
Copyright © 2015 IEEE. Personal use of this material is permitted. Permission 

from IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or promotional 

purposes, creating new collective works, for resale or redistribution to servers 

or lists, or reuse of any copyrighted component of this work in other works. 



Bi-objective Optimization for Robust RGB-D Visual Odometry
Tao Han1, Chao Xu1, Ryan Loxton2, Lei Xie1

1. State Key Laboratory of Industrial Control Technology and Institute of Cyber-Systems & Control, Zhejiang University, Hangzhou
310027, China

E-mail: thancn@gmail.com, cxu@zju.edu.cn, leix@iipc.zju.edu.cn
2. Department of Mathematics & Statistics, Curtin University, Perth 6102, Australia

E-mail: r.loxton@curtin.edu.au

Abstract: This paper considers a new bi-objective optimization formulation for robust RGB-D visual odometry. We
investigate two methods for solving the proposed bi-objective optimization problem: the weighted sum method (in which
the objective functions are combined into a single objective function) and the bounded objective method (in which one
of the objective functions is optimized and the value of the other objective function is bounded via a constraint). Our
experimental results for the open source TUM RGB-D dataset show that the new bi-objective optimization formulation
is superior to several existing RGB-D odometry methods. In particular, the new formulation yields more accurate motion
estimates and is more robust when textural or structural features in the image sequence are lacking.
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1 INTRODUCTION

Visual odometry is an important area of information fusion
in which the central aim is to estimate the pose of a robot
using data collected by visual sensors [1]. Because nearly
all robotic tasks require knowledge of the pose of the robot,
visual odometry plays a critical role in robot control, si-
multaneous localization and mapping (SLAM) and robot
navigation, especially when external reference information
about the environment (such as GPS data) is unavailable.
Visual odometry can be viewed as a particular instance of
the general pose tracking problem, which is the most fun-
damental perception problem in robotics [2].
To date, a variety of different visual odometry methods
based on different sensor information have been studied
and widely implemented. One of the most well-known
methods is the iterative closest point (ICP) algorithm [3],
which estimates the robot’s pose by minimizing the dis-
tance between corresponding points in two laser scan-
ning snapshots. However, this method can easily become
trapped in local optima if a good initial guess is not pro-
vided. In addition to the ICP algorithm and its variants,
odometry methods using camera images have also been
studied [4] [5]. Such methods usually extract point features
from the camera images and match them through a series of
steps, including descriptor matching, RANSAC and bundle
adjustment. Due to their expensive computational burden,
these approaches are usually too slow for real-time applica-
tion. One way of improving computational efficiency is to
use sparse point features, but this approach does not fully
exploit the available image data, ignoring much relevant
information.
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Recently, with RGB-D cameras becoming smaller and
cheaper, the opportunity has arisen to develop RGB-D
odometry methods that exploit both intensity and depth in-
formation. One such method was proposed by the Com-
puter Vision Group at the Technical University of Mu-
nich (TUM). In this method, a single-objective optimiza-
tion problem is formulated to penalize the intensity dif-
ference between corresponding pixels in consecutive im-
ages [6] [7]. This method can be implemented in real-time
even on a single-core CPU. However, the image depth in-
formation is only used to determine the relationship be-
tween corresponding pixels in consecutive images for in-
tensity residual comparison; depth residuals are not consid-
ered. Thus, a new bi-objective optimization problem was
subsequently proposed in [8] to minimize both depth and
intensity residuals, with the aim of improving estimation
performance.
In this paper, we consider the same bi-objective optimiza-
tion formulation as in [8]. Our aims are twofold: (i) to
propose new computational approaches for solving this
bi-objective optimization formulation; and (ii) to explore
and quantify the advantages of the bi-objective optimiza-
tion formulation for improving estimation robustness. The
first computational approach we investigate, the so-called
weighted sum method, involves integrating the two objec-
tive functions into a single objective using a weighting fac-
tor. We derive a new formula for adaptive calculation of
this weighting factor, which is crucial to estimation accu-
racy. Our formula is based on a novel image complexity
metric and differs from the corresponding formula in [8],
which uses the ratio of median intensity and median depth
values to calculate the weighting factor. The second com-
putational approach we investigate, the so-called bounded
objective method, involves optimizing one of the objec-
tive functions while the other objective function is bounded



via a constraint. Again, our new image complexity met-
ric is used, this time to determine an appropriate objective
bound. To evaluate performance, the open source TUM
RGB-D dataset [9] was used. The computational results
demonstrate that our new methods generally give results of
superior accuracy compared with the methods in [6] [7] [8].

2 SINGLE-OBJECTIVE OPTIMIZATION
FOR VISUAL ODOMETRY

The camera motion in 3-D space has six degrees of freedom
and can be denoted as a 6-D vector in a manifold:

ξ = [ν1 ν2 ν3 ψ1 ψ2 ψ3]
⊤
,

where ν1, ν2, ν3 are the translation components of the mo-
tion (which form a Euclidean space) and ψ1, ψ2, ψ3 are
the rotation components of the motion (which span over
the non-Euclidean 3-D rotation group SO(3)). To estimate
ξ, we consider a world point ρi and assume that its bright-
ness stays the same in two consecutive images. This is the
so-called photo-consistency assumption [7], which can be
expressed mathematically by

I1(xi) = I2(yi(ξ
∗)),

where xi ∈ R2 represents the mapping coordinate of the
world point ρi in the first image and yi(ξ

∗) ∈ R2 rep-
resents the corresponding coordinate of ρi in the second
image when given the true value of the camera motion ξ∗.
Moreover, I1(·) and I2(·) are the brightness (or intensity)
values of the specified coordinates in the first and second
images, respectively.
Based on the photo-consistency assumption, we can define
the intensity difference corresponding to the motion esti-
mate ξ as

r
(i)
I (ξ) = I2(yi(ξ))− I1(xi).

According to the results in [7], the more accurate the cam-
era motion estimate, the smaller the residual r(i)I (ξ). Thus,
estimation quality in visual odometry can be assessed by
considering the following least-squares objective function,
which is the sum of residual squares for n world points:

FI(ξ) =
n∑

i=1

{
r
(i)
I (ξ)

}2

.

Then the problem of determining the camera motion can be
formulated as a least-squares optimization problem, i.e.,

minimize
ξ

FI(ξ).

To improve robustness, weighted residuals can be used to
reduce the effect of noise and outliers in the image data.
This motivates the following weighted objective function
in quadratic form as in [7]:

FI(ξ) = [rI(ξ)]
⊤
ΩI [rI(ξ)] , (1)

where

rI(ξ) =
[
r
(1)
I (ξ) r

(2)
I (ξ) · · · r(n)I (ξ)

]⊤
,

and ΩI is a diagonal weight matrix.

Figure 1: Motion estimation accuracy of the single-
objective Gauss-Newton method for the TUM RGB-D
dataset.

3 BI-OBJECTIVE OPTIMIZATION FOR
RGB-D ODOMETRY

Traditional cameras only provide image intensity informa-
tion. RGB-D cameras, on the other hand, provide image
intensity and image depth information, both of which can
be used for visual odometry. For example, in the odom-
etry methods introduced by the TUM Computer Vision
Group [6] [7], the relationship between corresponding pix-
els in consecutive images is expressed in terms of the depth
information in the first image, and the intensity informa-
tion of both images is used to define the motion estimation
residuals as in Section 2. More precisely, the relationship
between corresponding pixels in consecutive images is de-
fined by a warping function as follows:

yi(ξ) = τ (ξ,xi, D1(xi)),

where D1(xi) is the depth value of the pixel in the first im-
age and τ (ξ,xi, D1(xi)) is the warping function for calcu-
lating the mapping coordinate yi in the second image. For
the specific form of the warping function τ (ξ,xi, D1(xi)),
we refer the reader to [7].
Although single-objective optimization-based odometry
methods are computationally fast and effective, they can
produce poor results in some situations. For example, when
textural features in the image sequence are poor, trajec-
tory estimation accuracy will decrease dramatically. This
is because the objective function FI(ξ) only depends on
image intensity information, and thus it can become non-
convex when image textural features are lacking. In this
case, the optimal motion estimates obtained by applying
an optimization iterative procedure may only be locally
optimal. To investigate this hypothesis, we applied the
single-objective optimization approach (implemented us-
ing the Gauss-Newton method) to image sequences 2 and 4
from the Structure vs. Texture category in the TUM RGB-
D dataset [9]. Our results are shown in Figure 1, where
the solid line shows estimation error for image sequence
2 (poor texture) and the dashed line shows estimation er-
ror for image sequence 4 (rich texture). From the results,
we see that the translation error of the motion estimates
increases significantly when textural features are lacking.
This motivates the new bi-objective optimization formula-
tion proposed in [8], in which both image intensity and im-
age depth residuals are minimized to improve robustness.



Figure 2: Motion estimation via RGB-D odometry: ρi is
the world point under consideration, xi and yi are the pixels
corresponding to ρi, and D1(xi) and D2(yi) are the depth
values corresponding to ρi.

The extension of RGB-D odometry using bi-objective op-
timization is inspired by the ICP algorithm and its variants,
which estimate the sensor motion by minimizing residual
coordinate differences, instead of image intensity values.
Since RGB-D cameras can provide both intensity and depth
information simultaneously, we want to take full advantage
of this feature by comparing depth differences, just as the
ICP algorithm compares coordinate differences. Thus, we
now consider two residuals instead of one:

r
(i)
I (ξ) = I2(τ (ξ,xi, D1(xi)))− I1(xi),

r
(i)
D (ξ) = D2(τ (ξ,xi, D1(xi)))

− [T (ξ,xi, D1(xi))]z,

(2)

where D1(·) and D2(·) are the depth values of the spec-
ified coordinates in the first and second images, and
T (ξ,xi, D1(xi)) projects the 3-D coordinate of world
point ρi from the first camera coordinate system to the sec-
ond camera coordinate system based on the homogeneous
transformation matrix for ξ. Operator [ ]z selects the co-
ordinate value along the z-direction. See the diagram in
Figure 2 for an explanation of the notation.
Based on r(i)D (ξ) defined in (2), we consider the following
objective function similar to (1):

FD(ξ) = [rD(ξ)]
⊤
ΩD [rD(ξ)] , (3)

where

rD(ξ) =
[
r
(1)
D (ξ) r

(2)
D (ξ) · · · r(n)D (ξ)

]⊤
,

and ΩD is a diagonal weight matrix.
Combining objectives (1) and (3), we consider the follow-
ing bi-objective optimization problem:

minimize
ξ

F (ξ) = [FI(ξ), FD(ξ)]⊤. (4)

3.1 Weighted Sum Method
The weighted sum method is the most common approach
to solving multi-objective optimization problems. In this
method, the individual objective functions are assigned dif-
ferent weights and then added together to form a single ob-
jective function. More specifically, for individual objective

functions Ψ1,Ψ2, . . . ,Ψn and decision vector α, the com-
bined objective function is

Ψ(α) =

q∑
i=1

ωiΨi(α), (5)

where ωi are the weights. If all of the weights are positive,
then the minimum of (5) is Pareto optimal for the original
multi-objective problem [10].
In essence, the objective weights provide additional de-
grees of freedom in the optimization problem. For our
odometry problem (4), the new single-objective optimiza-
tion problem is defined as

minimize
ξ

F (ξ) = ωIFI(ξ) + ωDFD(ξ).

Notice that by dividing F (ξ) by ωI , we can obtain an
equivalent optimization problem as follows:

minimize
ξ

F̄ (ξ) = FI(ξ) + λFD(ξ), (6)

where λ = ωD/ωI . Thus, we only need to consider a single
weighting factor λ.
Problem (6) can be solved using the Gauss-Newton
method. To do this, we linearize the residuals rI(ξ) and
rD(ξ) using the Taylor expansion proposed in [11]:{

rI(ξ ⊕∆ξ) ≃ rI(ξ) + JI(ξ)∆ξ,

rD(ξ ⊕∆ξ) ≃ rD(ξ) + JD(ξ)∆ξ,

where the operator ⊕ maps a local variation ∆ξ in the Eu-
clidean space to a variation on the manifold, ∆ξ 7→ ξ⊕∆ξ
(for more details, see [12]); and JI(ξ) and JD(ξ) are the
Jacobians defined by

JI(ξ) =
∂rI(ξ ⊕∆ξ)

∂∆ξ

∣∣∣∣
∆ξ=0

,

JD(ξ) =
∂rD(ξ ⊕∆ξ)

∂∆ξ

∣∣∣∣
∆ξ=0

.

Then the objective function in (6) can be approximated by
a quadratic function of ∆ξ:

F̄ (ξ ⊕∆ξ) ≃ (aI + λaD) + 2(b⊤I + λb⊤D)∆ξ

+∆ξ⊤(HI + λHD)∆ξ,
(7)

where aj = [rj(ξ)]
⊤
Ωjrj(ξ), bj = [Jj(ξ)]

⊤
Ωjrj(ξ)

and Hj = [Jj(ξ)]
⊤
ΩjJj(ξ) (j = I,D).

Suppose that at iteration k, we have the motion estimate
ξk. Then the increment ∆ξk should be chosen to minimize
F̄ (ξk ⊕ ∆ξk). According to the Gauss-Newton method,
by differentiating (7) for ξ = ξk, the optimal value of ∆ξk

satisfies the linear system

(Hk
I + λHk

D)∆ξk = −(bkI + λbkD), (8)

where bkj denotes bj with ξ = ξk and Hk
j denotes Hj

with ξ = ξk. To solve this linear system, methods such as
Cholesky decomposition can be used. After solving (8),



(a) Experiment 1 (rich structural features)

(b) Experiment 2 (poor textural features)

Figure 3: Ratio of root mean square error (RMSE) and
maximum error for two computational experiments using
the TUM RGB-D dataset.

the updated motion estimate is given by ξk+1 = ξk ⊕
∆ξk. This iterative process continues until convergence
is achieved.
The effectiveness of the weighted sum method depends
crucially on the weighting factor λ, which must be selected
a priori and reflects the preference of the decision maker. A
good choice for λ can result in more accurate trajectory es-
timates when compared to single-objective odometry meth-
ods, but a poor choice for λ may lead to unacceptable
results. Systematic approaches to selecting the weights
in multi-objective optimization problems have been devel-
oped (see, for example, [13]), but few of them have been
investigated in the context of visual odometry. Tykkala et
al. [8] proposed a method that determines λ based on the
ratio of median intensity and median depth values:

λ =
∣∣median(I)/median(D)

∣∣2,
where I denotes the list of intensity values and D denotes
the list of depth values.
To explore the importance of the weight λ, we conducted
two computational experiments with the TUM RGB-D
dataset. For our first experiment, we used two image se-
quences from the Structure vs. Texture category in the
TUM RGB-D dataset: one containing images with poor
textural features and one containing images with rich tex-
tural features. The structural features in both image se-
quences were rich. We observed that for the first sequence
with poor textural features, the error decreases as λ is in-
creased, but for the second sequence with rich textural fea-
tures, the opposite occurs (see Figure 3(a)). We believe
that this is because the intensity objective function FI tends
to be non-convex when images lack textural features. In

this case, large values of λ magnify the relative importance
of the depth objective function FD, thus potentially pre-
venting the overall objective function in (6) from becoming
non-convex.
For our second experiment, we again used two image se-
quences from the Structure vs. Texture category in the
TUM RGB-D dataset: this time the first image sequence
contained images with poor structural features and poor
textural features, and the second image sequence contained
images with rich structural features and poor textural fea-
tures. As expected, the error decreases as λ increases for
the image sequence with rich structural features (see Fig-
ure 3(b)). This is because FD is likely to be convex when
images contain rich structural information, and a large λ
will increase FD’s relative influence in the overall objec-
tive function.
Based on the experimental results in Figure 3, we believe
that the key to finding an optimal λ is to design a metric to
measure textural and structural information. To do this, we
consider the concept of image complexity, which is a mea-
sure of the inherent difficulty of finding a true target in a
given image [14]. Peters et al. [14] has summarized many
image complexity metrics for automatic target recognizers.
Unfortunately, image complexity is a task-dependent no-
tion and there is no universal metric applicable to all sit-
uations. After testing several of the metrics in [14], we
designed our own metric for intensity complexity defined
as follows:

π(I) =
1

(v − 2)(h− 2)

v−1∑
i=2

h−1∑
j=2

{|I(i+ 1, j)

−I(i− 1, j)|+ |I(i, j + 1)− I(i, j − 1)|} ,

(9)

where v and h are the number of pixel rows and pixel
columns, respectively, and I(·, ·) denotes the intensity
value at the specified pixel. For depth complexity, we use
the analogue of (9) for the depth values:

π(D) =
1

(v − 2)(h− 2)

v−1∑
i=2

h−1∑
j=2

{|D(i+ 1, j)

−D(i− 1, j)|+ |D(i, j + 1)−D(i, j − 1)|} ,

(10)

whereD(·, ·) denotes the depth value at the specified pixel.
To standardize the intensity data I and the depth data D,
we define the following scaling factor as the ratio of the
variance between them:

γ =
σ2(I)

σ2(D)
. (11)

Combining (9)-(11), we calculate the value of weight λ as
follows:

λ =
ϕγ2π(D)2

π(I)2
, (12)

where γ is as defined in (11) and ϕ is an adjustable con-
stant. Notice that large values of π(I) indicate rich textural
features, and large values of π(D) indicate rich structural
features. Thus, we have deliberately chosen the value of



λ in (12) to be inversely proportional to π(I), and propor-
tional to π(D). The idea is to use large values of λwhen the
image sequence is rich in structure and/or poor in texture,
and small values of λ when the image sequence is poor in
structure and/or rich in texture.

3.2 Bounded Objective Method
The bounded objective method is another method for solv-
ing multi-objective optimization problems [13]. In this
method, we minimize one of the objective functions (con-
sidered as the most important, or primary, objective), while
the other objective functions are bounded using additional
constraints.
For our odometry problem, we select FI(ξ) as the primary
objective function. The bi-objective optimization problem
in (4) then becomes

minimize
ξ

FI(ξ)

subject to FD(ξ) ≤ ϵD,
(13)

where ϵD is an upper bound for the least-squares sum
of depth residuals. To solve the optimization problem in
(13), we can again use the first-order Taylor expansions of
rI(ξ ⊕∆ξ) and rD(ξ ⊕∆ξ). The optimal increment ∆ξ
at point ξ is then given by the solution of the following
problem:

minimize
∆ξ

∆ξ⊤HI∆ξ + 2b⊤I ∆ξ + aI

subject to ∆ξ⊤HD∆ξ + 2b⊤D∆ξ + aD ≤ ϵD,
(14)

where HI , HD, bI , bD, aI and aD are as defined in (7).
Problem (14) is a quadratically constrained quadratic pro-
gram (QCQP). The general form for a QCQP is

minimize
α∈Rn

α⊤H0α+ 2b⊤0 α+ a0

subject to α⊤Hiα+ 2b⊤i α+ ai ≤ 0, i = 1, . . . , q.

QCQPs are of both theoretical and practical significance
[15]. Because the matrices HI and HD are positive
semidefinite, problem (14) is a convex QCQP. To solve
this convex QCQP, we first transform it into a second-order
cone programming (SOCP) problem and then apply SOCP
techniques [16]. The general form for a SOCP problem is

minimize
α∈Rn

c⊤α

subject to ∥Aiα+ pi∥ ≤ q⊤
i α+ di, i = 1, . . . , q.

The norm appearing in the constraints is the standard Eu-
clidean norm, i.e., ∥u∥ = (u⊤u)1/2. We first rewrite (14)
as follows:

minimize
∆ξ

∥∥∥Ω1/2
I JI∆ξ +Ω

1/2
I rI

∥∥∥2
subject to

∥∥∥Ω1/2
D JD∆ξ +Ω

1/2
D rD

∥∥∥2 6 ϵD.

(15)

By adding a new optimization variable t ∈ R, we can trans-

form (15) into the following SOCP form:

minimize
(∆ξ,t)

t

subject to
∥∥∥Ω1/2

I JI∆ξ +Ω
1/2
I rI

∥∥∥ 6 t∥∥∥Ω1/2
D JD∆ξ +Ω

1/2
D rD

∥∥∥ 6 √
ϵD.

(16)

Problem (16), which is equivalent to (14) and (15) (see
[16]), is clearly in the general SOCP form shown above.
To solve the SOCP problem in (16), we can use ECOS, an
SOCP solver developed by Domahidi et al. [17]. ECOS
implements an interior point method to solve SOCPs in the
following standard form [18]:

minimize
α∈Rn

c⊤α

subject to Gα+ s = h, s ∈ K,

where α is a vector of optimization variables, s is a vector
of slack variables and K is the cone

K =
N∏

µ=1

{(u0,u1) ∈ R× Rmµ−1 : u0 ≥ ∥u1∥}.

To reformulate (16) into the standard form required by
ECOS, we set

α =

[
t
∆ξ

]
,

and

G =


−1 0⊤

6

0n −Ω
1/2
I JI

0 0⊤
6

0n −Ω
1/2
D JD

 , h =


0

Ω
1/2
I rI√
ϵD

Ω
1/2
D rD

 ,
where 0n denotes the zero column vector in Rn.
The upper bound ϵD of the depth objective FD(ξ) is a pa-
rameter that needs to be selected before starting the opti-
mization procedure. This parameter plays the same role as
λ in (6), i.e., balancing the relative importance of the depth
and intensity objectives. However, compared to λ, the up-
per bound ϵD has a more explicit mathematical meaning
and is easier to select a priori. In fact, since the value of
FD(ξ) can be measured directly when the true value of the
camera motion ξ∗ is substituted into FD(ξ), we can usu-
ally determine an appropriate range for ϵD through exper-
imentation. In our algorithm, we choose the value of ϵD
according to image depth complexity as follows:

ϵD =

{
ϵmax, if π(D) ≤ δ,

ϵmin, otherwise,

where ϵmin ≪ ϵmax, δ is an adjustable threshold and π(D)
is the depth metric in (10).

4 PERFORMANCE EVALUATION

For performance evaluation, we conducted a series of
numerical experiments using image sequences from the
Structure vs. Texture category in the TUM RGB-D dataset.



(a) Poor structure & poor texture (b) Poor structure & rich texture (c) Rich structure & poor texture (d) Rich structure & rich texture

Figure 4: The four types of images in the Structure vs. Texture category in the TUM RGB-D dataset.

Table 1: RMSE results for image sequences 1-4 in the Structure vs. Texture category.
Poor structure Rich structure Poor structure Rich structure

Method Rich texture Poor texture Poor texture Rich texture
[m/s] [m/s] [m/s] [m/s]

Single objective 0.041667 0.125235 0.249357 0.015956
Tykkala’s method 0.035970 0.106649 0.165702 0.016078

Weighted sum 0.034464 0.088853 0.178571 0.015101
Bounded objective 0.032715 0.095749 0.178994 0.015330

Table 2: RMSE results for image sequences 5-8 in the Structure vs. Texture category.
Poor structure Rich structure Poor structure Rich structure

Method Rich texture Poor texture Poor texture Rich texture
[m/s] [m/s] [m/s] [m/s]

Single objective 0.110646 0.074372 0.170460 0.015597
Tykkala’s method 0.094845 0.077504 0.129923 0.014728

Weighted sum 0.078033 0.076853 0.123848 0.014284
Bounded objective 0.098715 0.066008 0.152104 0.015269

These images were created using wooden panels to create
structure and colorful plastic foils to create texture. The
images can be classified into four types as shown in Fig-
ure 4.
We considered all 8 image sequences in the Structure vs.
Texture category. Sequences 1-4 contain images taken at
a close distance from the panels and wooden surfaces; se-
quences 5-8 contain images taken at a far distance. We used
4 different optimization methods to calculate the estimated
robot trajectory for each image sequence: the single objec-
tive method [7], Tykkala’s original bi-objective method [8],
and our new weighted sum and bounded objective meth-
ods. For each image sequence, we calculated the root mean
square error (RMSE) of the drift between the estimated tra-
jectories and the exact trajectory (which is supplied with
the TUM RGB-D dataset). All computations were done
on a ThinkPad E431 laptop with dual-core Intel i5-3210M
CPU (2.50GHz) and 4 GB RAM.
To ensure identical experimental conditions for each opti-
mization method, the weight matrices ΩI and ΩD at each
iteration k were chosen as diagonal matrices in which the
i-th diagonal elements are defined, respectively, by

ω(r
(i)
I (ξk−1)) =

ν + 1

σ2ν + (r
(i)
I (ξk−1))2

,

ω(r
(i)
D (ξk−1)) =

ν + 1

σ2ν + (r
(i)
D (ξk−1))2

,

where ξk−1 is the motion estimate at iteration k − 1 and ν
and σ are parameters. For more details about how to choose

the values of ν and σ, see [7].
The results of our experiments are given in Table 1 and
Table 2 (the per-frame translational errors are also shown
in Figure 5). It can be seen that the RMSE of the
single-objective optimization method increases consider-
ably when textural features are poor. Compared to single-
objective optimization, our new bi-objective methods, the
weighted sum method and the bounded objective method,
give better performance, especially in the scenarios with
poor textural features. Tykkala’s method in [8], which also
uses bi-objective optimization, has similar performance to
our methods. Our conclusion is that the new bi-objective
optimization formulation for RGB-D odometry can im-
prove motion estimates by reducing the chances of the op-
timization problem being non-convex.
We also measured the average runtime for each method
to perform one match between two images, using all 8
image sequences in the Structure vs. Texture category.
From Table 3, we can see that our weighted sum method
needs 49.09% more time to accomplish one match than
the method based on single objective optimization. But as
the time for one match is much less than one second, our
weighted sum method can still be implemented as a real-
time approach. The bounded sum method, however, due
to its expensive computational cost, cannot currently work
in a real-time environment. The main reason for the large
computational burden is that the algorithms used to solve
the SOCP are numerical approximation algorithms. They
need more computations and iterations than the analytic
algorithms, such as Gauss-Newton algorithm, used in the



(a) Rich textural features: weighted sum vs. single objective (b) Rich textural features: bounded objective vs. single objective

(c) Poor textural features: weighted sum vs. single objective (d) Poor textural features: bounded objective vs. single objective

Figure 5: Per-frame translational errors for the single objective method, the weighted sum method, and the bounded objec-
tive method.

Table 3: Computation times for the different RGB-D
odometry methods in our experiments.

Method CPU Time [ms]
Single objective 15.42

Tykkala’s method 21.06
Weighted sum 22.99

Bounded objective 7093.00

weighted sum method. Nevertheless, since it depends on an
easily-quantifiable parameter, the bounded sum method is
still a promising alternative to other methods in bi-objective
optimization for visual odometry.

5 CONCLUSION

In this paper, we studied two methods for solving a
new bi-objective optimization formulation for robust RGB-
D odometry. Both methods involve converting the bi-
objective optimization problem into a single-objective
problem. The weighted sum method involves minimizing
the weighted linear sum of intensity and depth residuals.
The bounded objective method involves minimizing the in-
tensity residual subject to a bound on the depth residual.
The experimental results show that both methods yield pre-
cise motion estimates and perform reliably even when the
textural information in the image sequence is poor. The
bounded objective method is considerably slower than the
weighted sum method. Thus, our current focus is on de-
veloping a parallel algorithm for enhancing real-time per-
formance. We also hope to expand these ideas to other
problems in robotics such as motion control, SLAM and
navigation. One of the main contributions of our work is
a discussion of how to use depth and intensity metrics to
choose the parameters in both methods.
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