
Abstract--Time domain definitions for finite bandwidth white
noise, and filtered white noise, are detailed and are of pedagogi-
cal value. The associated power spectral density and autocorre-
lation functions are given. The potential Gaussianity of white
noise is noted.
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I. INTRODUCTION

In Engineering, it is usual to define a white noise random
process mathematically in terms of a specified autocorrela-
tion and/or power spectral density function with the underly-
ing physical random process being left undefined.
Specifically, white noise is usually defined, e.g. [1], [2], as a
noise phenomena which is uncorrelated at all arbitrarily cho-
sen pairs of time instants, with a time averaged autocorrela-
tion function, , which is an impulse and with a power
spectral density function, , which is constant over all
frequencies, i.e.

(1)

Here  is the Dirac delta. In communication theory it is usual
to define white noise by its power spectral density according
to . The autocorrelation function and power
spectral density functions are assumed to satisfy the Wiener-
Khintchine theorem, e.g. [2], i.e.

(2)

There are technicalities associated with such an approach,
definitions and the statement of the Wiener-Khintchine theo-
rem, e.g. [3]. These arise from the result of the implicit
assumption of an infinite power random process and to
define white noise without reference to a physical time
domain signal. It is of interest, and of pedagogical value, to
be able to define white noise signals in the time domain and
then to establish their characteristics such as their power
spectral density and autocorrelation functions and in a man-
ner that avoids undue technicalities [3].

The approach taken is to start with a physically realizea-
ble finite bandwidth white noise random process. An analyti-
cal expression for its power spectral density is established
and from this the associated autocorrelation function can be
established in a straight forward manner and without undue
technicalities. For an arbitrarily small correlation time, or,
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equivalently, an arbitrarily large frequency range, a physi-
cally realizable white noise random process can be defined.

II. DEFINING FINITE BANDWIDTH WHITE NOISE

A general approach to defining a finite bandwidth white
noise random process is to use frequencies randomly chosen,
at an average rate, from an interval  (see [4] for a

slightly less general approach). With a nominal minimum
frequency of , and an average rate of , there is,

on average, , frequency components for each

signal. Such a white noise random process is underpinned by
the following experiment:

1. Take the  values in the interval , which

define a vector , and which arise from a trial of

a point experiment: an experiment which yields points
with a uniform density of  points per unit

interval.
2. A sub-experiment of taking a number at random from
the interval  is repeated  times to create the
vector . The sample space of experimental

outcomes is

(3)

A white noise random process, , based on this experiment,
can be defined according to

(4)

where  and  is the unit step

function. The random process is for the interval ,

, with a fundamental frequency of , 

and with an average power of .
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A.  Example

Consider a white noise random process, defined by (4),
on the interval  with ,  and, on

average, comprising of  sinusoids with frequencies cho-
sen consistent with a Poisson point process with a rate of

. One signal from this random process is shown in
Fig. 1. The power spectral density of this random process,
obtained by averaging the individual power spectral densities
of 100 signals, is shown in Fig. 2.            

B.  Gaussian White Noise

As the number of sinusoids increases, it follows, from the
central limit theorem, that the random variable defined by the
white noise random process at any set time will have,
approximately, a Gaussian probability density function. Con-
sider the white noise random process, defined by (4), and the
parameters previously defined. The probability density func-
tion of the amplitude, , estimated from  sig-

nals, is shown in Fig. 3 along with a Gaussian approximation
based on the sample mean and sample variance.      

III. FILTERED WHITE NOISE

In many contexts, the observed noise is filtered by a lin-
ear filter and the model shown in Fig. 4 is appropriate. The
filter is assumed to be causal with an impulse response  and
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Fig. 1.  Graph of one signal from a white noise random process defined
on the interval  and comprising, on average, of  sinusoids.0 10,[ ] 100
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Fig. 2.   Graph of the power spectral density of the defined white noise
random process with  and obtained by averaging the

individual power spectral densities (based on the FFT) of 100 signals.
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system transfer function . As is well known, in steady state
the response of such a system to a sinusoid:       

(5)

is

(6)

where  and , respectively, are the mag-

nitude and argument of  for .

A.  Model for Filtered White Noise

The following experiment underpins the definition of a
filtered white noise random process. Assume the filter band-
width is . Consider the experiment, where ,

defined as follows:

1. Take  values, from the interval , to define a

vector  and which arise from a trial of an sub-

experiment yielding points, placed at random, and with a
uniform density of  points per unit interval. 

2. A sub-experiment, of taking a number at random
from the interval , is repeated  times to create
the vector . 

A filtered white noise random process  for the interval

, , with a fundamental frequency of ,

, with frequencies chosen at random from the

interval  with a rate of , and with an

average input power of , is defined according to:

.
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Fig. 3.  Histogram approximation to the probability density function
of the amplitude, at , and based on  signals.t 5= 10000
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Fig. 4.   Linear filtering by a filter with impulse response .   h
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(7)

where  and

(8)

B.  Example

Consider a white noise random process, defined by (4)
and with linear filtering by a filter with a transfer function

(9)

where . Assume , , 

and a time interval , which implies a fundamental fre-
quency of  and, on average,  sinusoidal

components for each signal with frequencies chosen consist-
ent with a point process with a rate of . One signal
from a random process with these parameters is shown in
Fig. 5. The power spectral density of the random process,
obtained by averaging the individual power spectral densities
of 100 signals, is illustrated in Fig. 6.   

IV. POWER SPECTRAL DENSITY

The following theorem states the power spectral density
for a finite bandwidth white noise random process:

Theorem 1: Power Spectral Density. The power spectral
density of the white noise random process defined by (4) is

(10)
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With the definition of , the power spectral

density, for the infinite interval, can be written as

(13)

and with  for  and

 elsewhere.

Proof  

The proof is detailed in Appendix 1.              

A.  Results

The power spectral density is shown in Fig. 7 for the
cases of ,  and for .        

V. AUTOCORRELATION FUNCTION

The time averaged autocorrelation function is given by

(14)
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Fig. 5.  Graph of one signal from a filtered white noise random process
defined on the interval  and comprising, on average, of 
sinusoids.
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Fig. 6.   Graph of the power spectral density of the defined filtered
white noise random process with  and obtained by

averaging the individual power spectral densities of 100 signals.
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It then follows, as , that the power spectral density -
time averaged autocorrelation function relationship is

(15)

where . See Fig. 8. Note that the average

power, as expected, is:

     (16)

VI. CONCLUSION

The basis of defining white noise on a finite interval, and
with finite power, avoids the complications associated with
infinite power random processes and, accordingly, has peda-
gogical value. Consistent with (15), it follows, for an arbi-
trarily small correlation time and a flat power spectral
density approximation over a finite, but arbitrarily large, fre-
quency range, that a physically realizable white noise ran-
dom process can be defined which is consistent with the
Wiener-Khintchine relationships. 

APPENDIX 1:  Proof of Theorem 1

The Fourier transform of
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Fig. 7.    Graph of the power spectral density of a white noise random
process for the case of  and .fmax 1= Ao 1=
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Fig. 8.   Time averaged autocorrelation function for the infinite
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fmax 1=

fmax 2=

fmax 5=

fmax 10=R ∞ τ,( )

τ

 (17)

evaluated on  is 

(18)

By definition, the power spectral density evaluated on the
interval  is

(19)

where 

(20)

It then follows that 

(21)

For the infinite interval, the result  yields

(22)

and with  for  and

 elsewhere.
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