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Abstract. We have developed a new interatomic potential model for the simulation of 

ringwoodite, the high-pressure phase of Mg2SiO4, and its low-pressure analogue, Mg2GeO4 

spinel. The main novelty is the addition of a breathing shell model that enables us to accurately 

describe the structural and elastic parameters of both spinels up to 15 GPa. Our model has also 

been applied to the two other Mg2SiO4 polymorphs in order to test its transferability. We find 

that although it is able to reproduce the structure and physical properties of wadsleyite, the 

breathing shell description is less successful with forsterite. The Mott-Littleton method has been 

used to calculate the energy of the intrinsic point defects in both spinels. The results indicate that 

these phases are likely to have the same defect population with the MgO partial Schottky defect 

predominating. 

 

Keywords Ringwoodite, Magnesium spinel, Atomistic simulation, Breathing shell model. 
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Introduction 

 

The three (Mg,Fe)2SiO4-polymorphs, olivine, wadsleyite and ringwoodite, are major constituents 

of the Earth’s mantle. Ringwoodite (γ-Mg2SiO4) is considered to be the most abundant mineral 

in the lower part of the transition zone (520-660 km depth) and therefore should be responsible 

for the physical and chemical properties of the mantle in this region. The germanate spinel (γ-

Mg2GeO4) is stable at atmospheric pressure below 810°C as well as high pressure (Dachille and 

Roy 1960) and has been used as a low-pressure analogue for studying the olivine-spinel 

transition (Ringwood 1975). 

Computer modelling techniques have a key role to play in predicting the physical and 

chemical properties of complex silicates that are not readily available from laboratory 

experiments. Information from calculations can also be used to aid in the interpretation of 

experimental data. For more than two decades, classical atomistic simulations, using interatomic 

potentials have been successfully used to model both the perfect and defective lattice properties 

of a wide range of materials (e.g. Lewis et al. 1985; Leslie 1989; Catlow and Price 1990; Purton 

and Catlow 1990; Wright et al. 1995; Walker et al. 2003). There have been numerous simulation 

studies of the stability and defect properties of olivine (e.g. Wright and Catlow 1994, Brodholt 

1997) and wadsleyite (Wright and Catlow 1996, Haiber et al. 1997) although ringwoodite has 

received much less attention. Early simulations by Price et al. (1987) successfully used 

interatomic potentials derived for olivine to model the phase stability of the Mg2SiO4 

polymorphs. However, these potentials were not able to reproduce the experimentally 

determined elastic properties of ringwoodite, which are essential if we wish to accurately model 

defect behaviour in this phase. The aim of the current study is to use atomistic methods to 

determine the properties of hydrogen defects in both ringwoodite and germanate spinel and 

thereby assess the usefulness of the germanate as an analogue material. However, in order to 
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achieve this aim it is first necessary to develop a set of interatomic potentials that will accurately 

describe the structure and properties of the two spinel-phases. Here, we describe the derivation 

of these potentials. Indeed, for this kind of simulation, results are particularly sensitive to the 

interatomic potentials used. Hence, the bulk structure and the perfect lattice properties must be 

described as perfectly as possible before adding defects. Once this step is successfully achieved, 

we will investigate the population of intrinsic defects in both spinels. The knowledge of the 

defect population is important because point defects control most of the physical properties of 

crystals (e.g. diffusion, electrical conductivity, creep) and for our subject of interest, the 

incorporation of hydrogen could not occur in these nominally anhydrous minerals without the 

presence of point defects. 

In the following sections, we will first give details of the theoretical basis for our model 

and show how it was derived. We briefly describe the previous available models, present the 

changes adopted, and the accuracy gained, for the description of the spinel phase. Then, we will 

discuss the transferability of this new model to the other Mg2SiO4 polymorphs and the elastic 

behaviour under pressure. Finally, we will use the Mott-Littleton method to calculate the 

formation energies of the intrinsic point defects. 

 

 

Methodology 

 

Computer simulation methods are based on the determination of the energy of a solid as a 

function of the interaction of all the constituting particles. In classical atomistic simulations, the 

lattice energy of the system can be expressed as the sum of the interactions between the atoms, 

or ions, and these interactions are described by potential functions. We work within the 

framework of the Born model of solids, with the extension to polarizable ions.  
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Previous studies 

Prior work that has considered the application of classical atomistic modelling to ringwoodite, 

has been concerned with the perfect lattice structure and properties of the Mg2SiO4 polymorphs. 

To our knowledge, the studies of Price and Parker, and, Matsui and Busing were the first, both in 

1984. Three years later, Price et al. (1987) improved their forcefield model and applied it to the 

Mg2SiO4 polymorphs. Since then, this model has been used in both defect and diffusion studies 

of forsterite and wadsleyite (Wright and Catlow 1994, 1996; Walker et al. 2003). To date, these 

represent the only available sets of interatomic potentials for ringwoodite for static lattice 

simulations. 

Here we briefly define the functional form of the interatomic potentials employed in 

previous works; this also forms the starting point for the derivation of the present model. The 

dominant contribution to the lattice energy for ionic materials, such as those being considered 

here, is the electrostatic energy. Treating all species as point particles, the Coulomb contribution 

is evaluated using an Ewald summation in order to achieve convergence to the zero dipole limit. 

In addition, it is necessary to include short-range interactions to model the repulsion between the 

electron clouds, as well as the Van der Waal’s attraction due to dispersion. The two-body 

component of these interactions can be expressed in the form of the Buckingham potential: 
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where rij is the distance between two atoms i and j. The parameters A, ρ and C, as well as the 

other potential parameters, can be derived either by recourse to ab initio quantum mechanics or 

by empirical fitting to the structural data and physical properties of simple binary oxides. The 

latter solution was adopted by Price et al. (1987). A three-body potential is added in order to 

describe the directionality of the O-Si-O bonds: 
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where kijk is a spring constant, θjik, the angle between the two interatomic vectors j-i and i-k (i.e. 

the O-Si-O bond angle), and θ0 the tetrahedral angle. Finally, the ionic polarisability of the 

oxygen atoms is described by the simple, mechanical, shell model of Dick and Overhauser 

(1958). In this description, the core and the massless shell, representing the outer valence 

electron cloud, are allowed to have a distinct position separated by the distance, ri, and are 

coupled by a harmonic spring, k: 
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Values of the potential parameters used are given in Table 1 of the paper of Price et al. (1987). 

The results provided by this model for ringwoodite are reported in Table 1. The cell parameter is 

in good agreement with the experimental value, but the errors for the elastic constants are 

significant. For centrosymmetric cubic systems, like ringwoodite, the theoretical elastic constants 

must obey  the Cauchy relation, C44 = C12, when considering only central forces at zero stress, as 

is the case for all the existing potential models. However, experimentally the elastic behaviour of 

ringwoodite is characterized by a Cauchy violation (C44 ≠ C12) and this many-body effect cannot 

be reproduced with such a model. Aside from the Cauchy violation, even by fitting the previous 

potential parameters specifically to the experimental data for ringwoodite, it is not possible to 

achieve a satisfactory compromise between describing the unit cell volume and the elastic 

behaviour. Consequently, the use of an alternative model is explored in the present work..  

 

New potential model 

In this section, we describe the new potential model developed to better reproduce the elastic 

behaviour of ringwoodite, while maintaining an accurate description of the structure. The two-

body interactions are still represented by the combination of the Coulomb energy and a 
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Buckingham potential, since this formulation has proven to be effective for many different ionic 

materials. The main change relates to the description of the oxygen polarisation. As is well 

documented (Gale 1997), for low-symmetry structures, the dipolar shell model is sufficient to 

absorb most of the effects of partial covalency/ionic polarisation, whereas for high-symmetry 

systems, a breathing shell model (Schroeder 1966) may be needed to represent the contribution 

of higher-order charge deformations of the oxide species. In the breathing shell model, the ion 

shell has a finite radius, R0, which is allowed to deform isotropically under the influence of the 

other ions (Fig. 1). Here the ion size is coupled to the environment through the short-range 

repulsive potential acting upon the radius of the shell, rather than its centre. Equation (3) is still 

valid to treat the core-shell dipolar contribution, but an additional potential, which has been 

chosen to be harmonic, describes the breathing shell: 
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where Ki is a spring constant and (Ri-R0) is the distance from the finite shell radius of the ion i. 

The most significant consequence of the introduction of a breathing shell model is that, by 

introducing non-central forces, it is able to reproduce the Cauchy violation (C44 ≠ C12). Finally, 

we have also changed the three-body potential treating the O-Si-O bending (Eq. 2), because of 

the occurrence of abnormal coordination number for the silicon. We have chosen to employ the 

three-body potential of Stillinger and Weber since it tends to zero at the cut-off distance 

(Stillinger and Weber 1985): 
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where kijk, ρ, r and θjik have the same meaning as before. This potential is known to give a 

reasonable description of crystalline silicon. Indeed, with the addition of bond length dependence 

in the exponential term, it discourages the formation of anything other than four-coordinate 

silicon. 
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The approach we have taken to describe the oxygen polarizibility is not the only one, and 

alternative strategies are available (e.g. Madden and Wilson 1996) that have been successful in 

transferring between different systems. However, they have not been used in the current study. 

 

Results and discussion 

 

 

The ability of the breathing shell model to reproduce the Cauchy violation has already been 

demonstrated for the case of magnesium oxide (e.g. Catlow et al. 1976). Therefore the breathing 

shell model of MgO was the starting point for the derivation of the potential parameters. All the 

parameters were then fitted to the experimentally determined structure and elastic properties of 

ringwoodite (Sasaki et al. 1982; Weidner et al. 1984) and the germanate spinel (Von Dreele et al. 

1977; Weidner and Hamaya 1983), using the relaxed fitting approach within the GULP3.0 code 

(Gale 1997; Gale and Rohl 2003). Thus, the potential parameters were fitted to five constraints 

for each spinel. Only two parameters are required to describe the spinel structure: the lattice 

parameter, a, and the fractional coordinate of the oxygen at the special position (u, u, u). While 

the three other parameters correspond to the elastic constants, C11, C12, C44. The full set of 

derived parameters is displayed in Table 2. Tables 1 and 3 give the results for ringwoodite and 

magnesium germanate, respectively. With differences always below 1 %, the agreement between 

calculated and experimental data is very good for both spinels. At zero pressure and zero 

temperature, the potentials employed enable us to describe very accurately the elastic constants 

and moduli, as well as the crystal structure. We also show in Table 4 the results of the 

calculations for periclase (MgO). They are in good agreement with the measurements of the cell 

parameter and elastic constants. This corresponds to an “a posteriori” test since this phase is 

known to present a strong Cauchy violation with a measured C44/C12 ratio reaching 1.64 (Yoneda 
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1990). Futhermore, the modelling of periclase will be necessary, in the following, in order to get 

its lattice energy, which in turn will be used to determine the energy of the partial MgO Schottky 

defect. 

 

Mg2SiO4-polymorphs 

We have demonstrated that the new model accurately describes the structure and the elastic 

behaviour of ringwoodite. We now turn to the two other Mg2SiO4 polymorphs, and compare our 

calculated properties with those from experiment and with those of the theoretical study of Price 

et al. (1987). The results are presented in Table 5. At first glance, the structure of forsterite seems 

to be well described by both models, with cell parameters being reproduced to within 2% of the 

measured value. However, the lengthening of a and shortening of c predicted by our model cause 

the structure to distort, giving negative phonon frequencies at the gamma point. These imaginary 

phonon modes indicate that the structure is unstable and wants to lower its symmetry, mainly in 

the b direction. If we now look at wadsleyite, the new model displays good results for the 

description for the unit cell, with the largest difference equal to 1.3 % along the c axis, while the 

elastic behaviour shows discrepancies of around 11 - 12 % for the bulk and shear moduli. These 

results are as good as the results from the previous model but we note that both models present 

different features; one slightly underestimates the cell volume and gives a too stiff elastic 

behaviour while the other does the opposite. To sum up, the model developed here cannot be 

considered as fully transferable to the ringwoodite's polymorphs since it generates an unstable 

structure for forsterite; however, it represents an alternative to the model of Price et al. (1987) for 

the simulation of wadsleyite when a softer description of the elastic behaviour is required. 
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Pressure effect 

So far, the calculations reported were carried out at 0 K and 0 GPa but obviously it would be 

more appropriate to study ringwoodite within its stability field. In mantle minerals, pressure has 

a greater effect than temperature on many physical properties.  Therefore, it is important to 

investigate the ability of the new model to reproduce the effect of pressure. The calculations 

were performed up to an isotropic external pressure of 30 GPa, which encompasses the stability 

field of ringwoodite (about 20 - 25 GPa at mantle temperatures). From the data of volume 

compression (Fig. 2), the pressure-dependence of the bulk-modulus was determined using two 

different equations of state (EOS). The EOS of Vinet et al. (1987), which has already been used 

by Matsui (1999) for ringwoodite, gives (∂K/∂P) = 2.77 for both spinels: γ-Mg2SiO4 and γ-

Mg2GeO4. If we use the third-order Birch-Murnaghan EOS, then we find (∂K/∂P) = 2.87 and 

2.86 for ringwoodite and magnesium germanate, respectively. For the pressure-dependence of 

the shear modulus, a second-order polynomial fitting is used. (∂µ/∂P) is found to be equal to 0.37 

and 0.27 for ringwoodite and magnesium germanate, respectively. First, the comparison of the 

predicted effect of pressure for both spinels shows that it is nearly the same for the pressure 

range investigated, even if the pressure derivative of the shear modulus is slightly lower for the 

germanate spinel. This supports the use of γ-Mg2GeO4 as an elastic analogue for the mantle 

ringwoodite. These results must also be compared to laboratory measurements. Several 

experimental studies have aimed to determine the elasticity of ringwoodite at highpressure and 

are reported in the literature. Among them, three studies display a large pressure range, from 

room pressure to 12, 16 or 30 GPa: Meng et al. (1994) obtained (∂K/∂P) = 4.2(3) by measuring 

the static compression with X-ray diffraction (Fig. 2), Li (2003) found (∂K/∂P) = 4.5(2) and 

(∂µ/∂P) = 1.5(1) by ultrasonic interferometry and Sinogeikin et al. (2003) measured (∂K/∂P) = 

4.1(3) and (∂µ/∂P) = 1.3(2) by Brillouin scattering. Within the experimental uncertainties, the 

different methods used are in good agreement. Figure 2 shows that up to 15 GPa the predicted 
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data of the compression volume are in relatively good agreement with the measurements. 

However, the calculated pressure derivatives of the elastic moduli on the whole pressure range 

investigated are too low compared to the observed data. Across the ringwoodite stability field, 

the model underestimates the effect of pressure, which is not totally surprising, as the potentials 

were fitted to room pressure data. 

In the model described here, we took a potential with a harmonic form for the breathing shell 

(Eq. 4) although two other forms exist; the exponential and the single exponential forms which 

can respectively be written as follows: 

! 

Ui =Ki exp " Ri #R0( )( ) + exp #" Ri #R0( )( )[ ]  

! 

Ui =Ki exp " Ri #R0( )( )  

We have tested these two potential forms in order to see if they give a better description of 

ringwoodite's behaviour under highpressure. The parameters were fitted each time to the 0 GPa 

experimental data as with the harmonic potential. The accuracy of the description of data at zero 

pressure and the discrepancy as a function of pressure is strictly identical. Thus, changing the 

form of the breathing shell potential can bring no improvement to this model. 

 

Intrinsic defects 

The potential model derived here provides a good description of the spinel structure of 

ringwoodite and its germanium analogue and has been used to investigate the atomic defects 

within these minerals, which are of considerable interest because of their essential role in many 

geological processes. For instance, the viscosity and rheology of the Earth's mantle is likely to be 

controlled by diffusion, which in turn depends on the intrinsic disorder within the minerals. For 

this reason, calculations of formation and migration energies of these intrinsic defects are very 

important. Even if the description of the effect of pressure on the cell volume is correct up to 15 
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GPa, in a first step, we have chosen to limit our calculations to the zero pressure case, which is 

known to already give important information about the defect population. 

For thermodynamic reasons, solids must always contain defects above absolute zero. We will 

focus here on intrinsic defects, i.e. vacancies and interstitials in thermodynamic equilibrium, 

which combine to form Schottky and Frenkel defects. A Schottky defect corresponds to charge-

balanced vacancies in stoichiometric proportions (two Mg vacancies, one Si vacancy and four O 

vacancies in the case of ringwoodite), but partial Schottky defects can also be considered, like, 

for instance, one Mg vacancy associated with one O vacancy. The formation energy of these 

Schottky defects is equal to the sum of the energies of the vacancies involved plus the lattice 

energy of the phase removed to the crystal surface. In the case of Frenkel defects, vacancies are 

charge balanced by the formation of interstitials of the same species. The formation energy of 

Frenkel defects is then the sum of the individual vacancy and interstitial energies. The point 

defect energies are calculated using the Mott-Littleton method (Mott and Littleton 1938) 

implemented in GULP. It is an embedded regions technique with the point defect (vacancy or 

interstitial) at the centre. In the first spherical region around the defect, an explicit atomistic 

simulation is carried out to relax the atom positions to zero force. The radius of this region is 

chosen so that the effects of the defect are relatively weak at its boundary. The second region 

extends to infinity. Its inner part deals with short-range interactions, while in the outer part, only 

the polarisation is calculated. For further details of this methodology, see Gale and Rohl (2003). 

The formation energies of Schottky and Frenkel defects are given in Table 6 for ringwoodite and 

the germanate spinel. The energies obtained for both spinels are relatively close but the most 

important result is that the relative order of the defects is nearly the same for both minerals. The 

small discrepancy corresponds to the three defects presenting formation energies around 9 eV 

per point defect. Thus according to these results, the germanate spinel is a good analogue for 

ringwoodite, from a defect population point of view. Furthermore, the MgO partial Schottky 
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defect displays the lowest energy per point defect, 7.06 and 7.09 eV for ringwoodite and the 

germanate spinel respectively. This suggests that, in the ideal case modelled here, the MgO 

Schottky defects where a Mg vacancy is charge balanced by an O vacancy will predominate. 

This result represents a first step for the understanding of the physical and chemical processes of 

the transition zone. It would be very interesting now to calculate the migration energies of these 

two defects in order to determine if diffusion occurs by a vacancy mechanism. 

 

 

Conclusions 

 

We have developed for ringwoodite and the germanate spinel, a new set of potentials which 

incorporate a breathing shell model. For both spinels, this allows the accurate description of the 

structural parameters as well as the elastic constants for 0 to about 15 GPa; however above these 

pressures, the compressibility is underestimated. This potential model is also transferable to 

wadsleyite, for which the accuracy of the description of the structural and elastic parameters is as 

good as that of the model of Price et al. (1987) but the structure calculated displays a softer 

elastic behaviour. The accuracy gained for the description of spinel-phases enables us to 

investigate the energetic of point defects and especially the incorporation of water (hydrogen 

associated to point defects). But beyond this application, the ability to model intrinsic defects is 

of considerable importance since they control most of the mineral properties (diffusion, electrical 

conduction, viscosity). In order to understand the mechanisms governing these properties, we 

must know the nature of the defects, their concentration and their mobility. A first step has been 

done, here, by determining, from the calculated  formation energies, that the MgO Schottky 

defects are most favourable.  
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Figure captions 

 

Fig. 1 Description of the breathing shell model. qc, qs, KBSM and kC-S represent the charges of the 

core and shell, and the spring constants of the breathing shell and the core-shell interaction, 

respectively 

 

Fig. 2 Volume compression: the symbols are the observed hydrostatic compression data at 300 K 

from Meng et al. (1994), the solid line is our calculated curve for ringwoodite and the dashed 

line for germanate spinel 
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Table 1 Calculated and observed properties of γ–Mg2SiO4. A is the cell parameter (Å), V, the 

cell volume (Å3), Cij, the elastic constants and K, µ, the bulk and shear moduli respectively 

(GPa). Numbers in parenthesis are the differences between calculations and experiment (%). 

Observed data from Sasaki et al. (1982) and Weidner et al. (1984) 

 

 Obs. Price et al. (1987) This study 
a 8.065 8.016 (-0.60) 8.066  (0.01) 
V 524.6 515.1 (-1.81) 524.8  (0.04) 
    
C11 327.0 412.9 (26.27) 327.1  (0.03) 
C44 126.0 136.7   (8.49) 126.3  (0.24) 
C12 112.0 169.5 (51.34) 111.1 (-0.80) 
    
K 184.0 250.6 (36.20) 183.1 (-0.49) 
µ 119.0 130.3   (9.50) 118.3 (-0.59) 
 

 

Table 2 Parameters of the potential model used in this study. Equations are given in the text 

 

Charges 
Ions Core Shell   
Mg 2.000    
Si 4.000    
Ge 4.000    
O 0.800 -2.800   
 

Buckingham potential 
 

A (eV) ρ (Å) C (eVÅ6) Cutoffs (Å) 

Mg-O 31.326316 0.30599 0.00000 10.0 
Si-O 173.76200 0.14949 0.00000 12.0 
Ge-O 327.41125 0.14045 0.00000 12.0 
O-O 0.431x10-7 0.30000 48.28154 16.0 
 

Breathing shell model: 
(harmonic form) 

Ki (eV)  R0 (Å)  

O-O 342.7170  1.20000 0.1 
 

Core-shell spring 
constant 

ki (eVÅ-2)    

O-O 49.214316    
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Three-body potential: 
Stillinger-Weber 

kijk (eV) θ0 (°) ρij    ρik (Å) ij     ik    jk 

Si-O-O 69.2069 109.470 2.0   2.0 3.0   3.0   6.0 
Ge-O-O 83.0034 109.470 2.0   2.0 3.0   3.0   6.0 

 

 

Table 3 Calculated and observed properties of γ–Mg2GeO4. Same legend as Table 1. Observed 

data from Von Dreele et al. (1977), and Weidner and Hamaya (1983) 

 

 Obs. This study 
a 8.249 8.250  (0.01) 
V 561.3 561.5  (0.04) 
   
C11 300.2 300.0 (-0.07) 
C44 125.7 126.0   (0.23) 
C12 118.4 118.0 (-0.34) 
   
K 179.0 179.0   (0.00) 
µ 109.0 110.0 (+0.92) 
 

 

Table 4 Calculated and observed properties of periclase (MgO). Same legend as Table 1. 

Observed data from Yoneda A (1990) 

 

 Obs. This study 
a 4.217 4.277  (1.42) 
V 74.99 78.24  (4.33) 
   
C11 297.8 298.4  (0.20) 
C44 155.8 148.1 (-4.94) 
C12 95.1 90.5 (-4.84) 
   
K 162.7 159.8 (-1.76) 
µ 131.1 126.6 (-3.42) 
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Table 5 Calculated and observed properties of forsterite and wadsleyite. Same legend as Table 1. 

Observed data from Fujino et al. (1981), Issak et al. (1989) for forsterite and Horiuchi and 

Sawamoto (1981), Sawamoto et al. (1984) for wadsleyite 

 

 Forsterite  Wadsleyite 
 Obs. Price et al. 

(1987) 
This study  Obs. Price et al. 

(1987) 
This study 

a 4.753 4.782    (0.61) 4.846    (1.94)  5.698 5.651   (-0.82) 5.712    (0.35) 
b 10.19 10.25    (0.59) 10.26    (0.66)  11.44 11.39   (-0.44) 11.40   (-0.51) 
c 5.978 5.986    (0.13) 5.964  (-0.24)  8.257 8.275    (0.22) 8.359    (1.29) 
V 289.5 293.3    (1.31) 296.4    (2.40)  538.1 532.6   (-1.02) 544.4    (1.16) 
        
C11 330.0 358.6    (9.53) 282.0 (-14.54)  360.0 434.6  (20.72) 353.2   (-1.89) 
C22 200.0 206.6    (3.33) 159.5 (-20.25)  383.0 425.6  (11.12) 382.8   (-0.05) 
C33 236.0 281.1  (19.11) 231.0   (-2.12)  273.0 331.7  (21.50) 218.5 (-19.96) 
C44 67.0 44.2 (-34.03) 289.9 (332.69)  112.0 101.6   (-9.29) 100.8 (-10.00) 
C55 82.0 74.5   (-9.15) 80.4   (-1.95)  118.0 113.5   (-3.81) 97.9 (-17.03) 
C66 81.0 84.3    (4.07) 75.4   (-6.91)  98.0 100.6    (2.65) 96.1   (-1.94) 
C12 66.0 93.8  (42.12) 54.7 (-17.12)  75.0 118.6  (58.13) 66.9 (-10.80) 
C13 68.0 96.2  (41.47) 46.0 (-32.35)  110.0 136.2  (23.82) 82.2 (-25.27) 
C23 72.0 87.7  (21.81) 51.7 (-28.19)  105.0 144.1  (37.24) 91.7 (-12.67) 
        
K 129.5 147.9    (14.2) 103.7 (-19.92)  174.0 219.1 (25.92) 152.2 (-12.53) 
µ 81.1 70.9 (-12.58) 92.4  (13.93)  114.0 112.8  (-1.05) 101.7 (-10.79) 
 

 

Table 6 Formation energies of the intrinsic defects in ringwoodite and the germanate spinel. In 

order to allow the direct comparison, energies are expressed per point defect (eV) 

 

 γ-Mg2SiO4 γ-Mg2GeO4 
Mg2SiO4 Schottky 9.26 9.04 
MgO Schottky 7.06 7.09 
SiO2 Schottky 12.15 11.80 
O Frenkel 9.35 9.41 
Mg Frenkel 9.46 8.94 
Si Frenkel 22.63 21.30 
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