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Abstract

In this thesis, we are concerned with optimal control problems related to one of the major

global health problems facing human beings, diabetes, with a staggering 4.9 million deaths

attributed to it in 2014. Diabetes is an incurable disease caused when the pancreas no

longer makes insulin (in the case of type 1 diabetes), or when the pancreas cannot make

enough insulin and/or the body develops insulin resistance (in the case of type 2 diabetes).

The ultimate aim of this thesis is to propose and illustrate a general methodology for the

analysis and control of the human blood glucose regulatory system.

We adopt a comprehensive dynamic model of the blood glucose regulatory system and

show how it can be readily fitted to individuals. This is done by formulating an optimal

parameter selection problem in which optimal values for the model parameters must be

selected so that the resulting model best fits the desired data. Then, a numerical solution

procedure for this optimal parameter selection problem using the optimal control software

MISER3.3 is proposed. We also investigate the sensitivity of the resulting optimized model

with respect to the insulin release rate, which is the body’s natural feedback control.

Moreover, we demonstrate how optimal open loop controls can be readily calculated for

this model.

We then extend the model to include bolus insulin injections for the treatment of

diabetic patients. We also show how to incorporate the role of exercise into this model.

We formulate the combined model as an optimal control problem in which the aim is

to determine optimal injection times, optimal injection volumes and optimal exercise

regimes to regulate the blood glucose level. A numerical approach, based on control

parameterization and a time scaling transformation, is then developed for solving the

optimal control problem. Numerical results for different scenarios involving type 1 and

type 2 diabetes show that optimal treatment regimes can be readily determined via the

proposed approach. The optimal regimes are successful at regulating the blood glucose

level.

In future work, improvements can be made to incorporate other important treatment

regimes, particularly for type 2 diabetics, into the model.
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4.2 Experimental data in quadratic form . . . . . . . . . . . . . . . . . . . . . 61

4.3 The composite model matching for Case 1 . . . . . . . . . . . . . . . . . . 63

4.4 Blood glucose trajectories for Case 2. . . . . . . . . . . . . . . . . . . . . . 64

4.5 Optimal exercise level for Case 2. . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Blood glucose levels resulting from optimization of the model without ex-

ercise for Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Blood glucose levels resulting for Case 4. . . . . . . . . . . . . . . . . . . . 67

4.8 Optimal exercise level for Case 4. . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Blood glucose levels resulting from Case 5. . . . . . . . . . . . . . . . . . . 68

4.10 Optimal exercise level in Case 5. . . . . . . . . . . . . . . . . . . . . . . . . 69

xi





List of Tables

1.1 Insulin types and their characteristics . . . . . . . . . . . . . . . . . . . . 3

3.1 Parameter values for the exogenous glucose input rate G . . . . . . . . . . 31

3.2 Constants in the dynamic model (3.1)-(3.24) . . . . . . . . . . . . . . . . . 33
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CHAPTER 1

Introduction

1.1 Blood glucose regulatory system

In this thesis, we are concerned with optimal control problems related to human health.

One of the major global health problems is diabetes with a staggering 4.9 million deaths

attributed to it in 2014 [2]. Figures about diabetes released by the International Diabetes

Federation (IDF) show that 387 million people worldwide have diabetes. The Western

Pacific region, which includes highly developed countries such as Australia and Japan,

and fast growing economies such as China, accounts for 138 million diabetes sufferers [2].

Correct blood glucose levels are crucial to maintaining health. The normal concentra-

tion of blood glucose in a healthy person is between 80 to 120 mg/dl (4.4 to 6.7 mmol/l).

Concentrations outside of this range cause either hyperglycemia (above 120 mg/dl) or

hypoglycemia (under 80 mg/dl). Prolonged irregularities in the blood glucose level result

in major health problems.

Diabetes is an incurable disease caused when the pancreas no longer makes insulin (in

the case of type 1 diabetes), or when the pancreas cannot make enough insulin and/or the

body develops insulin resistance (in the case of type 2 diabetes). Some common signs and

symptoms of diabetes are increased thirst, frequent urination, extreme hunger, fatigue,

blurred vision, slow-healing sores and the presence of ketones in the urine (ketones are

the byproducts of broken down fatty acids in the body that increase due to weight loss or

when there is not enough insulin available). Left unmanaged, diabetes has harmful effects

on the vascular system due to the resulting high blood glucose levels [19]. Macrovascular

complications are driven by atherosclerosis (the formation of fibrofatty plaque on artery

walls) which leads to the narrowing of arterial walls throughout the body and can result

in strokes or cardiac arrest. Microvascular complications are due to damage to very small

blood vessels and nerves. Diabetic retinopathy results from damage to the tiny blood

vessels at the back of the eye and can seriously affect vision to the point of blindness.

Diabetic nephropathy is a similar process occurring in the kidneys which reduces their

ability to filter blood properly and may lead to complete kidney failure. Finally, diabetic
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2 Introduction

neuropathy is the dysfunction of peripheral nerves which results in the inability to feel pain

in the extremities of the body, particularly in the hands and feet. This frequently results in

undetected injuries which do not heal well and may require amputations. Hypoglycemia,

on the other hand, causes serious short term impacts such as fainting, brain failure and

death. In addition to type 1 and type 2 diabetes, there are other forms of diabetes such

as gestational diabetes which may occur during pregnancy and often disappears after the

birth of the child.

Before going deeper into the blood glucose regulatory system, it is worth giving a

description of the main components. Glucose is the simplest form of sugar and represents

the primary source of energy for cells in the human body. Glycogen has a modified

molecular structure compared to glucose and is generated for the purpose of storing energy

in the body. Insulin is a natural hormone made by the pancreas which regulates the

blood glucose level. Cells cannot absorb glucose directly from the bloodstream without

insulin. Glucagon, a natural hormone made by alpha cells in the pancreas, promotes the

glycogenolysis process (the breakdown of glycogen to glucose) in the liver.

In a healthy person, stabilization of the blood glucose level in the normal range is

achieved in multiple ways. The hormones insulin, which is produced by β cells, and

glucagon, which is produced by α cells, are the most important regulators of the blood

glucose level. They are both secreted by the endocrine pancreas and stabilize the glucose

level in the blood via natural feedback loops. When the glucose concentration rises too

high, insulin is secreted which encourages glucose uptake by cells as well as conversion of

glucose to glycogen, there by lowering the blood glucose concentration. In the opposite

manner, a decrease in blood glucose below the desired level stimulates glucagon secretion

which in turn increases the glucose concentration towards normal through the conversion

of glycogen to glucose. Factors affecting the blood glucose concentration can be divided

into five categories:

(i) Food intake. This includes the timing of meals, composition of the food and quantity.

(ii) Medication used in the case of a diabetic subject. This includes insulin and other

drugs which stimulate insulin production or reduce insulin resistance in the body.

(iii) The level of exercise of an individual.

(iv) Biological factors such as stress or illness.

(v) Environmental factors such as climate and altitude.

For diabetic patients in particular, additional factors can have a significant impact on

blood glucose levels:

(i) The type of insulin preparation used (short or long acting).



1.1 Blood glucose regulatory system 3

Types of insulin Action Example

fast or rapid-acting insulin onset within 15 mins. after
injection, reaches peak be-
tween 30 to 90 mins. and
lasts for 3 to 5 hrs.

insulin aspart and insulin
lispro

short-acting insulin onset within 30 to 60 mins.
after injection, reaches peak
between 2 to 4 hrs. and
lasts for 5 to 8 hrs.

regular

intermediate-acting insulin onset within 1 to 3 hrs. af-
ter injection, reaches peak
after 8 hrs. and lasts for 12
to 16 hrs.

NPH

long-acting insulin onset within 1 hour of injec-
tion, is peak-less and lasts
for 20 to 26 hrs (1 or 2 injec-
tions last for a whole day)

insulin glargine

mixed insulin Is a combination of ei-
ther rapid-acting or short
acting insulin with an
intermediate-acting insulin,
onset within 10 to 15 mins,
its peak varies and lasts for
10 to 16 hrs.

75% insulin lispro pro-
tamine and 25% insulin
lispro, 70% insulin aspart
protamine and 30% insulin
aspart, or regular with
NPH

Table 1.1: Insulin types and their characteristics (onset, peak times and duration)

(ii) The injection site and delivery type (bolus or continuous infusion).

(iii) The patient’s characteristics.

Since physical characteristics vary from person to person, different patients usually have

somewhat different responses to the same treatment. Even responses of the same patient

to the same treatment can vary under different circumstances.

For each type of insulin, there is an onset time (i.e. when the insulin starts to work

after it is taken), a peak time (i.e. when the maximum effect of insulin is observed) and a

duration (i.e. the time during which the insulin continues to work). These characteristics

vary amongst insulin types and they may also differ from patient to patient. Table 1.1

gives a brief overview of insulin types and their estimated characteristics (onset, peak

times and duration).

To survive type 1 diabetes, a lifetime of exogenous insulin injections and regular mon-

itoring of blood glucose concentration is required. On the other hand, type 2 diabetics
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+
-

Normal
Glucose level Controller Pump Diabetic

Sensor

Insulin rate Insulin

Regulated
glucose level

Measured glucose level

Figure 1.1: Closed loop system

require insulin only when diet restrictions, increased physical activity and non insulin

medications are insufficient to control blood glucose levels. Therefore, the problem of

closed loop blood glucose level regulation via insulin infusion has been the subject of

investigations for decades, with studies conducted in both an empirical framework and a

mathematical one. While the empirical framework involves clinical experience and knowl-

edge, the mathematical framework uses mathematical models (which describe the intrinsic

glucose regulation performed by the endocrine pancreas) to formulate appropriate schemes

for regulation of the blood glucose level.

The formulation of a control rule is based on the knowledge we have about components

of the closed loop system which is often referred to as an artificial pancreas (see Figure

1.1). Thus, the ultimate aim of a control algorithm is to mimic the functionality of the

pancreas . While these control algorithms are usually closed loop in practice, their design

can be enhanced significantly by comparison to corresponding open loop optimal controls.

One aim of this thesis is to construct open loop optimal controls for diabetic patients.

Mathematically based control methods rely on dynamical models of the body’s blood

glucose regulatory system. To date, several nonlinear mathematical models for the blood

glucose regulatory system have been proposed. These range from simple ones such as

the Bergman minimal model [10], which has been widely cited, to more comprehensive

ones [13]. Comprehensive models aim to integrate knowledge about the blood glucose reg-

ulation system into a large nonlinear compartmental model involving a variety of param-

eters and factors that influence the system. Several control models, such as proportional-

integral-derivative (PID) control [38], robust servo control [28], and model predictive

control (MPC) [23], have been developed based on the Bergman minimal model. In most

of the existing control models, the glucose regulatory system is greatly simplified and

only glucose and insulin are considered. We will discuss a variety of dynamic and control

models in more detail in the next chapter of this thesis.

The aim of this thesis is to propose and illustrate a general methodology for the analysis

and control of the human blood glucose regulatory system. We adopt a comprehensive

dynamic model of intermediate complexity and show how it can be readily fitted to
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individuals. We also demonstrate how optimal open loop controls can be calculated for

this model. We then extend the model to include bolus insulin injections for the treatment

of diabetic patients. We also show how to incorporate the role of exercise into this model

and determine combined optimal insulin delivery and exercise regimes. Finally, we point

out other important treatment regimes that should also be incorporated into the model

in the future.

1.2 Optimal control

Optimal control and optimal parameter selection problems arise in many fields such as fi-

nancial management, forestry, agriculture, defense, civil, chemical, electrical and mechan-

ical engineering, biology and the social sciences. Broadly speaking, an optimal control

problem seeks to optimize a performance index subject to a set of dynamic and, possi-

bly, algebraic constraints. The dynamic constraints may consist of a set of differentiable

equations (ordinary or partial) or a set of difference equations. These equations may

be deterministic or stochastic in nature. In this thesis, we formulate and solve several

practical problems related to the insulin-glucose dynamics in the human body. These

formulations are in the form of optimal parameter selection problems as well as combined

optimal parameter selection and optimal control problems involving systems of ordinary

differential equations. We give a general formulation of these problems and discuss their

solution methods in this and the following sections.

A general formulation of a basic optimal control problem can be described as follows.

Consider the dynamical system

ẋ(t) = f(t, x(t), u(t)), (1.1)

over the time horizon t ∈ [0, T ] and the initial condition

x(0) = x0, (1.2)

where

• x(t) ∈ Rn is the state vector at time t;

• u(t) ∈ Rr is the control vector (whose components are the control variables) at time

t;

• f : R×Rn×Rr → Rn is a given function, assumed to be continuously differentiable

with respect to x and u, and piecewise continuous with respect to time t;

• T is the terminal time;



6 Introduction

• x0 ∈ Rn is a given initial state vector;

• n is the number of states; and

• r is the number of controls.

A function u : [0, T ] → Rr represents a control strategy for system (1.1)-(1.2) and returns

the value of the control vector at each point in the time horizon. Such a control strategy

is called a control function and it is usually bounded. Hence, we normally assume that

the range of the control function is contained within some proper subset U = {u =

[u1, . . . , ur]
T : αi ≤ ui ≤ βi, i = 1, . . . , r} ⊂ Rr , which is called the control restraint set.

Here, αi and βi are given constants such that αi < βi for each i = 1, . . . , r. A bounded

measurable function u : [0, T ] → U such that u(t) ∈ U for all t ∈ [0, T ] is called an

admissible control. Let U be the class of all such admissible controls.

The control function influences the state through the dynamic system (1.1). In other

words, the control changes its value during the time interval [0, T ] which, in turn, affects

the evolution of the state x(t) according to the dynamic system (1.1) and (1.2). Let x(·|u)
denote the solution of (1.1) and (1.2) corresponding to u ∈ U .

Many practical problems include a variety of different constraints imposed on the state

and control. A canonical form for system constraints can be mathematically expressed

as:

Gi(u) = Φi(x(T )) +

∫ T

0

Li(t, x(t), u(t))dt

= 0, i = 1, . . . , qe,

≥ 0, i = qe + 1, . . . , q,
(1.3)

where q is the total number of canonical constraints and qe is the number of canonical

equality constraints. In an optimal control problem, we seek to optimize a cost functional

of the form

G0(u) = Φ0(x(T )) +

∫ T

0

L0(t, x(t), u(t))dt. (1.4)

Here, Φi and Li, i = 0, 1, . . . , q, are given continuously differentiable functions with respect

to all their arguments. Thus, we state the general formulation of an optimal control

problem as choosing a control u ∈ U so as to minimize the objective (1.4) subject to the

dynamics (1.1) and (1.2) and subject to the constraints (1.3). Let this be denoted as

Problem P1. Analytical solutions of Problem P1 are only possible for simple cases. These

normally require the first order necessary conditions of optimality (the Euler-Lagrange

equations in the case of unconstrained problems or the Pontryagin Minimum Principle in

the case of control bounds) or solutions of the Hamilton-Jacobi-Bellman (HJB) equation

derived via the dynamical programming principle.
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1.3 Numerical solution techniques

In general, it is difficult to solve optimal control problems analytically. Thus, numerical

methods are required. Numerical methods are classified into two broad categories: direct

and indirect methods. A thorough review for these methods and their various approaches

is given in [48]. Essentially, in an indirect method, the first order optimality conditions

are applied to the original problem, resulting in a two point boundary value problem

(TPBVP). This can then be solved numerically with either shooting methods or multiple

shooting methods. On the other hand, in direct methods, the control and/or the state

of the optimal control problem are approximated via a discretization process. This leads

to a discretized version of the problem which can then be regarded as a mathematical

programming problem and solved numerically using a variety of techniques. When only

the control is approximated, the direct method is referred to as a control parameterization

method. When both the state and the control are discretized, the approach is known as

a state discretization method. As the control parameterization approach will be adopted

in this thesis, we give a more detailed review below.

1.3.1 Control parameterization

Control parameterization is one of the common techniques to solve optimal control prob-

lems numerically [55]. Let us consider its application to Problem P1. The basic concept

of this technique centers around two steps; partition the time horizon of a problem into

a number of fixed subintervals, i.e. partition the time horizon [0, T ] into a set of points

P = {{τ0, τ1, . . . , τN}, τ0 = 0, τN = T, τj−1 < τj, j = 1, . . . , N}, where N is the number of

intervals in the partition chosen by the user. We then approximate each control function

ui(t), i = 1, . . . , r, by a combination of basis functions ψj, j = 1, . . . , N, as follows:

ui(t) =
N∑
j=1

σijψj(t), j = 1, . . . , N, i = 1, . . . , r, (1.5)

where σij, i = 1, . . . , r, j = 1, . . . , N, are decision variables which need to be optimally

chosen in order to minimize the objective function. Most applications of control param-

eterization are implemented with piecewise constant basis functions. However, the basis

functions can take other forms such quadratic or cubic or non polynomial [25]. In the

case of piecewise constant basis functions, we choose ψj(t) = χ[τj−1,τj), where

χ[τj−1,τj)(t) =

1, if t ∈ [τj−1, τj),

0, otherwise,
(1.6)

is the indicator function with respect to the interval [τj−1, τj). The approximate control
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function can then be written as:

ui(t) =
N∑
j=1

σijχ[τj−1,τj)(t), (1.7)

where αi ≤ σij ≤ βj, i = 1, . . . , r, j = 1, . . . , N. Let σi = [σi1, σi2, . . . , σiN ], i = 1, . . . , r,

and σ = [σT
1 , σ

T
2 , . . . , σ

T
r ]

T . Furthermore, let x(·|σ) denote the solution of (1.1) and (1.2)

when the control is defined by (1.7). Then, the approximate problem resulting from

control parameterization can be written as follows. Minimize

GN
0 (σ) = Φ0(x(T |σ)) +

∫ T

0

L̃0(t, x(t|σ), σ)dt (1.8)

subject to dynamical system,

ẋ(t) = f̃(t, x(t), σ), t ∈ [τi−1, τi), i = 1, . . . , N, (1.9)

the initial condition (1.2) and the canonical constraints

GN
i (σ) = Φi(x(T |σ)) +

∫ T

0

L̃i(t, x(t|σ), σ)dt

= 0, i = 1, . . . , qe,

≥ 0, i = qe + 1, . . . , q,
(1.10)

where f̃(t, x(t), σ) and L̃i(t, x(t|σ), σ), i = 0, . . . , q, denote the functions f and Li, i =

0, . . . , q, respectively, with the argument u(t) replaced by the form (1.7). The resulting

approximate problem, referred to as Problem P2, is essentially a mathematical program-

ming problem which depends on a finite number of decision variables. Once the gradients

of this problem have been calculated via the formulation of Hamiltonian functions and the

solution of costate dynamics [55], it can be solved numerically by using a gradient based

optimization method like sequential quadratic programming (SQP) (see [35], [14], [43]

and [51]). The optimal control software MISER3.3 [25] implements this approach.

1.3.2 MISER

The FORTRAN based optimal control software MISER was originally developed by K.L.

Teo and C.J. Goh in 1988 [21]. This version of MISER essentially solves the Problem

P2 described in the last section. A much more comprehensive and user friendly version,

MISER3, was created by L.S. Jennings in 1991 [24]. In 2004, the latest version of MISER

(MISER3.3) was developed. It incorporated significant improvements such as allowing

state jumps in the dynamic system and multiple characteristic times in the objective

and constraints [25]. Thus, MISER3.3 has become a powerful software which can be

used to solve a wide range of practical optimal control problems. As mentioned above,
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MISER’s theoretical basis is the control parameterization technique. It basically deals

with three standard forms of constraints: canonical constraints of the form given above,

continuous inequality constraints on the states and linear constraints involving only the

controls. Users only require a basic knowledge of multi-variable calculus and elementary

FORTRAN programming skills to solve problems with features allowed by MISER3.3.

More complex problems that do not fit the standard framework of MISER3.3 can often

be transformed into an equivalent standard form suitable for the software.

1.3.3 Additional features allowed in MISER3.3

MISER3.3 generates a numerical solution to the general continuous optimal control and

optimal parameter selection problem in the form stated below. Here (u, z) ∈ U×Z, where

u(t) ∈ U is the control function as defined previously, and z ∈ Z is a vector of system

parameters, where Z={z = [z1, . . . , zm]
T : ai ≤ zi ≤ bi, i = 1, . . . ,m} is a set of feasible

system parameters. The problem is to choose (u, z) ∈ U × Z to minimize

G0(u, z) =
M∑
j=1

Φ0,j(x(γj), z) +

∫ T

0

L0(t, x(t), u(t), z)dt (1.11)

subject to the dynamic system,

ẋ(t) = f(t, x(t), u(t), z), t ∈ [0, T ], (1.12)

the initial conditions

x(0) = x0(z), (1.13)

the canonical constraints

Gi(u, z) =
M∑
j=1

Φi,j(x(γj), z) +

∫ γj

0

Li(t, x(t), u(t), z)dt

= 0, i = 1, . . . , qe,

≥ 0, i = qe + 1, . . . , q,
(1.14)

and the continuous inequality constraints

hi(x(t), z) ≥ 0, t ∈ [0, T ], i = 1, . . . , nc, (1.15)

where

• f, Li and Φi,j are given functions, assumed to be continuously differentiable with

respect to x, u and z, and piecewise continuous with respect to time t;

• γj, j = 1, . . . ,M, are known as the characteristic times of the canonical constraints.
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This problem is denoted as Problem P3. In addition to the formulation above, MISER3.3

allows for a range of other features such as piecewise linear continuous control functions,

jump conditions in the state dynamics and various types of regularization terms in the

objective. We have not detailed these here as they are not used in the computational

work for this thesis. However, the interested reader can find details in [25].

The continuous inequality constraints (1.15) are effectively infinite dimensional con-

straints for the underlying mathematical programming problem that results from the

control parameterization method. An early approach [54] transformed these constraints

into a canonical form (1.14), but the resulting constraints are not differentiable and can

thus cause numerical difficulties for the nonlinear programming solver built into MISER.

A more comprehensive transcription technique which involves two smoothing parameters

was proposed in [56]. This has been coded into the MISER package and the user merely

needs to specify the right hand side of (1.15) and set a switch to invoke this technique.

A more thorough theoretical analysis of the technique which demonstrates that controls

may also be included in the right hand side of (1.15) was given in [32].

The use of multiple characteristic time points in the objective and constraints was first

proposed in [41] where gradient formula for such functionals were derived. Once again,

these have been incorporated into the MISER software so that the user merely needs to

specify the existence of the multiple characteristic time points.

To use MISER3.3, the user needs to edit a given file of FORTRAN subroutines which

is then compiled into an executable program with the rest of the MISER code. Essentially,

the user has to code up all functions in the dynamics, objective and constraints as well

as their first order derivatives with respect to the states, controls and system parameters.

MISER then uses these to construct and solve a parameterized version of the problem.

This involves setting up the co-state differential equations, solving the state and co-state

dynamics numerically, evaluation of the objective and constraints, formulation and eval-

uation of gradients of the objective and constraints with respect to all decision variables

and finally the optimization of the underlying mathematical programming problem via

sequential quadratic programming (SQP) [50]. Note also that other information about a

problem, such as the number of states, controls, system parameters and constraints, the

constraint types, control and system parameter bounds, partitioning of the time horizon

for control parameterization, options for the numerical solution of the dynamics, and op-

tions for the optimization routine are specified by the user in a data file that can be easily

constructed when the executable code is first invoked.

It should be noted that the numerical solution of general combined optimal control

and optimal parameter selection problems is a complex task even with the availability of

packages like MISER3.3. Convergence to an optimal solution may be slow and some judg-

ment on the part of the user is required to set appropriate parameters for the optimization
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processes and to determine when the number of iterations is sufficient. Furthermore, since

the underlying mathematical programming problem is non-convex, convergence may only

lead to locally optimal solutions and it may be necessary to start the process with several

initial guesses to find a good solution.

In practice, the accuracy of the optimal control obtained by the standard control pa-

rameterization method with piecewise constant controls is often not high, as it is impossi-

ble to know the precise switching times a priori. To obtain higher accuracy, the switching

times of the controls should also be regarded as decision variables, but MISER3.3 does not

allow for this possibility. However, as detailed in the next section, this difficulty can be

overcome via a time scaling transformation which was originally proposed in [29]. As we

will see later in the thesis, the same technique can also be employed to allow for variable

characteristic times in both the objective and the constraint functionals.

1.3.4 Time scaling transformation

For ease of notation, we illustrate the application of the technique to Problem P1 only.

Suppose that we implement control parameterization for Problem P1 using the partition

P defined in Section 1.3.1 and the piecewise constant control given by (1.7). We now

want the points in the partition τi, i = 1, . . . , N to be variables also. Thus, we invoke a

well known transformation [30] to map these variable time points to fixed points on a new

time horizon [0, N ]. The resulting equivalent problem avoids several numerical difficulties

associated with variable switching times [30] and can be solved directly with MISER3.3.

This is achieved by defining a new time variable s ∈ [0, N ], a set of equivalent variables

θi = τi − τi−1, i = 1, . . . , N, (1.16)

and setting
dt(s)

ds
= v(s), (1.17)

where v : [0, N ] → R is a piecewise constant function defined by

v(s) =
N∑
i=1

θiχ[i−1,i)(s), (1.18)

which satisfies the bounds

0 ≤ v(s) ≤ T, s ∈ [0, N ]. (1.19)
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As before, the indicator function is defined as

χ[i−1,i)(s) =

1, if s ∈ [i− 1, i),

0, otherwise.
(1.20)

Furthermore, we require

t(0) = τ0 = 0, (1.21)

and

t(N) = T. (1.22)

Note that θi, i = 1, . . . , N, are now decision variables in the transformed problem and the

values of τi, i = 1, . . . , N, can be easily calculated from θi, i = 1, . . . , N . Furthermore, we

require

0 6 θi 6 T, i = 1, . . . , N. (1.23)

Let x̃(s) = x(t(s)) and ũ(s) = u(t(s)).

Since (1.17) can be re-arranged as dt = v(s)ds, the transformed problem is to choose

a control of the form (1.7) (i.e. choosing both σij and θi, i = 1, . . . , N) to minimize the

objective

G̃0 = Φ0(x̃(N)) +

∫ N

0

v(s)L0(t(s), x̃(s), ũ(s))ds (1.24)

subject to the dynamic system

˙̃x(s) = v(s)f(t(s), x̃(t), ũ(s)), (1.25)

differential equation (1.17), the initial conditions (1.2) and (1.21), the constraints

G̃i = Φi(x̃(N)) +

∫ N

0

v(s)Li(t(s), x̃(s), ũ(s))ds

= 0, i = 1, . . . , qe,

≥ 0, i = qe + 1, . . . , q,
(1.26)

the constraint (1.22) and the bounds on v (1.19) and θ (1.23). Note that the transformed

problem fits directly into the general MISER3.3 framework. Compared to Problem P2,

the revised problem, denoted as Problem P4, has one additional state, one additional

control function and one additional canonical constraint.

Finally, note that the same time scaling transformation can also be employed for more

general classes of optimal control problems such as Problem P3 described in Section 1.3.3.



CHAPTER 2

Literature Review

2.1 Mathematical modelling of the blood glucose reg-

ulatory system

A range of mathematical models have been proposed in the literature to capture, and,

in many cases, control blood glucose dynamics in the human body. Most of these are

dynamic in nature, either in the form of differential or difference equations. They often

include other compounds associated with glucose, such as insulin, glucagon and glyco-

gen. Some models are designed exclusively to determine treatment regimes for Type 1

diabetics while others are intended for both healthy individuals as well as those with a

diabetic impairment. Models also differ in terms of the processes that they capture. For

example, some models simply assume the appearance of glucose in the blood while oth-

ers actually capture the digestive process directly. Models vary greatly in terms of their

complexity, ranging from simple linear models involving just glucose and insulin [1] to

complex nonlinear models which try to capture the chemical changes of the beta cells in

the pancreas [20]. While simple linear models lend themselves to analytic analysis and

the application of standard control algorithms from the engineering disciplines, they do

not capture the rich dynamic behavior of the real process. There is an ever expanding

range of medical treatment options for diabetes beyond the traditional use of insulin.

In order to capture the various effects of these treatments, mathematical models must

include those dynamics which are directly affected by the treatments. In this chapter, we

review a range of existing models and outline their main features.

2.1.1 Bergman minimal model

The Bergman minimal model [10] was proposed around 1980 to allow researchers to

measure the quantitative contributions of pancreatic responsiveness (i.e. the increased

production of insulin by the pancreas) and insulin sensitivity (i.e. the increased uptake

of glucose by cells in response to insulin) to a subject’s overall glucose tolerance (i.e. the

13
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body’s ability to revert from high blood glucose levels back to base levels). As both of

these effects lead to a lowering of blood glucose levels, it is generally difficult to measure

their relative contribution. The proposed model is ‘minimal’ in the sense that it is the

simplest physiologically based representation of the blood glucose regulatory system which

can account for the following factors:

(a) observed glucose kinetics when the plasma insulin values are supplied; and

(b) observed insulin kinetics when the plasma glucose values are supplied.

The minimal model was used in [10] to estimate the characteristic parameters of pancreatic

responsiveness and insulin sensitivity of several subjects who underwent an intravenous

glucose tolerance test (IVGTT) and whose plasma glucose and insulin levels were mea-

sured in response to the IVGTT. Up until the results in [10], quantitative analysis of

pancreatic responsiveness and insulin sensitivity was only possible by artificially main-

taining constant blood glucose levels (by infusion of glucose during an experiment, known

as glucose clamp) which entailed some risk to the subject. Despite the limited intended

application of the Bergman minimal model as an analysis tool for IVGTT data, its inher-

ent simplicity (it involves only 3 coupled ordinary differential equations) has led to many

researchers adopting and modifying the model in subsequent publications. In [9], more

than 500 such studies have been identified in the literature. It is also worth noting that the

role of the liver in the blood glucose regulatory system is acknowledged in [10], although

it is not included in the minimal model. Although no direct treatment methods are pro-

posed in [10] for glucose intolerant (i.e.diabetic) subjects, it is noted that once a subject’s

pancreatic responsiveness and insulin sensitivity have been identified, specific treatments

can be designed with more confidence. The dynamic system takes the following form [12]:

dG

dt
= −p1[G(t)−Gb]−X(t)G(t) +D(t), (2.1)

dX

dt
= −p2X(t) + p3[I(t)− Ib], (2.2)

dI

dt
=

γ[G(t)− h]t− h[I − Ib], if G(t)− h > 0,

−n[I − Ib] + u(t), if G(t)− h ≤ 0,
(2.3)

where

G(t)[mg/dl] = the blood glucose concentration at time t [min];

I(t)[µU/ml] = blood insulin concentration at time t (min);
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X(t)[min−1] = a function representing insulin excitable tissue glucose uptake activ-

ity, proportional to insulin concentration in a remote compartment;

Gb[mg/dl] = the subject’s basal glucose level;

Ib[µU/ml] = the subject’s basal insulin level;

D[mg/dl] = exogenous infusion of glucose;

u(t)[µU(ml]) = exogenous infusion of insulin; the basal glucose and insulin levels

refer to the intravenous glucose tolerance test (IVGTT) record;

n[min−1] = the time constant for insulin decay;

p1[min
−1] = the insulin independent rate constant of glucose uptake in muscles and

liver;

p2[min
−1] = the rate of decrease in the tissue glucose uptake ability;

p3[(µU(ml)min
−2)] = the insulin dependent increase in glucose uptake ability in

tissue per unit of insulin concentration above the basal level;

h[mg/dl]= the pancreatic “target glycaemia”;

γ[(µU/ml)/(mg/dl)−1min−1]= the rate of pancreatic release of insulin after the

bolus of glucose concentration above the target ”glycaemia”.

Here, U is the international unit especially for insulin, such that 1mU = 6.945× 10−12M .

Equation (2.1) assumes the appearance of glucose via the digestion of a meal and

two means by which glucose disappears, one related to insulin and the other unrelated.

Equation (2.2) assumes a natural decay of remote insulin and appearance/disappearance

of glucose depending on its current level in relation to a basal level. Equation (2.3)

describes the dynamics of pancreatic insulin release in response to glucose stimulus for

two cases, a healthy person and a diabetic. The term γ[G(t) − h]t presents endogenous

insulin secretion for a healthy person in the first case (when G(t) − h > 0) and it does

not appear in the second case which describes the insulin release rate for a diabetic. In

contrast, the term u(t) which represents an exogenous infusion of insulin is added in this

second case.

2.1.2 Models by Cobelli and coworkers

A more comprehensive model of the blood glucose regulatory system which considers

glucagon dynamics alongside insulin dynamics and their interrelation was proposed in [13].
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This model involves three subsystems. The glucose subsystem is described by a one-

compartment model of distribution and metabolism that involves net hepatic glucose

balance (i.e. the difference between liver glucose production and uptake), renal excretion

of glucose, insulin-dependent glucose utilization (by muscle) and insulin-independent glu-

cose utilization (by the central nervous system). The insulin subsystem is described by a

five-compartment model that involves pancreatic insulin storage, liver and portal plasma

insulin, plasma insulin and insulin in the interstitial fluid. The glucagon subsystem is

described by a one-compartment model that involves plasma glucagon and glucagon in

the interstitial fluid.

The authors in [13] acknowledge the difficulty of validating complex models against

experimental data. However, they point out that many aspects of their model are based

on results from both whole body and individual organ experiments. Reference [13] also

includes a range of simulations of their model for a variety of different scenarios and

demonstrates reasonable results in each case. While acknowledging some shortcomings of

their model, the authors of [13] make an important point which is true for any compre-

hensive mathematical model in the biological sciences: ‘The usefulness of the model as a

sort of efficient and integrated library of physiological and clinical knowledge in a research

group working both experimentally and theoretically on carbohydrate metabolism can not

be overemphasized’. Despite its complexity (or perhaps because of it), the model in [13]

has not been as widely cited as the Bergman minimal model. Its distribution of insulin

into five compartments is unique amongst all the models we have studied and this feature

was never carried forward into future models that evolved from the group of researchers

around Claudio Cobelli. A recent example is proposed in [37] where several independent

sub-models are combined. One of these sub-models describes the glucose ingestion and

absorption processes in the digestive system, a difficult task in its own right. The model

in [37] was fitted to the results of a comprehensive experiment involving over 200 healthy

and 14 type 2 diabetic subjects who consumed a meal with 3 versions of traceable glucose.

The aim of the resulting model is to serve as a simulation tool for testing various types

of diabetic treatment regimes. For this purpose, a Matlab version of the models, known

as GIM [15], has been created for general use by researchers.

2.2 Early work on diabetes control

There were several publications by M.E. Fisher around 1990 with the aim to derive optimal

strategies for the control of diabetes. Both analytical and numerical solution methods were

employed, including the first ever application of computational optimal control methods

in this area. In [18], the simple linear dynamic model of [1] was employed to describe the

glucose dynamics while [17] makes use of the nonlinear Bergman minimal model [10]. The
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scenarios tested essentially assumed a type 1 diabetic subject and the requirements were to

reduce an initially high blood glucose level in one case or to deal with a glucose spike due to

a meal ingested in another case. The only means of controlling blood glucose was assumed

to be the external administration of insulin. Some interesting results were obtained,

such as the superiority of single large dose of insulin over a continuous injection but the

underlying models were too simple to justify any conclusions in a realistic environment.

2.3 Blood glucose control for diabetics

Many of the proposed mathematical models for the blood glucose regulatory system were

constructed with the ultimate purpose of determining various ways of controlling glucose

levels for diabetic patients (mainly via appropriate injections of insulin). An excellent

review of a range of control algorithms can be found in [12], where the authors also

discuss in detail the glucose measuring devices and insulin injection equipment used in

clinical settings. We give a brief review of several control methods below.

A range of model free control algorithms has been described in the literature, mainly

in the context of type 1 diabetic treatment. Model free means that the algorithms are

not based on any mathematical model of the glucose regulatory system. Instead, they

generally rely on frequent blood glucose measurements, including the response of blood

glucose levels to known quantities of insulin infusions. Simple versions rely on look up

tables or functional curves based on previous experience while more advanced ones employ

methods popular in engineering such as proportional-integral-derivative (PID) control or

neural network approaches (where a neural network is first trained on the insulin-glucose

response data) [12]. While these model free algorithms are usually easy to implement

in practice and can, with some experience, lead to good blood glucose control, they are

effectively a black box approach and offer no insights into how the real underlying system

functions [12].

In contrast, model based control methods assume a mathematical model of the glucose

regulatory system and can thus deal with more complicated scenarios such as model

disturbances or other major perturbations of the system. Drawbacks of the model based

approach are that the model may lack validity or accuracy and that models often contain

multiple uncertain parameters that may be difficult to measure in practice. Several recent

approaches are outlined below.

In [46], discrete time model based algorithms for type 1 diabetic patients fitted with

closed loop insulin infusion pumps are proposed. A linear state space model is assumed

and used to estimate future output values based on a series of past inputs. This informa-

tion is then used to generate a linear model predictive controller (MPC). This approach

is then enhanced with the use of a Kalman filter for state estimation and the non lin-



18 Literature Review

ear quadratic dynamic matrix control (NLQDMC) technique (which compensates for the

known non linearities of the process). The digital nature of this algorithm lends itself to

possible implementation via micro chips. A similar MPC based approach is used in [36],

where the authors augment the state space model with an additional differential equation

which models the relationship between the blood glucose levels in the subcutaneous layer

(where measurements are taken from in practice) and in the blood plasma.

A non linear model predictive controller was proposed in [23] with the aim of maintain-

ing normal blood glucose levels in type 1 diabetic patients during fasting conditions. It is

based on the authors’ own blood glucose regulatory model which also includes a two com-

partment submodel to represent the absorption of subcutaneously administered insulin.

Other features of the model are of a similar level of complexity as the Bergman minimal

model [10]. An interesting feature of the controller proposed in [23] is the provision of

target trajectories towards the desired normal blood glucose level of 6 (mmol/L). A linear

decrease is prescribed for high blood glucose concentrations while a logistic increase is

prescribed when starting with low concentrations. The actual implementation of the con-

troller in [23] is over discrete time steps. An important point made by the authors of [23]

is that the parameters of their underlying model need to be chosen and fitted separately

for every individual patient. Indeed, they may even need to be recalculated for the same

patient over longer time periods. This observation can be readily applied to all models of

the blood glucose regulatory system.

In [39], the authors augment the Bergman minimal model with an additional equation

to describe endogenous insulin production so that they can also capture the behavior of

type 2 diabetic patients. They then derive a proportional derivative (PD) and a model

predictive controller (MPC) on the basis of the augmented model and propose a switch-

ing control strategy which attempts to balance optimal performance with reduced com-

putational complexity and the need to avoid hypoglycemia. Results are shown to be a

significant improvement over those obtained from more traditional PD controllers. This

is one of the few control papers concerned with type 2 diabetic patients.

Both [47] and [28] propose a similar control approach based on the H∞ criterion in

linear control system design. In [28], the linear system is based on a series of set points

derived from the non linear model in [31] (which we will review in more detail in the next

section). In [47], the authors linearized the comprehensive nonlinear model of [53]. Both

algorithms were extensively tested on perturbed versions of their underlying nonlinear

models and found to perform well. An interesting feature of [47] was the inclusion of lac-

tate (which appears in the blood stream in response to moderate exercise) and adrenaline

(which appears in the blood stream in response to nocturnal hypoglycemic episodes) in

their linearized model.

A rather different control approach was proposed in [5]. The problem of determining
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an optimal closed loop control for an underlying non linear model of blood glucose can,

in principle, be addressed by dynamic programming. However, the computational cost

of this direct approach is prohibitive for most practical problems. Instead, the authors

of [5] adopt an approximate dynamic programming (ADP) formulation and the solution

is obtained via a neural network approach. Since the neural network can be trained off

line, the overall method is suitable for real time application. Results in [5] show that the

strategy performs significantly better than other control strategies based on linearized

approximations of the underlying model. In particular, it is better at avoiding the crucial

problem of hypoglycemia. However, the approach was based on a relatively simple version

of the Bergman minimal model and it was not tested in clinical trails.

Despite a large range of control algorithms being available, the utopian notion of an

artificial pancreas which requires no intervention is still some time away. In addition to

a control algorithm, such a device also requires continuous blood glucose (BG) sensors

and an insulin pump to deliver the insulin to the subject (patient). While subcutaneous

insulin pumps are nowadays widely used in type 1 diabetics and have proven reliability,

the task of measuring blood glucose levels is more difficult.

Various blood glucose monitoring techniques have been developed to date and they

can be classified into three categories. Firstly, invasive techniques depend on taking

regular blood glucose (BG) samples directly from veins and sending these samples to

a glucose sensor. The time delay due the time taken by the sensor has been reduced

over the years from about 10 minutes to about 50 seconds for modern devices. Because

the BG measurement is done in the actual fluid of interest invasive methods have high

accuracy. However, there are some disadvantages such as the need for medical supervision,

significant loss of blood with frequent sampling, and the risk of infections and thrombosis.

Secondly, there are the minimally invasive techniques. These are safer than invasive

methods because the BG measurement is implemented outside the vascular tree, so it

avoids the risks associated with accessing veins. The basic idea is to measure BG indi-

rectly via accessing veins the subcutaneous (SC) layer. Based on this measurement, one

can deduce BG levels based on the relationship between the subcutaneous glucose and the

plasma glucose levels. Many studies have investigated this relationship [36]. The measure-

ment can be taken via a glucose sensor implanted in the SC tissue or via fluid extracted

from the SC space. For the case of sensors implanted into the SC tissue, the measurement

is done in situ by using methods such as amperometry (an example of such a sensor is

the MiniMed Continuous Glucose Monitoring System (CGMS)) or fluorescence detection.

The implantable sensors have some advantages due to their small size and portability and

they do not require extraction of SC fluid for operation. In contrast, some problems can

occur with implanted sensors such as inflammation and membrane biofouling. Biofouling

is a common problem which involves the gradual accumulation of proteins and biological
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organisms on the sensor surface which reduces the accuracy of the sensor signal. Also,

note that the need to compute the BG level from the SC level via a mathematical model

requires some effort and may not always give accurate results.

The last category of BG measurement techniques are the non-invasive ones. Clearly,

any patient would prefer to measure blood glucose by a painless method which does not

require puncturing the skin or other forms of discomfort. An example of a non-invasive

technique is optical spectroscopy. This is based on the optical properties of glucose when

exposed to radiation. In other words, it is possible to determine blood glucose levels by

exposing tissue to radiation. Many studies based on the optical spectroscopy method have

appeared in the literature. A comprehensive review of these methods and their various

applications is given in [12]. Another non-invasive technique is dielectric spectroscopy.

In this technique, a small alternating current (AC), is applied and the impedance of the

tissue to the current flow is recorded as a function of frequency [52]. Skin impedance

is very sensitive to changes in membrane potential which is, in turn, influenced by the

interaction of glucose with red blood cells. Thus, blood glucose levels can be deduced on

the basis of the impedance data. Noninvasive techniques are still being improved and are

the subject of current research with few clinical applications.

2.4 Model by Liu and Tang

A large proportion of the computational work in this thesis is based on the blood glucose

regulatory model proposed by Liu and Tang in [31]. This nonlinear model is considered

to be of an intermediate level of complexity. It supersedes the Bergman minimal model

by also taking into account the dynamics of glucose and glycogen in the liver as well as

the dynamics of insulin and glucagon receptors at the molecular level, but it has less state

variables than the complex model proposed by Sorenson [53].

The dynamic model in Liu and Tang [31] consists of eight state variables. These state

variables are defined as follows:

x1 = concentration of plasma glucagon (in moles per liter);

x2 = concentration of plasma insulin (in moles per liter);

x3 = intracellular concentration of glucagon (in moles per liter);

x4 = intracellular concentration of insulin (in moles per liter);

x5 = concentration of glucagon receptor (in moles per liter);

x6 = concentration of insulin-bound receptor (in moles per liter);
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x7 = blood concentration of glycogen (in milligrams per liter);

x8 = blood concentration of glucose (in milligrams per liter).

The model can be naturally divided into three subsystems, each of which is described

below. See Figure 2.1 for a graphical representation.

The insulin and glucagon transition subsystem governs x1 and x2. The model assumes

that plasma insulin does not act directly on the glucose metabolism, but instead through

remote cellular insulin. The model also assumes that intracellular insulin does not move

back to plasma. Under these assumptions, the dynamics for x1 are given by

dx1
dt

= −(kp1,1 + kp1,2)x1 + w1, (2.4)

where kp1,1 is a transition rate, kp1,2 is a degradation rate, and w1 is the glucagon release

rate (GRR) defined by

w1 =
Gm

1 + b1 exp a1(x8 − C5)
. (2.5)

Furthermore, the dynamics for x2 are given by

dx2
dt

= −(kp2,1 + kp2,2)x2 + w2, (2.6)

where kp2,1 is a transition rate, kp2,2 is a degradation rate, and w2 is the insulin release rate

(IRR) defined by

w2 =
Rm

1 + b2 exp a2(C1 − x8)
. (2.7)

The fractions w1 and w2 in equations (2.4)-(2.7) model the natural feedback control mech-

anisms in the body. Note that Gm is the maximum glucagon infusion rate, Rm is the

maximum insulin infusion rate, and a1, a2, b1, b2, C1 and C5 are positive constants.

The insulin and glucagon receptor binding subsystem governs x3, x4, x5 and x6. The

model assumes that receptor recycling is a closed subsystem; the synthesis rate of receptors

is equal to their degradation rate. The dynamics for this subsystem are given by

dx3
dt

= −ks1,1x3(R0
1 − x5)− ks1,2x3 +

kp1,1Vpx1

V
, (2.8)

dx4
dt

= −ks2,1x4(R0
2 − x6)− ks2,2x4 +

kp2,1Vpx2

V
, (2.9)

dx5
dt

= −ks1,1x3(R0
1 − x5)− kr1x5, (2.10)

dx6
dt

= −ks2,1x4(R0
2 − x6)− kr2x6, (2.11)

where ks1,1 and k
s
2,1 are the hormone-receptor association rates, ks1,2 and k

s
2,2 are the degra-

dation rates, R0
1 and R0

2 are the total concentrations of receptors, kr1 and kr2 are the
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Figure 2.1: A simplified model of the regulatory system for blood glucose (adapted from
reference [31]). Glucose is input from food and the liver, and used by brain and nerve
cells (insulin-independent) and by tissue cells such as muscle, kidney, and fat cells (insulin-
dependent, indicated by the dashed arrow). Glucose is transported to and from liver cells
by the concentration-driven GLUT2, which is insulin-independent. In response to low
blood glucose levels (< 80 mg/dl), the α cells of the pancreas produce the hormone
glucagon. The glucagon initiates a series of activations of kinases (the black arrows
indicate such activations). This ultimately leads to the activation of the enzyme glycogen
phosphorylase, to catalyze the breakdown of glycogen into glucose. In addition, the series
of activations of kinases also result in the inhibition of glycogen synathase, which stops
the conversion of glucose to glycogen. In response to high blood glucose levels (> 120
mg/dl), the β cells of the pancreas secrete insulin. Insulin triggers a series of reactions to
activate glycogen synthase, which catalyzes the conversion of glucose into glycogen.

inactivation rates, Vp is the plasma insulin volume, and V is the cellular insulin volume.

The glucose production and utilization subsystem governs x7 and x8, and thus models

the production of glucose. Plasma glucose has two sources: hepatic glucose produced by

converting glycogen into glucose in the liver represented by f5 defined in equation (2.12)
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and exogenous glucose taken from food represented by G in equation (2.15). Glucose

utilization can be classified into two classes: insulin-independent (by the brain and nerve

cells) (represented by f1 defined in equation (2.16)) and insulin-dependent (by the muscle

and fat cells) (represented by the product of f2 and f3, themselves defined in equations

(2.17) and (2.18)). The dynamics for x7 are given by

dx7
dt

= f4 − f5, (2.12)

where

f4 =
k1x6

1 + k2x5
· V

gs
maxx8

kgsm + x8
(2.13)

represents the synthasis of glycogen from glucose and

f5 = k3x5
V gp
maxx7

kgpm + x7
. (2.14)

Here, k1, k2 and k3 are the feedback control gains, V gs
max is the maximum velocity of

glycogen phosphorylase, V gp
max is the maximum velocity of glycogen synthase, and kgsm and

kgpm are the Michaelis-Menton constants.

The dynamics for x8 are given by

dx8
dt

= −f4 + f5 − f1 − f2f3 +G, (2.15)

where

f1 = Ub

(
1− exp

(
− x8
C2

))
, (2.16)

f2 =
x8
C3

, (2.17)

f3 = U0 +
(Um − U0)x

β
4

Cβ
4 + xβ4

. (2.18)

Note that U0, Ub, Um, C2, C3, C4 and β are positive constants, and G is the exogenous

glucose intake derived from digesting food. Note also that t is the time in minutes.
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The initial conditions prescribed for the model in Liu and Tang [31] are

x1(0) = 1.4× 10−11, (2.19)

x2(0) = 2× 6.945× 10−12, (2.20)

x3(0) = 0, (2.21)

x4(0) = 0.01× 6.945× 10−12, (2.22)

x5(0) = 0, (2.23)

x6(0) = 0, (2.24)

x7(0) = 200, (2.25)

x8(0) = 918. (2.26)

The complete model defined by equations (2.4)-(2.26) includes 36 model constants.

The model incorporates a number of features that distinguishes it from earlier ones. In

particular, Liu and Tang assume inherent feedback rates for glucagon and insulin (w1 and

w2, respectively) which model the body’s own regulating controls. Based on their model,

Liu and Tang develop a new formula to quantify the insulin sensitivity of a subject and

they also demonstrate that their feedback model is input-output stable. This stability

gives theoretical support to the knowledge that blood glucose in a healthy individual

fluctuates in a narrow range and further supports the applicability of the model. Finally,

Liu and Tang proposed an optimal control problem based on their model with a quadratic

performance index, but they considered this problem too difficult to solve because of the

complexities and nonlinearities in the model.

2.5 Contributions of the thesis

As we have clearly shown above, there are already many publications devoted to the prob-

lem of controlling blood glucose in diabetic patients. However, very few of the algorithms

preserved are based directly on underlying nonlinear models and thus they cannot take

full advantage of the assumed nonlinearities. The only contribution of those reviewed

above which uses computational optimal control methods on the basis of a nonlinear

model is [17]. Since its publication, significant advances have been made in the area of

computational optimal control. In particular, we are now able to deal with problems with

variable decision points in the time horizon and these time points may also appear in the

objective function and in the dynamics.

Thus, the first aim of this thesis is to demonstrate that computational optimal control

methods can be readily used to determine open loop optimal controls for models of the

blood glucose regulatory system. While open loop controls do not take into account
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modelling errors and uncertainties in systems, they still provide a useful benchmark for

the performance of other more direct control strategies. Using this approach, we can also

test extreme scenarios on models and thus identify their weaknesses.

In Chapter 3, we first formulate and solve an optimal parameter selection problem in

order to obtain more suitable values for many of the model parameters in the Liu and

Tang model. It is generally acknowledged in biological modelling that model constants

are difficult to determine exactly on the basis of experimental results. In the case of

blood glucose models, it has also been noted that model constants can vary significantly

between different subjects and over time for the same subject. We also show that, unlike

the perception raised in [31], optimal controls for insulin and glucagon are readily obtained

by standard computational methods.

In Chapter 4, our aim is to expand the Liu and Tang model in two ways in order to

develop effective optimal control strategies for the treatment of diabetic subjects. One

of the treatment options is increased levels of exercise. The range of dynamic models

incorporating exercise is limited and we review several examples before adopting one

approach and combining it with the Liu and Tang model. The second form of treatment

is assumed to be via bolus insulin injections. As the Liu and Tang model does not

incorporate insulin injection dynamics, we review a range of potential models and adopt a

suitable candidate. We then formulate a combined optimal control and optimal parameter

problem with the aim of determining combined optimal exercise and insulin treatment

strategies for various patient scenarios. Using a time scaling transformation, we show that

the resulting problem is readily solvable via the optimal control software MISER3.3 .

While our studies are primarily based on the model by Liu and Tang, our overall

methodology and the computational tool we used can be applied to any blood glucose

model. We identify a number of future research directions in Chapter 5 in terms of future

possible changes to the Liu and Tang model in order to incorporate a broader range of

diabetic treatment regimes.





CHAPTER 3

Modelling and Optimal Control of Blood

Glucose Levels in the Human Body

3.1 Introduction

Regulating the blood glucose level is a challenging control problem for the human body.

Abnormal blood glucose levels can cause serious health problems over the short and long

term. Although several mathematical models have been proposed to describe the dy-

namics of glucose-insulin interaction, none has been universally adopted by the research

community. In this chapter, we consider a dynamic model of the blood glucose regula-

tory system originally proposed by Liu and Tang in 2008. This model consists of eight

state variables naturally divided into three subsystems: the glucagon and insulin transi-

tion subsystem, the receptor binding subsystem and the glucose subsystem. The model

contains 36 model parameters, many of which are unknown and difficult to determine

accurately. We formulate an optimal parameter selection problem in which optimal val-

ues for the model parameters must be selected so that the resulting model best fits given

experimental data. We demonstrate that this optimal parameter selection problem can

be solved readily using the optimal control software MISER3.3. Using this approach,

significant improvements can be made in matching the model to the experimental data.

We also investigate the sensitivity of the resulting optimized model with respect to the

insulin release rate. Finally, we use MISER3.3 to determine optimal open loop controls

for the optimized model.

To date, several mathematical models for the blood glucose regulatory system have

been proposed. These models aim to describe the glucose-insulin interaction within the

human body. The Bergman minimal model (1980) is considered to be the fundamental

model in this area [12]. Several control models, such as proportional-integral-derivative

(PID) control [38], robust servo control [28], and model predictive control (MPC) [23],

have been developed based on the Bergman minimal model. In most of the existing

models, the glucose regulatory system is greatly simplified and only glucose and insulin

27
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are considered.

Liu and Tang [31] have developed a new feedback control model at the molecular level,

which considers the role of the liver, the glucagon and insulin signaling pathways and the

conversion between glucose and glycogen. However, one of the difficulties in working with

this model is that it contains many model parameters whose values are not well-defined.

Thus, in this chapter, we formulate an optimal parameter selection problem that can be

solved using the software package MISER3.3 [25]. As we will see, this approach results in

significant improvements in matching the model to experimental data.

This chapter is organized as follows. We first review the dynamic model of blood

glucose levels proposed in [31] in Section 3.2. Then, in Section 3.3, we formulate an

optimal parameter selection problem to determine optimal values for the uncertain model

parameters in the dynamic model. The objective here is to match the model to given

experimental data as closely as possible. For this purpose, we consider three possible

objective functions and solve the resulting problems using MISER3.3. In Section 4.4, we

perform a sensitivity test, as proposed in Liu and Tang [31], on the resulting optimized

model to test its sensitivity with respect to the insulin release rate. In Section 3.5, based

on the optimized model, we formulate an optimal control problem in which the aim is to

optimize the release rate for both insulin and glucose. This optimal control problem can

also be solved using MISER3.3. Finally, we conclude the chapter with a discussion of the

numerical results.

3.2 Mathematical model

The dynamic model in Liu and Tang [31] consists of eight state variables. These state

variables are defined as follows:

x1 = concentration of plasma glucagon (in moles per liter);

x2 = concentration of plasma insulin (in moles per liter);

x3 = intracellular concentration of glucagon (in moles per liter);

x4 = intracellular concentration of insulin (in moles per liter);

x5 = concentration of glucagon receptor (in moles per liter);

x6 = concentration of insulin-bound receptor (in moles per liter);

x7 = blood concentration of glycogen (in milligrams per liter);

x8 = blood concentration of glucose (in milligrams per liter).
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The model can be naturally divided into three subsystems, each of which is described

below.

3.2.1 Insulin and glucagon transition subsystem

This subsystem governs x1 and x2. The dynamics for x1 are given by

dx1
dt

= −(kp1,1 + kp1,2)x1 + w1, (3.1)

where kp1,1 is a transition rate, kp1,2 is a degradation rate, and w1 is the glucagon release

rate (GRR) defined by

w1 =
Gm

1 + b1 exp a1(x8 − C5)
. (3.2)

Furthermore, the dynamics for x2 are given by

dx2
dt

= −(kp2,1 + kp2,2)x2 + w2, (3.3)

where kp2,1 is a transition rate, kp2,2 is a degradation rate, and w2 is the insulin release rate

(IRR) defined by

w2 =
Rm

1 + b2 exp a2(C1 − x8)
. (3.4)

The fractions w1 and w2 in equations (3.1)-(3.4) model the natural feedback control mech-

anisms in the body. Note that Gm is the maximum glucagon infusion rate, Rm is the

maximum insulin infusion rate, and a1, a2, b1, b2, C1 and C5 are positive constants.

3.2.2 Insulin and glucagon receptor binding subsystem

This subsystem governs x3, x4, x5 and x6. The dynamics for this subsystem are given by

dx3
dt

= −ks1,1x3(R0
1 − x5)− ks1,2x3 +

kp1,1Vpx1

V
, (3.5)

dx4
dt

= −ks2,1x4(R0
2 − x6)− ks2,2x4 +

kp2,1Vpx2

V
, (3.6)

dx5
dt

= −ks1,1x3(R0
1 − x5)− kr1x5, (3.7)

dx6
dt

= −ks2,1x4(R0
2 − x6)− kr2x6, (3.8)

where ks1,1 and k
s
2,1 are the hormone-receptor association rates, ks1,2 and k

s
2,2 are the degra-

dation rates, R0
1 and R0

2 are the total concentrations of receptors, kr1 and kr2 are the

inactivation rates, Vp is the plasma insulin volume, and V is the cellular insulin volume.
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3.2.3 Glucose production and utilization subsystem

This subsystem governs x7 and x8. The dynamics for x7 are given by

dx7
dt

= f4 − f5, (3.9)

where

f4 =
k1x6

1 + k2x5
· V

gs
maxx8

kgsm + x8
, (3.10)

f5 = k3x5
V gp
maxx7

kgpm + x7
. (3.11)

Here, k1, k2 and k3 are the feedback control gains, V gs
max is the maximum velocity of

glycogen phosphorylase, V gp
max is the maximum velocity of glycogen synthase, and kgsm and

kgpm are the Michaelis-Menton constants.

The dynamics for x8 are given by

dx8
dt

= −f4 + f5 − f1 − f2f3 +G, (3.12)

where

f1 = Ub

(
1− exp

(
− x8
C2

))
, (3.13)

f2 =
x8
C3

, (3.14)

f3 = U0 +
(Um − U0)x

β
4

Cβ
4 + xβ4

. (3.15)

Note that U0, Ub, Um, C2, C3, C4 and β are positive constants, and G is the exogenous

glucose intake derived from digesting food. Here G is expressed using a piecewise linear

interpolation of the data in Table 3.1 and plotted in Figure 3.1, with the precise expression

given by

G =
(gi − gi−1)(t− ti−1)

t− ti−1

+ gi−1, t ∈ [ti−1, ti], i = 1, . . . , 11. (3.16)

3.2.4 Initial conditions and model constants

We assume that the system is modelled over a 9 hour period, i.e., t ∈ [0, 540], where t is

the time in minutes. The initial conditions prescribed for the model in Liu and Tang [31]
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Parameter Value Critical points Value

g0 0 t0 0

g1 69.5950045 t1 60

g2 69.2845842 t2 90

g3 77.4619058 t3 120

g4 83.7348629 t4 150

g5 85.7457293 t5 180

g6 89.2449716 t6 240

g7 87.1436913 t7 300

g8 72.9876913 t8 360

g9 52.7402225 t9 420

g10 37.6143743 t10 480

g11 30.2992243 t11 540

Table 3.1: Parameter values for the exogenous glucose input rate G
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Figure 3.1: Exogenous glucose input rate from the experimental data of Korach-André et
al. [27]
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are

x1(0) = 1.4× 10−11, (3.17)

x2(0) = 2× 6.945× 10−12, (3.18)

x3(0) = 0, (3.19)

x4(0) = 0.01× 6.945× 10−12, (3.20)

x5(0) = 0, (3.21)

x6(0) = 0, (3.22)

x7(0) = 200, (3.23)

x8(0) = 918. (3.24)

The complete model defined by equations (3.1)-(3.24) includes 36 model constants as

listed in Table 3.2. Although Liu and Tang [31] give explicit values for each of these

constants, they also acknowledge that many of these values are merely informed guesses,

usually based on biological understanding or adopted from other publications. In Table

3.2, we have indicated which of the constants are well-defined and which have some

uncertainty as to their true values. Note that the values of some of the constants in Table

3.2 differ from the original definitions given by Liu and Tang in [31]. These changes were

made based on the advice received via personal communication with Liu and Tang. In

particular, we have changed the units of measurement for the parameters ks2,1, R
0
2, C4, Rm

and k1, and we also use different values for ki, i = 1, 2, 3. These new values are reported

in Table 3.2. In addition, Liu and Tang gave the following guidance on the behaviour

of some of the uncertain parameters: the degradation rates of glucagon and its receptor

(ks1,2, k
r
1) can be assumed to be the same as the respective rates for insulin (ks2,2, k

r
2); the

maximum glucagon infusion rate Gm should be selected to be much smaller than Rm; a1

and b1 should be selected so that the glucagon secretion w1 increases rapidly when the

blood glucose level x8 drops to around 800 mg/l; kp2,1 can be assumed to be the same as

kp1,1.

3.3 Parameter estimation

Our goal in this chapter is to optimize the model parameters in (3.1)-(3.24), so that the

model matches experimental data as closely as possible. As in Liu and Tang [31], we

use the experimental data reported in Korach-André et al. [27]. This data set consists

of blood glucose measurements from a healthy individual taken after meals. We denote

this data set by {(τi, x̂i8)}9i=1, where τi denotes the i-th observation time and x̂i8 denotes

the blood glucose concentration observed at the i-th observation time. The experimental
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Constant Value Unit Status

kp1,1 0.14 min−1 uncertain

kp2,1 0.14 min−1 uncertain

kp1,2 0.3 min−1 well-defined

kp2,2 1/6 min−1 uncertain

ks1,1 6× 107 M−1 min−1 well-defined

ks2,1 6× 107 M−1 min−1 well-defined

ks1,2 0.01 min−1 uncertain

ks2,2 0.01 min−1 uncertain

kr1 0.2 min−1 uncertain

kr2 0.2 min−1 well-defined

R0
1 9× 10−13 M well-defined

R0
2 3.6114× 10−12 M well-defined

vgpmax 80 mg/l/min uncertain

kgpm 600 mg/l well-defined

vgsmax 3.87× 10−4 mg/l/min uncertain

kgsm 67 mg/l well-defined

k1 2.76900924× 1011 M−1 well-defined

k2 1.1111111× 1014 M−1 well-defined

k3 1.1111111× 1012 M−1 well-defined

V 11 l uncertain

Vp 3 l uncertain

Ub 7.2 mg/l/min uncertain

U0 4 mg/l/min uncertain

Um 94 mg/l/min uncertain

Gm 2.23× 10−10 M/min uncertain

Rm 4.8615× 10−10 M/min uncertain

C1 2000 mg/l uncertain

C2 144 mg/l uncertain

C3 1000 mg/l uncertain

C4 5.556× 10−10 M/l uncertain

C5 1000 mg/l uncertain

β 1.77 - uncertain

a1 0.005 (mg/l)−1 uncertain

a2 1/300 (mg/l)−1 uncertain

b1 10 - uncertain

b2 1 - uncertain

Table 3.2: Constants in the dynamic model (3.1)-(3.24), where M denotes moles.
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Figure 3.2: Experimental data from Korach-André et al. [27]
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Figure 3.3: Comparison of two blood glucose trajectories: the solid trajectory is the
simulated trajectory from (3.1)-(3.24) using the parameter values in Liu and Tang [31];
the dashed trajectory is the experimental data from Korach-André et al. [27]
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i 1 2 3 4 5 6 7 8 9

τi 0 60 120 150 180 240 380 420 540

x̂i
8 900 1785.29 1530.27 1330.88 1300.55 1244.95 1113.53 1078.2 900.72

Table 3.3: Experimental data from Korach-André et al. [27]

data is shown in Figure 3.2 and listed in Table 3.3. We assume that the experimental

data can be interpolated linearly as shown in Figure 3.2 to yield the function gexp(t).

Using the original parameter values in Liu and Tang [31], the resulting trajectory for

the blood glucose history is shown in Figure 3.3. We will improve the Liu-Tang model

by formulating an optimal parameter selection problem to find more appropriate values

for the uncertain model parameters in Table 3.2. In the context of Chapter 1, a pure

optimal parameter selection problem takes the general form of Problem P3, but involving

only system parameters and no control functions. In other words, each uncertain model

parameter in Table 3.2 is associated with a component of the vector of system parameters,

z. To cast the problem into the form of P3, we need to specify the set of feasible system

parameters, Z. To do this, for each uncertain parameter, we need to specify upper and

lower bounds. For parameters V , Ub, U0 and β, appropriate bounds were suggested by

Liu and Tang [31] in our personal correspondence as shown in Table 3.4. For the other

parameters, we use an iterative approach as follows. We initially guess the lower and

upper bounds on the basis of the parameter values given in Liu and Tang [31] and solve

the resulting parameter estimation problem. Then, for those parameters whose optimal

value turns out to be equal to the lower or upper bound, we decreased or increased

the respective bound by 10 percent and solved the resulting problem again. This process

continues until all optimal parameter values are contained in the interior of their respective

bound intervals. This iterative approach is necessary because the model (3.1)-(3.24) is

quite sensitive to some of the model parameters. It is difficult to integrate the dynamics

numerically when the parameter values are too far from those in the previous stage.

For the purpose of model matching, we consider three possible objectives and solve

the resulting parameter estimation problems with MISER3.3.

3.3.1 Case 1

In this case, our aim is to match the simulated blood glucose level to the experimental

data gexp(t) over the entire time horizon. Thus, the aim is to determine values of the

uncertain parameters so as to minimize

J1 =

∫ 540

0

(x8(t)− gexp(t))
2 dt (3.25)
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Parameter Lower bound Upper bound

V 10 25

Ub 4 12

U0 4 12

β 1 2

Table 3.4: Lower and upper bounds for V , Ub, U0, and β

subject to the dynamic model defined by equations (3.1)-(3.24).

The resulting optimal values of the uncertain parameters are shown in Table 3.5 and

the glucose trajectory generated from (3.1)-(3.24) using these optimal values is shown

in Figure 3.4. Comparing Figures 3.3 and 3.4, it is clear that the optimal parameter

values yield significant improvements in model matching. However, there appears to be

some mismatch between the model trajectory and experimental data at the terminal time.

Hence, we consider a modified version of the objective function (3.25) in the next case.

3.3.2 Case 2

Here, we add another term to the objective function that measures the difference between

the predicted and actual blood glucose levels at the terminal time. Specifically, the aim

is to minimize

J2 = w (x8(540)− 900.72)2 +

∫ 540

0

(x8(t)− gexp(t))
2 dt (3.26)

subject to the dynamics (3.1)-(3.24), where the weight w is chosen as w = 1000. The

idea here is to force better agreement between the model output and the experimental

data at the end of the time horizon. The resulting optimal values for the uncertain model

parameters are shown in Table 3.5. As seen from the resulting optimal glucose trajectory

in Figure 3.5, a closer match of the trajectories at the terminal time can be achieved at

the expense of increased error earlier in the time horizon.

3.3.3 Case 3

Since the experimental data in Table 3.3 is only measured at a small number of isolated

times, the actual glucose level between these times is unknown. Thus, our definition of

gexp(t) as a piecewise linear interpolating function and the use of the integral terms in

(3.25) and (3.26) may not be appropriate. An alternative parameter estimation problem
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Figure 3.4: Comparison of two blood glucose trajectories: the solid trajectory is the
simulated trajectory from (3.1)-(3.24) using the optimal parameter values for Case 1; the
dashed trajectory is the experimental data from Korach-André et al. [27]

is to choose values for the uncertain model parameters in order to minimize

J3 =
9∑

i=1

(
x8(τi)− x̂i8

)2
(3.27)

subject to the dynamics (3.1)-(3.24), where x̂i8 and τi, i = 1, . . . , 9, are as defined in Table

3.3. Note that this objective function is not in the standard canonical form due to the

presence of multiple non-integral terms that depend on the state at intermediate times

(called characteristic times in the optimal control literature). Nevertheless, objective

functions of this form can be handled using the techniques developed in [34] and [40],

which have been incorporated into the MISER3.3 software [25].

The resulting optimal model parameter values are shown in Table 3.5. As can be

seen in Figure 3.6, the resulting blood glucose level tracks the individual experimental

measurements very closely, although, as expected, it does not follow the interpolating

function gexp(t) as closely as we observed for Case 1.
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Parameter Original value Case 1 Case 2 Case 3

kp1,1 0.14 1.28929 2.19177 1.37664

kp2,1 0.14 0.100804 0.114719 0.154412

kp1,2 0.3 0.3 0.3 0.3

kp2,2 1/6 0.437605 0.743780 0.743944

ks1,1 6× 107 6× 107 6× 107 6× 107

ks2,1 6× 107 6× 107 6× 107 6× 107

ks1,2 0.01 7.19985× 10−3 2.16× 10−3 7.6107× 10−2

ks2,2 0.01 9.52782× 10−3 8.5× 10−3 8.95549× 10−3

kr1 0.2 2.59194× 10−2 7.776× 10−3 2.4× 10−1

kr2 0.2 0.2 0.2 0.2

R0
1 9× 10−13 9× 10−13 9× 10−13 9× 10−13

R0
2 3.6114× 10−12 3.6114× 10−12 3.6114× 10−12 3.6114× 10−12

vgpmax 80 25.0197 24.6129 24.7160

kgpm 600 600 600 600

vgsmax 3.87× 10−4 3.41805× 10−3 5.811× 10−3 5.811× 10−3

kgsm 67 67 67 67

k1 2.76901× 1011 2.76901× 1011 2.76901× 1011 2.76901× 1011

k2 1.11111× 1014 1.11111× 1014 1.11111× 1014 1.11111× 1014

k3 1.11111× 1012 1.11111× 1012 1.11111× 1012 1.11111× 1012

V 11 10.0004 10.3573 10.0181

Vp 3 2.41375 3.44929 2.77484

Ub 7.2 4 4 7.80699

U0 4 4 4 8.14836

Um 94 227.508 227.972 227.642

Gm 2.23× 10−10 2.05367× 10−9 3.49116× 10−9 1.87341× 10−9

Rm 4.8615× 10−10 2.29663× 10−10 3.98353× 10−10 4.22818× 10−10

C1 2000 1114.19 1114.07 1114.29

C2 144 345.384 345.434 345.378

C3 1000 1061.82 1061.77 1061.77

C4 5.556× 10−10 1.9556× 10−9 3.32383× 10−9 3.28142× 10−9

C5 1000 1124.67 1124.67 1124.68

β 1.77 1.14055 1.17821 1.33999

a1 0.005 3.48467× 10−2 5.9238× 10−2 5.9238× 10−2

a2 1/300 1.45946× 10−2 8.59508× 10−3 8.70603× 10−3

b1 10 11.4710 11.4664 11.4667

b2 1 1.15002 1.1893 1.955

Table 3.5: Comparing the optimized parameter values with the values in [31]



3.4 Model sensitivity 39

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  100  200  300  400  500  600

B
lo

od
 G

lu
co

se
 L

ev
el

 (
m

g/
l)

t

Model
gexp

Figure 3.5: Comparison of two blood glucose trajectories: the solid trajectory is the
simulated trajectory from (3.1)-(3.24) using the optimal parameter values for Case 2; the
dashed trajectory is the experimental data from Korach-André et al. [27]

3.4 Model sensitivity

In Liu and Tang [31], a sensitivity test was performed by doubling and halving the in-

sulin feedback rate and observing the corresponding model response. For comparison, we

perform the same sensitivity test on the model with the optimized parameters from Case

1. This involves replacing the original insulin feedback rate w2 in (3.4) by

w2 =
2Rm

1 + b2 exp a2(C1 − x8)
, (3.28)

and

w2 =
1
2
Rm

1 + b2 exp a2(C1 − x8)
, (3.29)

respectively. The resulting blood glucose levels are shown in Figures 3.7 and 3.8, respec-

tively. Compared to the corresponding figures in Liu and Tang [31], the glucose levels

in Figures 3.7 and 3.8 are further away from the experimental measurements. This is

expected, since optimizing the model parameters will generally lead to a more sensitive

model. Also, these results agree with the intuitive understanding of the blood glucose

regulatory system in terms of the effects of changing insulin levels.

While we do not pursue this option here, note that it is possible to formulate a modi-
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Figure 3.6: Comparison of two blood glucose trajectories: the solid trajectory is the
simulated trajectory from (3.1)-(3.24) using the optimal parameter values for Case 3; the
dashed trajectory is the experimental data from Korach-André et al. [27]

fied optimal parameter selection problem where part of the objective is to minimize the

sensitivity of the model with respect to various disturbances of the type considered here.

See [33] for details.

3.5 Optimal insulin and glucose release rates

The feedback controls (3.2) and (3.4) model the physiology of the pancreas. Liu and

Tang [31] have suggested that these natural feedback controls may not be “optimal” in

the sense of regulating the blood glucose level. They formulated a quadratic optimal

control problem which seeks to find the corresponding optimal open loop controls but

were not able to solve this problem. In this section, we demonstrate that the optimal

open loop controls for the insulin and glucose release rates can be readily calculated

using the MISER3.3 software [25]. We replace the closed loop controls w1 and w2 by

corresponding open loop controls u1 and u2, respectively. Thus, equations (3.1) and (3.3)

become, respectively,

dx1
dt

= −(kp1,1 + kp1,2)x1 + u1, (3.30)
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Figure 3.7: Blood glucose level when w2 is defined by (3.28).
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Figure 3.8: Blood glucose level when w2 is defined by (3.29).
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Figure 3.9: Optimal blood glucose trajectory corresponding to the optimal solution in
Section 3.5.

and
dx2
dt

= −(kp2,1 + kp2,2)x2 + u2. (3.31)

We assume that both u1 and u2 are parameterized as piecewise linear continuous func-

tions in accordance with the control parameterization method ( [30], [55]). The objective

function (adopted from the suggestion in [31]) is given by:

J =

∫ 540

0

{(x8(t)− 918)2 + u21(t) + u22(t)}dt. (3.32)

This objective function penalizes both control expenditure and blood glucose deviation

from the initial level. The problem is to minimize (3.32) subject to the dynamic model

(3.1)-(3.24) with the optimized parameters from Case 1 (and with (3.1) and (3.3) replaced

by (3.30) and (3.31)). As the model is quite sensitive to changes in u1 and u2, we use a

homotopy approach with the initial guesses of u1 and u2 as w1 and w2 (from the Case 1

optimized the model), respectively. We initially imposed tight lower and upper bounds on

u1 and u2 around the initial guesses. These bounds were then slowly relaxed over a series

of optimization iterations until no more improvement in the objective was observed.

The optimal blood glucose trajectory is shown in Figure 3.9 and the optimal controls

are shown in Figures 3.10 and 3.11. As can be seen from Figure 3.9, the blood glucose

level corresponding to the optimal open loop controls remains very close to the initial
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Figure 3.10: The optimal glucagon release rate.
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blood glucose level (918 mg/l= 5.1 mmol/l) over the entire time horizon. This clearly

demonstrates that excellent glucose control is achievable with the open loop formulation.

Note that this is a purely theoretical study to determine whether open loop blood glucose

control is possible and what the corresponding controls look like. In practice, delivery of

glucagon or insulin in this manner is not practical. However, the blood glucose response

is quite different from that observed in experimental results. This raises the question of

why the blood glucose regulatory system in the human body does not follow the ‘optimal’

approach calculated via the open loop formulation. One should note that the glucose

regulatory system forms only one part of a more complex metabolic system that controls

the human body. There are probably sound reasons why elevated blood glucose levels

occur in humans after the ingestion of a meal, but these are not reflected in the glucose

regulatory model considered here.

3.6 Conclusions

We have solved a complex model matching problem in which a glucose regulatory model

must be fitted to experimental data to minimize total modelling error. We investigated

several different model matching objectives and found that significant improvement in

matching the model to experimental data was achieved in all cases when compared to

the results in Liu and Tang [31]. It is difficult for us to judge the relative merits of

these objectives and the ultimate choice is best left to experts who are more familiar

with the use of the model in relation to the real physical system. Nevertheless, we have

demonstrated that the proposed model matching strategy yields very good results in this

scenario and it should be used more widely for other biological systems.

As expected, we also found that the optimized model was more sensitive to changes in

the insulin release rate. Finally, we showed that open loop optimal controls can be readily

calculated for the glucose regulatory system. The resulting glucose profiles do not match

real profiles observed experimentally, which suggests that there may be other mechanisms

at play in the real system which are not accounted for in the mathematical model.

Future work will consider the implementation of the glucose regulatory model for

diabetic individuals and how their conditions can be controlled optimally.



CHAPTER 4

Insulin Injection and Exercise Scheduling for

Diabetics: An Optimal Control Model

In this chapter, we develop a composite dynamic model for simulating the effects of ex-

ercise and subcutaneous insulin injections on the blood glucose regulatory system. This

model consists of 12 state variables naturally divided into four subsystems—the glucagon

and insulin transition subsystem, the receptor binding subsystem, the glucose subsys-

tem and the exercise subsystem—with dynamic system switches at the insulin injection

times. We formulate an optimal control problem in which the aim is to determine optimal

injection times, optimal injection volumes and optimal exercise regimes to regulate the

blood glucose level. A numerical approach, based on control parameterization and the

time scaling transform, is then developed for solving the optimal control problem. Nu-

merical results for a series of five scenarios show that optimal treatment regimes can be

readily determined via the proposed approach. Good blood glucose can be achieved given

moderate levels of treatment.

4.1 Introduction

Insulin was first isolated and purified as a treatment for diabetes in 1920. However, a

permanent cure has been elusive until this day. Type 1 diabetes is managed through the

use of analogue insulin as well as targeted diet and exercise. Type 2 diabetes treatment

may start with non-insulin medication, which stimulates the body’s own insulin generation

or reduces insulin resistance. A controlled diet may be sufficient to treat very early cases

of type 2 diabetes. However, as the disease progresses, insulin treatment will eventually be

required. Moreover, due to issues such as age, excessive weight and high blood pressure,

the level of exercise may be restricted for some patients, especially if they have other

health problems such as heart disease and risk of strokes.

The three most common methods for administering insulin are the intra-peritoneal,

subcutaneous (SC) and intravenous (IV) injections [12]. SC injection is the most common

45
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method and involves either direct injection at the site, or injection via an external insulin

pump, which provides a steady stream of insulin throughout the day. On the other hand,

medical supervision is required to receive IV insulin injections via veins and surgical

administration is required to implant an insulin pump in the peritoneum (the serous

membrane lining the walls of the abdominal and pelvic cavities (parietal peritoneum)) in

order to deliver intra-peritoneal insulin. In addition, SC injections are a less expensive

method for patients to receive their daily injections. Thus, in this chapter, we focus on the

subcutaneous injection method. Many factors can affect the insulin absorption process

such as temperature, insulin concentration and volume and injection site and depth. In

addition, the insulin state can be hexameric, dimeric or monomeric which affects the time

taken for the insulin preparation to be absorbed into blood plasma. We review several

mathematical models of insulin absorption and choose one suitable for incorporation into

the existing model.

In this chapter, we extend the mathematical model of the human blood glucose regu-

latory system originally proposed by Liu and Tang [31]. Specifically, we focus on creating

a more complete model that captures the effect of exercise and subcutaneous insulin

injections on the blood glucose level for diabetic individuals. Based on the composite

model, we formulate an optimal control problem which seeks to minimize the difference

between the blood glucose level for a diabetic individual and a desired trajectory. To

generate accurate values for the optimal insulin injection times, we apply a time scaling

transformation technique ( [30], [34]). Numerical results show that, on the basis of these

formulations, good blood glucose control can be readily achieved for a variety of desired

blood glucose trajectories with the use of the MISER3.3 optimal control software [25].

This chapter is organized as follows. We first review the model described in [31]

and [3] in Section 4.2. Then, in Section 4.3, we propose extensions of the model in

Section 4.2 which take into account the effects of both insulin injections and exercise. In

Section 4.4, we formulate a combined optimal control and optimal parameter selection

problem with the aim of following a desired blood glucose profile as closely as possible. In

order to allow for the numerical optimization of the injection times, we adopt the control

parameterization and time scaling transformation methods described in Chapter 1. We

then solve the transformed problem for a variety of scenarios using the optimal control

software MISER3.3. [25] in Section 4.5. Finally, we conclude the chapter with a discussion

of the numerical results and suggestions for future work.

4.2 Original model

We review once more the dynamic model in Liu and Tang [31] consisting of eight state

variables. These state variables are defined as follows:
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x1 = concentration of plasma glucagon (in moles per liter);

x2 = concentration of plasma insulin (in moles per liter);

x3 = intracellular concentration of glucagon (in moles per liter);

x4 = intracellular concentration of insulin (in moles per liter);

x5 = concentration of glucagon receptor (in moles per liter);

x6 = concentration of insulin-bound receptor (in moles per liter);

x7 = blood concentration of glycogen (in milligrams per liter);

x8 = blood concentration of glucose (in milligrams per liter).

The model can be naturally divided into three subsystems, as described in the following

subsections (see [31] and [3] for more details).

4.2.1 Insulin and glucagon transition subsystem

This subsystem governs state variables x1 and x2. The dynamics for x1 are given by

dx1
dt

= −(kp1,1 + kp1,2)x1 + w1, (4.1)

where kp1,1 is a transition rate, kp1,2 is a degradation rate, and w1 is the glucagon release

rate (GRR) defined by

w1 =
Gm

1 + b1 exp a1(x8 − C5)
. (4.2)

The dynamics for x2 are given by

dx2
dt

= −(kp2,1 + kp2,2)x2 + w2, (4.3)

where kp2,1 is a transition rate, kp2,2 is a degradation rate, and w2 is the insulin release rate

(IRR) defined by

w2 =
Rm

1 + b2 exp a2(C1 − x8)
. (4.4)

The fractions w1 and w2 in equations (4.1)-(4.4) model the natural feedback control mech-

anisms in the body. Note that Gm is the maximum glucagon infusion rate, Rm is the

maximum insulin infusion rate, and a1, a2, b1, b2, C1 and C5 are positive constants.
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4.2.2 Insulin and glucagon receptor binding subsystem

This subsystem governs state variables x3, x4, x5 and x6. The dynamics for this subsystem

are given by

dx3
dt

= −ks1,1x3(R0
1 − x5)− ks1,2x3 +

kp1,1Vpx1

V
, (4.5)

dx4
dt

= −ks2,1x4(R0
2 − x6)− ks2,2x4 +

kp2,1Vpx2

V
, (4.6)

dx5
dt

= −ks1,1x3(R0
1 − x5)− kr1x5, (4.7)

dx6
dt

= −ks2,1x4(R0
2 − x6)− kr2x6, (4.8)

where ks1,1 and k
s
2,1 are the hormone-receptor association rates, ks1,2 and k

s
2,2 are the degra-

dation rates, R0
1 and R0

2 are the total concentrations of receptors, kr1 and kr2 are the

inactivation rates, Vp is the plasma insulin volume, and V is the cellular insulin volume.

4.2.3 Glucose production and utilization subsystem

This subsystem governs state variables x7 and x8. The dynamics for x7 are given by

dx7
dt

= f4 − f5, (4.9)

where

f4 =
k1x6

1 + k2x5
· V

gs
maxx8

kgsm + x8
, (4.10)

f5 = k3x5
V gp
maxx7

kgpm + x7
. (4.11)

Here, k1, k2 and k3 are the feedback control gains, V gs
max is the maximum velocity of

glycogen phosphorylase, V gp
max is the maximum velocity of glycogen synthase, and kgsm and

kgpm are Michaelis-Menton constants.

The dynamics for x8 are given by

dx8
dt

= −f4 + f5 − f1 − f2f3 +G, (4.12)
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where

f1 = Ub

(
1− exp

(
− x8
C2

))
, (4.13)

f2 =
x8
C3

, (4.14)

f3 = U0 +
(Um − U0)x

β
4

Cβ
4 + xβ4

. (4.15)

Here, U0, Ub, Um, C2, C3, C4 and β are positive constants, and G is the exogenous glucose

input rate. As in the earlier chapters, we use the experimental data of Korach-André et

al. [27] to define G.

4.2.4 Initial conditions and model constants

We assume that the system is modelled over a 9 hour period, i.e., t ∈ [0, 540], where t is

the time in minutes. The initial conditions prescribed for the model are

x1(0) = 1.4× 10−11, (4.16)

x2(0) = 2× 6.945× 10−12, (4.17)

x3(0) = 0, (4.18)

x4(0) = 0.01× 6.945× 10−12, (4.19)

x5(0) = 0, (4.20)

x6(0) = 0, (4.21)

x7(0) = 200, (4.22)

x8(0) = 918. (4.23)

The complete model defined by equations (4.1)-(4.23) includes 36 model constants. In

Chapter 3, we formulated an optimal parameter selection problem to optimize these con-

stants, so that the model matches desired blood glucose data from Korach-André et al. [27]

as closely as possible. This data set consists of blood glucose measurements from a healthy

individual taken after a meal. We denote this data set by {(τi, x̂i8)}9i=1, where τi denotes

the i-th observation time and x̂i8 denotes the blood glucose concentration observed at

the i-th observation time. This blood glucose profile is shown in Figure 4.1 and the data

points are listed in Table 4.1. We assumed that the experimental data can be interpolated

linearly as shown in Figure 4.1 to yield the function gexp(t). A good match between the

model and the desired data in [27] was achieved in Chapter 3 and the optimized values

of the model constants are listed in Table 4.2.
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Figure 4.1: The desired blood glucose data from Korach-André et al. [27]

i 1 2 3 4 5 6 7 8 9

τi 0 60 120 150 180 240 380 420 540

x̂i8 900 1785.29 1530.27 1330.88 1300.55 1244.95 1113.53 1078.2 900.72

Table 4.1: The desired data from Korach-André et al. [27]

4.3 New composite model with exercise and insulin

injections

To adopt the Liu and Tang model to a diabetic subject, we must assume that the natural

insulin release rate defined by equation (4.4) is impaired. For a type 1 diabetic, the

maximum insulin release rate should be chosen as Rm = 0 in model (4.1)-(4.23). Also,

Rm ∈ (0, 1) can be used to model type 2 diabetics with varying degrees of severity of the

condition.

4.3.1 SC injections

A variety of mathematical models for the absorption of insulin from subcutaneous (SC)

injections into blood plasma have been proposed in the literature. There is a significant
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Constant Value Unit

kp1,1 1.28929 min−1

kp2,1 0.100804 min−1

kp1,2 0.3 min−1

kp2,2 0.437605 min−1

ks1,1 6× 107 M−1 min−1

ks2,1 6× 107 M−1 min−1

ks1,2 7.19985× 10−3 min−1

ks2,2 9.52782× 10−3 min−1

kr1 2.59194× 10−2 min−1

kr2 0.2 min−1

R0
1 9× 10−13 M

R0
2 3.6114× 10−12 M

vgpmax 345.384 mg/l/min

kgpm 600 mg/l

vgsmax 3.41805× 10−3 mg/l/min

kgsm 67 mg/l

k1 2.76901× 1011 M−1

k2 1.1111111× 1014 M−1

k3 1.1111111× 1012 M−1

V 10.0004 l

Vp 2.41375 l

Ub 4 mg/l/min

U0 4 mg/l/min

Um 227.508 mg/l/min

Gm 2.05367× 10−9 M/min

Rm 2.29663× 10−10 M/min

C1 1.11419× 10−3 mg/l

C2 345.384 mg/l

C3 1061.82 mg/l

C4 1.9556× 10−9 M/l

C5 1124.67 mg/l

β 1.14055 -

a1 0.0348467 (mg/l)−1

a2 0.0145946 (mg/l)−1

b1 11.471 -

b2 1.15002 -

Table 4.2: Optimized values for the model constants



52 Insulin Injection and Exercise Scheduling for Diabetics

Insulin type
Parameter

s a b Vd
Short acting (soluble) 2 4.31965× 105 102 12× 10−6

Intermediate acting (NPH) 2 1.5550756× 106 294 12× 10−6

long acting (ultralente) 2.5 0 780 12× 10−6

Unit - min/M min l

Table 4.3: Berger model parameters for different types of insulin; intermediate, short and
long acting insulin

range in the complexity of these models, starting with a simple single pool model involving

a delay term to approximate the absorption of fast acting insulin [26]. Trajanski et al. [57]

present a far more complex model where the diffusion of insulin from the injection site is

approximated via the transition across a series of concentric spherical shells. This leads

to a series of partial differential equations and, while accurate results can certainly be

achieved, there is a significant computational cost associated with this model. A detailed

review of the various absorption models is given in [44]. After careful consideration of

the suitability of each of these models for our purposes and, guided by the conclusions

in [44], we settled on the model first proposed in Berger et al. [8]. Briefly, in this model

the amount of absorbed insulin from the SC injection depot, A(t), is assumed to be given

by

A(t) = 1− ts

(T50)s + ts
, (4.24)

where t is the time elapsed since the injection and T50 is the duration required to reach a

50% absorption of the injected insulin. This is given by

T50 = aD + b, (4.25)

where D is the insulin dose, and s, a and b are constants which assume different values for

different insulin preparations. Table 4.3 shows these parameter values for different types

of insulin. The time derivative of A(t), multiplied by the injection dose, then gives the

input flux of injected insulin into the plasma,

ts−1s(T50)
sD

Vd((T50)s + ts)2
, (4.26)

where Vd is the plasma insulin distribution volume.

We now allow for up toM SC insulin injections over the time horizon [0, T ]. Each one

of these has an individual effect on the plasma glucose concentration and this is modelled
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by replacing equation (4.3) with

dx2
dt

= −(kp2,1 + kp2,2)x2 + w2 +
M∑
i=1

Ii(t), (4.27)

where

Ii(t) =
si(t− ti)

si−1(Ti)
siDiH(t− ti)

Vd((Ti)si + (t− ti)si)2
, i = 1, . . . ,M, (4.28)

and ti, i = 1, . . . ,M, are the insulin injection times and H is the Heaviside step function

defined by

H(t) =

0, if t < 0,

1, if t ≥ 0.
(4.29)

Furthermore, Ti, i = 1, . . . ,M, are the durations needed for a 50% absorption of the

insulin injected at time ti, defined by

Ti = aiDi + bi, i = 1, . . . ,M, (4.30)

where Di, measured in moles (M), is the insulin dose and ai , bi and si are specific to the

type of insulin preparation administrated at time ti. We assume that both the timing

of each injection, ti, and the corresponding dosage, Di, i = 1, . . . ,M are variables to be

determined while the insulin type (i.e. the choice of each ai, bi and si) is specified by the

user. Note that we have bounds on each dosage, i.e.

0 6 Di 6 Di,max, i = 1, . . . ,M. (4.31)

4.3.2 Exercise modelling

It is well known that physical exercise has a significant effect on blood glucose levels.

Indeed, one of the common ways to deal with mild cases of Type 2 diabetes is to prescribe

increased exercise for patients along with sensible changes in diet. It is thus surprising

to see that attempts to incorporate the effects of exercise into glucose-insulin dynamic

models have only appeared in the literature relatively recently. This, together with the

fact that most of the existing approaches have little to no overlap, seems to indicate that

the task is not an easy one and that there are likely to be multiple pathways through

which exercise impacts both glucose and insulin levels in the blood. In [16], the impact of

exercise is modelled rather simply by perturbing coefficients in the well known Bergman

minimal model [10]. The main aim in [16] is to study the stability properties of equilibria

for different scenarios. Reference [11] follows a similar approach and also introduces some
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additional dynamic states (energy consumption and insulin action). The main focus of [11]

was to fit the resulting model to results from a clinical study. The authors of [22] start with

a different glucose-insulin model [53] and emphasize the importance of the redistribution

of blood flows around the body during periods of exercise. None of the models mentioned

so far lend themselves to incorporation with the model described in Section 4.2, as they

were all based on much simpler glucose-insulin models involving only 3 state variables.

Reference [49] introduces a much more comprehensive model. This takes into account the

important role of free fatty acids (FFAs) in the blood stream as a source of energy for

the body. It is argued that there are important interactions between the levels of FFAs,

insulin and exercise which have not been accounted for in previous models. While we are

not incorporating the complete model from [49] into the one from Section 4.2 (this would

be an interesting challenge for future studies), we are adopting several aspects related to

the impact of exercise. First, it is argued that exercise promotes a clearance of insulin

in the blood stream since this results in higher glucose production in the liver which is

needed to provide energy. Mathematically, this is modelled as a second order effect with

the dynamics

dx9
dt

= mpv(uex − x9), (4.32)

dx10
dt

= mIU1x9 −mIU2x10, (4.33)

where x9 ∈ [0, 100] represents the current percentage of the maximum rate of oxygen

consumption for an individual (which, in turn, is assumed to be linearly proportional to

the energy expenditure). Here, uex ∈ [0, 100] is the rate of oxygen consumption due to

exercise (itself measured as a percentage of the maximum rate of oxygen consumption for

an individual) and x10 is the rate at which insulin is cleared from the blood due to this

effect. Moreover, mpv and mIU1 and mIU2 are model constants whose values are listed in

Table 4.4. Thus, equation (4.27) is modified as follows

dx2
dt

= −(kp2,1 + kp2,2)x2 + w2 +
M∑
i=1

Ii − x10x2, (4.34)

The authors of [49] also indicate that exercise induces an increase in the glucose uptake

rate by the working muscles. Furthermore, the rate of glucose production is also in-

creased due to an accelerated rate of glycogenolysis (conversion of glycogen into glucose-

6-phospate which is further converted to glucose). These effects are modelled by the

following dynamics,
dx11
dt

= mGU1x9 −mGU2x11, (4.35)
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Constant Value Unit

mpv 0.8 min−1

mIU1 2.8176× 10−3 min−2

mIU2 1.7354 min−1

mGU1 2.1874× 10−3 mg/(kg× min2)

mGU2 5.8974× 10−2 min−1

mGP1 9.152× 10−4 mg/(kg× min2)

mGP2 1.3073 min−1

W 32001.46 kg/l

Table 4.4: Parameter values related to exercise effect on glucose and insulin dynamics

dx12
dt

= mGP1x9 −mGP2x12, (4.36)

where x11 and x12 represent the exercise induced glucose uptake and production rates,

respectively. Furthermore, mGU1, mGU2, mGP1 and mGP2 are constants whose values are

also listed in Table 4.4. Finally, the effects are incorporated into blood glucose dynamic

equation (4.12) as follows.

dx8
dt

= −f4 + f5 − f1 − f2f3 +G+W (x12 − x11), (4.37)

where W is a model constant whose value is also given in Table 4.4.

4.3.3 Summary of the revised model

In summary, the dynamical model is described as follows. The dynamics for x1 and x2

are
dx1
dt

= −(kp1,1 + kp1,2)x1 + w1, (4.38)

where w1 is defined by equation (4.2), and

dx2
dt

= −(kp2,1 + kp2,2)x2 + w2 +
M∑
i=1

Ii − x10x2, (4.39)

where w2 and Ii are defined by equations (4.4) and (4.28), respectively.
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The dynamics for x3, x4, x5 and x6 are

dx3
dt

= −ks1,1x3(R0
1 − x5)− ks1,2x3 +

kp1,1Vpx1

V
, (4.40)

dx4
dt

= −ks2,1x4(R0
2 − x6)− ks2,2x4 +

kp2,1Vpx2

V
, (4.41)

dx5
dt

= −ks1,1x3(R0
1 − x5)− kr1x5, (4.42)

dx6
dt

= −ks2,1x4(R0
2 − x6)− kr2x6. (4.43)

The dynamics for x7 and x8 are
dx7
dt

= f4 − f5, (4.44)

dx8
dt

= −f4 + f5 − f1 − f2f3 +G+W (x12 − x11), (4.45)

where f1 − f5 and G are defined by equations (4.13), (4.14), (4.15), (4.10), (4.11) and

(3.16), respectively.

The exercise subsystem which governs state variables x9, x10, x11 and x12 is

dx9
dt

= mpv(uex − x9), (4.46)

dx10
dt

= mIU1x9 −mIU2x10, (4.47)

dx11
dt

= mGU1x9 −mGU2x11, (4.48)

dx12
dt

= mGP1x9 −mGP2x12. (4.49)

The system (4.38)-(4.49) is subject to the following initial conditions.
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x1(0) = 1.4× 10−11, (4.50)

x2(0) = 2× 6.945× 10−12, (4.51)

x3(0) = 0, (4.52)

x4(0) = 0.01× 6.945× 10−12, (4.53)

x5(0) = 0, (4.54)

x6(0) = 0, (4.55)

x7(0) = 200, (4.56)

x8(0) = 918, (4.57)

x9(0) = 0, (4.58)

x10(0) = 0, (4.59)

x11(0) = 0, (4.60)

x12(0) = 0. (4.61)

The complete composite model defined by equations (4.38)-(4.61) includes the model

constants listed in Tables 4.2, 4.3 and 4.4. We again assume that the system is modelled

over a 9 hour period, i.e., t ∈ [0, 540], where t is the time in minutes.

4.4 Optimal control

4.4.1 Problem statement

We first formulate a combined optimal control and optimal parameter selection problem

based on the composite model (4.38)-(4.61) for a diabetic individual. Our aim is to match

the subject’s blood glucose level with a desired blood glucose profile gd(t) over the entire

time horizon. Thus, we need to choose injection times ti, i = 1, . . . ,M, injection dosages

Di, i = 1, . . . ,M, and an exercise regime uex(t), t ∈ [0, 540], with the aim to minimize

J =

∫ 540

0

(x8(t)− gd(t))
2 dt (4.62)

subject to the dynamics (4.38)-(4.61), subject to the control bounds

0 6 uex(t) 6 100, (4.63)

and subject to

0 6 ti 6 540, i = 1, . . . ,M (4.64)
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as well as the bounds on the dosages equation (4.31).

4.4.2 Control parameterization

For computational purposes, we assume that uex(t) is a piecewise constant function defined

over a partition P = {τ0, τ1, . . . , τN} with τ0 = 0, τN = 540 and τi−1 6 τi, i = 1, . . . , N,

where N is the number of intervals in the partition chosen by the user. Thus, uex(t) may

be written as

uex(t) =
N∑
i=1

σiχ[τi−1,τi)(t), (4.65)

where σi is the chosen value of uex in the i-th interval, with

0 6 σi 6 100, i = 1, . . . , N, (4.66)

and

χ[τi−1,τi)(t) =

1, if t ∈ [τi−1, τi),

0, otherwise.
(4.67)

For convenience, note that we also assume that the insulin injection times ti, i = 1, . . . ,M,

coincide with some of the switching times of uex, i.e.

ti = τki , i = 1, . . . ,M, (4.68)

where ki ∈ K = {k1, k2, . . . , kM} ⊂ {τ0, τ1, . . . , τN} . Naturally, we also assume that

N >> M .

4.4.3 Time scaling transformation

As noted above, MISER3.3 is not equipped to handle the variable time points τi, i =

1, . . . , N . Thus, we invoke a well known transformation [30] to map these variable time

points to fixed points in a new time horizon [0, N ]. This is achieved by defining a new

time variable s ∈ [0, N ] and setting

dt(s)

ds
= v(s), (4.69)

where

v(s) =
N∑
i=1

θiχ[i−1,i](s), (4.70)
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and θi = τi − τi−1, i = 1, . . . , N. Furthermore, we require

t(0) = τ0 = 0 (4.71)

and

t(N) = T = 540. (4.72)

Note that θi, i = 1, . . . , N, are now decision variables in the transformed problem and the

values of τi, i = 1, . . . , N, can be easily calculated from θi, i = 1, . . . , N . Furthermore, we

require

0 6 θi 6 T = 540, i = 1, . . . , N, (4.73)

We adopt the notation x̃i(s) = xi(t(s)), i = 1, . . . , 12, g̃d(s) = gd(t(s)) and ũex(s) =

uex(t(s)). Under the time scaling transformation, the dynamic system can be described

as follows. The dynamics for x1 and x2 become

dx̃1
ds

= (−(kp1,1 + kp1,2)x̃1 + w1)v, (4.74)

dx̃2
ds

= (−(kp2,1 + kp2,2)x̃2 + w2 +
M∑
i=1

Ĩi − x̃10x̃2)v, (4.75)

where w1, w2 are as defined previously in equations (4.2) and (4.4), respectively. Moreover,

Ĩi(s) = Ii(t(s)), i = 1, . . . ,M, The dynamics for x3, x4, x5 and x6 become

dx̃3
ds

= (−ks1,1x̃3(R0
1 − x̃5)− ks1,2x̃3 +

kp1,1Vpx̃1

V
)v, (4.76)

dx̃4
ds

= (−ks2,1x̃4(R0
2 − x̃6)− ks2,2x̃4 +

kp2,1Vpx̃2

V
)v, (4.77)

dx̃5
ds

= (−ks1,1x̃3(R0
1 − x̃5)− kr1x̃5)v, (4.78)

dx̃6
ds

= (−ks2,1x̃4(R0
2 − x̃6)− kr2x̃6)v. (4.79)

The dynamics for x7 and x8 become

dx̃7
ds

= (f4 − f5)v, (4.80)

dx̃8
ds

= (−f4 + f5 − f1 − f2f3 + G̃+W (x̃12 − x̃11))v, (4.81)

where f1, . . . , f5 are defined by (4.13), (4.14), (4.15), (4.10) and (4.11), respectively, and

G̃(s) = G(t(s)).
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The exercise subsystem dynamics become

dx̃9
ds

= mpv(ũex − x̃9)v, (4.82)

dx̃10
ds

= (mIU1x̃9 −mIU2x̃10)v, (4.83)

dx̃11
ds

= (mGU1x̃9 −mGU2x̃11)v, (4.84)

dx̃12
ds

= (mGP1x̃9 −mGP2x̃12)v. (4.85)

The dynamics of the new state variable t(s) is

dt(s)

ds
= v(s), (4.86)

where v is defined by equation (4.70).

The transformed problem may now be stated as: Choose v(s), ũex(s), ti and Di, i =

1, . . . ,M, so as to minimize

J̃ =

∫ N

0

v(s) (x̃8(s)− g̃d(s))
2 ds (4.87)

subject to the dynamics (4.74)-(4.86), the initial conditions (4.50) to (4.61) with t(0) = 0,

the parameter bounds: (4.31), (4.66) and (4.73), and subject to the constraints

gi = t(ki)− ti = 0, i = 1, . . . ,M, (4.88)

gn+1 = T − t(N) = 0. (4.89)

There is one feature in the transformed problem which prevents its direct implementation

in MISER3.3. In the transformed objective (4.87), we have the function gd(t(s)), where

t(s) is a state variable in the transformed problem. Recall from Chapter 1 that MISER3.3

assumes differentiability of the objective integrand with respect to the state variables.

However, when choosing gd(t(s)) = gexp(t(s)) as defined in Section 4.2.4, this piecewise

linear function is not differentiable with respect to t. Thus, we change the gexp from a

linear form to a quadratic form defined in equation (4.90) below and illustrated in Figure

4.2:

g̃d = αit(s)
2 + βit(s) + γi, t(s) ∈ [ti−1(s), ti(s)], i = 1, . . . , 8, (4.90)
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i αi βi γi

1 −1.182857143× 10−3 0.1656 5

2 −9.178× 10−4 0.128492 6.29878

3 1.828555556× 10−3 -0.5306333333 45.8463

4 −7.85× 10−4 0.2534333333 -12.9587

5 4.003055556× 10−4 -0.1732766667 25.4452

6 −1.720357143× 10−4 0.1014471429 -7.521657143

7 6.098125× 10−4 -0.4927575 105.3772250

8 −2.308472222× 10−4 0.2133966667 -42.91515

Table 4.5: Parameter values of the gd function as quadratic form
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Figure 4.2: Experimental data in quadratic form

The parameter values defining this function are determined from a smooth piecewise

quadratic interpolation of the data in Table 4.1 and they are listed in Table 4.5. In sum-

mary, the transformed dynamic model consists of 13 state variables, x̃i(s), i = 1, . . . , 12

and t(s), 2 control functions, ũex(s) and v(s), and 2M system parameters, Di, i =

1, . . . ,M, and ti, i = 1, . . . ,M . These system parameters represent, respectively, the

volume of insulin injections and time points of these injections. In this model, the orig-
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inal time t ∈ [0, 540] is transformed to a new time scale s ∈ [0, N ]. For the numerical

results presented below, we assume up to M = 5 individual injections. We also assume

N = 20 and choose k1 = 0, k2 = 4, k3 = 8, k4 = 12 and k5 = 16 for the constraints

given in (4.88). Finally, the bounds on the control functions (equivalent to the parameter

bounds (4.66) and (4.73)) are

0 6 ũex(s) 6 100, and 0 6 v(s) 6 540, s ∈ [0, 20]. (4.91)

This version of the problem is in a a canonical form suitable for MISER3.3.

4.5 Numerical results

4.5.1 Case 1

The first case that we tested is for a type 1 diabetic (Rm=0) with only one intermediate

acting insulin (NPH) injection at the beginning of the time horizon (t1 = 0) and with no

exercise. Here, we assume that the desired blood glucose function is gd(t) = gexp(t), where

gexp is in quadratic form as shown in Figure 4.2. This means that we are effectively trying

to emulate the blood glucose level of a healthy individual. This is a relatively simple

version of the problem with only one decision variable (D1), the dosage of insulin injected

at t1 = 0, where

0 6 D1 6 2.778× 10−04. (4.92)

An optimal solution is readily obtained by MISER3.3. Figure 4.3 shows that the optimal

blood glucose trajectory follows the desired blood glucose profile only briefly near the

beginning of the time horizon. The optimal value of insulin injection D1 is 2.28728 ×
10−04M which is equivalent to 32U . Clearly, one injection is not enough to achieve a

good glucose control over the entire time horizon and we will need to consider multiple

injections as well as exercise.

4.5.2 Case 2: Transformed composite model with exercise

This case also assumes a type 1 diabetic (Rm = 0) and we once again use gd(t) = gexp(t).

We consider two different types of insulin preparations, intermediate and short acting in

combination. Details of the bounds and initial guesses of ti, i = 1, . . . , 5, are given in

Table 4.6. The bounds on the dosages are given in equation (4.93). Note that either

intermediate or slow acting insulin may be chosen for each injection and corresponding

values of ai, bi and si, i = 1, . . . ,M, must also be chosen. We indicate the values in table

4.7. In this case, we assume that the first injection is an intermediate acting insulin while
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Figure 4.3: Comparison of two blood glucose trajectories: the solid curve is the optimal
trajectory for Case 1. The dashed curve is the desired trajectory

subsequent injections alternate between short and intermediate acting.

0 6 Di 6 2.0835× 10−04, i = 1, . . . , 5. (4.93)

A combination of different types of insulin injections as well as exercise yields better

results as shown in Figure 4.4. Figure 4.5 shows the optimal exercise level and Table 4.8

shows the optimal values of decision variablesDi and ti, i = 1, . . . , 5. Note that effectively

just one injection is administered while exercise is used for most of the time horizon.

Decision variables ti Initial guess Lower bound Upper bound

t1 0 0 540

t2 108 0 540

t3 216 0 540

t4 324 0 540

t5 432 0 540

Table 4.6: Decision variable ti
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Insulin dosage Di
Parameter values

si ai bi
D1 2 1.5550756× 106 294
D2 2 4.31965× 105 102
D3 2 1.5550756× 106 294
D4 2 4.31965× 105 102
D5 2 1.5550756× 106 294

Table 4.7: Insulin dosages and their corresponding parameter values of ai, bi and si, i =
1, . . . , 5.
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Figure 4.4: Blood glucose trajectories for Case 2.

4.5.3 Case 3: Composite model without exercise

All details for this case are the same as those for Case 2, except that we assume no exercise

here, i.e. uex(t) = 0, t ∈ [0, 540].

As shown in Figure 4.6, the resulting blood glucose level still tracks the desired blood

glucose profile reasonably well. Note that the optimal solution involves a combination of

2 insulin types.

4.5.4 Case 4: Composite model for type 2 diabetes

In order to test the composite model for a type 2 diabetic case, we halve the original

insulin feedback rate (Rm = 0.5). Here exercise is once again considered and the same
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Figure 4.5: Optimal exercise level for Case 2.

types of insulin combinations as used in Cases 2 and 3 are assumed.

Clearly, Figure 4.7 shows that the resulting blood glucose level tracks the desired

blood glucose profile very closely. Figure 4.8 shows the corresponding optimal exercise

level. Also, the optimal values of insulin injections are listed in Table 4.10. Note that a

much lower dosage of insulin along with an earlier use of exercise is sufficient to manage

good blood glucose control in this case.

Insulin injections Di Optimal values Injection times ti Optimal values

D1 1.70822× 10−04M ≡ 24U t1 0

D2 0 t2 217.06

D3 0 t3 239.789

D4 0 t4 331.894

D5 0 t5 441.96

Table 4.8: Optimal values of decision variables Di and ti in Case 2
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Figure 4.6: Blood glucose levels resulting from optimization of the model without exercise
for Case 3

4.5.5 Case 5: Aiming for basal blood glucose level

In this case, we once again consider a type 1 diabetic (Rm = 0) and we adopt the objective

function

J̃ =

∫ N

0

v(s) (x̃8(s)− 918)2 ds (4.94)

which simply penalizes any blood glucose deviation from the initial level. The problem is

to minimize (4.94) subject to the same dynamic model (4.38)-(4.61) as in previous cases.

Insulin injections Di Optimal values Injection times ti Optimal values

D1 1.16789× 10−04M ≡ 16U t1 0

D2 5.08087× 10−05M ≡ 7.3U t2 12.6863

D3 0 t3 203.28

D4 0 t4 327.639

D5 0 t5 439.112

Table 4.9: Optimal values of decision variables Di and ti in Case 3
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Figure 4.7: Blood glucose levels resulting for Case 4.
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Figure 4.8: Optimal exercise level for Case 4.

All details for this case are the same as those of Case 2, except for the objective function

and the assumed order of the insulin injections. We again assume that insulin injections
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Insulin injections Di Optimal values Injection times ti Optimal values

D1 0 t1 0

D2 1.77675× 10−5M ≡ 2.5U t2 47.4842

D3 0 t3 273.071

D4 0 t4 372.92

D5 0 t5 437.78

Table 4.10: Optimal values of decision variables Di and ti in Case 4

have an alternating pattern, but this time starting with a short acting insulin.
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Figure 4.9: Blood glucose levels resulting from Case 5.

As can be seen from Figure 4.9, the optimal blood glucose level resulting in this case

remains very close to the initial blood glucose level (918 mg/l= 5.1 mmol/l) over the

entire time horizon. Figure 4.10 shows the optimal exercise level and Table 4.11 shows

the optimal values of the decision variablesDi and ti, i = 1, . . . , 5. Due to the need to clear

a lot of glucose early on, multiple insulin injections early in the time horizon combined

with an early high level of exercise are required in this case.
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Figure 4.10: Optimal exercise level in Case 5.

4.6 Conclusions

We have developed a composite model that is capable of capturing the effects of exercise

and subcutaneous insulin injections. This model is based on the dynamical model of

the blood glucose regulatory system presented in [3]. Levels of exercise are described in

terms of the percentage of the maximum rate of oxygen consumption for an individual

and exercise is assumed to lead to higher levels of energy consumption and lower levels

of blood insulin. The appearance of blood insulin as a result of subcutaneous injections

is modelled according to a robust model proposed by Berger et al. [8].

Insulin injections Di Optimal values Injection times ti Optimal values

D1 1.31322× 10−04M ≡ 18U t1 0

D2 6.27708× 10−05M ≡ 9U t2 121.984

D3 0 t3 523.462

D4 0 t4 523.462

D5 0 t5 537.528

Table 4.11: Optimal values of decision variables Di and ti in Case 5
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Based on this new dynamic model, we then formulate a combined optimal control

and optimal parameter selection problem with the objective of matching a desired blood

glucose profile as closely as possible. This problem involves variable switching times for

the control as well as multiple variable characteristic times in the dynamics. To make this

problem suitable for the optimal control software MISER3.3, a time scaling transformation

was invoked. We formulated a variety of cases to test the model. These included type 1

or 2 diabetic subjects, a single insulin injection at t = 0, multiple insulin injections with

or without exercise and two distinct desired blood glucose profiles. While a single insulin

injection alone did not result in good blood glucose control, all other cases resulted in

effective control.

This work represents the first application of a range of recent advances in the area

of computational optimal control to diabetes models and there is significant scope for

future work in this regard. For example, just as we allowed for multiple insulin injection

times, it should be possible to incorporate multiple meals and also optimize the timing

of these meals. Another interesting challenge would be the incorporation of free fatty

acids (FFAs) into the model [49], since these also represent an important energy source

for the body. One should also investigate the possibility of incorporating other types of

treatments typical for type 2 diabetics.



CHAPTER 5

Conclusions

5.1 Main contributions of this thesis

This thesis has been concerned with the disease of diabetes, one of the major global health

problems threatening the wellbeing of humanity worldwide. A permanent cure for this

disease has been elusive until now, but it can be managed. This thesis proposes and

illustrates a general methodology for the analysis and control of the human blood glu-

cose regulatory system. In addition, it demonstrates that computational optimal control

methods can be readily used to determine open loop optimal controls for dynamic mod-

els of the blood glucose regulatory system, particularly in the context of diabetes. While

open loop controls do not take into account modelling errors and uncertainties in systems,

they still provide a useful benchmark for the performance of other more practical control

strategies. Using this approach, we can also test extreme scenarios on models and thus

identify their weaknesses.

In Chapter 1, the first section is devoted to a brief discussion about diabetes; its

diagnosis, causes and consequent health problems that can result in the long term. It

describes the natural cycle of regulating the blood glucose level in the human body,

which is directed by the regulator hormones insulin and glucagon. It also describes in

detail a variety of factors that impact the blood glucose level in the human body. Then

various management strategies for diabetes are reviewed. From a mathematical point

of view, control methods of diabetes generally rely on dynamical models of the body’s

blood glucose regulatory system. The remaining sections of Chapter 1 describe the basic

concepts of optimal control theory. This includes general formulations of optimal control

and optimal parameter selection problems, followed by a brief description of two solution

techniques used in the thesis, control parameterization and a time scaling transformation.

The powerful optimal control software MISER3.3 [25] is used throughout the thesis to

produce computational numerical results for a variety of scenarios related to this problem.

Chapter 2 gives a detailed review of mathematical models for the human blood glucose

regulatory system. This includes a range of algorithms to control blood glucose in diabet-
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ics. For each of these, their main features and respective contributions to the field have

been outlined. However, very few of these algorithms are based directly on underlying

nonlinear models and thus they cannot take full advantage of the assumed nonlinearities.

The only work reviewed in Chapter 2 that uses computational optimal control methods

on the basis of a nonlinear model is [14]. Since its publication, significant advances have

been made in the area of computational optimal control. In particular, we are now able

to deal with problems with variable decision points in the time horizon and these time

points may also appear in the objective function and in the dynamics.

The main original contributions of this thesis are given in Chapters 3 and 4, where we

refine, extend, test and optimize an existing model of intermediate complexity.

In Chapter 3, we adopt a comprehensive model of the blood glucose regulatory system

from Liu and Tang [31]. Based on their dynamic model, we formulate an optimal parame-

ter selection problem. The purpose of this formulation is to obtain more reasonable values

for many of the model parameters in the Liu and Tang model whose values are difficult to

determine directly. The objective in this formulation is to fit the blood glucose trajectory

resulting from the model as closely as possible to real data [27]. Existing approaches gen-

erally just involve educated guesses of the values for these model constants. Furthermore,

these constants can vary significantly between different subjects, and even over time for

the same subject, so there is clearly a need for simple and robust methods to determine

values for them. We investigated several different model matching objectives and found

that significant improvements in matching the model to desired data was achieved in all

cases compared to the original results in Liu and Tang [31]. It is hard to judge the relative

quality of these results and the ultimate choice is best left to experts who are more fa-

miliar with the use of the model in relation to the real physical system. Nevertheless, we

have demonstrated that the proposed model matching strategy yields very good results

in this scenario. There is a wide variety of other biological systems for which the same

methodology should also prove useful (see for example [4], [6] and [42]). We also found

that the optimized model was more sensitive to changes in the insulin release rate (Rm)

proposed by Liu and Tang, but this is to be expected. Furthermore, we formulated an

open loop optimal control problem to determine optimal rates of insulin and glucagon

secretion and showed how it can be readily solved by MISER3.3. In contrast, the authors

in [31] considered this problem too difficult to solve.

In Chapter 4, we have developed a composite model that is also capable of captur-

ing the effects of exercise and subcutaneous insulin injections, based on the dynamical

model of the blood glucose regulatory system studied in Chapter 3. Levels of exercise

are described in terms of the percentage of the maximum rate of oxygen consumption for

an individual and exercise is assumed to lead to higher levels of energy consumption and

lower levels of blood insulin. The appearance of blood insulin as a result of subcutaneous
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injections is modelled according to a robust model proposed by Berger et al. [8].

Based on this new dynamic model, we then formulated a combined optimal control

and optimal parameter selection problem with the objective of matching a desired blood

glucose profile as closely as possible. This problem involves variable switching times

for the control as well as multiple variable characteristic times in the dynamics. To

make this problem suitable for the optimal control software MISER3.3, a time scaling

transformation was invoked. We formulated a variety of cases to test the model. These

included type 1 or type 2 diabetic subjects, a single insulin injection at t = 0, multiple

insulin injections with or without exercise and two distinct desired blood glucose profiles.

While a single insulin injection alone did not result in good blood glucose control, all other

cases resulted in effective control. Thus, we have demonstrated that good blood glucose

can be achieved given moderate levels of treatment. The new model is a more integrated

and comprehensive model for the regulation of blood glucose levels in diabetics compared

to many existing models.

In summary, the work in Chapter 4 represents the first application of a range of recent

advances in the area of computational optimal control to diabetes models and there are

many ways to extend both the model and the solution algorithms as detailed below.

5.2 Future research directions

We have reviewed a variety of mathematical models of the blood glucose regulatory system

and associated control algorithms for diabetics. A new methodology for matching such

models to actual data has been proposed and demonstrated to work well. Finally, we have

presented a new mathematical model by extending the Liu and Tang model [31] in two

ways. We discuss some additional possible improvements to the new composite model

below.

(i) In the Liu and Tang approach [31], to test the validity and credibility of their model,

they checked how the model fits experimental data reported in Korach-André et

al. [27]. We used the same experimental data in all our numerical results. This

data set consists of blood glucose measurements from a healthy individual taken

after meals. Future studies should perhaps consider different data sources or use

combined data from a larger sample set. It would also be interesting to test how

well the model fit continues to match an individual over time.

(ii) In Chapter 4, just as we allow the new composite model to include multiple injection

times, it should be possible to incorporate multiple meal times (glucose sources) into

the model instead of only one meal. We may then also optimize the timing of these
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as another obvious treatment strategy. More accurate submodels of the digestive

tract may be needed in this case [37].

(iii) An interesting challenge would be the incorporation of free fatty acids (FFAs) into

the model, since these also represent an important energy source for the body. Roy

and Parker in [49] proposed a comprehensive model that takes into account the

important role of FFAs in the blood stream as a source of energy for the body. Its

dynamics consider important interactions between the levels of FFAs with exercise,

FFAs with glucose and FFAs with insulin concentration.

(iv) Finally, there are a variety of common medical treatments used for type 2 diabetics

before the need for insulin injections. Clearly, it would be of great benefit to allow

for these treatments in our dynamic blood glucose regulatory model and consider

combined treatment regimes with a much wider variety of options. However, as

noted below, it is not always clear how these treatments can be adopted in the cur-

rent model or what extensions to the model are needed in order to do so. Progress

here will likely require input from practitioners more familiar with the underlying bi-

ological processes. We consider a variety of the most common non-insulin treatment

options below.

For ease of reference, we recall the Liu and Tang model from Chapter 2 at this point.

dx1
dt

= −(kp1,1 + kp1,2)x1 + w1, (5.1)

where

w1 =
Gm

1 + b1 exp a1(x8 − C5)
, (5.2)

dx2
dt

= −(kp2,1 + kp2,2)x2 + w2, (5.3)

and

w2 =
Rm

1 + b2 exp a2(C1 − x8)
. (5.4)

dx3
dt

= −ks1,1x3(R0
1 − x5)− ks1,2x3 +

kp1,1Vpx1

V
, (5.5)

dx4
dt

= −ks2,1x4(R0
2 − x6)− ks2,2x4 +

kp2,1Vpx2

V
, (5.6)

dx5
dt

= −ks1,1x3(R0
1 − x5)− kr1x5, (5.7)

dx6
dt

= −ks2,1x4(R0
2 − x6)− kr2x6. (5.8)
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dx7
dt

= f4 − f5, (5.9)

where

f4 =
k1x6

1 + k2x5
· V

gs
maxx8

kgsm + x8
, (5.10)

f5 = k3x5
V gp
maxx7

kgpm + x7
, (5.11)

and

dx8
dt

= −f4 + f5 − f1 − f2f3 +G, (5.12)

where

f1 = Ub

(
1− exp

(
− x8
C2

))
, (5.13)

f2 =
x8
C3

, (5.14)

f3 = U0 +
(Um − U0)x

β
4

Cβ
4 + xβ4

. (5.15)

(1) Metformin is usually the first medication prescribed for type 2 diabetic patients.

It has a long history of usage in humans and was introduced in some countries as

early as the 1960s. Although some users experience gastrointestinal irritation

as a side effect, metformin is widely used and is considered to be very effective

in the early stages of type 2 diabetes. While the molecular mechanism of

metformin is not completely understood, its primary effect is to significantly

reduce hepatic gluconeogenesis (production of glucose in the liver). This is

normally elevated in type 2 diabetic patients. Additional effects of metformin

include the increased insulin sensitity of cells (leading to increased uptake of

glucose) and a decreased absorption of glucose from the digestive system [7].

While reduced hepatic gluconeogenesis and increased insulin sensitivity may

be incorporated into our model by changing the model constants in equations

(5.11) and (5.13)- (5.15), respectively, the latter effect will likely require a more

complete dynamic model that includes the details of the digestive processes.

(2) Gliclazide is another common oral medication for type 2 diabetics. It essentially

stimulates the pancreas to release more insulin and works by binding itself

to certain receptors on the surface of pancreatic beta cells. Side effects of

taking gliclazide are rare, but patients must be careful not to over dose on this

medication as it can quickly lead to hypoglycemia [45]. Given its action, it
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should be possible to incorporate the effects of gliclazide by modifying one or

more of the constants in the insulin release rate in equation (5.4).

(3) Exenatide (sold under the trade names Byetta and Bydureon) is a more re-

cently introduced treatment option that is often prescribed when metformin is

no longer sufficient to control the effects of type 2 diabetes. Unlike the oral

medications above, exenatide has to be injected subcutaneously. There is a

higher chance of side effects with the use of exenatide, particularly gastroin-

testinal irritation. However, in the absence of side effects, exenatide has several

benefits for type 2 diabetics. It stimulates the pancreas to release more insulin

in response to consuming carbohydrates, it reduces the amount of glucagon

released from the pancreas after a meal (which in turn reduces hepatic gluco-

neogenesis), it slows down the passage of food from the stomach to the gut and

consequently gives an increased feeling of fullness. The latter effects are prob-

ably responsible for the weight loss that is widely observed for patients who

take exenatide. The mechanisms by which exenatide achieves these effects are

not well understood and it is consequently more difficult to incorporate these

into our existing model.

(4) A range of other medicines are also available for the treatment of type 2 di-

abetes. They work in manners similar to those mentioned above and thus

their possible incorporation into our existing model also follows along the lines

mentioned in points 1-3. Amongst the more popular ones, there is Rosiglita-

zone (sold under the brand name Avandia, it reduces the insulin resistance of

cells but its uptake has slowed significantly after suspected side effects such

as heart failure became public), acarbose (which slows down the digestion and

absorption of certain carbohydrates in the intestines), and gliptins (also known

as DPP-4 inhibitors, they work by increasing insulin secretion and decreasing

glucagon secretion in the pancreas).

No doubt, many other medicines with similar effects will appear in the future and they

may, in many cases, also be incorporated into a dynamic blood glucose model.
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