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ABSTRACT 9 

Banded iron formations (BIF) are the protolith to most of the world’s largest iron 10 

ore deposits. Previous hypogene genetic models for Paleoproterozoic “Lake Superior” 11 

BIF-hosted deposits invoke upwards, down-temperature flow of basinal brines via 12 

complex silica and carbonate precipitation/dissolution processes. Such models are 13 

challenged by the necessary SiO2 removal. Thermodynamic and mass balance constraints 14 

are used to refine conceptual models of the formation of BIF-hosted iron-ore.  These 15 

constraints, plus existing isotope and halogen ratio evidence, are consistent with removal 16 

of silica by down- or up-directed infiltration of high-pH hypersaline brines, with or 17 

without a contribution from basinal brines.  The proposed link to surface environments 18 

suggest that Paleoproterozoic BIF-ore upgrade may provide a record of a critical time in 19 

the evolution of the Earth’s biosphere and hydrosphere. 20 
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Banded iron formations (BIFs) record changing environmental conditions and are 23 

a precursor to the world’s largest iron ore deposits. Vast volumes of BIFs were deposited 24 

on passive margins from ca. 2.6 Ga to the Great Oxygenation Event (GOE) at ca. 2.4 Ga 25 

(e.g., Beukes and Gutzmer, 2008). After 1.85 Ga, formation of iron formations essentially 26 

ceased until a restricted resurgence in the late Neoproterozoic (Young, 1976; Klein and 27 

Beukes, 1993) and more recent minor occurrences. 28 

The temporal distribution of BIFs records a complex interplay between a cooling 29 

Earth and changes in mantle plume events, continental growth and tectonics, evolution of 30 

the biosphere and an increased flux of iron to the hydrosphere, which in turn had a 31 

fundamental control on the oxygen contents of the hydrosphere and redox state of the 32 

oceans (Isley and Abbott, 1999; Holland, 2005; Bekker et al., 2010). In most giant 33 

Paleoproterozoic BIF-hosted iron ore deposits (~35 wt% Fe) the formation of high-grade 34 

(>58 wt% Fe) iron ore from Lake Superior–type BIF is thought to have occurred post 2.2 35 

Ga, after the GOE (Taylor et al., 2001; Rasmussen et al., 2007; Thorne et al., 2009), so 36 

the BIF-ore upgrade provides a record of the changing chemistry of the hydrosphere and 37 

atmosphere in the Paleoproterozoic. 38 

In the Hamersley province, Western Australia, the BIF-ore upgrade is proposed to 39 

involve basinal brines, meteoric fluids, and supergene enrichment (e.g., Morris et al., 40 

1980; Barley et al., 1999;Taylor et al., 2001; Thorne et al., 2004, 2008). Silica removal is 41 

proposed to occur by upward, down-temperature flow of basinal brines (e.g., Thorne et 42 

al., 2004; Gutzmer et al., 2006; Thorne et al., 2008), and it is this stage of the BIF-ore 43 

upgrade that is explored in this paper. 44 
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The challenge for models that involve removal of SiO2 from BIF by down-45 

temperature flow is that quartz solubility decreases with decreasing temperature (e.g., 46 

Manning, 1994), so fluid that moves down-temperature is a poor agent for quartz 47 

removal, unless large volumes of fluids enter the BIF in a silica-undersaturated state. 48 

Here, we combine numerical constraints with petrological, geochemical and isotopic 49 

characteristics of BIF-hosted iron ore from the Hamersley province, Western Australia, to 50 

constrain the conditions associated with silica loss and carbonate precipitation, and 51 

discuss the findings in the context of the temporal evolution of the world’s atmosphere 52 

and oceans. 53 

DEPOSIT SCALE PARAGENESIS 54 

The mineralogy of BIF, hydrothermaaltered BIF and iron ore varies (e.g., Thorne 55 

et al., 2004; Rosiere et al., 2008; Mukhopadhyay et al., 2008; Angerer and Hagemann, 56 

2010) but some features are sufficiently common to allow generalisation. BIF protolith 57 

(Figs 1a;1b1;1b2) consists of magnetite- and chert-rich bands, iron silicates ± diagenetic 58 

carbonates. Initial hydrothermal alteration (Figs 1a;1b3;1b4), which may be gradational, 59 

involves conversion of some of the silicates to carbonates. Subsequently, chert and quartz 60 

are replaced by iron-bearing carbonate with, in some, cases conversion of magnetite to 61 

hematite, often with no apparent change in volume. Reaction fronts may be gradual 62 

(millimeter to decimeter scale) or knife-sharp on the scale of individual bands.  Quartz 63 

may be precipitated locally in fault zones within shear veins (e.g., Hagemann et al., 1999; 64 

Thorne et al., 2010).  65 

The carbonate-bearing alteration assemblage (Figs 1a;1b5;1b6) is separated from 66 

almost pure (hypogene) hematite iron ore (Figs 1a;1b7;1b8) by a sharp or gradational 67 
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reaction front. Carbonate loss is thought to occur without iron mobility on a scale greater 68 

than a few cm (Taylor et al., 2001). Carbonate dissolution continues in the weathering 69 

environment. 70 

Upgrade of BIF in the Hamersley province, Western Australia, is thought to have 71 

occurred from 2.15 Ga onwards during the waning stages of the Opthalmian orogeny 72 

(Rasmussen et al., 2007). There is evidence for extensional faulting and orogenic collapse 73 

at the proposed time of ore upgrade (Müller et al., 2005) and it has been suggested that 74 

topographic relief drove circulation of surface-derived waters through the fault system at 75 

this time (e.g. Hagemann et al., 1999; Oliver and Dickens, 1999). 76 

Constraints on ore upgrade in the Hamersley are provided by fluid inclusion, 77 

isotopic, and halide concentration measurements. Fluid inclusions in carbonates are 78 

hypersaline, up to 24 wt% CaCl2 equivalent, which were trapped at temperatures between 79 

150 and 400 °C (Thorne et al., 2004; Brown et al., 2004), mainly at the lower end of this 80 

range. Quartz-hosted fluid inclusions (e.g. Brown et al., 2004) records periods of quartz 81 

growth, not quartz removal, so such inclusions may record either a different event, or a 82 

later stage of the silica dissolution event that is of interest here. 83 

Iron oxide oxygen isotopes in unaltered BIF have 
18

OVSMOW (Vienna Standard 84 

Mean Ocean Water) between 4 and 13‰, whereas hematite and magnetite in altered and 85 

mineralized rocks have 
18

OVSMOW between 9 to 2.9 ‰ (Thorne et al., 2009). Carbon 86 

isotopes of carbonate minerals lie between 10‰ and 0‰, relative to Vienna Peedee 87 

belemnite (VPDB). The lower values are typical of unaltered BIF. Values in altered rocks 88 

could record equilbrium with either Paleoproterozoic ocean water or dolomite in the 89 

underlying Wittenoom formation. Fluid inclusion Na/Br and Cl/Br ratios record 90 
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overlapping populations of fluids: (1) seawater that has evaporated to halite saturation; 91 

and (2) meteoric waters that interacted with evaporites (Thorne et al., 2010). 92 

CONSTRAINTS ON  SILICA REMOVAL AND CARBONATE PRECIPITATION 93 

Fluids in Equilibrium with BIF 94 

Quartz solubility is sensitive to pressure, temperature (e.g., Manning, 1994), pH 95 

(Busey and Mesmer, 1977), and salinity (e.g., Shmulovich et al., 2006). Quartz and 96 

carbonate solubilities were calculated as a function of pressure, temperature and salt 97 

content (Fig. 2) using the methods outlined in the GSA Data Repository
1
. Calcite, rather 98 

than iron carbonate was used for the models because data for iron carbonates is sparse, 99 

but similar trends for iron carbonates are expected. Temperature is the first order control 100 

on quartz solubility, whereas calcite solubility depends strongly on pressure (Fig. 2a). 101 

Salinity-driven mineral precipitation/dissolution is minor for geothermal gradients <50 102 

°C km
-1

 (Fig. 2b).  There is no geothermal gradient for which silica dissolution is 103 

accompanied by carbonate precipitation in the observed quantities, so it is necessary to 104 

consider infiltration of out-of-equilibrium fluids. 105 

 106 

Fluid out of Equilibrium with BIF 107 

Infiltration of high-pH, out-of-equilibrium fluid can drive quartz removal via up- 108 

or down-temperature flow, because quartz is 4 orders of magnitude more soluble at pH 9 109 

than it is at pH 6 (Busey and Mesmer, 1977). The desilicification/carbonation and 110 

oxidation fronts observed in BIFs are sufficiently sharp that they can be treated as 111 

advective chromatographic fronts; broadening by diffusion, dispersion and kinetic 112 
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broadening can be neglected. The ratio of the distance traveled by a fluid to that of 113 

associated reaction front is given by 114 

 
,   (1) 115 

(adapted from Evans et al., 2003). d is the position of the front relative to the infiltration 116 

horizon in meters, ci is the concentration of the reactant of interest in moles m
-3

, and  is 117 

porosity. 118 

Relative positions of carbonation, desilicification, and oxidation fronts were 119 

calculated using the values given in Table DR1 (in the Data Repository), which are based 120 

on the assumption of infiltration an out-of-equilibrium, pH 9, SiO2-free, CO2-rich, O2-121 

bearing fluid (O2 at 10% of present-day values).  Front positions were normalized to that 122 

of the most advanced carbonation front (Fig. 1b). The oxidation front is predicted to 123 

proceed the smallest distance, as observed, though the position of this front is modified 124 

by post-hypogene meteoric fluid and supergene processes. The carbonation front is 125 

predicted to advance further than the desilicification front for any reasonable combination 126 

of input parameters. In reality, the desilicification front coincides with a sharp increase in 127 

carbonate content, which suggests a reaction-induced porosity control on fluid 128 

infiltration. 129 

Volumes of Fluid Flow 130 

The relationship between time-integrated fluid flux and silica removal for 131 

hydrothermal alteration where pressure, temperature and fluid composition gradients are 132 

fixed, and for constant fluid flow rates is given by 133 



Q 
nSiO2

dcSiO2

dl











,  (2) 134 
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(c.f. Evans and Bickle, 1999, their equation 6). Q is the time-integrated fluid flux, in 135 

cubic meters of fluid per square meter of rock, nSiO2 is the SiO2 removed from the 136 

volume (moles m
-3

), cSiO2 is the concentration of SiO2 in the fluid in (moles m
-3

), and l is 137 

distance along the flow path (m). This expression is based on mass balance and can be 138 

applied to in- or out-of-equilibrium situations. Calculations were made for flow up- or 139 

down-temperature of a pH 9, silica-undersaturated fluid, such as might be derived from 140 

an ultramafic lithology or hypersaline evaporite-derived fluid. pH is assumed to drop 141 

from 9 to 5 during equilibration. dcSiO2/dpH was calculated from Busey and Mesmer 142 

(1977) and checked against HCh output (Shvarov and Bastrakov, 1999). 143 

Flow volumes were calculated for a single cubic meter of rock undergoing pH-144 

driven quartz dissolution and scaled to estimate the volume needed to produce the 145 

observed SiO2 depletion on a scale comparable to observed small iron ore deposits (3 × 146 

10
8
 m

3
). The volume of fluid required is approximately ~10

9
 m

3
. 147 

DISCUSSION AND CONCLUSIONS 148 

The observed silica removal and carbonate precipitation needed for formation of a 149 

kilometer-scale BIF-hosted Fe deposit is inconsistent with in-equilibrium fluid flow (Fig. 150 

2), but could be produced by pervasive infiltration of ~10
9
 m

3
 of a high pH (pH > 9) fluid 151 

flowing up- or down- temperature. 152 

Density- or topography-driven infiltration (McLellan et al., 2004) of dense 153 

hypersaline brines evolved on continental margins (Fig. 3) provides a plausible source of 154 

high-pH fluid.  The pH of hypersaline lakes today is up to 10, and the CO2 content is 155 

high; reported alkalinities exceed 10,000 mg liter
-1

 (Gosselin et al., 1994). These brines 156 

form on marginal platforms (Leach et al., 2010) and were present on the north Yilgarn 157 
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margin in the Palaeoproterozoic (El Tabakh et al., 1999) and in Mesoproterozoic 158 

dolomitic argillites in the western United States (Gonzalez-Alvarez and Kerrich, 2011). 159 

The Yilgarn and Pilbara cratons may not have been adjacent at the time of ore formation, 160 

and the latitude of the Pilbara margin at that time is poorly known but existing constraints 161 

place the latitude within the range of those required for evaporite formation (Li, 2000).  162 

Fault zones in similar environments today are sufficiently permeable that proposed 163 

volumes could have flowed on a geologically reasonable timescale (Jones et al., 2002).  164 

Carbon and oxygen isotopes of early carbonate and iron oxides in mineralised BIF 165 

are consistent with seawater derivation from Palaeoproterozoic seawater. High salinities 166 

and Na/Br and Cl/Br ratios record fluids typical of seawater that has evaporated to halite 167 

saturation (Thorne et al., 2010), which is also consistent with an involvement of 168 

evaporite-derived fluids. Temperatures of up to 250 °C are consistent with fluid inclusion 169 

evidence, and with other environments where voluminous quantities of surface-derived 170 

fluids infiltrate basement rocks (e.g. Gleeson and Yardley., 2003). However, 171 

temperatures >300 °C recorded by early assemblages at Mt. Tom Price require a separate 172 

high-temperature alteration stage. SiO2 deposition in outflow zones from the flow system 173 

described have not been recorded, to date, but may prove difficult to recognize given that 174 

chert was a common sedimentary rock at this time. 175 

Some geometric constraints in mineralized Pilbara BIFs favour an upwards 176 

flowing fluid  (e.g. Dalstra and Rosiere, 2004). The Wittenoom formation underlies many 177 

of the ore-bearing units, and has been proposed as a way for basinal brines to access the 178 

BIF (e.g. Taylor et al., 2001).  Dolomite in the Wittenoom formation contains numerous 179 

shale bands (Davy, 1975), and is separated from the BIF by the Si-bearing Mt McRae 180 
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shale and Sylvia Formation, so fluids from this unit would be at, or close to, SiO2 181 

saturation, unless fluids were focused solely within shale-free regions of the dolomite, 182 

such as the Paraburdoo Member (Thorne and Tyler, 1997).  If this were the case then the 183 

dolomite in the Wittenoom formation could have acted as an aquifer that supplied 184 

overlying iron formations with fluids derived either from faults that focused either down-185 

flowing evaporitic brines with or without a contribution from upwards-flowing basinal 186 

brines, as suggested by previous workers (e.g. Taylor et al., 2001). 187 

Mafic and ultramafic rocks are present in the Pilbara (e.g., Barnes and Hoatson, 188 

1994) and can equilibrate with water to provide high pH fluids, but such fluids are 189 

unlikely to have reached the BIF without interacting with Si-bearing rocks such as the Mt 190 

McRae shale. 191 

Oxidized, sulfur-bearing, hypersaline brines produced on basin margins since 2.0 192 

Ga have been linked to base metal sulfide deposition, including MVT (Mississippi Valley 193 

type) and SEDEX-Pb-Zn deposits (Leach et al., 2010). Such deposits older than 2.02 Ga 194 

have not been found; Archaean and Paleoproterozoic oceans were reduced and largely 195 

sulfur-depleted (e.g., Farquhar et al., 2010), so marginal hypersaline brines at 2.2 Ga, at 196 

the time of ore upgrade, could have had a significantly different composition to those 197 

today.  It is interesting to speculate whether redox controls related to mobilization, 198 

transport, and deposition of Pb and Zn by Palaeoproterozoic evaporite-derived brines, 199 

such as a lack of sulfur (Leach et al., 2010) lack of oxidized source rocks and aquifers, or 200 

reduction of sulfate via rock-buffering in the immediate sub-surface, may have prevented 201 

formation of these deposit types prior to 2.02 Ga. 202 

 203 
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FIGURE CAPTIONS 355 

Figure 1. (a) Commonly observed banded iron formation (BIF) alteration stages related to 356 

the formation of iron ore and their characteristics. (b1–8) Polished blocks and 357 

photomicrographs of the typical alteration stages (mplH—microplaty hematite, mar—358 

martite). (c) Results of mass balance calculations to determine the relative distances 359 

moved by decarbonation, desilicification and oxidation fronts. Values indicate distance 360 

traveled by front relative to the carbonation front for a solution with 1 mol liter
-1

 CO2. 361 



Page 17 of 17 

 362 

Figure 2. Results of thermodynamic calculations of SiO2 and calcite solubility as a 363 

function of pressure and temperature (a), and temperature and salt concentration (b). 364 

 365 

Figure 3. Proposed genetic model for desilicification of banded iron formation (BIF) by a 366 

density-driven, hypersaline, high-pH brine. 367 
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