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Abstract—In this paper, we investigate the performance of the
Tomlinson-Harashima (TH) precoder based nonlinear transceiver
design for a nonregenerative multiple-input multiple-output
(MIMO) relay system assuming that the full channel state
information (CSI) of the source-relay link is known, while
only the channel covariance information (CCI) of the relay-
destination link is available at the relay node. We first derive the
structure of the optimal TH precoding matrix and the source
precoding matrix that minimize the mean-squared error (MSE)
of the signal waveform estimation at the destination. Then we
develop an iterative algorithm to optimize the relay precoding
matrix. To reduce the computational complexity of the iterative
algorithm, we propose a simplified precoding matrices design
scheme. Numerical results show that the proposed precoding
matrices design schemes have a better bit-error-rate performance
than existing algorithms.

Index Terms—Nonregenerative relay, multiple-input multiple-
output (MIMO) relay, Tomlinson-Harashima (TH) precoder,
minimum mean-squared error (MMSE).

I. INTRODUCTION

In cooperative communication systems, relay nodes can be
deployed between the source and destination nodes to mitigate
the channel shadowing effect and provide system spatial diver-
sity. Therefore, cooperative communication has great potential
in extending the network coverage and increasing the system
throughput with reduced infrastructure cost, and thus, has
attracted much research interest recently [1].

Wireless relays can be regenerative or nonregenerative [1],
[2], [3]. In the regenerative relay strategy, the relay decodes
the received signals from the source node and retransmits
the re-encoded information to the destination node. In the
nonregenerative relay strategy [3], the relay node simply am-
plifies (including a possible linear transformation) the received
signals from the source node and retransmits the amplified
signals to the destination node. Therefore, the complexity
and the processing delay of the nonregenerative strategy are
generally much smaller than the regenerative strategies.

On the other hand, multiple-input multiple-output (MIMO)
systems can provide spatial diversity and multiplexing gains
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to wireless communication systems [4]. When nodes in a
relay network have multiple transmit/receive dimensions, we
call such system a MIMO relay system. In [5] and [6],
relay precoder designs for a two-hop nonregenerative MIMO
relay system have been proposed to maximize the mutual
information between the source and destination nodes. In [7]-
[12], relay precoding algorithms have been developed to min-
imize the mean-squared error (MSE) of the signal waveform
estimation at the destination node. The precoder designs in
[5]-[12] assume that the full channel state information (CSI)
of the source-relay and relay-destination links is available at
the relay node.

However, in practical relay communication systems, the
exact CSI is unknown and therefore, has to be estimated.
There is always mismatch between the true and the estimated
CSI due to channel noise, quantization errors and outdated
channel estimates. A practical assumption is that only partial
information of the relay-destination channel is available at the
relay node. In [13] and [14], relay precoding matrix design has
been investigated for maximizing the ergodic capacity of the
relay system with the channel covariance information (CCI)
of the relay-destination channel. Robust broadcasting schemes
have been developed in [15] to minimize the transmission
power necessary to guarantee that the quality-of-service (QoS)
requirements are satisfied for all channels within bounded
uncertainty regions around the transmitter’s estimate of each
user’s channel. Minimum MSE (MMSE)-based transceiver
designs have been addressed in [16], [18]-[20] with the as-
sumption that the relay knows the CCI of the relay-destination
link and the full CSI of the source-relay link.

In the work of [13], [14], [16], [18]-[20], linear transceiver
design has been considered for MIMO relay systems, i.e.,
linear source/relay precoders and linear MMSE receiver. Com-
pared with linear transceivers, nonlinear transceivers have
a better bit-error-rate (BER) performance. Recently, nonlin-
ear transceiver based nonregenerative MIMO relay system
design has been proposed [21], [22]. Nonlinear transceiver
can be implemented at the receiver as a decision-feedback
equalizer (DFE) and/or at the transmitter in the form of
a Tomlinson-Harashima (TH) precoder. In general, the TH
precoding scheme has a better BER performance than the
DFE-based transceiver design, as the latter one suffers from
error propagation.

The performance of the TH precoding scheme has been
well studied for one-hop MIMO systems [23], [24]. In [25], a
TH-based pre-filtering algorithm has been designed for multi-
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antenna multi-user systems where the base station allocates
the transmit power according to the QoS requirement of each
active user. A unified approach has been developed in [26] for
transceiver optimization in MIMO systems with TH precoding
at the transmitter and linear equalization at the receiver. In
[27], a multiuser MIMO TH precoding algorithm has been
proposed based on quantized CSI at the transmitter side. Re-
cently, the TH precoding scheme has been introduced to nonre-
generative MIMO relay systems [28] with the assumption that
the full CSI of the entire channel is known at the relay node.
In [29]-[32], imperfect CSI has been considered for designing
the TH precoding based nonregenerative MIMO relay systems.
Due to the nonlinearity nature of the precoding scheme, the
TH precoding is highly sensitive to the time-varying nature
of the wireless channel [33]. Hence, covariance information
based nonlinear transceiver design is more appropriate in such
scenario.

In this paper, we propose a TH precoder-based transceiver
design for two-hop nonregenerative MIMO relay systems
where the full CSI of the source-relay link is known, while
only the CCI of the relay-destination link is available at the
relay node. To the best of our knowledge, such scenario has
not been considered by existing literature in two-hop MIMO
relay systems with TH precoder. In particular, we assume that
the channel of the relay-destination link is correlated at the
transmit antennas and uncorrelated at the receive antennas.
This model is suitable for an environment where the relay
is not surrounded by local scatterers [34] and the destination
node is located amongst rich scatterers [14]. Similar to [7], [9],
[16], and [18], we assume that there is no direct link between
the source and destination nodes. Moreover, a TH precoder is
considered at the source node. The relay precoder is assumed
as a linear precoder and the destination node is considered as
a linear MMSE receiver.

We propose a transceiver design that minimizes the MSE
of the signal waveform estimation at the destination node.
We first derive the structure of the optimal TH precoder
and the source precoder as a function of the relay precoder.
Then we propose an iterative algorithm to optimize the relay
precoding matrix by exploiting the link between the mutual
information and the weighted MMSE functions [35]. To re-
duce the computational complexity of the proposed iterative
algorithm, we propose a simplified precoding matrices design
algorithm. Numerical simulations are carried out to compare
the performance of the proposed precoding matrices design
algorithms with existing schemes. Simulation results show that
both proposed algorithms outperform existing TH precoder
based MIMO transceiver optimization algorithms in terms of
BER. Moreover, the system BER yielded by the proposed
algorithms is very close to that of the system with the perfect
CSI. Furthermore, the BER performance of the simplified
precoding matrices design algorithm is very close to that of the
iterative algorithm. Therefore, the simplified algorithm is very
attractive for practical MIMO relay communication systems.

The rest of this paper is organized as follows. The system
model and problem formulation are presented in Section II.
In Section III, the structure of the optimal TH and source
precoding matrix is presented. An iterative algorithm is then

proposed to optimize the relay precoding matrix. Finally, a
simplified precoding matrices design is proposed to reduce the
computational complexity of the proposed iterative algorithm.
Numerical examples are shown in Section IV to verify the
performance of the proposed algorithms, and conclusions are
drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a two-hop nonregenerative MIMO relay system
as shown in Fig. 1, where the source, relay, and destination
nodes have NS , NR, and ND antennas, respectively. It is
assumed that there is no direct link between the source and
destination due to the long distance between these two nodes.
We also assume that NS ≤ NR, ND, so that NS independent
data streams can be transmitted.

As shown in Fig. 1, the nonregenerative MIMO relay system
has two precoders, i.e, a TH-based source precoder and a
relay precoder. At the receiver, we consider a linear MMSE
receiver filter. At the transmitter side, the source signal vector
a ∈ CNS×1 is first fed into the TH precoder. The TH precoder
performs a successive cancelation operation which can be
implemented through a feedback matrix B and a modulo
operation MODm(·) expressed as

MODm(x) = x− 2
√
m
⌊x+

√
m

2
√
m

⌋
. (1)

Here m is the number of constellation points in the modulation
scheme and ⌊·⌋ denotes the floor operation.

We denote the signal vector after the modulo operation as
x, whose nth element can be written as

xn = an −
n−1∑
l=1

[B]k,lxl + en, n = 1, · · · , NS . (2)

where [B]k,l is the (k, l)-th element of B, en = 2
√
mqn,

and qn is a complex-valued quantity with integer real and
imaginary components that reduces xn within the region of
R = {xR+ jxI |xR, xI ∈ (−

√
m,

√
m)} [26]. By introducing

e = [e1, · · · , eNS
]T , (2) can be expressed in matrix-vector

form as
x = C−1v (3)

where C = B + INS is a lower triangular matrix with unit
diagonal elements, v = a + e, In denotes the n × n identity
matrix, and x has the covariance matrix of E{xxH} = σ2

xINS .
Here E{·} denotes the statistical expectation, (·)T , (·)H , and
(·)−1 stand for the matrix transpose, Hermitian transpose, and
inversion, respectively.

The data transmission from source to destination is com-
pleted in two time slots. At the first time slot, the source node
linearly precodes x as

s = Fx (4)

and transmits s to the relay node, where F ∈ CNS×NS is
the source precoding matrix. The received signal vector at the
relay is given by

y1 = H1Fx+ n1 (5)
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Fig. 1. Two-hop nonregenerative MIMO relay system with TH precoder.

where H1 ∈ CNR×NS is the channel matrix of the source-
relay link, n1 ∈ CNR×1 is the circularly symmetric complex
Gaussian noise vector with zero mean and covariance matrix
E{n1n

H
1 } = σ2

1INR
.

At the second time slot, the relay linearly precodes y1 as

x2 = Gy1 = GH1Fx+Gn1 (6)

and forwards x2 to the destination, where G ∈ CNR×NR is
the relay precoding matrix. The received signal vector at the
destination is given by

y2 = H2x2 + n2 = H2GH1Fx+H2Gn1 + n2 (7)

where H2 ∈ CND×NR is the channel matrix of the relay-
destination link, n2 ∈ CND×1 is the circularly symmetric
complex Gaussian noise vector with zero mean and covariance
matrix E{n2n

H
2 } = σ2

2IND
. Let us introduce

H = H2GH1F, n = H2Gn1 + n2 (8)

where H ∈ CND×NS is the equivalent MIMO channel matrix
between the source and destination nodes, and n ∈ CND×1

represents the equivalent noise vector. Now (7) can be rewrit-
ten as

y2 = Hx+ n. (9)

We assume that the relay node knows the instantaneous
CSI of H1, which can be obtained at the relay node through
training sequence from the source node. To obtain the in-
stantaneous CSI of H2 at the relay node, the channel H2

must be fed back to the relay node from the destination node.
When the relay-destination channel varies rapidly, a large
signalling overhead for feedback of H2 is required and this
may not be feasible since the rate of feedback link is often
limited in practical wireless communication systems. Hence,
in the proposed design, we assume that only the covariance
information of H2, which is much more stable than the
instantaneous information of H2, is known at the relay node.
In particular, we consider a scenario where the channel of the
relay-destination link is correlated at the transmit antennas
and uncorrelated at the receive antennas. For example, this
scenario can occur in a relay communication system where
the relay node is located at the top of a radio mast and a
mobile destination node is in an urban area [17]. With this
assumption, the channel matrix H2 can be modelled as

H2 = HωΣ
1
2 (10)

where Hω is an ND×NR Gaussian matrix having independent
and identically distributed (i.i.d.) circularly symmetric com-
plex entries with zero mean and unit variance, and Σ is an
NR×NR covariance matrix of H2 at the relay side. Note that
the covariance matrix Σ is assumed to be known to the relay
node and Hω is unown to the relay node.

At the destination node, a linear receiver with weight matrix
W is applied due to its implementation simplicity. Hence,
the estimated signal vector at the destination node can be
expressed as

ṽ = Wy2 = WHx+Wn. (11)

We assume that the average transmission power at the
source and relay is upper bounded by ps and pr, respectively.
Based on (4) and (6), the power constraints at the source and
relay can be expressed as

P (F) = σ2
xtr
{
FFH

}
≤ ps (12)

Q1(F,G) = tr
{
G(σ2

xH1FF
HHH

1 + σ2
1INR

)GH
}
≤ pr(13)

where tr{·} is the trace of a matrix. Our goal is to design
C, F, G, and W to obtain the estimated signal ṽ which
minimizes the following MSE cost function subjecting to the
power constraints (12) and (13)

J1(C,F,G,W) = tr
{
E
{
(ṽ − v)(ṽ − v)H

}}
. (14)

Note that once ṽ is obtained, a can be recovered from (1).
After substituting (11) into (14), the MSE cost function (14)

can be written as

J1(C,F,G,W) = tr
{
σ2
x(WH−C)(WH−C)H

+WRnW
H
}

(15)

where Rn = E{nnH} is the equivalent noise covariance
matrix given by

Rn = σ2
1H2GGHHH

2 + σ2
2IND . (16)

Based on (12), (13), and (15), the optimal precoding matri-
ces design problem can be formulated as

min
C,F,G,W

J1(C,F,G,W)

s.t. P (F) ≤ ps

Q1(F,G) ≤ pr. (17)

Directly solving the problem (17) is difficult due to the fact
that J1(C,F,G,W) is a nonlinear and nonconvex function
of C, F, G, and W. In the following section, optimal and
suboptimal approaches are proposed to solve the problem (17).
Firstly, we derive the optimal structure of C and F as a func-
tion of G. Then an iterative algorithm is proposed to optimize
the relay precoding matrix G. Finally, a simplified precoding
matrices design is developed to reduce the complexity of the
iterative algorithm.
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III. PROPOSED TRANSCEIVER DESIGN ALGORITHMS

Since concurrently finding the optimum C, F, and G in
(17) is not possible, hence the optimization problem in (17)
is reformulated into three subproblems. In the proposed first
subproblem, the lower triangular matrix C is derived as a func-
tion of F, and G, and then, second subproblem optimizes the
source precoder matrix F. In the third subproblem, an iterative
approach is proposed to obtain the relay precoder matrix G.
Due to the computational complexity of the proposed iterative
approach, a simplified precoding matrices design is proposed
in the subsequent subsection.

A. Tomlinson-Harashima Precoder Design

For any given precoding matrices C, F, and G which satisfy
the power constraints at the source and relay nodes (12) and
(13), the weight matrix W of the optimal linear receiver
that minimizes the MSE function J1(C,F,G,W) is the well
known MMSE receiver (Wiener filter) which is given by [36]

W = σ2
xCHH(σ2

xHHH +Rn)
−1. (18)

After substituting (18) back into (15) and using the matrix
inversion lemma [37], the MSE function can be written as

J2(C,F,G) = tr
{
C
(
σ−2
x INS

+ FHM̃HM̃F
)−1

CH
}

(19)

where

M̃ =
(
σ2
1H2GGHHH

2 + σ2
2IND

)− 1
2

H2GH1. (20)

To proceed further, we minimize the MSE function (19)
with respect to the lower triangular and unit diagonal matrix
C. The optimum C is given in [23] and can be written as

Copt = DL−1 (21)

where

LLH =
(
σ−2
x INS + FHM̃HM̃F

)−1

(22)

is the Cholesky factorization. Here L is a lower triangular
matrix and D is a diagonal matrix which scales the diagonal
elements of C to unit, and given by

D = diag{[L]1,1, · · · , [L]NS ,NS
}. (23)

Substituting (21)-(23) back into (19), the MSE function can
be written as

J3(F,G) =

NS∑
i=1

[L]2i,i ≥ NS

(
NS∏
i=1

[L]i,i

)2/NS

. (24)

Using the arithmetic-geometric inequality (AGI), the in-
equality in (24) can be obtained and the equality can be
achieved when [L]i,i = [L]j,j , i ̸= j.

B. Source Precoding Matrix Design

It can be seen from (22) that [L]i,i depends on the source
precoding matrix F. Hence, in this subsection, we determine
F which minimizes the objective function (24). This problem
is solved in [24] and [38]. Let us define the eigenvalue
decomposition (EVD) of M̃HM̃ as

M̃HM̃ = VM̃ΛM̃VH
M̃

(25)

where VM̃ is the eigenvector matrix of M̃ and ΛM̃ =
diag{ΛM̃,1, · · · ,ΛM̃,NS

} is the diagonal eigenvalue matrix
with ΛM̃,1 ≥ · · · ≥ ΛM̃,NS

.
Lemma 1: [28]. The optimal source precoding matrix as the

solution to the problem (17) can be expressed as

Fopt = ρVM̃ΦF (26)

where ΦF is a unitary matrix and ρ is chosen to satisfy the
power constraint (12).

Substituting (25) and (26) back into (22), the Cholesky
factorization (22) can be written as

LLH =ΦH
F Σ̃

1
2 Σ̃

1
2ΦF (27)

where

Σ̃
1
2 =

(
σ−2
x INS + ρ2ΛM̃

)− 1
2

.

Applying the geometric mean decomposition (GMD) [39] to
Σ̃

1
2 , we have

Σ̃
1
2 = QRPH (28)

where Q and P are semi-unitary matrices and R is an upper
triangular matrix. Substituting (28) back into (27), we have

LLH = ΦH
F PRHRPHΦF . (29)

Let us assume ΦF = P to achieve the lower bound in (24),
then (29) can be simplified as

LLH = RHR. (30)

From (30), we can conclude that L = RH . By substituting
(30) back into (24), the MSE function can be depicted as

J4(G) =NS

NS∏
k=1

(
σ−2
x + ρ2ΛM̃,k

)−1/NS
. (31)

After substituting (26) back into (13), the relay power con-
straint (13) can be written as

Q2(G) = tr
{
G(σ2

xρ
2H1H

H
1 + σ2

1INR)G
H
}
≤ pr. (32)

Now the relay precoding matrix optimization problem can be
formulated as

min
G

J4(G) s.t. Q2(G) ≤ pr. (33)
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C. Relay Precoding Matrix Design
In this subsection, we derive the optimum G. It is worth to

note that the eigenvalues of (20) are a nonlinear function of G
and the optimization problem (33) is not convex. To solve the
problem (33), we consider the following equivalent function

NS∏
k=1

(
σ−2
x + ρ2ΛM̃,k

)
=
∣∣∣σ−2

x INS
+ ρ2M̃HM̃

∣∣∣. (34)

Here | · | denotes the matrix determinant. Substituting (34)
into (33) and taking the log operation to the cost function, the
optimization problem (33) can be reformulated as

min
G

−X s.t. Q2(G) ≤ pr (35)

where

X = log |A−1|
A=

(
ρ−2σ−2

x INS
+HH

1 GHHH
2 R−1

n H2GH1

)−1
. (36)

It is worth noting that if H2 is known at the relay node,
(35) has a closed-form solution [9]. However, as the exact
H2 is unknown, it is impossible to solve the problem (35). To
overcome this difficulty, we consider to minimize the mean
value of −X as given by the following problem

min
G

EH2{−X} s.t. Q2(G) ≤ pr (37)

where EH2{·} denotes the statistical expectation with respect
to H2.

We notice that due to the matrix determinant operator in X ,
the closed-form expression of the objective function in (37), if
possible to obtain, is a very complicated function of G, which
makes the problem (37) difficult to solve. To overcome this
challenge, we apply the following theorem.

Theorem 1: The problem (35) has the same Karush-Kuhn-
Tucker (KKT) conditions on G as the problem of

min
G,Ω

tr{ΩA} − log |Ω| (38)

s.t. Q2(G) ≤ pr (39)

when the Hermitian weight matrix Ω takes value of

Ω = A−1. (40)

Moreover, with given G, the weight matrix Ω minimizing (38)
is given by (40).

PROOF: See Appendix A. �
Based on Theorem 1, we can solve the problem (35) using

an iterative approach, where in each iteration, with Ω from the
previous iteration, we first optimize G by solving the problem
(38)-(39). Then we update Ω as (40) using G obtained in the
current iteration. Note that the conditional updates of G and
Ω may either decrease or maintain but cannot increase the
objective function (38). Monotonic convergence of the iterative
algorithm towards (at least) a locally optimal solution follows
directly from this observation. As Ω is unknown due to an
unknown H2, we use Ω̄ given by

Ω̄=EH2{Ω}
=EH2{A−1}
= ρ−2σ−2

x INS + EH2{M̃HM̃} (41)

where

EH2{M̃HM̃}
=HH

1 EH2{GHHH
2 R−1

n H2G}H1

≤ σ−2
1 HH

1

[
INR

−σ2
2(σ

2
1G

HEH2{HH
2 H2}G+σ2

2INR
)−1
]
H1

= σ−2
1 HH

1

[
INR

−σ2
2(σ

2
1NDGHΣG+ σ2

2INR
)−1
]
H1. (42)

Substituting (36) into (38), for a given Ω̄, the objective
function of G can be expressed as

T1(G) = tr
{
Ω̄
[
ρ−2σ−2

x INS
+HH

1 GHHH
2

×
(
σ2
1H2GGHHH

2 +σ2
2IND

)−1

H2GH1

]−1}
.(43)

Now the problem is reduced to find the optimal G that
minimizes T1(G) subjecting to the relay power constraint (32).
Using the matrix inversion lemma [37], (43) can be rewritten
as

T1(G) = tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 HH
1

[
INR

−
(
INR +

σ2
1

σ2
2

GHHH
2 H2G

)−1]
H1

]−1}
. (44)

Let us introduce the singularvalue decomposition (SVD) of
H1 as

H1 = U1Λ
1
2
1 V

H
1 (45)

where Λ1 = diag{Λ1,1, · · · ,Λ1,NS
} is a diagonal matrix with

Λ1,1 ≥ · · · ≥ Λ1,NS
, U1 ∈ CNR×NS and V1 ∈ CNS×NS

are the singular vector matrices of H1. We also introduce the
EVD of Σ as

Σ = VΣΛΣV
H
Σ (46)

where ΛΣ = diag{ΛΣ,1, · · · ,ΛΣ,NR} with ΛΣ,1 ≥ · · · ≥
ΛΣ,NR

. Substituting (46) back into (10), the channel matrix
H2 can be written as

H2 = H̃ωΛ
1
2

ΣV
H
Σ (47)

where H̃ω , HωVΣ has the same distribution as Hω, as the
unitary matrix VΣ does not change the statistical distribution
of Hω. Thus, H̃ω is an ND ×NR complex Gaussian matrix
having i.i.d. circularly symmetric entries. It can be shown that
the optimal G minimizing (44) can be expressed as

G = VΣG̃UH
1 . (48)

It can be seen from (48) that the optimal G allocates power
according to the eigenmodes of H1H

H
1 and Σ, and we need

to determine G̃.
Substituting (45)-(48) back into (44), we obtain

T1(G̃) = tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1 U

H
1

×(INR −D1)U1Λ
1
2
1 V

H
1

]−1}
(49)

where

D1 =
(
INR

+
σ2
1

σ2
2

U1G̃
HΛ

1
2

ΣH̃
H
ω H̃ωΛ

1
2

ΣG̃UH
1

)−1

.
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Using UH
1 U1 = INS

, (49) can be simplified to

T1(G̃) = tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1

×(INR −D2)Λ
1
2
1 V

H
1

]−1}
(50)

where

D2 =
(
INR +

σ2
1

σ2
2

G̃HΛ
1
2

ΣH̃
H
ω H̃ωΛ

1
2

ΣG̃
)−1

.

It can be seen from (50) that T1(G̃) depends on H̃ω , which
is random and unknown. In the following, we optimize
EH̃ω

{T1(G̃)}, where EH̃ω
{·} indicates that the expecta-

tion is taken with respect to the random matrix H̃ω . Now
EH̃ω

{T1(G̃)} can be expressed as

EH̃ω
{T1(G̃)}=EH̃ω

{
tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1

×(INR
−D2)Λ

1
2
1 V

H
1

]−1}}
. (51)

Direct minimization of (51) over G̃ is difficult due to the
expectation operation. In the following, a lower bound of (51)
is exploited together with the power constraint (32) to derive
the suboptimal G̃ for the precoding matrix G.

Theorem 2: A lower bound of (51) is given by

T2(G̃) = tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1

[
INR

−
(
INR+

σ2
1ND

σ2
2

G̃HΛΣG̃
)−1]

Λ
1
2
1 V

H
1

]−1}
. (52)

PROOF: See Appendix B. �
Substituting (45) and (48) back into (32), the power con-

straint at the relay node can be simplified to

Q3(G̃) = tr
{
G̃(ρ2σ2

xΛ1 + σ2
1INR)G̃

H
}
≤ pr. (53)

From (52) and (53), the problem of optimizing G̃ can be
written as

min
G̃

T2(G̃) s.t. Q3(G̃) ≤ pr. (54)

The problem (54) does not have a closed-form solution due to
the presence of Ω̄ in the objective function. The problem (54)
can be solved by resorting to numerical methods, such as the
projected gradient algorithm [40].

The procedure of the iterative precoding matrices design
algorithm developed in Sections III.A-III.C is summarized in
Table I, where the superscript (m) denotes the variables at the
mth iteration.

TABLE I
PROCEDURE OF THE PROPOSED ITERATIVE PRECODING MATRICES DESIGN

ALGORITHM

1) Initialize the algorithm with Ω̄(0) =
√

ps/NSINS
; Set m = 0.

2) Update G̃(m) by solving the problem (54) using the projected gradient
algorithm [40].

3) Update Ω̄(m+1) by (41); If max abs(Ω̄(m+1) − Ω̄(m)) ≤ ε, then
go to Step 4).
Otherwise, let m := m+ 1 and go to Step 2).

4) Obtain Fopt as (26), and Copt by (21) with M̃HM̃ replaced by
EH2

{M̃HM̃} in (42).

D. Simplified Precoding Matrices Design

In this subsection, we propose a precoding matrices design
algorithm which has a significant computational complexity
reduction compared with the iterative algorithm in Table I. In
this algorithm, a lower bound of the MSE function is obtained
by using the arithmetic-geometric mean inequality [37], which
is given by the following lemma.

Lemma 2: For a positive semidefinite (PSD) A ∈ CN×N ,
there is

|A|1/N ≤ tr(A)/N (55)

where the equality is achieved when A is a diagonal matrix
with equal diagonal elements. Using Lemma 2, a lower bound
of the MSE function (19) can be written as∣∣σ−2

x INS
+ FHM̃HM̃F

∣∣−1/NS

≤ tr
{
C(σ−2

x INS
+ FHM̃HM̃F)−1CH

}
/NS . (56)

Since minimizing |A|−1 is equivalent to maximizing |A|
[37], the source and relay precoding matrices design problem
can be reformulated as

max
F,G

X(F,G)

s.t. P (F) ≤ ps

Q1(F,G) ≤ pr (57)

where the objective function X(F,G) can be expressed as

X(F,G) = log
∣∣σ−2

x INS
+ FHM̃HM̃F

∣∣
= log

∣∣σ−2
x INS

+ FHHH
1 GHHH

2

×
(
σ2
1H2GGHHH

2 + σ2
2IND

)−1
H2GH1F

∣∣
= log

∣∣∣σ−2
x INS

+ σ−2
1 FHHH

1

[
INR

−
(
INR +

σ2
1

σ2
2

GHHH
2 H2G

)−1]
H1F

∣∣∣. (58)

Here the matrix inversion lemma [37] is applied to obtain the
last equation. From [45], we can define that if the matrix is
diagonal, then the determinant of a positive definite matrix is
maximized. Hence, without loss of generality, let us express
the source precoding matrix F in terms of the following
decomposition

F = V1Λ
1
2

FΦF (59)

where ΛF = diag{ΛF,1 · · ·ΛF,NS}, and ΦF is a unitary
matrix defined later. Let us assume that the matrix G which
maximizes (58) can be expressed as

G = VΣ,1Λ
1
2

GU
H
1 (60)

where VΣ,1 contains NS columns of VΣ associated
with the largest NS eigenvalues of Σ, and ΛG =
diag{ΛG,1, · · · ,ΛG,NS}. Substituting (45), (47), (59) and (60)
in (58), we have

X(F,G) = log
∣∣∣σ−2

x INS
+σ−2

1 Λ
1
2

FΛ
1
2
1 (INS

−D5)Λ
1
2
1 Λ

1
2

F

∣∣∣
(61)

where

D5 =
(
INS

+
σ2
1

σ2
2

Λ
1
2

GΛ
1
2

Σ,1H̃
H
ω,1H̃ω,1Λ

1
2

Σ,1Λ
1
2

G

)−1
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and H̃ω,1 is a matrix containing the left-most NS columns of
H̃ω. It can be seen from (61) that X(F,G) depends on H̃ω,1,
which is random and unknown. In the following, we optimize
EH̃ω,1

{X(F,G)} given by

EH̃ω,1
{X(F,G)}=EH̃ω,1

{
log
∣∣∣σ−2

x INS + σ−2
1 Λ

1
2

FΛ
1
2
1

×(INS
−D5)Λ

1
2
1 Λ

1
2

F

∣∣∣}. (62)

Due to the expectation operation, maximizing (62) with
respect to ΛF and ΛG is difficult. In the following, an upper
bound of EH̃ω,1

{X(F,G)} is used together with the power
constraints (12) and (13) to derive the suboptimal power
allocation for the precoding matrices F and G.

Theorem 3: The function

f(Z) = log
∣∣∣INS + σ2

xσ
−2
1 Λ

1
2

FΛ
1
2
1

[
INS

−
(
INS

+
σ2
1

σ2
2

Λ
1
2

GΛ
1
2

Σ,1ZΛ
1
2

Σ,1Λ
1
2

G

)−1]
Λ

1
2
1 Λ

1
2

F

∣∣∣ (63)

is concave with respect to a PSD Z.
PROOF: See Appendix C. �
According to Theorem 3, X(F,G) is concave in H̃H

ω,1H̃ω,1.
Hence, EH̃ω,1

{X(F,G)} has the following upper bound by
using the Jensen’s inequality [42]

XU = log
∣∣∣σ−2

x INS
+ σ−2

1 Λ
1
2

FΛ
1
2
1 (INS

−D6)Λ
1
2
1 Λ

1
2

F

∣∣∣ (64)

where

D6 =
(
INS +

σ2
1

σ2
2

Λ
1
2

GΛ
1
2

ΣEH̃ω,1

{
H̃H

ω,1H̃ω,1

}
Λ

1
2

ΣΛ
1
2

G

)−1

.

Using the property of Gaussian random matrices with
i.i.d. circularly symmetric complex entries, we have
EH̃ω,1

{
H̃H

ω,1H̃ω,1

}
= NDINS

, and (64) can be simplified to

XU , log
∣∣σ−2

x INS + σ−2
1 ΛFΛ1(INS −D7)

∣∣ (65)

where

D7 =
(
INS

+
σ2
1ND

σ2
2

ΛGΛΣ

)−1

.

By substituting (45), (59), and (60) back into (12) and
(13), the power constraints at source and relay nodes can be
simplified to

σ2
xtr{ΛF } ≤ ps (66)

tr{(σ2
xΛFΛ1 + σ2

1INS )ΛG} ≤ pr. (67)

Based on (65)-(67), the diagonal elements of ΛF and ΛG can
be obtained by solving the following constrained optimization
problem with scalar variables

max
{ΛF,i},{ΛG,i}

NS∑
i=1

log
(
σ−2
x +

NDΛF,iΛ1,iΛG,iΛΣ,i

σ2
1NDΛG,iΛΣ,i + σ2

2

)
(68)

s.t.

NS∑
i=1

σ2
xΛF,i ≤ ps (69)

NS∑
i=1

(
σ2
xΛF,iΛ1,i + σ2

1

)
ΛG,i ≤ pr (70)

where {ΛF,i},ΛF,1, · · · ,ΛF,NS
, {ΛG,i},ΛG,1, · · · ,ΛG,NS

.
Let us introduce

ai , σ2
xΛF,i, i = 1, · · · , NS (71)

bi , (σ2
xΛF,iΛ1,i + σ2

1

)
ΛG,i, i = 1, · · · , NS . (72)

Substituting (71) and (72) back into (68)-(70), the problem
(68)-(70) can be rewritten as

max
{ai},{bi}

NS∑
i=1

log
(aiΛ1,i + σ2

1)(NDbiΛΣ,i + σ2
2)

σ2
x(σ

2
1NDΛΣ,ibi + aiΛ1,iσ2

2 + σ2
2σ

2
1)

(73)

s.t.

NS∑
i=1

ai ≤ ps, ai ≥ 0, i = 1, · · · , NS (74)

NS∑
i=1

bi ≤ pr, bi ≥ 0, i = 1, · · · , NS (75)

where {ai} , a1, · · · , aNS
and {bi} , b1, · · · , bNS

.
Using the KKT conditions, the solution to the problem (73)-

(75) is given by

ai = φai

[√
b2iΛ

2
Σ,i

σ4
2

+
4biΛ1,iΛΣ,i

µsNDσ2
1σ

2
2

− biΛΣ,i

σ2
2

− 2

ND

]+
(76)

bi = φbi

[√
a2iΛ

2
1,i

σ4
1

+
4NDaiΛ1,iΛΣ,i

µrσ2
1σ

2
2

− aiΛ1,i

σ2
1

− 2

]+
(77)

i = 1, · · · , NS

where [x]+ = max(x, 0), µs and µr are the Lagrangian
multipliers chosen to meet the power constraints (74) and (75),
and

φai =
σ2
1ND

2Λ1,i
, φbi =

σ2
2

2NDΛΣ,i
, i = 1, · · · , NS . (78)

The detailed derivation of (76) and (77) is shown in Ap-
pendix D.

It can be seen from (76) and (77) that {ai} and {bi} are
functions of each other. Thus, directly solving (76) and (77)
is difficult. To avoid this difficulty, we propose an iterative
algorithm to compute {ai} and {bi}. This algorithm is initial-
ized with ai =

√
ps/NS , i = 1, · · · , NS . At each iteration,

we first optimize {bi} according to (77) based on the initial
value of {ai}. Then we optimize {ai} following (76) using
{bi}. We update {ai} and {bi} iteratively until convergence.
Finally, the diagonal elements of ΛF and ΛG can be obtained
by from (71) and (72).

After obtaining the optimal source and relay precoding
matrices, we now focus on determining the structure of the
unitary matrix ΦF and the lower triangular matrix C. The
optimal C is given in (21). Substituting (45), (47), (59), and
(60) back into (22), the Cholesky factorization (22) can be
written as

LLH =ΦH
F Ψ̃

1
2 Ψ̃

1
2ΦF (79)

where

Ψ̃
1
2 =

(
σ−2
x INS + σ−2

1 ΛFΛ1(INR −D7)
)− 1

2 . (80)
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The proof of (80) can be found in [16]. Applying the GMD
[39] to Ψ̃

1
2 , we have(

σ−2
x INS

+ σ−2
1 ΛFΛ1(INR

−D7)
)− 1

2 = Q2R2P
H
2 . (81)

Substituting (81) back into (79), the Cholesky factorization
(79) can be written as LLH = ΦH

F P2R
H
2 R2P

H
2 ΦF . Similar

to (29) and (30), the unitary matrix ΦF can be chosen as
ΦF = P2.

IV. SIMULATION RESULTS

In this section, we investigate the performance of the
proposed precoder design algorithms through numerical sim-
ulations. We simulate a two-hop nonregenerative MIMO relay
system with NS = NR = ND = N . The channel matrices
H1 and Hω have complex Gaussian entries with zero mean
and unit variance and the information-carrying symbols are
generated from 16-QAM constellations.

The elements of the covariance matrix Σ of H2 is generated
by [Σ]i,j = J0(2π|i − j| △ dt/λc) [34], where J0(·) is the
zeroth order Bessel function of the first kind, △ is the angle
of fading spread, λc is the wavelength at the center frequency,
and dt is the spacing of transmit antennas. Let us introduce
k = λc/△dt. Unless explicitly mentioned, we set N = 4 and
k = 3 in the simulations. The signal-to-noise ratios (SNRs)
for the source-relay and relay-destination links are defined as
SNR1 =

σ2
x

σ2
1

and SNR2 = Pr

NRσ2
2

, respectively.
First, we study the impact of initialization to the perfor-

mance of the proposed algorithms. We tried the following
three initializations for the optimal precoder design (OPT-
TH-cov) algorithm in Table I: Initialization 1 is given in
Table I. In Initialization 2, Ω̄ = c1D, where c1 =

√
ps/NS

and D is a 4 × 4 diagonal matrix whose main diagonal
elements are [

√
2, 1,

√
0.5,

√
0.5]. For Initialization 3, we set

Ω̄ = c1U, where U is a 4× 4 random Hermitian matrix. For
the suboptimal precoder design (SUB-TH-cov) algorithm in
Section III.D, the following two starting points are attempted:
Initialization 1 as given after (78) and Initialization 2 where
a1 = a2 =

√
2ps/NS and a3 = a4 = 0. We observed that

the proposed algorithms converge for the various initialization
methods tested. Fig. 2 shows the BER performance of the
two proposed algorithms using the initialization points tested.
It can be seen from Fig. 2 that the system BER yielded by
different starting points is quite small, and Initialization 1 has
the lowest BER. Therefore, for the rest of simulations, we use
Initialization 1 for both proposed algorithms.

In the following simulations, we compare the performance
of two proposed algorithms with the linear transceiver-based
precoding scheme such as the joint MMSE (JMMSE) scheme
[7], the TH precoding based scheme with the full CSI (TH-
FCSI) [28], TH-robust [32], TH-L-robust [31], and M-Schur-
convex [29] schemes. Note that in contrast to other algorithms,
the JMMSE and TH-FCSI schemes require the full CSI of the
relay-destination link.

Fig. 3 shows the BER performance of all algorithms tested
versus SNR1 while fixing SNR2 = 20dB. It can be seen
from Fig. 3 that as expected, the TH-FCSI scheme has the
lowest system BER. We can also observe that over the whole
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SUB−TH−cov, initialization 2
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OPT−TH−cov, initialization 3
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OPT−TH−cov, initialization 1
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Fig. 2. BER versus SNR1 at different number of initialization points while
fixing SNR2 = 20dB.
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Fig. 3. BER versus SNR1 while fixing SNR2 = 20dB.

range of SNR1, the two proposed algorithms outperform
the JMMSE, TH-robust, TH-L-robust, and M-Schur-convex
schemes in terms of BER. Moreover, for the whole range of
SNR1, the BER performance of the SUB-TH-cov algorithm
is very close to that of the OPT-TH-cov algorithm.

In Fig. 4, we compare the performance of seven algorithms
in terms of BER versus SNR2 while fixing SNR1 = 20dB. It
can be noted from Fig. 4 that the proposed OPT-TH-cov and
SUB-TH-cov algorithms show better BER performance over
the whole range of SNR2 than the existing schemes. Moreover,
the system BER yielded by the proposed algorithms is very
close to that of the system with the perfect CSI (TH-FCSI
scheme).

Fig. 5 shows the BER performance comparison of the
algorithms tested versus SNR1 for k = 3 and k = 10 when
SNR2 is fixed at 20dB. It can be seen from Fig. 5 that for
both value of k, the proposed OPT-TH-cov and SUB-TH-
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Fig. 4. BER versus SNR2 while fixing SNR1 = 20dB.
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Fig. 5. BER versus SNR1 at different correlation coefficient k while fixing
SNR2 = 20dB.

cov algorithms show better BER performance over the whole
range of SNR1 than the JMMSE, TH-robust, TH-L-robust,
and M-Schur-convex schemes in terms of BER. The BER
performance of the proposed OPT-TH-cov and SUB-TH-cov
scheme is closer to that of the TH-FCSI scheme when k is
large (i.e., the elements of H2 are highly correlated).

Fig. 6 shows the performance of all algorithms in terms
of BER versus SNR1 for N = 2 and N = 4, while fixing
SNR2 = 20dB. We observe that the proposed OPT-TH-cov
and SUB-TH-cov algorithms outperform the JMMSE, TH-
robust, TH-L-robust, and M-Schur-convex schemes over the
whole range of SNR1. It can also be seen from Fig. 6 that
with increasing number of antennas at the source, relay, and
destination nodes, the BER performance of all algorithms
improves.

Finally, we compare the computational complexity of the
proposed SUB-TH-cov and OPT-TH-cov algorithms. In the
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Fig. 6. BER versus SNR1 at different number of antennas while fixing
SNR2 = 20dB.

TABLE II
AVERAGE NUMBER OF ITERATIONS REQUIRED BY THE OPT-TH-COV

ALGORITHM TILL CONVERGENCE

SNR1(dB) 0 5 10 15 20 25 30
Number of Iterations 3 4 6 8 10 12 12

SUB-TH-cov algorithm, the complexity order of matrix in-
version, matrix GMD, and matrix SVD is O(N3). Since the
complexity of solving the problem (73)-(75) is much lower
than the matrix operations mentioned above, the complex-
ity order of the SUB-TH-cov algorithm is O(N3). In each
iteration of the proposed OPT-TH-cov algorithm, the major
operation is to update the relay matrix using the projected
gradient method, which has a complexity order of O(I1N

3).
Here I1 is the number of projected gradient steps required to
reach a stationary point. The overall computational complexity
of the OPT-TH-cov algorithm also depends on the number
of iterations required till convergence, which is shown in
Table II. Obviously, the SUB-TH-cov algorithm has a much
lower overall computational complexity than the OPT-TH-cov
algorithm. Thus, the SUB-TH-cov algorithm is very attractive
for practical MIMO relay communication systems.

V. CONCLUSIONS

We have addressed the challenging issue of precoding
matrices optimization for a TH-based two-hop MIMO relay
system where the full CSI of the source-relay link is known,
while only the CCI of the relay-destination link is available at
the relay node. We have derived the structure of the optimal
TH precoding matrix and the source precoding matrix that
minimize the MSE of the signal waveform estimation at the
destination. An iterative algorithm has been developed to
optimize the relay precoding matrix. We have also proposed
a simplified precoding matrices design algorithm which has
lower computational complexity than the iterative algorithm.
Numerical results show that the proposed precoding matrices
design schemes outperform existing algorithms.
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APPENDIX A
PROOF OF THEOREM 1

The Lagrangian function associated with the problem (35)
can be written as

L1 = −X + µ(Q2(G)− pr) (82)

where µ is the Lagrangian multiplier. We denote ∇GL1 =
2(∂L1

∂G )∗ as the gradient of (82). The KKT conditions [40] of
the problem (35) on G are given by

∇GL1 = 0 (83)
µ(Q2(G)− pr) = 0 (84)
Q2(G) ≤ pr. (85)

Using ∂ ln |X|
∂X = X−T , ∂tr(AX−1)

∂X = −(X−1AX−1)T , and
∂tr(XA)

∂X = AT , we can write ∇GL1 as

∇GL1 =−2HH
2 R−1

n H2GH1AHH
1

+2σ2
1H

H
2 R−1

n H2GH1AHH
1 GHHH

2 R−1
n H2G

+2µσ2
xGH1FF

HHH
1 . (86)

The Lagrangian function of the problem (38)-(39) associ-
ated with G can be written as

L2 = tr{ΩA}+ µ(Q2(G)− pr). (87)

The KKT conditions of the problem (38)-(39) on G are given
by

∇GL2 = 0 (88)
µ(Q2(G)− pr) = 0 (89)
Q2(G) ≤ pr. (90)

The gradient ∇GL2 of the Lagrangian function (87) can be
derived as

∇GL2 =−2HH
2 R−1

n H2GH1AΩAHH
1

+2σ2
1H

H
2 R−1

n H2GH1AΩAHH
1 GHHH

2 R−1
n H2G

+2µσ2
xGH1FF

HHH
1 . (91)

By comparing (83)-(86) with (88)-(91), we observe that the
KKT conditions of the problem (38)-(39) are equal to those
of the problem (35) when (40) holds. The derivative of (38)
with respect to Ω can be written as

∂(tr{ΩA} − log |Ω|)
∂Ω

= AT − (Ω−1)T (92)

By equating (92) to zero, we obtain (40). Thus with given G,
the weight matrix Ω minimizing (38) is given by (40).

APPENDIX B
PROOF OF THEOREM 2

Let us first introduce the following definition and lemma.
Definition 1: [42]. Let Φ be a matrix-convex function. The

Jensen’s inequality for matrix valued functions is given by
E{Φ(X)} ≥ Φ(E{X}), where E{·} is expectation on the
random matrix X.

Lemma 3: [43]. For positive definite Hermitian matrix X,
the matrix-valued function Φ(X) = X−1 is matrix-convex.
Therefore, from Definition 1, there is E{X−1} ≥ (E{X})−1.

Now we start to prove Theorem 2. By using the matrix
inversion lemma [37], (51) can be written as

EH̃ω
{T1(G̃)}=EH̃ω

{
tr
{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1 G̃

H

×Λ
1
2

Σ

(
Λ

1
2

ΣG̃G̃HΛ
1
2

Σ +
σ2
2

σ2
1

[
H̃H

ω H̃ω

]−1
)−1

×Λ
1
2

ΣG̃Λ
1
2
1 V

H
1

]−1}}
. (93)

By applying Lemma 3 to (93), we have

EH̃ω
{T1(G̃)} ≥ tr

{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1 G̃

HΛ
1
2

Σ

×
(
Λ

1
2

ΣG̃G̃HΛ
1
2

Σ +
σ2
2

σ2
1

EH̃ω

{
H̃H

ω H̃ω

}−1)−1

×Λ
1
2

ΣG̃Λ
1
2
1 V

H
1

]−1}
= tr

{
Ω̄
[
ρ−2σ−2

x INS
+ σ−2

1 V1Λ
1
2
1

×(INR
−D3)Λ

1
2
1 V

H
1

]−1}
(94)

where

D3 =
(
INR +

σ2
1

σ2
2

G̃HΛ
1
2

ΣEH̃ω
{H̃H

ω H̃ω}Λ
1
2

ΣG̃
)−1

.

Using EH̃ω
{H̃H

ω H̃ω} = NDINR
, we obtain EH̃ω

{T1(G̃)} ≥
T2(G̃).

APPENDIX C
PROOF OF THEOREM 3

For the sake of notational simplicity, let us introduce T
1
2
1 ,

σx

σ1
Λ

1
2

FΛ
1
2
1 and T

1
2
2 , σ1

σ2
Λ

1
2

GΛ
1
2

Σ,1. Then (63) can be written as

f(Z) = log
∣∣INS

+T
1
2
1

(
INS

−
(
INS

+T
1
2
2 ZT

1
2
2

)−1)
T

1
2
1

∣∣
= log

∣∣INS
+T

1
2
1 T

1
2
2 (T2 + Z−1)−1T

1
2
2 T

1
2
1

∣∣
= log |T1T2 +T2 + Z−1| − log |T2 + Z−1|
= log |INS +T3Z| − log |INS +T2Z| (95)

where T3 , T1T2+T2. The concavity of (95) can be proven
by considering an arbitrary line [44] given by Z = X+ tY ≥
0. We have

g(t) = log |INS
+T3(X+ tY)| − log |INS

+T2(X+ tY)|

= log
∣∣INS +T

1
2
3 (X+ tY)T

1
2
3

∣∣
− log

∣∣INS
+T

1
2
2 (X+ tY)T

1
2
2

∣∣
= log |INS + tP3| − log |INS + tP2|+ ξ

=

NS∑
n=1

(log(1 + tλ3,n)− log(1 + tλ2,n)) + ξ (96)

where ξ , log |INS
+T3X|− log |INS

+T2X|, λi,n, i = 2, 3,
n = 1, · · · , NS , are the eigenvalues of Pi, and for i = 2, 3,

Pi =
(
INS +T

1
2
i XT

1
2
i

)− 1
2T

1
2
i YT

1
2
i

(
INS +T

1
2
i XT

1
2
i

)− 1
2 .
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The second-order derivative of (96) is

g′′(t) =

NS∑
n=1

(
λ2
2,n

(1 + tλ2,n)2
−

λ2
3,n

(1 + tλ3,n)2

)

=

NS∑
n=1

(λ2,n − λ3,n)(λ2,n + λ3,n + 2tλ2,nλ2,n)

(1 + tλ2,n)2(1 + tλ3,n)2
. (97)

Let us introduce λ(X) as the eigenvalue of X. Using the
property of λ(AB) = λ(BA), we have

λ(Pi) = λ
(
T

1
2
i

(
INS +T

1
2
i XT

1
2
i

)−1
T

1
2
i Y
)

= λ
(
Y

1
2

(
T−1

i +X
)−1

Y
1
2

)
, i = 1, 2. (98)

Since T3 ≥ T2, we can see from (98) that λ(P3) ≥ λ(P2),
i.e., λ3,n ≥ λ2,n, n = 1, · · · , NS . As a result, from (97) we
have g′′(t) ≤ 0. Therefore, we conclude that f(Z) is concave.

APPENDIX D
DERIVATION OF (76) AND (77)

The Lagrangian function of (73) can be written as

L =−
NS∑
i=1

log
(aiΛ1,i + σ2

1)(NDbiΛΣ,i + σ2
2)

σ2
x(σ

2
1NDΛΣ,ibi + aiΛ1,iσ2

2 + σ2
2σ

2
1)

+µs

(
NS∑
i=1

ai − ps

)
+ µr

(
NS∑
i=1

bi − pr

)
(99)

where µs ≥ 0 and µr ≥ 0 are the Lagrangian multipliers. By
using the KKT conditions, we have

∂L
∂ai

=− σ2
1NDbiΛΣ,iΛ1,i

(aiΛ1,i + σ2
1)(σ

2
1NDbiΛΣ,i + σ2

2aiΛ1,i + σ2
2σ

2
1)

+ µs = 0 (100)
∂L
∂bi

=− σ2
2NDaiΛΣ,iΛ1,i

(NDbiΛΣ,i + σ2
2)(σ

2
1NDbiΛΣ,i + σ2

2aiΛ1,i + σ2
2σ

2
1)

+ µr = 0 (101)

µs

(
NS∑
i=1

ai − ps

)
= 0, µs ≥ 0, ai ≥ 0, i = 1, · · · , NS

µr

(
NS∑
i=1

bi − pr

)
= 0, µr ≥ 0, bi ≥ 0, i = 1, · · · , NS .

Using (100) and (101) and after some manipulations, we
obtain the optimum ai and bi given by (76) and (77).

ACKNOWLEDGMENT

The authors would like to thank the editor and anonymous
reviewers for their valuable comments and suggestions that
improved the quality of the paper.

REFERENCES

[1] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Distributed space-
time-coded protocols for exploiting cooperative diversity in wireless
networks,” IEEE Trans. Inf. Theory, vol. 49, pp. 2415–2425, Oct. 2003.

[2] P. A. Angel and M. Kaveh, “On the performance of distributed space-
time coding system with one and two non-regenerative relays,” IEEE
Trans. Wireless Commun., vol. 5, pp. 682–692, Mar. 2006.

[3] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: Efficient protocols and outage behavior,” IEEE
Trans. Inf. Theory, vol. 50, pp. 3062 – 3080, Dec. 2004.

[4] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamform-
ing design for multicarrier MIMO channels: A unified framework for
convex optimization,” IEEE Trans. Signal Process., vol. 59, pp. 2381–
2401, Sep. 2003.
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