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Abstract: Wnt proteins are often up-regulated in cancer. The secreted frizzled-related proteins (sFRPs) can abrogate 

Wnt signalling and are involved in apoptosis. We investigated the expression of Wnt1, -Catenin, and an antagonist, 

sFRP4, as well as apoptosis in breast cancer using tissue micro-arrays (TMAs) comprising 191 tissue cores. Results 
demonstrated stronger staining intensity for Wnt1 in tumour versus non-tumour samples (p<0.05). Epithelial sFRP4 did 
not differ between invasive and non-invasive tissue; however, there was increased sFRP4 expression in the blood 

vessels and lymphocyte cells of tumour compared to non-tumour tissue. These data suggest Wnt involvement in 
determining the breast cancer phenotype and highlight a potential new role for sFRP4 as a diagnostic/prognostic marker. 
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INTRODUCTION 

Breast cancer is the most commonly diagnosed 

reproductive cancer in women and the second most 

frequent cause of cancer-related deaths. The Wnt 

pathway is known to be involved in normal 

development and cancer of the mammary gland [1-8]. 

Breast cancer can be diagnosed as a non-invasive 

type, for example ductal carcinoma in situ (DCIS) and 

lobular carcinoma in situ (LCIS), where the tumour 

tissue has not invaded past the ductal or lobular walls. 

Alternatively, breast cancer can be of the invasive type, 

where the tumour has invaded past the ductal and 

lobular walls, and infiltrates the mammary gland or 

surrounding organs and lymph nodes. These more 

invasive phenotypes of breast cancer are often 

associated with poorer prognosis.  

The Wnt pathway has been shown to play a role in 

breast cancer; however, its role with tumour inva-

siveness is unknown. Wnt1 is a member of the Wnt 

pathway that is well defined as being up-regulated in 

breast cancer [9-11]. High -Catenin levels have been 

detected in various cancers [12-14]. The association of 
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Wnt1 and -Catenin with tumour invasiveness has not 

been elucidated in breast cancer. sFRP4, an 

antagonist of the Wnt pathway and a recognised player 

in apoptosis, has also not been characterised with 

varying breast cancer invasiveness. Although sFRP4 

has been shown to have an apoptotic role [15,16], it 

has also been demonstrated to be up-regulated in 

cancers [12,17]. In addition, the establishment of 

sFRP4 expression in breast cancer of non-invasive and 

invasive phenotypes should also be investigated, along 

with apoptosis quantification. 

Understanding the molecular characteristics that 

differ between non-invasive and invasive breast cancer 

will give insight into potential molecular targets for the 

treatment of the more invasive tumour type.  

This study explores the Wnt signalling components 

in breast cancer by utilising tissue micro-arrays 

(TMAs). Additionally, the apoptotic status of the tissue 

was determined using TUNEL histochemistry.  

MATERIALS AND METHODS 

Tissue Processing and Sectioning 

Human breast tissue microarray sections were 

obtained from the Western Australian Research Tissue 

Network (WARTN) from samples obtained from the 

Royal Perth Hospital (RPH) Pathology Department 
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under ethics approvals granted by the RPH and Sir 

Charles Gairdner Hospital Human Research Ethics 

Committees. Samples were surgically removed at RPH 

between 1995 and 2001, fixed in 10% buffered formalin 

(at physiologic pH) for an average of 24 hours (this 

ranged between 6-48 hours depending on size of 

lesion and thickness of section) and embedded in 

paraffin. The sections included samples of normal 

adjacent breast tissue, and in situ and invasive 

carcinomas. For this study, a TMA section consisting of 

191 tissue cores from 65 patients was used, which 

included 62 invasive tissue types, 75 non-invasive 

types (DCIS, LCIS), and 54 normal non-malignant 

adjacent tissue.  

Immunohistochemistry Staining 

Tissue sections (5 μm thickness) were obtained 

using a Leica R2135 microtome and placed on 

silanated Starfost A adhesive treated slides. TMA 

slides were first dewaxed, rehydrated, and then antigen 

retrieval was performed using 10 mM citrate buffer, pH 

6.0 (sodium citrate tribasic dihydrate, Sigma-Aldrich). 

Endogenous peroxidases were blocked with 1% 

hydrogen peroxide in TBS (Wnt1), 3% hydrogen 

peroxide solution in TBS (sFRP4), or peroxidase-

blocking solution from the DAKO REAL™ EnVision 

System Kit ( -Catenin). Blocking was performed using 

5% calf serum in 1 x TBS (Wnt1), 10% goat serum in 1 

x TBS with 0.01% Tween (sFRP4) or 2% calf serum in 

TBS ( -Catenin) for 15 minutes. Primary antibodies 

(Mouse anti-active- -Catenin, clone 8E4, 1:400 

(Millipore); Rabbit anti sFRP4, 1:100 (Millipore); Rabbit 

anti-Wnt1 ab: 15251, 1:100 (AbCam)) were added to 

the slides and incubated at room temperature (RT) for 

one hour. For the secondary antibody incubation, a 

pre-optimised kit (Dako REAL™ EnVision Detection 

System, K5007, which works on both mouse and rabbit 

primary antibodies), was used for 30 minutes at RT. 

The sections were counterstained with Meyer’s 

Haematoxylin then dehydrated, cleared and mounted 

using DePeX (Merck & Co Inc) mounting medium. 

TUNEL Staining For DNA Fragmentation 

Terminal uridine deoxynucleotidyl transferase biotin-

dUTP nick end labelling (TUNEL) staining is a common 

technique used for the identification of apoptotic cells, 

which was first described by Gavrieli [18]. TUNEL 

staining was performed on TMA slides to identify areas 

 

Figure 1: (A) Wnt1 staining intensity of epithelial cells in breast cancer TMAs showing weak, moderate, and strong expression. 
Staining was confined to the cell membrane and cytoplasmic regions. Scale bars = 100 m. (B) Relative staining intensities 

based on grading of expression for normal mammary, non-invasive, and invasive breast cancer from TMAs. Different 
superscripts represent a significant difference of p<0.05 between each superscript. 



Expression Profile of Wnt/ -Catenin Signalling Molecules Journal of Analytical Oncology, 2014, Vol. 3, No. 4      207 

undergoing DNA fragmentation using ApopTag® Plus 

Peroxidase In Situ Apoptosis Detection Kit (Millipore) 

following the manufacturer’s recommendations. 

Positive TUNEL identification of cells consists of 

combining the identification of apoptotic morphology 

with positive DAB staining, which is recommended in 

the manufacturer’s instructions, as well as by others 

[19,20].  

Analysis of TMA Slides 

Cores were graded as no expression (0), weak 

expression (1), moderate expression (2), or strong 

expression (3) by a clinical pathologist (Dr Adrian 

Charles, School of Paediatrics and Child Health/School 

of Women’s and Infants’ Health, Faculty of Medicine, 

The University of Western Australia), depending on the 

intensity of staining. Total apoptotic cells were counted 

per core (0.782 mm
2
). Slides were scanned using an 

Aperio Scan Scope (Aperio Technologies) and 

photographs taken using Image Scope software. For 

comparisons, cores were divided into three groups: 

normal breast tissue, non-invasive breast tumour 

(including DCIS, LCIS), and invasive breast tumour.  

Statistical Analysis 

Data are represented as mean values ±SEM. 

Differences between groups were analysed by an un-

paired two-tailed t-test with equal variances using 

InStat 3 for Macintosh, Version 3.0b ©1992-2003, and 

were considered statistically significant when p<0.05. 

RESULTS 

Immunohistochemistry Staining of TMAs 

Immunohistochemistry (IHC) staining of TMAs 

showed that Wnt1 expression was mainly localised to 

the cytoplasmic regions of the epithelial cells but also 

demonstrated membranous expression (Figure 1A). 

The various staining intensities were examined 

between normal adjacent tissue, non-invasive tissue, 

and invasive tissue for Wnt1 (Figure 1B) and revealed 

that Wnt1 was significantly up-regulated in tumour 

tissue compared to normal adjacent tissue (p<0.05), 

but did not change with invasive and non-invasive 

tissue types. 

IHC for sFRP4 showed various expression levels in 

the cytoplasm of the epithelial cells, together with 

membranous expression (Figure 2A). Analysis of the 

staining intensity showed no significant difference 

between normal adjacent tissue, non-invasive tissue, 

and invasive tissue (Figure 2B). 

-Catenin demonstrated cytoplasmic membranous 

staining (Figure 3A) but, as seen with sFRP4, there 

 

Figure 2: (A) sFRP4 staining intensity of epithelial cells in breast cancer TMAs showing weak, moderate, and strong expression 
in the cytoplasm and cell membrane of the epithelial cells. Scale bars = 100μm. (B) Relative staining intensities based on 
grading of expression for normal mammary, non-invasive, and invasive breast cancer from TMAs.  
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was no significant difference between normal adjacent 

tissue, non-invasive tissue, and invasive tissue (Figure 

3B). However, there was no significant correlation of 

sFRP4 staining with Wnt1 and -Catenin in this study 

(data not shown). 

Surprisingly, sFRP4 IHC of blood vessels revealed 

staining of the endothelial cells (Figure 4A). Analysis of 

the staining intensity revealed a significant increase in 

staining intensity from normal to tumour tissue (p<0.05) 

(Figure 4B). 

 

Figure 3: (A) -Catenin staining intensity of epithelial cells in breast cancer TMAs showing weak, moderate, and strong 
expression. -Catenin displayed cytoplasmic and membranous staining. Scale bars = 100μm (B) Relative staining intensities 
based on grading of expression for normal mammary, non-invasive, and invasive breast cancer from TMAs. 

 

Figure 4: (A) sFRP4 expression was demonstrated in the blood vessels and endothelial cells (K, arrows) of breast cancer 
tissue. Scale bar = 100 μm. (B) Relative staining intensities based on grading of expression for normal mammary, non-invasive, 
and invasive breast cancer from TMAs. Different superscripts represent a significant difference of p<0.05 between each 
superscript. 
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Of particular interest was the evidence of sFRP4 

staining in the stromal regions, including lymphocytes 

(Figure 5A), which also revealed a significant increase 

in staining intensity between normal and tumour tissues 

(p<0.05) (Figure 5B). 

TUNEL Staining of TMAs  

TUNEL staining demonstrated that there are 

significantly more apoptotic cells per core in tumour 

samples compared to normal breast tissue (Figure 6A), 

and there were also significantly more apoptotic cells 

per core in invasive tissue compared to non-invasive 

breast tissue (Figure 6B). 

DISCUSSION 

This study sought to compare and correlate the 

relative expression of Wnt1, -Catenin, and sFRP4 in 

breast cancer TMAs, as well as comparing the 

expression to the number of apoptotic cells measured 

by TUNEL. Although others have investigated Wnt1 

and -Catenin in breast cancer previously [21], this 

study incorporated correlations between the expression 

of Wnt1, -Catenin, and sFRP4, and additionally 

looked at comparisons among normal adjacent breast 

tissue and non-invasive and invasive breast tumour 

types.  

We found that Wnt1 staining in the breast cancer 

TMAs showed typical cytoplasmic staining in both 

normal and tumour tissue, together with membranous 

staining. It is well established that Wnt1 is involved in 

breast cancer [9-11]; however, this study has revealed 

that Wnt1 expression does not differ with breast cancer 

invasiveness, showing that Wnt1 plays a role in a 

breast tumour phenotype but not with a more advanced 

disease state, which is in agreement with Karim et al. 

[21] who found that, while cytoplasmic Wnt1 expression 

increased with increasing tumour grade, it was not a 

statistically significant difference. Indeed, a more recent 

study [22] reported that Wnt1 is only involved in the 

initial phases of breast cancer development, where it 

supports differentiation and apoptosis of the tumour 

cells. 

-Catenin is known to be involved in normal 

mammary gland function [7], and is typically over-

expressed in cancers [14]. -Catenin expression was 

detected in both normal and cancerous tissue, and 

 

Figure 5: (A) sFRP4 expression was also identified in stromal areas, including lymphocytes (arrows). Scale bar = 100μm. (B) 
Relative staining intensities based on grading of expression for normal mammary, non-invasive, and invasive breast cancer 
from TMAs. Different superscripts represent a significant difference of p<0.05 between each superscript. 
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displayed cytoplasmic membranous staining, which has 

been shown by others in prostate and colorectal cancer 

cells [12,23]. Loss of -Catenin expression on the 

cytoplasmic membrane has been previously associated 

with aggressive breast tumours [24]. Contrary to this, 

exclusive membranous staining of -Catenin 

represented poorer prognosis of endometrioid 

carcinomas [13]. The role of -Catenin here remains 

unclear and may be attributed to other roles for -

Catenin such as cell adhesion. The Catenin association 

with Cadherins such as E-Cadherin is critical for cell 

adhesion, and any changes in the Catenin molecules 

can lead to tumour aggression [25]. 

After examining the expression of Wnt1, we 

examined the expression of the Wnt antagonist sFRP4, 

which is known to have a pro-apoptotic role [15,16]; 

however, it has been revealed to be up-regulated in 

colorectal cancer [12] and malignant mesothelioma 

[17]. In this current study, sFRP4 expression was 

localised to the cytoplasmic and membranous regions 

of epithelial cells.  

Additionally, this is the first known study identifying 

sFRP4 staining within blood vessels and stromal 

regions of breast cancer. Recently sFRP2 was shown 

to be expressed in vascular cells of breast cancer [26]. 

Current studies have shown sFRP4 to have an anti-

angiogenic role [27]. The increased sFRP4 expression 

seen here in blood vessels of tumour tissue may reflect 

this anti-angiogenic role.  

It has been reviewed that the involvement of the 

immune cells in tumours can be either tumour 

promoting or tumour rejecting; where natural killer cells 

can be recruited to restrain tumour growth, while 

contrarily, tumour-associated macrophages can 

secrete growth factors and cytokines that can promote 

tumour growth [28, 29]. Recently, there has been a 

positive association found with tumour infiltrating 

macrophages and vascular endothelial growth factor 

(VEGF) secretion that assists in tumour angiogenesis 

[30], suggesting an association between the immune 

cells in the stroma and blood vessel formation. Our 

observation of sFRP4 expression in the immune cells 

of the stromal regions of breast cancer tissue and 

blood vessels further confirms that sFRP4 is playing a 

role inhibiting angiogenesis and tumour growth. Taking 

into account the established anti-angiogenic abilities of 

sFRP4 described above, it is postulated that the role of 

sFRP4 is compensatory and tumour inhibiting. Indeed, 

we have recently reported that sFRP4 expression is 

 

Figure 6: TUNEL staining in invasive breast cancer TMAs (A), where apoptotic cells stain brown (arrow). Comparisons for the 
total number of apoptotic cells identified per core for normal mammary, non-invasive, and invasive breast cancer (B). Different 
superscripts represent a significant difference of p<0.05 between each superscript. Scale bar = 80 μm. 
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correlated with chemoresistance in ovarian cell lines 

and, more importantly, our data obtained from patient 

TMAs indicate that sFRP4 expression may act as a 

predictive marker for tumour aggressiveness [31]. 

Others have shown that there is a relationship 

between sFRP4 and -Catenin in colorectal cancer 

[12]. Interestingly, increased sFRP4 expression has 

also been associated with increased membranous -

Catenin expression [32]. However, in this study there 

was no correlation between any of the Wnt pathway 

components analysed, perhaps reflecting that 

correlations may be tissue specific or that other Wnt 

components not tested here have a more significant 

correlation with these members. 

We also investigated whether there was any 

correlation between the breast tumour type and 

subsequent Wnt pathway component expression. 

These results confirm that Wnt1 is up-regulated in 

breast cancer, and that it is not involved with a more 

invasive breast tumour type; both findings confirming 

those of previous studies [9-11,21,22]. Epithelial -

Catenin and sFRP4 revealed no significant difference 

between tumour types and also between normal and 

tumour tissue. sFRP4 in stromal regions and blood 

vessels demonstrated significantly stronger expression 

in tumour tissue compared to normal tissue but did not 

show any difference between invasive and non-

invasive tumour types. Similarly, this is the first study to 

demonstrate that stromal and blood vessel expression 

of sFRP4 is increased in breast cancer compared to 

normal breast tissue.  

A higher number of TUNEL-positive apoptotic cells 

was observed in breast tumour tissue samples 

compared to normal types. These data confirm that 

invasive breast tumour tissue has a higher proportion 

of apoptotic cells compared to non-invasive and normal 

breast tissue. However, it needs to be considered that 

more invasive breast tumours will have high levels of 

cell division occurring and thus will also have higher 

apoptotic numbers.  

This study confirms that the Wnt pathway is 

involved in the development of the breast cancer 

phenotype but may not be associated with a more 

invasive breast tumour type. Specifically, Wnt1 

expression is involved with tumour physiology, and 

uniquely, sFRP4 staining of blood vessels and stromal 

regions is also stronger in breast tumour tissue. The 

latter finding is novel, and may present sFRP4 as a 

new potential therapeutic marker that requires further 

investigation.  
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