

State of the Art of a Multi-Agent Based Recommender System for

Active Software Engineering Ontology

Udsanee Pakdeetrakulwong
1
 and Pornpit Wongthongtham

2

School of Information Systems, Curtin Business School

Curtin University

Kent Street Bentley WA 6102, Australia
1
udsanee.pakdeetr@postgrad.curtin.edu.au,

2
ponnie.clark@curtin.edu.au

ABSTRACT

Software engineering ontology was first developed

to provide efficient collaboration and coordination

among distributed teams working on related software

development projects across the sites. It helped to

clarify the software engineering concepts and project

information as well as enable knowledge sharing.

However, a major challenge of the software

engineering ontology users is that they need the

competence to access and translate what they are

looking for into the concepts and relations described in

the ontology; otherwise, they may not be able to obtain

required information. In this paper, we propose a

conceptual framework of a multi-agent based

recommender system to provide active support to

access and utilize knowledge and project information

in the software engineering ontology. Multi-agent

system and semantic-based recommendation approach

will be integrated to create collaborative working

environment to access and manipulate data from the

ontology and perform reasoning as well as generate

expert recommendation facilities for dispersed

software teams across the sites.

KEYWORDS

Software engineering ontology, multi-agent based

systems, recommendation systems, multi-site software

development, ontology development

1 INTRODUCTION

Due to the emergence of the Internet and the

globalization of software development, there has

been a growing trend towards the traditional

centralized to the distributed software

development form which means that software

team members work on the same project but they

are not co-located. They are distributed across

cities, regions, or countries. For example, the

requirement specification and design are done in

Austria, the development is done in China and

Brazil and the testing is done in Russia. There are

several terms used for this approach, for example,

Global software development (GSD), Distributed

software development (DSD), or Multi-site

software development (MSSD). Ågerfalk et al.

[1] discussed the reasons why organizations

consider adopting distributed development of

software systems and application models which

include utilizing larger labor pool, accessing

broader skill base, minimizing production costs

and reducing development duration from round

the clock working. Conchúir et al. [2] also

mentioned other advantages like market

proximity, local knowledge accessibility and

adaptability to various local opportunities.

However, this type of long-distance collaborative

work is not without problems. It can cause

challenges such as communication difficulties,

coordination barriers, language and cultural

differences [3]. This may result in some tasks not

being carried out properly due to the difficulty of

communication and coordination among team

members located in different geographical areas

and lead to scenarios such as software project

delay and budget overrun. Many researches were

proposed to overcome these issues. Thissen et al.

[4] discussed the communication tools and

collaboration processes that were used in globally

distributed projects to facilitate team

communication and interaction. Biehl et al. [5]

proposed a framework for supporting

collaboration in multiple display environments

called IMPROMPTU. It enabled team members to

29

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

mailto:udsanee.pakdeetr@postgrad.curtin.edu.au

discuss software development tasks through

shared displays. Salinger et al. [6] presented Saros

which was an eclipse plug-in for collaborative

programming activities between distributed

parties.

Since the Semantic Web emerged, ontologies

have been widely used as a means of providing the

semantics to support the retrieval information

based on the intended meaning rather than simply

match the search terms [7]. Since then, they have

now applied to several fields including software

engineering throughout the various stages of the

software development life cycle because they can

provide a shared conceptualization of fundamental

concepts and relationships of software

development projects as well as provide semantics

and mechanisms for communication and

structuring of knowledge. In addition, ontologies

also have a great potential for analysis and design

of complex object-oriented software systems by

using them to create object model for object-

oriented software engineering [8].

In multi-site software development

environment, ontologies have played an important

role to support working context. There are several

tools, techniques, models and best practices that

utilizing ontologies to facilitate collaboration,

communication, project knowledge management

including software engineering processes activities

and it is proved that ontologies can bring benefits

such as communication within remote teams,

knowledge sharing and effectiveness in

information management [9].

Wongthongtham et al. [10] introduced the

“Software Engineering Ontology” which was an

ontology model of software engineering as a part

of a communication framework to define common

software engineering domain knowledge and share

useful project information for multi-site

development environment. They defined the

software engineering ontology as a formal,

explicit specification of a shared conceptualization

in the domain of software engineering [11].

Formal implies that the software engineering

ontology should be machine-understandable to

enable a better communication and semantically

shared knowledge between humans and machines

(i.e. in the form of software application or

software agents). Explicit implies that the type of

software engineering concepts and their

constraints used are explicitly defined. Shared

shows that the consensual knowledge of software

engineering is public and accepted by a group of

software engineers. Conceptualization implies and

abstract model of having identified the relevant

software engineering concepts.

The software engineering ontology comprises

two sub-ontologies: the generic ontology and the

application specific ontology [11]. The generic

ontology contains concepts and relationships

annotating the whole set of software engineering

concepts which are captured as domain

knowledge. Application specific ontology defines

some concepts and relationships of software

engineering for the particular software

development project captured as sub domain

knowledge. In addition, in each project, project

information including project data, project

understanding, and project agreement that

specifically for a particular project need are

defined as instance knowledge. Remote software

teams can access software engineering knowledge

shared in the ontology and query the semantic

linked project information to facilitate common

understanding and consistent communication.

However, the current software engineering

ontology has the same passive structure as other

ontologies [12]. Passive structure means that in

order to address the ontology, users need to have

competence to translate the issue to the concepts

and relationships to which they are referring;

otherwise, the user may not be able to obtain

precise knowledge and project information. In

order to address this drawback, active support is

needed that can utilize the ontology to advise users

on what to do in a certain situation.

In this paper, we propose a novel approach that

can offer active support to the software

engineering ontology users. Two main key

technologies will be used which are agent

technologies and recommendation systems.
This paper is organized as follows. In section 2,

we discuss the motivation of this work.
Background and related work are reviewed in
section 3. In section 4, we propose our conceptual
framework. Section 5 demonstrates some scenario
examples of multi-agent based recommender
system providing active support through software

30

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

engineering ontology. Finally, the conclusion and
future work are discussed in Section 6.

2 MOTIVATION

 The potential benefits of this work are

significant as follows.

2.1 Report in the literature [13] mentions that

not all globally distributed projects can benefit

from working in the global context. Twenty to

twenty-five percent of all outsourcing

relationships fail within two years and fifty

percent fail within five years. One of the main

reasons for this failure rate is the communication

barrier across multiple sites. The proposed work is

intended to support effective communication

within projects in order to reduce the failure rate

of geographically distributed software

development projects.

2.2 The proposed recommender approach

integrating with automatic reasoning capacity of

autonomous software agents will provide active

support to multi-site software teams by

recommending useful project information and

solutions for project issues that arise as experts.

2.3 With the proposed framework, software

companies can take advantage of developing

software in a global context, the benefits of which

are: reduction in development costs, access to a

large skilled labor pool, effective utilization of

time zones etc. This will enable them to be more

competitive when bidding in the software

development market.

3 BACKGROUND AND RELATED WORK

3.1 Agent Technologies
The evolution of Web technologies started

from Web 1.0 which was considered as the

traditional information web. Then it moved to

Web 2.0, focusing on user-generated contents or

community-oriented information gathering.

However, with the problem of the substantial

amount of data and unstructured content

generated, web users have difficulty searching for

the contents. Therefore, Web 3.0 also known as

Semantic Web has emerged to alleviate this issue.

The underlying structure is that data should be

well-organized to support information exchange

and enable a machine or software agent to

understand, process and reason to produce a new

conclusion. Web 3.0 is the combination of

existing Web 2.0 and the Semantic Web which

integrates ontology, intelligent agent, and

semantic knowledge management together [14].

A software agent is a computer program that

has relatively complete functionality and

cooperates with others to meet its designed

objectives [15]. The other characteristic of an

agent is its capability of flexible and autonomous

action in the environment where it is situated [16].

An agent is also active, task-oriented and is

capable of decision-making [17].

Multi-agent system (MAS) consists of multiple

agents communicating and collaborating with each

other in one system in order to achieve goals [17].

It is used to solve complex problem that cannot be

done by individual agent. MAS is appropriate for

domains that are distributed such as global

manufacturing supply chain network [18, 19],

distributed computing [20, 21], software

collaborative developing environment [22, 23],

etc. It can increase the efficiency and effectiveness

of working groups in distributed environments.

Implicit [24] was a multi-agent recommendation

system for web search intended to support groups

or a community of people with similar but specific

interests. Romero, Viscaino and Piattini [25]

introduced a multi-agent simulation tool to support

training in global requirement elicitation process.

They used agent technology to simulate various

stakeholders in order to enable requirement

engineers to understand and gain experience in

acquiring requirement elicitation. Knowledge

sharing and exchange is one of key factors in the

development of MAS [26]. Each agent will

collaborate with other agents, so they must be able

to communicate and understand messages from

one another. MAS has been widely used in several

researches to support software collaborative

systems in distributed software development

environment. For example, (Col_Req) was the

multi-agent based collaborative requirements tool

that supported requirement engineers for real time

systems during the requirement engineering phase

[27]. Distributed stakeholders (e.g. software

31

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

teams, customer, etc.) worked on the system for

collaborative acquisition, navigation and

documentation activities.

Ontologies can be used to facilitate the

semantic interoperability while Agent

Communication Language (ACL) defined by

FIPA can be used as the language of

communication between agents. There are several

existing researches that integrate the use of

ontologies and MAS. Paydar and Kahani [28]

introduced a multi-agent framework for automated

testing of web-based applications. The framework

was designed to facilitate the automated execution

of different types of tests and different information

sources. Ontology-based computational intelligent

multi-agent for Capability Maturity Model

Integration (CMMI) assessment was proposed by

Lee and Wang [29]. The multi-agent system

consisted of three main agents interacting with one

another to achieve the goal of effectively

summarizing the evaluation reports of the software

engineering process regarding CMMI assessment.

The CMMI ontology was developed to represent

the CMMI domain knowledge. This research did

not cover other knowledge areas of the software

engineering domain but it specifically focused on

the software engineering process with respect to

CMMI assessment only. The integration of two

promising technologies in software engineering

which were multi-agent system and Software

Product Lines (SPL) was addressed in [30]. It

provided the solution of producing higher quality

software, lower development costs and less time-

to-market by taking advantage of agent

technologies. The ontology was used for

modeling the Multi-agent System Product Lines

(MAS-PLs) and was represented by UML class

diagrams. MADIS [21] was a multi-agent design

information system aiming at supporting the

distributed design process by managing

information, integrating resources dispersed over a

computer network and aiding collaboration

processes. The MADIS ontology was developed to

formally conceptualize the engineering design

domain to enable knowledge sharing, reuse and

integration in a distributed design environment.

Monte-Alto et al. [31] proposed a multi-agent

context processing mechanism called ContextP-

GSD (Context Processing on Global Software

Development) that utilized contextual information

to assist user’s task during the software

development project. This project applied agent-

based technology to process contextual

information and support human resource

allocation. OntoDiSen was an application

ontology exploited in this system representing

GSD contextual information. Although this

research aimed at facilitating the collaboration and

Table 1. Review of some multi-agent system applications

Methodologies/

Tools/Authors
Purpose of using multi-agent systems Focus

Make use of

ontologies

Implicit Supporting web search for groups or communities

of people

Web search

Romero et al. Being a simulation tool to support training in

global requirements elicitation process

E-learning

(Col_Req) Supporting software engineers during the

requirements engineering phase for collaborative

acquisition, navigation and documentation

activities.

Requirements engineering

activities

Paydar and Kahani Performing automated test process Software testing

Lee and Wang Summarizing the evaluation reports for the CMMI

assessment

CMMI assessment

Nunes et el. Supporting mass customized software production Software product lines

MADIS Supporting the distributed design process by

managing information, integrating resources

dispersed over computer network and facilitating

collaboration processes.

Distributed collaborative

engineering design

ContextP-GSD Processing context information and supporting

human resource allocation

GSD contextual information

32

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

coordination in global software development

environment and used ontology to define semantic

information which was quite similar to our

proposed work, it focused only on contextual

software engineering information, not the whole

software engineering domain knowledge.

The summary of the reviewed multi-agent

system applications is presented in Table 1. It is

evident that many researches have exploited multi-

agent technology in various applications and a

number of them utilizes multi-agent technology

along with the use of ontologies to support

software development tasks. However, most of

them cover only a specific phase or issue in

software engineering domain knowledge.

Currently, there are no multi-agent system

applications that provide active communication

and coordination throughout the whole software

engineering process.

3.2 Recommendation Systems

Recommendation systems are techniques or

software tools assisting users with suggestions for

items, contents or services to be of use in

overloaded amounts of information [32]. The

initial academic work on implementing

recommendation systems was first conducted in

the mid-1990s. Park et al. [33] undertook a

literature review and classification of

recommender systems based on 210 research

papers on recommendation systems published in

academic journals between 2001 and 2010. The

result showed that publications related to this topic

had increased significantly, especially after 2007

and also extended to fields other than movies and

shopping. They conclude from their review that it

is highly likely that research in the area of

recommendation systems will be active and has

the potential to increase significantly in the future.

Recommendation systems are normally

classified based on how recommendation is

implemented as following [34].
 Content-based approach recommends
items which resemble the ones that a specific

user formerly preferred.

 Collaborative filtering approach
recommends items to the users based on the

similarity between users.

 Hybrid approach combines collaborative
filtering and content-based techniques.

Content-based approach has the main strength

that it can provide accurate recommendations to a

user without knowing others’ preferences.

However, due to the syntactic similarity metrics

employed, it suffers from the overspecialization

problem whereby only those items similar to those

the user already knows are recommended [35].

Collaborative filtering approach mimics human

behavior for sharing opinion with others. It offers

recommendation based on not only user’s interest

but also on others’ preferences; therefore, it can

produce more unexpected or different items than

content-based technique. However, collaborative

filtering also suffers from some severe drawbacks

such as data sparsity, gray sheep, and synonymy

[34]. The data sparsity issue means that a

recommender is unable to make meaningful

recommendations because of an initial lack of

ratings such as new user and new item. The gray

sheep problem refers to the users whose interests

do not match any group of people so they do not

benefit from this approach. The synonym

challenge causes poor quality of recommendations

because the collaborative filtering approach

cannot discover items that have different names

but have the same meanings.

From critical weaknesses of content-based and

collaborative filtering recommender systems,

hybrid approach has been introduced by

combining these two approaches to resolve certain

problems associated with those two approaches.

Nevertheless, hybrid recommender system is still

limited by the syntactic matching but semantic

mismatching [35]. The syntactic matching

techniques relate items from common words not

from their meaning, so the result of

recommendations is sometimes limited and poor

quality.

Semantic-based recommendation systems have

emerged to address the limitations of previous

recommendation techniques. These

recommendation approaches integrate the

semantic knowledge in their processes and their

performances are based on a knowledge base

which contains relations between concepts,

33

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

normally defined through ontology or concept-

diagram (like taxonomy) [36]. Semantic-based

recommendation systems have been proven to

have better performance than previous approaches

by applying a knowledge base and semantic

reasoning filtering techniques. These two elements

can help to improve the accuracy of

recommendation systems because semantic

descriptions are used, unlike syntactic approaches

which consider the word only [37]. Various

applications in several fields have been proposed

which include a semantic reasoning mechanism in

their recommendation systems, for instance,

Blanco-Fernández et al. [38] presented a

methodology to overcome the overspecialization

problem and improve the effectiveness of content-

based recommendation approaches by applying

semantic descriptions of the items and including

semantic reasoning technique in them. They

claimed that the proposed methodology had the

potential to enhance the quality of

recommendations better than the traditional

recommendation systems did and it could be

applied in various domains. This model was

realized through the implementation of the

prototype, AVATAR, a recommender system of

personalized TV content. Cantador et al. [39]

explored a model of an enhanced semantic layer

for hybrid recommendation systems. Different

methods were integrated for different purposes in

order to improve the accuracy and quality of

recommendations such as ontology-based

knowledge representation concept, spreading

activation algorithm and three recommendation

techniques which were personalized, semantic

context-aware and content-based collaborative

recommendation systems. The authors illustrated

the use of their methodology in a news

recommendation system, News@Hand. An

ontology-based semantic recommendation for

programming tutoring system called Protus 2.0

was a research in education domain proposed by

[40]. It was an adaptive and personalized web-

based tutoring system that used recommendation

approaches during the personalization process.

Web Ontology Language (OWL) was used to

represent context knowledge while Semantic Web

Rule Language (SWRL) was exploited to deal

with semantic reasoning. Although semantic-

based recommendation systems were employed in

several domains, none of them was specifically

intended to create recommendations to manage

queries or project issues raised in software

development teams through the use of ontologies

in software engineering.

3.3 Recommendation systems for software

engineering
Recommendation systems for software

engineering (RSSEs) are software tools introduced

specifically to help software development teams to

deal with information-seeking and decision-

making [41]. RSSEs have become an active area

of research for the past several years and they

have been proven to be effective and useful to

software developers to cope with the huge amount

of information when they are working on software

projects. They can provide recommendations for

development information (i.e. code, artifacts,

quality measures, tools) and collaboration

information (i.e. people, awareness, status and

priorities) [42].

Here are some reviews of recommendation

systems that focus mainly on recommending

expert or relevant people. Codebook [43] was a

social network web service that linked developers

and their work artifacts and maintains connections

with other software team members. Conscius [44]

was a recommender system that located a source

code expert on a given software project by using

communication history (archived mail threads),

source code, documentation and SCM change

history. Steinmacher et al. [45] proposed a

recommendation system that could assist

newcomers to discover the expert who had the

skill matching the selected issue to mentor the

regarding technical and social aspects of a

particular task. Ensemble was a recommender

application that helped software team members to

communicate in the current works by

recommending other people when developer does

any updates on related artifacts such as source

code or work items [46]. These recommendations

could help to locate related people and save time

when seeking their expertise during software

development process. They increased the accuracy

of recommendations by exploiting user context,

workspace information and social information.

34

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

Some other RSSEs focused on supporting

developers while they were coding or debugging

program. Fishtail was a plugin tool for the Eclipse

IDE which automatically recommended source

code examples from the web to developers that

were relevant to their current tasks [47]. Cordeiro

et al. [48] proposed a context-based

recommendation to support problem-solving in

software development. They developed a

client/server tool to integrate recommendation of

question/answering web resources in the

developer’s work environment to provide

automatic assistance when the exception errors

occured. DebugAdvisor [49] was proposed as a

search tool for debugging which supported fat

query, a query with all contextual information of

the bug issue. Developers could do a bug report

search from multiple software repositories with a

single query. The system returned a bug

description raked list that matched the query and

then used it to retrieve recommendation of the

related artifacts such as source code and functions

from the generated relationship graph. Jaekel et al.

[50] developed a Semantic Helper component

which was one of the modules of the FACIT-SME

project, a three-year project intended to assist IT

SMEs to select and use quality business process

models and software engineering methods in their

software development projects. Dhruv [51]

advised software developers on relevant software

artifacts and bug reports. Semantic web

technology was explored in this research in order

to facilitate problem-solving in the open-source

software community. It exploited ontologies to

identify where related artifacts were located and

their description including relevant bug

information. A Semantic Helper component aims

was intended to assist other components by

filtering information and doing automatic

matching between the models which were stored

in semantic format in FACIT-SME repositories.

This recommender system also provided ranking

lists of the most relevant models from a given

query.

All the described applications had been

developed to improve the productivity of software

development projects only for one of phases in

SDLC, and most of them focus on the

implementation phase in particular. However,

software team members mostly need support in

every phase of a software development project.

Regarding knowledge representation, all systems

except for Dhruv and Semantic Helper used

traditional knowledge representation and syntactic

matching techniques so they lacked integrated and

shared information and could not support a

semantic reasoning mechanism.

4 CONCEPTUAL FRAMEWORK

This section presents the proposed conceptual

framework of multi-agent based recommender

approach for active software engineering

ontology. The users of software engineering

ontology will be provided intelligent support to

access and recommend knowledge and project

information captured in the software engineering

ontology. Intelligent agents will work

collaboratively to facilitate the software project

teams who are working together irrespective of

their geographical location. The aims of the multi-

agent based recommender system are:

1) to extract and convey semantic rich project

information described in the software

engineering ontology to team members,

2) to manage project issues that arise by

utilizing the agent’s ability of automate

reasoning,

3) to recommend solutions for any project

issues as experts on a constant and

autonomous basis,

4) to support work of adding semantic project

information automatically into the software

engineering ontology instantiations during

the refinement process.

The proposed conceptual framework of multi-

agent based recommender system is shown in

Figure 1. It comprises four types of agents with

the short descriptions of their roles as following.

1) User agents

 Act as representatives of each user.

 Build and maintain user profiles.

 Manage semantic annotation service.

 Communicate with recommender and
ontology agents.

35

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

2) Semantic recommender agent

 Recommend tentative solutions including
affected software artifacts and users.

 Work with ontology agent to make a

decision based on knowledge in software

engineering ontology.

 Notify affected agents in case of ontology
update.

 Coordinate with evolution agent in case
of unresolved issues/queries.

3) Ontology agents

 Manage and maintain software
engineering ontology repository.

 Retrieve information from the ontology
to other agents.

 Work with user agents for annotation

service.

 Manage ontology population process.

 Notify ontology update to recommender
agent.

4) Evolution agent

 Receive update request regarding
unresolved issues/queries in existing

software engineering ontology and

coordinate with the Software Engineering

Social Network system (SESN) for the

36

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

ontology evolution process.

 Notify ontology agents for update from
SESN process.

The agents will work collaboratively throughout

six processes as following.

1) Semantic Annotation Process

As mentioned, in the software engineering

ontology, there are two types of abstraction:

generic software engineering representing a whole

set of software engineering domain concepts, and

application specific software engineering

illustrating the set of software engineering

concepts used for particular projects.

Instantiations, also known as population, are part

of the abstraction of the application specific

software engineering ontology. They are used for

storing data instances of the projects. Software

project information is often updated according to

changes in requirements or in design processes;

therefore, manually transformation or mapping

new changes into semantically rich form and

populating them as instances of the software

engineering ontology is time-consuming,

laborious, tedious and prone to error. With the

help of agents which perform semantic annotation

process and ontology population, project

information can be automatically transformed or

mapped into concepts defined in the ontology with

a minimum of human intervention.

This process starts from user agents

receiving project information from software team

members. User agents will perform information

extraction process with references to classes and

instances in the software engineering ontology

retrieved by ontology agents. The RDF annotation

is then generated by semantic annotating module

and stored in the repository containing the

annotation of other project information.

2) Ontology Population Process

Ontology population is a process of adding

new instances into an existing ontology. When

project information is successfully annotated, it is

ready to populate into the software engineering

ontology.

In this research, ontology agents will be

responsible for managing ontology population

process. The annotated project information is

identified as candidate ontological instances and

will be validated for the consistency between

incoming instances and those already stored in the

ontology. It is then inserted into the software

engineering ontology as new instances.

3) Query Process

User agents will send their queries to

ontology agents. Ontology agents will retrieve and

provide information from the software engineering

ontology in accordance with their queries.

4) Recommendation Process

User agents will send their issues or requests

to the semantic recommender agent. The

recommender agent then cooperate with ontology

agents to make a recommendation based on

knowledge explicitly described in the software

engineering ontology and other resources, e.g.

user profiles or issue tracking systems. Semantic

recommendation techniques will be employed

during the recommendation process to improve the

accuracy of recommendation and to provide the

tentative solutions as well as the most relevant

knowledge according to user request.

5) Ontology Evolution Update Process

In case that the recommender agent is not

able to recommend solutions due to requests that

do not match with the concepts defined in the

software engineering ontology or different

understandings of project-related information, the

evolution agent will coordinate with the Software

Engineering Social Network System (SESN) for

the ontology evolution process. Nevertheless, this

is beyond the scope of this research but more

information can be found in [52] and [53]. When

the evolution process is completed and agreement

regarding changes has been reached, the evolution

agent will notify ontology agents to merge these

concepts with the existing software engineering

ontology. When ontology agents complete the

update, it will tell the recommender agent to notify

all affected agents. This change will cause some

particular concept and relationship to be adjusted

and leads to the change of generic concepts in the

37

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

ontology. This is called ontology evolution and

may generate a new version of software

engineering ontology. It is to be noted that a

version of software engineering ontology refers to

a broad category of software applications e.g.

software engineering for CRM, ERP or cloud

computing rather a specific software development

project. Therefore, each version still needs each

ontology agent to manage and maintain including

ensure reliability and consistency.

6) Issue Raising with Instance Update Process

This process is different from ontology

evolution update process. Ontology evolution

update process is a process of an evolution at

concept level that changes will be made to the

underlying software engineering domain

knowledge while instance update process is a

process of an evolution at instance level that deals

with changes in refinement process or in the

conceptualization. This process starts from

software team member raises an issue to his

personal user agent to make a change of instance

in the software engineering ontology. Ontology

agents will check any instance, component, or

people who will be affected from this change and

notify the user. He or other members can propose

their opinions to the change until the final

agreement has been discovered. Ontology agents

will then update related instance in the software

engineering ontology repository and inform the

semantic recommender agent about the update.

The recommender agent will notify only those

team members who should be advised about the

changes and their effects.

5 SCENARIO EXAMPLES OF MULTI-

AGENT BASED RECOMMENDER SYSTEM

PROVIDING ACTIVE SUPPORT THROUGH

SOFTWARE ENGINEERING ONTOLOGY

Here are some scenarios that can explain how

the proposed system works. Suppose that

Globeware Company is a US multinational

company which has three software development

sites located in US, Australia, and India. They are

currently working on a mobile application project.

All requirement gathering and software

specification are done in US while software design

and implementation are done in Australia and

India. Globeware utilizes the agent-based

recommendation system for software engineering

ontology framework in this project to facilitate

effective remote communication and coordination.

The software engineering ontology instantiations

for this project have been derived from populating

software project information, project agreement,

and problem domain from each phase in SDLC

which are mapped into the concepts defined in the

software engineering ontology. Here are some

examples showing how this methodology can

provide active support to team members when

working on software development project.

First example: Member A is a system analyst.

Since the user requirement has changed, an

additional class has to be added (considered as a

new instance) into the specific software

engineering ontology in which all project data is

generally stored as instances. He contacts his user

agent and inputs project information about the

additional class. The user agent will automatically

annotate it into concepts formed in the ontology

through a semantically annotating process. Related

concepts, classes, data type, object property and

data type property are used as metadata to

annotate the content of documents (refer to Figure

1 – semantic annotation process). The annotated

additional class will be in the semantic structure of

the software engineering domain and ready to be

populated to the ontology by ontology agents

(refer to Figure 1 – ontology population

process). The recommender agent will take

responsibility for notifying all affected agent(s)

about this ontology instance update.

Second example: Member B is a new member

who has just joined this project as a developer. He

would like to learn more about project information

such as output from the design phase that only

relates to his work and catch up with the current

status of the project. He can query ontology agents

via his user agent to access project information

and status. The agent will autonomously consider

retrieving only particular project information

stored as instance knowledge in the specific

software engineering ontology that is related to his

work so it assists him to start working quickly

38

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

with the most relevant and precise situational

knowledge (refer to Figure 1 –query process). If

he doubts the output from the design phase, he can

raise a query or an issue through his user agent

who will communicate with the recommender

agent to reason knowledge published in ontology

repository to find a possible solution or

recommend the most suitable person who can

clarify his issue (refer to Figure 1 –

recommendation process).

Third example: Member C finds out that there

is a bug in the new released system so he informs

his user agent. Before the bug issue is filed, the

recommender agent and ontology agents will try

to locate related problems from the project issue

tracking system based on its associated concepts

defined in the software engineering ontology and

its instances. The benefit is to avoid a bug

duplicated report from other developers which

may create confusion and unnecessary information

overload. Ontology agents will then attempt to

link the bug symptoms to related software artifacts

that are all annotated using the software

engineering ontology in order to help the

developer quickly diagnose which part of the

software artifacts might be causing the problem.

Additionally, before the developer fixes the bug,

Ontology agents will inform him of the classes or

components that might be affected. Furthermore,

with a full record of mappings between previously

reported bugs and people who resolved those

bugs, the recommender agent will be able to

recommend potential people to consult or to

resolve some particular bug issue (refer to Figure

1 –recommendation process).

Fourth example: Member D raises an issue

about customer class diagram through the

information platform in plain text. From the

content, the ontology agent will automatically

parse software engineering terms by referring to

the concept in software engineering ontology and

autonomously reason and derive only related

instances which are customer class and other

relevant classes and relationships. Then it will

dynamically draw the diagram from the retrieved

information and show this to Member A. He or

other members can propose their opinions by

working on the diagram itself and do tracked

changes. Ontology agents will also warn them

about affected classes or components from their

change proposal. The content in ontology

repository will not be updated until the final

agreement has been discovered. Then ontology

agents will converse the solution diagram and

store it back into the semantic format of the

specific software engineering ontology. The

recommender agent will automatically notify only

those team members who should be advised about

the changes and their effects (refer to Figure 1 –

issue-raising with instance update process). It

makes a discussion among team members to

propose issues, questions or solution easier than

communicating with normal plain texts or just

words. So with the support of collaborative agents,

long-distance communication which often causes

misunderstanding problems during the software

development can proceed more clearly and

effectively in the multi-site environment.

6 CONCLUSION AND FUTURE WORK

 This paper proposes the multi-agent based

recommender system conceptual framework for

providing an intelligent support to access and

recommend knowledge and project information

captured in the software engineering ontology.

The roles of four types of software agents are

analyzed and identified. The interaction between

software agents and ontology within collaboration

framework are defined into six processes. This

work is intended to facilitate effective

communication and coordination for remote

software development teams to reduce the

unsuccessful rate of multi-site software

development project.

For future work, semantic annotation will be

implemented to annotate project information such

as user requirements, source codes, etc. and then

populate it into the software engineering

instantiations. We will then design a semantic-

based recommendation system based on the

software engineering ontology and integrate them

with multi-agent implementation. We will

evaluate and validate our work in accordance with

a framework for evaluation in design science

research addressed by Venable, Pries-Heje and

39

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

Baskerville [54]. The prototype will be developed

and evaluated by two groups of multi-site software

development teams in order to obtain feedback to

measure the usability and effectiveness of the

system to solve the problem. In addition, to

evaluate the system performance, simulation will

be used by executing a prototype with artificial

data.

7 ACKNOWLEDGEMENTS

Financial supports for this study are funded by

the Australian Government through their provision

of the Endeavour Awards program and the Royal

Thai Government Scholarship program.

8 REFERENCES

1. P. J. Ågerfalk, B. Fitzgerald, H. Holmström, B.

Lings, B. Lundell, and E. O. Conchúir, "A

framework for considering opportunities and threats

in distributed software development." pp. 47-61.

2. E. Ó. Conchúir, P. J. Ågerfalk, H. H. Olsson, and

B. Fitzgerald, “Global software development:

where are the benefits?,” Communications of the

ACM, vol. 52, no. 8, pp. 127-131, 2009.

3. S. Islam, M. M. A. Joarder, and S. H. Houmb,

"Goal and risk factors in offshore outsourced

software development from vendor's viewpoint."

pp. 347-352.

4. M. R. Thissen, J. M. Page, M. C. Bharathi, and T.

L. Austin, “Communication tools for distributed

software development teams,” in Proceedings of the

2007 ACM SIGMIS CPR conference on Computer

personnel research: The global information

technology workforce, St. Louis, Missouri, USA,

2007, pp. 28-35.

5. J. T. Biehl, W. T. Baker, B. P. Bailey, D. S. Tan, K.

M. Inkpen, and M. Czerwinski, “Impromptu: a new

interaction framework for supporting collaboration

in multiple display environments and its field

evaluation for co-located software development,” in

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, Florence, Italy,

2008, pp. 939-948.

6. S. Salinger, C. Oezbek, K. Beecher, and J. Schenk,

“Saros: an eclipse plug-in for distributed party

programming,” in Proceedings of the 2010 ICSE

Workshop on Cooperative and Human Aspects of

Software Engineering, Cape Town, South Africa,

2010, pp. 48-55.

7. T. S. Dillon, E. Chang, and P. Wongthongtham,

"Ontology-based software engineering- software

engineering 2.0." pp. 13-23.

8. Y. Blanco-Fernández, J. J. Pazos-Arias, A. Gil-

Solla, M. Ramos-Cabrer, M. López-Nores, J.

García-Duque, A. Fernández-Vilas, and R. P. Díaz-

Redondo, “Exploiting synergies between semantic

reasoning and personalization strategies in

intelligent recommender systems: A case study,”

Journal of Systems and Software, vol. 81, no. 12,

pp. 2371-2385, 2008.

9. A. Borges, #233, r. Soares, S. Meira, Hil, #225, r.

Tomaz, R. Rocha, and C. Costa, “Ontologies

supporting the distributed software development: a

systematic mapping study,” in Proceedings of the

17th International Conference on Evaluation and

Assessment in Software Engineering, Porto de

Galinhas, Brazil, 2013, pp. 153-164.

10. P. Wongthongtham, E. Chang, T. S. Dillon, and I.

Sommerville, “Development of a software

engineering ontology for multi-site software

development,” IEEE Transactions on Knowledge

and Data Engineering, 2008.

11. P. Wongthongtham, E. Chang, T. S. Dillon, and I.

Sommerville, “Ontology-based multi-site software

development methodology and tools,” Journal of

Systems Architecture, vol. 52, no. 11, pp. 640-653,

2006.

12. P. Wongthongtham, T. Dillon, and E. Chang, "State

of the art of community-driven software

engineering ontology evolution." pp. 1039-1045.

13. C. Ebert, "The dark side: challenges," Global

Software and IT, pp. 19-25: John Wiley & Sons,

Inc., 2011.

14. H.-C. Chu, and S.-W. Yang, "Innovative semantic

web services for next generation academic

electronic library via web 3.0 via distributed

artificial intelligence," Intelligent Information and

Database Systems, Lecture Notes in Computer

Science, pp. 118-124: Springer Berlin Heidelberg,

2012.

15. H. Qingning, Z. Hong, and S. Greenwood, "A

multi-agent software engineering environment for

testing Web-based applications." pp. 210-215.

16. N. R. Jennings, “On agent-based software

engineering,” Artificial Intelligence, vol. 117, no. 2,

pp. 277-296, 2000.

17. V. N. Marivate, G. Ssali, and T. Marwala, "An

intelligent Multi-Agent recommender system for

human capacity building." pp. 909-915.

18. J. Jiao, X. You, and A. Kumar, “An agent-based

framework for collaborative negotiation in the

global manufacturing supply chain network,”

Robotics and Computer-Integrated Manufacturing,

vol. 22, no. 3, pp. 239-255, 2006.

19. W. T. Goh, and J. W. P. Gan, "A dynamic multi-

agent based framework for global supply chain."

pp. 981-984 Vol. 2.

20. Z. Zhong, J. D. McCalley, V. Vishwanathan, and

V. Honavar, "Multiagent system solutions for

distributed computing, communications, and data

40

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

integration needs in the power industry." pp. 45-49

Vol.1.

21. C. Chira, “A multi-agent approach to distributed

computing,” Computational Intelligence Report No,

vol. 42007, 2007.

22. A. Y. AHamo, and M. A. Aljawaherry,

“Constructing a collaborative multi-agents system

tool for realtime system requirements,”

International Journal of Computer Science (IJCSI),

vol. 9, no. 4, 2012.

23. Z. Chuan, "A software collaborative developing

environment based on intelligent agents." pp. 1-4.

24. A. Birukou, E. Blanzieri, and P. Giorgini, “Implicit:

a multi-agent recommendation system for web

search,” Autonomous Agents and Multi-Agent

Systems, vol. 24, no. 1, pp. 141-174, 2012/01/01,

2012.

25. M. Romero, A. Viscaino, and M. Piattini, "Towards

the definition of a multi-agent simularion

environment for education and training in global

requirements elicitation." pp. 48-53.

26. V. Iordan, A. Naaji, and A. Cicortas, “Deriving

ontologies using multi-agent systems,” WSEAS

Transactions on Computers, vol. 7, no. 6, pp. 814-

826, 2008.

27. K. Giri, “Role of ontology in Semantic web,”

DESIDOC Journal of Library & Information

Technology, vol. 31, no. 2, 2011.

28. S. Paydar, and M. Kahani, “An agent-based

framework for automated testing of web-based

systems,” Journal of Software Engineering and

Applications, 2011.

29. C.-S. Lee, and M.-H. Wang, “Ontology-based

computational intelligent multi-agent and its

application to CMMI assessment,” Applied

Intelligence, vol. 30, no. 3, pp. 203-219,

2009/06/01, 2009.

30. I. Nunes, C. P. Lucena, U. Kulesza, and C. Nunes,

"On the development of multi-agent systems

product lines: A domain engineering process,"

Agent-Oriented Software Engineering X, Lecture

Notes in Computer Science, pp. 125-139: Springer

Berlin Heidelberg, 2011.

31. H. Monte-Alto, A. Biasão, L. Teixeira, and E.

Huzita, "Multi-agent applications in a context-

aware global software development environment

distributed computing and artificial intelligence,"

Advances in Intelligent and Soft Computing, pp.

265-272: Springer Berlin / Heidelberg, 2012.

32. T. Mahmood, and F. Ricci, “Improving

recommender systems with adaptive conversational

strategies,” in Proceedings of the 20th ACM

conference on Hypertext and hypermedia, Torino,

Italy, 2009, pp. 73-82.

33. D. H. Park, H. K. Kim, I. Y. Choi, and J. K. Kim,

“A literature review and classification of

recommender systems research,” Expert Systems

with Applications, 2012.

34. A. Y. Hamo, and M. A. Aljawaherry, “Constructing

a Collaborative Multi-Agents System Tool for Real

Time System Requirements,” International Journal

of Computer Science, vol. 9, 2012.

35. “Semantic Annotation, Indexing, and Retrieval.”

36. Q. Gao, J. Yan, and M. Liu, "A semantic approach

to recommendation system based on user ontology

and spreading activation model." pp. 488-492.

37. Y. Blanco-Fernández, M. López-Nores, J. J. Pazos-

Arias, and J. García-Duque, “An improvement for

semantics-based recommender systems grounded

on attaching temporal information to ontologies and

user profiles,” Engineering Applications of

Artificial Intelligence, vol. 24, no. 8, pp. 1385-

1397, 2011.

38. Y. Blanco-Fernández, J. J. Pazos-Arias, A. Gil-

Solla, M. Ramos-Cabrer, M. López-Nores, J.

García-Duque, A. Fernández-Vilas, R. P. Díaz-

Redondo, and J. Bermejo-Muñoz, “A flexible

semantic inference methodology to reason about

user preferences in knowledge-based recommender

systems,” Knowledge-Based Systems, vol. 21, no. 4,

pp. 305-320, 2008.

39. I. Cantador, P. Castells, and A. Bellogín, "An

enhanced semantic layer for hybrid recommender

systems: Application to news recommendation,"

IGI Global, 2011, pp. 44-78.

40. B. Vesin, M. Ivanović, A. Klašnja-Milićević, and

Z. Budimac, “Protus 2.0: Ontology-based semantic

recommendation in programming tutoring system,”

Expert Systems with Applications, vol. 39, no. 15,

pp. 12229-12246, 2012.

41. M. Robillard, R. Walker, and T. Zimmermann,

“Recommendation systems for software

engineering,” Software, IEEE, vol. 27, no. 4, pp.

80-86, 2010.

42. H. J. Happel, and W. Maalej, "Potentials and

challenges of recommendation systems for software

development." pp. 11-15.

43. A. Begel, K. Yit Phang, and T. Zimmermann,

"Codebook: discovering and exploiting

relationships in software repositories." pp. 125-134.

44. A. Moraes, E. Silva, C. d. Trindade, Y. Barbosa,

and S. Meira, “Recommending experts using

communication history,” in Proceedings of the 2nd

International Workshop on Recommendation

Systems for Software Engineering, Cape Town,

South Africa, 2010, pp. 41-45.

45. I. Steinmacher, I. S. Wiese, and M. A. Gerosa,

"Recommending mentors to software project

newcomers." pp. 63-67.

46. P. F. Xiang, A. T. T. Ying, P. Cheng, Y. B. Dang,

K. Ehrlich, M. E. Helander, P. M. Matchen, A.

Empere, P. L. Tarr, C. Williams, and S. X. Yang,

“Ensemble: a recommendation tool for promoting

communication in software teams,” in Proceedings

of the 2008 international workshop on

41

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

Recommendation systems for software engineering,

Atlanta, Georgia, 2008, pp. 1-1.

47. N. Sawadsky, and G. C. Murphy, “Fishtail: from

task context to source code examples,” in

Proceedings of the 1st Workshop on Developing

Tools as Plug-ins, Waikiki, Honolulu, HI, USA,

2011, pp. 48-51.

48. J. Cordeiro, B. Antunes, and P. Gomes, "Context-

based recommendation to support problem solving

in software development." pp. 85-89.

49. B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G.

Srinivasa, and V. Vangala, “DebugAdvisor: a

recommender system for debugging,” in

Proceedings of the the 7th joint meeting of the

European software engineering conference and the

ACM SIGSOFT symposium on The foundations of

software engineering, Amsterdam, The

Netherlands, 2009, pp. 373-382.

50. F. W. Jaekel, E. Parmiggiani, G. Tarsitano, G.

Aceto, and G. Benguria, “FACIT-SME: A semantic

recommendation system for enterprise knowledge

interoperability,” Enterprise Interoperability V, pp.

129-139, 2012.

51. A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and

C. Welty, "Supporting online problem-solving

communities with the semantic web." pp. 575-584.

52. A. A. Aseeri, “Lightweight community-driven

approach to support ontology evolution,” School of

Information Systems, Curtin University, 2011.

53. N. Kasisopha, and P. Wongthongtham, "Semantic

wiki-based ontology evolution." pp. 493-495.

54. J. Venable, J. Pries-Heje, and R. Baskerville, "A

comprehensive framework for evaluation in design

science research," Design Science Research in

Information Systems. Advances in Theory and

Practice, Lecture Notes in Computer Science, pp.

423-438: Springer Berlin Heidelberg, 2012.

42

International Journal of Digital Information and Wireless Communications (IJDIWC) 3(4): 29-42
The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2225-658X)

