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Abstract- Participation of plug-in electric vehicles (PEVs) is expected to grow in emerging smart grids. A strategy to 

overcome potential grid overloading caused by large penetrations of PEVs is to optimize their battery charge-rates to 

fully explore grid capacity and maximize the customer satisfaction for all PEV owners. This paper proposes an 

online dynamically optimized algorithm for optimal variable charge-rate scheduling of PEVs based on coordinated 

aggregated particle swarm optimization (CAPSO). The online algorithm is updated at regular intervals of Δt=5min 

to maximize the customers’ satisfactions for all PEV owners based on their requested plug-out times, requested 

battery state of charges (SOCReq) and willingness to pay the higher charging energy prices. The algorithm also 

ensures that the distribution transformer is not overloaded while grid losses and node voltage deviations are 

minimized. Simulation results for uncoordinated PEV charging as well as CAPSO with fixed charge-rate 

coordination (FCC) and variable charge-rate coordination (VCC) strategies are compared for a 449-node network 

with different levels of PEV penetrations. The key contributions are optimal VCC of PEVs considering battery 

modeling, chargers’ efficiencies and customer satisfaction based on requested plug-out times, driving pattern, 

desired final SOCs and their interest to pay for energy at a higher rate.   

Index Terms- Electric vehicle charging coordination, customer satisfaction, variable charging, coordinated 

aggregated PSO, smart grid. 
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NOMENCLATURE 

Index: 

 i,j Counters 

m  Node number 

n Total number of nodes 

Parameters: 

)(iSOCinitial State of charge of the i
th

 PEV at plug-in time (%) 

Re ( )qSOC i Requested SOC of the i
th

 PEV (%)      

NPEV (Δtk) Number of available PEVs for current time slot 

)i(TReq Plug-out time of the i
th

 PEV (hour) 

( , )kBid t i The price that the i
th

 PEV owner is willing to pay at current time slot ($/kWh) 

) 
)( kMax tBid  Maximum offered bid by all existing PEVs at current time slot ($/kWh) 

Rm,m+1 Resistance of the line segment between nodes m and m+1 (ohm) 

Ym,m+1 Admittance of the line segment between nodes m and m+1 (ohm) 

i,ocV Open circuit voltage for i
th

 node (V)    

iR Battery equivalent internal resistance for the i
th

 node (ohm)     

Rated
iI Rated charger current for the i

th
 PEV (A) 

iQ Rated battery ampere hour for the i
th

 PEV (Ah) 

max
iCR Maximum charging rate for the i

th
 PEV (A)  

))(( k
best
ich tCR   Charger efficiency for the i

th
 PEV at the best charge-rate (%) 

Vmin and Vmax Lower and upper node voltage limits (per unit; p.u.) 

Dmax ( kt ) Maximum demand level that would normally occur without any PEVs during a day where selected 

to be 0.84 MW corresponding to the maximum load for the selected DLC (MW)  

C Ratio of charging or discharging current in A to the capacity of battery in Ah 

Lj  Trip path for j
th

 PEV (km) 

max

iL Rated length path that each type of PEVs can trip (km) 

αD, αV1 and αV2 Coefficients used to adjust the slopes of the penalty functions 

k1, k2, k3 Coefficients used to adjust the objective function based on the priority 

Variables: 

FV )( kt Penalty function for node voltage at current time slot 

FD )( kt Penalty function for demand (distribution transformer loading) at current time slot 

( , )kSOC t i State of charge of the i
th

 PEV at k
th

 time slot (%)  

Remain( , )kT t i The remaining available time for charging the i
th

  PEV at current time slot (hour) 

( , )S kC t i Customer satisfaction level for current time slot at i
th

 node (%) 

1( , )S kC t i Customer satisfaction level for next time slot at i
th

 node (%)      

iV Terminal voltage for i
th

 node (per unit; p.u.)   

),( itI k Charging current for the i
th

 PEV at current time slot (A) 

)( k
best
i tCR  Optimized charging rate for the i

th
 PEV at current time slot (A) 

Dt )( kt Total load at current time slot (MW) 

DL )( kt Daily load at current time slot (MW) 

PLoad ( kt ) Base-load power at current time slot (MW) 

PPEV,i )( kt Consumed power for the i
th

 PEV (KW) 



1. INTRODUCTION

High-Tech developments in the automotive technology, growing environmental concerns in oil prices have triggered the 

advent of plug in electrical vehicles (PEVs). However, large fleets of PEV charging will require additional electric power 

demand that may lead to undesirable peaks in power consumption, transformer overloading, and interruptions. A potential 

solution is using online and/or offline PEV charging coordination strategies [1-4]. Ref. [3] proposes real-time PEV 

coordinated charging in residential distribution systems to reduce costs of power generation and losses. Ref. [4] presents 

real-time PEV charging/discharging coordination without considering customer preferences and variable charge-rates. 

Ref. [5] proposes an online auction protocol such that vehicle owners use agents to bid for the charging opportunities. 

However, all PEVs have the same fixed charge-rate which is not usually the case in practical applications as vehicles have 

different battery and charger types, and ratings. Ref. [6] presents online coordination of PEV charging and discharging in a 

small geographic area based on the unrealistic assumption that no PEVs will arrive when a charging schedule is made. Ref. 

[7] analyzes the performance of optimal PEV charging coordination including customer satisfaction without considering

variable charge-rates. Refs. [8-9] focus on maximizing aggregator revenue without carefully addressing customers’ 

preferences and may not necessarily lead to maximum benefit for customers. Alonso et al. [10] designed the PEV 

scheduling to fill the valleys of the residential load profile during periods of lower load demands to avoid vehicle charging 

during peak load hours using a genetic algorithm. In addition, Nguyen and Le [11] presented an optimization problem that 

aims to minimize the total cost of energy of each PEV user. This work considers time-varying electricity prices and 

performs daily scheduling. Also, a real-time scheduling method of PEV charging loads is proposed in [12] to increase 

voltage security margin in a low-voltage distribution system.  A strategy is proposed in [13] to mitigate the adverse impacts 

that uncontrolled charging of the PEVs impose on the host power system. However, [10-13] don’t include variable charging 

rates and ignore battery and charger efficiencies. Ref. [14] assumes that electric vehicles drivers are insensitive to charging 

costs and discharging benefits. In addition, in [15], the PEV charging and wind power scheduling were integrated.  

In [26], a cost minimizing strategy benefiting is proposed, but does not consider fairness in charging for all PEVs. A real-

time charging coordination of PEVs based on hybrid fuzzy discrete particle swarm optimization (PSO) was presented in 

[27]. In addition, in [28] a multi-agent system that coordinates EV charging in distribution networks has been proposed 

using a distributed control method. A multi-objective scheduling strategy is formulated to charge a number of PEVs while a 

fuzzy solution is proposed to achieve the best compromise between the two objective functions in [29]. Moreover, Ref [30] 

used the population-based metaheuristics approach to solve the optimization problems. Another study [31] also shows that 

optimizing the charging schedule can reduce grid voltage drops and power losses as well as optimizing the load profiles. 

In performing PEVs charging coordination considering customer satisfaction, some vehicles can submit requested plug-out 

times along with the associated requested state of charges (SOCReq). Meeting these requirements is not a big problem when 

all the vehicles plug-out at their requested departure times. However, when unexpected departures of PEVs occur, the 

conventional schemes such as those proposed in [3-6], may not be able to provide acceptable levels of satisfaction fairness 



among the users. Moreover, some vehicles may not be fully charged at the end of charging horizon. The problem can be 

resolved by using variable charging rates as a strategy to adapt the power drawn by the charger from the grid to the load, in 

order to fully exploit grid capability and provide a high degree of user satisfaction.  

While the objective functions of [14-15] are optimization of aggregators’ income and the cost of energy without addressing 

customers’ satisfactions. In [16], the variable-based charging of PEVs is investigated; however, requested plug-out times 

and customers’ preferences are not considered. 

The main objective of this paper is to perform optimal PEV charging coordination to maximize all customers’ satisfactions 

without exceeding grid constraints. This is done by i) allowing customers to specify their own charging demands including 

requested plug-out times, desired departure SOCs and the higher electricity prices they are willing to pay, ii) developing an 

optimization problem where the decision variables are the charging rates updated at time slots of Δt=5min, and iii) solving 

the problem using coordinated aggregated particle swarm optimization (CAPSO). We rely on the quality and speed of the 

CAPSO solution for accurate and quick online PEV charging [24], [34-35]. Among the artificial intelligent based 

algorithms, the CAPSO is known to achieve near optimal solutions with better convergence characteristics. Simulation 

results for uncoordinated PEV charging, as well as CAPSO with fixed charge-rate coordination (FCC) and variable charge-

rate coordination (VCC) are compared for a 449-node network. The proposed algorithm takes into consideration random 

plug-in times, initial SOCs, requested plug-out times, requested final SOCs and maximum charging rates of PEV batteries.  

2. MODELING OF BATTERY AND CHARGER FOR PEVS

Coordination of PEVs in smart grid requires accurate modeling of its battery profile and charging characteristics. Many 

modern battery chargers are capable of achieving high efficiency values; however, their charging efficiencies indicate 

significant dependency on the charging rate due to the internal battery resistance [19-21]. This is particularly important in 

calculating the actual stored energies and SOCs at different times during the charging period. Fig.1 (a) shows a sample 

experimental data of the average charging efficiency as a function of the charging rate [17]. In this paper, vehicle batteries 

are modelled in the steady state mode. The details of the selected model (designed by Idaho National Laboratory) are 

presented in [32-33]. 

Only a few studies have considered the power losses in the vehicle battery charging procedure by assuming a constant 

efficiency for the energy transfer from the grid to the battery [2, 9, 18]. In this study, for accurate implementation and 

evaluation of PEV variable charging coordination, battery model and dependency of charging efficiency on the charging rate 

are taken into account. In addition, the equivalent circuit of Fig.1 (b) is used to include the impact of battery internal 

resistance in SOC calculation of Section III. 

3. PROBLEM FORMULATION

The objective of this study is focused on a scenario with multiple PEV owners that have different preferences and will 

schedule their charging profiles over time slots of Δt=5min to maximize the customer satisfaction for all PEVs at the next 



time slot while avoiding grid constrains. The proposed charging approach will ensure fairness in the SOC distribution at 

each time slot for all PEVs. Furthermore, if a PEV owner decides to leave prior to his/her initially requested departure time, 

the vehicle will receive a reasonable level of SOC. This is an improvement compared to the fix charging based methods [2-

7] where PEVs may not receive any charging services if they are plugged-out before the designated times. Therefore, the

comprehensive nonlinear objective function of Eq.1 is defined to maximize the total customer satisfaction by optimizing the 

PEVs’ charging rates at each time slot: 
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In Eq.2, )( ki tw   is the weighting factor that includes the customers’ preferences and their enthusiasm to pay higher energy 

prices at each time slot. For example, if there is a vehicle with lower initial SOC and less remaining charging time, but the 

PEV owner prefers to pay a price higher than others, then the PEV will receive more power at that time slot.  

To calculate SOC for the next time slot ),( 1 itSOC k  there are different techniques in [21,37-40], this paper adopts the battery

equivalent circuit model of [21] consisting of a constant voltage source in series with a constant resistance as shown in 

Fig.1b. This model is represented as: 

),()( , itIRVtV kiiocki                                                                                                                                                                (4) 

( , ) ( , ) ( )best Rated
k i kI t i CR t i I i     (5) 

The ),( 1 itSOC k  can be formulated based on the charging current as follows: 
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where,   is the status of each PEV where digits “1” and “0” correspond to the PEV being connected or not connected. The 

power delivered to PEV during the charging process is: 

2
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  (7A) 

and the power consumed by the i
th

 PEV from grid considering the impact of charger’s efficiency is: 

))((),(),( kichk
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PEVk
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PEV tCRitPitP      (7B) 

2( , ) ( ( ) ( ) ( , ) ( ) ( ( , ) ( ))Consumed best Rated best Rated
PEV k ch i k oc i k i i kP t i CR t V i CR t i I i R CR t i I i           (7C) 

The charging current can be calculated from (7A) as follows: 
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Substituting Eq.8 into Eq.6 yields: 
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A numerical example for the calculation of SOC (based on Eqs. 6-9) is provided in the Appendix. 

3.1 ASSUMPTIONS AND DEFINITIONS 

 PEVs can be connected/disconnected at any time according to the customer’s needs. Customers will input their requested

plug-out times and requested final SOCs at the time of plug-in. They are willing to pay higher fees compared with the short 

term market energy price (MEP, Fig.2(a)) for their requested special charging arrangements. 

 Each hour is divided into 12 time slots of Δt=5 minutes.

 The aggregator is assumed to know the available charging power during each time slot. Each PEV can be charged after

plug-in with a variable charge-rate at each time slot, and expects to reach a desired SOCReq by requested plug-out time. 

 The aggregator has access to PEV information using smart metering technology including their locations, charger types,

battery sizes, and plug-in time. 

 At each time slot, the status of each PEV will be updated. This is not a given parameter and each PEV will send a plug-

in signal when it’s being randomly connected to the grid. 

 Fig.2(b) shows the spectrums of the random plug-in times and requested plug-out times of the PEVs.

 A PEV-Queue Table will be generated to keep track of vehicles’ status including their plugged-in times; requested and

actual plugged-out times; initial SOCs; requested and actual SOCs; charger type and battery sizes. As a result, after plugging 

a new PEV at Δtk, the Table will be updated and the implemented CAPSO coordination algorithm will be executed to obtain 

a new optimal online charging schedule.  

 PEV chargers are controllable and have variable charging functions. During the charging process, each PEV is assumed

as a variable active load. 

 The requested time TReq(i) for each PEV must be greater than the minimum charging time Tmin(i) required to charge the

battery which depends on the maximum allowed charge-rate. 

where, 
Req

min

( )- ( )
T (i) =

( )

initial

Size

SOC i SOC i

Charger i
    (10) 

 The proposed coordination process is updated when a new vehicle is plugged-in or an existing one plugs out, or a time

slot has passed periodically. 

 In order to make the system more robust and improve customer satisfaction, PEVs are allowed to be disconnected before

their requested plug-out times. This will considerably complicate the coordination algorithm. 



3.2 Constraints 

In this paper the objective function (Eq.1) is subjected to the following constraints at each time slot to preserve power 

quality of the grid while supplying base and PEV loads:  
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To sustain battery health, its SOC level should be kept within a certain range recommended by the manufacturer. Therefore, 

the following SOC constraint is included: 

)(,...,1),(),()( Re kPEVqkinitial tNiforiSOCitSOCiSOC    (14) 

Once SOC ( kt ,i) reaches SOCReq(i), the i
th

battery charger will be switched to a standby mode. 

The charge and discharge rates are often represented as C or C-rate, which is a measure of the rate at which a battery is 

charged or discharged relative to the total capacity of the battery. The C-rate is given by the numerical value of the ratio of 

the charging or discharging current in A to the total capacity of the battery in Ah. In this paper, the variable charging rates 

are considered to be from 0C to CCRi 1max  while 10% of vehicles are assumed to have fast charging facilities with charge

rates of up to .C2CRmax
i  A random generator is used to generate the charge rates. The PEV charge-rates will be limited as

follows: 

)(,...,10
max

kPEViii tNiCRCRCR     (15) 

 3.3 Simulated input data 

The continuous uniform random number generator is used to simulate the random plug-in times and expected plug-out times 

(Fig. 2(b)), as well as the requested SOCs. The initial state of charge SOCinitial (%) for each PEV is calculated based on its 

trip length, as follows (Eq.16) [22]: 
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where i indicates the type of PEVs, j is the number of PEVs. In addition, three types of PEVs including Volkswagen e-golf 

(Type 1), Honda Fit (Type 2) and Ford C-Max (Type 3) with chargers’ rates of 7.2, 6.6, and 3.3 kW that correspond to 

battery sizes of 24, 20, and 7.6 kWh are considered [23]. The selected values for parameters α1, α2 and α3, are 0.85, 0.8 and 

0.75; β1, β2 and β3 are 0.15, 0.2 and 0.25; and L1, L2 and L3 are 40, 50 and 60 miles, respectively. 



4. PROPOSED ONLINE HEURISTIC BASED COORDINATION ALGORITHM FOR PEV CHARGING

PSO algorithms differ in the way the swarm is updated in the feasible search space. The CAPSO approach has been applied 

to solve many steady state optimization problems related to power network [24]. In CAPSO, each particle updates its 

position by only considering the positions of particles with better achievements. Thus, this paper applies a coordinated 

aggregation-based PSO (CAPSO) algorithm to capture the best solutions for the PEV coordination problem (Eqs.1-15). The 

developed CAPSO algorithm is similar to the algorithm developed in [25] for economic load dispatching with the main 

difference of a proposed updating approach for the velocity vector.  

4.1 Proposed Initial Population and Structure of Particles: 

The selected particles for variable charge-rate online PEV coordination contain the charging rates )( ki tCR  for each PEV

at
kt that are limited between 0 and 2C, as follows (Eq.17): 

 (17) 

4.2 CAPSO Fitness Function 

To improve quality of CAPSO solutions fitness functions are used for the objective and constraints (Eqs.1-15). The inverse 

algebraic products (Eq.18) of the proposed penalty functions for voltage (Eqs.19-20) and demand (Eq.21) are used as the 

fitness function to combine the PEV coordination objective function (Eq.1) and constraints (Eqs.11-15): 
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4.3 Simulation Results 

To present the effectiveness of the proposed algorithm and the impacts of considering variable charging, simulations are 

performed on the SG of Fig. 2(c) for the three cases of uncoordinated and CAPSO-based coordinated PEV charging with 

FCC and VCC using a time interval of t =5 minutes; PEV penetration levels of 0% (no PEVs), 16%, 32%, 47% and 63% 

(Fig. 2(d)) considering Nbus=449, Nline=448, W=0.73, C1=2.05, C2=2.05, and Npop = 100, αV1=αV2=0.3 and αD=0.5 (Eqs.19-
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20). Simulation results are presented in Figs. 3-6 and Tables I-II.  It should be noted that the network representation in Fig. 

2(c) is at the low-voltage side of each distribution transformer (DT). 

To compare the performance of FCC and VCC schemes, detailed simulations will also be presented for the three selected 

feeders in Fig. 2(c) with the best (DT-20), moderate (DT-12) and worst (DT-14) performances. The first feeder receive 

100% of customer satisfaction with both FCC and VCC, the second feeder receives 100% of customer satisfaction with 

VCC and the third feeder doses not receive 100% customer satisfaction regardless of the selected (FCC or VCC) 

coordination approach. It should be noted that DT-20 and DT-12 are not the only feeders that receive 100% of customer 

satisfaction with VCC. The complete lists of best feeders are DT-9, DT-13, DT-20 and DT-22 whereas the complete lists of 

the moderate feeders are DT-3, DT-4, DT-5, DT-7, DT-11, DT-12, DT-18 and DT-21.  

In this paper, the backward-forward sweep method is used to calculate power (load) flows and bus voltages. It is assumed 

that the generation capacity is large enough to supply both the base and the PEV charging loads in all timeslots.  

At each timeslot (t=5 minutes), the weakest bus is defined to be the bus with the lowest voltage magnitude. The locations 

and voltage magnitudes of the week buses will change within the 24 hours depending on the system base load and system 

configuration and the PEV loadings (numbers, locations, random plug-in times and charging rates of the activated PEVs). 

To identify the weakest bus at each timeslot, the optimal PEV coordination is performed, the selected PEVs are activated, 

power flow calculation is performed, nodes are sorted based on their voltage magnitudes, and the node with lowest voltage 

value is selected as the weakest bus. This process is repeated for 24-hour to generate the weak voltage profiles of Figs. 3c, 

4c and 5c. 

Case A: Uncoordinated PEV Charging 

The impact of uncoordinated PEV charging is investigated by starting the charging process as soon as vehicles are randomly 

plugged in. Simulation results are presented in Table I (rows 4-8) and Fig.3. As expected, the SG is facing overloading, 

voltage regulation and efficiency problems. For example, for 63% PEV penetration, maximum power consumption has 

increased by about 45% (Fig.3(b)) compared to the nominal operation with no vehicles. In addition, the minimum voltage 

for 63% of PEVs penetration has decreased by 30% compared to its nominal value as shown in Fig.3(c). Moreover, in this 

case there is about 10% voltage violation for 32% PEV penetration. Furthermore, it can be seen that the voltage drops to 

0.7P p.u. (Fig.3(c)), where in reality it may cause system collapse and should be limited by system operator.  To overcome 

problems associated with uncoordinated PEV charging, the CAPSO algorithm of Section IV is adopted.  

Case B: Coordinated PEV Charging using CAPSO with FCC 

In this approach, the charging process of each PEV is realized at a fixed rate, corresponding to the nominal charging rate of 

its charger. In details, the charging process of each user starts by receiving a charging signal from charging center and will 

be connected till receive its required state of charge.  The implemented CAPSO algorithm is used for optimal PEV charging 

coordination with a fix nominal charging rate. While PEV will be automatically disconnected when reaching their requested 

SOC levels, the consumers can also disconnect their vehicles prior to the requested plug-out times. Simulation results for 



FCC are presented in Fig.4 and Table I (rows 9-13). Compared to Case A, FCC is offering further improvements in 

substation transformer loading, loss power and weak bus voltages. Note that, there is still overloading of the main substation 

transformer.  

Case C: Coordinated PEV Charging using CAPSO with VCC 

Simulation results including system power consumptions and loss using CAPSO algorithm with variable charge-rate 

strategy are presented in Fig.5 and Table I (rows 14-18). Compared to Case B, VCC is more strictly preventing system 

(transformer) overloading (Fig.5(b)). It can be observed that for 63% PEV penetration, VCC has the advantage of 

completing the charging process of all vehicles sooner than the FCC. However for lower PEV penetration levels of 47%, 

32% and 16%, the two charging strategies have similar characteristics. In addition, there is no overload in system power 

consumption with VCC as it is limited to the designated 0.84MW while there is about 2.72% overloading in substation 

transformer using FCC (Fig. 4(b)). Moreover, the voltages are in their permissible limit and there is no problem 

with the voltage profiles (Fig.5(c)). 

5. DISCUSSION AND ANALYSIS

The SOC variations within the 24 hours are presented in Figs. 6(a-d) for the best (DT-20) and the worst (DT-14) feeders:  

 According to Fig.6(c) with FCC, at the worst feeder there are 4 out of 12 PEVs that are not charged at all and their initial

SOCs are not changed. Therefore, the customer satisfaction at these nodes is zero which has reduced the overall satisfaction 

level at this feeder (DT-14).  

 It is depicted that with FCC the first and the last PEV start charging times in feeder DT-14 are at 19:00pm and 4:00am,

respectively; while with VCC (Fig.6(d)) some of the PEVs are started charging as early as 17:50pm and the last vehicle is 

being activated at 19:20pm on node “s”.  

 The VCC strategy is capable of fully or partially charging the PEVs that were not scheduled with FCC (e.g., were not

allowed to start charging).  For example with the FCC, the PEVs located on nodes b, d, f and h of feeder DT-14 have zero 

customer satisfaction (Fig.6(f)) while with the VCC their  customer satisfaction rates are improved to 100%, 23.85%, 

35.94% and 23.70%, respectively. 

 Comparison between Figs.6(a, b) shows that all PEVs in the best feeder (DT-20) reach their requested SOCs before their

requested plug-out times using VCC and all vehicles are charged by 3:40am. 

 With FCC the PEV on node “l” is not activated and has not received charging service until 3:35am, while with VCC

strategy the same vehicle at the same time will be fully satisfied and receives 100% of its requested SOC.  

The bar charts of Fig.6 (e, f) and Table II show the amount of customer satisfaction for the best and worst feeders: 



 Using FCC, the customer satisfactions for four PEVs are zero, while with VCC all vehicles are receiving full or partial

charging; Table II (rows 9-10, 18-19, 27-28). Figs.6 (g, h) show the customer satisfaction profiles for all feeders (DT-1 to 

DT-22) using VCC and FCC strategies: 

 The numbers of feeders reaching 100% customer satisfaction with VCC and FCC approaches are 12 and 4, while

according to Table II (rows 9-10) the minimum levels of customer satisfactions in the worst feeder (DT-14) are 78% and 

64%, respectively.  

 The feeders have reached their requested SOC at the same time with VCC (Fig. 6(h)), while with FCC there is a

significant time difference in obtaining the requested SOC even for the fully satisfied customers (Fig.6(g)). For instance, 

feeder DT-12 has reached 100% customer satisfaction at time slot 110, while feeders DT-8 and DT-9 will received 100% of 

customer satisfaction at time slot 130.  

Table III presents a detailed comparison between the proposed PEV coordination strategy and the three recently 

implemented methods ([26]-[28]). Based on rows 8-10 of Table III, the main aim and contribution of this paper which is 

customer satisfaction with different customer preferences using variable charging rates has not been addressed in [26-27]. In 

addition, this paper also presents detailed work on PEV charge optimization and analysis based on the customers’ 

requirements that includes requested SOCs, bids and plug-out times. Furthermore, this paper is mainly focused on the 

variable charging strategies and uses CAPSO to achieve optimal charge rates for each time slot whereas a fix charge is 

considered in most of the previous studies. Finally, the impacts of charger efficiency and battery modeling have also been 

included in the paper which are not considered in Refs. [26] to [27]. 

6. CONCLUSION

This paper has implemented an optimal, fast and effective online variable charge-rate PEV coordination strategy using 

CAPSO to maximize the total customer satisfaction for all PEV owners. The proposed VCC approach will also 

minimize the grid losses without exceeding grid constraints based on costumers requested plug-out times, requested battery 

state of charges (SOCReq) and their interests to pay for higher charging energy prices at time slots of Δt=5min.  

Detailed simulations results for a 449-node SG network are presented, compared and analyzed for uncoordinated PEV 

charging and coordinated PEV charging with FCC and VCC strategies. Main conclusions are:  

 The proposed coordinated charging algorithm takes into consideration random plug-in times, initial SOCs, requested plug-

out times, and requested final SOCs, as well as the maximum battery charging rates, battery and charger efficiencies. 

 With VCC, customers received higher levels of satisfaction, while with FCC some vehicles may not even start charging

before their requested plug-out times. 

 The substation transformer is not overloaded with the VCC option, while overloading conditions are noticed with FCC

even at low levels of PEV penetrations of 16% and 32%. 

 The VCC strategy is capable of fully or partially charging the PEVs that were not scheduled with FCC.



 The proposed charging approach (VCC) will ensure fairness in the SOC distribution at each time slot for all PEVs. Then,

if a PEV owner decides to leave prior to his/her initially requested departure time, the vehicle will receive a reasonable level 

of SOC.  

 There is no overload in system power consumption with VCC as it is limited to the designated 0.84MW while there is

about 2.72% overloading in substation transformer using FCC . 

APPENDIX A: NUMERICAL EXAMPLE FOR CALCULATION OF SOC 

This appendix presents a numerical example for the calculation of SOC based on equations 6 to 9. Assuming the battery 

bank voltage is 400V, the battery capacity is 10kWh, and the nominal cell voltage for lithium ion batteries is 3.2V then the 

number of cells for the whole battery bank will be 125. It is also considered that the internal resistance for each cell is 2m 

and then the total battery bank resistance Ri= 2m×125=250m. In this paper, each time slot is assumed to be 5 minutes; 

therefore, t =1/12=0.0833 hours. To calculate Qi, the battery capacity (10KW) should be divided by its open circuit voltage 

(400V); therefore, Qi=10,000/400=25Ah.  Detailed calculations of SOC using Qi are presented in Table A1. 

In Coulomb counting technique, the charges flowing into and out of the battery are integrated to get an accurate estimate of 

the remaining capacity and calculation of SOC [36]. This technique uses a shunt to measure battery current, and a coulomb 

counting circuit which is effectively a very accurate current-integrating ADC (analog to digital) technique. Then, the 

measured battery voltage and current are sent to a microprocessor where the microprocessor contains battery chemistry 

specific information, such as cell impedance in its memory. To communicate with the rest of the system a standard protocol 

such as I
2
C communication can be used. Then, the SOC is calculated using Eqs. 4-9 (presented in section 3 and Table A1). 

Then, the SOC will be transmitted through Wi-Fi system to the central PEV charging coordination. 

tPractically, for real-time calculation of battery SOC at each time slot ( =5 minutes), the following steps should be taken 

(see Table A1 for more details). 

1- The battery ampere hour rate is calculated as Qi= (Battery Capacity)/Voc.

2- Measuring open circuit voltages of the PEV batteries (Voc).

3- Measuring the battery current using a shunt.

4- Sent the measured battery voltage and current to the microprocessor using a standard protocol such as I
2
C 

communication. 

5- Using Equation 7-9 to calculate SOC.

6- Transmitting the SOC to the central PEV charging coordination center through Wi-Fi system. 

Note that if the battery is connected to a charger with CR=0.3, then the required time (without considering losses) to fully 

charge the battery is 1/0.3=3.333 hours. If we consider the impacts of the losses, then the battery will only be charged to 

86% of its rated capacity. Therefore, more time will be required to fully charge the battery if the losses are included. 



APPENDIX B: DETAILS OF THE THREE SIMULATED CASES STUDIES 

The selected input parameters for the simulation cases with 63% PEV penetration are provided in Table B1. This table 

presents the selected battery and charger types for each bus with PEV as well as the selected random values for initial SOCs, 

requested SOCs, plug-in times and plug-out times. The selected charger and battery types are:  

 Charger Type: A = 3.3kW, B= 7.2kW and C=6.6kW 

 

 Battery type: D=6kWh, E= 19.2kWh and F= 16kWh 
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TABLE CAPTION 

 

Table I: Impact of PEV charging on the SG of Fig. 2(c). 

Table II: Detailed simulation results for coordinated (CAPSO) PEV charging of Fig. 2(c) for worst, moderate and best 

feeders using FCC and VCC. 

Table III: Detailed comparison of the proposed CAPSO based PEV coordination approach with the implemented strategies 

in references 26-28.  

Table A1: Calculation of SOC based on Eqs. 6-9. 

Table B1: Selected input parameters for the three simulated cases studies 

 

 

 

 

 

 

 

 

 

 



TABLE I 

 
                              *) Average voltage deviation over 24 hours. 

                           **) Increase in transformer current compared with nominal case (no PEVs). 

                           ***) Intel Core i5-3570 3.40 GHz processor, 8 GB RAM, using MATLAB ver. 8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PEV 

[%] 
V* 

[%] 

IMAX 

[%]** 

Customer 

Satisfaction 

Computing 

time*** (Sec) 

Nominal Case: With no PEV 

0 7.63 0 NA NA 

Case A: Uncoordinated PEV Charging; Fig. 3 

16 10.08 18.42 NA NA 

32 12.60 19.58 NA NA 

47 25.10 37.62 NA NA 

63 31.00 45.27 NA NA 

Online PEV Coordination (DPSO) with FCC (Ref. [27]) 

16 9.32 0.82 NA 0.026 

32 9.38 0.93 NA 0.028 

47 9.90 0.99 NA 0.031 

63 9.90 2.72 NA 0.032 

Case B: Online PEV Coordination (CAPSO) with FCC; Fig.4 

16 9.42 1.39 98.37 0.027 

32 9.53 2.03 95.57 0.028 

47 9.91 2.09 90.54 0.032 

63 9.94 2.72 88.38 0.034 

Case C: Online PEV Coordination (CAPSO) with VCC; Fig.5 

16 9.06 0.00 99.09 0.028 

32 9.16 0.00 96.91 0.029 

47 9.58 0.00 94.47 0.034 

63 9.73 0.00 93.89 0.035 

 



TABLE II 

 

 

Node Number b D f g h j l m o q r s Ave. 

For the Worst Feeder (DT-14) 

Plug-in Time Slot 21 14 20 15 19 24 25 21 21 23 28 36 22 

Initial SOC [%] 9 12 5 8 2 19 11 9 19 5 22 20 11 

Requested Plug-Out Time Slot 103 58 84 62 77 151 157 104 112 145 167 175 116 

 Request SOC [%] 62 92 99 89 82 72 70 83 61 68 80 67 77 

Actual SOC at  TReq for VCC [%] 62 22 36 42 19 72 70 83 61 68 80 67 57 

Actual SOC at  TReq for FCC [%] 0 0 0 89 0 52 70 83 61 68 80 67 487 

Consumer Satisfaction  (Eq.3) [%] 
VCC 100 24 36 48 24 100 100 100 100 100 100 100 78 

FCC 0 0 0 100 0 72 100 100 100 100 100 100 64 

For the Moderate Feeder (DT-12) 

Plug-in Time Slot 73 83 46 42 55 54 63 42 61 68 51 50 57 

Initial SOC [%] 26 7 12 23 18 28 4 28 7 17 27 20 18 

Requested Plug-Out Time Slot 198 205 184 181 189 188 192 181 192 194 187 186 189 

Request SOC [%] 84 59 73 94 97 64 93 65 68 66 53 57 72 

Actual SOC at  TReq for VCC [%] 84 59 73 94 97 64 93 65 68 66 53 57 72 

Actual SOC at  TReq for FCC [%] 84 59 73 94 97 29 93 65 68 66 53 57 69 

Consumer Satisfaction  (Eq.3) [%] 
VCC 100 100 100 100 100 100 100 100 100 100 100 100 100 

FCC 100 100 100 100 100 0 100 100 100 100 100 100 91 

For the Best Feeder (DT-20) 

Plug-in Time Slot 76 61 36 51 64 83 38 85 114 49 68 46 64 

Initial SOC [%] 9 24 7 3 28 26 16 12 8 21 21 28 16 

 Requested Plug-Out Time Slot 201 192 176 188 193 205 178 207 216 185 195 184 193 

 Request SOC [%] 58 84 74 76 76 57 55 60 52 74 58 56 65 

Actual SOC at  TReq for VCC [%] 58 84 74 76 76 57 55 60 52 74 58 56 65 

Actual SOC at  TReq for FCC [%] 58 84 74 76 76 57 55 60 52 74 58 56 65 

Consumer Satisfaction  (Eq.3) [%] 
VCC 100 100 100 100 100 100 100 100 100 100 100 100 100 

FCC 100 100 100 100 100 100 100 100 100 100 100 100 100 



TABLE III 
 

 Proposed 

in [26] 

Proposed 

in [27] 

Proposed 

in [28] 

Proposed in This 

Paper 

Method Fuzzy DPSO/GA Fuzzy Multi Agent Based CAPSO 

Charge Type FCC FCC FCC VCC, FCC 

Battery Type One Type Variety of Battery Types One Type Variety of Battery 

Types 

Battery Modelling NA NA   

Charger Efficiency Effect NA NA NA  

Customer 

Preference 

Re ( )qSOC i  NA NA   

( , )kBid t i  NA NA NA  

)i(TReq  NA NA NA  

Customer Satisfaction 

Analysis 

NA NA NA  

Driving Pattern NA  NA  

 

 

 

 

 

 



TABLE A1 
 

Input Data to Calculate SOC 

Voc for the battery bank (V) 400 

Ri for the battery bank (ohm) 125×0.002=0.25 

Charger efficiency at CR
Best

 based on Fig 2.a 0.93 

CR
Best

 which is a sample of results for i
th

 PEV achieved by CAPSO 0.30 

Nominal charger capacity P
consumed 

 (W) 10000 

t  0.083 

SOCInitial  (%) 0 

Rated battery ampere hour  Qi  (Ah) 10000÷400=25 

                        Calculations  

I
Rated

  (considering losses) using Eq. 8 (A)   6.450 

I
Rated

  (not considering losses) using Eq. 5 (A) 7.5 

Increment of SOC for the Next 5 Minutes Using Eq.9 

Increment of SOC for the next 5 minutes (considering losses) (%) 2.150 

Increment of SOC for the next 5 minutes (not considering losses) (%) 2.5 

SOC After the Nominal Charge Time of 1/0.3=3.333 Hours with CR=0.3  

SOC after 3.333 hours (considering losses) (%) 86.0 

SOC after 3.333 hours (not considering losses) (%) 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE B1 

 

Bus  

# 

SOC 

Initial 

 SOC 

Req 

Battery 

 Type 

Charger 

 Type 

Plug-in 

 Time 63 

Plug-out 

 Time 

Bus  

# 

SOC 

Initial 

 SOC 

Req 

Battery 

 Type 

Charger 

 Type 

Plug-in 

 Time 

63 

Plug-out 

 Time 

2 18 89 E B 22 135 222 26 84 F C 73 198 
4 14 90 F C 24 154 224 7 59 D A 83 205 
6 25 53 F C 18 77 226 12 73 D A 46 184 
7 2 82 E B 22 144 227 23 94 E B 42 181 
8 20 92 E B 44 182 228 18 97 F C 55 189 

10 27 63 F C 15 60 230 28 64 F C 54 188 
12 4 56 E B 92 211 232 4 93 E B 63 192 
13 14 71 E B 62 192 233 28 65 F C 42 181 
15 10 73 F C 6 52 235 7 68 D A 61 192 
17 28 82 F C 24 149 237 17 66 E B 68 194 
18 0 96 E B 45 183 238 27 53 F C 51 187 
19 11 72 D A 13 53 239 20 57 D A 50 186 
22 24 69 F C 38 176 242 10 52 F C 110 216 
24 24 83 F C 69 196 244 2 62 F C 68 194 
26 23 92 F C 44 182 246 2 89 F C 68 195 
27 23 51 F C 46 184 247 8 85 F C 42 181 
28 8 92 E B 27 166 248 13 96 E B 33 174 
30 29 97 E B 36 176 250 16 65 E B 75 200 
32 10 55 E B 20 98 252 21 53 D A 55 189 
33 28 55 E B 54 189 253 10 59 E B 72 197 
35 23 52 E B 38 177 255 8 67 F C 42 181 
37 11 53 F C 63 192 257 4 61 D A 77 201 
38 22 88 F C 72 197 258 10 82 F C 23 144 
39 10 82 E B 69 196 259 24 81 E B 90 210 
42 21 97 E B 51 188 262 9 62 D A 21 103 
44 28 67 D A 72 197 264 12 92 F C 14 58 
46 1 78 D A 64 193 266 5 99 E B 20 84 
47 27 81 D A 55 189 267 8 89 F C 15 62 
48 1 69 F C 58 191 268 2 82 E B 19 77 
50 4 85 E B 68 195 270 19 72 E B 24 151 
52 8 54 D A 50 186 272 11 70 E B 25 157 
53 19 74 E B 38 178 273 9 83 D A 21 104 
55 2 88 F C 56 190 275 19 61 D A 21 112 
57 15 71 F C 62 192 277 5 68 F C 23 145 
58 21 71 D A 69 196 278 22 80 F C 28 167 
59 2 57 D A 58 191 279 20 67 E B 36 175 
62 24 70 E B 50 187 282 24 96 F C 29 169 
64 22 83 E B 71 197 284 18 57 F C 20 91 
66 23 62 D A 57 190 286 20 63 E B 29 170 
67 3 76 F C 75 200 287 19 87 E B 21 118 
68 29 99 F C 57 190 288 21 94 F C 5 48 
70 11 90 E B 59 191 290 1 72 E B 0 26 
72 27 56 F C 57 191 292 22 93 F C 6 53 
73 1 75 D A 41 180 293 10 94 F C 21 122 
75 11 62 F C 40 179 295 24 55 D A 17 71 
77 28 76 D A 40 180 297 16 86 D A 16 62 
78 23 63 D A 95 212 298 6 89 D A 23 146 
79 6 64 E B 55 190 299 11 77 D A 16 66 
82 16 58 D A 78 201 302 22 77 D A 17 71 
84 28 54 E B 66 194 304 19 53 D A 29 171 
86 5 80 E B 96 212 306 7 86 D A 31 173 
87 22 83 E B 78 202 307 18 74 E B 47 184 
88 7 89 E B 34 175 308 1 51 D A 26 163 
90 29 55 F C 52 188 310 7 97 F C 24 154 
92 23 72 F C 77 201 312 1 88 F C 17 72 
93 9 92 F C 65 193 313 6 65 D A 21 125 
95 27 58 F C 104 215 315 5 100 F C 22 143 
97 22 91 E B 58 191 317 23 89 F C 5 50 
98 15 68 E B 28 168 318 6 89 E B 20 91 
99 0 53 D A 68 195 319 4 60 F C 30 172 

102 3 56 D A 41 180 322 11 81 F C 17 76 
104 14 66 E B 60 191 324 4 83 E B 28 168 
106 15 98 D A 81 204 326 27 87 F C 33 175 
107 10 80 D A 65 193 327 20 60 F C 34 175 
108 16 65 D A 65 193 328 19 97 E B 31 173 
110 24 89 F C 55 189 330 13 87 E B 0 35 
112 16 78 E B 56 190 332 20 90 D A 17 77 
113 29 75 E B 57 190 333 7 55 D A 32 173 
115 25 51 F C 3 46 335 24 74 D A 9 53 
117 15 53 E B 67 194 337 1 81 E B 60 191 
118 25 80 F C 79 202 338 9 100 D A 62 192 
119 11 72 E B 33 174 339 9 95 D A 51 187 
122 14 81 E B 29 168 342 28 61 F C 32 174 
124 3 54 E B 71 197 344 21 94 F C 47 185 
126 6 71 F C 29 169 346 29 99 F C 49 185 
127 15 67 D A 25 155 347 5 81 D A 66 193 
128 2 89 F C 75 199 348 16 59 F C 60 191 
130 23 87 E B 46 183 350 19 57 F C 40 179 
132 14 60 E B 84 205 352 9 80 E B 79 203 
133 3 63 F C 33 174 353 11 60 F C 46 184 
135 15 95 E B 47 184 355 5 97 F C 31 173 
137 21 57 D A 64 193 357 3 97 F C 38 177 
138 5 83 F C 70 196 358 23 91 F C 64 193 
139 9 89 E B 68 194 359 12 69 E B 51 187 



142 15 68 D A 63 192 362 21 67 F C 65 193 
144 8 55 F C 54 188 364 19 54 F C 48 185 
146 16 59 F C 47 184 366 13 73 D A 97 213 
147 16 80 E B 69 195 367 27 71 E B 14 60 
148 23 99 D A 51 187 368 1 51 E B 39 179 
150 19 80 E B 67 194 370 8 72 D A 45 183 
152 15 79 E B 81 204 372 23 62 E B 49 185 
153 15 74 F C 14 55 373 0 73 D A 76 200 
155 23 55 E B 95 211 375 17 80 D A 51 188 
157 6 53 F C 46 184 377 19 74 F C 45 183 
158 14 88 F C 85 206 378 18 85 F C 48 185 
159 19 92 D A 90 208 379 23 90 F C 62 192 
162 14 67 D A 30 171 382 9 58 D A 76 201 
164 8 81 E B 63 192 384 24 84 E B 61 192 
166 8 63 E B 128 217 386 7 74 D A 36 176 
167 23 77 D A 55 189 387 3 76 E B 51 188 
168 13 66 F C 69 195 388 28 76 E B 64 193 
170 25 93 D A 66 193 390 26 57 D A 83 205 
172 1 72 E B 84 206 392 16 55 D A 38 178 
173 10 61 E B 81 203 393 12 60 F C 85 207 
175 19 81 D A 40 179 395 8 52 F C 114 216 
177 29 65 F C 50 186 397 21 74 D A 49 185 
178 26 77 E B 66 193 398 21 58 D A 68 195 
179 25 100 F C 58 191 399 28 56 D A 46 184 
182 26 97 E B 33 174 402 28 57 F C 25 159 
184 16 57 E B 56 190 404 17 81 F C 88 207 
186 15 72 F C 16 62 406 5 67 E B 73 198 
187 29 53 D A 45 183 407 15 89 D A 49 186 
188 14 81 D A 28 167 408 22 62 D A 61 192 
190 27 64 E B 34 175 410 1 87 F C 54 189 
192 21 83 F C 53 188 412 6 56 D A 30 172 
193 25 72 F C 24 149 413 7 96 D A 1 39 
195 11 64 E B 27 165 415 13 64 F C 58 191 
197 8 82 D A 17 69 417 20 75 E B 50 186 
198 11 71 D A 2 44 418 14 93 F C 47 185 
199 8 58 D A 44 182 419 23 92 F C 42 182 
202 10 98 E B 70 196 422 14 52 E B 23 148 
204 7 57 D A 43 182 424 10 79 F C 49 186 
206 6 70 D A 42 180 426 24 85 E B 62 192 
207 0 74 D A 26 161 427 25 92 E B 38 178 
208 21 58 F C 79 202 428 11 99 E B 68 195 
210 26 62 E B 42 180 430 22 69 D A 54 189 
212 15 99 F C 73 198 432 17 83 E B 57 190 
213 12 77 F C 54 188 433 10 73 D A 30 172 
215 14 73 E B 42 181 435 25 56 D A 44 182 
217 25 58 D A 69 196 437 4 79 E B 67 194 
218 22 63 F C 67 194 438 13 81 D A 43 182 
219 21 64 E B 45 183 439 18 69 F C 62 192 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FIGURE CAPTION 
 

Fig. 1. Modeling of PEV battery [17]; (a) typical charger efficiency (CR corresponds to charging efficiencies), (b) 

equivalent circuit [21]. 

Fig. 2. System characteristics; (a) daily residential load curve (DLC) and short term market energy price (MEP) [3], (b) 

spectrums of the random plug-in times and the requested plug-out times of the simulated PEVs, (c)  the 449 node SG 

consisting of IEEE 31-node 23kV system and 22 low voltage 19-node 415V residential feeders populated with PEVs [3], (d) 

detailed diagram of one residential feeder in Fig. 2(c) with 16%, 32%, 47% and 63% PEV penetrations. 

Fig. 3. Simulation results for Case A with 16, 32, 47 and 63 percent of PEV penetrations; (a) loss power, (b) system power 

consumption, (c) weak bus voltage. 

Fig. 4. Simulation results for Case B with 16, 32, 47 and 63 percent of PEV penetrations; (a) loss power, (b) system power 

consumption, (c) weak bus voltage. 

Fig. 5.  Simulation results for Case C with 16, 32, 47 and 63 percent of PEV penetrations; (a) loss power, (b) system power 

consumption, (c) weak bus voltage. 

Fig.6. (a) Sample battery SOCs of feeders in Fig.2(c) for best feeder (DT-20) using FCC,  

Fig.6. (b) Sample battery SOCs of feeders in Fig.2(c) for best feeder (DT-20) using VCC,  

Fig.6. (c) Sample battery SOCs of feeders in Fig.2(c) for worst feeder (DT-14) using FCC,  

Fig.6. (d) Sample battery SOCs of feeders in Fig.2(c) for worst feeder (DT-14) using VCC,  

Fig.6. (e) Customer satisfaction of few feeders in Fig.2(c) using FCC and VCC for best feeder (DT-20),  

Fig.6. (f) Customer satisfaction of few feeders in Fig.2(c) using FCC and VCC for worst feeder (DT-14),  

Fig.6. (g) Customer satisfaction profiles for all feeders (DT-1 to DT-22) in Fig.2(c) using FCC,  

Fig.6. (h) Customer satisfaction profiles for all feeders (DT-1 to DT-22) in Fig.2(c) using VCC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1 
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Figure 2 
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(c) 

One residential feeder with 63% PEV penetration 

a
DT

b c

n

d

m

e f

k

l

g

j

h

i

q

rp
PEV

o

PEV

s PEV PEV

PEV

PEV

PEV

PEV PEV

PEVPEV PEV
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Figure 3 

 

   (a) 

 

(b) 

 

(c) 

 

 

 

 

 

 

 

 

 

 



Figure 4 
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Figure 5 
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Figure 6 
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 (g)                                                                                (h) 

 



 Proposing a CAPSO based algorithm for variable online PEV charging coordination. 

 Precise modeling of battery and charger for each PEV considering their efficiency curves. 

 Formulating the variable PEVs charging coordination problem to optimize customer satisfaction index. 

 Modeling of customer behavior and their driving patterns as well as required SOC in a desired charging 

time. 

 Comparing the performance of variable and fix charging coordination. 

 

 

 

 

*Highlights (for review)




