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Abstract 
Gadilam river basin has gained its importance due to the presence of Neyveli Lignite open cast 

mines and other industrial complexes. It is also due to extensive depressurization of Cuddalore aquifer and 

bore wells for New Veeranam Scheme is constructed in the downstream of the basin. Geochemical 

indicators of groundwater were used to identify the chemical processes that control hydrogeochemsitry. 

Chemical parameters of groundwater such as pH, Electrical Conductivity (EC), Total dissolved solids 

(TDS), Sodium (Na+), Potassium (K+), Calcium (Ca+), Magnesium (Mg+), Bicarbonate (HCO3
-), Sulphate 

(SO4
-), Phosphate (PO4

-) and Silica (H4SiO4) were determined. Interpretation of hydrogeochemical data 

suggests that leaching of ions followed by weathering and anthropogenic impact controls the chemistry of 

the groundwater. Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock 

water interaction with significant evaporation prevails in hard rock region. 
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1. Introduction 

Groundwater is a natural resource, which is being renewed by different process. Geochemical 

processes occurring within the groundwater and reactions with dissolved minerals have a profound effect 

on water quality. Hydrogeochemical composition of groundwater can indicate its origin and history of 

passage through underground materials, which water has been in contact.  
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In Gadilam river basin, groundwater is found in both hard rock and sedimentary terrain and is the 

most important source of rural/urban drinking water supply (Prasanna 2008). In the recent years due to the 

advent of industrial growth, large-scale application of synthetic fertilizers for agriculture production and 

use of pesticides and insecticides for production has caused serious concern regarding susceptibility of 

groundwater contamination. In addition to this, multivarious human activities particularly those involved in 

land disposal of industrial effluents and sewage effluents, sludge and solid waste, septic tank effluents, 

urban run-off and various unknown human activities contaminate groundwater sources. 

 

Gadilam river originates in the hard rock region and flows through the sedimentary terrain. Large 

scale extraction in this basin is done by Neyveli Lignite Corporation (NLC). The open cast mining of 

Lignite requires heavy pumping at the rate of 9,000 – 10,000 m3hr-1 as water table has to be brought down 

below the lignite seam (Gowrisankaran 1992). Water from the Veeranam Lake is supplied through 

transmission line to Chennai city. To augment the supply during failure of monsoon, 48 deep bore wells 

were drilled and operations are done alternatively to pump the groundwater from deeper aquifer and the 

pumped water is connected to the New Veeranam Scheme (NVS) pipelines. Apart from these large scale 

extractions, an industrial estate SIPCOT (Small Industries Promotion Corporation of Tamilnadu) with 

groups of industries, which generate multi facet chemicals and raw materials are distributed along the 

downstream of the river Gadilam, near the Cuddalore coast. Aravindan et al. (2004) has attempted to 

classify the groundwater quality in the hard rock aquifer of Gadilam river basin. A detailed study on sea 

water intrusion along the Cuddalore (Ramanathan et al. 1999), Chennai (Gnanasundar and Elango 1999 and 

Satheesh Herbert Singh and Lawrence 2007) and in Pichavaram (Chidambaram et al. 2005) were carried 

out. Keeping all the above facts in the mind, an attempt has been made to understand the complexity of 

hydrogeochemical characters in the study area. The entire Gadilam river basin has been selected to have a 

holistic picture. The main objectives of this study are to understand the hydrogeochemical variation of 

groundwater with respect to lithology in space and time and probable factors responsible for water 

chemistry of the region. 
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2. Study area 
 

Gadilam river basin is located in parts of Cuddalore and Villupuram districts of Tamilnadu, India. 

It lies in between 79º 0’ E to 79º 47’ E longitudes and 11º 30’ N to 11º 55’ N latitudes (Fig. 1). It occurs 

within the Survey of India toposheets of 58M/1, 2, 5, 6, 9, 13, 10 and 14, covering a total area of about 

1,394 sq.km.  The Gadilam river basin is bounded by Ponnaiyar river basin in the North and the Vellar 

river basin in the south. The total length of the river is about 112 km with a catchment area extending about 

900 sq.km. The average annual rainfall of the basin is about 1643mm. The water level ranges from 

3.10mbgl to 98.85mbgl (below ground level) with an average of 62.37bgl. The river basin has different 

rock types along its flow path. The lithological set up of the basin shows that hard basement rocks are 

exposed in western part of the study area and sedimentary formation in the east with a faulted contact 

between both (Aravindan et al. 2004). River originates in the hard rock region and flows through the 

sedimentary terrain. The basin covers different stratigraphic units viz. Archaean, Cretaceous and Tertiary to 

Recent alluvium (Fig. 2). The charnockites, granites, syenites and gneiss of archaean complex constitute 

the upstream area. The younger cretaceous and tertiary formations are found in the midstream and recent 

alluvium in the downstream of the Gadilam river basin. Lithologically, hard rocks constitute the western 

part of the basin. In the sedimentary region, northern part essentially comprises of recent alluvium and the 

rest by sandstone. 

 

3. Materials and Methods 

The water samples were collected during March 2005, July 2005, November 2006, and January 

2006 to broadly cover all seasons (Fig. 2). A total of 178 water samples were collected from 156 bore 

wells, river (14) and tank (8) in four different seasons (November 2006 represents NE monsoon; January 

2006 represents Post monsoon; March 2005 represents Summer; July 2005 represents SW monsoon). In 

summer (SUM) and south west monsoon (SWM), twelve groundwater samples were collected from 

Alluvium, ten samples from Tertiary, fourteen samples from Archaean and two surface water from tank. In 

north east monsoon (NEM) and post monsoon (POM), twelve groundwater samples were collected from 

Alluvium, twelve samples from Tertiary, seventeen groundwater samples from Archaean, one groundwater 
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sample from Cretaceous, seven surface water from river and two surface water from tank. Cretaceous 

formation covers less than 5% of the study area. In certain location during summer and southwest monsoon 

periods the wells were dry. River Gadilam is an ephemeral river with water flows only during NEM and 

POM periods. 

 One litre of water samples was collected in polyethylene bottle four times a year to broadly cover 

seasonal variation with respect to lithology. Then it was sealed and brought to laboratory for analysis and 

stored at 4ºC before analysis. 

The samples collected were analyzed for major cations like, Ca and Mg by Titrimetry, Na and K 

by Flame photometer (CL 378); anions, Cl and HCO3 by Titrimetry, SO4, PO4, and H4SiO4 by 

Spectrophotometer (SL 171 minispec). EC and pH were determined in the field using electrode (Eutech). 

The analyses were done by adopting standard procedures (APHA 1998).  

Stable Isotopic studies (δ18O and δD) were carried out for 60 samples from different locations of 

Gadilam river basin during south west monsoon (2005) and post monsoon (2006) following standard 

procedures of International Atomic Energy Agency (IAEA). Isotopic studies were done for groundwater, 

surface water and rain water samples. Oxygen (δ18O) and  Deuterium (δD) present in samples were 

analyzed by using Isotopic Ratio Mass Spectrophotometer (Finnigan Deltaplus
 
Xp, Thermo Electron 

Corporation, Bermen, Germany, the standard deviation of our measurements is ±1.72‰ for Oxygen and 

±0.8‰ for Hydrogen) . All the measurements were carried out against laboratory substandard that were 

periodically calibrated against the international isotope water standards recommended by the IAEA (V-

SMOW). The isotope results obtained are reported in terms of δ units (permil deviation of the isotope ratio 

from the international standard V-SMOW) δ being defined by  

δ = (R 
sample

- R
SMOW 

/ R
SMOW

) X 10
3 

where, R = D/H or 
18

O/
16

O 
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4. Result and discussion 

4.1 Water chemistry 
 

The average, mean, and standard deviation values of the water samples collected during four 

different seasons in different formations are given in Table 1a and 1b. The total cations (TZ+) and total 

anion (TZ-) balance (Freeze and Cherry 1979) is considered to shows the charge balance error percentage. 

The error percentage in the samples of the present study ranges between ±1% to ±10%. Occurrence of 

errors in chemical analysis of groundwater is also due to the reagents employed, limitations of the methods 

and the instruments used, presence of impurities in distilled water etc. The correlation coefficient between 

TZ+ and TZ- is around 0.6 to 0.9. TDS / EC ratio was ranging from 0.5 to 0.9. The role played by other ions 

than those considered here for the cations and anions charge balance is less significant. 

In Alluvium formation, Cl is the dominant anion followed by HCO3, SO4 and PO4 during SUM, 

NEM and POM seasons. But in SWM, HCO3 is the dominant anion followed by Cl, SO4 and PO4. Higher 

concentration of chloride in this region is may be due to sea water intrusion along the coast (Chidambaram 

et al. 2007). In POM, Na is the dominant cation followed by Ca, K and Mg. But in SUM, SWM and NEM, 

Na is the dominant cation followed by Ca, Mg and K. Na is found to be the dominant cation it may be due 

to the weathering of Alkali feldspar in rocks or due to cationic contribution from sea water. 
 

In Tertiary Formation, Cl is the dominant anion followed by SO4, HCO3 and PO4 during SUM. In 

POM, Cl is the dominant anion followed by HCO3, SO4 and PO4. In SWM, HCO3 is the dominant anion 

followed by SO4, Cl and PO4. In NEM, HCO3 is the dominant anion followed by Cl, SO4 and PO4. The 

contribution of HCO3
- is may be due to chemical weathering of silicate and carbonate minerals 

(Srinivasamoorthy 2004). In SUM, NEM and POM, Na is the dominant cation followed by Ca, K and Mg. 

But in SWM, Na is the dominant cation followed by Ca, Mg and K. 

 

In Archaean formation, HCO3 is the dominant anion followed by Cl, SO4 and PO4 during SUM, 

SWM and NEM seasons. But in POM, Cl is the dominant anion followed by HCO3, SO4 and PO4. The 

contribution of chloride may be due to the leaching of secondary salts during weathering processes. In 
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SUM, SWM and POM, Na is the dominant cation followed by Ca, K and Mg. But in NEM, Na is the 

dominant cation followed by Ca, Mg and K. 

 

In tank water, Cl is the dominat anion followed by HCO3, SO4 and PO4 irrespetive of seasons. Na 

is the dominant cation followed by Ca, K and Mg irrespective of seasons. In river water, HCO3 is the 

dominant anion followed by Cl, SO4 and PO4 irrespective of seasons. In NEM, Na is the dominant cation 

followed by Ca, Mg and K. But in POM, Na is the dominant cation followed by Ca, K and Mg. 

 

4.2. Geochemical classification 
 

Hydrogeochemical facies interpretation is a useful tool for determining the flow pattern, origin of 

chemical histories of groundwater. The diamond field of Piper (1944) for Alluvium formation (Fig. 3) 

shows variation with seasons. The plot mainly falls in fields 2, 3, 4 and 1. In NEM and POM, the samples 

are concentrated in Na-Cl type indicating saline nature in the groundwater. In SUM and SWM, cluster of 

samples fall in Na-Cl and mixed Ca-Na-HCO3, Ca-Mg-Cl facies. The data plot of Piper Trilinear diagram 

(Fig. 3) indicates the change of CaHCO3 facies in summer to NaCl facies in winter, as calcium is replaced 

by sodium during North East monsoon (Aravindan et al. 2004). In Tertiary formation (Fig. 4), the plot falls 

in fields 2, 3, 4 and 5. The dominant fields are 2, 3 and 4. SUM and SWM seasons are well represented in 

plot 2 and 3, indicating the dominance of alkaline and strong acids. In NEM and POM, cluster of samples 

fall in Na-Cl type and some samples also represent mixed Ca-Mg-Cl and Ca-Cl facies. 

 
In Archaean (Fig. 5), most of the plots fall in field 2 with less representation in 3 and 4. In NEM 

and POM, alkaline and strong acid are predominant indicating the intensive weathering action of silicate 

bearing minerals and secondary leaching of ions (Srinivasamoorthy 2004). In SUM and SWM, majority of 

samples fall in Na-Cl and mixed Ca-Mg-Cl with minor representation from mixed Ca-Na-HCO3 and Ca-

HCO3 facies.                                                 

 

In Cretaceous formation (Fig. 6), NEM samples fall in Ca-HCO3 facies indicating the dominant of 

alkali earth and week acids. But in POM, plot fall in Na-Cl facies indicating the predominant of alkaline 

and strong acid. In tank waters (Fig. 7), SUM and SWM samples fall in Na-Cl and mixed Ca-Mg-Cl facies. 
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In NEM and POM, most of the samples fall in Na-Cl facies indicating the dilution of secondary salt 

precipitation. In river water (Fig. 7), cluster of samples during POM is noted in Na-Cl facies and NEM 

samples fall in mixed Ca-Na-HCO3, Ca-HCO3 and mixed Ca-Mg-Cl facies. In general, the plot shows that 

alkali (Na) exceeds alkaline earth (Ca and Mg) and strong acid Cl and SO4 exceeds the week acids (HCO3) 

in all the litho units irrespective of season. 

 

4.3. Ionic Strength 

Ionic strength is a measure of total concentration of ions which emphasizes increased contribution 

of species with charges greater than one to solution non-ideality (Domenico and Schwartz 1990). 

 

I= 0.5 ∑ m1z1
2      

 
Where m1 is the atomic/molecular weight and z1 is the valance of the respective ion. Ionic strength 

of fresh water is less than 0.005 (Hem 1959). In the study area, higher ionic strength was noted in Alluvium 

and Archaean formation irrespective of seasons, indicating lesser inflow of fresh water into the system (Fig. 

8). Low ionic strength was noted in Tertiary formation indicating higher inflow of fresh water/ recharge 

(Prasanna et al. 2006).  

4.4. Partial pressure of Carbon dioxide (Pco2) 

In SUM, the LogPco2 values ranges from -2.5 to -1. The samples from Tertiary formation and 

certain samples in Alluvial terrain show nearly the atmospheric value (-3.5) (Fig. 9). Samples from 

Archaean formation show higher Pco2 value ranging from -2.39 to -1.19 suggesting that the additional CO2 

has been acquired from the soils during the process of infiltration towards the zone of saturation (Prasanna 

et al. 2006).  In SWM, certain samples in Alluvium and Tertiary formations show nearly similar or slightly 

lesser than the atmospheric log PCO2 values. It may be interpreted that their residence time in the aquifer 

matrix is considerably lesser. Higher Log Pco2 values are noted in Archaean formation. In NEM, all the 

samples irrespective of terrains, show higher Log Pco2 value except few representations of near 
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atmospheric log Pco2. In POM, majority of samples irrespective of terrains fall around the atmospheric Log 

Pco2 value indicating recent recharge waters by the monsoon rainfall. 

4.5. Thermodynamic stability 

Thermodynamic plotting of [Na+]/H+, [K+]/H+,[Ca2+]/H+ and [Mg2+]/H+, for the groundwater in 

major litho units in the study area are plotted on the stability diagram (Fig. 10-14) as a function of 

[H4SiO4]. 

 

4.5.1 Na system 

In Alluvium formation (Fig. 10), samples fall in the Kaolinite stability field during SUM and 

SWM seasons indicating incongruent dissolution of Na- feldspar to produce Kaolinite and dissolved 

products. As dissolution of feldspar continues the values of Si(OH)4 and (Na+)/(H+) increases and water 

chemistry moves to Na-Montmorllonite during NEM and POM. In Tertiary formation (Fig. 11), SUM, 

SWM and NEM samples fall in Kaolinite field and it moves towards Na-Montmorllonite field in POM 

season. Hence the formation of new clay minerals in the area is expected due to supply of excess cation and 

Silica to the pre-existing Kaolinite, which appears to be formed owing to evaporation processes as 

suggested by Jacks (1973).      

In Archaean (Fig. 12), same trend was observed as in Alluvium. In Cretaceous (Figure 13), 

samples fall in the Kaolinite field irrespective of seasons. In surface water (Fig. 14), samples fall in the 

Kaolinite field irrespective of seasons and the river water samples move towards Na-Montmorllinite field 

during POM may be due to concentration of ions along flow path of water. Generally, samples of SUM and 

SWM are stable in Kaolinite field, whereas in NEM and POM samples are moves towards Na-

Montmorllonite field.  

   

4.5.2. K system 

In Alluvium (Fig. 10), majority of SWM, SUM and NEM seasons sample falls in Kaolinite field 

and most of the POM samples fall in Muscovite and K-Feldspar fields. Minor representation of NEM and 

SWM seasons sample are also noted in Muscovite field. The diagram delineates stability field of clay 
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minerals that co-exist in sediment phase at a constant composition of water during chemical reaction of 

rock and water. It is evident that formation of Kaolinite and Muscovite has released silica and hence 

H4SiO4 has increased in groundwater. Similar trend was observed in Tertiary, Archaean and Cretaceous 

formations (Fig. 11, 12 and 13) as in Alluvium with fewer representations of SWM and SUM samples 

move towards Muscovite field. In surface waters (Fig. 14) irrespective of seasons, plot moves from 

Kaolinite to Muscovite and K-Feldspar fields. Generally samples of SUM, SWM and NEM are stable in 

Kaolinite field, whereas in POM samples are stable in Muscovite and K-Feldspar fields. 

 

4.5.3. Ca-system 

In Alluvium (Fig. 10), the plot shows that migration from Kaolinite to Ca-Montmorllinite field in 

NEM and POM seasons. Most of the samples in SUM, SWM and NEM fall in Kaolinite field may be due 

to the removal of Ca from the system by the precipitation of Ca salts. Similar trend was observed in 

Tertiary and Archaean formations (Fig. 11 and 12). In Cretaceous (Fig. 13), shift of stability from Kaolinite 

in POM to Ca-Montmorllinite in NEM season was noted due to the increase of silica and Ca ion in the 

groundwater. In surface waters (Fig. 14), the samples irrespective of season move from Kaolinite to 

Montmorllinite field. 

 

4.5.4. Mg-system 

In Alluvium (Fig. 10), the samples of SUM, SWM and NEM are stable with Kaolinite field and 

due to the increase of Mg and H4SiO4, samples fall in Chlorite stability field during POM. Seasonal 

variations indicates shift of samples between two fields Kaolinite and Chlorite due to forward or reverse 

nature of reaction. 

 

 Chlorite + 10H+ =Kaolinite + 5Mg2++H4SiO4+5H2O  

 
Same trend was observed in Tertiary and Cretaceous (Fig. 11 and 13). In Archaean (Fig. 12), 

NEM and POM samples moves towards Chlorite field due to the excess supply of cation and Silica. In 
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Surface waters (Fig. 14), samples irrespective of seasons show shift in composition from Kaolinite to 

Chlorite field. 

 

4.6. Factor Analysis 

In SUM, 3 factors were extracted with 78.62% of Total data variability (TDV) (Table 2). Factor I 

was represented by Cl-, HCO3, Ca Mg and Na indicating leaching of secondary salts. The concentration of 

Na and Cl can be ascribed to the intrusion of seawater into the aquifer system which increases the 

concentrations of these ions. The presence of HCO3, Ca and Mg reflects the signatures of natural water 

recharge and rock-water interaction. Surface water charged with atmospheric and biogenic CO2 infiltrates 

into the subsurface and aggressively attack aluminosilicates including feldspars and micas present in the 

formation liberating cations such as Ca and Mg into the water and leaving residues of clay minerals. As a 

consequence of this incongruent dissolution, there is a rise in pH and in HCO3 concentration of the water 

(Freeze and Cherry 1979). Factor 2 represented by PO4 and K indicating the anthropogenic impacts from 

the agricultural practices. Factor 3 represented by HCO3 and Ca indicating water-soil/rock interaction.  

In SWM, 3 factors were extracted with 76.90% of Total data variability (TDV). Factor 1 was 

represented by Cl, HCO3, Ca and Na, which is similar to factor 1 in SUM (Table 2). Factor 2 representing 

PO4, H4SiO4, Ca and Mg indicating anthropogenic impact from the agricultural practices (Chidambaram et 

al. 2008). Factor 3 represented by SO4 and K also indicating anthropogenic impact. 

In NEM (Table 2), 3 factors were extracted with 73.96% of Total data variability (TDV). Factor 1 

representing Cl, Ca, Mg and Na indicating leaching of secondary salts. Factor 2 representing HCO3, SO4, 

Na and K indicating intensive weathering. Factor 3 represented by PO4 and H4SiO4 indicating 

anthropogenic impacts from the agricultural practices. 

 
In POM (Table 2), 3 factors were extracted with 77% of Total data variability (TDV). Factor 1 

represented by Cl, Ca. Mg and Na follow the same trend of factor 1 in NEM. Factor 2 represented by SO4, 

PO4 and K indicating anthropogenic impacts from fertilizers. Factor 3 represented by HCO3 and H4SiO4 

indicating weathering of silicate minerals.  
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In general leaching of secondary salts, weathering and anthropogenic impacts are the dominant 

controlling factors governing the groundwater in the study area. 

 

4.7. Isotopic signatures 

4.7.1. Isotopic ratio in south west monsoon  

Totally 19 samples (groundwater and surface water) were collected and analyzed for stable 

isotopes oxygen-18 and Deuterium in September 2005 (Table 3). It is observed that there is a clear 

demarcation of isotopic signatures in ground water of different terrains in the study area (Fig. 15). The 

isotope ratios of oxygen and hydrogen are higher in Archaean followed by Alluvium and Tertiary. The δD 

and δ18O data provides information on the secondary processes acting in the water as it travels into the 

subsurface. The collected groundwater samples of Tertiary formation have a range from -7.95‰ to -6.25‰ 

for δ18O and from -52.85‰ to -45.93‰ for δD. The mean isotope values of groundwater are -7.33‰ and -

50.90‰ for δ18O and δD respectively. The δD and δ18O values of the groundwater samples fall nearer to 

Local meteoric water line (LMWL) indicating recharge from meteoric source (Prasanna et al. 2007). 

 

The ground water has slightly less δ18O and δD than the weighted mean for precipitation (Ian 

Clark and Peter Fritz 1997). Minor deviation from the weighted average precipitation can also be attributed 

to the land use practices. Darling and Bath (1988) noted that recharge beneath permanent grass cover is 

somewhat isotopically depleted relative to the favorable plots, reflecting the evaporation loss, which may 

also be contributory factors for major isotopic variation from Global meteoric water line (GMWL).  

 

The groundwater samples belong to Alluvium formation have a range from -7.19‰ to -6.17‰ for 

δ18O and from -50.49‰ to -44.63‰ for δD. The mean isotope values of groundwater are -6.85‰ and  

-48.33‰ for δ18O and δD respectively. Groundwater samples of this formation fall parallel to the LMWL 

or GMWL indicating recharge has taken place by the local precipitation (Chidambaram et al. 2007). 

Allison et al. (1984) developed a concept that under certain conditions of direct infiltration often has an 

18O-2H composition that plots parallel to the local meteoritic water line. It is because of the mixing that 

occurs between the evaporated soil moisture and subsequent rain that infiltrates and displaces the residual 



 12 

soil water downwards, this mixture ultimately reaches the water table. Since the Alluvial formation are 

porous and permeable, easy infiltration of rain water is depicted in the isotopic ratios. 

 

The groundwater samples belonging to Archaean formation have a range from -5.7‰ to -4.12‰ 

for δ18O and from -43.32‰ to -38.39‰ for δD. The mean isotope values of groundwater are -4.96‰ and -

41.66‰ for δ18O and δD respectively. In Archaean formation, enrichment of heavier isotopes is noted may 

be due to two factors. 1) The samples are displaced from the LMWL, this may be because of the extensive 

evaporation form the unsaturated zone. 2) Kinetics effect by vapour diffusion is greater than those 

associated with evaporation from open surfaces (Ian Clark and Peter Fritz 1997). The slope of δ18O-δ2H 

relation was only ~2, much lower than the range for the evaporation from the open water surfaces. Hence, 

either one of the above two factors or in combinations may be the responsible for low slope. This 

displacement may also be due to recharge of the evaporated surface waters. Since few surface water tanks 

are located in the hard rock terrains of the study area, these tanks may significantly contribute water to the 

ground system. The evaporation taking place in the fractures is also well witnessed by the higher saturation 

index (S.I) of Calcite, precipitation of Calcite is also witnessed in the fractures along the well cuttings of 

the study area (Chidambaram et al. 2007) (Fig. 21). Though few rock water interaction mechanisms are 

also noted in this terrain. δD and δ18O values of the surface water samples fall away from the GMWL line 

indicating that the waters are mostly affected by evaporation processes. 

 

4.7.2. Isotopic ratio in post monsoon  

Totally 41 samples (groundwater and surface water) were collected and analyzed for stable 

isotopes oxygen-18 and Deuterium in January 2006 (Table 4). The δD and δ18O data fall into distinct 

groups providing information on the secondary processes acting on the water as it travel from precipitation 

to groundwater. The river water samples plot to the right of the LMWL along a shallow-slopping trend, 

suggesting a typical evaporation pattern (Fig. 16). The groundwaters in Tertiary formation fall within a 

cluster either close to or to the right of the LMWL, indicating that these samples have undergone some 

evaporation prior to infiltration (Baskaran et al. 2005). In Alluvium formation, samples fall parallel to the 

LMWL indicating recharged by the local precipitation. The majority of Archaean terrain groundwaters plot 
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along a shallow-slopping trend to the right of the LMWL, indicating that evaporation concentration is a 

significant process for these samples.  

 

The δD and δ18O composition for the groundwater in the downstream of the river basin are 

different from the isotopic composition of the groundwater in the upstream of the basin. Majority of 

groundwater samples in the downstream have a relatively depleted isotopic signature (high negative values) 

that is similar to certain river water samples. This indicates that infiltrating river water or evaporated river 

recharge is the source for the groundwater in the downstream during this season. Under low or average 

flow condition, river water tends to be isotopically enriched relative to rainfall because of surface water 

evaporation (Simpson and Herczeg 1991).     

 

4.7.3. δDeuterium  Vs. Chloride 

A comparison of the deuterium and chloride data provides greater understanding of groundwater-

surface water interaction processes in the study area. There is a significant variation of isotopic characters 

with respect to Cl in the formations during SWM. In general, Tertiary has lower δD and Cl values it 

gradually increases in Alluvium and there is a notable increase of both in the Archaean formation 

indicating the higher residence time and enrichment of Cl ions. The chloride-deuterium plot suggests that 

two types of groundwater occur in the study area (Fig. 17) namely: (i) groundwater samples from the 

downstream side of the basin (Alluvium and Tertiary formations), characterized by low chloride and 

depleted D, (except in Karaikadu location shows higher concentration of chloride due to anthropogenic 

activity nearby the industry) which represent areas that are recharged frequently by rainfall (Baskaran et al. 

2005). (ii) groundwater samples in the upstream side of the basin (Archaean formation) with high chloride 

and enriched D, indicates less recharge from meteoric water and recharge of the evaporated waters from 

different source nearby may be due to the evaporation taking place along the fractures. Higher 

concentration of chloride was attributed by the leaching of secondary salts from the formation 

(Chidambaram et al. 2007).  
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  It has been reported that recharge by surface water via bank infiltration would be characterized by 

low chloride and relatively enriched δD signatures whereas diffuse recharge would tend to be enriched in 

chloride and depleted in δD (Lamontagne et al. 2002). In POM, chloride-deuterium plot suggests that three 

types of groundwaters occur in the study area (Fig. 18) namely; (1) Majority of groundwaters from 

sedimentary terrain (both Tertiary and Alluvium) with low Cl- and depleted deuterium, representing that are 

recharged more frequently by local rainfall and less frequently by river water. (2) Some groundwater 

samples from Archaean terrain characterized by low Cl- and relatively enriched by deuterium that is 

frequently recharged by river waters. (3) Certain groundwater samples in Archaean and Alluvium 

formations, with very high Cl- and lower deuterium is due to the diffusive recharge along the flow path. 

This indicates rarely that it receives recharge from surface water (Baskaran et al. 2005). 

 

4.7.4. Log Pco2 Vs. δ18O and δD 

During SWM (Fig. 19), LogPCO2 values of the region range from -2.41 to -0.98. These values are 

higher in comparison to the average atmospheric Pco2 value of -3.5 atm (Wigley 1973; Raymahashay 

1986). The LogPco2 – δ18O plot suggest that majority of groundwater samples from the sedimentary 

formation (Alluvium and Tertiary formations) characterized by low Pco2 values and depleted δ18O 

indicating recent recharge by the local precipitation. Groundwater samples from the hard rock region 

(Archaean formation) with higher Pco2 values and enriched δ18O indicates long residence time. This also 

suggest that the rainwater charged with atmospheric CO2 has acquired additional CO2 from the soils and 

thereby developing high Pco2 water on their travel to deep unsaturated zone (Prasanna et al. 2007). In POM 

(Fig. 20), LogPCO2 values of the region range from -4.00 to -1.62 respectively. The LogPco2–δD plot 

follows the similar trend as in SWM.  

 

4.8. Saturation State 

The disequilibrium indices of Carbonate minerals Aragonite, Calcite, Dolomite, Magnesite and 

Hydromagnesite were represented from the data bank of WATEQ4F and studied for the dissociation factors 

in the major litho units of the study area. The Fig. 21, 22 and 23 shows the indices of saturation of 
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Carbonate bearing minerals in the groundwater. The samples in Alluvium are in equilibrium state with 

Aragonite and Calcite in SUM and NEM, Dolomite and Magnasite show under saturation to saturation state 

(Fig. 21). In SWM, Calcite and Aragonite fall in saturation to over saturation state and the Dolomite and 

Magnasite is under saturated to near saturation state. This indicates the effect of dilution in monsoon 

period. In POM, majority of carbonate minerals show saturation to over saturation state with minor 

representation in under saturation state. Generally Fluctuations of saturation index of calcite (S.IC) along 

the line of saturation in different seasons are also noted.  In Tertiary formation (Fig. 22) majority of 

carbonates minerals show under saturation state with minor representation of Calcite and Aragonite in near 

saturation line during SUM, SWM and NEM. This may be due to the lesser mobility of ions during this 

period, which reduces S.Ic.   

During POM, Carbonate minerals show saturation state with minor locations representing under 

saturation state. In Archaean formation (Fig. 23), Calcite and Aragonite show saturation to over saturation 

state. During POM, all the Carbonate minerals show over saturation state indicating the effect of 

precipitation after monsoon period. In general, CO3 results shows that Calcite and Aragonite are saturated 

to oversaturated state. 

The lower values of SIc are compared to saturation index of Dolomite (SId) in POM season, this 

may be due to the result of Ca2+ precipitation (Atkinson 1983) or because of equilibrium with Calcite after 

Dolomite. The mechanism involved in the breaking down of feldspars and dissolution and precipitation of 

Calcite is governed by the system CaCO3 – CO2
2- – H2O (Berner, 1974). The degassing possibly occurs 

more rapidly leading to super saturation of groundwater with respect to Calcite (Pawar 1985). Field 

evidences suggest that CO2
2- has diffused along the joints, cracks and fissures in the hard rock terrain 

resulting in the deposition of secondary Carbonates (Calcite). Dolomite however, does precipitate due to 

kinetic constrains (Wigley 1976). In general Carbonate minerals except Magnesite are in equilibrium state 

with the groundwater indicating the capability of heavy scale formation by equilibrium of Calcite, 

Aragonite and Magnesite. 
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4.8.1. Saturation index of Calcite vs. δ18O 

During SWM period (Fig. 24), the SI of Calcite and δ18O form a linear relationship represented 

three different categories. The SI of Calcite ranges from -2.09 to 0.52. Higher values are noted in the 

Archaean formation whereas the lower values are in the Tertiary formation. The SI of Calcite vs δ18O plot 

suggests that the groundwater samples from Archaean formation fall in over saturation state indicates 

evaporation taking place along the fractures. Groundwater samples from the Tertiary formation shows 

under saturation indicate that the area is recharged frequently by rainfall. Groundwater samples from the 

Alluvium formation fall from under saturation to saturation state. 

During POM (Fig. 25), the SI of Calcite ranges from -0.65 to 1.89. Higher values are noted in the 

Archaean and Alluvium formations whereas the lower values are in the Tertiary formation. The SI of 

Calcite vs δD plot suggests that the groundwater samples from Archaean formation shows enriched 

deuterium with higher saturation index fall in over saturation state indicates evaporation concentration is a 

significant process for these samples.  

Groundwater samples from the Tertiary formation shows depleted deuterium with lesser saturation 

index fall in under saturation zone indicates dilution by rainfall/river water. Groundwater samples from the 

Alluvium formation shows depleted deuterium with higher saturation index indicates leaching of dissolved 

salts. 

 

5. Conclusion 

The chemical composition of groundwater in the Gadilam river basin shows dominant facies in the 

entire litho unit is Na-Cl type indicating saline nature in the groundwater. The thermodynamic state of 

stability varies with respect to lithology, but majority of the samples are stable with Kaolinite field with 

shift in stability due to the availability of silica and cations in the groundwater system. The availability of 

ions in different formations is governed by seasons. The study indicates that the groundwater of the 

alluvium and the Archaean formations have higher ion concentration irrespective of season. The statistical 

analysis carried out to unravel the factors responsible for the variation in the water chemistry with season 

indicates that the secondary leaching of salts, weathering and anthropogenic activities play a major role.   

Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock water interaction 
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with significant evaporation prevails in hard rock area. The impact of monsoon is well witnessed in the 

sedimentary formations than the Archaean. Understanding the above process helps us to make a judicious 

usage of this resource and to maintain its quality.  
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Figure caption 

Fig. 1 Location map of the study area. 

Fig. 2 Geology and sample location map. 
Fig. 3 Hill Piper Plot (Alluvium). 
Fig. 4 Hill Piper Plot (Tertiary). 
Fig. 5 Hill Piper Plot (Archaean). 
Fig. 6 Hill Piper Plot (Cretaceous). 
Fig. 7 Hill Piper Plot (Surface water). 
Fig. 8 Ionic Strength for the groundwater. 
Fig. 9 Variation of LogPco2 in groundwater. 
Fig. 10 Thermodynamic Equilibrium diagram for silicate system in Alluvium. 
Fig. 11 Thermodynamic Equilibrium diagram for silicate system in Tertiary. 
Fig. 12 Thermodynamic Equilibrium diagram for silicate system in Archaean. 
Fig. 13 Thermodynamic Equilibrium diagram for silicate system in Cretaceous. 
Fig. 14 Thermodynamic Equilibrium diagram for silicate system in Surface water. 
Fig. 15 Relationship between δ18O and δD in SWM. 
Fig. 16 Relationship between δ18O and δD in POM. 
Fig. 17 δD Vs. Chloride in SUM. 
Fig. 18 δD Vs. Chloride in POM. 
Fig. 19 Log Pco2 Vs. δ18O in SWM. 
Fig. 20 Log Pco2 Vs. δD in POM. 
Fig. 21 Saturation Index of Carbonate minerals in Alluvium using WATEQ4F. 
Fig. 22 Saturation Index of Carbonate minerals in Tertiary using WATEQ4F. 
Fig. 23 Saturation Index of Carbonate minerals in Archaean using WATEQ4F. 
Fig. 24 Saturation Index of Calcite Vs. δ18O in SWM. 
Fig. 25 Saturation Index of Calcite Vs. δD in POM. 
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Table caption 
  
      Tab. 1a  Maximum, Minimum, Average and Standard deviation for chemical  
                     composition of groundwater (in mg/l) except EC and pH (EC in μs/cm). 
      Tab. 1b  Maximum, Minimum, Average and Standard deviation for chemical  
                    composition of surface water (in mg/l) except EC and pH (EC in μs/cm) 

Tab. 2  Factor analysis for the chemical composition of groundwater. 
Tab. 3  Stable Isotope data for Ground water and Surface water samples during  

                  south west monsoon. 
Tab. 4  Stable Isotope data for Ground water and Surface water samples during  

                  post monsoon. 
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Alluvium   
Summer South West Monsoon North East Monsoon Post Monsoon   

  Max Min Avg Std Max Min Avg Std Max Min Avg Std Max Min Avg Std F.Avg 
pH 7.30 6.60 6.99 0.21 8.65 6.40 7.29 0.65 7.83 6.01 7.17 0.61 9.20 6.83 8.15 0.91 7.40 
EC 6337.31 420.18 1424.31 1605.68 6278.93 387.00 1543.82 1538.59 6728.00 468.00 1829.58 1645.38 6005.00 345.00 1652.59 1621.56 1612.58 
Cl 2384.01 62.03 347.77 646.29 1994.06 26.59 357.67 526.91 2782.82 96.42 498.17 734.87 2375.15 51.00 393.60 639.42 399.30 

HCO3 677.10 48.79 289.84 241.36 1293.20 91.50 397.77 334.67 634.39 54.30 270.75 151.37 1500.59 12.20 271.44 399.28 307.45 
SO4 341.00 23.00 96.28 84.30 189.00 27.00 90.23 39.78 368.00 1.00 69.62 106.03 312.20 5.00 107.21 85.42 90.83 
PO4 10.10 0.25 6.08 3.76 6.80 0.10 4.20 2.55 6.60 0.01 1.25 1.92 6.80 0.00 0.90 1.97 3.11 

H4SiO4 34.00 8.10 19.02 9.15 50.00 1.60 30.06 14.15 147.50 8.80 58.60 36.30 160.00 27.00 73.92 40.62 45.40 
Ca 261.33 11.00 64.11 69.41 264.00 16.00 103.14 76.12 352.00 6.00 64.33 93.63 168.00 10.00 50.16 41.09 70.44 
Mg 91.20 1.00 14.47 25.00 62.39 0.00 17.09 17.51 134.40 1.00 27.51 35.31 124.80 4.79 19.50 33.78 19.64 
Na 1210.03 81.00 279.94 310.56 1400.20 49.30 267.35 365.38 1091.95 74.71 317.34 274.98 1149.43 52.00 293.71 307.29 289.59 
K 42.00 3.00 11.71 11.11 48.71 3.00 13.61 12.21 36.40 1.00 15.14 10.46 108.40 1.00 25.21 32.74 16.42 

TDS 4436.44 267.81 994.45 1122.35 4395.25 271.00 1080.07 1077.38 4710.00 328.00 1291.44 1149.91 4204.08 242.00 1157.33 1134.97 1130.82 
Tertiary   

Summer South West Monsoon North East Monsoon Post Monsoon   
  Max Min Avg Std Max Min Avg Std Max Min Avg Std Max Min Avg Std F.Avg 

pH 7.30 6.10 6.69 0.35 8.52 6.00 7.36 0.87 7.50 5.56 6.68 0.57 8.60 6.21 7.76 0.72 7.12 
EC 867.00 250.00 492.93 214.50 1280.00 197.00 543.72 330.01 822.00 165.00 448.75 220.10 981.00 286.21 476.58 198.16 490.49 
Cl 241.05 26.59 84.19 64.26 239.29 8.86 89.69 73.97 194.97 8.00 81.67 52.13 255.23 44.00 95.32 61.99 87.71 

HCO3 274.50 18.30 72.51 74.60 323.30 36.60 100.65 81.60 195.19 12.20 84.36 55.25 195.10 24.40 72.52 46.72 82.51 
SO4 171.00 28.00 89.10 52.89 247.00 18.00 98.60 66.33 196.00 0.01 50.29 63.45 141.00 7.00 46.89 38.38 71.22 
PO4 10.10 0.07 3.92 4.69 6.40 0.15 2.36 2.40 7.45 0.09 1.83 2.57 1.40 0.00 0.30 0.42 2.10 

H4SiO4 69.00 18.10 31.62 17.51 54.00 7.30 27.16 15.29 72.40 8.00 39.37 18.93 120.00 18.00 68.38 27.02 41.63 
Ca 55.99 8.00 24.90 14.18 88.00 10.00 36.00 27.36 40.00 6.00 23.16 11.83 34.00 10.00 22.08 7.78 26.54 
Mg 9.00 0.00 3.40 3.13 33.60 1.00 8.48 10.03 14.40 0.00 6.51 4.35 14.40 1.00 6.40 4.20 6.20 
Na 195.40 45.98 91.53 51.13 272.00 1.80 82.49 83.15 191.00 6.00 69.36 61.11 183.91 22.99 72.30 45.89 78.92 
K 14.00 0.00 4.60 4.70 21.90 1.00 7.01 6.71 14.60 1.00 7.68 3.89 23.90 1.00 7.41 5.71 6.68 

TDS 646.27 175.00 349.06 158.05 897.22 138.76 380.88 231.05 633.30 122.60 319.83 162.71 687.00 200.35 329.56 140.48 344.83 
Archaean   

Summer South West Monsoon North East Monsoon Post Monsoon   
  Max Min Avg Std Max Min Avg Std Max Min Avg Std Max Min Avg Std F.Avg 

pH 8.10 6.73 7.14 0.33 8.00 6.80 7.14 0.32 8.60 6.78 7.46 0.41 9.20 8.10 8.52 0.32 7.56 
EC 2610.32 657.13 1500.32 580.51 2725.89 618.29 1498.53 642.83 2810.00 617.00 1364.24 591.00 2574.00 490.37 1129.36 583.25 1373.11 
Cl 771.03 59.03 342.01 225.96 771.03 53.17 361.46 248.08 638.10 35.44 233.55 152.64 620.37 35.45 229.38 168.76 291.60 

HCO3 524.60 284.50 425.76 90.61 579.50 274.50 416.11 92.70 414.79 183.00 278.44 84.44 268.39 109.80 185.15 48.27 326.36 
SO4 124.60 43.00 70.97 21.56 158.20 53.40 87.03 28.66 336.22 1.50 67.27 98.55 288.18 4.00 116.98 82.67 85.56 
PO4 15.00 4.80 8.76 2.75 6.40 3.80 5.36 0.81 3.60 0.20 0.75 1.01 1.60 0.00 0.18 0.40 3.76 

H4SiO4 63.00 5.80 27.10 21.81 53.00 21.20 39.63 10.19 94.00 6.60 50.08 28.69 120.00 22.00 72.82 28.03 47.41 
Ca 225.99 35.99 108.14 50.11 240.00 55.99 143.00 61.72 111.99 23.99 56.47 27.78 96.00 18.00 49.05 24.64 89.16 
Mg 40.80 4.79 20.50 13.82 52.80 4.79 24.25 18.19 33.59 4.80 16.35 7.99 24.00 0.00 12.98 6.95 18.52 
Na 405.00 55.20 231.60 90.11 491.00 50.30 188.58 122.44 581.20 69.80 192.60 129.67 551.72 54.90 188.04 128.68 200.21 
K 208.00 1.00 56.11 66.48 115.30 3.30 31.24 34.95 17.40 9.40 10.12 1.93 78.00 6.60 14.95 17.78 28.11 

TDS 1827.23 459.99 1050.22 406.35 1908.12 432.80 1048.97 449.98 1967.00 436.00 972.94 403.76 1802.47 343.26 795.56 409.11 966.92 

Table 1a. Maximum, Minimum, Average and Standard deviation for chemical composition of groundwater (in mg/l) 
except EC and pH (EC in μs/cm) 
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Tank Water   
Summer South West Monsoon North East Monsoon Post Monsoon   

  Max Min Avg Std Max Min Avg Std Max Min Avg Std Max Min Avg Std F.Avg 
pH 8.10 7.20 7.65 0.64 8.30 7.10 7.70 0.85 8.37 7.73 8.05 0.45 8.80 8.30 8.55 0.35 7.99 
EC 1706.27 433.70 1069.99 899.84 1785.56 439.41 1112.49 951.87 935.00 372.00 653.50 398.10 693.42 346.84 520.13 245.07 839.02 
Cl 541.75 40.31 291.03 354.57 531.75 44.31 288.03 344.67 212.69 70.90 141.80 100.26 106.34 88.62 97.48 12.53 204.58 

HCO3 285.50 115.80 200.65 120.00 396.50 109.80 253.15 202.73 183.00 97.59 140.30 60.39 122.00 48.80 85.40 51.76 169.87 
SO4 96.06 38.00 67.03 41.05 95.20 48.00 71.60 33.38 24.02 0.00 12.01 16.98 96.06 20.00 58.03 53.78 52.17 
PO4 3.80 3.60 3.70 0.14 4.60 2.80 3.70 1.27 3.00 1.50 2.25 1.06 0.00 0.00 0.00 0.00 2.41 

H4SiO4 35.30 20.20 27.75 10.68 30.30 22.20 26.25 5.73 62.00 12.40 37.20 35.07 80.00 16.00 48.00 45.25 34.80 
Ca 95.99 69.99 82.99 18.38 90.99 71.99 81.49 13.44 48.00 32.00 40.00 11.31 32.00 23.99 28.00 5.66 58.12 
Mg 10.60 10.59 10.60 0.01 9.60 9.59 9.60 0.01 4.80 2.28 3.54 1.78 9.60 4.79 7.20 3.40 7.73 
Na 320.10 24.60 172.35 208.95 321.84 21.60 171.72 212.30 172.40 45.98 109.19 89.39 118.60 41.38 79.99 54.60 133.31 
K 41.60 6.20 23.90 25.03 46.60 7.20 26.90 27.86 9.50 9.40 9.45 0.07 8.80 7.20 8.00 1.13 17.06 

TDS 1194.39 303.59 748.99 629.89 1249.89 307.59 778.74 666.31 655.00 261.00 458.00 278.60 485.39 242.79 364.09 171.55 587.45 
River Water                   

  North East Monsoon Post Monsoon             
  Max Min Avg Std Max Min Avg Std F.Avg           

pH 8.53 7.54 8.09 0.37 8.80 7.90 8.61 0.32 8.35           
EC 1224.00 440.00 661.01 265.74 989.00 260.09 512.16 232.70 586.59           
Cl 354.50 35.44 119.01 108.65 153.17 53.17 81.93 35.29 100.47           

HCO3 268.40 61.00 177.77 65.64 134.19 61.00 95.85 24.83 136.81           
SO4 26.42 0.00 11.59 10.76 288.18 14.00 74.75 98.36 43.17           
PO4 1.60 0.60 1.00 0.42 3.20 0.00 0.76 1.28 0.88           

H4SiO4 80.00 8.80 39.69 23.15 87.00 20.00 44.86 25.13 42.27           
Ca 40.00 24.00 34.28 6.05 48.00 16.00 30.85 10.76 32.57           
Mg 19.20 0.00 11.44 6.81 33.59 0.00 10.28 11.57 10.86           
Na 240.70 35.20 91.37 70.68 183.91 10.80 68.76 58.35 80.06           
K 10.50 9.40 9.63 0.43 32.40 6.60 10.83 9.52 10.23           

TDS 857.00 308.00 464.18 185.05 800.79 182.06 374.01 200.71 419.10                 

Table 1b. Maximum, Minimum, Average and Standard deviation for chemical composition of Surface water (in mg/l) 
except EC and pH (EC in μs/cm) 
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Varimax Rotated (n=36) (SUM)  Varimax Rotated (n=36) (SWM) 

  
Factor 
1 

Factor 
2 

Factor 
3    

Factor 
1 

Factor 
2 

Factor 
3 

Cl 0.96 -0.05 0.01  Cl 0.96 0.13 0.12 
HCO3 0.66 0.40 0.34  HCO3 0.80 0.47 -0.13 
SO4 -0.06 -0.06 -0.87  SO4 -0.02 -0.10 0.65 
PO4 0.00 0.85 0.32  PO4 0.26 0.87 0.09 
H4SiO4 0.04 -0.84 0.33  H4SiO4 -0.22 0.80 0.31 
Ca 0.82 0.04 0.41  Ca 0.60 0.68 -0.12 
Mg 0.91 0.14 0.10  Mg 0.20 0.63 -0.35 
Na 0.94 0.05 -0.19  Na 0.95 -0.06 0.18 
K 0.36 0.49 0.15  K 0.26 0.25 0.74 
Eigen Values 3.88 1.86 1.33  Eigen Values 3.06 2.58 1.28 
Variance (%) 43.14 20.69 14.79  Variance (%) 33.99 28.64 14.27 
Cumulative (%) 43.14 63.84 78.63  Cumulative (%) 33.99 62.63 76.90 
         

Varimax Rotated (n=42) (NEM)  Varimax Rotated (n=42) (POM) 

  
Factor 
1 

Factor 
2 

Factor 
3    

Factor 
1 

Factor 
2 

Factor 
3 

Cl 0.98 0.10 -0.02  Cl 0.99 0.02 -0.07 
HCO3 0.29 0.77 -0.12  HCO3 0.28 0.26 0.80 
SO4 -0.19 0.68 -0.09  SO4 0.08 0.75 0.04 
PO4 -0.14 -0.16 0.73  PO4 -0.06 0.67 -0.24 
H4SiO4 0.08 0.02 0.81  H4SiO4 -0.16 -0.25 0.83 
Ca 0.95 0.00 0.02  Ca 0.88 0.06 0.11 
Mg 0.93 0.12 -0.07  Mg 0.92 -0.04 -0.08 
Na 0.80 0.51 -0.06  Na 0.92 0.24 0.22 
K 0.29 0.69 0.03  K 0.13 0.82 0.16 
Eigen Values 3.60 1.84 1.22  Eigen Values 3.57 1.88 1.48 
Variance (%) 39.94 20.46 13.56  Variance (%) 39.69 20.84 16.47 
Cumulative (%) 39.94 60.40 73.96  Cumulative (%) 39.69 60.53 77.00 

Table 2. Factor analysis for the chemical composition of groundwater. 
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S.No Sample.No Lithology Location δOxygen 18 δDeutrium 
1 1 

Al
lu

vi
um

 

Thiruvanthipuram -7.11 -49.93 
2 2 Arungunam -7.19 -50.49 
3 3 Muthukrishnapuram -7.04 -49.37 
4 4 Panruti -6.9 -48.25 
5 5 Semakkottai -6.74 -47.33 
6 8 Karaikadu -6.17 -44.63 
7 13 

Te
rti

ar
y 

Nadukuppam -7.75 -52.45 
8 15 Kadanpuliyur -7.15 -51.26 
9 19 Vengadampetti -7.95 -52.85 

10 20 Puthukuppam -7.55 -52.05 
11 23 K.Kallakurichi -6.25 -45.93 
12 29 

Ar
ch

ae
an

 

K.Palayam -5.7 -42.35 
13 30 Rishivandiyam -5.32 -42.83 
14 38 Maiyanur -4.95 -43.32 
15 39 S.Malayanur -4.12 -40.02 
16 40 Pasar -5.13 -43.07 
17 43 Elavarasankottai -4.57 -38.39 
18 T1 Surface 

water 
Veeraperumanallur -0.03 -20.24 

19 T2 Kalamaruthur 0.64 -14.13 

Table 3. Stable Isotope data for Ground water and Surface water samples during  
               South west monsoon. 
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S.No Sample.No Lithology Location δOxygen 18 δDeutrium 
1 1 

Al
lu

vi
um

 

Thiruvandhipuram -4.28 -42.98 
2 2 Arungunam -3.61 -39.3 
3 3 Muthukrishnapuram -3.85 -41.43 
4 4 Panruti -2.75 -35.8 
5 5 Semmakottai -3.31 -38.86 
6 8 Karaikadu -2.32 -33.21 
7 9 Cuddalore -6.32 -42.97 
8 10 Veeraperumanalur -4.39 -41.85 
9 11 Arasur -2.76 -26.85 

10 13 

Te
rti

ar
y 

Nadukuppam -4.89 -39.64 
11 14 Naduveerapattu -5.53 -38.02 
12 15 Kadanpuliyur -5.02 -40.09 
13 17 Ramapuram -4.13 -43.72 
14 23 K.Kallakurichi -3.05 -35.51 
15 24 V.Melur -3.2 -39.87 
16 25 

Ar
ch

ae
an

 

Gadilam -1.88 -31.8 
17 26 Padur -1.95 -36.35 
18 27 Ulundurpettai -2.37 -33.9 
19 28 Ariyur -3.73 -25.66 
20 29 K.Palayam -9.23 -34.19 
21 30 Rishivandiyam -0.07 -24.62 
22 31 Sembimadevi -3.53 -40.95 
23 32 Kumaramangalam -2.92 -38.47 
24 33 Pandur -2.46 -38.68 
25 34 Koratur -4.05 -33.03 
26 35 T.Kunnatur -2.77 -23.94 
27 36 Villivalam -3.42 -31.01 
28 37 Panapadi -3.54 -32.28 
29 38 Maiyanur  -2.68 -31.54 
30 39 S.Malayanur -1.74 -34.91 
31 40 Pasar -1.78 -32.22 
32 41 Sikkampattu -1.33 -32.31 
33 43 Ela.kottai -3.6 -26.18 
34 S1 

R
iv

er
 

Gadilam Mouth.Rvr -3.6 -42.83 
35 S2 Thiruvandipuram.Rvr -6.01 -41.85 
36 S3 Muthu-Panruti.Rvr -5.05 -48.53 
37 S4 Ulundur-Gadi.Rvr -6.58 -42.42 
38 S5 Maiyanur.Rvr -4.62 -45.04 
39 S6 Sikkampattu.Rvr -5.02 -31.78 
40 S7 Mohalur.Rvr -5.27 -44.73 
41 S8 Uppanar.Rvr -1.98 -29.6 

Table 4. Stable Isotope data for Ground water and Surface water samples  
               during post monsoon. 
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Fig. 1 Location map of the study area 
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Fig. 2 Geology and sample location map 
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Fig. 3 Hill Piper Plot (Alluvium) Fig. 4 Hill Piper Plot (Tertiary) 

Fig. 5 Hill Piper Plot (Archaean) 
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Fig. 6 Hill Piper Plot (Cretaceous) Fig. 7 Hill Piper Plot (surface water) 
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Fig. 8 Ionic Strength for the groundwater. 
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Fig. 9 Variation of LogPco2 in groundwater. 
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Fig. 10 Thermodynamic Equilibrium diagram for silicate system in Alluvium 
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Fig. 11 Thermodynamic Equilibrium diagram for silicate system in Tertiary 
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Fig. 12 Thermodynamic Equilibrium diagram for silicate system in Archaean 



 35 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Thermodynamic Equilibrium diagram for silicate system in Cretaceous 
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Fig. 14. Thermodynamic Equilibrium diagram for silicate system in Surface water 
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Fig. 15. Relationship between δ18O and δD in SWM. 
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Fig. 16 Relationship between δ18O and δD in POM. 
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 Fig. 17 δD Vs. Chloride in SUM. 
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Fig. 18. δD Vs. Chloride in POM. 
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Fig. 19 Log Pco2 Vs. δ18O in SWM. 
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Fig. 20 Log Pco2 Vs. δD in POM. 
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Fig. 21 Saturation Index of Carbonate minerals in Alluvium using WATEQ4F. 
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Fig. 22 Saturation Index of Carbonate minerals in Tertiary using WATEQ4F. 
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Fig. 23 Saturation Index of Carbonate minerals in Archaean using WATEQ4F. 
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 Fig. 24 Saturation Index of Calcite Vs. δ18O in SWM. 
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Fig. 25 Saturation Index of Calcite Vs. δD in POM. 


