquid phase becomes bonded to the surface of a
solid, usually on a specific site. Metal adsorption to sediments is analogous to the formation
of soluble complexes, with the surface site acting as the ‘ligand’ in the reaction.’” The
strength of the bond between the solute and surface site will vary.® Solutes can be weakly
bound by non-specific forces (e.g., van der Waals forces) or by electrostatic attraction
between a charged solute and the surface site. Solutes are strongly bound by specific
adsorption, which occurs when chemical forces of attraction create covalent bonds between
the solute and the surface site. Specific adsorption is slower than electrostatic adsorption and
1s sometimes partly irreversible. The process of adsorption is highly dependent on pH, E,

temperature, and the composition of both the solid surface and the solution.

Contaminant sorption onto a solid at equilibrium, I' (mol g']), can be expressed by the
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equation:

[1]
where n**“ is the number of moles of a substance i bound per gram of sediment (m,,,).

If the equilibrium governing the partitioning of i between the dissolved and solid phases is

disturbed, then the change in partitioning can be expressed using a mass balance:

n sed ;/vat n:ved 'wat [ 2]

wat

where nom 1s the number of moles of i sorbed and n,  the number of moles of i dissolved

before the disturbance, and n;** and n;"“ the partitioning of i between the solid and dissolved

t .
““in terms of

phase after equilibrium has been reattained. If we express n** in terms of T, n"
dissolved concentration, ¢, and the mass of sediment (m,.;) and volume of solution (v) in

terms of slurry density S = my,/v then:

IS+c, =IS+c [3]

This concept has been widely used in experiments where adsorption is measured by adding a
solid substrate to a solution of known composition. The amount of i sorbed onto the solid is
calculated by measuring concentration changes in the solution.'>> Most commonly, values of
I'; from a series of experiments are plotted against the final equilibrium aqueous concentration
attained, c;, producing an adsorption isotherm at a known temperature and pressure. These
isotherms have been fitted to an array of empirical models, including Henry’s Law, and the

86,161

Langmuir and Freundlich equations. Henry’s law was initially an observational model

36,86,182

used for partitioning of volatile substances between liquid and gaseous phases and

represents a situation where the affinity of the solute to the surface (Ky) remains constant:
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T, =K,c [4]

This model is valid at very low concentrations,*® but increasing coverage of the surface by
solute at higher concentrations usually supresses the sediment’s adsorption capacity and the

adsorption isotherm is no longer linear.

The Langmuir isotherm was derived using the assumption that adsorption sites on the surface
of a solid become occupied by a solute with 1:1 stoichiometry. The isotherm assumes that
sorption stops at monolayer coverage and that all sites have the same binding energy,
regardless of how much surface has been covered."”” The Langmuir equation has proved
useful for summarising adsorption isotherm data and has been used extensively to provide

modelling input® and is generally written as:

abc,

I, =
1+ ac,

[5]

where a is a measure of the site binding strength and b is a measure of the capacity of the
surface.'” At dilute solutions (i.e., ac; < 1) the Langmuir equation [5] reduces to the same

form as Henry’s law [4].

The Freundlich isotherm is based on similar assumptions to the Langmuir isotherm except
that the binding energy changes with increasing adsorption, i.e., the bonding strength of
available sites is not constant. The equation is actually equivalent to the integral of a

. . . . .. . . 155.1
continuum of Langmuir equations with a log-normal distribution of Langmuir constants:'>>">’

T =Ac'" [6]

l 1

where A is a measure of bonding strength, and n is a measure of surface heterogeneity and
always > 1. The Freundlich equation models solids with heterogeneous surface properties
very well over a wide concentration range,'” but is inappropriate for ¢ — 0 because it does
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not reduce to Henry’s law [4].

Many investigators have used the fit of data to particular isotherms to make mechanistic

21 169,1 .
32LI883IT169.170 However, T can describe any

interpretations about metal sorption on surfaces.
type of sediment binding and these isotherms fit several different binding mechanisms,
including precipitation.”’**'”” Conformity to a particular isotherm does not prove that a
particular mechanism is operational and sorption models that use macroscopic data are
basically curve fitting exercises, useful for summarising and comparing experimental data but
not accurately describing the phenomena occurring in the solid-liquid system.”"'”® Care must
be taken when interpreting adsorption/desorption results to elucidate binding mechanisms or
when fitting more flexible equations such as the Constant Capacitance model,>* the Triple
Layer model,'®* or the Basic Stern model."”® These models incorporate so many parameters

2,106,1 .
8,55,82,106,166 In some cases the ion

that almost any given set of data can be made to fit.
adsorption has been correctly described, but using hypothetical surface species that do not
necessarily exist.”> Dispute also remains over whether variables determined for single ion
systems can be used in multi adsorbate systems.*’ The results of surface complexation models
will be improved by using the correct surface structure and number and types of surface sites

involved and surface spectroscopy must be used to determine conclusively how a solute is

adsorbed.'*

Precipitation/dissolution

Precipitation occurs when one or more dissolved species accumulate and form a solid. This
process has a Gibbs free energy of reaction, AG’; expressed as thermodynamic solubility

product, K,:'®'
AG; = -RTInK,, [7]
where R is the gas constant (8.314 J K mol™) and T is temperature (°K). The solubility
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product for the reaction where the precipitate A is in equilibrium with dissolved species B

and C i1s:

aA(s) <> bB(aq) + cC(aq)

_BCy

KS‘
Ty

[8]

where the {} denote species activity. The activity of a pure phase is unity, and in solutions of
low ionic strength, the activity of a dissolved species can be approximated by concentration.
For illustration, thermodynamic data for some common sediment minerals are given in Table

3.

Similar to Ky, is the ion activity product (IAP), which describes the relationship between the
activity (or concentration) of the reactants and products of a reaction at a given time.
Comparing the IAP with K, is often used to test whether precipitation has occurred.
However, this approach is not always valid. Separate trace elements can become included in
the crystal structure of precipitating solids, a process known as chemical substitution or
coprecipitation. Replacement of a foreign constituent in a crystalline lattice causes decreases
in the activity of the solid phase to less than one, therefore decreasing the solubility of the

161

phase.” In many cases the observed occurrence of elements binding to sediments in

solutions that appear to be formally unsaturated can be explained by the formation of a solid

138,139,141

solution. The formation of solid micro-niches within sediment can also occur,

regardless of the bulk solution composition.”®

The converse situation, where IAP that is larger than K,, does not guarantee precipitation

either if the precipitated particles are small (e.g., < 1 um) or if the supersaturation is too low

161

to overcome the activation energy required to nucleate a new phase.~ The rate is also a

consideration as precipitation that is thermodynamically favoured can take geological
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. 1
timespans to occur.' >

Differentiating between adsorption/desorption and precipitation/dissolution

Distinguishing between adsorption and precipitation can be difficult. Adsorption on a surface
is inherently two-dimensional, while precipitation produces a three-dimensional solid with
thermodynamic properties.'>> Adsorption is limited by the amount of available surface and
generally occurs faster than precipitation. However, both cause a loss of material from

solution and the chemical bonds formed in each case can be very similar.'*®

Comparison of typical adsorption/desorption and precipitation/dissolution reactions shows
that the equilibrium constant (K for adsorption/desorption and Ky, for
precipitation/dissolution) for each has a similar form (Table 4). However, while [S-L], the
concentration of ions adsorbed on a surface, depends on the mass of solid present, [SL] is an
intrinsic property that is constant if the solid has a constant composition, as illustrated in
Figure 1. Therefore one possible approach to conclusively differentiate dissolution from
desorption is an analysis of the effect of S on trace metal remobilisation at fixed pH, E; and
temperature. For precipitation/dissolution control, the final solution concentration in a given
medium is independent of S. However, if adsorption/desorption controls remobilisation the
final solution concentration should vary with S. This method of differentiation is easily
applied to natural sediments, but has only had limited application.”* The differentiation is
made by testing the mass balance equation [3] against the assumption that remobilisation is

controlled by adsorption or dissolution.

For dissolution, the final concentration ¢; will always be constant, except for very low S when
the amount of solid that is available for dissolution is too small to reach equilibrium
concentration. In this case, all of the solid will dissolve. Hence c; will increase as S increases
to S,u, at which the constant saturation concentration (cy,) is reached. If ¢, is negligible and

the amount of soluble mineral per gram of material is ko, then:
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¢, =k,S S<S [9a]

sat

[9b]

i Csat = “sat

To model desorption a suitable isotherm must be chosen to describe the desorption. At trace
concentrations, Henry’s law [4] applies for equilibrium partitioning, and Ky (L g"') may be a
summed term if the element is involved in more than one distinct equilibrium. If ¢, is
negligible, then rearrangement of equations [3] and [4] for the in terms of final equilibrium

concentration and slurry density gives:

¢ = % [10]

More complex equations can be derived for more concentrated solutions using the Langmuir
and Freundlich equations. Figure 2 demonstrates the relationship between c; and S for
different cases of dissolution, described by equation [9], and desorption, described by
equation [10]. In some cases, the form of the lines for dissolution and desorption can be very
similar and experimental data may be fitted by both. A more incisive test of the suitability of
the assumption of desorption versus dissolution is to calculate sets of I', c¢;i from the
experimental data using equation [3]. Figure 3 shows the resulting plots of I'; versus c; for the
cases presented in Figure 2 and the difference between dissolution and desorption can be seen
clearly. Henry’s law produces straight line plots with a slope of Ky (and any curved I'-c
dependence would indicate any deviation from Henry’s Law). For dissolution, I'; must remain
near zero until cg, 1s reached. This method has been used to examine As remobilisation from
the sediment of a shallow lake.”””” Combined with other rate and adsorption studies, the

protocol demonstrated that As remobilisation was controlled by the solubility of a thin, non-

stoichiometric FeP FeAs, oxyhydroxide surface and values of I';, ¢; deviated grossly from the
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line representing Henry’s law or any other adsorption isotherm.’® This conclusion was further
confirmed because As addition systematically decreased remobilisation from the sediment, as
expected from the common ion effect on salt solubility. This result diverges from the
generally held assumption that As mobility in the environment is controlled by
adsorption/desorption, rather than precipitation/dissolution. Arsenic sorption experiments

) . . 21 169,1
consistently fit ‘adsorption’ isotherms?'~**7-16%:170

and concentrations are usually
undersaturated with respect to most pure As minerals, leading to the assumption that As
precipitation cannot control As solubility.””'® In the case described, the data fitted all these

common assumptions and therefore the dissolution mechanism would not have been

discovered if I';, ¢; had not been plotted.

V. Characterising Remobilisation Rates

Contaminant remobilisation is governed by both thermodynamic and kinetic processes.
Chemical reactions can take place on timescales ranging from milliseconds to years.'>>!**
Equilibrium studies alone are often inappropriate to simulate conditions in dynamic water
bodies and kinetic investigations are necessary to properly understand contaminant release

and mobility. The rate of contaminant remobilisation should always be compared with the

timescales of remobilisation events.

Like the equilibrium sorption studies previously discussed, most kinetic methods are devised
on the macroscopic scale and cannot intrinsically provide the mechanism of contaminant
remobilisation. In simple systems, kinetic data can be used to determine the mechanisms by
which a reaction proceeds.'®’ However, in heterogeneous systems, reactions may take place
in many steps and the resulting rate equation is often too complex to solve experimentally.
For most laboratory experiments, mixing rates in the bulk solution are fast and therefore do
not influence measurements of reaction rate.’” The overall reaction rate will incorporate

multiple chemical surface reaction steps and mass transfer, meaning the experiment will
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produce apparent rate laws unless the overall reaction rate is controlled by a single step.’
Experimental kinetic data from heterogeneous systems are usually fitted to simple (often
empirical) equations, such as those listed in Table 5. These equations have been applied to
both adsorption/desorption and precipitation/dissolution and cannot distinguish between the
two mechanisms. Apart from the Empirical First order equation, all these equations retain a
time dependence, meaning that, strictly, these equations are unable to fit dissolution data one

the solution reaches saturation.

Regardless of whether the mechanism is dissolution or desorption, remobilisation must
always involve the diffusion of a species from the solid surface to the solution bulk through
the Nernst hydrodynamic boundary layer.”””'”’ The thickness of this layer is determined by
hydrodynamic factors such as solution stirring. If stirring is vigorous, the boundary layer
thins and this step may then no longer influence the measured reaction rate. The rate of

transport (j, mol s™) obeys Fick’s first law:

DAAC
0

Jj= [11]

where D is the ion diffusion constant, A the surface area of the solid, & the Nernst layer
thickness and AC (mol cm™) the concentration difference between the surface and the bulk.
For most ions, D/d ~ 102 cm s in vigorously stirred solutions at 25 °C.”"'” Comparison of
measured rates with the rate estimated by Fick’s first law is a good indication of whether
transport across the boundary layer is controlling the overall rate. The role of transport is
more complicated in porous solids, as mass transport within pores must also be considered.
Many of the empirical equations in Table 5 arise from rate control by this step, depending on
the complexity, or pore geometry, of the system. A unified treatment of this step has been
provided using plots of rate’ versus time."'>® The most simple demonstration of the

relevance of ‘pore’ diffusion to rate analysis in a system is the ‘interruption’ test.*’
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Simple adsorption/desorption reactions are usually fast, unless stereochemical or complex
bonding rearrangements are involved.®®®"'>* Such rearrangement has been described (for

desorption or dissolution) as the detachment of an activated species [=S],”%'¢%1¢2

assuming
that only one functional group on the surface is involved. Far from equilibrium (i.e., when

back reactions are negligible), the initial reaction rate is:

dc
E=k12[= S] [12]

where ki, is constant, generally dependent on the surface morphology, crystallographic
orientation, nature or density of defects, and the presence of impurities in the solid.">® Many
mineral reactions have been shown to obey equation [12].”" A more general rate equation for

1 i . 17,159,161
dissolution of a crystal is:'"'**!¢

dc R
E=k13(cs -¢) [13]

where c; is the crystal solubility, ¢ the solution concentration, and k;3 and n constants, with n
= 1 for most crystals (except close to saturation). c¢s depends on both the solid and solution

161
70161 The constant ki3

composition, including pH and any dissolved complexing agents.
depends on surface area and will vary if the crystal surface area changes during the reaction.'’
ki3 must also vary when a thin scale layer dissolves completely or when the dissolving phase
activity changes continuously (e.g., proportional to the mole fraction of dissolving phase

present in a solid solution on the surface). Rate analysis for these last conditions has been

uncertain,”® however it has recently been demonstrated’® that a possible equation is:

k13 =k14(1_F) [14]

where F = c¢/cg is the fraction of solid dissolved at time t, and cg is the limiting concentration

csat. Combined with other data, this rate constant may allow more appropriate modelling of

Kathryn L. Linge
Investigating trace element binding in sediments 19



thin scale dissolution.

VI. Conclusions

This review has described techniques commonly used to characterise sediments and trace
element binding to sediments. However, readers should keep in mind the implicit assumption
that the sediment sample being studied is representative of the field site of interest and has
not been chemically altered during sampling, storage or treatment. In any environmental
study involving sediment characterisation, it is extremely important that an appropriate
sampling scheme is used and that the handling procedures adopted minimise sediment

. 16,131
alteration.'®"

Although easy to obtain, data from established ‘bulk’ tests cannot independently provide
definitive information regarding contaminant binding or sediment phase composition. Ideally
data from modern techniques like XAS, which describe the sediment surface on a molecular
scale, should be used in conjunction with macroscopic tests. However, spectroscopic
techniques are much less accessible, more expensive, and still may not be sensitive enough
for some natural sediments. Despite the inherent drawbacks, chemical fractionation schemes
will remain a popular tool for solid phase characterization until surface techniques can be
routinely applied. Results from these schemes are useful when comparing different sediments
or the behaviour of different elements, even if a definitive interpretation may be elusive. The
analysis of statistical relationships between total elemental concentrations can also help
identify trends in elemental associations and may help identify which phases are most
important in binding an element. Most importantly, an independent analysis serves as a
reminder of the complexity of natural sediments and that fractionation data usually gives an
oversimplified account of sediment partitioning. Determining the mechanism by which
remobilisation occurs can be difficult because traditional methods, such as fitting data to
adsorption isotherms or the calculation of IAP, do not conclusively distinguish between
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adsorption/desorption and precipitation/dissolution. However, studies in which sediment
slurry density (S) is varied may provide a ‘bulk’ method that is capable of differentiating
between dissolution and desorption. Finally, kinetic studies of remobilisation must not be
overlooked and rates of remobilisation should be compared to the rate of processes
controlling remobilisation like sediment resuspension and the development of anoxic

conditions.
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IX. Figure Captions

Figure 1. Schematic diagram illustrating the difference between dissolution and desorption.

Figure 2. Relationships between final equilibrium concentration (c;) and slurry density (S) for
cases of both dissolution and desorption. The black line illustrates dissolution using equations
[9a] and [9b] with ko = 4 ug g’ and ce = 133.3 ug L. The grey lines illustrate desorption
using Henry’s Law and equation [10]. In case A T, =4 ug g"' and Kz =0.03 L g, in case B
IL,=40ug g’ andKy=03L g", and in case C T, =400 ug g and Ky =3 L g Dissolution
and desorption could be experimentally indistinguishable for some cases when a limited

amount of soluble solid is present

Figure 3. Relationships between final equilibrium sorption density (I';) and solution
concentration (c;) for cases of both dissolution and desorption. The black line illustrates
dissolution using equations [9a] and [9b], while the grey lines illustrate three cases of
desorption, all using equation [10]. The parameters used for each case are the same as those
in Figure 2. Plots of I'; against c¢; can always experimentally distinguish between dissolution

and desorption.
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Kathryn L. Linge, Figure 1, Top edge.
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Kathryn L. Linge, Figure 2, Top edge.
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Kathryn L. Linge, Figure 3, Top edge.
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X. Tables

Table 1. Redox half reactions for common electron acceptors, adapted from Emerson ez al.*
Reaction Ep, (mV)"°
O,(g) +4H" +4e¢” < 2H,0 0-750
NO; +6H" +5¢” <= 0.5N,(g)+3H,0 0-700
MnO,(s)+4H" +2¢” <> Mn>* +2H,0 0-450

0.5N, +4H" +3e¢” <= NH,

FeOOH(s)+3H" +2¢” <> Fe** +2H,0 0-100
SO;” +9H" +8¢” <> HS +4H,0 -200-0
Methanogenesis -300-0
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Table 3. Thermodynamic data at 25 °C. -AGy’ is the standard free energy of formation, while K is
the equation constant.

Reaction log K -AGY Reference
(solid)
Fe’* +2H,0 <> Fe(OH),(s) +2H" -13.9 487 183
Fe’* +2H,0 <> FeOOH(s) + 3H" -41.7 490 183
FeCO,(s) <> Fe’* + CO.~ -8.2 667 161
CaCO,(s) <> Ca™* +CO; -8.5 1129 161
Fe,(AsO,),(s) <> 3Fe™ +2As0;" -34.1 1766 183
Fe,SiO,(s)+ 4H" <> 2Fe** + Si(OH), 3.7 1379 161
Ca,,(PO,),(OH),(s) <> 10Ca’* + 6PO;” +20H" -114 6338 161
Fe,(PO,),(s) <> 3Fe™* +2P0O;" 26 2457 161
FeS(s)+ H' < Fe’* + HS™ -5(-3) 100 161
FeS,(s)+ H" <> Fe” +HS + S -14.2 160 161
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Table 4. Typical adsorption/desorption and precipitation/dissolution reactions.

Typical Reaction Equilibrium

constant

Adsorption/Desorption S-L, < S, +L, K - [S1[L]

IS 1]
Precipitation/Dissolution  SL, <> S, + L, x - L
sp
[SL]
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Table 5. Simple kinetic equations.7’5°’123 C 1s concentration at time t, C, is initial concentration, C, is
equilibrium concentration, and A, b, v, and k are constants.

Number Equation Rate form Integrated form
i 1
I Elovich C=A+—In(r+1)
2 Two constant rate equation InC=1InC, +klnt
3 Power Function/Freundlich C=kt'
4 Zero order ac _ k C=kt
dt
5 Linear/First order dc —kC InC=InC, +k
dt
6 Empirical First order =k, -0 In C-C C
dt C -C
7 Parabolic Diffusion Equation ~ dC _ k C=C, +kJt
dt 2t

Kathryn L. Linge
Investigating trace element binding in sediments 46



