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Abstract: In the last few decades, numerous methods have been developed for predicting the axial 

capacity of pile foundations.  Among the available methods, the cone penetration test (CPT) based 

models have been shown to give better predictions in many situations.  This can be attributed to the 

fact that CPT-based methods have been developed in accordance with the CPT results, which have 

been found to yield more reliable soil properties, hence, more accurate axial pile capacity 

predictions.  In this paper, one of the most commonly used artificial intelligence techniques, i.e. 

artificial neural networks (ANNs), is utilized in an attempt to develop ANN models that provide 

more accurate axial capacity predictions for driven piles and drilled shafts.  The ANN models are 

developed using data collected from the literature and comprise 80 driven pile and 94 drilled shaft 

load tests, as well as CPT results.  The predictions from the ANN models are compared with those 

obtained from the most commonly used available CPT-based methods, and statistical analyses are 

carried out to rank and evaluate the performance of the ANN models and CPT methods.  To 

facilitate the use of the developed ANN models, they are translated into simple design equations 

suitable for hand calculations.    
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Introduction 

 

 The behavior of pile foundations (driven piles and drilled shafts) under axial loading is 

complex and not yet entirely understood.   The geotechnical literature has included many methods, 

both theoretical and experimental, to predict the ultimate capacity of pile foundations.  Due to the 

difficulty of obtaining undisturbed samples of soils, many pile capacity prediction methods have 

focused on correlations with in-situ tests, such as the cone penetration test (CPT), standard 

penetration test (SPT), dilatometer test and pressuremeter test.  However, most available methods, 

by necessity, simplify the problem by incorporating several assumptions associated with the factors 

that affect the capacity of pile foundations.  Consequently, most existing methods fail to achieve 

consistent success in relation to accurate pile capacity prediction.  In this respect, artificial neural 

networks (ANNs), which do not need incorporation of any assumptions or simplifications, are more 

efficient.      

 

 In recent years, ANNs have been found to solve many problems in the field of geotechnical 

engineering, and the author has utilized successfully ANNs in different geotechnical engineering 

applications (e.g. Shahin and Jaksa 2006; Shahin and Indraratna 2006; Shahin et al. 2002a).  

Interested readers are referred to Shahin et al. (2001; 2009), where the pre- and post-2001 papers in 

applications of ANNs in geotechnical engineering are reported and explained in some detail.  ANNs 

have also been used by other researchers to predict the ultimate capacity of driven piles (e.g. Abu-

Kiefa 1998; Lee and Lee 1996); however, their models were developed using a limited number of 

data cases and none of the models was based on the more accurate measures of soil properties from 

the CPT results.  More recently, Shahin (2008) has carried out a preliminary investigation for 

modeling axial capacity of pile foundations using ANNs and has found that ANNs have a good 



 

potential for predicting ultimate pile capacity.  However, the developed model was more suitable 

for driven piles rather than drilled shafts and has the shortcomings of not distinguishing between 

different soil types and pile materials.  In addition, the model did not consider the difference in 

measurements between the mechanical and electric CPT results.    

 

In this paper, an attempt is made to overcome the shortcomings of the previous models and 

sufficient pile load tests and CPT data are used to develop more accurate CPT-based ANN 

prediction models for the ultimate capacity of driven piles and drilled shafts.  The predictive ability 

of the ANN models is examined by comparing their results with experimental data, and with those 

obtained from the most commonly used CPT-based pile capacity prediction methods.  The 

robustness of the ANN models is further investigated in sensitivity analyses.  Furthermore, 

statistical analyses, which compare the measured ultimate pile capacities with those obtained from 

the ANN models and CPT methods, are carried out and used to evaluate and rank the performance 

of the different methods.  The ANN models are then translated into simple design equations for 

routine use in practice.      

 

Overview of artificial neural networks 

 

 Artificial neural networks (ANNs) are numerical modeling techniques inspired by the 

functioning of the human brain and nervous system.  The ANNs modeling philosophy is similar to 

that used in the development of more conventional statistical models.  In both cases, the purpose of 

the model is to capture the relationship between a historical set of model inputs and corresponding 

outputs.  However, unlike most available statistical methods, ANNs do not need predefined 

mathematical equations regarding the relationship between the model inputs and corresponding 



 

outputs, and they rather use the data alone to determine the structure of the model and unknown 

model parameters.  This enables ANNs to overcome the limitations of existing modeling methods. 

 

 The type of ANNs  used in this study are multi-layer feed-forward that are trained with the 

back-propagation algorithm (Rumelhart et al. 1986).  A comprehensive description of this type of 

neural networks is beyond the scope of this paper and can be found in many publications (e.g. 

Fausett 1994).  The typical structure of a multi-layer feed-forward neural network consists of a 

number of processing elements (also called nodes or neurons) that are fully or partially linked via 

connection weights.  These processing elements are usually arranged in layers: an input layer; an 

output layer; and one or more layers in between, called hidden layers (see Figure 1).  At each 

processing element, the input from the processing element of the previous layer (xi) is multiplied by 

an adjustable connection weight (wji), and weighted inputs are summed and a bias (θj) is added or 

subtracted.  This combined input (Ij) is then passed through a non-linear transfer function (f(.)) (e.g. 

sigmoidal function or tanh function) to produce the output of the processing element (yj).  Training 

of a multi-layer feed-forward neural network commences at the input layer, where the network is 

presented with an actual measured set of data (i.e. the training set) and the output of the network is 

obtained by utilizing a learning rule.  The network output is compared with the desired output from 

which an error is calculated.  This error is then used to adjust the connection weights so that the best 

input/output mapping is obtained.  Once training has been accomplished successfully, the 

performance of the trained model has to be verified using an independent validation set.   

 

 

 

 



 

Development of artificial neural network models 

  

 In this work, two ANN models (one for driven piles and another for drilled shafts) are 

developed with the aid of the software package NEUFRAME Version 4.0 (Neusciences 2000).  The 

data used to calibrate and validate the ANN models are obtained from the literature and include a 

series of 80 in-situ driven pile load tests reported by Eslami (1996) and 94 in-situ drilled shaft load 

tests reported by Alsamman (1995).  The tests conduced were located on sites of different soil types 

and geotechnical conditions, ranging from cohesive clays to cohesionless sands.  The driven pile 

load tests include compression and tension loading conducted on steel and concrete piles driven 

statically (jacked-in) into the ground.  The driven piles used have different shapes (i.e. circular, 

square and hexagonal) and range in diameter between 250 mm to 900 mm and embedment lengths 

between 5.5 m to 41.8 m.  The drilled shaft load tests were conducted on straight and belled 

concrete shafts and include compression loading (for straight and belled shafts) and tension loading 

(for straight shafts only).  The drilled shafts used have stem diameters ranging from 305 mm to 

1798 mm and embedment lengths from 4.5 m to 27.4 m.   

 

Model inputs and outputs 

 

Six factors affecting the capacity of driven piles are presented to the ANN as potential 

model input variables.  These include the pile equivalent diameter, D
eq

 = pile perimeter/π, 

embedment length, L, weighted average cone point resistance over pile tip failure zone, tipcq  , 

weighted average cone point resistance over pile length, shaftcq  , weighted average cone sleeve 

friction over pile length, sf , and pile material, Material.  The ultimate pile capacity, Q
u
, is the 



 

single model output variable.  It should be noted that the following aspects are applied to the input 

and output variables used in the ANN driven piles model: 

 The ultimate pile capacity, Q
u
, is taken to be at the plunging failure for the well-defined failure 

cases, and at 80%-criterion (Brinch Hansen 1963) for the cases that failure load is not clearly 

defined, as suggested by Eslami (1996).   

 The pile tip failure zone over which tipcq  is calculated is taken in accordance with Eslami 

(1996), in which when the pile toe is located in non-homogeneous soil of dense strata with a 

weak layer above, the influence zone extends to 4 D
eq below and 8 D

eq
 above pile toe.  Also, in 

non-homogeneous soil, when the pile toe is located in weak strata with a dense layer above, the 

influence zone extends to 4 D
eq

 below and 2 D
eq

 above pile toe.  In homogeneous soil, however, 

the influence zone extends to 4 D
eq

 below and 4 D
eq

 above pile toe.   

 Because evidence suggests that measurements of cone sleeve friction are less reliable than those 

of cone point resistance (Briaud and Miran 1992), it is decided to represent the pile shaft 

resistance not only by using the weighted average cone sleeve friction over the pile length, sf , 

but also by incorporating the weighted average cone point resistance over the pile length, shaftcq  .  

This allows the soil type (classification) to be considered in the ANN model.   

 Several CPT tests used in this work include mechanical rather than electric CPT data and thus, it 

was necessary to convert the mechanical CPT readings into equivalent electric CPT values as the 

electric CPT is the one that is commonly used nowadays.  This is carried out for the cone point 

resistance using the following correlation proposed by Kulhawy and Mayne (1990): 
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 where: pa is the atmospheric pressure, and pa and qc are in kPa.  For the cone sleeve friction, the 

mechanical cone gives higher reading than the electric cone in all soils with a ratio in sands of 

about 2, and 2.5–3.5 for clays (Kulhawy and Mayne 1990).  In the current work, a ratio of 2 is 

used for sands and 3 for clays.  A comparison between the mechanical and electric CPT is 

beyond the scope of this paper and can be found in Kulhawy and Mayne (1990).  

 Finally, before presenting the data to the ANN network, pile material is translated from the text 

format (i.e. steel or concrete) into arbitrary numeric values (i.e. 1 for steel and 2 for concrete), 

which neural networks are capable to deal with.  

 

The input variables that are considered to be significant in prediction of the ultimate 

capacity of drilled shafts include the shaft stem diameter, Dstem, shaft base diameter, Dbase, 

embedment length, L, weighted average cone point resistance over shaft base failure zone, basecq  , 

weighted average cone point resistance over shaft length, shaftcq  .  These parameters are presented 

to the ANN model as potential model input variables, and the ultimate drilled shaft capacity, Qu, is 

the single model output variable.  It should be noted that the following issues are applied to the 

input and output variables used in the ANN drilled shafts model: 

 The ultimate bearing capacity, Qu, for drilled shafts under compression is taken as the axial load 

measured at a displacement equal to 5% of shaft base diameter plus the elastic compression of 

the shaft (i.e. PL/EA, where: P is the applied load, L is the shaft length, A is the shaft cross-

sectional area and E is the shaft elastic modulus).  On the other hand, Qu for drilled shafts under 

tension is defined as the axial load at 12 mm (0.5") of displacement.  The above criteria for 

determination of ultimate load are as suggested by Alsamman (1995) and recommended by 

Reese and O’Neill (1988).   



 

 The shaft base failure zone over which basecq   is calculated is taken in accordance with 

Alsamman (1995) to be equal to one diameter depth beneath the shaft base.   

 In contrast to the driven piles model, records of cone sleeve friction were not available in the 

database used for the drilled shafts model, thus, sf is not considered as an input variable.  This is 

believed not to significantly affect model prediction as measurements of cone sleeve friction are 

less important and not as reliable as those of cone point resistance, as mentioned previously.  

 The majority of records for cone point resistance are mechanical and thus are converted to 

equivalent electric values using Eqn. (1).  

 

Data division and preprocessing 

 

The next step in development of the ANN models is dividing the available data into their 

subsets.  As recommended by Masters (1993) and detailed by Shahin et al. (2004), the available 

data are randomly divided into two statistically consistent sets: training set for model calibration 

and an independent validation set for model verification.  For each of the two ANN developed 

models, 80% of the available data are used for training and 20% for validation.  It should be noted 

that, like all empirical models, ANNs perform best in interpolation rather than extrapolation 

(Masters 1993), consequently, the extreme values of the available data are included in the training 

set.  The statistics of the data used for the training and validation sets are given in Table 1, which 

include the mean, standard deviation, minimum, maximum and range.  Once data have been divided 

into their subsets, the input and output variables are pre-processed by scaling them between 0.0 and 

1.0 to eliminate their dimension and to ensure that all variables receive equal attention during 

training.  The simple linear mapping of the variables’ practical extremes to the neural network’s 



 

practical extremes is adopted for scaling, as it is the most common method for this purpose (Masters 

1993).  As part of this method, for each variable x with minimum and maximum values xmin and 

xmax, respectively, the scaled value of xn is calculated as follows: 

 

[2] )/()( minmaxmin xxxxxn    

 

Model architecture, weight optimization and stopping criterion 

 

The following step in development of the ANN models is determining the model geometry 

(i.e. the number of hidden layers and corresponding number of hidden nodes in each layer) and 

weight optimization (i.e. obtaining the optimal learning rate and momentum term that control the 

training process).  In this work, the optimal model geometry is obtained by utilizing a trial-and-error 

approach in which the ANN models are trained with initial learning rate and momentum term of 0.2 

and 0.8, respectively, and using one hidden layer with 1, 2, 3, …, and 2I+1 (where I is the number 

of input variables) hidden layer nodes.  It should be noted that a network with one hidden layer can 

approximate any continuous function provided that sufficient connection weights are used (Hornik 

et al. 1989), consequently, one hidden layer is used in the current work.  It should also be noted that 

2I+1 hidden layer nodes is the upper limit needed to map any continuous function for a network 

with I number of inputs, as discussed by Caudill (1988).  The transfer functions used in the hidden 

and output layers are tanh and sigmoidal transfer functions, respectively.  To determine the criterion 

that should be used to terminate the training process, the normalized mean squared error, NMSE, 

between the actual and predicted values of pile capacities on the validation set is monitored until no 

significant improvement in the error occurs.  This is achieved at 5000 training cycles (epochs) for 



 

the driven piles model and at 10,000 for the drilled shafts model.  Figure 2 shows the impact of the 

number of hidden layer nodes on the performance of ANN models.  It can be seen that, for the 

driven piles model, the network with 3 hidden nodes has the lowest prediction error; however, the 

network with 2 hidden nodes can be considered optimal: its prediction error is not far from that of 

the network with 3 hidden nodes, and it has fewer connection weights.  On the other hand, the 

number of hidden nodes for the drilled shafts model has less impact on the model predictive ability 

even a network with only one hidden node is able to adequately map the underlying relationship; 

however, the network with three hidden nodes has the lowest prediction error.    

 

The weight optimization is determined by training the ANN models that have the lowest 

prediction error obtained from the abovementioned step.  The models are trained with different 

combinations of learning rates and momentum terms of 0.05, 0.1, 0.2, 0.4, 0.6 and 0.9, and the 

results are shown in Figures 3 and 4.  It can be seen from Figure 3 that the prediction errors for both 

the driven piles and drilled shafts models are minimal at a learning rate of 0.2.  At larger learning 

rate, the prediction errors increase possibly as a result of the pseudorandom behavior of the 

optimization algorithm near the local minima in the error surface due to the large step sizes taken in 

weight space.  On the other hand, Figure 4 shows that the performance of the ANN models is 

relatively insensitive to momentum in the rage between 0.05 to 0.8, after which the prediction errors 

increase sharply.  The best predictions are obtained at a momentum value of 0.8 for the driven piles 

model and 0.6 for the drilled shafts model.   

 

 

 

 



 

Model validation and robustness 

 

The performance of the optimum ANN models in the training and validation sets is shown 

in Figure 5.  It can be seen that the ANN models has minimum scatter around the line of equality 

between the measured and predicted ultimate capacities.  The models also have high coefficients of 

correlation, r, in the training or testing sets.   

 

To further examine the generalization ability (robustness) of the ANN models, sensitivity 

analyses are carried out that demonstrate the response of model predictions to a set of hypothetical 

input data that lie within the range of the data used for model training.  For example, the effect of 

one input variable, such as pile diameter is investigated by allowing it to change while all other 

input variables are set to selected constant values.  The inputs are then accommodated in the ANN 

models, and the predicted ultimate pile capacity is calculated.  This process is repeated for the next 

input variable and so on, until the model response has been examined for all inputs.  The robustness 

of the ANN models is determined by examining how well the predictions compare with available 

geotechnical knowledge and experimental data.  The results of the sensitivity analyses for the 

driven piles and drilled shafts are shown in Figure 6.  It can be seen that predictions of ultimate pile 

capacity from the ANN models agree well with what one would expect and with published 

experimental results in the sense that the pile capacity increases with the increase of the pile 

diameter, embedment length, pile tip resistance and pile sleeve resistance.  It can also be seen that, 

within the range of the training data used for ANN driven piles model, concrete piles seem to 

exhibit higher pile capacity than steel piles which is in agreement with what one would expect as 

concrete piles provide greater shaft adhesion than steel piles, hence, produce higher pile capacity.  



 

The above results indicate that the developed ANN models are robust and perform well, thus, can 

be used with confidence.       

 

Comparison of ANN models with available CPT-based methods 

 

To examine the accuracy of the driven piles and drilled shafts ANN models against available 

methods, each ANN model is compared with three CPT-based methods currently used in practice.  

For driven piles, the ANN model is compared with the European Method (De Ruiter and Beringen 

1979), LCPC (Bustamante and Gianeselli 1982) and Eslami and Fellenius (1997).  For drilled 

shafts, the ANN model is compared with methods include Schmertmann (1978), LCPC 

(Bustamante and Gianeselli 1982) and Alsamman (1995).  The comparisons are carried out 

graphically, as shown in Figures 7 and 8, and analytically using the rank index, RI, proposed by 

Abu-Farsakh and Titi (2004), as given in Table 2.  Figures 7 and 8 present the scattering around the 

line of equality between the predicted and measured pile capacities in relation to the 80 available 

data records of driven piles and 94 data records of drilled shafts.  Obviously better performance is 

obtained for the method that provides less scattering around the 1:1 line.  In addition, better means 

of visual judgment can be made through the two other dashed lines that indicate ±10% deviation 

from the perfect agreement.  It can be seen from Figures 7 and 8 that the predictions obtained from 

the ANN models exhibit less scatter around the line of equality than those obtained from other 

available methods, especially at higher pile capacity values.  The rank index, RI, given in Table 2 is 

calculated as follows (Abu-Farsakh and Titi 2004): 

 

[3] 4321 RRRRRI   



 

where; R1, R2, R3 and R4 are the rank criteria and summarized in the discussion that follows.  

Optimal performance of a pile capacity prediction method is indicated by a low value of RI.   

 

 The first criterion, R1, is determined by carrying out a regression analysis to obtain the best 

fit line of predicted versus measured pile capacities in relation to the available 80 case records of 

driven pile tests and 94 case records of drilled shaft tests.  The relationship of the best fit line of 

Qfit /Qu and the corresponding coefficient of correlation, r, are calculated for each pile capacity 

prediction method and compared.  Based on this criterion, better performance is indicated by the 

prediction method that has both the ratio Qfit /Qu and r closer to unity.  The results of this criterion 

are shown in columns 3, 4 and 5 of Table 2 for each of the prediction methods used.  For driven 

piles, Table 2 shows that the ANN model is given R1 = 1 and thus rank first.  The ANN model has 

Qfit /Qu = 0.98 with r = 0.97, which implies that, according to the first criterion, the ANN model 

tends to under-predict the measured pile capacity by an average of 2%.  It can also be seen that two 

of the remaining driven pile prediction methods (i.e. European method and LCPC) tend to under-

predict the measured pile capacity by average values of 10 and 11%, respectively, whereas the 

method of Eslami and Fellenius tends to over-predict the measured pile capacity by an average of 

10%.  On the other hand, Table 2 also shows that, according to the first criterion, the ANN drilled 

shaft model ranks first as it has Qfit /Qu= 0.97 with r = 0.97, and tends to under-predict the measured 

pile capacity by an average of 3%.  Two of the remaining drilled shaft prediction methods (i.e. 

Schmertmann and Alsaman) tend to under-predict the measured pile capacity by average values of 9 

and 8%, respectively, whereas the LCPC method tends to over-predict the measured pile capacity 

by an average of 16%.   



 

 The second criterion, R2, is obtained by calculating the arithmetic mean value, , and the 

corresponding standard deviation, , of Qp /Qu for the 80 case records of driven piles and 94 case 

records of drilled shafts.  Based on this criterion, optimal performance is obtained when μ(Qp /Qu) 

approaches unity with (Qp /Qu) approaching zero.  The results of this criterion are given in 

columns 6, 7 and 8 of Table 2, for each of the prediction methods used.  For driven piles, it can be 

seen that, again, the ANN model ranks first with  = 1.05 and  = 0.2, which means that, according 

to the second criterion, the ANN method tends to over-predict the measured pile capacity by an 

average of 5%.  On the other hand, for drilled shafts, the method proposed by Alsamman ranks first 

with  = 1.04 and  = 0.38, which means that the method tends to over-predicts the pile capacity by 

an average value of 4%.  The ANN drilled shafts model ranks second in the second criterion as it 

has   = 1.06 and  = 0.40, which means that the ANN method tends to over-predict the pile 

capacity by an average value of 6%.   

 

 The third criterion, R3, is determined by sorting, in ascending order of 1, 2, 3, …, i, …, n, 

the ratios of Qp /Qu of the 80 driven pile tests and 94 drilled shaft tests for each of the pile capacity 

prediction methods used against the cumulative probability, P, that is calculated according to Long 

and Wysockey (1999), as follows: 

 

[4] 
)1( 


n

i
P  

 

where; i = order number given for the considered ratio and n = number of pile tests.  The 50% 

cumulative probability, P50, of Qp /Qu is then obtained for each method and used to measure the 



 

tendency of the prediction methods to over- or under-predict the measured pile capacity.  Based on 

this criterion, optimal performance is indicated by a value of P50 approaching unity.  The results of 

this criterion are given in columns 9 and 10 of Table 2.  It can be seen that, for driven piles, the 

ANN model is again ranked first with P50 = 1.02, which means that, according to the third criterion, 

the ANN method tends to over-predict the measured pile capacity by an average of 2%.  On the 

other hand, the ANN drilled shafts model ranks first with P50 = 0.98, which suggests that, according 

to the third criterion, the ANN model tends to under-predict the measured pile capacity by an 

average of 2%.   

 

 The fourth criterion, R4, is determined by plotting the histogram and lognormal distributions 

of the ratio Qp /Qu of the 80 driven pile tests and 94 drilled shaft tests for each of the pile capacity 

prediction methods used.  The probability of predicting the pile capacity within ±20% accuracy is 

then obtained by calculating the area beneath the histogram and lognormal distributions within a 

range equal to upu QQQ 2.18.0  .  Based on this criterion, the higher the probability of ±20% 

accuracy, the better the performance of the prediction method is.  The histogram and lognormal 

distributions of the methods used are shown in Figure 9 and the corresponding probabilities and 

rank of the ±20% accuracy are given in columns 11, 12 and 13 of Table 2.  It can be seen from 

Table 2 that, for driven piles, the ANN model is again ranked first for this criterion with the highest 

histogram and lognormal distribution probability values of 75 and 70%, respectively.  On the other 

hand, for drilled shafts, Alsamman’s method ranks first with histogram and lognormal distribution 

probabilities of 60 and 56%, respectively.  

 



 

 The overall rank, as indicated by the rank index, RI, of the pile capacity prediction methods 

used in this work are shown in the last column of Table 2.  It can be seen that, the ANN driven piles 

model has the lowest RI and thus ranks first and performs the best among all driven pile methods 

used for comparison.  It can also be seen that over the four CPT-based methods used, the European 

method  (De Ruiter and Beringen 1979) performs second, followed by the LCPC (Bustamante and 

Gianeselli 1982) and Eslami and Fellenius (1997).  On the other hand, for drilled shafts, the results 

show that the ANN model and Alsamman’s method perform best with similar values of RI; 

however, the ANN model outperforms Alsamman’s method as it gives better predictions at high 

values of pile capacities, as shown previously in the graphical comparison of Figure 8.   The results 

also demonstrate that over the four CPT-based methods used for capacity of drilled shafts, 

Schmertmann (1978) performs third followed by the LCPC (Bustamante and Gianeselli 1982). 

 

ANN Models for Hand Calculations 

 

In order to facilitate the use of the developed ANN models, they are translated into simple 

equations suitable for hand calculations or spreadsheet programming.  Details of the weights and 

biases for the developed ANN models are given in Table 3.  For brevity, detailed description of the 

procedure used to convert the ANN connection weights and biases into simple equations is beyond 

the scope of this paper and can be found in Shahin et al. (2002b).    Based on interpretation of the 

developed neural network weights and biases, the ultimate capacity of driven piles can be expressed 

as follows: 

 

[5] 











 )tanh242.2tanh193.4699.1()(
211

4210
290

HHANNu
e

Q   



 

For steel pile (Material = 1.0): 
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Alternatively, for concrete piles (Material = 2.0): 
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where: Qu(ANN) = ultimate pile capacity (kN); Deq = equivalent pile diameter (mm); L = pile 

embedment length (m); 
tipcq


= weighted average cone point resistance over pile tip failure zone 

(MPa); shaftcq  = weighted average cone point resistance along pile embedment length (MPa); and 

sf = weighted average sleeve friction along pile embedment length (kPa). 

 

On the other hand, the ultimate drilled shafts capacity can be calculated as follows: 
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where; Qu(ANN) = ultimate drilled shaft capacity (kN), Dstem = shaft stem diameter (mm), Dbase = shaft 

base diameter (mm), L = shaft embedment length (m), basecq  = weighted average cone point 

resistance over shaft base failure zone (MPa) and shaftcq   = weighted average cone tip resistance 

along shaft embedment length (MPa). 

 

Illustrative numerical example 

 

An illustrative numerical example is provided to better explain the implementation of the 

developed pile capacity design formula.  A driven pile with a diameter of 300 mm is embedded into 

the ground to a depth of 15 m.  The soil has a weighted average cone point resistance of 5 MPa over 

the pile tip failure zone and 6 MPa along the pile length.  The weighted average sleeve friction 

along the pile length is 40 kPa.  The ultimate pile capacity is required for both steel and concrete 

piles. 

Solution: 

Given the information provided, Deq = 300 mm; L = 15 m; 
tipcq


= 5 MPa; shaftcq  = 6 MPa; and sf = 

40 kPa. 



 

(a) For steel piles, Eqs. (6) and (7), respectively, are applied as follows: 

63314.2)4086.6639.21523.1121551.4530059.3(101.5 3

1  H   

04443.0)4024.0658.1537.81596.3330047.2(10164.1 3

2  H  

By substituting H1 and H2 into Eq. (5), the predicted pile capacity can be obtained as follows: 

1.656
1

4210
290

))04443.0(242.2)63314.2tanh(193.4699.1()( 











e
Q ANNu  kN 

 

(b) For concrete piles, Eqs. (8) and (9), respectively, are applied as follows: 

69114.2)4086.6639.21523.1121551.4530059.3(10158.5 3

1  H  

39243.0)4024.0658.1537.81596.3330047.2(10816.0 3

2  H  

By substituting H1 and H2 into Eq. (5), the predicted pile capacity can be obtained as follows: 

5.986
1

4210
290

))39243.0(242.2)69114.2tanh(193.4699.1()( 











e
Q ANNu  kN 

 

Hence, in this example, the steel driven pile results in 33% lower ultimate pile capacity than the 

concrete pile.  Eqs. (10) to (13) can be similarly used for predicting axial capacity of drilled shafts.  

 

Summary and Conclusions 

 

The work presented in this paper has used a series of in-situ pile load tests collected from 

the literature to develop artificial neural networks (ANNs) based models for pile capacity 

predictions of driven piles and drilled shafts.  The predictive ability of the ANN models was 

examined by comparing their predictions with those obtained from experiments.  Sensitivity 

analyses were carried out on the ANN models to explore their generalization ability (robustness).  



 

The performance of the ANN models was further investigated against the most commonly used 

CPT-based pile capacity prediction methods.  Comprehensive statistical analyses using the rank 

index, RI, were conducted to rank and evaluate the performance of the ANN models and CPT 

methods.  RI compares the actual measured pile capacity, Qu, with the corresponding predicted pile 

capacity, Qp, from the prediction methods used, and comprises four statistical criteria, including the 

best-fit of Qp versus Qu, the arithmetic mean and standard deviation of Qp/Qu, the 50% cumulative 

probability of Qp/Qu and the ±20 accuracy of the histogram and lognormal distribution curves of 

Qp/Qu.  Finally, tractable design formulas based on the ANN models were derived to facilitate the 

use of the models for routine design practice by hand calculations.   

The results indicate that the ANN models were capable of accurately predicting the ultimate 

capacity of pile foundations with high coefficients of correlation, r.  For driven piles, the ANN 

model had r of 0.96 and 0.85 in the calibration and validation sets, respectively, whereas the ANN 

drilled shafts model had r of 0.97 in both the calibration and validation sets.  The sensitivity 

analyses carried out on both the driven piles and drilled shafts ANN models indicate that 

predictions from the ANN models compare well with what one would expect based on available 

geotechnical knowledge and experimental results.  The results of the rank index, RI, yielded the 

following overall rank for the CPT-based methods of driven pile capacity predictions: 1, the ANN 

model (this study); 2, Eslami and Fellenius (1997); 3, LCPC (Bustamante and Gianeselli 1982); 4, 

the European method (De Ruiter and Beringen 1979) .  On the other hand, for drilled shafts, the 

results of RI showed equal overall rank for the ANN model and the method proposed by Alsamman 

(1995), followed by the Schmertmann method (1978) and the LCPC (Bustamante and Gianeselli 

1982). 

 



 

It is worthwhile noting that predictions from ANN models are better when used for ranges 

of input variables similar to those utilized in model training.  This is because ANNs work well for 

interpolation rather than extrapolation.  However, the ranges of input variables used in the current 

work represent those values that are usually used in practice.  It is recommended though that in the 

future the developed ANNs be updated to obtain better predictions by presenting new training 

examples of wider ranges, as new data become available.    
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Figure Captions: 

Fig. 1: Typical structure and operation of ANNs  

Fig. 2. Effect of number of hidden layer nodes on performance of ANN models 

Fig. 3. Effect of learning rate on performance of ANN models 

Fig. 4. Effect of momentum term on performance of ANN models 

Fig. 5. Performance of ANN models in the training and validations sets 

Fig. 6. Sensitivity analyses to test the robustness of ANN models 

Fig. 7. Performance of the ANN driven piles model compared to other CPT-based methods  

Fig. 8. Performance of the ANN drilled shafts model compared to other CPT-based methods  

Fig. 9. Histograms and lognormal distributions of Qp/Qu of the ANN models and other CPT-based 

methods 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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(a) Driven piles model 
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(b) Drilled shafts model 

 



 

Fig. 6 
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(a) Driven piles model 
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(b) Drilled shafts model 
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Fig. 8 
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Fig. 9 
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(a) Driven piles 
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(b) Drilled shafts  



 

 

Table 1. ANN input and output statistics 

 

Pile type  Input/output variables 

and data sets 

Statistical parameters 

Mean Standard 

deviation 

Minimum Maximum Range 

Driven piles Pile equivalent diameter, D
eq (mm) 

Training set 412.3 127.0 250.0 900.0 650.0 

Validation set 395.5 85.5 273.0 600.0 337.0 

Pile embedment length, L (m) 

Training set 17.2 9.1 5.5 41.8 36.3 

Validation set 13.9 6.3 7.6 31.4 23.8 

Weighted average cone point resistance over pile tip failure zone, tipcq   (MPa) 

Training set 5.2 4.7 0.0 20.0 20.0 

Validation set 4.9 4.6 0.0 19.5 19.5 

Weighted average cone point resistance over pile length, shaftcq   (MPa) 

Training set 6.4 4.8 1.4 18.3 16.9 

Validation set 4.9 3.8 2.0 16.5 14.5 

Weighted average sleeve friction over pile length, sf (kPa) 

Training set 55.6 30.4 10.0 174.0 164.0 

Validation set 57.3 36.5 20.0 160.0 140.0 

Ultimate capacity, Q
u (kN) 

Training set 1509.9 1004.3 290.0 4500.0 4210.0 

Validation set 1184.7 420.8 630.0 2025.0 1395.0 

Drilled shafts Shaft stem diameter, Dstem 
(mm) 

Training set 617.0 371.9 304.8 1798.3 1493.5 

Validation set 525.8 245.5 320.0 1100.3 780.3 

Shaft base diameter, Dbase (mm) 

Training set 741.7 417.9 304.8 2100.1 1795.3 

Validation set 630.6 277.5 320.0 1149.1 829.1 

Shaft embedment length, L (m) 

Training set 10.0 4.7 4.5 27.4 22.9 

Validation set 9.0 4.4 5.8 24.2 18.3 

Weighted average cone point resistance along base failure zone, basecq   (MPa) 

Training set 16.8 10.3 0.0 47.5 47.5 

Validation set 18.2 11.7 0.0 39.5 39.5 

Weighted average cone point resistance along shaft length, shaftcq   (MPa) 

Training set 8.2 5.2 1.1 28.8 27.7 

Validation set 10.1 5.3 2.5 21.5 19.0 

Ultimate capacity, Qu (kN) 

Training set 2184.3 2161.5 355.8 9652.2 9296.3 

Validation set 2075.0 2221.9 355.8 8824.8 8468.9 

 

 



Table 2. Performance of ANN models against available CPT-based methods 

 

Pile 

type 

Method Best fit calculations Arithmetic calculations Cumulative 

probability 

Accuracy ± 20% Overall 

rank 

Qfit/Qu r  R1 µ(Qp/Qu) σ(Qp/Qu) R2 P50 R3 Histogram Lognormal R4 RI 

Driven 

piles 

ANN (this study) 0.98 0.97 1 1.05 0.20 1 1.02 1 75 70 1 4 

European method (1979) 0.90 0.85 3 0.93 0.37 3 0.86 4 38 42 4 14 

LCPC (1982) 0.89 0.83 4 0.96 0.35 2 0.88 3 40 43 3 12 

Eslami & Fellenius (1997) 1.10 0.95 2 1.13 0.23 4 1.09 2 59 61 2 10 

Drilled 

shafts 

ANN (this study) 0.97 0.97 1 1.06 0.40 2 0.98 1 51 45 2 6 

Schmertmann (1978) 0.91 0.83 3 0.93 0.40 3 0.86 3 49 41 3 11 

LCPC (1982) 1.16 0.93 4 1.19 0.51 4 1.14 4 47 39 4 16 

Alsamman (1995) 0.92 0.95 2 1.04 0.38 1 0.96 2 60 56 1 6 

   Note: P50, cumulative probability at 50%; P90, cumulative probability at 90%; r, correlation coefficient; R1–R4, rank criteria; RI, rank index; µ, mean; σ, standard deviation. 
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Table 3. Weights and biases of the developed ANN models 

 

Driven piles model has 3 layers: 

Input layer has six nodes (Nodes # 1 to 6) 

Hidden layer has two nodes (Nodes # 7 and 8) 

Output layer has one node (Node # 9) 

Weights from input layer to hidden layer 

Node # 1 2 3 4 5 6 

7 2.3323 1.6521 2.2446 -0.3615 1.1252 -0.0577 

8 -1.6083 -1.2328 0.167473 -0.0266 0.0387 -0.3481 

Weights from hidden layer to output layer 

Node # 7 8     

9 4.1934 -2.2416     

Biases for hidden layer and output layer 

Node # Bias      

7 -3.9144      

8 0.3585      

9 1.6993      

Drilled shafts model has 3 layers: 

Input layer has five nodes (Nodes # 1 to 5) 

Hidden layer has three nodes (Nodes # 6 to 8) 

Output layer has one node (Node # 9) 

Node # 1 2 3 4 5  

6 1.5979 4.2198 -0.9423 -0.1032 0.3122  

7 -0.8261 -1.7979 -0.8873 -0.07553 -0.1480  

8 -1.1525 0.9636 -1.9092 -1.1070 -1.5575  

Weights from hidden layer to output layer 

Node # 6 7 8    

9 3.3637 -4.2231 -3.3358    

Biases for hidden layer and output layer 

Node # Bias      

6 -5.6394      

7 -0.1257      

8 3.2681      

9 1.6731      
 

 

 


