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ABSTRACT 

 

Reliable river flow forecasting is a key element in achieving sustainable water 

resources and environmental management. Accurate short term and long term river 

flow forecasts are particularly essential for the design of hydraulic structures, flood 

and drought analysis, irrigation scheduling, reservoir operation and environmental 

planning. Due to stochastic characteristics of hydrological events, forecasting the 

future condition of surface water is always associated with uncertainty. A large 

number of modelling techniques, ranging from physically-based to data-driven 

approach, have been studied to alleviate this uncertainty. As a result of technological 

advances in the recent years, computational intelligence approaches (CI) have 

become increasingly popular in hydrological modelling. Compared to conceptual and 

physics-based methods, CI models require minimum observation data to simulate 

complex hydrological processes.  

This thesis focuses on improving the accuracy and reliability of river flow 

forecasting. Developing hybrid CI models, wavelet multi-resolution analysis is 

applied in conjunction with computational intelligence techniques. Two promising 

data-driven approaches of artificial neural networks (ANN) and adaptive neuro-fuzzy 

inference system (ANFIS) are adopted. Various types of ANN, ANFIS and hybrid 

wavelet models, are developed. Historical data of four Australian rivers, with 

different characteristics, are employed to investigate different applications of 

proposed approach in river flow forecasting.  

Firstly, the impact of multivariate input selection on daily river flow forecasting is 

investigated when both rainfall and river flow historical time series are applied as 

inputs. Back propagation feed forward neural networks (BPFF), ANFIS with fuzzy 

C-mean clustering (FCM), hybrid wavelet neural networks (WNN) and wavelet 

neuro-fuzzy (WNFC) model are developed and applied for forecasting the flow of 

two different rivers of Harvey and Avon River in Western Australia. Application of 

different mother wavelet of Haar, Daubechies and Coiflet and different level of 

decomposition are studied. 
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Secondly, different CI models are applied for short, mid and long term river flow 

forecasting. Different input combinations (forward stepwise selection) and signal 

processing techniques (Coiflet, Haar and Daubechies discrete wavelets) are applied 

on mean daily, weekly and monthly river flow time series of Ellen Brook River in 

Western Australia. Preprocessed data are applied as the input of multi-layer back 

propagation neural networks and adaptive neuro-fuzzy inference system with grid 

partitioning. 

Thirdly, the application of different CI models for forecasting multi-step ahead of 

daily river flow is studied and improved. Artificial neural networks, adaptive neuro-

fuzzy inference system with subtractive clustering and their associated wavelet 

hybrid models (WNN and WNFS, respectively) are applied for 1, 2, 3, 4 and 5 days 

ahead forecasting in Harvey River, Western Australia. Daubechies and Symlet 

wavelets are used to decompose river flow and rainfall time series to different levels. 

Finally, developed models are applied to real time river flow forecasting for the 

purpose of timely flood warning. ANN, ANFIS with grid partitioning and their 

hybrid models, in conjunction with discrete wavelet transform, are applied for 1, 6, 

12, 24, 36 and 48 hour ahead river flow forecasting. Casino gauging station of 

Richmond River, NSW, Australia, which is highly prone to flooding, is considered as 

the case study. The accuracy of forecasting is further improved when an upstream 

river flow data (Wiangaree station), are employed as additional input. 

In each case study, optimum structure of different CI models is determined and the 

best fitted model among all is selected. The outcomes of this study confirm the 

robustness of CI models in river flow forecasting. Considering highly nonlinear and 

non-stationary characteristics of river flow time series, wavelet analysis significantly 

improved forecasting reliability in the proposed hybrid models, especially for longer 

lead time and higher step ahead forecasting. Moreover, hybrid models are highly 

outperform classical CI models in forecasting sudden extreme events. The outcome 

of this study will assist hydrologists and decision makers in forecasting river flows 

and sustainable planning and management of water resources. 
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Chapter 1 

Research Overview 
 

 

 

1.1 BACKGROUND 

Water demands are increasingly growing due to population growth and irrigation and 

industrial developments. Surface water availability is likely to decrease as a reason of 

global warming, urbanizations and excessive groundwater extractions. On the other 

hand, in various regions around the world, extreme weather conditions resulting 

floods, droughts and heat waves. 

Understandably, reliable information on current and future water availability is 

essential to properly manage the limited water resources and flood mitigation. 

Authorities in water sector cannot allocate water resources optimally for water 

demands like agricultural, industrial, domestic, hydropower generation and 

environmental maintenance, unless they are equipped with a reliable forecasting of 

river flow. Accurate forecasting of river flow, as the main part of the available water 

resources, is also a key element in drought analysis and design of water related 

infrastructures. Therefore, improving the accuracy and reliability of river flow 

forecasting is an ongoing research. Researchers are keen to develop and investigate 

various types of hydrological forecasting approaches to attain better management of 

scarce water resources and minimize the risk of any potential flooding. 
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1.2 MOTIVATION 

Like many countries around the world, Australia is increasingly facing water 

scarcity. Many parts of Australia continent are in drought. South Western Austalia, in 

particular, is suffering from extended dry period since 1975. Climate change 

projections for Southern part of the continent, more populated part of Australia, 

indicates reduction in total rainfall and water supply (Charters and Williams, 2006). 

At the same time, climate change causes more frequent rainfall events with higher 

intensity which increases the risk of flooding (Bates et al., 2008). Undoubtedly, 

effective water governance policies will become critical to cope with water crises.  

Forecasting future surface water availability is a key element in assisting decision 

makers in water resources planning and management (Nash and Sutcliffe, 1970; 

Nayak et al., 2005; Sene, 2010; Piotrowski and Napiorkowski, 2011; Zeng et al., 

2012). Forecasting water availability is always associated with large uncertainties 

and complexities. For example, determining the rate of runoff generated by rainfall 

and its routing is a very complex matter as an extensive number of parameters are 

involved in this process. A significant amount of research has been carried out to 

improve the accuracy of forecasting ranging from physically-based to data-driven 

approaches. Therefore, improving the accuracy of forecasting is a continuing 

research field as each hydrological forecasting approach has its own characteristics 

and limitations. This study focuses on developing river flow forecasting model with 

minimum parameter requirements (ungauged catchments) and maximum accuracy 

for long term as well as extreme event forecasting. For this research, computational 

intelligence (CI) approach is selected because of their cost-efficiency, accuracy and 

robustness. 

In order to boost the forecasting performance, some hybrid approaches have been 

proposed recently (Sivakumar and Berndtsson, 2010). One of the recent 

developments in river flow forecasting is based on coupling computational 

intelligence models with wavelet analysis. River flow historical data are non-

stationary time series with a wide range of frequency components. By applying 

wavelet transform, river flow complex time series can be decomposed into its major 

sub-components (Zhou et al., 2008). However, a comprehensive literature review 
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confirms the lack of research on wavelet neuro-fuzzy techniques with a subtractive 

clustering method for river flow simulation and forecasting. Furthermore, only a 

limited number of river discharge time series have been used for verification of the 

wavelet neural network based models. More data from different areas with different 

characteristics would be required to conclusively prove the advantages of this hybrid 

approach (Wei et al., 2012). Available research in the literature mainly focuses on 

the forecasting river flow by using only river flow discharge time series. Forecasting 

could be improved by adding other hydrological time series and variables which 

affect river flow (Adamowski and Sun, 2010; Pramanid et al., 2011). In addition, 

very few researchers explored the application of hybrid models on seasonal river 

flow forecasting and lead times of more than one day, but less than one month (Wu 

et al., 2009; Nournani et al., 2013).  

Taking these considerations into account, this study aims at improving seasonal, 

short term, long term and real time river flow forecasting by various classical and 

hybrid computational intelligence approaches with different structures and input 

selections. By providing more accurate tools, the ultimate scope of this research is to 

assist decision makers in sustainable water resources planning, flood protection, 

mitigation of contamination or licensing of exploitations.  

 

1.3 THESIS OBJECTIVE AND SCOPE  

The main purpose of this research is to develop highly efficient, reliable and accurate 

data driven model for river flow forecasting. Each of the forecasting approaches has 

its own advantages and disadvantages and there is no perfect model or modelling 

technique to guarantee precise future long term prediction. Reviewing current 

available river flow forecasting and rainfall-runoff methods, computational 

intelligence techniques were found as a powerful approach for modelling complex 

hydrological process. In this study different type and structure of artificial neural 

networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and hybrid 

wavelet models will be developed. Comparing the performance of models, the best 
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fitted model for reaching the most accurate results in different study areas will be 

determined. In summary, the main objectives of this study are; 

• Developing highly efficient model for accurate river flow forecasting by 

investigating and comparing the performance of artificial neural networks 

and adaptive neuro-fuzzy inference system approaches. 
 

• Applying different methods for initiating fuzzy inference system (FIS) 

structure in ANFIS modelling, including grid partitioning, subtractive 

clustering and C-mean clustering (FCM). 
 

• Finding the optimum structure and most effective training algorithm of 

neural network for river flow forecasting. 
 

• Investigating the impact of wavelet multi-resolution analysis of CI model 

inputs on forecasting accuracy. Explore the performance of hybrid 

wavelet models by decomposing data series into the low and high 

frequency signals with different type of discrete wavelet transforms and 

into different level of decomposition.  
 

• Developing and validating different computational intelligence techniques 

for real time, short term, long term and multi-step ahead prediction of 

stream flow. Also, determining and validating the best fitted CI model 

structure for seasonal river flow forecasting. 

 

 

1.4 STRUCTURE OF THE THESIS 

This thesis is designed in four main parts of introduction, methodology, applications 

and conclusion which are expanded in 9 chapters. Figure 1.1 depicts the structure of 

the thesis. Following is a brief description of each chapter; 
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Chapter One-  This chapter mainly identifies the problem and the main reasons of 

conducting this research. It highlights the core objectives of the study and thesis 

outlines. 

Chapter Two-  This chapter introduces various types of river flow forecasting and 

rainfall-runoff models. Physically-based, conceptual and data-driven approaches are 

reviewed. Methodologies behind most popular models are briefly explained. 

Advantages and drawbacks of different approaches are identified. 

 

Chapter Three-  Three different CI approaches, namely, artificial neural networks, 

fuzzy modelling and wavelet analysis (as a part of hybrid models) are discussed in 

details in this chapter. The structure of feed-forward neural networks with back 

propagation training algorithm, adaptive neuro-fuzzy inference system with grid 

partitioning, subtractive and C-mean clustering is described. The application of 

wavelet multi-resolution analysis in signal decomposition is also presented. In 

addition to theoretical description of approaches, a review on their background and 

applications in hydrology is also provided. 

 

Chapter Four-  This chapter presents the structure of developed models, including 

four hybrid models of wavelet neural networks, wavelet neuro-fuzzy with grid 

partitioning, subtractive clustering and C-mean clustering. Optimum performance 

criteria are also selected for achieving most efficient models, especially for extreme 

event forecasting.  

 

Chapter Five- In this chapter, application of developed models with multivariate 

inputs for daily river flow forecasting is investigated. Rainfall time series are added 

as an additional input. Two different rivers from Western Australia (Harvey and 

Avon Rivers) are selected as case studies. The best structure of ANN and ANFIS 

with C-mean clustering, alone and in conjunction with Daubechies and Haar mother 

wavelet (WNN, WNFC), are determined. The effect of adding an additional input is 

discussed. 
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Chapter Six- This chapter investigates the application of developed models in both 

short and long term river flow forecasting. Different input combinations (forward 

stepwise selection) and signal processing techniques (Coiflet, Haar and Daubechies 

mother wavelets) are applied on multi-layer back propagation neural networks 

(WNN) and adaptive neuro-fuzzy inference system with grid partitioning (WNFG). 

The data of the Railway parade station on Ellen Brook River, Western Australia, is 

used as a case study. Daily, weekly and monthly river flow forecasting is conducted. 

The impacts of right selection of the inputs and pre-processing the raw data with 

wavelet are showcased in this section. 

 

Chapter Seven-  In this chapter the accuracy of multi step ahead daily river flow 

forecasting is improved by applying Daubechies and Symlet multi-resolution 

analysis on ANN and ANFIS models’ input. A novel approach of hybrid wavelet 

neuro-fuzzy with subtractive clustering is introduced for river flow forecasting. 

Overall 215 different models for various lead-times of 1 to 5 days ahead, with 

different input combinations (forward stepwise time series, multivariate input and 

wavelet coefficients) were developed for forecasting daily river flow of the Dingo 

road station on Harvey River, Western Australia. Highly satisfactory results achieved 

as the forecasting accuracy significantly improved for longer lead time and extreme 

event simulation. 

 

Chapter Eight-  In this chapter the application of developed models for timely flood 

warning is investigated. Feed-forward ANN, adaptive neuro-fuzzy with grid 

partitioning alone and in conjunction with Daubechies discrete wavelet transform 

(db3)  are applied for forecasting 1, 6, 12, 24, 36 and 48 hour ahead of river flow. 

Hourly rainfall and river flow data of two stations on Richmond River in NSW, 

Australia, which is highly prone to flooding, are used. Highly reliable results are 

achieved for forecasting up to 24 hour ahead of flooding event, especially when an 

upstream flow time series added as the model input. 

 



Chapter1- Research overview 
 

7 
 

Chapter Nine- Summary of research outcomes and general conclusions are 

presented in this chapter. The recommendations for future studies are also provided 

in this chapter. 

 

 

 

Figure 1. 1  Main structure of the thesis 

 



 
 

    

  



 
 

 

Chapter 2 

A Review on River Flow Forecasting Methods 
 

 

 

2.1 INTRODUCTION  

As a consequence of issues like water increased demands and climate change, the 

need for accurate river flow forecasting has grown rapidly in the past decades. 

Knowing future conditions of surface water resources is one of the key elements for 

an appropriate risk-based and sustainable water resources planning. 

The application of river flow forecasting could be categorized into two main types. 

The first application is short term river flow forecasting to predict sudden extreme 

conditions such as flooding (Werner, et al., 2005; O’Connor, 2006). Being prepared a 

day or even a few hours before such an event could assist hazard adaptation which 

can reduce costs and save lives (Carpernter, et al., 1999). The second application is 

long term forecasting for the purpose of sustainable water resources management. 

Knowing the quantity of future surface water resources is required for determining 

optimum reservoir operations, irrigation allocations, groundwater extraction 

regulation and demands supply planning (Valenca, et al., 2005; Ghanbarpour et al, 

2009; Sudheer, et al., 2014).  

There are various types of river flow forecasting and rainfall-runoff (R-R) techniques 

ranging from deterministic to stochastic models (Clarke, 1973). The oldest and still 

the most widely-used rainfall-runoff approach is based on the rational formula 

(Mulaney, 1845), which estimates runoff rate from rainfall intensity and the 

catchment area. Technological advances have made a significant impact on 
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hydrology science in the last centuries. A growing number of scientific theories and 

mathematical techniques have been developed for measurements, modelling and 

forecasting of hydrological phenomena. Selecting the best approach for forecasting 

depends on the purpose of the modelling and available historical spatial and temporal 

data in the river catchment to simulate complex non-liner hydrological process. In 

general, there are three main types of forecasting models, namely, physically-based, 

conceptual and data-driven models (Dawson and Wilby, 2001; Sene, 2010). The 

following sections provide a brief introduction to different types of river flow 

forecasting models. 

 

2.2 PHYSICALLY-BASED MODELS 

Physically-based models, knowing also as “distributed” or “deterministic” models, 

simulate the complex hydrological process in the catchment mathematically. These 

models consist of nonlinear partial differential equations which spatially represent 

the physical process of runoff generation in a catchment. They improve our 

understanding of hydrological system by representing interaction of the spatial-

temporal variables. The drawback of deterministic models is that they are very costly 

and time consuming (Chau, et al., 2005). They require a large amount of data, such 

as catchment characteristics and meteorological parameters to represent sub-surface 

and surface runoff generation and routing. For solving of the complex equations of 

the hydrological process, numerical solutions like finite element, finite difference, 

boundary integral and integral finite difference must be implemented (Gosain, et al., 

2009). 

Several physically-based distributed models have been developed and applied in 

hydrological forecasting. One of the pioneering physically-based models is European 

Hydrological System - Système Hydrologique Européenne (SHE). SHE has been 

developed by three European institutions, namely SOGREAH (France), Danish 

hydraulic institute and UK institute of hydrology (Beven, et al., 1980). SHE is a 

distributed physically-based model which simulates water movement in the 

hydrological cycle by applying a grid-based finite difference method. Partial 

equations of mass, energy conservation or momentum are derived based on the 
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spatially distributed data of catchment parameters, precipitations and catchment 

hydrological response in the orthogonal grid network (Abbott et al., 1986). 

Catchment parameters are assumed constant within each grid but could be different 

from other girds. Based on SHE model, an integrated hydrological modelling system 

of MIKE SHE has been further developed by DHI water and environment (Refsgaard 

and Storm, 1995). MIKE SHE represents hydrological process, including 

evapotranspiration, surface flow, unsaturated flow, sub surface, channel flow and 

their interactions (Butts et al., 2004). Figure 2.1 illustrates the schematic of MIKE 

SHE model and its numerical solutions for different hydrological process. 

Another well known physically-based model is the Institute of Hydrology 

Distributed Model (IHDM) (Beven, 1985). This model uses two-dimensional finite 

element approach. Compared to SHE model, it needs less computational time and 

parameters as it does not forecast the hydrological response of every point in the 

catchment. Another example of such simplified model is the popular TOPMODEL 

(Beven and Kirkby, 1979). This model assumes that the hydraulic gradient of 

subsurface saturated zone is similar to the local surface slope. It also considers 

similar hydrological respond for the points with same topographic index and thereby 

eliminates the need for calculations in every point of the watershed. This model also 

minimizes the number of parameters by simplifying surface flow and unsaturated 

zone routing algorithms. O’Connor (2006) argues that these kinds of model are not 

truly physically-based model as they actually apply conceptual model to each grid of 

the watershed. Many other physically-based models have been developed and 

applied in various case studies. Some of the most widespread among all are as 

follows; 

ECOMAG model is developed by Motovilov et al. (1999) and consists of 

hydrological, geochemical and biological process in daily time scale. HYDROTE 

distributed model is developed in 2001 (Fortin et al., 2001a, b). This model is GIS 

compatible and its hydrological unit is a small vertical homogenous unit. Downer 

and Ogden (2004) are developed fully distributed GSSHA model by improving the 

older two-dimensional model of CASC2D (Julien and Saghafian, 1991). The main 

improvement was in discharge prediction, when runoff is not produced by Hortonina 

process. In 2004, MODHMS model with the ability of three-dimensional subsurface 

http://www.scopus.com/authid/detail.url?authorId=7102246042&amp;eid=2-s2.0-0022062627
http://www.sciencedirect.com.dbgw.lis.curtin.edu.au/science/article/pii/002216949502692I
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modelling and two-dimensional surface modelling was developed (Panday and 

Huyakorn, 2004). This model is capable of simulating complex surface and 

groundwater interactions (Donn et al., 2012).  

 

 

Figure 2. 1  Schematic of MIKE SHE distributed model structure (Graham and Butts, 2005). 

 

Although physically-based models are more sophisticated than the other types of 

models, they are not applicable and accurate enough for flood forecasting due their 

complexity and extensive data demands. The main drawbacks of the physically-

based models are as follows; 

 



Chapter 2- Review on river flow forecasting methods 
 

12 
 

- They are not the exact representation of the hydrological process as it is very 

difficult to measure and understand catchment parameters such as soil parameters 

and determine their variation over the time (Liu, et al., 2011).  

- There are difficulties in solving catchment descriptive equations. Even applying 

various available numerical techniques may not lead to convergence of solutions 

due to complexity of nonlinear partial differential equations. 

- They are not cost-effective. Considerable costs are involved in setting up these 

models including measuring an extensive set of parameters from the field, 

appropriate softwares and training time. 

- They are not suitable for large catchments due to their high-resolution data 

requirement. 

- The accuracy of the model depends on grid size. Most of hydrological data are 

measured in points and could be homogenous in small scale while grid scale often 

covers a much bigger area. 

- Due to time-consuming nature of complex numerical simulations, physically-

based models may not be suitable for real-time flood forecasting.  

- Physically-based forecasts are subject to high level of uncertainty as there are 

many possible sources of error in calibrating the model (Huang and Liang, 2006). 

In conclusion, physically-based models can be considered as a powerful tool for 

providing spatial information of the hydrological parameters within the catchment. 

Their outcomes would be beneficial for solving many water management problems 

such as assessing water storage within the catchment rather than river flow 

forecasting (O’Connor, 2006). 

 

2.3 CONCEPTUAL MODELS 

Conceptual models, also called gray-box models, are process-based models too. They 

formulate physical process of hydrological cycle by most influential elements like 
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rainfall, evaporation losses and the soil moisture. In fact, they are simplified 

representation of the hydrologic system. Conceptual R-R models predominantly 

consist of a number of linked conceptual store buckets and the mathematical 

relationship between these storages (also called reservoirs) in order to maintain mass 

balance. Figure 2.2 illustrates the schematic of the typical conceptual storage and the 

way they are connected to each other in the hydrological cycle. 

 

Figure 2. 2  Schematic of storage system in conceptual model 

 

Based on the simulation duration, conceptual models can be classified into event-

based or continuous models (Jayawardena, 2014). Event-based model simulates only 

one single rainfall-runoff event by given initial conditions, while continuous model 

covers extended period of time (Berthet, et al., 2009). Furthermore, conceptual 

models can be categorized to lumped and semi-distributed models (Todini, 1988). 

Most of the conceptual models are lumped, which catchment is considered as a 

single uniform unit (Refsgaard, 1997). Instead of incorporating the spatial variation 

of hydrological, hydrogeological and meteorological parameters, their average value 

will be employed in an input-output system. 
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Following is a brief overview of most widely used conceptual models. 

 

Stanford Watershed Model (U.S.A) - Stanford watershed model (SWM) is one 

of the earliest conceptual models, developed in Stanford University (Linsley and 

Crawford, 1960). SWM is a lumped model which is capable of continuous 

simulating of runoff based on the continuity equation, using daily and hourly 

precipitation. In 1966, the basic SWM model is further improved (SWM- IV) by 

adding more parameters and routing techniques (Crawford and Linsley, 1966). 

This model requires up to 35 parameters for calibrating modelled 

evapotranspiration, infiltration, interception, overland and inter flow. Adding 

components of water quality, concept of SWM model transformed into wide 

spread Hydrologic Simulation Program FORTRAN (HSPF) model by a US 

environmental protection agency (EPA) and documented by Johanson et al. 

(1980). 

 

Tank Model (Japan) - Tank model is another pioneering conceptual model 

developed by Sugawar (1961). Tank model is a simple lumped, continuous model, 

consist of four storage tanks, laid in vertically parallel series. The top tank is fed 

by precipitation and has a side outlet which corresponding surface runoff and a 

bottom outlet lead into the next tank, representing the infiltration. Evaporation is 

first subtracted from this tank and then from other tanks in downward order. 

Second and third tanks have similar outlets which their side outlets provide 

intermediate and sub-base runoff, respectively. The last tank has only the side 

outlet providing base flow. Total runoff would be the sum of all these runoff. The 

top tanks can have two side outlets for modelling the flood. For calibrating the 

model, a set of outlets and storages coefficients need to be determined. Despite 

model simple structure, the behaviour of model is highly dependent on storage 

conditions and similar precipitation may lead to a significantly different runoff 

(Podger, 2004). The tank model simulates R-R process in daily scale. 
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SMAR (Ireland) - The soil moisture accounting and routing (SMAR) is a daily 

lumped model, introduced by O’Connell et al. (1970). The first version of SMAR, 

which is also known as Layers Model, extensively improved during years of 

testing (Kachroo, 1992; Tuteja and Cunnane, 1999). SMAR model divides the soil 

to different horizontal layers with a strict soil moisture capacity and applies two 

main procedures of water balance and routing in sequence. The water balance 

component which maintains the balance between rainfall, evaporation, runoff and 

soil moisture storage in different layers, has five parameters to calibrate. The 

routing component has four parameters and calculates the generated runoff in the 

catchment outlet by applying the classic Gamma distribution model (Nash, 1959), 

given total runoff from the balance component. 

 

Sacramento Model (U.S.A) – Sacramento soil moisture accounting (SAC-SMA) 

is another lumped continuous R-R model (Burnash et al., 1973). SAC-SMA 

model efficiency is highly related to the length and quality of available data. It 

needs long term mean daily rainfall, evaporation, air temperature and stream flow 

data for river flow forecasting. SAC-SMA model structure has 5 stores, two upper 

zone (tension and free water) and three lower zones (tension, primary free and 

supplementary free water). Evapotranspiration is removed from tension stores and 

runoff is released from free stores (surface runoff, inter flow and base flow). At 

first the upper zone receives the rainfall and next, water evaporates or moves to 

the lower stores based on defined movement rules. SAC-SMA model needs 16 

parameters to be calibrated to represent catchment water balance process. 

 

Xinanjiang Model (China) - Xinanjiang model is a semi-distributed conceptual 

model which is highly efficient in humid and semi-humid regions. This model is 

developed in 1973 in China and published in 1977 (Zhao, 1977). In this model, 

evapotranspiration is the controlling factor, as runoff is generated when soil 

moisture exceeds the field moisture capacity. Therefore, rainfall first feed the soil 

moisture deficit, then the subsequent precipitation will become runoff. Xinjiang 

model divides the soil to three layers of upper, lower and deeper. Generated 

runoff from these three layers are immediate, surface and groundwater runoff, 
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respectively. As a semi-distributed model, Xinanjiang applies a parabolic curve to 

consider spatial distribution of the soil moisture storage capacity (SMSC) over the 

catchment. The basic version of the model has been further modified by 

introducing a double parabolic curve (Jayawardena and Zhou, 2000). The 

modified Xinanjiang model has to calibrate 11 parameters including Muskingum 

routing parameters. 

 

The literature of conceptual models is very vast. Almost all large hydrological 

research centres around the world have developed and applied their own conceptual 

model for hydrological forecasting. Currently, SMAR (O’Connel et al., 1970), 

Sacramento (Burnash et al., 1973), SimHyd (Chiew et al., 2002), GR4J (Perrin et al., 

2003), AWBM (Boughton, 2004) and IHACRES (Croke et al., 2002) are the most 

popular conceptual models used in Australia (Vaze, et al., 2012). Compare to 

physically-based mode, these models are more popular, easier to develop and require 

fewer parameters for calibrating the catchment. However, conceptual models have 

some limitations as summarized below: 

- In a lumped model, catchment is considered as a homogeneous unit by utilizing 

the average value of spatially heterogeneous parameters. Taking the average 

values of the catchment characteristics for simulating various hydrological 

process can significantly affects model accuracy. 

- Developed model is not applicable for any other catchments, as model 

parameters optimized based on the unique characteristics of the selected 

catchment (catchment size and type, climate, topography, geology, vegetation 

and soil type). 

- The model calibrates its parameters based on available historical rainfall-runoff 

events and may not be suitable for forecasting different rainfall-runoff trends in 

future. 

- Event-based models are unable to be applied to ungauged catchments as an 

extensive amount of data is required for model calibration. 
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- Semi-distributed conceptual models have similar limitations of physically-based 

models, including extensive data requirement and using relatively inaccurate 

catchment parameters due to measurement difficulties.  

- Many assumptions need to be made for simulating a complex process by a 

simplified model.  

 

2.4 DATA DRIVEN MODELS 

Another alternative for hydrological modelling is to apply data driven (also called 

black box) techniques on hydrological time series. Unlike process-based models, 

these models require very limited understanding of the hydrological system and 

mainly rely on the quality of the available data. Data driven models find the relation 

between inputs (river flow and/or rainfall time series) and output (runoff) without 

considering the underlying hydrological process. Figure 2.3 depicts the learning 

system in data driven method. These methods can be categorized in two main types 

of classical and computational intelligence approaches. 
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Figure 2. 3  Learning system in black box data driven approaches. 
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2.4.1 Classical data driven approach 

The classical data driven models are generally regression models. Autoregressive 

moving average (ARMA), autoregressive integrated moving average (ARIMA), 

seasonal ARIMA, autoregressive exogenous (ARX), threshold autoregressive (TAR) 

and multiple linear regression (MLR) are the most popular regression models (Wang, 

2006). Among them, ARIMA has been the most frequently used method for river 

flow forecasting that is first introduced by Box and Jenkins (1970). ARIMA is an 

extended type of ARMA, which has two main components of autoregressive and 

moving average as following; 

 

 

𝐴𝑅𝑀𝐴 (𝑝, 𝑞) = 𝑍𝑡 =  �𝜑1𝑍𝑡−1 + ⋯+ 𝜑𝑝𝑍𝑡−𝑝� + �𝜀𝑡 − 𝜃1𝜀𝑡−1 −⋯− 𝜃𝑞𝜀𝑡−𝑞�       (2.1) 

where 𝑝 is the order of autoregressive, 𝑞 is the order of moving average, 𝑡 is the time 

step (e.g. 12 for monthly modelling), 𝜀𝑡  is a white noise and 𝜑 and 𝜃 are the AR and 

MA coefficients, respectively. The past events are processed by AR component and 

the summation of forecasting error is presented by MA component. 

These traditional techniques usually assume that a signal is stationary and can be 

described by a set of linear equations. Therefore, they are not reliable for achieving 

accurate river flow forecasting as river flow time series is highly nonlinear and 

nonstationary (Martins et al., 2011). 

 

2.4.2 Computational intelligence approach 

 In the last two decades, computational intelligence (CI) approaches have been 

increasingly substituted regression models and applied in many hydrological 

forecasting. CI models are capable of recognizing complex non-linear relationships 

between input and output data sets. A number of different types of CI methods which 

are successfully applied in hydrological forecasting is as follows;  

 

AR component MA component 
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- Artificial neural networks (multi-layered perceptron, radial basis function, 
recurrent, product unit) 

- Fuzzy rule-based systems 

- Adaptive neuro-fuzzy inference system 

- Support vector machines 

- Chaos theory and dynamic systems 

- Hybrid wavelet models 

- Genetic algorithm/programming 

- Swarm intelligence optimization (ant colonies, fish schooling, bee algorithm) 
 

Given the complexity of rainfall-runoff process, computational intelligence methods 

are generally very powerful tool for river flow forecasting. Although CI models do 

not provide detailed information on hydrological process (black box type models) 

and require high quality historical time series, they are highly reliable and accurate. 

Following is a summary of CI models’ advantages over physically-based and 

conceptual models for river flow forecasting application: 

- Unlike physically-based models, CI models do not require a large number of 

hydrological and geological parameters for representing the catchment 

behaviour. CI models are able to achieve accurate forecasts by applying high 

quality river flow time series (long historical records) as the single input .  

- CI based models are self-trained. The input-output relationship is formulated 

automatically based on historical data in a catchment. Therefore, understanding 

the complex interaction between hydrological and geological process is not 

necessary for developing the model. 

- They are able to train the model with multiple effective inputs like 

meteorological parameters. Therefore, future climate changes could be 

considered in the CI modelling process. 

- Contrary to conceptual, semi-distributed or even distributed physically-based 

models, no assumptions or estimations need to be taken for formulation and 

calibrating the catchment. 
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- Developed CI models are also easily applicable to different case studies with 

different catchment characteristics as they extract all necessary information from 

time series analysis.  

-  These models can be cost-effective as in-field measurements or gauging station 

maintenance would be reduced. 

- Computational intelligence are the most efficient models for infilling 

of missing rainfall and river flow data to be used in river flow forecasting or any 

other hydrological applications. 

- These models are the best option for modelling ungauged catchments when there 

is no other feasible solution for modeling. They are able to simulate the 

catchment by using effective inputs such as upstream data or data from other 

catchments with similar characteristics (Dawson et al., 2006; Besaw et al., 

2010). 

 

Despite the numerous advantages of data driven approaches, they also have some   

limitations. The main drawbacks of CI methods could be categorized as followings; 

- These models require high quality historical data as the simulation is based on 

the previous trends. Accurate river flow forecasting with short period of river 

flow recoding is not achievable unless there are some other effective inputs data 

with good quality are available. 

- Unlike process-based methods, they do not provide insight into the underlying 

hydrological processes in the catchment. 

 

In this study, a number of CI based approaches are developed for river flow 

forecasting, using artificial neural networks, adaptive Neuro-fuzzy inference system 

and hybrid wavelet-CI techniques. More details on these CI approaches, are given in 

Chapter three.  



 
 

 

     



 
 

 

Chapter 3  

Computational Intelligence Approach 
 

 

 

3.1 INTRODUCTION 

In this study, computational intelligence (CI) approach is chosen for river flow 

forecasting. CI models are capable of simulating and forecasting hydrological events 

based on available historical data. They require very limited knowledge on complex 

rainfall-runoff process and huge catchment and meteorological parameters involved 

in this process.  

This chapter briefly introduces the concept of artificial neural networks, fuzzy 

modelling and wavelet analysis. The methodology of specific types of CI 

approaches, applied in the developed models, is explained in more details. 

 

3.2 ARTIFICIAL NEURAL NETWORKS 

3.2.1 Introduction 

Artificial neural networks (ANN) are generally computational models, inspired by 

the operations of biological neural system. Artificial neural networks are parallel 

distributed processing networks that are modelled after cortical structures of the 

brain. Artificial neural networks have flexible structures that are capable of 

identifying complex nonlinear relationships between input and output data sets 

(Adamowski and Sun, 2010). It can be used to forecast future output values from 
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given input data set by minimizing the error between the predicted and actual 

outputs. 

The concept of Artificial Neural Networks (ANN) was first introduced by Warren 

McCulloch and Walter Pitts in 1943. They published the fundamentals of neural 

computing by proposed a neural model with binary neuron and a fixed threshold 

(McCulloch and Pitts, 1943). The initial concept of ANN was described 

algorithmically for the first time by Rosenblatt. He introduced perceptron algorithm 

for supervised learning of ANN input–output system (Rosenblatt, 1958). His work 

was the basis of feed-forward multi-layered neural networks development. The 

theory, algorithms and application of artificial neural networks have made significant 

progress since 1980s. In 1982, the self organized map (SOM) algorithm was 

introduced by Kohonen (Kohonen, 1982). Kohonen neural networks became widely 

known after he presented learning rule of unsupervised self organizing feature map 

(SOFM) in his book in 1988 (Kohonen, 1988). In 1986, the backpropagation training 

algorithm for training multilayer perceptron neural networks was first introduced 

(Rumelhart et al., 1986), which grounded significant growth in ANN applications. 

Broomhead and Lowe (1988) introduced radial basis function neural networks, as an 

alternative to the multilayer perceptrons. 

Artificial neural networks are currently being used in different fields such as finance, 

medicine and a wide range of engineering applications. The startup period of 

studying ANNs’ application in hydrology occurred throughout the 1990s. The study 

carried out by Daniell (1991) could be referred as the first paper on neural network 

application in hydrologic modeling. This study listed ten potential applications of 

neural networks in hydrology and water resources while it illustrated two examples 

of ANN applications itself. Since then, the application of ANN in hydrology and 

water resources modelling has attracted a lot of attention. Maier and Dandy (2000), 

the ASCE task committee (2000a, b) and more recently Maier et al. (2010) published 

comprehensive reviews of ANN applications in hydrology.  

Different types of ANNs have been used in hydrological modeling like radial basis 

function (RBF) (Fernando and Jayawardena, 1998; Moradkhani et al., 2004; Nor et 

al., 2007; Partal, 2009; Lin and Wu, 2011), bayesian neural networks (Kingston et 

al., 2005; Khan and Coulibaly, 2006; Jiang et al., 2012) and feed-forward multilayer 
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perception (MLP), which is the most popular neural network paradigm in 

hydrological forecasting (Fernando and Jayawardena, 1998; ASCE task committee, 

2000b; Dawson1 and Wilby, 2001; Kim and Barros, 2001; Sivakumar et al., 2002; 

Cigizoglu, 2003a; Kim and Valdes, 2003; Kumar et al., 2005; Srinivasulu and Jain, 

2006; Dawson et al., 2006; Nayebi et al., 2006; Machado et al., 2011; Weilin et al., 

2011). 

Artificial neural networks are known as one of the promising techniques for river 

flow forecasting (Dibike and Solomatine, 2001; Chiang et al., 2004). Many studies 

have been carried out to investigate ANN applications in river flow forecasting in 

comparison with traditional linear and conceptual methods. Karunanithi et al. (1994) 

compared ANN and autoregressive moving average (ARMA) performance for daily 

and hourly river flow forecasting in the Pyung Chang River, Korea. They found 

ANN is a more accurate predictor, especially for high river flows. They noted that 

ANNs are more robust for simulation of noisy data compared to ARMA. Tawfik et 

al. (1997) applied a simple three-layer back propagation neural network with linear 

transfer function for forecasting discharge rate at two gauging locations on the Nile 

River. They showed that the ANN approach is more accurate than commonly used 

techniques for most of the cases considered. Abrahart and See (2000) compared the 

forecasting power of neural network and autoregressive moving average models for 

river flow prediction in two contrasting catchments. They concluded that ANN 

models were less demanding and faster, while their accuracy were similar and 

sometimes better in comparison to ARMA models. Imrie et al. (2000), presented a 

methodology for training ANN that generalised well on the new data. They used 

backpropagation and cascade-correlation learning architecture for training the 

network. They revealed that a function with a similar shape to the cubic polynomial 

function might be necessary for ANNs to predict extreme values. Dibike and 

Solomatine (2001) concluded that ANN can exhibit a comparable or even better 

performance than a calibrated conceptual model such as Sugawara-IHE tank model. 

They also stated that the back propagation neural networks (BPNN) networks 

showed slightly better performance than radial base function networks (RBF) for 

their case study. Birikundavyi et al. (2002) achieved excellent results of up to 5 days 

ahead river flow forecasting of Mistassibi River in Quebec, Canada using ANN. 

They also showed that the ANN result outperform the PREVIS conceptual model 
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and classic autoregressive model coupled with a Kalman filter. Cigizoglu (2003b), 

used ANN for predicting monthly river flow of a station with short record length in 

Turkey. This study indicated that using ARMA model to generate synthetic monthly 

flow and applying this series as the training sets of ANN, significantly improves 

prediction results. Moradkhani et al. (2004), compared the result of different ANN 

models with different structures for the Salt River stream flow forecasting. They 

concluded that the selection of a training set is crucial in the ANN modelling. 

Machado et al. (2011) developed an ANN model for monthly forecasting of Jangada 

River flow, Brazil. Comparing the results with the IPHMEN conceptual model 

showed that the ANN was superior in reproducing the observed flows.  

Many studies have shown that adding other meteorological data, such as rainfall, 

temperature, soil moisture, evaporation and evapotraspiration can improve the 

accuracy of neural network based river flow forecasting (Poff et al., 1996; Kim and 

Barros, 2001; Nayebi et al., 2006; Anctil et al., 2008; Adamowski and Sun, 2010; 

Pramanik et al., 2011). 

 

3.2.2 Neuron Modeling and Activation functions 

Neural networks are networks of interconnected neurons (nodes), which are the 

fundamental unit of ANN. Neurons are able to receive and transmit signals from one 

to another. The basic neuron model as a binary threshold processing unit, is 

introduced by McCulloch and Pitts (1943). The most common structure of a neuron 

is illustrated in Figure 3.1. 
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Figure 3. 1  Schematic of a neuron function system. 

 

Each neuron has a number of inputs and outputs. A neuron computes an output by 

applying net and activation function (transfer function) on inputs. First, net function 

sum weighted inputs (u), then output is computed based on activation function 

( 𝑦 = 𝑓(𝑢) ). The net function is usually linear, as follows; 

𝑢 = �𝑥𝑖𝑤𝑖

𝑁

𝑖=1

+ 𝑏                                                                    (3.1) 

where x is an input vector, 𝑤𝑖 is the connection weight from the i th neuron in the 

input layer; 𝑏 is the threshold value or the bias of the neuron. There are various types 

of activation functions including Sigmoid (Logistic), Hyperbolic tangent (Tan-

sigmoid), Inverse tangent, Threshold, Gaussian radial basis and Linear, while the 

first two are the most commonly used in the hydrological modelling (Dawson and 

Wilby, 2001). 

One of the most applied activation functions for most applications is Sigmoid. The 

output of this function is bounded into the range of zero and one, for inputs of minus 

to plus infinity, which is considered as the desirable characteristics of this function. 

Sigmoid activation function is expressed mathematically as shown in following 

equation; 

 𝑦 = 𝑓(𝑢) =
1

1 + exp (−𝑟𝑢)                                                 (3.2) 
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where 𝑟 is the steepness parameter. As 𝑟 decreases the shape of function alters from 

S-shape to the linear shape. Figure 3.2 shows the shape of this function with different 

steepness parameters. 

 

 

Figure 3. 2  Sigmoid activation function with different steepness parameter. 

 

Sigmoid hyperbolic tangent (Tan-sigmoid) transfer function belongs to sigmoid 

family and bounded between -1 and 1 (Figure 3.3). Tan-sigmoid activation function 

formula is as follows; 

𝑓(𝑢) = tanh(𝑢) =
exp(𝑟𝑢) − exp (−𝑟𝑢)
exp (𝑟𝑢) + exp (−𝑟𝑢)                               (3.3) 

 

 

Figure 3. 3  Tan-Sigmoid activation function with different steepness parameter. 
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The shape of this function is similar to the Sigmoid function with different 

boundaries. Having the bipolar output ( range between ± 1) could be beneficial in 

certain networks with negative output values. According to Kalman and Kwasny 

(1992), using the tan-sigmoid as activation function achieves the best result for the 

ANN with backpropagation algorithm.  

None of the sigmoid functions reach their theoretical minimum or maximum. For 

example, neurons that use the tan-sigmoid function could be considered fully 

activated around ± 0.9. Therefore, the extremes of ±1 can be used as inputs to the 

network, but it is ineffective to train the network to achieve extreme values in 

outputs. 

Linear function is a simple activation function which does not limit the output range. 

This function is usually useful for the output layer of the ANN. The linear activation 

function formula is as follows; 

𝑓(𝑢) = 𝑎𝑢 + 𝑏                                                                   (3.4) 

There are various types of linear activation functions. Table 3.1 illustrates the most 

popular linear transfer function.  
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Table 3. 1  Different types of linear activation functions. 

Unbounded linear 
activation function 𝑓(𝑢) = 𝑢 

 

Hardlimiter 
activation function 𝑓(𝑢) =  �0           𝑖𝑓  𝑢 < 0

1           𝑖𝑓  𝑢 ≥ 0
� 

 

 

Symmetric 
hardlimiter function 𝑓(𝑢) =  �−1           𝑖𝑓  𝑢 ≤ 0

1              𝑖𝑓  𝑢 > 0
� 

 

 

 

Saturating activation 
function 𝑓(𝑢) =  �

0           𝑖𝑓           𝑢 < 0
𝑢           𝑖𝑓   0 ≤ 𝑢 ≤ 1
1           𝑖𝑓            𝑢 > 1

� 

 

 

Symmetric 
saturating function 𝑓(𝑢) =  �

−1           𝑖𝑓           𝑢 < −1
𝑢             𝑖𝑓  − 1 ≤ 𝑢 ≤ 1
1            𝑖𝑓               𝑢 > 1

� 

 

 

 

Positive linear 
activation function 𝑓(𝑢) =  �0           𝑖𝑓  𝑢 < 0

𝑢           𝑖𝑓  𝑢 > 0
� 

 

 

 

Triangular activation 
function �

0                   𝑖𝑓            𝑢 > 0
1 + 𝑢              𝑖𝑓   − 1 ≤ 𝑢 ≤ 0
1 − 𝑢              𝑖𝑓        0 ≤ 𝑢 ≤ 1

0                𝑖𝑓            𝑢 > 1

� 
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3.2.3 Neural network architecture 

Neural network architecture is defined based on the way neurons are connected to 

each other, which determines how computations proceed. About 30 different neural 

networks architectures have been created, developed and used so far (Krycha and 

Wagner, 1999).   

Artificial neural networks are typically composed of different layers of neurons: an 

input layer, one or more hidden layer and an output layer. The number of neurons in 

the input and output layer depends on the problem and the number of hidden layers 

and the number of neurons in hidden layers should be specified. In practice, having a 

single hidden layer with enough neurons, usually leads to an accurate approximation 

needed (Lippmann, 1987; Cybenko, 1989). Having a greater number of hidden 

neurons, gives the network flexibility to solve more complex problems, while having 

too many neurons may cause overfitting problem. Different approaches have been 

introduced to reach an optimum number of neurons. One of the most promising 

solutions to achieve this number is trial and error procedure (Shamseldin, 1997).  

In terms of the pattern of connections between the layers, ANN can be designed in 

feed-forward or recurrent form. Recurrent neural networks are mainly used when 

there are temporal patterns in the data. Feed-forward neural networks are the most 

common neural networks in use, so much so that some users identify the phrase 

“neural networks”, only feed-forward networks (Mehrotra et al., 1997). There are 

different type of feed-forward neural networks such as multilayer perceptron (MLP) 

and the radial basis function (RBF). The most popular neural network paradigm in 

hydrology is the multilayer feed-forward neural networks (Fernando and 

Jayawardena, 1998; ASCE task committee, 2000b; Dawson1 and Wilby, 2001; 

Kumar et al., 2005; Firat, 2008; Weilin et al., 2011), which is also a used in this 

study. 

 

3.2.3.1 Feed-forward multilayer perceptron ANN 

Feed-forward multilayer perceptron neural networks (MLP), are composed of several 

layers of neurons. The connections between neurons (information flow) are in one 
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direction, from the input layer, through hidden layers and to the output layer. Figure 

3.4 shows a schematic diagram of three-layer feed-forward neural network (with one 

hidden layer). 

 

 
 

 

As shown in Figure 3.4, in MLP’s there are no connections between neurons in the 

same layer or any feedback connections between layers. The output of neurons in 

each layer, are applied as the inputs to the next layer. The final output of this network 

could be achieved by the following equation: 

𝑌 = 𝑓𝑜�∑ 𝑤𝑘𝑗 . 
𝑗 𝑓ℎ�∑ 𝑤𝑗𝑖  𝑥𝑖 + 𝑏𝑗𝑖 � + 𝑏𝑘�                            (3.5)                                     

where x is an input vector, 𝑤𝑗𝑖 is the connection weight from the 𝑖𝑡ℎ neuron in the 

input layer to the 𝑗𝑡ℎ  neuron in the hidden layer; 𝑏𝑗 is the threshold value or bias of 

𝑗𝑡ℎ  hidden neuron; 𝑤𝑘𝑗  is the connection weight from the 𝑗𝑡ℎ  neuron in the hidden 

layer to the 𝑘𝑡ℎ neuron in the output layer; 𝑏𝑘  is bias of 𝑘𝑡ℎ output neuron and 

𝑓ℎ  and 𝑓o are the activation function for hidden and output layer, respectively. 
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Figure 3. 4  Schematic diagram of a three-layer feed-forward neural 
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3.2.4 Neural network learning 

Learning is the fundamental characteristic of neural networks. In the learning 

process, learning or training algorithm is updating network parameters to achieve a 

desired model performance based on a set of training data. The learning algorithm 

adjusts the weights and biases of the network to minimize the error between 

computed and observed output. There are three main classifications for ANN 

learning: supervised, unsupervised and reinforcement. The most commonly used 

learning paradigm, among all, is supervised learning neural networks. Unsupervised 

learning cannot trained neural networks to reach a target outputs and they are mainly 

efficient for pattern classification purposes. While, supervised learning algorithms 

require both inputs and associated output (target output) for training the network and 

they are very suitable for solving time series forecasting problems.  

 

3.2.4.1  Backpropagation algorithm 

The most widely used learning algorithm for training the neural networks is the 

backpropagation algorithm (Zhang and Barrion, 2006; Nawi et al., 2013). 

Backpropagation algorithm (BP) is a supervised algorithm which adjusts the 

connection weights and biases in the backward direction. It is an optimization 

procedure based on gradient descent to minimize the total error between the desired 

and actual outputs.  

The learning process of the backpropagation algorithm consists of two parts, forward 

and backward propagation. Figure 3.5 illustrates the backpropagation training of a 

feed-forward neural networks. 
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First, training pattern is propagated in a forward direction from input to output layer. 

As discussed previously, for the 𝑃 layer network the output of each layer will be as 

follow; 

𝑦0 = 𝑥                                                                                                          (3.6) 

𝑦𝑙+1 = 𝑓𝑙+1(𝑤𝑙+1𝑦𝑙 + 𝑏𝑙+1)         𝑙 = 0,1, … ,𝑃 − 1                          (3.7) 

where x is the input vector, l is the layer number, f is the transfer function, w is 

connection weight, 𝑏 is the threshold value and 𝑦𝑝 would be the network output. 

Then the computed output is compared with the observed target to determine the 

error value. For each output node the computed output (𝑦𝑝) is compared with its 

corresponding target value (t) to determine the difference. 

 𝑒𝑛 = 𝑡𝑛 − 𝑦𝑛
𝑝                                                                                         (3.8) 

The error function is based on the least squared errors as it can penalize large 

deviations more than small ones. The error function for this network is: 

𝑉 =
1
2�

�𝑡𝑛 − 𝑦𝑛
𝑝�𝑇

𝑁

𝑛=1

�𝑡𝑛 − 𝑦𝑛
𝑝� =

1
2�𝑒𝑛𝑇

𝑁

𝑛=1

𝑒𝑛                              (3.9) 

These errors are used to adjust the connection weight layer by layer in a backward 

direction, from the output layer to the input layer.  
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Figure 3. 5  Structure of neural networks with back propagation training algorithm. 
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A number of training algorithms have been developed for error back propagation 

learning. In this study gradient descent, gradient descent with the adaptive learning 

rule, Bayesian regularization and Levenberg-Marquardt algorithm (LM) is used to 

train the network. LM algorithm has the fasted convergence among other algorithms 

and it is able to obtain lowest mean square error in many cases (Cigizoglu and Kisi, 

2005; Beal et al., 2012; Lam et al., 2012). LM is a combination of steepest descent 

and the Gauss-Newton method. The one step weight update equation uses Newton’s 

method. This equation minimizes the error function (V) with respect to the parameter 

vector w, as follows; 

∆𝑤 = −[∇2𝑉(𝑤)]−1∇𝑉(𝑤)                                                       (3.10) 

where ∇2𝑉  is the hessian matrix and ∇𝑉 is the gradient, then it can be shown as 

follows; 

∇2𝑉(𝑤) = 𝐽𝑇(𝑤)𝐽(𝑤) + 𝑆(𝑤)                                             (3.11) 

∇𝑉(𝑤) = 𝐽𝑇(𝑤)𝑒(𝑤)                                                             (3.12) 

where the 𝐽(𝑤) Is the Jacobian matrix which can be computed as: 

𝐽(𝑤) =

⎣
⎢
⎢
⎢
⎡
𝜕𝑒1(𝑤)
𝜕𝑤1

⋯
𝜕𝑒1(𝑤)
𝜕𝑤𝑛

⋮ ⋱ ⋮
𝜕𝑒𝑁(𝑤)
𝜕𝑤1

⋯
𝜕𝑒𝑁(𝑤)
𝜕𝑤𝑛 ⎦

⎥
⎥
⎥
⎤

                                         (3.13) 

And 𝑆(𝑤) is; 

𝑆(𝑤) = �𝑒𝑖(𝑤).∇2𝑒𝑖(𝑤)
𝑁

𝑖=1

                                                    (3.14) 

According to the Gauss-Newton method 𝑆(𝑤) ≈ 0, and the one step weight update 

equation becomes: 



Chapter 3- Computational intelligence approach 

34 
 

∆𝑤 = −[𝐽𝑇(𝑤)𝐽(𝑤)]−1𝐽(𝑤)𝑒(𝑤)                                         (3.15) 

Applying the Levenberg-Marquardt modification the Gauss-newton method, the 

equation becomes: 

∆𝑤 = −[𝐽𝑇(𝑤)𝐽(𝑤) + 𝜇𝐼]−1𝐽(𝑤)𝑒(𝑤)                               (3.16) 

where 𝐼 is the identity matrix and 𝜇 > 0 which is modified by some factor (𝛽) in 

each epoch. For large values of 𝜇 the algorithm becomes steepest descent with the 

step of (1/ 𝜇 ) which is the standard backpropagation, and for the small values of 𝜇 

the algorithm becomes Gauss-Newton method (Figure 3.6).  

 

 

 

 

 

 

 

 

In the next step again the network is trained with the new weight: 

𝑊𝐸𝑝𝑜𝑐ℎ+1 = 𝑊𝐸𝑝𝑜𝑐ℎ + ∆𝑤                                               (3.17) 

The sum of squares errors (V(w)) is recomputed using new weights, if V(w) is 

increased, 𝜇 is multiplied by factor 𝛽 and if it is reduced 𝜇 is divided by 𝛽. This 

procedure will be iterated again and again until the V(w) has been reduced to some 

error goal, which then the algorithm is assumed to be converged. 

Figure 3. 6  Levenberg-Marquardt algorithm shifts from the steepest descent to the 

Gauss-Newton method of decreasing the value of μ . 
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3.3 NEURO-FUZZY MODELLING 

3.3.1 INTRODUCTION 

The concept of fuzzy logic (FL), was originally proposed by Zadeh (1965). In the 

fuzzy logic, linguistic variables are often used rather than numerical values in order 

to facilitate the expression of rules and facts. In the last two decades fuzzy logic 

modelling has been applied to various fields of engineering problems, including earth 

and sciences field (Demicco and Klir, 2004). There are also a number of studies, 

which have investigated FL application in hydrological forecasting, in particular. 

Liong et al. (2000) used a fuzzy reasoning method with various shapes of 

membership functions to predict the water level in Dhaka, Bangladesh. Although the 

prediction accuracy of this method was lower than that of neural networks, the level 

of accuracy was still acceptable. Hundecha et al. (2001), developed a fuzzy rule-

based routine to simulate different processes involved in runoff generation and 

compared the result with HBV semi-distributed conceptual model for Neckar River 

catchment in Germany. In this research the fuzzy logic-based model was found to 

reproduce the observed discharges well, although it overestimated the peak flows. 

Sen and Altunkaynak (2006), presented various uncertainties embedded methods for 

determining the runoff coefficient, and rainfall-runoff formulation including 

statistics, probability, perturbation and fuzzy system modelling. They applied these 

methods on two stations in Istanbul, Turkey and concluded that fuzzy logic approach 

yields the least relative error among other alternative runoff calculation methods. 

Turan and Yurdusev (2009), compared feed-forward back propagation neural 

networks, generalized regression neural networks and fuzzy logic for estimation of 

unmeasured data using the data of the four runoff gauge stations on the Birs River in 

Switzerland. The feed-forward back propagation neural networks (FFNN) algorithm 

was selected over other models for Souhieres station. They concluded that the best 

method should be sought based on the flow values and the basin characteristics. 

Wang and Altunkaynak (2012), conducted a comparative case study between storm 

water management hydrological model (SWMM) and a fuzzy logic model for total 

runoff prediction in the Cascina Scala watershed in Italy.They found predicted total 

runoffs from either the SWMM or fuzzy logic are reasonably well according to the 
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performance criteria. For large rainfall events, the fuzzy logic model generally 

outperforms the SWMM. However, the SWMM can produce the time varying 

hydrograph which cannot be generated by a fuzzy model. Jayawardena et al. (2014), 

demonstrated the robustness of fuzzy modelling for daily and 6-hourly discharge 

prediction. They used three different types of fuzzy inference systems, namely, 

Mamdani, Larsen and TSK for river flow prediction in 4 different rivers located in 

different climatological regions. Although all approaches were found efficient, TSK 

model slightly outperformed the other two. 

The adaptive neuro-fuzzy inference system (ANFIS) models, which consist of both 

ANN and fuzzy logic methods, was first introduced by Jang (1993). The neuro-fuzzy 

inference system combines the advantages of both fuzzy logic and neural networks 

techniques, the learning ability of a neural network and the interpretable manner of 

the fuzzy logic in representing knowledge (Jang and Gulley, 1995). Neuro-fuzzy 

modelling has been successfully used in many hydrological studies. Nayak et al. 

(2005) used a neuro-fuzzy hybrid approach for short term river flow prediction. They 

showcased the application of model by applying it on the Baitaraini River in India. It 

was found that ANFIS outperforms traditional ARMA models. Also, comparing to 

ANN, it saved considerable computational time. Kisi (2006) investigated the abilities 

of neuro-fuzzy techniques, with various combinations of inputs, to improve the 

accuracy of daily evaporation estimation. It was found that the neuro-fuzzy 

computing techniques could be employed successfully in modelling evaporation 

process. Keskin et al. (2006), used ANFIS model for monthly river flow prediction in 

Dim stream in Turkey. They employed AR(2) model to generate synthetic monthly 

flows and used this data for prediction with ANFIS. They compared the results with 

the ANFIS performance when only a limited number of the observed flows were 

employed and shown that extended data series improved the prediction performance 

significantly in both low and high flows. Chang and Chang (2006), used a neuro-

fuzzy hybrid approach to construct a water level forecasting system during flood 

periods. The ANFIS model provided accurate and reliable water level prediction for 

next three time steps. Aqil et al. (2007) carried out a study based on the comparative 

analysis of neural network and fuzzy systems for predicting the runoff in the Cilalawi 

River basin in Indonesia. Three different models of Levenberg-Marquardt-FFNN, 

Bayesian regularization-FFNN and ANFIS model were applied. The neuro-fuzzy 
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model had proved better generalization capabilities and Bayesian regularization 

algorithm appeared to be the worst. Kermani and Teshnehlab (2008) investigated the 

potential of neuro-fuzzy system with a Sugeno inference engine, and using different 

numbers of membership functions for daily river flow prediction. They achieved 

reliable results which were superior to the results of conventional autoregressive 

methods. Firat et al. (2009), applied two types of fuzzy inference systems, ANFIS 

and Mamdani fuzzy inference systems (MFIS), for predicting municipal water 

consumption time series. The results demonstrated that the ANFIS method is 

superior to the MFIS method in predicting monthly water consumption time series. 

Talei et al. (2010) compared fifteen ANFIS models, with different selection of input 

data, for event-based runoff forecasting. They determined the best input selection for 

long term, short term and overall discharge forecast. 

The application of fuzzy modelling in hydrology is not as widespread as other 

computational intelligence approaches like neural networks. The reason could be the 

complex structure of if-then rules in fuzzy input-output modelling as the number of 

rules exponentially propagates with the number of inputs (Jacquin and Shamseldin 

2009). 

  

 3.3.2 FUZZY LOGIC 

Fuzzy logic focuses on linguistic variables in natural language to reduce and explain 

the system complexity. Fuzzy logic uses fuzzy set theory as a major tool. 

Unlike classical sets, fuzzy sets don’t have a crisp boundary and deal with reasoning 

that is approximate rather than precise. While classical sets either belong to a set or 

not, fuzzy sets can have partial membership. In a classical set, the membership of an 

element x in a classical set R is defined as follows; 

𝜇𝑅(𝑥) = �1   𝑖𝑓   𝑥 ∈ 𝑅
0   𝑖𝑓   𝑥 ∉ 𝑅

�                                                       (3.18) 

In contrast to a classical set, a fuzzy set can express the degree which an element 

belongs to a set. This concept is defined by degree of memberships that can take 
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values between 0 and 1, which a degree of zero means that the value is not belong to 

the set and a degree of one means that the value is completely representative of the 

set: 

 𝜇𝑅(𝑥):𝑋 ⟶  [0,1]                                                               (3.19) 

where 𝜇𝑅(x) is called the membership function (MF) of the fuzzy set R. Based on the 

problem, different type of fuzzy membership functions can be used. The most 

common types of membership functions are triangular, trapezoidal, gaussian, 

generalised bell and sigmoid functions. These membership functions are defined in 

Table 3.2. The shape of these membership functions has also been illustrated using 

the MATLAB fuzzy logic toolbox and applying sample parameters. There is no clear 

approach for selecting the optimum membership type or number. In this study the 

optimum structure of FIS is achieved by trial and error. 
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Table 3. 2  Triangular, Trapesoidal, Gaussian, Generalised bell and Sigmoidal membership 

functions. 

Triangular 
membership 

function 

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑥; 𝑎, 𝑏, 𝑐) = 
 

⎩
⎪
⎨

⎪
⎧

0,              𝑥 ≤ 𝑎
𝑥 − 𝑎
𝑏 − 𝑎 ,       𝑎 ≤ 𝑥 ≤ 𝑏
𝑐 − 𝑥
𝑐 − 𝑏 ,      𝑏 ≤ 𝑥 ≤ 𝑐

0,             𝑐 ≤ 𝑥

� 

 

 

 

Trapezoidal 
membership 

function 

𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑(𝑥; 𝑎, 𝑏, 𝑐,𝑑) = 
 

⎩
⎪⎪
⎨

⎪⎪
⎧

0,                 𝑥 ≤ 𝑎
𝑥 − 𝑎
𝑏 − 𝑎 ,       𝑎 ≤ 𝑥 ≤ 𝑏

    1,            𝑏 ≤ 𝑥 ≤ 𝑐
𝑑 − 𝑥
𝑑 − 𝑐 ,      𝑐 ≤ 𝑥 ≤ 𝑑

0,               𝑑 ≤ 𝑥

� 

 
 

Gaussian 
membership 

function 

𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥; 𝑐, 𝜎) = 
 

𝑒−1/2(𝑥−𝑐𝜎 )2 
 

 
 

Generalised bell 
membership 

function: 
 

 
g𝑏𝑒𝑙𝑙(𝑥; 𝑎,𝑏, 𝑐) = 

 
1

1 + | �(𝑥 − 𝑐)/𝑎| �2𝑏 

 
 

 
 

Sigmoidal 
membership 

function 

𝑠𝑖𝑔(𝑥; 𝑎, 𝑐) = 
 

1
1 + 𝑒𝑥𝑝[−𝑎(𝑥 − 𝑐)] 
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3.3.3 FUZZY INFERENCE SYSTEMS 

The most important modelling tool based on fuzzy set theory is fuzzy inference 

systems (FIS). Fuzzy inference systems is a knowledge base system in which the 

information of input and output data is converted into linguistically interpretable if-

then fuzzy rules. FIS has different applications such as data classification, decision 

analysis, expert systems, time series predictions, robotics and pattern recognition. 

The basic structure of FIS consists of three conceptual steps, including fuzzification, 

fuzzy inference process and defuzzification (Figure 3.7). 

  

 

 

 

 

 

 

In this process firstly classical or crisp data are converted into fuzzy data by defining 

the associated membership functions (MFs). Then MFs are connected with the fuzzy 

rules to drive the fuzzy output. 

There are four main types of fuzzy inference system: Mamdani, Sugeno,Tsukamoto 

and Larsen fuzzy inference system, which the first two are the most widely used. The 

Mamdani FIS (Mamdani and Assilian, 1975), contains three stages of fuzzyfication, 

fuzzy rule inference process and defuzzyfication as mentioned above. The Sugeno 

fuzzy model, also known as TSK fuzzy model, first introduced by Takagi, Sugeno 

and Kang (Takagi and Sugeno, 1985; Sugeno and Kang, 1988). TSK is more 

efficient in optimization and adaptive techniques and its output membership 

functions could be either linear (first-order) or constant (zero-order) in respect to 

values of input. TSK type had the advantage of not requiring to go through de-

Input Output 
Fuzzification 

Fuzzy inference process 

Defuzzyfication 

Knowledge base system 
 

 
Database Rule base 

Figure 3. 7  The basic structure of FIS. 
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fuzzification. Typical rules in a TSK model with two inputs and one output have the 

form: 

Rule 1    𝑥   is  𝐴1   and    𝑦   is  𝐵1    then   𝑧1 = 𝑓1(𝑥,𝑦),                            (3.20)  

Rule 2    𝑥   is  𝐴2   and   𝑦   is  𝐵2    then   𝑧2 = 𝑓2(𝑥, 𝑦),                             (3.21) 

where 𝑥 and 𝑦 are inputs, A and B are fuzzy sets which are linguistic terms with 

MFs, and 𝑧1 and 𝑧2 are crisp output functions. The overall output is obtained by 

weighted average. For example, for an AND rule, the output is: 

𝑍 =
𝑧1 ∗ 𝑤1 + 𝑧2 ∗ 𝑤2

𝑤1  + 𝑤2  
                                                                  (3.22) 

where the firing strength is: 

𝑤1 = 𝜇𝐴1(𝑥) ⋀  𝜇𝐵1(𝑦)                                                             (3.23) 

𝑤2 = 𝜇𝐴2(𝑥) ⋀  𝜇𝐵2(𝑦)                                                            (3.24) 

Since the overall output is a crisp set, there is no need for de-fuzzification required 

by this approach. 

 

3.3.4 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

A neuro-fuzzy system integrates fuzzy inference systems and neural networks which 

have the potential to capture the benefits of both methods. Fuzzy systems have the 

advantages of describing the fuzzy rules and being interpretable, which make it 

possible to represent the real world process and identify the reason of particular value 

in the fuzzy system output. In the other hand, fuzzy systems need an expert 

knowledge or instructions to define fuzzy rules and tuning the parameters of fuzzy 

systems (e.g. membership functions parameters). By increasing the complexity of the 

process, developing fuzzy rules and membership functions become more difficult 
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and sometimes impossible. In the neural networks approaches, the opposite situation 

can be observed. Neural networks are not able to explain the behavior of the system 

based on prior knowledge, but they are trainable which gives them the ability of 

tuning their structures from input-output data. Considering these facts, using a hybrid 

model of fuzzy and neural networks eliminates these problems. However, ANFIS has 

more computational complexity restrictions than ANN. 
Neoru-fuzzy systems, have recently attracted many researcher’s interest (Firat 2008; 

Googhari and Lee, 2011). The neuro-fuzzy modeling has the natural language 

description of fuzzy systems and learning capability of neural network but the 

drawback is their highly constrained learning process and their complexity compared 

to the neural networks. 

One of the most popular integrated systems is adaptive neuro-fuzzy inference system 

(ANFIS) which has shown promising results in modelling nonlinear time series. 

ANFIS was first introduced by Jang (1993). In ANFIS a feed-forward network finds 

fuzzy if-then rules for reaching optimal model. Specifically the ANFIS system of 

interest here is functionally equivalent to the TSK first-order fuzzy model (Jang et 

al., 1997). A common rule set for a first-order TSK fuzzy model is the following: 

If   x  is  An   and    y  is  Bn ,   Then    z = fn(x, y) = pn × x +  qn × y +  rn      (3.25) 

where A and B are fuzzy sets in the antecedent; pn, qn   and rn are polynomial 

parameters of 𝑛𝑡ℎ rule (also called the consequent parameters) and z is a crisp 

function in the consequent. 

Figure 3.8 illustrates the fuzzy reasoning mechanism of a two-input first-order 

Sugeno fuzzy model with two rules. The weights are usually obtained by 

multiplication of membership grades. 
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The ANFIS structure for the TSK first-order fuzzy model consists of five layers to 

facilitate the learning process. Figure 3.9 illustrates the ANFIS structure where two 

inputs (x and y) with two fuzzy sets with linguistic labels (A and B) and one output 

are considered. 

 

 

 

 

 

 

 

 

 

The first layer implements a fuzzification process and determine the membership 

grade of a fuzzy set: 
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Figure 3. 8  Reasoning mechanism of a Sugeno fuzzy model with two inputs and rules. 

Figure 3. 9  Equivalent ANFIS architecture for two-input first-order TSK fuzzy 

model with two rules. 
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O1,i = µ Ai (x)          for   i = 1,2                                              (3.26) 

O1,i =  µ Bi−2(y)       for   i = 3,4                                             (3.27)  

Based on the problem, different membership functions can be applied. For instance, 

if the membership function of 𝑖𝑡ℎ node is a generalized bell function, the output of 

𝑖𝑡ℎ node in the first layer defines as : 

O1,i = µ Ai (x) =  
1

1 + | �(𝑥 − 𝑐)/𝑎| �2𝑏                                     (3.28) 

where {𝑎𝑖 ,𝑏𝑖 , 𝑐𝑖} are premise parameters that change the shape of the membership 

function. 

The second layer generates the firing strengths (weights). This layer implements 

fuzzy AND operation by applying T-norm operators (usually multiplication) to the 

incoming signals in every neuron 

O2,i = wi = µAi (x) × µBi (y),     i = 1,2                              (3.29) 

The third layer normalizes the firing strengths from the previous layer: 

O3,i =  w���i =
wi

w1 + w2
 ,   i = 1,2                                             (3.30) 

 The fourth layer calculates rule outputs based on the consequent parameters: 

O4,i =  w���ifi = w�i(pix +  qiy +  ri)                                         (3.31) 

Finally the fifth layer computes the overall outputs by summing all the incoming 

signals from layer 4: 

O5,i = �w�ifi =
w1f1 + w2f2

w1 + w2i

                                                (3.32) 
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z = (w�1x)p1 + (w�1y)q1 + (w�1)r1 + (w�2x)p2 + (w�2y)q2 + (w�2)r2              (3.33) 

where the Ok,i  is the output of 𝑖𝑡ℎ node in 𝑘𝑡ℎ  layer. The most substantial component 

of ANFIS is the rules which are defined by premise parameters (ai, bi, 𝑐𝑖) and the 

consequent parameters (pi, qi, ri). The best values of the parameters for providing 

rules that would idealistically model the target system, are reached by a learning 

algorithm. With given input-output data, ANFIS employs the back propagation 

gradient descent method to optimize these parameters. 

 As previously discussed, neural networks use back propagation algorithm to adjust 

the weights between neurons. In the ANFIS, premises and consequents parameters 

play the role of weights in neural networks. Back propagation algorithm adjusts the 

premise parameters which determine the shape of membership functions and the least 

square error (LSE) solve the consequent parameters. This process has forward and 

backward steps. In the forward pass, the consequent parameters are estimated by 

LSE method, while the premise parameters are fixed and in the backward pass the 

error signals are propagated in backwards to modify the premise parameters while 

the consequent parameters are fixed. Since it uses two very different algorithms to 

reduce the error, the training algorithm is also called hybrid algorithm.  

 

3.3.5 INPUT SPACE PARTITIONING 

For the large data sets, determining the fuzzy rules by an expert is not effective and 

relies on trial and error. There are several techniques for determining the numbers of 

rules and membership functions. In a fuzzy inference system, basically there are 

three types on input space partitioning to form the fuzzy rules: tree partitioning, grid 

partitioning and scatter partitioning (clustering). In this study the last two methods 

are applied for initializing fuzzy if-then rules. 

 

3.3.5.1 Grid partitioning 

Grid partitioning is an approach for initializing the design of a fuzzy inference 

system when the number of inputs are limited. Grid partitioning divides the data 
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space into rectangular sub-spaces using axis-paralleled partition. This method 

generates rules for all possible combinations of membership functions of all inputs. 

Therefore, the number of rules is equal to mk where k is the number of inputs and m 

in the number of membership functions. Figure 3.10 demonstrates a grid partition in 

a two dimensional input space. 

When we have a relatively large number of inputs, using this method encounter 

problems as the number of fuzzy rules increases exponentially with the number of 

input variables. For instance a fuzzy model with ten input variables and two 

membership functions on each, leads to 1024 fuzzy if-then rules.  

 

 

Figure 3. 10  Grid partitioning of two inputs into 9 fuzzy rules. 

 

3.3.5.2 Scatter partitioning (clustering) 

The number of fuzzy rules increases with respect to the number of inputs. For 

minimizing the number of rules, the first step in generating the ANFIS is clustering 

the input-output data. Clustering partitions the data from a large data set into several 

groups by putting the most similar data in one group. To prevent grouping based on 

the ranges of the elements in the input vectors, input data must be normalized before 

clustering (Jang et al., 1997). 
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There are different kind of clustering techniques such as K-means, mountain, 

subtractive and C-means clustering. In this study subtractive and C-mean approaches 

are selected for clustering the inputs. 

 

(a) Subtractive clustering 

When there is no clear idea about the number of clusters for a large number of 

input data, subtractive clustering is fast, one-pass algorithm for finding the 

cluster centres in a data set. Subtractive clustering, which is first proposed by 

Chiu (1994), considers data points as the candidates for cluster centres and 

defines a density measure at data point 𝑥𝑖 as follows: 

Di = ∑ exp (− �xi−xj�
2

�ra2 �
2 )n

j=1                                                        (3.34)  

where ra is a neighborhood radius which is determined by trial and error. A data 

point will have a high-density value if it has many neighboring data points. After 

calculating the density measure for each data point, the data point with the 

highest density measure (Dc1) is selected as the first cluster centre (xc1) and the 

density measure of each data point xi is: 

Di = Di − Dc1 exp �−
‖xi − xc1‖2

(rb 2⁄ )2 �                                     (3.35) 

where rb is a positive constant indicating neighborhood that has a measurable 

reduction in density measure and generally is equal to 1.5ra (Chiu, 1994). The 

data points near the first cluster centre will have significantly reduced density 

measures. Thereby the next cluster centre is selected as the point has the greatest 

density value. This process continues until a sufficient number of cluster centres 

are achieved. 
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(b) Fuzzy C-mean clustering (FCM) 

Fuzzy C-mean clustering algorithm (FCM) was proposed by Bezdek (1981). 

FCM algorithm is an extension of the C-mean clustering algorithm, which is 

based on a crisp clustering criterion (Abe, 2001). In this method, one piece of 

data could belong to more than one cluster with a degree of membership for each 

cluster. If 𝑥𝑗 is a variable in the data set and 𝑚𝑖𝑗 is its membership degree for 

cluster 𝑖 , the sum of the degrees of membership of 𝑥𝑗 for all the clusters is equal 

to one: 

�mij

𝑐

𝑖=1

= 1,                                                                            (3.36) 

where 𝑐 is the number of clusters. In FCM partitioning the data is implemented 

by minimizing the sum of square error of each group using the following 

objective function: 

obj = ��(
n

j=1

c

i=1

mij)α�xj − �vi‖�2                                            (3.37) 

where 𝑛 is the number of variables in data set, 𝑣𝑖 is the cluster centre of the 

cluster i and 𝛼 is weighting exponent (α > 1). 

For solving the objective function, iterative algorithm is used. In each iteration, 

the values of 𝑣𝑖 and 𝑚𝑖𝑗 are updated, using the equations given below: 

𝑣𝑖 =
∑ (𝑚𝑖𝑗)∝𝑥𝑗𝑛
𝑗=1

∑ (𝑚𝑖𝑗)∝𝑛
𝑗=1

                                                               (3.38) 

mij =
1

∑ �
��xj − vi��2

��xj − vk��2
�
1/(α−1)

c
k=1

                                        (3.39) 
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3.4 WAVELET MULTI-RESOLUTION ANALYSIS 

3.4.1 Introduction 

Wavelet analysis is a signal processing technique which is able to determine the 

time-frequency-transformation characteristics of a signal. Before wavelet, the Fourier 

transform was the most widely used signal processing technique. Although Fourier 

transform is very suitable for stationary signal processing, it is not able to determine 

the time information of different events in a signal. In contrast to the Fourier 

transform, wavelet analysis can examine the signal simultaneously in both time and 

frequency domain by adjusting the window lengths automatically. This ability makes 

wavelet a very powerful tool for multi-resolution analysis (MRA) of complex non-

stationary signals. 

The concept of wavelet analysis was first proposed by Morlet et al. (1982). Later in 

1980s, wavelet theory was improved to the fundamental level of wavelet application 

today. Mallat (1985) and Meyer (1987) discovered the multi-resolution theory of 

wavelet. Daubechies (1988) constructed a set of wavelet functions based on the 

Mallat’s theory, which can be considered the most applicable wavelet function. The 

application of wavelet analysis in different fields of study commenced from early 

1990s. In the last decade the number of publications in wavelet application in science 

and engineering has grown rapidly. Wavelet analysis has been utilized in many fields 

of engineering including water engineering. 

Considering hydrological series as quasi-periodic signals contaminated by various 

noises, one of the recent developments in hydrological forecasting with data driven 

approach, is based on pre-processing the inputs with wavelet analysis. River flow 

time series, in particular, are complex and contain a wide range of frequency 

components. The multi-resolution analysis of wavelet transform can be utilised to 

decompose non-stationary signals of time series into their major sub-components. 

Then in the second stage, the decomposed signals, at different resolution levels, are 

taken as CI models inputs.  

Application of wavelet-CI models in different field of hydrological forecasting have 

been recently investigated in a number of studies. Kim and Valdes (2003) applied 
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dyadic wavelet transforms in combination with neural networks to forecast droughts 

in the Conchos River Basin in Mexico, and showed that the hybrid model 

significantly improved the ability of neural networks to forecast regional drought. 

Wang and Ding (2003) also applied wavelet neural networks to predict shallow 

groundwater levels in Beijing and daily discharge of the Yangtze River in China, and 

concluded that the model could increase the lead time extension and accuracy of 

prediction. Partal and Kisi (2007) used a wavelet-neuro-fuzzy model to forecast the 

daily precipitation of three stations in Turkey. Kisi and Shiri (2012) developed 

wavelet and neuro-fuzzy model for water table depth fluctuations prediction. They 

found decomposing the inputs with wavelet significantly improve model efficiency 

provided that some of the wavelet components (the detail coefficients) are excluded 

from inputs and only approximation components are used.  

The application of hybrid neural network models in river flow forecasting, in 

particular, has been also studied in the recent years. Cannas et al. (2006) applied 

hybrid wavelet neural networks for monthly runoff forecasting. They used both 

discrete and continuous wavelet for input and output preprocessing. They obtained 

better results using a hybrid model compared to a classical ANN model utilizing raw, 

noisy signals. They also concluded that preprocessing data with discrete wavelet lead 

to a better prediction compared to continuous wavelet. Kisi (2009) used neural 

networks wavelet model for forecasting intermittent river flow and the test results 

indicated that the discrete wavelet transform could significantly increase the 

accuracy of the ANN model in modeling intermittent river flows. Adamowski and 

Sun (2010) developed coupled wavelet transform neural networks model for 1 day 

and 3 days flow forecasting and reported improved performance over the ANN 

models. Wei et al. (2013) developed a wavelet neural network model for monthly 

river flow forecasting. They used discrete wavelet transformation (DWT) on a single 

river flow data and produced more accurate results for 48 months ahead river flow 

forecasting compared to ANN models. 

However, the application of hybrid wavelet ANFIS approach in river flow 

forecasting, has been investigated in very limited studies. Nourani et al. (2011) 

preprocessed ANFIS rainfall-runoff models with DWT for both daily and monthly 

time scales. They concluded that combining discrete wavelet transform with ANFIS 
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model leads to promising result in runoff forecasting, especially for monthly 

forecasting. Ren et al. (2013) also developed an ANFIS model based on wavelet 

analysis for monthly runoff forecasting. Comparing the observed and predicted 

values, requirement for further improvements were noted. 

 

3.4.2 Fourier Transform 

The Fourier transform (FT) is one of the most popular signal processing tools. It is 

named after Joseph Fourier, who had the greatest contribution in developing the 

Fourier transform method (Fourier, 1808). He demonstrated that every periodic 

signal could be represented by a series of sinusoid functions. In fact, in Fourier 

transform a time-space domain signal is transferred to its finest frequency resolution 

for measuring its frequency components. Generally for the signal 𝑠(𝑡), FT pair is 

defined by the following equations: 

𝐹𝑇[𝑠(𝑡)] = 𝑆(𝑢) = � 𝑠(𝑡)𝑒−𝑗𝑢𝑡
+∞

−∞

𝑑𝑡                                             (3.40) 

𝐹𝑇−1[𝑠(𝑡)] = 𝑠(𝑡) =
1

2𝜋
� 𝑆(𝑢)𝑒𝑗𝑢𝑡
+∞

−∞

𝑑𝑢                                      (3.41) 

where 𝐹𝑇 and 𝐹𝑇−1 are Fourier transform (signal spectrum) and inverse Fourier 

transform, respectively. 

FT is a very useful tool for analysing stationary signals and converting the complex 

function into the simple frequency domain. But FT is not able to analyse the non-

stationary signals or providing the time frame of the signals (Labat, 2005). 

 

3.4.3 Short-Time Fourier Transform 

As mentioned before, the main problem of Fourier Transform is its inability to 

determine the time information of different events in a signal. Short-Time Fourier 
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Transform (STFT) is introduced to overcome this deficiency. In STFT, classical FT 

applies on a moving time window basis instead of whole signal. Narrow time 

intervals gives a good time resolution and weak frequency resolution, while wider 

time intervals provide a better frequency resolution and weak time information of the 

signal. In STFT, first a window function W(t) with finite length is chosen (centred at 

t=0). Then the signal s(t) is multiplied by this window function and then the FT of of 

the product is computed. The STFT equation can be described by the following 

equation: 

𝑆𝑇𝐹𝑇(𝜏,𝑢) = � 𝑠(𝑡)𝑊∗(𝑡 − 𝜏) 𝑒−𝑗𝑢𝑡
+∞

−∞

𝑑𝑡                                 (3.42) 

In STFT selecting the optimum window length is difficult as this cannot change 

while analysing. Moreover, STFT is still incapable to analyse non-stationary signals. 

 

3.4.4 Continuous Wavelet Transform  

Recently, wavelet analysis has become a common tool for multi-resolution analyzing 

of complex signals. The continuous wavelet transform (CWT) is first introduced by 

Morlet et al. (1982). The advantage of wavelet over FT is that it can examine the 

signal simultaneously in both time and frequency domains. Wavelet is also able to 

analyze highly non-stationary signals. In wavelet transform instead of multiplying 

the signal with a window function, signal is multiplied the wavelet functions. 

Wavelet functions are scaled (dilated or compressed) and shifted versions of the 

mother wavelet ( )ψ as follows; 

𝜓𝛼,𝛽 =
1
√𝛼

 𝜓�
𝑡 − 𝛽
𝛼 �                                                                (3.43) 

where α is the scale parameter and β is the translation parameter, α > 0 and t is 

finite. Figure 3.11 is an illustration of shifted and scaled forms of a mother wavelet. 

The mother wavelet needs to meet the following conditions: 
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(a)   ∫ 𝜓(𝑡)𝑑𝑡+∞
−∞ = 0                                                                          (3.44) 

(b)   ∫ 𝜓2(𝑡)𝑑𝑡+∞
−∞ = 1                                                                         (3.45) 

 

 

 

 

 

 

 

 

 

If  s(t) is the continuous time series, the continuous wavelet transform (CWT) of  s(t) 

is defined as; 

𝑊(𝛼,𝛽) =
1
√𝛼

 � 𝑠(𝑡)𝜓∗ �
𝑡 − 𝛽
𝛼 �𝑑𝑡                                        (3.46)

+∞

−∞

 

where 𝑊(𝛼,𝛽) are the wavelet coefficients and ‘*’ corresponds the complex 

conjugate function of 𝜓 which is the mother or original wavelet. The wavelet 

transform is a three dimensional space, including scale, time and wavelet spectrum 

([𝑊(𝛼,𝛽)]2).   

 

3.4.5 Discrete Wavelet Transform 

The CWT calculation requires a significant amount of computation time and 

resources. Considering the discrete nature of observed hydrological time series, 

discrete wavelet transformation (DWT) is preferred most hydrological forecasting. In 

(a) 
(b) 

Figure 3. 11  (a) Shifted and (b) Scaled wavelet illustration. 
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DWT, scale and translation parameters are usually based on powers of two (dyadic) 

instead of every possible scale and translation. Therefore, CWT equation can be 

written as follows: 

𝑊(𝛼,𝛽) =
1
√𝛼

 �𝑠(𝑡)𝜓∗ �
𝑡 − 𝛽
𝛼 �

𝑁−1

𝑡=1

                                            (3.47) 

where N is the length of discrete signals and 𝑊(𝛼,𝛽) is the wavelet coefficient for 

the discrete wavelet of scale 𝛼 = 2𝑚 and translation 𝛽 = 2𝑚𝑛.   

The integers m and n control the wavelet dilation and translation respectively. 

Substituting for α and β, the equation becomes: 

𝑊(𝑚, 𝑛) = 2−𝑚 2�  �𝑠(𝑡)𝜓∗(2−𝑚𝑡 − 𝑛)                      
𝑁−1

𝑡=1

         (3.48) 

 

3.4.6 Mother wavelets 

There are different types of mother wavelets. In water engineering, the most 

important characteristic of each mother wavelet is its shape. Appropriate selection of 

mother wavelet is the main concerns of hybrid wavelet modelling in hydrology. The 

best suggestion is trial and error procedure by applying different types of mother 

wavelets. Perhaps, the best selection could be based on similarity between the shape 

of river flow time series and its associated wavelet coefficients. However, this matter 

needs extensive investigation in future studies. Some of the most important mother 

wavelets are Haar, Daubechies (db), Mexican-hat, Symlets, Coiflets (Coifmann), 

Morlet, Mallat and Trous transform algorithm (Iyengar et al., 2002). Based on the 

nature of the signal and the purpose of analysis, the best mother wavelet can be 

applied.  

Daubechies wavelet (db), the most popular mother wavelet, was first introduced by 

Ingrid Daubechies (Daubechies, 1992). Daubechies family is orthogonal and 

unsymmetrical. This mother wavelet is often presented by dbN (N is the applied 

order) . Figure 3.12 presents a few samples of Daubechies families.  
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Practically the order of Duabichies wavelet is ranging from one to twenty. These 

orders represent the number of vanishing moments of the mother wavelet. However 

Daubechies order one (db1) is a distinction of other Daubichies order. It is called 

Haar mother wavelet, the first and simplest wavelet. The simple function of Haar 

wavelet is as follows; 

 

                 1                  𝑖𝑓     0 ≤ 𝑡 < 0.5                                                                             

    𝜓𝑡      - 1    𝑖𝑓     0.5 ≤ 𝑡 < 1                                              (3.49)         

0 Other values of  𝑡                                                              

 

This wavelet simplicity has the advantage of being fast and memory efficient. Figure 

3.13 illustrates the Haar mother wavelet function.  

 

 

 

 

Figure 3. 12  Daubechies family wavelet. 
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Figure 3. 13  Haar mother wavelet function. 

 

For improving the unsymmetrical characteristic of Daubechies wavelet, Symmlets 

wavelet was proposed by Daubechies. The number of vanishing moments and the 

size of Symmlet wavelet are similar to the db wavelets, but it has more symmetry. 

Another popular wavelet is the Coiflets, designed by Dubechies. This wavelet named 

after Ronald Coifman for his proposed wavelets with equal number of vanishing 

moments and scaling functions. Figure 3.14 presents the shape of five different 

mother wavelet.  

 

 

 

 

 

 

 

 

 

 

Figure 3. 14  Mexican Hat, Morlet, Coiflet1 and Symlet2 mother wavelets. 
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3.4.7 Time Series Decomposition by Wavelet  

In DWT, the original signal, passes through two complementary filters and emerges 

as one approximation and one detail components. Approximation (A) is the high-

scale, low frequency and details (D) are the low-scale, high frequency components of 

the signal. Normally approximation is the most important part of the signal that 

represents the background information of data. This decomposition process can be 

repeated to reach different resolution levels (n). Figure 3.15 shows the diagram of 

multi-resolution analysis of a signal to three levels of decomposition.  

𝑆𝑖𝑔𝑛𝑎𝑙 (𝑆) = 𝐴𝑝𝑝𝑟𝑜𝑥𝑛(𝑡) + ∑ 𝐷𝑒𝑡𝑎𝑖𝑙𝑖(𝑡)                               (3.50)𝑛
𝑖=1       

   

 

 

 

 

 

 

 

 

For more illustration, Figure 3.16 shows Daubechies order three wavelet coefficients 

of a noisy signal to four level of decomposition and Coiflet order one wavelet 

coefficients of another signal with three level of decomposition. It's clearly visible 

that the approximation presents the main pattern of the signal and details are the 

different frequencies that signal contains. By adding this wavelet coefficients the 

original signal would be reconstructed. 

Level 2 DWT coefficients 

Level 3 DWT coefficients 

𝐴2 

𝐷2 

𝐷1 

𝐴1 

High-pass  

Low-pass  

Signal  

Level 1 DWT coefficients 

High-pass  

Low-pass  

Low-pass  

𝐷3 

𝐴3 

High-pass  

Figure 3. 15  Diagram of multi-resolution analysis of signal. 
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Figure 3. 16  Two noisy signals and their (a) Daubechies3 (b) Coiflet1 wavelet coefficients. 
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3.5 SUMMARY 

In this chapter, the background theory of artificial neural networks, fuzzy modelling 

and hybrid wavelet models, with special references to their application in hydrology 

and river flow forecasting, were briefly reviewed. The structure and theory of 

selected CI methods, applied in developed models, were illustrated in more details. 

Therefore, detailed methodologies of three layered feed-forward, back propagation 

neural networks with Levenberg-Marquardt training algorithm were explained. The 

Structure of three different types of adaptive neuro-fuzzy inference system, namely, 

grid partitioning, subtractive and C-mean clustering, all based on Sugeno fuzzy, are 

given. Different type of mother wavelets and wavelet time series, including Haar, 

Daubechies (db), Mexican-hat, Symlets, Coiflets (Coifmann) and Morlet transform 

algorithm were illustrated. The continuous and discrete wavelet multi-resolution 

analysis and decomposition were also described.  



 
 

    



 
 

 

Chapter 4  

Structure of Proposed Hybrid Models 
 

 

 

 

4.1 INTRODUCTION 

As mentioned before in this study the performance of river flow forecasting is 

improved when computational intelligence models are applied in conjunction with 

wavelet as a signal processing tool. Four main hybrid models are developed in this 

study, namely, wavelet neural networks, wavelet neuro-fuzzy model with grid 

partitioning, wavelet neuro-fuzzy model with subtractive clustering and wavelet 

neuro-fuzzy model with C-mean clustering. 

 

4.2 WAVELET NEURAL NETWORKS  

The proposed wavelet neural network model (WNN) is an integrated model with the 

input pre-processed by the discrete wavelet transform (DWT). In other words, this 

hybrid model incorporates two main sub-models of neural networks and wavelet 

decomposition. The output of the wavelet sub-model is imposed as input to the 

artificial neural networks sub-model. The model output is un-decomposed, N step 

ahead river flow time series. Figure 4.1 illustrates the structure of hybrid wavelet 

neural networks model. 
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4.2.1 Neural networks sub-model 

The neural networks developed in this study is a three layered feed-forward 

backpropagation neural networks (BPNN), which is most commonly used in water 

resources engineering. To improve the network modelling performance and reduce 

the chance of training process trapped in a local minima, data normalization is 

applied in ANN input and output by using equation below: 

𝑥𝑛 = 0.001 + 0.99 ∗
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
                                       (4.1) 

where 𝑥𝑛 is the normalized value of 𝑥𝑖, 𝑥𝑚𝑎𝑥   and 𝑥𝑚𝑖𝑛 are measured maximum and 

minimum values of the time series. The small number of 0.001 is also added to the 

time series to achieve feasible modelling in case of having zero values in the time 

series, especially for seasonal river flow modelling. 

To avoid local minima problems, input data are also divided into two sets of training 

and validation. The ratio of training and validation data set can be defined as a model 

input. To verify the accuracy of model the validation set in this model is a 

completely independent data set, which has no role in training the networks, so by 

checking the performance criteria for validation data set, the reliability of the model 

can be confirmed. 

𝐼𝑛𝑝𝑢𝑡 ANN 
𝐷1 

𝐴𝑛  

𝐷𝑛  

𝐷2 
𝑅𝑡+𝑁 

𝑅𝑜𝑏𝑠 

Adjust 

weights 

Backpropagation 

Training 

Modelled real 

 
Error=∥ 𝑅𝑡+𝑁 − 𝑅𝑜𝑏𝑠 ∥ 

High-pass  

Low-pass  

  DWT 

 

 

 

 
Figure 4. 1  Structure of the proposed hybrid WNN model for N step ahead forecasting. 
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To achieve optimal trainings of the ANNs, different training algorithms, namely 

Levenberg-Marquardt, gradient descent, gradient descent with the adaptive learning 

rule and Bayesian regularization are investigated. The transfer functions for the 

hidden and output layers are Tan-sigmoid and linear functions, respectively. As 

discussed in Chapter three, optimum number of the hidden neurons, need to be 

determined for different case studies. Having a greater number of hidden neurons, 

gives the network the required flexibility to solve more complex problems, while 

having too many neurons may cause over fitting (Tetko et al., 1995). In this study the 

number of hidden neurons is determined by trial and error. Considering the volume 

of input data, the minimum and maximum number of hidden neurons are defined for 

each study. The number of hidden neurons is increased from minimum to maximum 

number with a step size of one in each trial. The stopping criteria of each trial is set 

as the number of epochs. The flow chart of ANN modeling is given in the Figure 4.2. 
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Figure 4. 2  Feed-forward neural network sub-model flow chart. 
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4.2.2 Wavelet sub-model  

The wavelet multi-resolution analysis is implemented as a sub-model. The original 

time series are decomposed to their low and high frequency components 

(approximation and details). This sub-model has the ability to apply different mother 

wavelets and decompose the signal in different levels.  

There is no direct way of determining the optimum mother wavelet or level of 

decomposition. The most important characteristic of each mother wavelet is its shape 

as wavelet coefficients are scaled and shifted version of mother wavelets. In this 

study, the appropriate type of mother wavelet is selected by comparing different 

hybrid models performance. Different mother wavelets of Haar, Daubechies, Symlet 

and Coiflet, with different shapes, are employed in hybrid modelling. In this study 

the optimum level of decomposition is determined by trial and error. However, some 

studies suggest 𝑖𝑛𝑡 [log (𝑛)] level of decomposition, where 𝑛 is the length of time 

series (e. g. Wang and Ding, 2003). Therefore, for different river flow data, this 

equation is considered as the average optimum level of decomposition. 

After decomposing the input signals to desired wavelet coefficients, these sub-series 

will be fed into the subsequent sub-model (ANN). Each of this sub-series has a 

different role in the time series and it is important to keep all of them as the neural 

networks’ inputs. Figure 4.3 is the flowchart of hybrid wavelet neural networks 

model. 
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Figure 4. 3  hybrid wavelet neural networks model flow chart. 
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4.3 WAVELET NEURO-FUZZY WITH GRID PARTITIONING 

The proposed wavelet neuro-fuzzy (WNFG) is an integrated one with the input pre-

processed by the discrete wavelet transform (DWT). Similar to WNN this hybrid 

model has two main sub-models. The first sub-model is wavelet multi-resolution 

analysis and the second sub-model is adaptive neruo-fuzzy inference system. Figure 

4.4 illustrates the structure of hybrid wavelet neuro-fuzzy model. The model output 

is the un-decomposed, N step ahead river flow time series 

 

 

 

 

 

 

4.3.1 ANFIS sub-model with grid partitioning 

The computational intelligence sub-model in this hybrid approach is ANFIS model 

with grid partitioning. As discussed in previous chapter, ANFIS is a feed-forward 

network that finds corresponding fuzzy if-then rules, for achieving optimum model. 

The structure of ANFIS is equivalent to the TSK first-order fuzzy model. In this 

hybrid model, Grid partitioning approach is applied for initializing the design of a 

fuzzy inference system. This sub-model is able to apply different types of 

membership functions such as generalized bell shaped, Gaussian and triangular. The 

optimum number of fuzzy rules is determined by trial and error. The number of fuzzy 

rules is increased from two to the maximum defined number of fuzzy rules. 

At first step data normalization is applied to the input data as an essential part of the 

ANFIS training. The reliability of the model is established by evaluating 

performance criteria in the validation data set. The validation set in this model is 

completely independent data set and plays no role in the training process. Checking 

𝐷1 

𝐴𝑛  

𝐷𝑛  

𝐷2 

TSK 

ANFIS 
  𝑅𝑡+𝑁 
 

High-pass  

Low-pass 

  

DWT 
 

 

 

 

𝐼𝑛𝑝𝑢𝑡 
 Norm 

Figure 4. 4  Structure of Wavelet Neuro-Fuzzy hybrid model for N step ahead forecasting. 
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the performance criteria in validation data set, the reliability of the model could be 

confirmed. The stopping criteria of each trial is set as the number of epochs. Figure 

4.5 shows the flow chart of this sub-series. 

 

 

Figure 4. 5  Adaptive neuro-fuzzy with grid partitioning sub-model flow chart. 
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4.3.2 Wavelet sub-model  

The wavelet sub-model here is similar to WNN model. In wavelet sub-model the 

original time series are decomposed to their low and high frequency components 

(approximation and details). This model has the ability to apply different mother 

wavelet and is able to decompose the signal in different levels. The maximum 

feasible level of decomposition in a wavelet neuro-fuzzy model is however less than 

that in WNN model due to the fuzzy system constraints on the volume of input data. 

After decomposing the river flow signals to associated wavelet coefficients, these 

sub-series will be imposed to the ANFIS model. Figure 4.6 shows the flow chart of 

hybrid wavelet neuro-fuzzy model with grid partitioning. 
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Figure 4. 6  Flow chart of hybrid wavelet neuro-fuzzy model with grid partitioning. 

 

4.4 WAVELET NEURO-FUZZY WITH CLUSTERING 

Two other hybrid WNF models are also developed with similar structures to the 

discussed hybrid WNFG model. In these models, subtractive clustering and C-mean 

clustering approach are applied for initializing the design of a fuzzy inference system 

in WNFS and WNFC hybrid models respectively.  
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4.4.1 Hybrid wavelet neuro-fuzzy model with subtractive clustering (WNFS) 

The ANFIS sub-model in this hybrid model applies subtractive clustering method for 

initializing the FIS. Similar to WFNG, data normalization is the first and essential 

step of training the model, which improves the model performance. In this sub-model 

subtractive clustering method is used to generate a TSK fuzzy inference system. The 

subcluster function first determines the number of rules and antecedent membership 

functions and then uses linear least squares estimation to determine each rule’s 

consequent equation. Each input and output has as many membership functions as 

the number of clusters that has been identified. Neighborhood radius (𝑟𝑎), which 

specifies a cluster centre’s range of influence in each input data dimension, are 

considered equal for all dimensions and determined by trial and error. In this sub-

model, the neighborhood radius is increased from 0.1 to maximum selected amount 

(less than 1) with a defined step size (e.g. 0.05) in each trial to reach the best 

performance model. Figure 4.7 illustrates the flow chart of this sub-series. 
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Figure 4. 7  Flow chart of hybrid wavelet neuro-fuzzy model with subtractive clustering. 

 

4.4.2 Hybrid wavelet neuro-fuzzy model with fuzzy C-mean clustering (WNFC)  

This model uses fuzzy C-mean clustering (FCM) for initialling Sugeno fuzzy 

inference system. The input of this hybrid model is also normalized wavelet 

coefficients. In FCM, each data belongs to more than one cluster with a different 
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degree of membership. Model extracts a set of rules by FCM algorithm. FCM 

determines the number of rules and membership functions based on the number of 

clusters. In the developed model, optimum number of clusters is determined by trial 

and error by increasing this number from selected minimum (e.g. Two) to the 

maximum allocated with a step size of one in each trial. The model with highest 

performance, offers the optimum number of clusters for the modeled river flow time 

series. The flow chart of this hybrid model is given in Figure 4.8. 

 

Figure 4. 8  Flow chart of hybrid wavelet neuro-fuzzy model with FCM clustering. 
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4.5 PERFORMANCE CRITERIA 

The evaluation of model performance is based on the difference between simulated 

and observed values. There are a number of performance criteria such as the bias (B), 

percent bias (PB), mean absolute error (MAE), relative mean absolute error 

(RMAE), mean square error (MSE), root mean square error (RMSE), variance (Var), 

RMSE-Standard deviation ratio (RSR), Nash-Sutcliffe coefficient of efficiency 

(NSE), agreement index (d), coefficient of correlation (R) and coefficient of 

determination (𝑅2).   

The bias of a model is the simplest performance criterion which measures the 

difference between mean observed and forecasted river flow as followes; 

𝐵 =   𝑄 ���
𝑜𝑏𝑠 −  𝑄 � 𝑠𝑖𝑚                                                                 (4.2) 

where 𝑄 �𝑜𝑏𝑠 and  𝑄 �𝑠𝑖𝑚  are the mean of the observed and forecasted river flow time 

series respectively. 

Percent bias indicates how much forecasted river flow tends to be higher or lower 

than their associated observed river flow. The positive and negative value of PB 

detects model underestimation and overestimation, respectively. High-magnitude 

values indicates model inefficiency.  

𝑃𝐵 =
�∑ �𝑄𝑜𝑏𝑠(𝑖)− 𝑄𝑠𝑖𝑚(𝑖)� ∗ 100𝑁

𝑖=1 �
�∑ �𝑄𝑜𝑏𝑠(𝑖)�𝑁

𝑖=1 �
=

𝐵
 𝑄 ���

𝑜𝑏𝑠
∗ 100                  (4.3) 

where 𝑄𝑠𝑖𝑚  is simulated river flow, 𝑄𝑜𝑏𝑠 is observed river flow and N is the length of 

time series. 

Mean absolute error, relative mean absolute error, mean square error and root mean 

square error are other common evaluation criteria which also indicate the error in 

forecasting. The value of these criteria varies from zero for a perfect simulation to 

infinity. The magnitude of this value depends on the value of the average and 

standard deviation of the observed river flow time series. Therefore, they are not 

suitable for comparing the efficiency of the model in different case studies. In 
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general MAE and RMAE are less sensitive to peak flows, but could have better 

representation of model efficiency when there are a very few errors with large gaps 

between observed and modelled values. These parameters are defined as follows;  

𝑀𝐴𝐸 =
1
𝑁�

(|𝑄𝑠𝑖𝑚(𝑖)−𝑄𝑜𝑏𝑠(𝑖)|)                                                    (4.4)
𝑁

𝑖=1

 

𝑅𝑀𝐴𝐸 =
𝑀𝐴𝐸
 𝑄 ���

𝑜𝑏𝑠
                                                                                         (4.5) 

𝑀𝑆𝐸 =
1
𝑁�

�𝑄𝑠𝑖𝑚(𝑖)− 𝑄𝑜𝑏𝑠(𝑖)�
2
                                                     (4.6)

𝑁

𝑖=1

 

𝑅𝑀𝑆𝐸 = �1
𝑁
∑ �𝑄𝑠𝑖𝑚(𝑖)− 𝑄𝑜𝑏𝑠(𝑖)�

2𝑁
𝑖=1 = �(𝑀𝑆𝐸)                      (4.7)                                    

RMSE-Standard deviation ratio (RSR) is another error index. RSR is the 

standardized version of RMSE when it divided by observed time series standard 

deviation. 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸
𝑆𝑇𝐷𝑉𝑜𝑏𝑠

=  
�∑ �𝑄𝑠𝑖𝑚(𝑖)− 𝑄𝑜𝑏𝑠(𝑖)�

2𝑁
𝑖=1

�∑ �𝑄 �𝑜𝑏𝑠 − 𝑄𝑜𝑏𝑠(𝑖)�
2

𝑁
𝑖=1

                              (4.8) 

Variance also shows the variability of forecast values and measures the random error.  

𝑉𝑎𝑟 = 𝑀𝑆𝐸 − 𝐵2                                                                                     (4.9) 

The Nash-Sutcliffe coefficient of efficiency is one of the most popular criteria for 

evaluating the hydrological modelling. The value of NSE varies from  minus infinity 

to one, which the model efficiency of one corresponds a perfect forecasting, NSE of 

zero means that the accuracy of forecasting is equal to the average observed data and 

the negative values of NSE indicate that using the average of the observed time 

series is more accurate than model forecasts. In general, the closer the NSE is to one, 
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more accurate the model becomes. This parameter is also very useful in depicting the 

scatter and residual plot between observed and modelled river flow time series (Han, 

2011). 

𝑁𝑆𝐸 = 1 −
∑ �𝑄𝑠𝑖𝑚(𝑖)−𝑄𝑜𝑏𝑠(𝑖)�

2𝑁
𝑖=1

∑ �𝑄𝑜𝑏𝑠(𝑖)−𝑄 �𝑜𝑏𝑠�
2𝑁

𝑖=1

= 1−  
𝑀𝑆𝐸

𝑆𝑇𝐷𝑉𝑜𝑏𝑠
                   (4.10) 

Agreement index is the ratio of MSE and potential error (PE) which is defined by the 

following equation. The denominator of this equation is dependent on the forecasted 

and observed time series rang and is applied to standardized the MSE (Ji and Galoo, 

2006). Agreement index varies from 0 for the model without correlation and 1 for the 

perfect model. However, this coefficient is not reliable and may have a near 1 value 

even for the poor model correlation. 

𝑑 = 1 −  
∑ �𝑄𝑠𝑖𝑚(𝑖)−𝑄𝑜𝑏𝑠(𝑖)�

2𝑁
𝑖=1

∑ ��𝑄𝑠𝑖𝑚(𝑖) −𝑄 �𝑠𝑖𝑚� + �𝑄𝑜𝑏𝑠(𝑖)−𝑄 � 𝑜𝑏𝑠��
2𝑁

𝑖=1

                    (4.11) 

Correlation coefficient or Pearson correlation measures the strength of the linear 

relationship between forecasted and observed time series. R varies from -1 to 1. Zero 

value for R indicates that there is no linear relationship between modelled and 

observed time series. Coefficient of determination is the squared value of the Pearson 

correlation. Consequently, the range of coefficient of determination lies between 0 

and 1. The efficiency of the model enhances as the value of 𝑅2 increases and the 

optimal modelling occurs when 𝑅2 reaches 1. In general a model with the 𝑅2 greater 

than 0.5 is considered as an acceptable match to the real system (Moriasi et al., 

2007). In the case of linear regression this coefficient is equivalent to NSE 

coefficient (Han, 2011).  

𝑅2 =

⎝

⎛ ∑ (N
i=1 Qobs(𝑖)− 𝑄 �𝑜𝑏𝑠)( 𝑄𝑠𝑖𝑚(𝑖)−𝑄 � 𝑠𝑖𝑚)

�∑ (𝑁
𝑖=1 𝑄𝑜𝑏𝑠(𝑖)− 𝑄 �𝑜𝑏𝑠)2�∑ (𝑁

𝑖=1 𝑄𝑠𝑖𝑚(𝑖)−𝑄 �𝑠𝑖𝑚)2⎠

⎞

2

           (4.12) 
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Selecting the ideal performance criteria depends on the application. Among all these 

performance criteria, the Nash-Sutcliffe coefficient of efficiency and coefficient of 

determination are very sensitive to the peak flows (Krause et al., 2005). Therefor, in 

this study root mean square error (RMSE) and Nash-Sutcliffe coefficient of 

efficiency (NSE) are considered as the two main performance criteria in developed 

models. Both correlations and errors, between observed and modelled variable, are 

clearly measurable using these performance criteria.  

 

4.6 SUMMARY 

In this chapter, the structures of developed CI models and different steps of training 

process were explained. The structure of ANN and ANFIS models along with 

proposed hybrid wavelet models were descried. Different aspects of modelling such 

as data normalization, data partitioning and stopping criteria were defined. In ANN-

based models, the method of determining optimum number of hidden neurons, 

selecting training algorithm and transfer function were discussed. In fuzzy-based 

models, the procedure of determining type and optimum number of membership 

functions, number of fuzzy rules, optimum size of neighbourhood radius and number 

of clusters were clarified. Selecting the mother wavelet and optimum number of 

decomposition levels, as the most important aspect of data pre-processing in hybrid 

wavelet models, were also discussed. Various types of performance criteria were 

addressed and compared. Root mean square error and Nash-Sutcliffe coefficient of 

efficiency are selected as two most efficient criteria to achieve research objectives. 

Schematics of different models’ flow chart were also provided. 

 



 
 

 



 

 
 

 

Chapter 5 

Daily River Flow Forecasting Using 
Multivariate Inputs 
 

 

 

 

Extended from: 

Badrzadeh, H. and Sarukkalige, R., River flow forecasting using an integrated approach 
of wavelet analysis and ANN, Hydrology and water resources symposium, Sydney, 2012.  
 
 Badrzadeh, H. and Sarukkalige, R., Combined wavelet-neural network model for 
intermittent stream flow prediction, ASEA-SEC Conference, Perth, 2012. 

 

5.1 INTRODUCTION 

In this chapter the application of developed models for daily river flow forecasting is 

investigated. Back propagation feed-forward (BPFF) neural networks, ANFIS with 

FCM clustering, hybrid WNN and WNFC models are applied. Also the impact of 

having multivariate input on model performance is studied by adding the rainfall 

time series into the input as well as river flow time series (rainfall-runoff modelling). 

For this reason two different case studies are chosen to achieve a more reliable 

conclusion for different rivers with different flow regime and rainfall pattern. 
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5.2 CASE STUDIES  

The data of two different rivers, Harvey and Avon River, in the South West of 

Western Australia (SWWA) are used for this study. SWWA is recognized as one of 

the top 25 biodiversity hotspots of the world and has the highest concentration of rare 

and endangered species on the Australian continent. Climate change predictions for 

the SWWA include decreased rainfall and runoff, increased temperatures, 

evaporation, seasonal variation and storm intensity which all will have a significant 

effect on water resources in SWWA (Wilke, 2006). In the selected study areas, like 

many other basins in Australia, the rural areas are facing surface water shortage that 

may cause reduction or dispersal of livestock, death of livestock through bogging in 

dam sediments at low water levels, increasing costs for farm businesses and the 

community and also reduction in crop area or crop failure particularly those irrigated 

from locally-sourced water. Furthermore, approximately 10% of agricultural land of 

Avon River Basin are endanger of moderate to high risk of flooding (Galloway, 

2004).   

The Harvey River is about 110 kilometers south of Perth city. The Harvey Basin is 

approximately 2000 km2 and includes two irrigation districts. The area has a warm 

temperate Mediterranean climate. For this study data from the Dingo road station on 

Harvey River is used. Mean daily river flow and mean daily rainfall for 35 years, 

with an observation period from 1976 to 2011, are collected from Department of 

Water and the Bureau of Meteorology. For this reason first 25 years of data (9131 

days, around 70% of the whole data set) are used for training and the rest 10 years 

(3742 days, around 30% of the whole data set) are used for validating the models.  

The second river is Avon River, which is the largest inflow to Swan River and has 

the largest area of all Swan and Canning River subcatchments. Avon River length is 

280 kilometers. The full Catchment area is approximately 120,000 km2. Average of 

annual rainfall in Avon River is 850 mm per year and average annual flow of Avon 

River is 199 GL which is around 79% of total inflow to the Swan River. For this 

study data from the Northam weir station on Avon River upstream, is used. Mean 

daily river flow and mean daily rainfall for 32 years, with an observation period 

between 1978 and 2010, are collected from the Department of Water and Bureau of 
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Meteorology. Similarly, the first 70% of the whole data set is used for training and 

the rest is used for validation. In Table 5.1, the daily statistics of the stream flow and 

rainfall of the selected stations are presented. Historical river flow and rainfall time 

series of these two stations are also shown in Figure 5.1 to Figure 5.4. It can be seen 

that extreme values are placed in the training set rather than the verification set to 

improve model accuracy for extreme flow forecasting as trained model performee 

better within the training data range (Maier and Dandy, 2000). 

Both selected rivers in this study are highly seasonal. The high seasonality trend of 

Harvey and Avon River is also depicted in Figure 5.5 which presents river flow 

hydrographs in a few selected years. It is evident that these rivers normally cease 

flowing during the summer months of the year. 

 

Table 5. 1  Daily statistical parameters of stream flow and rainfall data sets of the Dingo road 

and Northam weir stations. 

 

 

 

 

 

 

 

 

Station Data Set 
River flow (1000 m³/day) Rainfall (mm/day) 

Imean Imin Imax Istdv Rmean Rmin Rmax Rstdv 

D
in

go
 R

oa
d 

 

Training 88.09 0.01 1561 110.7 3.10 0 131.80 7.97 

Validation 55.57 0 703.8 78.76 2.88 0 65.32 7.53 

Total 78.8 0 1561 103.6 3.04 0 131.80 7.85 

N
or

th
am

 
W

ei
r  

Training 419.1 0 28957.2 1278.1 1.05 0 91.00 3.73 

Validation 159.5 0 9366.5 434.1 0.94 0 59.00 3.23 

Total 340.8 0 28957.2 1100.7 1.01 0 91.00 3.67 
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Figure 5. 1  Map of Northam weir and Dingo road station location in Western Australia (Bureau 

of meteorology, 2013) 
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Figure 5. 2  Daily river flow time series at the Dingo road station in the Harvey River, Western Australia (1976-2011). 

 

 

Figure 5. 3  Daily rainfall time series near the Dingo road station in the Harvey River, Western Australia (1976-2011). 
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Figure 5. 4  Daily river flow time series at the Northam weir station in the Avon River, Western Australia (1978-2010). 

 

 

Figure 5. 5  Daily rainfall time series near the Northam weir station in the Avon River, Western Australia (1978-2010). 
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Figure 5. 6  (a) Harvy and (b) Avon River mean daily river flow hydrographs in selected years. 

 

 

5.3 APPLICATION OF ANN 

 
The three layer feed-forward back propagation neural networks are developed for 

forecasting. The structure of developed neural networks is described in Chapter four. 

The number of hidden neurons is determined by trial and error. Different training 

algorithm of gradient descent with the adaptive learning, Bayesian regularization and 

LM algorithm is applied for ANN training. Two different data sets are applied as 

ANN’s input for each case study. The first model trained by using just river flow 

historical time series as its input. In the second model both river flow and rainfall 

time series are applied as the input. The structure and the performance of the models 

are presented in Table 5.2. Altering the training algorithm, as discussed in chapter 

three, forecasting accuracy remained nearly unchanged, while LM algorithm was the 

fastest among all.  
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Table 5. 2  ANN models structure and performance. 

 

The results indicate that having both rainfall and runoff as model input considerably 

improves the performance of the models for Dingo road station data set. The Nash-

Sutcliffe coefficient of efficiency is improved from 0.89 to 0.96 and the root mean 

square error modified from 0.46 to 0.18 m³/s. However, having multivariate input did 

not have a considerable impact on Northam weir station forecasting model. Figure 

5.6 and Figure 5.7 show the scatter plot between the observed and modeled values of 

daily river flow with these two ANN models. 

 

 

 

 

 

Station Model Input Data Model 
Structure 

Calibration Validation 

𝑁𝑆𝐸 RSME(m³/s) 𝑁𝑆𝐸 RSME(m³/s) 

Dingo 
Road 

ANN1 Flow 1-14-1 0.899 0.409 0.893 0.464 

ANN2 Rain&Flow 2-24-1 0.965 0.233 0.951 0.182 

Northam 
Weir 

ANN1 Flow 1-13-1 0.849 5.73 0.845 1.98 

ANN2 Rain&Flow 2-16-1 0.851 5.70 0.825 2.11 
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Figure 5. 7  Scatter plots between Dingo road station observed and modelled daily river flow: (a) 

ANN single flow input; (b) ANN with multivariate input. 

 

 

Figure 5. 8  Scatter plots between Northam weir station observed and modelled daily river flow: 

(a) ANN with single input; (b) ANN with multivariate input. 

 

 

5.4 APPLICATION OF ANFIS 

Adaptive neuro-fuzzy inference system model was developed using the FCM 

clustering method to generate a TSK type fuzzy inference system. The structure of 

developed neuro-fuzzy model is described in Chapter four. Two different input data 

sets were used for daily river flow forecasting. Table 5.3 shows different models’ 

performance.  
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Table 5. 3  ANFIS models’ performance. 

 

The results indicate that using multivariate input leads to better performance 

compared to those with using single river flow time series for both case studies. In 

Dingo Road station, in particular, the Nash-Sutcliffe coefficient of efficiency is 8% 

improved and the root mean square error modified from 0.44 to 0.26 m³/s in 

validation set. 

 

5.5 IMPROVING THE EFFICIENCY WITH HYBRID MODELS 

As discussed in methodology, both ANN and ANFIS models are combined with 

wavelet multi-resolution analysis for the purpose of improving the forecasting 

accuracy. Hybrid wavelet neural network (WNN) and hybrid wavelet neuro-fuzzy 

model with C-mean clustering (WNFC) are developed. The structure of these hybrid 

models previously explained in chapter four. Two different mother wavelets are 

applied for each case study. Haar and db5 mother wavelets are applied on Harvey 

River and Coiflet1 and db4 mother wavelets are applied on Avon River flow time 

series. Due to fuzzy inference system input size restrictions, only wavelet 

coefficients of one level of decomposition lead to feasible training for the Avon 

River. Table 5.4 and Table 5.5 present the structure and performances of developed 

models for Harvey and Avon Rivers respectively. The best fitted hybrid WNN and 

WNFC models for each study area, are also highlighted in these tables. 

 

Station Model Input Data 
Calibration Validation 

𝑁𝑆𝐸 RSME(m³/s) 𝑁𝑆𝐸 RSME(m³/s) 

Dingo Road 
ANFIS1 Flow 0.916 0.265 0.892 0.438 

ANFIS2 Rain&Flow 0.969 0.162 0.963 0.256 

Northam Weir 
ANFIS1 Flow 0.829 5.73 0.837 2.257 

ANFIS2 Rain&Flow 0.842 4.173 0.849 2.201 
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Table 5. 4  Hybrid models’ structure and performance for Dingo road station daily river flow 

forecast. 

 

 

 

 

 

 

 

Model Wavelet Level1  Input 
data

2
 

Model 
structure 

Calibration  Validation 

𝑁𝑆𝐸 RSME(m³/s) 𝑁𝑆𝐸 RSME(m³/s) 

WNN1 db5 2 I 3-22-1 0.954 0.276 0.943 0.214 

WNN2 db5 3 I 4-24-1 0.961 0.256 0.943 0.214 

WNN3 db5 4 I 5-20-1 0.960 0.257 0.938 0.222 

WNN4 haar 2 I 3-25-1 0.949 0.290 0.946 0.207 

WNN5 haar 3 I 4-19-1 0.959 0.263 0.948 0.205 

WNN6 haar 4 I 5-23-1 0.961 0.254 0.936 0.226 

WNN7 db5 2 I&R 6-19-1 0.988 0.139 0.983 0.117 

WNN8 db5 3 I&R 8-23-1 0.992 0.117 0.984 0.113 

WNN9 db5 4 I&R 10-22-1 0.993 0.107 0.982 0.121 

WNN10 haar 2 I&R 6-20-1 0.990 0.128 0.982 0.119 

WNN11 haar 3 I&R 8-25-1 0.993 0.110 0.982 0.121 

WNN12 haar 4 I&R 10-24-1 0.994 0.106 0.983 0.116 

WFNC1 db5 2 I - 0.938 0.257 0.927 0.335 

WFNC2 db5 3 I - 0.943 0.156 0.928 0.550 

WFNC3 db5 4 I - 0.930 0.352 0.935 0.223 

WFNC4 haar 2 I - 0.978 0.129 0.957 0.188 

WFNC5 haar 3 I - 0.955 0.213 0.948 0.357 

WFNC6 haar 4 I - 0.957 0.229 0.944 0.368 
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Table 5. 5  Hybrid models’ structure and performance for Northam weir station daily river flow 

forecast. 

 
 

These tables reveal that in both case studies, the performance criteria of hybrid 

models are much better than these of single ANN and ANFIS models. Figure 5.8 

shows the scatter plot between the observed and modelled values of Dingo road daily 

river flow with four different models and illustrates how hybrid models outperform 

single ANN and ANFIS models. 

 

 

Model Wavelet level1  Input 
data

2
 Model structure 

Calibration  Validation 

𝑁𝑆𝐸 RSME(m³/s) 𝑁𝑆𝐸 RSME(m³/s) 

WNN1 coif1 2 I 3-16-1 0.94 3.61 0.922 1.41 

WNN2 coif1 3 I 4-17-1 0.935 3.20 0.921 1.41 

WNN3 coif1 4 I 5-18-1 0.963 2.82 0.921 1.41 

WNN4 db4 2 I 3-15-1 0.936 3.73 0.879 1.75 

WNN5 db4 3 I 4-14-1 0.957 3.06 0.894 1.63 

WNN6 db4 4 I 5-19-1 0.962 2.87 0.915 1.46 

WNN7 coif1 2 I&R 6-17-1 0.937 3.72 0.917 1.45 

WNN8 coif1 3 I&R 8-20-1 0.957 3.06 0.894 1.63 

WNN9 coif1 4 I&R 10-17-1 0.964 2.79 0.926 1.69 

WNN10 db4 2 I&R 6-20-1 0.947 3.40 0.886 1.70 

WNN11 db4 3 I&R 8-16-1 0.957 3.07 0.896 1.62 

WNN12 db4 4 I&R 10-19-1 0.954 3.17 0.906 1.55 

WFNC1 db4 1 I - 0.937 3.43 0.893 1.72 

WFNC2 coif1 1 I - 0.929 3.74 0.891 1.85 
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Figure 5. 9  Scatter plots between Dingo road station observed and modelled daily river flow 

with: (a) ANN1; (b) Hybrid WNN12; (c) ANFIS1; (d) Hybrid WNFC4. 

 

It is also observed that although there is not considerable differences between 

performance of different wavelet models, for the first case study the model with Haar 

wavelet transform, four levels of decomposition and using both rainfall and river 

flow as ANN inputs, shows the lowest Root mean square error (0.106 to 0.116) and 

highest Nash-Sutcliffe coefficient of efficiency (0.994 to 0.983) during the 

calibration and validation period. Therefore, this hybrid wavelet neural networks 

model (bold in tables) is selected as the best fit model for the Dingo road station 

forecasting. Figure 5.9 presents the hydrograph of observed and modelled river flow 

with WNN12. Detailed hydrograph of the last 4 years of validation set from year 

2007 to 2011 is also presented in Figure 5.10.  
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The best fit model for the Northam weir station is the WNN9 with Coiflet1 wavelet 

transform and 4 levels of decomposition when both rainfall and stream flow are used 

as ANN inputs. This model shows the lowest RMSE (1.69 to 2.79) and highest Nash-

Sutcliffe coefficient of efficiency (0.964 to 0.926) during the calibration and 

validation stages. Comparing the results also demonstrate that unlike the first case 

study, adding rainfall time series had no considerable impact on model performance 

in Northan weir station. Figure 5.11 shows the observed and modelled river flow 

time series with WNN9. Figure 5.12 also presents the hydrograph of the last 4 years 

of validation set from year 2006 to 2010, for detailed comparison. 
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Figure 5. 10  Comparison of the Dingo road observed and predicted daily river flow with WNN12. 

 
 

 
Figure 5. 11  Comparison of the Dingo road observed and predicted daily river flow with WNN12 in the validation set (2007-2011). 
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Figure 5. 12  Comparison of the Northam weir observed and predicted daily river flow with WNN9. 

 
 

 
Figure 5. 13  Comparison of the Northam weir observed and predicted daily river flow with WNN9 in the validation set (2006-2010). 
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5.6 CONCLUSION 

In this study the application of different data-driven models for daily river flow 

forecasting of two rivers in Wester Australia was investigated. Having high quality, 

long historical data, as the most important element of data-driven modelling (Anctil, 

2004), very satisfactory result was achieved. The results indicate that both ANN and 

ANFIS are promising approaches for daily river flow forecasting. Considering highly 

nonlinear and non-stationary characteristics of river flow time series, the accuracy of 

forecasting further improved to a very satisfactory level by applying DWT on input 

data time series.  

Altering ANN training algorithm didn’t have a notable impact on model accuracy 

while LM algorithm led to faster convergence.  

ANFIS is restricted to the input size, therefore DWT with high level of 

decomposition could not be applied on hybrid WNFC model for some case studies. 

Comparing hybrid models with different wavelet transform and level of 

decomposition also indicates that, altering the mother wavelet or decomposition level 

could only slightly improve the forecasting reliability. The most efficient wavelet 

transform and the optimum level of decomposition depends on the river flow time 

series characteristics and length and should be determined for each case study. 

Adding another hydrological parameter to the model input could improve the model 

efficiency. This matter closely observed in this study by adding rainfall time series as 

another model input for two different case studies. However, the performance of the 

forecasting model for Avon River with higher river flow rate and very low rate of 

precipitation, didn’t improve considerably. It can be concluded that it is important to 

find and add the effective parameter(s) to the model. The parameters could be 

upstream rainfall, temperature, evapotranspiration or any other effective hydrological 

parameter. 

 

  



 

 
 

  



 

 
 

 

Chapter 6 

Short Term and Long Term River Flow 
Forecasting  
 

 

Extended from: 

Badrzadeh, H., Sarukkalige, R. and Jayawardean, A. W., 2013. Improving ANN-based 
short term and long term seasonal river flow forecasting with signal processing 
techniques, River Research and Applications Journal, doi: 10.1002/rra.2865. 
 
Badrzadeh, H., Sarukkalige, R. and Jayawardean, A. W., Development of a Wavelet 
Neuro-Fuzzy Computational Model for Stream Flow Forecasting, Nonlinear processes in 
geophysics, Under review. 

 

6.1 INTRODUCTION 

In this chapter, the application of developed models for both short and long term 

river flow forecasting is investigated. The performance of river flow forecasting is 

improved when different input combinations and signal processing techniques 

applied on multi-layer back propagation feed-forward neural networks and adaptive 

neuro-fuzzy inference system with grid partitioning. Haar, Coiflet and Daubechies 

wavelet analysis are coupled with BPNN and ANFIS model to develop hybrid WNN 

and WNFG models, respectively. Different models in terms of inputs and structure 

are developed for daily, weekly and monthly river flow forecasting for Ellen Brook 

River, Western Australia. 
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6.2 STUDY AREA AND DATA USED 

The river flow data of the Railway parade station on Ellen Brook River is used as a 

case study. The Ellen Brook catchment is located in Western Australia. It is about 20 

km from Perth city and 25 km from the coastline (Figure 6.1). The Ellen Brook 

catchment area is approximately 715 𝑘𝑚 2 and three local governments including 

shire of Gingin, Chittering and Swan, administer the catchment. Ellen Brook is one 

of the Swan-Canning estuary sub-catchment which contributes 6% of the total stream 

flow of the estuary. The average catchment rainfall is 800 mm per year and its 

average annual river flow is 18.9 million m3. The climate of the catchment is warm 

temperate Mediterranean type. Climate change predictions for the Ellen Brook 

catchment include descending trend in rainfall and runoff, and ascending trend in the 

temperature, evaporation and storm intensity (Wilke, 2006).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

For this study mean daily river flow discharge for 34 years, with an observation 

period from 1977 to 2010, are collected from the Department of Water. First 23 years 

Figure 6. 1  Location of Ellen Brook catchment in the Western Australia. 
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of data are used for training and the remaining 11 years are used for validation. It is 

checked that the extreme values are placed in the training set rather than validation 

set as CI models performance are higher in a forecasting within the data range being 

utilized during the training phase (Maier and Dandy, 2000). The average daily river 

flow of the Railway parade station is 0.88 𝑚3/𝑠 with a maximum flow of 41.28 

𝑚3/𝑠 in July 1987 and a minimum flow of zero as expected for a seasonal river. For 

mid term and long term forecasting weekly and monthly time series are also 

prepared. Figure 6.2 shows the daily, weekly and monthly historical river flow time 

series. Statistical analyses of the Railway parade station daily, weekly and monthly 

river flow data set is given in Table 6.1, which contains the mean, minimum, 

maximum and standard deviation values. It is evident that extreme values are placed 

in the training set rather than the verification set to improve model accuracy for 

extreme flow forecasting as ANN perform better within the training date range 

(Maier and Dandy, 2000). 

 

 

Table 6. 1  Statistical parameters of Ellen Brook river flow data sets of the Railway parade 

station. 

Railway parade 
Station Data Set Mean Maximum Minimum Standard 

deviation 

Daily River flow 
(𝑚3/𝑠) 

Training 1.04 41.29 0 2.77 
Validation 0.49 17.95 0 1.33 
Total 0.88 41.29 0 2.45 

Weekly River 
flow (𝑚3/𝑠) 

Training 1.03 20.44 0 2.26 
Validation 0.38 7.66 0 1.01 
Total 0.84 20.44 0 1.99 

Monthly River 
flow (𝑚3/𝑠) 

Training 1.01 8.96 0 1.77 
Validation 0.55 4.47 0 0.97 
Total 0.87 8.96 0 1.58 

 

 

6.3 INPUT SELECTION FOR MODELS 

The input selection for BPNN forecasting was chosen based on forward stepwise 

selection of inputs and considering the time series with high auto correlation function 
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(ACF) value. Considering decreasing ACF with increasing time lag (Figure 6.3), 

different input combination of time series up to 4 steps (𝑄𝑡 , 𝑄𝑡−1,  𝑄𝑡−2,  𝑄𝑡−3,  𝑄𝑡−4) 

for daily and weekly and up to 2 steps (𝑄𝑡 , 𝑄𝑡−1,  𝑄𝑡−2) for monthly forecasting is 

applied (Table 6.2 and Table 6.3). 
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Figure 6. 2  (a) Daily; (b) Weekly and (c) Monthly river flow time series at the Railway Parade station on the Ellen Brook River, Western Australia (1977-2010). 
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Figure 6. 3  ACF of Ellen Brook River daily, weekly and monthly flow time series (1977-2010). 

 

 

Table 6. 2  Input selection for different BPNN models. 

Time series Model  Name Input Structure 

Daily 

BPNN-D1 Qdt 
BPNN-D2 Qdt , Qdt−1 
BPNN-D3 Qdt , Qdt−1, Qdt−2 
BPNN-D4 Qdt , Qdt−1, Qdt−2, Qdt−3 
BPNN-D5 Qdt , Qdt−1, Qdt−2, Qdt−3, Qdt−4 

Weekly 

BPNN-W1 Qwt 
BPNN-W2 Qwt , Qwt−1 
BPNN-W3 Qwt , Qwt−1, Qwt−2 
BPNN-W4 Qwt , Qwt−1, Qwt−2, Qwt−3 
BPNN-W5 Qwt , Qwt−1, Qwt−2, Qwt−3, Qwt−4 

Monthly 
BPNN-M1 Qmt 
BPNN-M2 Qmt, Qmt−1 
BPNN-M3 Qmt, Qmt−1, Qmt−2 
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Table 6. 3  Input selection for different ANFIS models. 

Time 
series Model  Name Input Structure 

 ANFIS-D1 Qdt 

 ANFIS -D2 Qdt , Qdt−1 
Daily ANFIS -D3 Qdt , Qdt−1, Qdt−2 

 ANFIS -D4 Qdt , Qdt−1, Qdt−2, Qdt−3 

 ANFIS-D5 Qdt , Qdt−1, Qdt−2, Qdt−3, Qdt−4 

 ANFIS-W1 Qwt 

 ANFIS -W2 Qwt , Qwt−1 
Weekly ANFIS -W3 Qwt , Qwt−1, Qwt−2 

 ANFIS -W4 Qwt , Qwt−1, Qwt−2, Qwt−3 

 ANFIS-W5 Qwt , Qwt−1, Qwt−2, Qwt−3, Qwt−4 

 ANFIS-M1 Qmt 
Monthly ANFIS -M2 Qmt, Qmt−1 

 ANFIS -M3 Qmt, Qmt−1, Qmt−2 
 

 

Three different mother wavelets were chosen for developing the hybrid wavelet 

neural network model. As concluded in chapter 4, the optimum level of 

decomposition for different case studies should be reached by trial and error 

procedure. However, some studies suggest that the level of decomposition is based 

on the time series length as follows; 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑖𝑛𝑡 [log(𝑛)]                                 (6.1)         

Considering the length of daily, weekly and monthly time series (12410, 1773 and 

408), the suggested level of decomposition for each time series would be 4, 3 and 3, 

respectively. Therefore, various levels of decomposition based on the data length and 

Equation 6.1, were employed for ANN daily, weekly and monthly modelling (Table 

6.4). However, for fuzzy modelling fewer level of decomposition is considered for 

feasible modelling (Table 6.5).The input of the hybrid models would be the wavelet 

coefficients which are the wavelet decomposition outputs. The number of input time 

series is N+1 for N levels of decomposition as the wavelet coefficients are one 

approximation and N details. 
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Table 6. 4  Input pre-processing type for hybrid WNN models. 

Time series Model Name Wavelet Level of 
decomposition 

Daily 
WNN-D1,2,3,4 db5 3,4,5,6 
WNN-D5,6,7,8 coiflets1 3,4,5,6 
WNN-D9,10,11,12 haar 3,4,5,6 

Weekly 
WNN-W1,2,3,4 db5 2,3,4,5 
WNN-W5,6,7,8 coiflets1 2,3,4,5 
WNN-W9,10,11,12 haar 2,3,4,5 

Monthly 
WNN-M1,2,3,4 db5 2,3,4,5 
WNN-M5,6,7,8 coiflets1 2,3,4,5 
WNN-M9,10,11,12 haar 2,3,4,5 

 

Table 6. 5  Input pre-processing type for hybrid WNFG models. 

Time series Model Name Wavelet Level of 
decomposition 

Daily 
WNFG-D1,2,3,4 db5 2,3,4,5 
WNFG-D5,6,7,8 coiflets1 2,3,4,5 
WNFG-D9,10,11,12 haar 2,3,4,5 

Weekly 
WNFG-W1,2,3 db5 2,3,4 
WNFG-W4,5,6 coiflets1 2,3,4 
WNFG-W7,8,9 haar 2,3,4 

Monthly 
WNFG-M1,2,3 db5 2,3,4 
WNFG-M4,5,6 coiflets1 2,3,4 
WNFG-M7,8,9 haar 2,3,4 

 

6.4 RESULTS AND DISCUSSION 

6.4.1 Performance of ANN-based models in river flow forecasting 

After developing BPNN and WNN frameworks and determining the input selection, 

models were applied to forecast Ellen Brook River flow. Overall 13 different BPNN 

and 36 different WNN models with different input combination (Table 6.2 and Table 

6.4) and structure were developed for forecasting daily, weekly and monthly river 
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flow of the study area. The hybrid model results were compared with classical BPNN 

results for both short term and long term forecasting.  

The best structure of models with different input combinations were achieved by 

increasing the number of hidden neurons from 10 to 25 for daily and weekly and 

from 1 to 15 for monthly time series. For evaluating the performance of the models, 

root mean square error (RMSE) and Nash-Sutcliffe coefficient of efficiency (NSE) 

are considered as the two main criteria in both WNN and BPNN models.  

Tables 6.6 − 6.8 present developed BPNN and WNN model structures and 

forecasting performance for daily, weekly and monthly forecasting. Comparing the 

performance of all models, best performed models with highest NSE and lowest 

RSME, in validation set, were chosen (shown bold in the tables). Overall WNN 

model efficiency is high which made them quite reliable for forecasting. Compared 

to BPNN, hybrid model make significantly less error and have higher regression with 

observed flow. 
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Table 6. 6  BPNN and WNN models structure and performance for daily river flow forecasting. 

Model 
Best 

Neuron 
Structure 

Training   Validation 

NSE RMSE  NSE RMSE 
(m3/s) (MCM)  (m3/s) (MCM) 

BPNN-D1 1-19-1 0.70 0.78 0.07   0.69 1.56 0.13 
BPNN-D2 2-23-1 0.73 0.74 0.06  0.73 1.46 0.13 
BPNN-D3 3-22-1 0.75 0.73 0.06  0.73 1.40 0.12 
BPNN-D4 4-24-1 0.76 0.71 0.06  0.75 1.37 0.12 
BPNN-D5 5-23-1 0.77 0.73 0.06  0.73 1.35 0.12 
WNN-D1 4-13-1 0.85 0.64 0.06  0.79 1.10 0.10 
WNN-D2 5-22-1 0.88 0.50 0.04   0.82 0.99 0.09 
WNN-D3 6-25-1 0.87 0.60 0.05  0.82 1.00 0.09 
WNN-D4 7-22-1 0.88 0.60 0.05  0.82 0.98 0.08 
WNN-D5 4-17-1 0.86 0.61 0.05  0.80 0.99 0.09 
WNN-D6 5-21-1 0.87 0.62 0.05  0.81 1.03 0.09 
WNN-D7 6-21-1 0.85 0.63 0.05  0.80 1.10 0.09 
WNN-D8 7-20-1 0.86 0.63 0.05  0.80 1.05 0.09 
WNN-D9 4-12-1 0.86 0.68 0.06  0.79 1.06 0.09 
WNN-D10 5-14-1 0.87 0.64 0.06  0.80 1.02 0.09 
WNN-D11 6-15-1 0.87 0.63 0.05  0.80 1.03 0.09 
WNN-D12 7-19-1 0.88 0.64 0.06   0.80 0.98 0.08 

 

Table 6. 7  BPNN and WNN models structure and performance for weekly flow forecasting. 

Model 
Best 

Neuron 
Structure 

Training   Validation 

NSE 
RMSE 

 NSE 
RMSE 

(m3/s) (MCM)  (m3/s) (MCM) 
BPNN-W1 1-14-1 0.60 0.76 0.46   0.43 1.48 0.89 
BPNN-W2 2-5-1 0.54 0.77 0.47  0.42 1.53 0.93 
BPNN-W3 3-17-1 0.68 0.79 0.48  0.39 1.57 0.95 
BPNN-W4 4-19-1 0.68 0.79 0.48  0.39 1.43 0.86 
BPNN-W5 5-16-1 0.65 0.78 0.47  0.40 1.63 0.98 
WNN-W1 3-19-1 0.85 0.64 0.38  0.65 0.86 0.52 
WNN-W2 4-17-1 0.87 0.62 0.37   0.66 0.85 0.51 
WNN-W3 5-20-1 0.85 0.64 0.39  0.67 0.86 0.52 
WNN-W4 6-25-1 0.87 0.60 0.36  0.64 0.80 0.49 
WNN-W5 3-21-1 0.88 0.62 0.38  0.69 0.74 0.45 
WNN-W6 4-18-1 0.89 0.59 0.36  0.72 0.75 0.45 
WNN-W7 5-24-1 0.84 0.59 0.36  0.74 0.95 0.57 
WNN-W8 6-16-1 0.85 0.60 0.36  0.76 0.91 0.55 
WNN-W9 3-21-1 0.82 0.57 0.34  0.72 0.89 0.54 
WNN-W10 4-19-1 0.80 0.67 0.41  0.60 1.05 0.64 
WNN-W11 5-22-1 0.84 0.61 0.37  0.61 1.00 0.61 
WNN-W12 6-24-1 0.83 0.59 0.36   0.71 0.90 0.54 
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Table 6. 8  BPNN and WNN models structure and performance for monthly flow forecasting. 

Model 
Best 

Neuron 
Structure 

Training   Validation 

NSE 
RMSE 

 NSE 
RMSE 

(m3/s) (MCM)  (m3/s) (MCM) 
BPNN-M1 1-1-1 0.41 0.83 2.15  0.23 1.41 3.65 
BPNN-M2 2-8-1 0.71 0.76 1.99  0.34 0.95 2.46 
BPNN-M3 3-3-1 0.66 0.77 2.00  0.34 1.15 2.98 
WNN-M1 3-10-1 0.90 0.48 1.24  0.74 0.59 1.53 
WNN-M2 4-11-1 0.90 0.61 1.57  0.76 0.58 1.50 
WNN-M3 5-9-1 0.90 0.50 1.30  0.75 0.60 1.54 
WNN-M4 6-4-1 0.85 0.50 1.29  0.72 0.72 1.87 
WNN-M5 3-6-1 0.89 0.62 1.62  0.54 0.72 1.87 
WNN-M6 4-9-1 0.85 0.63 1.64  0.56 0.71 1.84 
WNN-M7 5-9-1 0.77 0.63 1.63  0.55 0.61 1.58 
WNN-M8 6-10-1 0.84 0.63 1.64  0.55 0.71 1.85 
WNN-M9 3-9-1 0.78 0.59 1.53  0.59 0.86 2.22 
WNN-M10 4-11-1 0.81 0.60 1.56  0.62 0.88 2.28 
WNN-M11 5-10-1 0.78 0.58 1.50  0.59 0.74 1.92 
WNN-M12 6-4-1 0.84 0.61 1.58   0.58 0.87 2.26 

 

Figure 6.4 compares the Nash-Sutcliffe coefficient of efficiency of models in both 

training and validation sets which illustrates how WNN model always outperform 

BPNN models. In the training set the largest gap between original and hybrid model 

efficiency is for weekly forecasting. The Nash-Sutcliffe coefficient of efficiency of 

best fitted BPNN model for weekly forecasting, improved from 0.43 to 0.76 and the 

RMSE of the model decreased from 1.48 to 0.91 sm /3 .  

As mentioned before, in the developed models, validation sets have no role in the 

training process of the model. It means that investigation the performance of the 

validation set lead us to the most reliable evaluation. Figure 6.4b illustrates the 

greater difference between original and hybrid model performance in the validation 

set. This improvement is more substantial for the long term forecasting as the BPNN 

model efficiency dramatically decreases with increasing length of forecasting. The 

NSE of validation set of best performed BPNN model drops from 0.73 to 0.34 from 

daily to monthly forecasting. 0.34 demonstrate a very weak correlation and indicates 

that the monthly river flow cannot be predicted with BPNN method. Applying the 
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hybrid model, this value improved to 0.76 for monthly forecasting, which correspond 

to a strong correlation between observed and simulated river flow. 

 

Figure 6. 4  Nash-Sutcliffe coefficient of efficiency of (a) training and (b) validation set, for 

different BPNN and WNN models. 

 

The results show that applying different time-lagged river flow time series with high 

ACF as model inputs, improves daily and monthly forecasting. For weekly 

forecasting, using only current river flow time series leads to the best fitted 

simulation in the study area. Results also indicate that the type of mother wavelet and 

the level of decomposition do not have a significant impact on model efficiency. 

However, applying Daubechies wavelet leads to the best daily and monthly 

forecasting and Coiflet is the best choice for weekly forecasting of Ellen Brook River 

flow. Figure 6.5 illustrates the wavelet coefficients of Ellen Brook weekly time 

series, with Coiflet1 wavelet to 5 level of decompositions which are the best fitted 

weekly model (WNN-W8) inputs. It can be seen that with five levels of 

decomposition one time series divided to six sub series, one approximation and five 

details.  
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Figure 6. 5  Ellen Brook weekly river flow time series and its wavelet coefficients with Coif1 

wavelet. 

 

Figure 6.6 shows the scatter plots of observed and forecasted river flow with the best 

fitted BPNN and WNN models for different lead times. These scatter plots clearly 

illustrate the performance of different models. It can be seen that unlike WNN 

model, accuracy of BPNN models decreases in the longer term modeling. The 

correlation between observed and forecasted river flow with hybrid model is always 

higher than with BPNN model. This figure also displays that BPNN models 

frequently fail to simulate extreme events.  
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Figure 6. 6  Scatter plots of observed and forecasted river flow with the best fitted BPNN and 

WNN models for daily, weekly and monthly forecasting. 

 

Having a visual comparison of the model performance, Figure 6.7 and Figure 6.8 

compare the original neural networks (BPNN) and best fitted hybrid (WNN) outputs 

with the observed monthly river flow. Figure 6.9 and Figure 6.10 compares the best 

fitted hybrid (WNN) and original neural networks (BPNN) outputs with the observed 

weekly river flow. It can be seen that WNN provides a better match with the 
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observed time series. These figures also demonstrate that WNN forecasted time 

series closely meet the extreme values while in many cases BPNN forecasted time 

series fail to simulate these conditions.  

In order to investigate the ability of models in simulating the peak values, the first 

twenty highest observed river flow in the 34 years of observation (flows greater than 

0.50 maxQ for each time series) is compared with their simulated values. Table 6.9 

shows the relative error between observed daily, weekly and monthly river flow and 

their best fitted simulated values, which clearly illustrate the reliability of WNN 

models over the BPNN. The relative error between WNN modelled and observed 

river flow is always considerably less than the relative error with BPNN modelled 

and observed ones. For instance, when BPNN model totally fails to simulate the 41.3 

𝑚3/𝑠 observed river flow (with 88% error), WNN forecast this peak value with a 

high accuracy of 41 𝑚3/𝑠. The weakness of BPNN model in forecasting the extreme 

values, make this approach ineffective for flood and drought analysis. The outcomes 

of this study confirm the reliability and accuracy of the proposed wavelet neural 

networks model. Considering the growing interest in applying data-driven methods, 

WNN would be a desirable approach for water resources management studies. 
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Figure 6. 7  Comparing observed versus modeled monthly river flow with best fitted BPNN model. 

 

 

Figure 6. 8  Comparing observed versus modeled monthly river flow with best fitted WNN model. 
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Figure 6. 9  Comparing observed versus modeled weekly river flow with best fitted BPNN model. 

 
 

 
Figure 6. 10  Comparing observed versus modeled weekly river flow with best fitted WNN model. 
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Table 6. 9  Accuracy of developed ANN-based models in simulating daily, weekly and monthly extreme flow values. 
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Daily stream flow modeling  Weekly stream flow modeling  Monthly stream flow modeling 
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1 41.3 4.9 88  41.0 1  20.4 19.8 3  20.2 1  9 8.4 6  9.2 2 
2 37.8 32.5 14   38.2 1   18.2 6.0 67   18.2 0   8.4 4.6 45   8.7 4 
3 37.6 8.1 78   34.2 9   17.9 2.3 87   11.6 35   8.3 8.1 3   8.1 2 
4 34.7 32.0 8   32.7 6   17.8 2.8 84   17.6 1   8.1 5.1 38   8.0 1 
5 31.8 23.4 26   29.6 7   15.1 8.0 47   8.4 44   7.9 2.2 71   8.1 3 
6 31.2 10.6 66   27.0 13   13.6 9.3 32   14.7 8   7.6 2.3 69   7.4 3 
7 29.7 26.5 11   29.6 1   13.3 3.5 74   5.5 59   7.1 5.9 17   7.2 2 
8 28.6 24.9 13   26.2 8   12.7 9.5 25   12.7 0   6.9 5.3 23   7.2 4 
9 28.4 19.2 32   25.9 9   12.1 9.7 20   9.8 19   6.2 3.8 39   6.3 1 

10 27.4 25.2 8   25.6 7   12.1 9.2 24   11.7 3   5.9 2.9 50   5.8 2 
11 27.3 16.2 41   25.0 8   12.1 3.5 71   12.1 0   5.7 2.9 49   5.6 2 
12 27.1 3.7 87   24.6 9   11.9 8.4 29   11.9 0   5.7 5.5 3   5.6 1 
13 26.8 24.3 9   26.3 2   11.8 11.8 0   11.9 1   5.4 5.2 4   5.4 0 
14 26.4 23.6 10   25.9 2   11.6 3.7 68   12.0 3   5.3 4.3 19   4.7 11 
15 26.4 13.8 48   23.8 10   11.2 3.7 67   9.2 18   5.0 4.6 9   4.6 13 
16 26.4 28.9 10   23.8 10   11.0 3.4 69   6.4 42   4.8 0.3 95   5.0 3 
17 26.1 13.7 47   23.2 11   10.8 5.4 50   10.4 4   4.8 6.2 29   4.8 0 
18 25.7 17.7 31   22.9 11   10.8 6.5 39   11.0 2   4.7 1.5 67   5.2 12 
19 25.2 6.8 73   22.5 11   10.8 4.2 61   9.9 9   4.6 4.1 12   4.6 0 
20 25.1 22.4 10   24.3 3   10.7 3.7 65   6.2 42   4.5 4.0 10   4.3 4 
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6.4.2 Performance of Fuzzy-based models in river flow forecasting 

In this study ANFIS models developed based on Takagi-Sugeno-Kang (TSK) fuzzy 

rule based system. Generalized bell membership function and grid partitioning are 

applied for initializing the fuzzy rule-based structure. In order to develop the hybrid 

WNFG models, wavelet multi-resolution analysis is coupled with ANFIS model. The 

Ellen Brook River time series is decomposed into multi-frequency time series by 

using Haar, Coiflet order 1 and Daubechies order 5 mother wavelets. Then the 

wavelet coefficients are imposed as input data to the neuro-fuzzy model. Overall 13 

different ANFIS and 30 different WNFG models with different input combination 

(Table 6.3 and Table 6.5) and structure were developed for forecasting daily, weekly 

and monthly river flow of the study area. The hybrid model results were compared 

with original ANFIS results for both short term and long term forecasting. Figure 

6.11 shows the structure of hybrid WNFG-M2 model, generated by grid partitioning 

FIS, as an example. Inputs of this model, the best fitted hybrid neuro-fuzzy model for 

monthly forecasting in the study area, are db5 wavelet coefficients including one 

approximation and three details for three levels of decomposition, with generalized 

bell membership function and 16 rules. 

 

Figure 6. 11  Best fitted hybrid neuro-fuuzy model (WNFG-M2) structure for monthly 

forecasting. 
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 For the ANFIS models, the optimum number of membership functions is reached by 

increasing this number from 2 to 5. Considering the large size of the hybrid models 

input and fuzzy system restrictions, only 2 membership functions are defined for 

each model. Root mean square error and Nash-Sutcliffe coefficient of efficiency are 

also considered as the main performance criteria for both ANFIS and WNFG models.  

Tables 6.10 − 6.12 show developed ANFIS and WNFG models structure and 

forecasting performance for daily, weekly and monthly forecasting. Comparing the 

performance of all models, best fitted models with highest NSE and lowest RSME, 

were chosen (Bold in tables).  

 

Table 6. 10  ANFIS and WNFG models structure and performance for daily river flow 

forecasting. 

Model No. 
MFs 

No. 
Nods 

Linear 
PAR 

Non 
Linear 
PAR 

Fuzzy 
Rules 

Training   Validation 

NSE 
RMSE   

NSE 
RMSE 

(m3/s) (MCM)   (m3/s) (MCM) 

ANFIS-D1 7 32 14 21 7 0.71 0.25 0.021  0.69 0.51 0.044 
ANFIS-D2 5 75 75 30 25 0.73 0.24 0.021  0.72 0.48 0.041 
ANFIS-D3 4 158 256 36 64 0.76 0.23 0.020  0.74 0.45 0.039 
ANFIS-D4 3 193 405 36 81 0.77 0.24 0.020  0.74 0.44 0.038 
ANFIS-D5 2 92 192 30 25 0.76 0.23 0.020  0.74 0.45 0.039 
WNFG-D1 3 78 108 27 27 0.85 0.22 0.019  0.83 0.36 0.031 
WNFG-D2 2 55 80 24 16 0.85 0.19 0.016  0.83 0.36 0.031 
WNFG-D3 2 92 192 30 32 0.89 0.19 0.017  0.83 0.23 0.020 
WNFG-D4 2 161 448 36 64 0.91 0.22 0.019  0.76 0.34 0.030 
WNFG-D5 3 78 108 27 27 0.86 0.23 0.019  0.82 0.35 0.030 
WNFG-D6 2 55 8 24 16 0.86 0.20 0.017  0.82 0.34 0.029 
WNFG-D7 2 92 192 30 32 0.87 0.21 0.018  0.79 0.33 0.029 
WNFG-D8 2 161 448 36 64 0.87 0.23 0.020  0.79 0.29 0.025 
WNFG-D9 3 78 108 27 27 0.86 0.25 0.021  0.79 0.38 0.033 
WNFG-D10 2 55 80 24 16 0.86 0.21 0.018  0.80 0.34 0.029 
WNFG-D11 2 92 192 30 32 0.87 0.22 0.019  0.78 0.33 0.028 
WNFG-D12 2 161 448 36 64 0.91 0.23 0.020  0.74 0.31 0.027 
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Table 6. 11  ANFIS and WNFG models structure and performance for weekly river flow 

forecasting. 

Model 
No. 
of 

MFs 

No. 
of 

Nods 

Linear 
PAR 

Non 
Linear 
PAR 

Fuzzy 
Rules 

Training   Validation 

NSE 
RMSE   

NSE 
RMSE 

  (m3/s)   (MCM)   (m3/s) (MCM) 

ANFIS-W1 5 24 10 15 5 0.54 1.54 0.93   0.36 1.22 0.74 
ANFIS-W2 4 53 48 24 16 0.61 0.81 0.49   0.35 1.42 0.86 
ANFIS-W3 3 78 108 27 27 0.71 1.22 0.74   0.41 0.88 0.53 
ANFIS-W4 2 55 80 24 16 0.66 0.82 0.49   0.34 1.49 0.90 
ANFIS-W5 2 92 192 30 25  - -   -    -  - -  
WNFG-W1 2 34 18 18 8 0.77 0.57 0.34   0.57 1.07 0.65 
WNFG-W2 2 55 80 24 16 0.82 0.57 0.35   0.68 0.95 0.58 
WNFG-W3 2 92 192 30 32 0.87 0.66 0.40   0.68 0.76 0.46 
WNFG-W4 2 34 32 18 8 0.76 0.60 0.36   0.63 0.92 0.56 
WNFG-W5 2 55 80 24 16 0.79 0.63 0.38   0.61 0.88 0.53 
WNFG-W6 2 92 192 30 32  - -  -    -   - - 
WNFG-W7 2 34 32 18 8 0.75 0.60 0.36   0.65 1.13 0.69 
WNFG-W8 2 55 80 24 16 0.77 0.71 0.43   0.51 1.09 0.66 
WNFG-W9 2 92 192 30 32 0.86 0.77 0.46   0.42 0.85 0.51 

 

 

Table 6. 12  ANFIS and WNFG models structure and performance for monthly river flow 

forecasting. 

Model 
No. 
of 

MFs 

No. 
of 

Nods 

Linear 
PAR 

Non 
Linear 
PAR 

Fuzzy 
Rules 

Training   Validation 

NSE 
RMSE   

NSE 
RMSE 

 (m3/s) (MCM)   (m3/s) (MCM) 

ANFIS-M1 2 12 4 6 2 0.41 1.41 3.65  0.23 0.83 2.14 
ANFIS-M2 5 75 75 30 25 0.64 0.82 2.12  0.15 0.89 2.31 
ANFIS-M3 2 34 18 50 8 0.69 0.79 2.05  0.30 0.87 2.25 
WNFG-M1 2 34 32 18 8 0.79 0.56 1.45  0.61 0.84 2.16 
WNFG-M2 2 55 80 24 16 0.84 0.60 1.55  0.59 0.67 1.74 
WNFG-M3 2 92 192 30 32 - - -  - - - 
WNFG-M4 2 34 32 18 8 0.77 0.79 2.05  0.30 0.89 2.31 
WNFG-M5 2 55 80 24 16 - - -  - - - 
WNFG-M6 2 92 192 30 32 - - -  - - - 
WNFG-M7 2 34 32 18 8 0.78 0.56 1.46  0.56 0.98 2.55 
WNFG-M8 2 55 80 24 16 0.83 0.38 0.98  0.38 0.77 1.98 
WNFG-M9 2 92 192 30 32 - - -  - - - 
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The Nash-Sutcliffe coefficient of efficiency (NSE) of the models illustrated in Figure 

6.12. This figure clearly shows that hybrid WNFG model outperforms ANFIS 

models.  

It can be observed that the ANFIS models’ efficiency dramatically decreases with 

increasing the length of forecasting. Considering the validation set as the most 

reliable set for evaluating the performance, ANFIS models almost fail to forecast the 

weekly and monthly river flows. However, by adding the DWT to the ANFIS models 

the performance of models significantly improves. Overall, in the whole data set, the 

Nash-Sutcliffe coefficient of efficiency of ANFIS model increased from 0.69 to 0.82 

and 0.86 for weekly and monthly forecasting respectively. 

 

 

 

Figure 6. 12  Nash-Sutcliffe coefficient of efficiency of (a) training and (b) validation set, for 

different ANFIS and WNFG models. 
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The results show that applying different time-lagged river flow time series with high 

ACF as model inputs, improves accuracy of forecasting in the study area.  

Results also indicate that the type of mother wavelet and the level of decomposition 

could have a significant impact on weekly and monthly model efficiency. Applying 

db5 DWT with 3 or 4 level of decomposition leads to the best forecasting of Ellen 

Brook River flow. Whereas, decomposing the monthly river flow time series with 

Coiflet1 wavelet, leads to a very poor simulation with NSE of 0.30. 

As it is shown in Table 6.11 and Table 6.12, due to restricted structure of fuzzy 

modelling, some models failed to simulate weekly and monthly river flow. 

Figure 6.13 illustrates the wavelet coefficients of Ellen Brook daily time series, with 

db5 wavelet to 4 level of decompositions which are the best fitted daily model 

(WNFG-D3) inputs.  
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Figure 6. 13  Ellen Brook daily river flow signal and its wavelet coefficients with db5 wavelet. 

 
Figure 6.14 shows the scatter plots of observed and forecasted river flow with the 

best fitted ANFIS and WNFG models for different lead times. These scatter plots 

clearly illustrate the performance of different models. It can be seen that unlike 

WNFG model, the accuracy of ANFIS models decreases in the weekly and monthly 

forecasting. 
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This figure also demonstrates that in spite of relatively high correlation between 

observed and ANFIS modelled river flow, these models frequently fail to simulate 

the extreme events. 

 

 

Figure 6. 14  Scatter plots of observed and forecasted river flow with the best fitted ANFIS and 

WNFG models for daily, weekly and monthly forecasting. 
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Figures 6.15 − 6.16 compare the best fitted ANFIS and hybrid WNFG model outputs 

with the observed weekly river flows. Figure 6.17 and 6.18 also compare the best 

fitted hybrid WNFG and ANFIS outputs with the observed monthly river flows. It 

can be seen that hybrid models provide a better match with the observed time series.  

To investigate the ability of models in forecasting the extreme values, the first twenty 

highest observed river flows in the 34 years of observation are compared with their 

simulated values. Table 6.13 shows the relative error between observed daily, weekly 

and monthly river flows and their best fitted simulated values, which illustrates that 

hybrid models have relatively smaller errors. The errors between WNF modelled and 

observed river flow are often considerably lower than those of ANFIS model. For 

instance, when ANFIS model totally fails to simulate the 41.3 𝑚3/𝑠  observed daily 

river flow (with 91 % relative error), WNF forecast this peak value with a high 

accuracy. 
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Table 6. 13  Accuracy of developed Fuzzy-based models in simulating daily, weekly and monthly extreme flow values. 

 
No. 

Daily stream flow modeling  Weekly stream flow modeling  Monthly stream flow modeling 
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M
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%
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1 41.3 3.9 91  41.0 1  20.4 20.2 1  20.7 1  9.0 8.6 4  9.0 0 
2 37.9 37.7 0  37.9 0  18.2 11.3 38  17.9 2  8.4 5.3 36  7.9 6 
3 37.6 8.3 78  21.2 43  17.9 2.2 88  14.4 19  8.1 5.4 34  8.1 1 
4 34.7 34.5 1  34.2 1  17.8 14.6 18  18.2 2  7.9 6.8 13  7.9 0 
5 31.8 25.8 19  29.2 8  15.1 12.4 18  14.8 2  7.5 2.6 65  5.8 23 
6 31.2 11.0 65  17.5 42  13.6 13.6 0  13.1 4  7.1 4.6 35  7.5 5 
7 29.7 29.7 0  28.9 3  13.3 5.1 61  5.8 56  6.9 6.1 13  6.5 6 
8 28.6 22.8 17  25.2 12  12.7 12.7 0  11.9 6  6.2 4.6 25  5.0 20 
9 28.4 16.2 43  19.7 30  12.1 8.2 32  10.8 11  5.9 3.7 38  6.5 10 

10 27.4 26.8 2  26.2 4  12.1 12.1 0  11.8 3  5.7 3.2 44  5.5 3 
11 27.3 16.8 38  17.3 37  12.1 8.2 33  10.7 12  5.7 6.0 5  5.9 4 
12 27.1 3.6 87  26.1 4  11.9 10.4 13  11.9 1  5.4 4.9 10  4.9 9 
13 26.8 26.7 0  26.0 3  11.8 11.8 0  12.0 2  5.3 4.8 9  5.4 3 
14 26.4 24.4 8  26.1 1  11.6 3.6 69  12.0 3  5.0 5.6 10  4.8 5 
15 26.4 10.9 59  25.9 2  11.2 3.0 73  9.3 17  4.8 0.8 84  4.7 4 
16 26.4 26.9 2  26.6 1  11.0 3.3 70  9.0 18  4.8 3.6 24  4.5 5 
17 26.1 12.9 51  13.3 49  10.8 10.9 1  10.8 0  4.7 3.5 26  4.6 3 
18 25.7 15.8 38  17.9 30  10.8 10.8 0  10.6 2  4.6 5.0 8  4.3 8 
19 25.2 8.2 68  13.9 45  10.8 4.0 63  6.3 41  4.5 2.7 40  2.7 30 
20 25.1 25.1 0  24.4 3  10.7 3.0 71  9.1 14  4.3 1.5 66  3.0 30 
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Figure 6. 15  Comparing observed versus modeled weekly river flow with best fitted ANFIS model. 

 

 

Figure 6. 16 Comparing observed versus modeled weekly river flow with best fitted WNFG model. 
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Figure 6. 17  Comparing observed versus modeled monthly river flow with best fitted ANFIS model. 

 

 

Figure 6. 18  Comparing observed versus modeled monthly river flow with best fitted WNFG model. 
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6.5 CONCLUSION 

 

In this section different computational intelligent models for short and long term 

river flow forecasting have proposed. Application of multi-resolution analysis of the 

input data on BPNN and ANFIS model performance for forecasting one step ahead 

of daily, weekly and monthly river flow has been investigated. Haar, Daubechies 

order five and Coiflet order one wavelets were applied on Ellen Brook River flow 

time series to decompose the time series in different levels of resolution. Different 

wavelet coefficients were imposed to BPNN and ANFIS models as their inputs.  

The overall results show that pre-processing the raw data with wavelet has 

significantly improved the accuracy of forecasting. The results also indicated that the 

performance improvement was more substantial in longer lengths of forecasting. 

Where BPNN and ANFIS models almost fail to forecast monthly river flow, hybrid 

models simulate the time series with quite high accuracy. 

Although using the right selection of the different time series with different time-lag 

and high autocorrelation function (ACF) improves the BPNN and ANFIS models 

efficiency, the improvement is considerably less than pre-processing the data with 

discrete wavelet transform. 

Among all models, hybrid neural networks (WNN-D5) is selected as the best fitted 

model for daily river forecasting and the hybrid neuro-fuzzy model (WNFG-M2) 

achieved the best performance for monthly river flow forecasting. However, there is 

no significant difference between bast fitted ANN-based and fuzzy-based hybrid 

models’ performance for river flow forecasting. 

Furthermore the results verified that unlike WNFG models, altering mother wavelet 

or the level of decomposition does not have a considerable impact on WNN models’ 

performance.  

These results are based on the unique characteristics of Ellen Brook River flow time 

series and different DWT might be more compatible for modelling different case 

studies. However, considering the similar characteristics of Western Australia rivers, 
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with high seasonal trend, the same method would eventuate the best prediction result 

in this region. 

Usually computational approaches fail to simulate sudden extreme conditions as they 

use current and few previous data as their inputs. Considering the transient nature of 

hydrological signals, applying DWT on input data and extracting different 

frequencies from historical data, helps more accurate prediction of extreme values. 

This matter is well observed in this research, where WNN forecasted time series are 

highly matched with the observed time series at the extreme values. Since BPNN and 

ANFIS failed to simulate the peak conditions most of the time, these models are not 

recommended for flood and drought studies.  

 

 

 

 

 

 

 

 

 

 

  



 

 

  



 

 
 

 

Chapter 7 

Multi-Step Ahead River Flow Forecasting 
 

 

 

Extended from: 

Badrzadeh, H.,Sarukkalige, R. and Jayawardena, A. W., 2013. Impact of multi-resolution 
analysis of artificial intelligence models Inputs on river flow forecasting, Journal of 
hydrology, (507) 75-85. 
 
 

7.1 INTRODUCTION 

In this chapter, an attempt is made to show that the performance of longer lead-time 

forecasting is improved when data-preprocessing techniques are used in conjunction 

with computational intelligence methods. One of the inherent problems in all 

forecasting methods is that the forecasting reliability decreases with increasing the 

lead-time. The developed ANN and ANFIS model performance are compared against 

hybrid wavelet neural networks and hybrid wavelet neuro-fuzzy with subtractive 

clustering methods. Different models with a combination of the different input data 

sets are developed for 1, 2, 3, 4 and 5 days ahead forecasting in Harvey River, 

Western Australia. Daubechies and Symlet wavelets are used to decompose river 

flow time series to different levels. Comparing the results with those of the original 

ANN and ANFIS models indicates that the hybrid models produce significantly 

better forecasts, especially for the peak values and longer lead-times. 
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7.2 STUDY AREA AND DATA USED 

In this study, the river flow data of the Dingo road station on Harvey River are used 

as a case study. The information of Harvey River and statistical analyses of flow and 

rainfall time series at the Dingo road station is available in Chapter five. 

For this study mean daily river flow discharge and mean daily rainfall for 39 years, 

with an observation period from 1972 to 2011, are collected from the Department of 

Water and Bureau of Meteorology. First 27 years of data (9971 days, around 70% of 

the whole data set) are used for training and the remaining 12 years (4273 days, 

around 30% of the whole data set) are used for validation.  

The input combinations for forecasting the river flow time series was chosen based 

on forward stepwise selection of inputs and considering the auto correlation function 

(AFC) of time series to optimize the volume of input data (Table 7.1 and Figure 7.1). 

Considering the huge amount of input data, especially after decomposing each data 

set to sub-series, time series with a maximum three-day lag of river flow was 

designated in input combinations. 

 

Table 7. 1  ACF of Harvey River daily flow and rainfall time series (1972-2011). 

ACF t-1 t-2 t-3 t-4 t-5 t-6 t-7 t-8 t-9 t-10 
𝑄𝑡 0.944 0.869 0.825 0.795 0.757 0.746 0.738 0.724 0.714 0.697 

𝑅𝑡 0.283 0.127 0.109 0.094 0.101 0.111 0.093 0.088 0.106 0.099 
 

 

 

Figure 7. 1  ACF of Harvey River daily flow and rainfall time seires. 
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Table 7.2 shows the different input combination that applied to the models for 1 to 5 

days ahead (𝑄𝑡+1, 𝑄𝑡+2,  𝑄𝑡+3,  𝑄𝑡+4,  𝑄𝑡+5) forecasting. The Q and R are the river 

flow and rainfall time series and QDWT and RDWT are their wavelet coefficient 

time series, including details and approximation sub-series for n level of 

decomposition (𝐷1, 𝐷2, …, 𝐷𝑛 and 𝐴𝑛). 

 

 

  Table 7. 2  Different input combinations. 

No. Input data combination 

i 𝑄𝑡 
ii 𝑄𝑡, 𝑄𝑡−1 

iii 𝑄𝑡, 𝑄𝑡−1𝑄𝑡, 𝑄𝑡−2 

iv 𝑄𝑡, 𝑄𝑡−1𝑄𝑡, 𝑄𝑡−2, 𝑄𝑡−3 

v 𝑄𝑡, 𝑅𝑡 
vi 𝑄𝐷𝑊𝑇𝑡  
vii 𝑄𝐷𝑊𝑇𝑡 , 𝑄𝐷𝑊𝑇𝑡−1  

viii 𝑄𝐷𝑊𝑇𝑡 , 𝑄𝐷𝑊𝑇𝑡−1, 𝑄𝐷𝑊𝑇𝑡−2  

ix 𝑄𝐷𝑊𝑇𝑡 , 𝑄𝐷𝑊𝑇𝑡−1, 𝑄𝐷𝑊𝑇𝑡−2, 𝑄𝐷𝑊𝑇𝑡−3  

x 𝑄𝐷𝑊𝑇𝑡 , 𝑅𝐷𝑊𝑇𝑡   

 

7.3 RESULTS AND DISCUSSION 

After developing ANN, ANFIS, WNN and WNF frameworks, they were applied to 

forecast Harvey River flow. Overall 215 different models for various lead-times of 1 

to 5 days ahead, with different input combination were developed for forecasting 

daily river flow of the study area. The hybrid model results were compared with 

classical ANN and ANFIS model results.  

 

7.3.1 Application of ANN 

A three layered feed-forward backpropagation ANN model was used without 

preprocessing the data. Different ANN models with different input combinations 

have been developed. Considering the volume of the input data, each ANN was 
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trained by increasing the number of hidden neurons from 15 to 30 to reach the best 

ANN structure. The result indicates that the model efficiency varies with the input 

selection. Table 7.3 shows the best ANN model’s structure for each of the five lead-

time forecasting based on the input selection. 

 

Table 7. 3  ANN structure and performance for different lead time. 

Lead 
time Model Input 

Dataset 
Neuron 
structure 

Training  Validation 

𝑁𝑆𝐸 RSME 
(m³/s) 

 𝑁𝑆𝐸 RSME 
(m³/s) 

t+1 

ANN1-1 i 1-16-1 0.913 0.283  0.897 0.437 

ANN1-2 ii 2-23-1 0.927 0.259  0.912 0.404 

ANN1-3 iii 3-21-1 0.934 0.245  0.923 0.379 

ANN1-4 iv 4-26-1 0.934 0.246  0.928 0.367 

ANN1-5 v 2-24-1 0.975 0.216  0.969 0.169 

t+2 
 

ANN2-1 i 1-30-1 0.795 0.538  0.770 0.653 

ANN2-2 ii 2-24-1 0.801 0.427  0.781 0.637 

ANN2-3 iii 3-20-1 0.805 0.423  0.790 0.624 

ANN2-4 iv 4-28-1 0.800 0.609  0.796 0.433 

ANN2-5 v 2-29-1 0.850 0.434  0.841 0.382 

t+3 

ANN3-1 i 1-25-1 0.714 0.749  0.707 0.750 

ANN3-2 ii 2-25-1 0.718 0.727  0.716 0.513 

ANN3-3 iii 3-23-1 0.731 0.707  0.719 0.508 

ANN3-4 iv 4-29-1 0.739 0.696  0.715 0.512 

ANN3-5 v 2-29-1 0.736 0.512  0.736 0.738 

t+4 
 

ANN4-1 i 1-30-1 0.664 0.789  0.651 0.566 

ANN4-2 ii 2-28-1 0.671 0.781  0.652 0.566 

ANN4-3 iii 3-25-1 0.690 0.758  0.651 0.566 

ANN4-4 iv 4-24-1 0.702 0.743  0.680 0.542 

ANN4-5 v 2-28-1 0.685 0.765  0.682 0.568 

t+5 

ANN5-1 i 1-25-1 0.634 0.805  0.612 0.597 

ANN5-2 ii 2-21-1 0.639 0.819  0.615 0.595 

ANN5-3 iii 3-21-1 0.662 0.795  0.616 0.597 

ANN5-4 iv 4-18-1 0.670 0.784  0.613 0.601 

ANN5-5 v 2-29-1 0.651 0.805  0.629 0.584 
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It can be seen from the results that model performance changes with respect to lead-

time forecast. For one day ahead forecasting the result is quite satisfactory, but as the 

lead-time increases the model efficiency is decreasing dramatically (Nash-Sutcliffe 

coefficient of efficiency decreases from 0.97 to 0.65). Also, using only current river 

flow time series (input combination (i) of Table 7.2) gives the worst result, while 

using a combination of both current river flow and rainfall (input combination (v) of 

Table 7.2) often gives the best result. Figure 7.2 shows the scatter plots between 

observed and forecasted river flow with the best fitted ANN models, for different 

lead time. This figure illustrates how the performance of the forecasting decreases 

with increasing the lead time. Also, it can be seen that for lead times greater than 3 

days, the ANN model totally fails in simulating the extreme conditions. 
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Figure 7. 2  Scatter plots of observed and ANN forecasted flow for different lead time. 

 

7.3.2 Improving the efficiency of ANN with WNN 

To improve the model efficiency, hybrid wavelet neural network model was applied. 
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series into 3,4 and 5 levels of decomposition. Figure 7.3 shows river flow time series 

and its sub-series, which are ‘db5’ wavelet coefficient with 4 levels of resolution. 

 

 

 

 

Figure 7. 3  Daily river flow time series and its db5 wavelet coefficients with four level of 

resulotion. 
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Similar to ANN models, various WNN models with different input combinations and 

structure were developed. Table 7.4 to Table 7.8 show the best WNN model structure 

based on the input selection, for one to five day lead-time forecasting respectively. 

 

Table 7. 4  Different WNN model’s structure and performance for 1 day ahead lead-time. 
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𝑁𝑆𝐸 RSME 
(m³/s) 

 𝑁𝑆𝐸 RSME 
(m³/s) 

 
WNND1-1 vi db5 3 4-26-1 0.952 0.306  0.947 0.221 

WNND1-2 vii db5 3 8-25-1 0.987 0.128  0.991 0.111 

WNND1-3 viii db5 3 12-26-1 0.996 0.086  0.992 0.083 

WNND1-4 ix db5 3 16-28-1 0.989 0.076  0.998 0.068 

WNND1-5 x db5 3 8-27-1 0.987 0.126  0.990 0.117 

WNND1-6 vi db5 4 5-29-1 0.960 0.271  0.944 0.228 

WNND1-7 vii db5 4 10-25-1 0.993 0.114  0.988 0.106 

WNND1-8 viii db5 4 15-20-1 0.995 0.095  0.992 0.084 

WNND1-9 ix db5 4 20-25-1 0.998 0.068  0.995 0.071 

WNND1-10 x db5 4 10-24-1 0.993 0.113  0.986 0.112 

WNND1-11 vi db5 5 6-27-1 0.961 0.269  0.947 0.221 

WNND1-12 vii db5 5 12-29-1 0.993 0.113  0.987 0.110 

WNND1-13 viii db5 5 18-19-1 0.996 0.094  0.994 0.084 

WNND1-14 ix db5 5 24-27-1 0.998 0.067  0.994 0.073 

WNND1-15 x db5 5 12-26-1 0.994 0.112  0.988 0.112 

WNNS1-1 vi sym2 3 4-16-1 0.944 0.337  0.943 0.228 

WNNS1-2 vii sym2 3 8-19-1 0.980 0.180  0.984 0.281 

WNNS1-3 viii sym2 3 12-29-1 0.994 0.103  0.986 0.113 

WNNS1-4 ix sym2 3 16-22-1 0.984 0.136  0.990 0.110 

WNNS1-5 x sym2 3 8-17-1 0.984 0.148  0.988 0.126 

WNNS1-6 vi sym2 4 5-17-1 0.952 0.299  0.940 0.235 

WNNS1-7 vii sym2 4 10-19-1 0.986 0.160  0.980 0.270 

WNNS1-8 viii sym2 4 15-28-1 0.993 0.114  0.986 0.114 

WNNS1-9 ix sym2 4 20-17-1 0.992 0.121  0.986 0.114 

WNNS1-10 x sym2 4 10-16-1 0.991 0.132  0.984 0.121 

WNNS1-11 vi sym2 5 6-18-1 0.952 0.296  0.943 0.229 

WNNS1-12 vii sym2 5 12-22-1 0.986 0.159  0.980 0.279 

WNNS1-13 viii sym2 5 18-27-1 0.993 0.113  0.987 0.114 

WNNS1-14 ix sym2 5 24-19-1 0.992 0.120  0.985 0.117 

WNNS1-15 x sym2 5 12-19-1 0.991 0.131  0.985 0.121 
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Table 7. 5  Different WNN model’s structure and performance for 2 day ahead lead-time. 
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 𝑁𝑆𝐸 RSME 
(m³/s) 

 
WNND2-1 vi db5 3 4-24-1 0.930 0.361  0.904 0.297 

WNND2-2 vii db5 3 8-29-1 0.977 0.206  0.960 0.193 

WNND2-3 viii db5 3 12-19-1 0.982 0.181  0.971 0.163 

WNND2-4 ix db5 3 16-27-1 0.980 0.141  0.981 0.143 

WNND2-5 x db5 3 8-22-1 0.981 0.166  0.956 0.190 

WNND2-6 vi db5 4 5-25-1 0.940 0.332  0.900 0.303 

WNND2-7 vii db5 4 10-25-1 0.981 0.213  0.965 0.191 

WNND2-8 viii db5 4 15-26-1 0.986 0.160  0.966 0.177 

WNND2-9 ix db5 4 20-30-1 0.991 0.129  0.977 0.146 

WNND2-10 x db5 4 10-28-1 0.984 0.172  0.961 0.189 

WNND2-11 vi db5 5 6-27-1 0.946 0.315  0.901 0.301 

WNND2-12 vii db5 5 12-29-1 0.982 0.182  0.963 0.202 

WNND2-13 viii db5 5 18-27-1 0.990 0.144  0.965 0.182 

WNND2-14 ix db5 5 24-20-1 0.992 0.111  0.975 0.154 

WNND2-15 x db5 5 12-25-1 0.988 0.155  0.961 0.194 

WNNS2-1 vi sym2 3 4-26-1 0.913 0.409  0.884 0.325 

WNNS2-2 vii sym2 3 8-24-1 0.957 0.261  0.937 0.232 

WNNS2-3 viii sym2 3 12-17-1 0.968 0.259  0.953 0.202 

WNNS2-4 ix sym2 3 16-25-1 0.970 0.200  0.946 0.226 

WNNS2-5 x sym2 3 8-22-1 0.976 0.188  0.947 0.211 

WNNS2-6 vi sym2 4 5-27-1 0.924 0.376  0.881 0.331 

WNNS2-7 vii sym2 4 10-20-1 0.961 0.270  0.942 0.230 

WNNS2-8 viii sym2 4 15-18-1 0.972 0.228  0.948 0.219 

WNNS2-9 ix sym2 4 20-27-1 0.982 0.184  0.942 0.230 

WNNS2-10 x sym2 4 10-28-1 0.980 0.195  0.952 0.210 

WNNS2-11 vi sym2 5 6-30-1 0.930 0.357  0.881 0.330 

WNNS2-12 vii sym2 5 12-24-1 0.962 0.232  0.941 0.243 

WNNS2-13 viii sym2 5 18-19-1 0.976 0.206  0.947 0.225 

WNNS2-14 ix sym2 5 24-19-1 0.983 0.158  0.941 0.243 

WNNS2-15 x sym2 5 12-25-1 0.983 0.176  0.952 0.215 
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Table 7. 6  Different WNN model’s structure and performance for 3 day ahead lead-time. 
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(m³/s) 

 
WNND3-1 vi db5 3 4-28-1 0.913 0.401  0.861 0.357 

WNND3-2 vii db5 3 8-28-1 0.961 0.269  0.939 0.237 

WNND3-3 viii db5 3 12-21-1 0.967 0.246  0.951 0.213 

WNND3-4 ix db5 3 16-29-1 0.968 0.195  0.947 0.216 

WNND3-5 x db5 3 8-28-1 0.959 0.278  0.930 0.256 

WNND3-6 vi db5 4 5-26-1 0.927 0.367  0.865 0.352 

WNND3-7 vii db5 4 10-27-1 0.969 0.238  0.945 0.224 

WNND3-8 viii db5 4 15-29-1 0.979 0.196  0.948 0.219 

WNND3-9 ix db5 4 20-30-1 0.983 0.179  0.951 0.213 

WNND3-10 x db5 4 10-24-1 0.967 0.246  0.936 0.242 

WNND3-11 vi db5 5 6-26-1 0.930 0.360  0.856 0.353 

WNND3-12 vii db5 5 12-24-1 0.972 0.234  0.935 0.225 

WNND3-13 viii db5 5 18-28-1 0.982 0.192  0.937 0.220 

WNND3-14 ix db5 5 24-24-1 0.986 0.175  0.940 0.213 

WNND3-15 x db5 5 12-24-1 0.970 0.241  0.926 0.243 

WNNS3-1 vi sym2 3 4-23-1 0.884 0.475  0.848 0.375 

WNNS3-2 vii sym2 3 8-30-1 0.933 0.381  0.896 0.336 

WNNS3-3 viii sym2 3 12-16-1 0.941 0.370  0.917 0.273 

WNNS3-4 ix sym2 3 16-24-1 0.940 0.316  0.907 0.290 

WNNS3-5 x sym2 3 8-28-1 0.945 0.332  0.906 0.301 

WNNS3-6 vi sym2 4 5-21-1 0.898 0.435  0.852 0.369 

WNNS3-7 vii sym2 4 10-26-1 0.942 0.338  0.903 0.318 

WNNS3-8 viii sym2 4 15-20-1 0.953 0.295  0.914 0.281 

WNNS3-9 ix sym2 4 20-24-1 0.955 0.289  0.911 0.286 

WNNS3-10 x sym2 4 10-24-1 0.954 0.294  0.912 0.284 

WNNS3-11 vi sym2 5 6-21-1 0.901 0.426  0.842 0.370 

WNNS3-12 vii sym2 5 12-24-1 0.944 0.331  0.893 0.319 

WNNS3-13 viii sym2 5 18-20-1 0.956 0.289  0.904 0.282 

WNNS3-14 ix sym2 5 24-21-1 0.958 0.283  0.901 0.287 

WNNS3-15 x sym2 5 12-24-1 0.956 0.287  0.902 0.285 
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Table 7. 7  Different WNN model’s structure and performance for 4 day ahead lead-time. 
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WNND4-1 vi db5 3 4-30-1 0.876 0.480  0.809 0.419 

WNND4-2 vii db5 3 8-27-1 0.934 0.350  0.903 0.299 

WNND4-3 viii db5 3 12-28-1 0.953 0.296  0.912 0.284 

WNND4-4 ix db5 3 16-30-1 0.935 0.291  0.885 0.297 

WNND4-5 x db5 3 8-26-1 0.935 0.345  0.886 0.329 

WNND4-6 vi db5 4 5-29-1 0.900 0.441  0.838 0.389 

WNND4-7 vii db5 4 10-30-1 0.952 0.300  0.919 0.273 

WNND4-8 viii db5 4 15-28-1 0.962 0.266  0.918 0.274 

WNND4-9 ix db5 4 20-27-1 0.961 0.268  0.917 0.276 

WNND4-10 x db5 4 10-29-1 0.953 0.295  0.902 0.301 

WNND4-11 vi db5 5 6-30-1 0.910 0.408  0.838 0.386 

WNND4-12 vii db5 5 12-28-1 0.952 0.297  0.919 0.271 

WNND4-13 viii db5 5 18-26-1 0.964 0.132  0.915 0.136 

WNND4-14 ix db5 5 24-29-1 0.963 0.263  0.923 0.265 

WNND4-15 x db5 5 12-23-1 0.955 0.288  0.912 0.284 

WNNS4-1 vi sym2 3 4-22-1 0.843 0.542  0.794 0.434 

WNNS4-2 vii sym2 3 8-19-1 0.894 0.475  0.858 0.373 

WNNS4-3 viii sym2 3 12-26-1 0.922 0.390  0.847 0.381 

WNNS4-4 ix sym2 3 16-26-1 0.906 0.382  0.834 0.381 

WNNS4-5 x sym2 3 8-24-1 0.916 0.412  0.866 0.361 

WNNS4-6 vi sym2 4 5-21-1 0.866 0.499  0.824 0.403 

WNNS4-7 vii sym2 4 10-20-1 0.910 0.407  0.873 0.341 

WNNS4-8 viii sym2 4 15-25-1 0.931 0.351  0.852 0.368 

WNNS4-9 ix sym2 4 20-21-1 0.931 0.351  0.865 0.354 

WNNS4-10 x sym2 4 10-27-1 0.933 0.353  0.881 0.330 

WNNS4-11 vi sym2 5 6-22-1 0.876 0.461  0.823 0.399 

WNNS4-12 vii sym2 5 12-19-1 0.911 0.404  0.873 0.338 

WNNS4-13 viii sym2 5 18-24-1 0.933 0.174  0.850 0.182 

WNNS4-14 ix sym2 5 24-25-1 0.932 0.345  0.871 0.341 

WNNS4-15 x sym2 5 12-22-1 0.935 0.344  0.891 0.312 
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Table 7. 8  Different WNN model’s structure and performance for 5 day ahead lead-time. 
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WNND5-1 vi db5 3 4-23-1 0.840 0.544  0.768 0.461 

WNND5-2 vii db5 3 8-30-1 0.914 0.400  0.861 0.357 

WNND5-3 viii db5 3 12-16-1 0.928 0.369  0.891 0.332 

WNND5-4 ix db5 3 16-29-1 0.920 0.328  0.848 0.329 

WNND5-5 x db5 3 8-21-1 0.888 0.486  0.838 0.397 

WNND5-6 vi db5 4 5-30-1 0.871 0.489  0.826 0.400 

WNND5-7 vii db5 4 10-26-1 0.944 0.321  0.898 0.307 

WNND5-8 viii db5 4 15-26-1 0.951 0.302  0.901 0.301 

WNND5-9 ix db5 4 20-20-1 0.953 0.295  0.912 0.285 

WNND5-10 x db5 4 10-19-1 0.918 0.391  0.874 0.341 

WNND5-11 vi db5 5 6-26-1 0.887 0.457  0.818 0.409 

WNND5-12 vii db5 5 12-27-1 0.911 0.326  0.943 0.285 

WNND5-13 viii db5 5 18-21-1 0.951 0.303  0.909 0.290 

WNND5-14 ix db5 5 24-23-1 0.961 0.270  0.905 0.296 

WNND5-15 x db5 5 12-23-1 0.934 0.349  0.886 0.323 

WNNS5-1 vi sym2 3 4-21-1 0.815 0.598  0.746 0.492 

WNNS5-2 vii sym2 3 8-30-1 0.868 0.543  0.799 0.457 

WNNS5-3 viii sym2 3 12-19-1 0.897 0.474  0.829 0.425 

WNNS5-4 ix sym2 3 16-27-1 0.821 0.432  0.855 0.427 

WNNS5-5 x sym2 3 8-28-1 0.881 0.506  0.816 0.432 

WNNS5-6 vi sym2 4 5-26-1 0.844 0.537  0.802 0.427 

WNNS5-7 vii sym2 4 10-29-1 0.897 0.436  0.833 0.392 

WNNS5-8 viii sym2 4 15-30-1 0.919 0.388  0.838 0.385 

WNNS5-9 ix sym2 4 20-18-1 0.919 0.389  0.851 0.370 

WNNS5-10 x sym2 4 10-30-1 0.911 0.406  0.851 0.370 

WNNS5-11 vi sym2 5 6-24-1 0.860 0.502  0.794 0.436 

WNNS5-12 vii sym2 5 12-20-1 0.866 0.443  0.874 0.365 

WNNS5-13 viii sym2 5 18-25-1 0.918 0.390  0.845 0.371 

WNNS5-14 ix sym2 5 24-21-1 0.857 0.356  0.912 0.384 

WNNS5-15 x sym2 5 12-28-1 0.927 0.363  0.863 0.351 
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When wavelet coefficients are used as inputs, the number of input neurons as well as 

the number of weights increase. Like ANN, WNN model efficiency varies by input 

selection. Figure 7.4 depicts the variation of different develop hybrid WNN models 

efficiency with different input selection and for different lead-time (L). Having only 

current river flow wavelet coefficient (input combination vi of Table 7.2) gives the 

worst result, while a combination of four river flow wavelet coefficient with different 

time lag (input combination ix of Table 7.2) gives the best result. Although there is 

not considerable difference between different WNN models, in most cases WNN 

models with db5 have better performance while those with sym2 and 3 levels of 

decomposition have the worst performance.  

 

 

Figure 7. 4  Different hybrid WNN model efficiency for different lead-time (L) in training and 

validation set. 

 

The results clearly revealed that the performance of the hybrid WNN models in both 

low and high lead time is better than ANN models. In particular, the higher lead time 

WNN performance is very satisfactory compared to ANN. This is also illustrated in 

Figure 7.5 which compares the RMSE of best fitted ANN and WNN. It can be seen 

that by increasing the lead-time the RMSE of ANN model dramatically increases 

compared to the WNN model. The superiority of hybrid WNN is also depicted in 

Figure 7.6 where 5-day ahead modelled river flow with best fitted classic ANN and 

hybrid WNND models are compared with observed values. 
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Figure 7. 5  Best fitted ANN and WNN model efficiency (RMSE) variation over the lead time in 

(a) training; (b) verification set. 
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Figure 7. 6  Comparison of the observed and modeled river flow for 5-day ahead with ANN5-5 and WNND5-14 models (1972-2011). 
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7.3.3 Application of ANFIS 

Adaptive neuro-fuzzy inference system model was developed with subtractive 

clustering method to generate a TSK type FIS structure. Two different input data sets 

were used for different lead-time forecasting. Table 7.9 shows different models’ 

performance. The results indicate that the models with both river flow and rainfall 

time series have better performance compared to those with using only river flow 

time series.  

 

Table 7. 9  ANFIS performance for different lead time. 

Lead 
time Model Input 

Dataset 

Training  Validation 

𝑁𝑆𝐸 RSME 
(m³/s) 

 
𝑁𝑆𝐸 RSME 

(m³/s) 

t+1 
ANFIS1-1 i 0.916 0.265  0.892 0.438 

ANFIS1-2 v 0.969 0.162  0.963 0.256 

t+2 
ANFIS2-1 i 0.800 0.462  0.763 0.649 

ANFIS2-2 v 0.856 0.408  0.823 0.561 

t+3 
ANFIS3-1 i 0.718 0.499  0.698 0.733 

ANFIS3-2 v 0.734 0.485  0.720 0.705 

t+4 
ANFIS4-1 i 0.659 0.673  0.656 0.782 

ANFIS4-2 v 0.683 0.633  0.668 0.768 

t+5 
ANFIS5-1 i 0.628 0.569  0.612 0.813 

ANFIS5-2 v 0.634 0.553  0.635 0.806 

 

Also, it can be seen from the results that model performance declines drastically with 

increasing lead-time. The Nash-Sutcliffe coefficient of efficiency decreases from 

0.97 for one step ahead to 0.63 for five steps ahead forecasting. Figure 7.7 shows the 

scatter plots between observed and forecasted river flow with the best fitted ANFIS 

models, for different lead time. This figure illustrates that like ANN models, ANFIS 

models fail in simulating the extreme river flow for the lead times greater than 3 

days. 
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Figure 7. 7 Scatter plots of observed and ANFIS forecasted flow for different lead time. 
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intelligence approach (ANN and ANFIS) performances. Figure 7.8 shows the 

structure of hybrid WNFD1-1 model, generated by subtractive clustering as an 

example. Inputs are db5 wavelet coefficients including one approximation and three 

details for three levels of decomposition, with generalized bell membership function 

and two rules. 

 

 

Figure 7. 8  Hybrid WNFD1-1 model structure, generated with subtractive clustering approach. 
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Table 7. 10  WNF models' structure and performance for different lead time. 

Lead 
time Model 

In
pu

t 
D

at
as

et
 

W
av

el
et

 

Le
ve

l o
f 

D
ec

om
po

s Training  Validation 

𝑁𝑆𝐸 RSME 
(m³/s) 

 
𝑁𝑆𝐸 RSME 

(m³/s) 

t+1 

WNFD1-1 vi db5 3 0.943 0.156  0.928 0.550 

WNFD1-2 vi db5 4 0.944 0.135  0.928 0.357 

WNFD1-3 vi db5 5 0.935 0.352  0.930 0.233 

WNFS1-1 vi sym2 3 0.982 0.125  0.942 0.336 

WNFS1-2 vi sym2 4 0.937 0.368  0.924 0.229 

WNFS1-3 vi sym2 5 0.982 0.489  0.938 0.122 

t+2 
 

WNFD2-1 vi db5 3 0.871 0.452  0.879 0.317 

WNFD2-2 vi db5 4 0.881 0.341  0.882 0.320 

WNFD2-3 vi db5 5 0.880 0.461  0.878 0.319 

WNFS2-1 vi sym2 3 0.875 0.459  0.879 0.342 

WNFS2-2 vi sym2 4 0.880 0.486  0.867 0.316 

WNFS2-3 vi sym2 5 Failed -  - - 

t+3 

WNFD3-1 vi db5 3 0.862 0.496  0.829 0.378 

WNFD3-2 vi db5 4 0.868 0.499  0.836 0.370 

WNFD3-3 vi db5 5 0.872 0.378  0.845 0.362 

WNFS3-1 vi sym2 3 0.870 0.487  0.817 0.537 

WNFS3-2 vi sym2 4 0.840 0.538  0.837 0.365 

WNFS3-3 vi sym2 5 Failed -  - - 

t+4 
 

WNFD4-1 vi db5 3 0.826 0.556  0.780 0.418 

WNFD4-2 vi db5 4 0.838 0.421  0.810 0.406 

WNFD4-3 vi db5 5 0.837 0.539  0.806 0.402 

WNFS4-1 vi sym2 3 0.801 0.630  0.797 0.421 

WNFS4-2 vi sym2 4 0.811 0.588  0.806 0.397 

WNFS4-3 vi sym2 5 Failed -  - - 

t+5 

WNFD5-1 vi db5 3 0.798 0.609  0.739 0.466 

WNFD5-2 vi db5 4 0.822 0.478  0.792 0.465 

WNFD5-3 vi db5 5 0.798 0.612  0.763 0.448 

WNFS5-1 vi sym2 3 0.796 0.573  0.714 0.663 

WNFS5-2 vi sym2 4 0.787 0.619  0.784 0.422 

WNFS5-3 vi sym2 5 Failed -  - - 

 

It can be seen from the results that the coefficient of efficiency values change with 

respect to the lead times. This change is more drastic in ANFIS model ( 0.97 to 0.634 

for 𝑁𝑆𝐸) compare to WNF (0.98 to 0.82 for 𝑁𝑆𝐸).  
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Figure 7. 9  Different hybrid WNF model efficiency for different lead-time (L) in training and 

validation set. 

 

Figure 7.9 demonstrates how hybrid neuro-fuzzy model efficiency varies by altering 

the wavelet transform and level of decomposition for different lead times. Figure 

7.10 also compares the RMSE of best fitted ANFIS and WNF models. It can be seen 

that the increasing rate of RMSE by the lead-time is higher for ANFIS model 

compared to the WNN model. The results revealed that the WNF model performance 

is much better than ANFIS especially for the longer lead time forecasting. Figure 

7.11 compares the hydrograph of observed and modelled river flow for 5-day ahead 

with best fitted ANFIS and WNFD models. 

  

Figure 7. 10  ANFIS and WNF models’ efficiency (RMSE) variation over the lead time in (a) 

training; (b) verification set. 
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Figure 7. 11  Comparison of the observed and modeled river flow for 5-day ahead with ANFIS5-2 and WNFD5-2 models (1972-2011). 
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7.3.5 Model Comparison 

The results confirm that pre-processing the data improves artificial intelligence 

models’ efficiency. It is also observed that neural network models’ performance is 

slightly better than fuzzy approach performance (Figure 7.12). It could be because of 

constrained structure of FIS as mentioned before. That is especially relevant in this 

study with the very large size of input data set that makes fuzzy approach more 

restricted. Table 7.11 summarized the best fitted ANN, ANFIS, WNN and WNF 

models performance for different lead time.  

 

 

Figure 7. 12  Variation of different models’ performance (𝑹𝟐) over the lead time. 

 

Best fitted WNN and WNF models’ estimations and the observed river flow for the 

last 5 years of data (from the validation data set) are shown in Figure 7.13.  It can be 

seen that the modeled time series match with the observed time series, while WNN 

provides better performance compare to the WNF.  
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Figure 7. 13  Comparison of the observed and modeled river flow for 5-day ahead with best fitted WNN and WNF models (2006-2011). 
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Table 7. 11  Best fitted models performances for different lead time. 

Lead 
time Model 

Training   Validation 

𝑁𝑆𝐸 RSME(m³/s)  𝑁𝑆𝐸 RSME(m³/s) 

t+1 

ANN1-5 0.975 0.216   0.969 0.169 
ANFIS1-2 0.969 0.162  0.963 0.256 
WNND1-9 0.998 0.068  0.995 0.071 
WNFS1-1 0.982 0.125   0.942 0.336 

t+2 

ANN2-5 0.850 0.434  0.841 0.382 
ANFIS2-2 0.856 0.408  0.823 0.561 
WNND2-9 0.991 0.129  0.977 0.146 
WNFD2-2 0.881 0.341  0.882 0.320 

t+3 

ANN3-5 0.736 0.512   0.736 0.738 
ANFIS3-2 0.734 0.485  0.720 0.705 
WNND3-9 0.983 0.179  0.951 0.213 
WNFD3-3 0.872 0.378   0.845 0.362 

t+4 

ANN4-4 0.702 0.743  0.680 0.542 
ANFIS4-2 0.683 0.633  0.668 0.768 
WNND4-14 0.963 0.263  0.923 0.265 
WNFD4-2 0.838 0.421  0.810 0.406 

t+5 

ANN5-5 0.651 0.805   0.629 0.584 
ANFIS5-2 0.634 0.553  0.635 0.806 
WNND5-14 0.961 0.270  0.905 0.296 
WNFD5-2 0.822 0.478   0.792 0.465 

 

 

Figure 7.14  shows the scatter plots of observed and best fit modelled river flow for 

5-day ahead forecasting, which clearly illustrates the different model performance 

and the accuracy of WNN model. Also, it shows that unlike WNN model, other 

models are failing to simulate extreme conditions, especially for flows greater than 5 

m³/s. This matter has been investigated more closely by comparing the first ten 

highest observed river flow in the 39 years of historical data with their modelled 

value (Table 7.12). The maximum relative error between simulated and observed 

peak flow is 3% with WNN, whereas this error is up to 72% for WNF and 98% for 

ANN and ANFIS.  
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Figure 7. 14  Scatter plots of five-day ahead forecasting of the best fit ANN, WNN, ANFIS and 

WNF model. 
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Figure 7.15 shows how developed models estimated the highest river flow in the 

historical time series, which happened on January 1982. This figure again confirms 

the reliability of WNN model for forecasting the sudden extreme events. 

 

 

Figure 7. 15  Highest observed river flow in historical time series and its estimation with 

developed models. 
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subtractive clustering method for river flow simulation and forecasting. Application 

of multi-resolution analysis of the input data on ANN and ANFIS model 

performance for forecasting multi-step ahead daily river flow has been investigated. 

Daubechies5 and Symlet2 wavelets were applied on Harvey River flow and rainfall 

time series to decompose the time series in 3, 4 and 5 levels of resolution. Different 

time lag combinations of wavelet coefficients were fed into ANN and ANFIS models 

as their inputs. The overall results show that pre-processing the raw data with 

wavelet has significantly improved the accuracy of forecasting.  

The results also indicated that the performance improvement is more substantial for 

longer lead-times. Although combining the wavelet with fuzzy neural network 

improves ANFIS model efficiency, WNN is the best fit model among all. In this 

study having both river flow and rainfall time series as inputs (input combination 𝑣), 
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lead to the best fit ANN and ANFIS models in terms of performance criteria. 

Whereas, best input selection for hybrid WNN models is the combination of up to 

four different time lag of river flow wavelet coefficients (input combination 𝑖𝑥). 

Reaching very satisfactory result, even for higher lead-times could be possible 

because of the strong correlation structure of Harvey River flow time series, as its 

autocorrelation coefficients decrease very gradually by increasing the time lag. 

The results further verified that altering mother wavelet or the level of decomposition 

does not have a considerable impact on models’ performance for each lead time, 

though using symlet2 with three levels of decomposition has the lowest efficiency 

among other hybrid models. 

Applying wavelets multi-resolution analysis, which extract different frequencies 

from historical data, helps predicting extreme values more accurately. In this case 

study, WNN model was the only model which had a very satisfactory performance in 

the extreme conditions simulation, even for five-day ahead forecasting. The quality 

of the historical time series plays an important role in this situation. Since in this case 

study, we had 39 years of daily data, the reliability of the WNN method in simulating 

the peak flows needs to be verified by studying more cases with different quality of 

available datasets. 

The outcome of this study will be useful for hydrologists, hydrological designers and 

decision makers in forecasting river flows and developing sustainable water 

distribution plan. 

 

 

 

 

  



 

 
 

  



 

 
 

 

Chapter 8 

Real Time Runoff Flow Forecasting for 
Flood Risk Management  

 

 

 

8.1 INTRODUCTION 

Undoubtedly, having appropriate flood-warning systems could save lives and reduce 

damaging effects of floods (Penning-Rowsell et al., 2014). Improving flood 

protection plan has high priority in many countries’ political agenda (Cloke and 

Pappenberger, 2009). However, this goal cannot be achieved unless through accurate 

and timely flood forecasting system.  

In this chapter an hourly rainfall-runoff model for the purpose of timely flood 

warning is developed. The application of different data-driven approaches for real 

time flood forecasting of the Richmond River, NSW, Australia, is investigated. 

Richmond River is highly prone to flooding and its characteristics are totally 

different with intermittent Western Australian rivers. The application of classic feed- 

forward artificial neural networks and adaptive neuro-fuzzy model with grid 

partitioning are first investigated. Model performance further improved by applying 

discrete wavelet transform (DWT). Daubechies mother wavelet is selected for multi 

resolution analysis of the hybrid wavelet neural network (WNN) and wavelet neuro-

fuzzy model (WNFG) input. Hourly river flow and rainfall data of the Casino 

gauging station of the Richmond River, including historical flood data, is collected. 

Developed models are applied for forecasting 1, 6, 12, 24, 36 and 48 hour ahead of 
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river flow at this station. The performance of models is also examined when an 

upstream river flow data (Wiangaree station), is employed as additional input.  

 

8.2 STUDY AREA AND DATA USED 

In this study, the Casino observation station of Richmond River is considered as a 

case study. The Richmond River is one of the largest rivers, located in the Northern 

part of New South Wales, Australia. The reason for selecting this study area is that 

Richmond River is highly prone to flooding and has experienced flooding a number 

of times. The Richmond River catchment area is approximately 6,900 𝑘𝑚 2, 

discharging into the Pacific Ocean. The catchment has the steep mountainous 

topography in the upper boundary. The major flow is forming by integration of 

mountain streams reaching the floodplain at the Casino town and then passes the 

region in a large flow path until it reaches to the Coraki (Caddis, 2010). 

For this study mean hourly rainfall and river flow discharge for 5 years, with an 

observation period from 2009 to 2014 (time series with a length of 43800 data), are 

collected from NSW water information website. The first 70 percent of data are used 

for training and the remaining are used for validation. The average hourly river flow 

of the Casino station is 23.36 𝑚3/𝑠 . The maximum flow during the study period is 

1276.86 𝑚3/𝑠 which caused flood on 22𝑛𝑑 May 2009. For improving the accuracy 

of the forecasting, river flow data from an upstream station, Wiangaree station, is 

also collected. Figure 8.1 illustrates the location of these two stations in the 

Richmond River catchment and highlights the flood plain map of the catchment. 
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Figure 8. 1  Richmond River catchment and its flood plain 

(http://australiasevereweather.com/floods, Bath, 2014)  
 

Statistics of river flow time series of both Casino and Wiangaree stations is shown in 

Table 8.1, including mean, minimum, maximum and standard deviation. Historical 

hourly river flow and rainfall time series for both training and validation sets of these 

two stations are also shown in Figure 8.2 and Figure 8.3.   

 

Table 8. 1  Statistical parameters of Richmond River flow data sets of the Casino and 

Wiangaree stations. 

 

 

 

 

Station Data Set 
River flow (1000 m³/day) 

Qmean Qmin Qmax Qstdv 

C
as

in
o Training 24.613 0.276 1276.86 72.836 

Validation 20.427 0.823 758.63 67.69 
Total 23.359 0.276 1276.861 71.357 

W
ia

ng
ar

ee
 

Training 10.511 0.181 1437.495 37.66 
Validation 9.211 0.516 728.26 37.58 

Total 10.121 0.181 1437.495 37.64 
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Figure 8. 2  Hourly river flow and rainfall time series of Casino station for (a) training and (b) validation set. 

 

 

Figure 8. 3  Hourly river flow and rainfall time series of Wiangaree station for (a) training and (b) validation set. 

0 

300 

600 

900 

1200 

0 

100 

200 

300 

Ra
in

fa
ll 

(m
m

) Rainfall River flow 

Ri
ve

r f
lo

w
 (m

3/
s)

 

0 

300 

600 

900 

1200 

0 

100 

200 

300 

Ra
in

fa
ll 

(m
m

) 

Ri
ve

r f
lo

w
 (m

3/
s)

 (b) 

0 

400 

800 

1200 

1600 

0 

100 

200 

300 

400 

Ra
in

fa
ll 

(m
m

) 

Rainfall River flow 

Ri
ve

r f
lo

w
 (m

3/
s)

 

(a) 

0 

400 

800 

1200 

1600 

0 

100 

200 

300 

400 

Ra
in

fa
ll 

 (m
m

) 

Ri
ve

r f
lo

w
 (m

3/
s)

 (b) 

(a) 



Chapter 8-  Real time runoff forecasting  
  
 

154 
 

8.3 ANALYSIS AND RESULTS 

8.3.1 ANN-based models 

For hourly river flow forecasting, first a three layered ANN with back propagation 

algorithm is developed. As explained in Chapter three, the optimum structure of a 

network is obtained by trial and error. The number of hidden neurons is increased 

from one to twenty in each trial to achieve the optimum number. The model is also 

applied for various lead times of 1, 6, 12, 24, 36 and 48 hour ahead, for runoff 

forecasting. In the first step, only rainfall and river flow of Casino station time series 

is used as the model input. The best structure of ANN for each lead time and their 

performances are given in Table 8.2. It is evident that the efficiency of the model 

decreases by increasing the lead time where the model is unreliable for 36 and 48 

hour ahead forecasting, as the Nash Sutcliffe efficiency is less than 0.5. 

 

Table 8. 2  ANN models structure and performance using only Casino station data. 

Model Lead 
time 

Model 
Neuron 

Structure 

Calibration   Validation 

NSE 
RSME  NSE 

RSME 
(m³/s)   (m³/s) 

ANN1S-1 1 2-3-1 0.998 244.8  0.999 212.6 

ANN1S-2 6 2-15-1 0.972 1055.4  0.974 950.0 

ANN1S-3 12 2-15-1 0.881 2170.5  0.884 1990.1 

ANN1S-4 24 2-12-1 0.634 3808.8  0.627 3570.4 

ANN1S-5 36 2-20-1 0.441 4706.7  0.409 4496.0 

ANN1S-6 48 2-18-1 0.321 5188.7  0.255 5048.2 

 

For improving the rainfall-runoff modelling, data of an upstream station is also 

integrated to the model input. Hourly river flow time series of Wiangaree station is 

used for this reason. The best structure and performances of the neural networks 

models, with the input of rainfall and river flow data of both stations are given in 

Table 8.3. The results show that the model efficiency is significantly improved by 

adding the upstream data, especially for 36 and 48 hours lead time. 

Table 8. 3  ANN models structure and performance using Casino and Wiangaree stations data. 
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Model Lead 
time 

Model 
Neuron 

Structure 

Calibration   Validation 

NSE 
RSME  NSE 

RSME 
(m³/s)   (m³/s) 

ANN2S-1 1 3-19-1 0.999 155.4  0.999 162.1 

ANN2S-2 6 3-7-1 0.988 685.9  0.986 695.6 

ANN2S-3 12 3-9-1 0.957 1308.3  0.910 1751.25 

ANN2S-4 24 3-6-1 0.875 2230.3  0.740 2983.49 

ANN2S-5 36 3-12-1 0.699 3453.6  0.630 3274.6 

ANN2S-6 48 3-2-1 0.506 4426.4  0.395 4548.0 

 

In the next step, hybrid WNN model is applied for forecasting. Considering previous 

studies in the literature, this research selected db3 mother wavelet as the multi-

resolution analysis of input time series. Both rainfall and river flow time series are 

decomposed by db3 mother wavelet into five level of decomposition. All of this 

wavelet coefficient (12 altogether) is imposed into the neural network model for 

different lead time forecasting. The best fitted model performance and structure with 

optimum number of hidden neurons is given in Table 8.4. 

 

Table 8. 4  Hybrid WNN models structure and performance using only Casino station data. 

Model Lead 
time 

Wavelet 
Level 

Model 
Neuron 

Structure 

Calibration   Validation 

NSE RSME  NSE RSME 
(m³/s)   (m³/s) 

WNN1S-1 1 db3-5 12-10-1 0.999 136.605  0.999 178.33 

WNN1S-2 6 db3-5 12-15-1 0.989 659.419  0.980 833.44 

WNN1S-3 12 db3-5 12-7-1 0.962 1221.297  0.946 1352.8 

WNN1S-4 24 db3-5 12-19-1 0.888 2107.750  0.849 2268.4 

WNN1S-5 36 db3-5 12-12-1 0.724 3305.438  0.716 3106.45 

WNN1S-6 48 db3-5 12-16-1 0.562 4169.415  0.493 4309.12 

 

Comparing the result with original ANN and same data set, significant improve in 

model efficiency is achieved. However, the performance of a hybrid model with 

single station data is almost as good as the ANN model with added upstream data for 

shorter lead-time and better for longer lead-time. Therefore, for further improvement 

of forecasting accuracy, data of both stations are used as input for the hybrid model. 
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Again, rainfall and two river flow time series are decomposed by db3 wavelet into 

five level of decomposition (18 wavelet coefficients), and imposed into ANN model. 

The result of hybrid WNN model with added upstream station data is given in the 

Table 8.5. 

 

Table 8. 5  Hybrid models structure and performance using Casino and Wiangaree stations 

data. 

Model Lead 
time 

Wavelet 
Level 

Model 
Neuron 

Structure 

Calibration   Validation 

NSE RSME  NSE RSME 
(m³/s)   (m³/s) 

WNN2S-1 1 db3-5 18-8-1 0.999 90.96  0.999 141.180 

WNN2S-2 6 db3-5 18-12-1 0.995 462.82  0.993 476.199 

WNN2S-3 12 db3-5 18-11-1 0.988 676.71  0.977 891.067 

WNN2S-4 24 db3-5 18-12-1 0.958 1287.19  0.934 1502.815 

WNN2S-5 36 db3-5 18-6-1 0.760 2926.75  0.754 2897.018 

WNN2S-6 48 db3-5 18-3-1 0.593 3888.53  0.516 4152.275 

 

Adding another river flow time series as extra hybrid WNN model input, shows the 

best results in terms of performance criteria. Figure 8.4 and Figure 8.5 compare NSE 

and RMSE of developed models for different lead time, respectively. These figures 

depict superiority of hybrid models and the positive impact of adding extra effective 

parameter as the model input. 
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Figure 8. 4  Nash-Sutcliffe coefficient of (a) training and (b) validation set of ANN-based models. 

   

Figure 8. 5  Root mean square error of (a) training and (b) validation set of ANN-based models. 

 

Figure 8.6 shows the scatter plot between the observed and modelled values of 

Casino station hourly river flow of the 24 hour lead time. This scatter plots show that 

adding upstream data, improves prediction reliability . It is also clearly evident that 

hybrid WNN model significantly outperform ANN model, particularly in extreme 

events forecasting. Therefore, WNN-2S model with NSE of 0.96, is a powerful tool 

for real time river flow forecasting, which provides reliable warning at least 24 hours 

before flood events. 
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Figure 8. 6  Scatter plots of observed and simulated river flow for 24 hour lead time with 

different ANN-based models. 

 

As extreme events forecasting is one of the most important and critical application of 

hydrological forecasting, the ability of hybrid models in simulating extreme events is 

examined using the recent flood events. As mentioned earlier, Richmond River has 

experienced flooding in Casino town in May 2009. Figure 8.7 compares observed 

hourly river flow and simulated flow (with 24 hour lag) with different models in the 

period of 20𝑡ℎ to 24𝑡ℎ of May 2009. This graph clearly illustrates the ability of 

hybrid models in simulating the sudden flood event. Also Figure 8.8 demonstrates 

the ability of different models in simulating peak flow by comparing observed versus 

simulated river flow values for the four highest flow during the study period. The 

large gap between observed flow and single input ANN model outcomes, again 

clarifies incapability of ANN in flood forecasting and flood risk mitigation 

applications. 
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Figure 8. 7  Comparing observed flood versus ANN-based modeled hourly river flow (24 hour 

ahead forecasts). 

 

 

Figure 8. 8  Comparing four highest observed peak flow versus ANN-based modeled values (24 

hour ahead forecasts). 
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shaped function is selected as the membership function. The optimum number of 

membership functions with the highest model performance is achieved by trial and 

error and increasing the number from 2 to maximum feasible membership functions. 

Both rainfall and river flow data of Casino station are used as the model input for 

different lead time river flow forecasting. Table 8.6 shows the performances of 

ANFIS model and the optimum number of membership functions and correspondent 

fuzzy rules for two input datasets. 

 

Table 8. 6  ANFIS models structure and performance using only Casino station data. 

Model Lead 
time 

No. 
MFs 

Fuzzy 
Rules 

Calibration   Validation 

NSE 
RSME  NSE 

RSME 
(m³/s)   (m³/s) 

ANF1S-1 1 6 36 0.998 230.8  0.998 192.7 

ANF1S-2 6 7 49 0.970 1085.0  0.974 947.0 

ANF1S-3 12 7 49 0.876 2213.7  0.885 1982.8 

ANF1S-4 24 8 64 0.630 3829.7  0.628 3564.1 

ANF1S-5 36 5 25 0.435 4734.8  0.410 4489.6 

ANF1S-6 48 8 16 0.318 5201.0  0.255 5047.2 

 

Results show that model efficiency is very high up to 12 hours ahead and acceptable 

for 24 hours ahead runoff forecasting. However, it fails to forecast lead-time of 36 

hours or more. 

In the next step, upstream river flow time series of Wiangaree station is also added to 

the model. Table 8.7 shows the results of ANFIS models using data from both 

Casino and Wiangaree stations . By increasing the number of inputs, the maximum 

feasible number of membership functions is reduced up to four. Therefore, adding 

another input time series just slightly improved the model efficiency. 
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Table 8. 7  ANFIS models structure and performance using Casino and Wiangaree stations 

data. 

Model Lead 
time 

No. 
MFs 

Fuzzy 
Rules 

Calibration   Validation 

NSE 
RSME  NSE 

RSME 
(m³/s)   (m³/s) 

ANF2S-1 1 3 27 0.999 127.618  0.998 225.166 

ANF2S-2 6 4 64 0.981 869.411  0.975 921.277 

ANF2S-3 12 4 64 0.957 1818.534  0.891 1926.832 

ANF2S-4 24 3 27 0.676 3447.144  0.649 3464.284 

ANF2S-5 36 3 27 0.421 4793.193  0.408 4496.919 

ANF2S-6 48 3 27 0.326 5171.172  0.296 4904.844 

 

Application of hybrid wavelet neuro-fuzzy model is also investigated by applying 

db3 mother wavelet on input data. As a result of fuzzy modelling restrictions, two 

level of decomposition is obtained as the maximum feasible level for rainfall-runoff 

modelling with two input data set (rainfall and one river flow time series). Adding 

upstream data, this number reduced to only one level of decomposition. The reason 

as explained in Chapter three, is that the number of fuzzy rules increases 

exponentially with the number of input variables. For example, if a rainfall and two 

river flow time series are decomposed to two level of decomposition, the number of 

input data increases to nine time series, which require 512 fuzzy rules for the 

minimum of two membership functions. Table 8.8 and Table 8.9 show hybrid WNF 

models performance of different time-lead forecasting with single and double 

stations input data, respectively. The maximum level of decomposition and the 

number of membership functions for feasible modelling is considered for WNF 

modelling. 
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Table 8. 8  WNF models structure and performance using only Casino station data. 

Model Lead 
time 

Wavelet 
Level 

No. 
MFs 

Fuzzy 
Rules 

Calibration  Validation 

NSE RSME  NSE RSME 
(m³/s)  (m³/s) 

WNF1S-1 1 db3-2 2 64 0.999 177.2  0.999 131.7 

WNF1S-2 6 db3-2 2 64 0.986 741.0  0.979 838.4 

WNF1S-3 12 db3-2 2 64 0.952 1378.5  0.930 1547.1 

WNF1S-4 24 db3-2 2 64 0.851 2426.9  0.917 1680.4 

WNF1S-5 36 db3-2 2 64 0.667 3631.0  0.751 2919.5 

WNF1S-6 48 db3-2 2 64 0.459 4631.3  0.532 4001.9 

 

Table 8. 9  WNF models structure and performance using Casino and Wiangaree stations data. 

Model Lead 
time 

Wavelet 
Level 

No. 
MFs 

Fuzzy 
Rules 

Calibration   Validation 

NSE 
RSME  NSE 

RSME 
(m³/s)   (m³/s) 

WNF2S-1 1 db3-1 2 64 0.999 150.584  0.999 160.507 
WNF2S-2 6 db3-1 2 64 0.974 792.837  0.980 833.270 
WNF2S-3 12 db3-1 2 64 0.949 1336.500  0.931 1538.896 
WNF2S-4 24 db3-1 2 64 0.827 2616.283  0.790 2681.384 
WNF2S-5 36 db3-1 2 64 0.624 3756.337  0.500 3735.770 
WNF2S-6 48 db3-1 2 64 0.417 4957.059  0.395 4595.445 

 

Comparing the result with the original ANFIS models, the forecasting accuracy has 

significantly improved, especially for 24 and 36 hour ahead forecasts. However, 

hybrid models are also failing to forecast 48 hour ahead of runoff. Figures 8.9 and 

8.10 compare NSE and RMSE of developed models for different lead time, 

respectively. 
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Figure 8. 9  Nash-Sutcliffe coefficient of (a) training (b) validation set of fuzzy-based models. 

 

    

Figure 8. 10  Root mean square error of (a) training and (b) validation set of fuzzy-based 
models. 

 

These figures indicate that hybrid model, with only Casino station data, performs 

better than hybrid model with added upstream data. This pattern again confirms FIS 

limitation when the size of input-output variables is extremely huge and the fact that 

only one level of decomposition is not efficient enough for enhancing the 

forecasting. Figure 8.11 shows the scatter plot between the observed and modelled 

values of Casino station hourly river flow for 24-hour lead time. It is evident that 

hybrid models outperform single ANFIS model. However, they are not reliable for 

one day ahead flood warning.  
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Figure 8. 11  Scatter plots of observed and simulated river flow for 24 hour lead time with 

different fuzzy-based models. 

 

For investigation of model performance in simulating May 2009 flood, observed and 

modelled river flow (with 24 hour lag) during the flood period is plotted in Figure 

8.12. This graph shows applying even one or two level of decomposition and limited 

structure of FIS, WNF model still able to forecast 24 hour ahead flood with an 

acceptable accuracy. Figure 8.13 also demonstrates the ability of different fuzzy-

based models in simulating peak flow by comparing observed versus simulated river 

flow values (24 hour lag), for the four highest flow during the study period. 

Generally, hybrid model outputs are closer to observed peak flow and the gap 

between observed flow and ANFIS models outcome is larger. 
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Figure 8. 12  Comparing observed flood versus fuzzy-based modeled hourly river flow (24 hour 

ahead forecasts). 

 

 

Figure 8. 13  Comparing four highest observed peak flow versus fuzzy-based modeled values (24 

hour ahead forecasts). 

 

8.3.3 Models comparison 

Comparing all models, hybrid WNN model is the most efficient among all, 

especially for longer than 24 hour ahead forecasting. ANN model efficiency is 

generally higher than ANFIS model for different lead times in this case study.Whilst 

NSE of the best fitted ANN model for 36 hour ahead flow forecasting is 0.70, where 

ANFIS model fails to do this forecast (NSE=0.42). Figure 8.14 to Figure 8.17 
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WNF modelled runoff for 12, 24, 36 and 48 hour lead times, respectively. The 

superiority of ANN–based models is clearly evident in these figures. However, 

comparing flood hydrographs (Figure 8.7 and Figure 8.12) indicates that neither 

ANN nor ANFIS models are reliable for flood forecasting. Applying wavelet 

decomposition on ANN inputs (rainfall and river flow time series) leads to a highly 

accurate flood forecasting of 24 hours prior to the event.  
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Figure 8. 14  Scatter plots of observed and simulated river flow for 12 hour lead time with best fitted ANN, WNN, ANFIS and WNF models. 

 

 

Figure 8. 15  Scatter plots of observed and simulated river flow for 24 hour lead time with best fitted ANN, WNN, ANFIS and WNF models. 
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Figure 8. 16  Scatter plots of observed and simulated river flow for 36 hour lead time with best fitted ANN, WNN, ANFIS and WNF models. 

 

 

Figure 8. 17  Scatter plots of observed and simulated river flow for 48 hour lead time with best fitted ANN, WNN, ANFIS and WNF models. 
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8.4 CONCLUSION  

In this section, different data-driven approaches are developed for real time runoff 

forecasting. Artificial neural networks, adaptive neuro-fuzzy inference system and 

their associated hybrid models, in conjunction with wavelet multi-resolution 

analysis, are applied for hourly rainfall-runoff modeling. Application of the 

developed models in forecasting the different lead time is investigated. All models 

were highly efficient in forecasting 1, 6 and 12 hour ahead forecasting. By 

increasing the lead time from 12 to 48 hour ahead, the accuracy of forecasting 

decreases for all models with different trends.  

Hybrid wavelet models significantly outperform the classic ANN and ANFIS 

models in forecasting the longer lead times. Applying wavelet multi resolution 

analysis and adding upstream river flow time series, the performance of 36 hour 

ahead forecasting is 80% improved (from 0.41 to 0.74 of the Nash-Sutcliffe 

efficiency in the testing set). Hybrid wavelet neural network model (WNN) has the 

best performance among all models. This model is able to forecast hourly river 

flow, 24 hour ahead with the accuracy of 0.95 for NSE. This ability makes WNN 

model a reliable tool for flood warning. 

This study further concludes that the performance of ANN-based models is 

generally better than fuzzy-based models. The reason is mainly restricted structure 

of FIS with too many rules for higher number of inputs. Using very long historical 

time series (with length of almost 44000 for each), the choice of a number of 

membership function and level of decomposition was limited to the minimum. It 

can be inferred that applying one or two level of decomposition in multi-resolution 

analysis of input data could not improve the model efficiency significantly. The 

application of ANFIS and WNF models in different case studies with different size 

of input variables need to be investigated for a credible comparison between ANN 

and fuzzy-based models. Since adding one upstream river flow data had a 

significant impact on the accuracy of the forecasting, adding more effective 

variable should be considered in future studies. Overall, the results of this study 

confirm the robustness of the proposed structure of the hybrid models, WNN in 

particular, for the real time rainfall-runoff forecasting in the study area. 



 

 

 

 



 

 
 

 

Chapter 9 

Conclusions and Future Work 
 

 

 

 

9.1 CONCLUSION 

In this study an attempt is made to develop highly accurate river flow forecasting 

models using innovative computational intelligence based methods. Unlike 

conceptual or physically-based models, CI models do not need various number of 

variables for modelling complex rainfall-runoff process. Computational intelligence 

models are able to extract information from only river flow time series to achieve 

accurate future values.  Application of various computational intelligence methods, 

including various types and structure of artificial neural networks, adaptive neuro-

fuzzy inference system and hybrid wavelet models, are investigated. Four different 

rivers with different characteristics are selected as case studies; Harvey River, Avon 

River, Ellen Brook River in WA and Richmond River in NSW, Australia. Firstly, the 

impact of multivariate input selection on daily river flow forecasting is investigated 

in two different study areas. Secondly, different CI models are applied for short, mid 

and long term river flow forecasting. Then the application of different CI models for 

forecasting multi-step ahead of daily river flow is studied and improved. Finally, 

developed models are applied for hourly river flow forecasting of Richmond River 

with high potential of flooding to investigate the application of proposed models for 

timely flood warning. 
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In modelling and forecasting of short term, long term, multi-step ahead, seasonal and 

extreme river flow, CI models are found to be very promising alternative to 

traditional river flow forecasting models. Following is the summarized conclusions 

of this study;  

− Computational intelligence models performance highly depends on the 

quality of data. Having long historical data is essential for reliable 

forecasting.  

 

− Input selection has a very important role in data-driven modelling. This study 

confirms that forward stepwise selection of input data with high auto 

correlation function, improves river flow time series modelling. 

 

− Adding other effective variables such as rainfall or upstream flow time series, 

could significantly enhance forecasting accuracy. 

 

− Normalization and preprocessing the data is essential in fuzzy modelling. 

Application of neural networks modelling to the selected study areas also 

shows that data normalization has a very positive impact on neural networks 

training.  

 

− There is no precise method for defining the optimum number of neurons in 

the hidden layer of neural networks. For each study area, this number needs 

to be determined by trial and error procedure. However, the optimum number 

increases by model input size. 

 

− Considering highly nonlinear and non-stationary characteristics of river flow 

time series, pre-processing the input data with discrete wavelet analysis, 

significantly improves the forecasting reliability. Investigating the application 

of different CI models with different structures, hybrid wavelet neural 

networks and wavelet neuro-fuzzy models considerably outperformed 

classical ANN and ANFIS models in river flow forecasting.  

 



Chapter 9-  Conclusions and future works 
  
 

172 
 

− As one of the inherent problems in all forecasting methods, the forecasting 

reliability decreases with increasing the lead time. Integration of wavelet 

multi-resolution analysis into proposed hybrid models, the accuracy of long 

term and higher step ahead forecasting substantially improved.  

 

− Despite high correlation between modelled and observed river flow, ANN 

and ANFIS failed to predict sudden extreme conditions. These models are not 

reliable for extreme event forecasting and sudden flood warning. 

 

− ANN-based models often outperformed fuzzy-based models. This is 

attributed to the restricted structure of fuzzy inference systems. The number 

of fuzzy if-then rules increases exponentially with the number of inputs. The 

maximum input size for a fuzzy model to achieve feasible training is less than 

that for an ANN model. Therefore, adding other effective parameters or 

different time lag of time series with high ACF, is very restricted in ANFIS 

modelling. Decomposing inputs to a number of wavelet coefficients the gap 

between hybrid neural networks and hybrid neuro-fuzzy model performance 

is even higher. 

 

− Adopting an appropriate mother wavelet in hybrid models improves the 

forecasting performance. The most effective type of mother wavelet depends 

on the river flow time series characteristics and could be defined with trial 

and error procedure. In this study, several mother wavelets are applied for 

multi-resolution analysis of input time series, including Haar, Daubechies, 

Coiflet and Symlet. In most case studies, Daubechies wavelet resulted most 

efficient modelling. 

 

− The optimum level of wavelet decomposition in hybrid models also needs to 

be determined by trial and error. Increasing the resolution level, up to the 

optimum number, will improve forecasting accuracy. Whereas, having a large 

level of decomposition, the model might fail to reach feasible convergence or 

become inaccurate due to oversized network. 
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− Hybrid wavelet neural networks approach gives the highest accuracy among 

all developed models for extreme flow forecasting and timely flood warning. 

 

 

9.2 RECOMMENDATION FOR FUTURE WORKS 

The outcome of this study confirms the robustness and reliability of proposed hybrid 

CI approaches for river flow forecasting. However, there are still many issues to be 

investigated in future research. Following is a brief recommendation for further 

research;  

In this study the type of mother wavelet and optimum level of decomposition for 

reaching best fitted hybrid model are determined by trial and error. Investigating the 

relation between river flow characteristics and suitable shape of mother wavelet or 

the length of data and the optimum level of decomposition, would be helpful in 

future forecasting. 

It is observed that adding effective time series such as rainfall or upstream river flow 

data, have a significant impact on model performance. Investigating the role of other 

effective climatic or hydrological parameter (e.g. air temperature, soil moisture, 

evaporation, solar radiation,…) in enhancing model efficiency could be considered in 

future work. 

Current studies often use observed data for future forecasting. The application of 

forecasted rainfall (by weather forecast methods) as CI models’ input in improving 

the accuracy of river flow forecasts also needs to be investigated. This method could 

be especially effective in improving the reliability of multi step ahead hourly and 

daily river flow forecasts. 

Since application of hybrid wavelet neuro-fuzzy approach with subtractive clustering 

in river flow forecasting introduced in this research, the limitations and capabilities 

of this approach need further investigation by applying this method in different 

regions.   
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Considering the emerging development in optimization approach, one suggestion for 

future work could be investigating the application of evolutionary optimization 

approaches (e.g. Swarm intelligence optimization or genetic programing) in training 

the CI models. 

For more convenient utilization of CI methods in different regions, selecting the best 

fitted model structure, based on river characteristics could be studied. For this reason 

data clustering should initially apply on different rivers. Then the best fitted model 

with a fixed structure for rivers in same cluster could be selected.  

Considering the proven ability of hybrid wavelet models in simulating highly non-

stationary and nonlinear river flow time series, the application of this approach in 

other hydro-environmental fields such as groundwater or environmental modelling 

and forecasting could be studied. 

 



 

 
 

 



 

175 
 

REFERENCES: 

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., & Rasmussen, J. 
(1986). An introduction to the European hydrological system, SHE. Part2: 
Structure of a physically-based distributed modelling system. Journal of 
Hydrology, 87, 61-77. 

Abe, S. (2001) Pattern classification : neuro-fuzzy methods and their comparison. 
Springer-Verlag New York. 

Abrahart, R., & See, L. (2000). Comparing neural network and autoregressive 
moving average techniques for the provision of continuous river flow 
forecasts in two contrasting catchments. Hydrological Processes, 14(11-12), 
2157-2172. 

Adamowski, J., & Sun, K. (2010). Development of a coupled wavelet transform and 
neural network method for flow forecasting of non-perennial rivers in semi-
arid watersheds. Journal of Hydrology, 390 (1-2), 85-91. 
doi: 10.1016/j.jhydrol.2010.06.033 

Anctil, F., Lauzon N., & Filion, M. (2008). Added gains of soil moisture content 
observations for streamflow predictions using neural networks. Journal of 
Hydrology, 359(3-4):225-234. 

Anctil, F., Perrin, C., & Andréassian, V. (2004). Impact of the length of observed 
records on the performance of ANN and of conceptual parsimonious rainfall-
runoff forecasting models. Environmental Modelling and Software, 19(4), 
357-368. 

Aqil, M., Kita, I., Yano, A., & Nishiyama, S. (2007). A comparative study of 
artificial neural networks and neuro-fuzzy in continuous modeling of the 
daily and hourly behaviour of runoff. Journal of Hydrology, 337(1–2), 22-34.  
doi: http://dx.doi.org/10.1016/j.jhydrol.2007.01.013 

ASCE Task Committee on application of artificial neural networks in hydrology. 
(2000a). Artificial neural networks in hydrology I: Preliminary concepts. 
Journal of Hydrologic Engineering 5(2): 115-123. 

ASCE Task Committee on application of artificial neural networks in hydrology. 
(2000b). Artificial neural networks in hydrology II: Hydrologic applications. 
Journal of Hydrologic Engineering 5(2): 124-137. 



 

176 
 

Bates, B., Kundzewicz, Z. W., Wu, S., & Palutikof, J. (2008). Climate change and 
water. Technical paper of the intergovernmental panel on climate change. 
Geneva(VI):210. 

Beale, M. H., Hagan, M.T., & Demuth, H.B. (2012). MATLAB neural network 
toolbox user’s guide. MathWorks, Inc.  

Berthet, L., Andréassian, V., Perrin, C., & Javelle, P. (2009). How crucial is it to 
account for the Antecedent Moisture Conditions in flood forecasting? 
Comparison of event-based and continuous approaches on 178 catchments. 
Hydrol. Earth Syst. Sci. Discuss., 6(2), 1707-1736.  
doi: 10.5194/hessd-6-1707-2009 

Besaw, L. E., Rizzo, D. M., Bierman, P. R., & Hackett, W. R. (2010). Advances in 
ungauged streamflow prediction using artificial neural networks. Journal of 
hydrology, 386(1–4), 27-37.  
doi: http://dx.doi.org/10.1016/j.jhydrol.2010.02.037 

Beven, K. (1985). Distributed models: John Wiley and Sons, Chichester, Engl. 

Beven, K. J., & Kirkby, M. J. (1979). A physically-based variable contributing area 
model of basin hydrology. Hydrology and Earth System Science. Bull. 24:43-
69. 

Beven, K., Warren, R,. & Zaoui, J. (1980). SHE: Towards a methodology for 
physically-based distributed forecasting in hydrology. Hydrological 
Forecasting: IAHS-AISH Publ. No. 129.  

Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algoritms. 
Plenum Press, New York. 

Birikundavyi, S., Labib, R., Trung, H., & Rousselle, J. (2002). Performance of 
Neural Networks in Daily Streamflow Forecasting. Journal of Hydrologic 
Engineering, 7(5):392-398. 

Boughton, W. C. (2004). The Australian water balance model. Environmental 
Modelling and Software, 19, 943-956.  

Box, G., & Jenkins, G. (1970). Time series analysis: forecasting and control. Holden-
Day: San Francisco. 



 

177 
 

Broomhead, D., & Lowe, D. (1988). Multivariable functional interpolation and 
adaptive networks. Complex Systems, 2, 321-355. 

Burnash, R. J. C., Ferral, R. L. & McGuire, R. A. (1973). A Generalised streamflow 
simulation system–conceptual modelling for digital computers. Joint Federal 
and State River Forecast Centre, Sacramento, Technical Report, 204.  

Butts, M. B., Payne, J. T., Kristensen, M. & Madsen, H. (2004). An evaluation of the 
impact of model structure on hydrological modelling uncertainty for 
streamflow prediction. Journal of Hydrology, 298, 242-266.  

Caddis, B. (2010). Richmond River flood mapping study. BMT WBM Pty Ltd. 

Cannas, B., Fanni, A., See, L., & Sias, G. (2006). Data preprocessing for river flow 
forecasting using neural networks: Wavelet transforms and data partitioning. 
Physics and Chemistry of the Earth, Parts A/B/C, 31(18), 1164-1171.  
doi: 10.1016/j.pce.2006.03.020 

Carpenter, T. M., Sperfslage, J. A., Georgakakos, K. P., Sweeney, T., & Fread, D. L. 
(1999). National threshold runoff estimation utilizing GIS in support of 
operational flash flood warning systems. Journal of hydrology, 224(1–2), 21-
44.  
doi: http://dx.doi.org/10.1016/S0022-1694(99)00115-8 

Chang, F. J., & Chang, Y. T. (2006). Adaptive neuro-fuzzy inference system for 
prediction of water level in reservoir. Advances in Water Resources, 29(1):1-
10. 

Chartres C., & Williams, J. (2006). Can Australia overcome its water scarcity 
problems. Journal of Developments in Sustainable Agriculture, 1:17-24. 

Chau, K., Wu, C., & Li, Y. (2005). Comparison of Several Flood Forecasting Models 
in Yangtze River. Journal of Hydrologic Engineering, 10(6), 485-491.  
 doi:10.1061/(ASCE)1084-0699(2005)10:6(485) 

Chiang, Y. M., Chang, L. C., & Chang, F.J. (2004). Comparison of static-
feedforward and dynamic-feedback neural networks for rainfall–runoff 
modeling. Journal of Hydrology, 290(3–4):297-311. 

Chiew, F. H. S., Peel, M. C., & Western, A. W. (2002). Application and testing of 
the simple rainfall-runoff model SIMHYD. Mathematical models of small 
watershed hydrology and applications, 335-367. 



 

178 
 

Chiu, S. (1994). Fuzzy Model Identification Based on Cluster Estimation. Journal of 
Intelligent & Fuzzy Systems, 2(3).  

Cigizoglu, H. K. (2003a). Estimation, forecasting and extrapolation of river flows by 
artificial neural networks. Hydrological Sciences Journal, 48(3), 349-361.  

Cigizoglu, H. K. (2003b). Incorporation of ARMA models into flow forecasting by 
artificial neural networks. Environmetrics, 14(4), 417-427. 
doi: 10.1002/env.596 

Cigizoglu, H. K., & Kisi, O. (2005). Methods to improve the neural network 
performance in suspended sediment estimation. Journal of Hydrology, 317(3–
4):221-238. 

Clarke, R. T. (1973). A review of some mathematical models used in hydrology, 
with observations on their calibration and use. Journal of hydrology, 19(1), 1-
20.  
doi: http://dx.doi.org/10.1016/0022-1694(73)90089-9 

Cloke, H. L., & Pappenberger, F. (2009). Ensemble flood forecasting: A review. 
Journal of hydrology, 375(3–4), 613-626.  
doi: http://dx.doi.org/10.1016/j.jhydrol.2009.06.005 

Crawford, N. H., & Linsley, R.K. (1966). Digital simulation in hydrology: Stanford 
watershed model IV. Technical report No. 39, Department of Civil 
engineering. Stanford University:210. 

Croke, B., Smith, A. B., & Jakeman, A. J. (2002). A one parameter groundwater 
discharge model linked to the IHACRES rainfall-runoff model, Proceedings 
of the 1st Biennial meeting of the international environmental modelling and 
software society, University of Lugano, Switzerland, 1, 428-433.  

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. 
Mathematical Control, Signals and Systems, 2, 303-314.  

Daniell, T.M. (1991). Neural networks - applications in hydrology and water 
resources engineering. International Conference on Hydrology and Water 
Resources Symposium, 3(3):797-802. 

Daubechies, I. (1988). Time-frequency localization operators: a geometric phase 
space approach. IEEE Ttransactions of information theory, 34(605-12). 

http://dx.doi.org/10.1016/0022-1694(73)90089-9


 

179 
 

Daubechies, I. (1992). Ten lectures on wavelets. Society for industrial and applied 
mathematics, 357.  

Dawson, C. W., & Wilby, R. L. (2001). Hydrological modelling using artificial 
neural networks. Progress in Physical Geography, 25(1), 80-108.  

Dawson, C. W., Abrahart, R. J., Shamseldin, A. Y., & Wilby, R. L. (2006). Flood 
estimation at ungauged sites using artificial neural networks. Journal of 
Hydrology, 319(1-4), 391-409.  

Demicco, R., & Klir, G. (2004). Fuzzy logic in Geology: Elsevier Inc.  
doi: 10.1016/B978-012415146-8/50000-7 

Dibike, Y. B., & Solomatine, D. P. (2001). River flow forecasting using artificial 
neural networks. Physics and Chemistry of the Earth, Part B: Hydrology, 
Oceans and Atmosphere, 26(1), 1-7.  
doi: 10.1016/s1464-1909(01)85005-x 

Donn, M. J., Barron, O. V., & Barr, A. D. (2012). Identification of phosphorus 
export from low-runoff yielding areas using combined application of high 
frequency water quality data and MODHMS modelling. Science of The Total 
Environment, 426(0), 264-271.  
doi: http://dx.doi.org/10.1016/j.scitotenv.2012.03.021 

Downer, C., & Ogden, F. (2004). GSSHA: model To simulate diverse stream flow 
producing processes. Journal of Hydrologic Engineering, 9(3), 161-174.  
doi:10.1061/(ASCE)1084-0699(2004)9:3(161) 

Fernando, D. A. K., & Jayawardena, A. W. (1998). Runoff forecasting using RBF 
networks with OLS algorithm. Journal of Hydrologic Engineering, 3(3), 203-
209.  

Firat, M. (2008). Comparison of artificial intelligence techniques for river flow 
forecasting. Hydrology and Earth System Sciences, 12(1), 123-139.  

Firat, M., Turan, M.E., Yurdusev, M.A.,. (2009). Comparative analysis of fuzzy 
inference systems for water consumption time series prediction. Journal of 
Hydrology, 374(3-4), 235-241.  

Fortin, J., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., & Villeneuve, J. 
(2001a). Distributed watershed model compatible with remote sensing and 



 

180 
 

GIS data. I: Description of model. Journal of Hydrologic Engineering, 6(2), 
91-99. 
doi:10.1061/(ASCE)1084-0699(2001)6:2(91) 

Fortin, J., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., & Villeneuve, 
J. (2001b). Distributed watershed model compatible with remote sensing and 
GIS data. II: Application to Chaudière watershed. Journal of Hydrologic 
Engineering, 6(2), 100-108.  

Fourier, J. (1808). Memoire sur la propagation de la chaleur dans les corps solides. 
Nouveau Bulletin des sciences par la Societe philoatique de Paris. , I, 112-
116.  

Galloway, P. (2004). Natural resource management issues in the Avon River basin. 
Resource management technical report, Department of agriculture, Perth, 
288.  

Ghanbarpour, M. R., Abbaspour, K. C., & Hipel, K. W. (2009). A comparative study 
in long-term river flow forecasting models. International Journal of River 
Basin Management, 7(4), 403-413. 
doi: 10.1080/15715124.2009.9635398 

Googhari, S. H. K., & Lee, T. S. (2011). Applicability of adaptive neuro-fuzzy 
inference systems in daily reservoir inflow forecasting. International Journal 
of Soft Computing, 6(3), 75-84.  

Gosain, A. K., Mani, A. & Dwivedi, C. (2009). Hydrological modeling review. 

Climawater, Report No. 1. 

Graham, D. N., & Butts, M. B. (2005). Flexible intergrated watershed modeling with 
MIKE SHE. Watershed Models. Ed. V.P.Singh and D.K. Frevert, CRC Press, 
P245-271.  

Han, D. (2011). Flood risk assessment and management. Bentham Science 
Publishers. 

Huang, M., & Liang, X. (2006). On the assessment of the impact of reducing 
parameters and identification of parameter uncertainties for a hydrologic 
model with applications to ungauged basins. Journal of hydrology, 320(1–2), 
37-61.  
doi: http://dx.doi.org/10.1016/j.jhydrol.2005.07.010 



 

181 
 

Hundecha, Y., Bardossy, A., & Werner, H. W. (2001). Development of a fuzzy 
logic-based rainfall-runoff model. Hydrological Sciences Journal, 46(3), 363-
376.  
doi: 10.1080/02626660109492832 

Imrie, C. E., Durucan, S., & Korre, A. (2000). River flow prediction using artificial 
neural networks: generalisation beyond the calibration range. Journal of 
Hydrology, 233(1-4), 138-153.  
doi: 10.1016/s0022-1694(00)00228-6 

Iyengar, S. S., Cho, E. C. & Phoha, V. V. (2002). Foundations of Wavelet Networks 
and Applications. Chapman & Hall/CRC Press. 

Jacquin, A. P., & Shamseldin, A. Y. (2009). Review of the application of fuzzy 
inference systems in river flow forecasting. Journal of hydroinformatics, 
11(3-4), 202-210.  

Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE 
Transactions on Systems, Man and Cybernetics, 23(3), 665.  

Jang, J. S., & Gulley, N. (1995). The Fuzzy Logic Toolbox for Use with MATLAB. 
MathWorks, Inc. 

Jang, J. S., Sun, C.T., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing-A 
Computational Approach to Learning and Machine Intelligence [Book 
Review]. IEEE Transactions on Automatic Control 42, 1482-1484. 

Jayawardena, A. W. (2014). Environmental and hydrological systems modelling, 
CRC Press. 

Jayawardena, A. W., Perera, E. D. P., Zhu, B., Amarasekara, J. D., & Vereivalu, V. 
(2014). A comparative study of fuzzy logic systems approach for river 
discharge prediction. Journal of hydrology, 514(0), 85-101.  
doi: http://dx.doi.org/10.1016/j.jhydrol.2014.03.064 

Jayawardena, A. W., & Zhou, M. C. (2000). A modified spatial soil moisture storage 
capacity distribution curve for the Xinanjiang model. Journal of Hydrology, 
227(93-113).  

Ji, L., Gallo, K. (2006). An agreement coefficient for image comparison. 
Photogrammetric Engineering and Remote Sensing, 72(7), 823-833.  



 

182 
 

Jiang, S., Ren, L., Hong, Y., Yong, B., Yang, X., Yuan, F., & Ma, M. (2012). 
Comprehensive evaluation of multi-satellite precipitation products with a 
dense rain gauge network and optimally merging their simulated hydrological 
flows using the Bayesian model averaging method. Journal of Hydrology, 
452–453(0), 213-225.  
doi: http://dx.doi.org/10.1016/j.jhydrol.2012.05.055" 

Johanson, R. C., Imhoff, J. C., Davis, H. H. (1980). User's manual for the hydrologic 
simulation program FORTRAN (HSPF). EPA-600/9-80-105, U.S. EPA 
environmental research laboratory, Athens, GA.  

Julien, P.Y. &  Saghafian B., (1991). A two-dimensional watershed rainfall-runoff 

model. Civil Eng. Rep. CER90-91PYJ-BS-12Colorado State University, Fort 

Collins. 

Kachroo, R. K. (1992a). River flow forecasting part5: Applications of a conceptual 
model. Journal of Hydrology, 133, 141-178.  

Kachroo, R. K. (1992b). River flow forecasting. Part 1. A discussion of the 
principles. Journal of Hydrology, 133(1–2), 1-15.  
doi: http://dx.doi.org/10.1016/0022-1694(92)90146-M" 

Kalman, B. L., Kwasny, S.c. (1992). Why Tanh? Choosing a sigmoidal function. 
Proceedings of the International Joint Conference on Neural Networks. 
Baltimore, MD IEEE, New York.  

Karunanithi, N., Grenney, W. J., Whitley, D., & Bovee, K. (1994). Neural networks 
for river flow prediction. (Special Issue: Neural Networks). Journal of 
Computing in Civil Engineering, 8, 201.  

Kermani, M. Z., & Teshnehlab, M. (2008). Using adaptive neuro-fuzzy inference 
system for hydrological time series prediction. Applied Soft Computing., 
8(2), 928-936.  
doi: 10.1016/j.asoc.2007.07.011 

Keskin, M. E., Taylan, D., & Terzi, Ö. (2006). Adaptive neural-based fuzzy 
inference system (ANFIS) approach for modelling hydrological time series. 
Hydrological Sciences Journal, 51(4), 588-598.  
doi: 10.1623/hysj.51.4.588 

http://www.scopus.com/authid/detail.url?authorId=7102246042&amp;eid=2-s2.0-0022062627
http://www.sciencedirect.com.dbgw.lis.curtin.edu.au/science/article/pii/002216949502692I


 

183 
 

Khan, M. S., & Coulbaly, P. (2006). Bayesian neural network for rainfall-runoff 
modeling. Water Resources Research, 42(7).  

Kim, G., & Barros, A. P. (2001). Quantitative flood forecasting using multisensor 
data and neural networks. Journal of Hydrology, 246(1-4), 45-62.  

Kim, T.W., & Valdés, J. B. (2003). Nonlinear Model for Drought Forecasting Based 
on a Conjunction of Wavelet Transforms and Neural Networks. Journal of 
Hydrologic Engineering, 8(6), 319-328. 
doi:10.1061/(ASCE)1084-0699(2003)8:6(319)" 

Kingston, G. B., Lambert, M. F. & Maier, H, R. (2005). Bayesian training of 
artificial neural networks used for water resources modeling. Water 
Resources Research, 41(12):W12409. 

Kisi, O. (2006). Daily pan evaporation modelling using a neuro-fuzzy computing 
technique. Journal of Hydrology, 329(3-4), 636-646.  

Kisi, O. (2009). Neural networks and wavelet conjunction model for intermittent 
streamflow forecasting. Journal of Hydrologic Engineering, 14(8), 773-782. 

Kisi, O., Shiri, J., 2012. Wavelet and neuro-fuzzy conjunction model for predicting 
water table depth fluctuations. Nordic Hydrology, 43, 286-300. 

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps, 
Biological cybernetics, 43, 59-69.  

Krause P., B., Boyle, D.P., & Base, F. (2005). Comparison of different efficiency 
criteria for hydrological model assessment. Advances in Geosciences, 5, 89-
97.  

Krycha, K. A., & Wagner, U. (1999). Applications of artificial neural networks in 
management science: a survey. Journal of Retailing and Consumer Services, 
6(4), 185-203.  
doi: http://dx.doi.org/10.1016/S0969-6989(98)00006-X 

Kumar, A. R. S., Sudheer, S. K. P., Jain, K., & Agarwal, P. K. (2005). Rainfall-
runoff modelling using artificial neural networks: comparison of network 
types. Hydrological Processes, 19(6), 1277-1291.  

Labat, D. (2005). Recent advances in wavelet analyses: Part 1. A review of concepts. 
Journal of Hydrology, 314(1-4), 275-288.  



 

184 
 

doi: 10.1016/j.jhydrol.2005.04.003 

Lam, H. K., Ling, S., & Nguyen, H. T. (2012). Computational intelligence and its 
applications: Evolutionary computation, fuzzy logic, neural network and 
support vector machine techniques. World Scientific Publishing Company.  

Lin, G. F., & Wu, M. C. (2011). An RBF network with a two-step learning algorithm 
for developing a reservoir inflow forecasting model. Journal of Hydrology, 
405(3–4), 439-450. 
doi: 10.1016/j.jhydrol.2011.05.042 

Linsley, R. K., Crawford, N. H. (1960). Computation of a Synthetic Streamflow 
Record on a Digital Computer. In surface water-Proceedings of the Helsinki 
symposium, IAHS Pulbication, 51, 526-538.  

Liong, S. Y., Lim, W. H., Kojiri, T., & Hori, T. (2000). Advance flood forecasting 
for flood stricken Bangladesh with a fuzzy reasoning method. Hydrological 
Processes, 14(3), 431-448.  
doi: 10.1002/(sici)1099-1085(20000228)14:3<431:aid-hyp947>3.0.co;2-0 

Lippmann, R. P. (1987). An Introduction to Computing with Neural Nets. IEEE 
ASSP Magazine, 4-22(April).  

Liu, Y., Brown, J., Demargne, J., & Seo, D.-J. (2011). A wavelet-based approach to 
assessing timing errors in hydrologic predictions. Journal of hydrology, 
397(3–4), 210-224. 
doi: http://dx.doi.org/10.1016/j.jhydrol.2010.11.040 

Machado, F., Mine, M., Kaviski, E., & Fill, H. (2011). Monthly rainfall–runoff 
modelling using artificial neural networks. Hydrological Sciences Journal, 
56(3), 349-361.  
doi: 10.1080/02626667.2011.559949 

Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and 
forecasting of water resources variables: a review of modelling issues and 
applications. Environmental Modelling & Software, 15(1), 101-124.  
doi: http://dx.doi.org/10.1016/S1364-8152(99)00007-9 

Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the 
development of neural networks for the prediction of water resource variables 



 

185 
 

in river systems: Current status and future directions. Environmental 
Modelling & Software, 25(8), 891-909.  
doi: http://dx.doi.org/10.1016/j.envsoft.2010.02.003 

Mallat, S. (1985). A compact multiresolution representation: the wavelet model. 
Proceedings of IEEE workshop computer Vision, Miami, FL.  

Mamdani, E.H., Assilian S. (1975). An experiment in linguistic synthesis with a 
fuzzy logic controller. International journal of Man-Machine Studies, 7(1), 1-
13.  

Martins, O., Sadeeq M. & Ahaneku, I. (2011). ARMA Modelling of Benue River 
Flow Dynamics: Comparative Study of PAR Model. Journal of Modern 
Hydrology, 1(1) 1-9.  
doi: 10.4236/ojmh.2011.11001. 

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in 
nervous activity. Bulletin of Mathematical Biology, 5: 115-133. 

Mehrotra, K., Mohan, C. K., & Ranka, S. (1997). Elements of artificial neural 
networks. MIT Press. 

Meyer, Y. (1987). Wavelet and operators. Rapport CEREMADE, 8704. Paris-
Dauphine University, Paris. 

Moradkhani, H., Hsu, K. l., Gupta, H. V., & Sorooshian, S. (2004). Improved 
streamflow forecasting using self-organizing radial basis function artificial 
neural networks. Journal of Hydrology, 295(1–4), 246-262.  
doi: http://dx.doi.org/10.1016/j.jhydrol.2004.03.027 

Moriasi, D. N., Arnold, J.G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., Veith, 
T. L. (2007). Model evaluation guidelines for systematic quantification of 
accuracy in watershed simulations. American Society of Agricultural and 
Biological Engineers, 50(3), 885-900.  

Morlet, J., Arens, G., Fourgeau, E., & Glard, D. (1982). Wave propagation and 
sampling theory—Part I: Complex signal and scattering in multilayered 
media. Geophysics, 47(2), 203-221.  
doi:10.1190/1.1441328 

http://dx.doi.org/10.4236/ojmh.2011.11001


 

186 
 

Motovilov, Y. G., Gottschalk, L., Engeland, K., & Rodhe, A. (1999). Validation of a 
distributed hydrological model against spatial observations. Agricultural and 
Forest Meteorology, 98–99(0), 257-277.  
doi: http://dx.doi.org/10.1016/S0168-1923(99)00102-1 

Mulvany, W. T. (1845). Observation on regulating weirs. Transactions of the 
institution of civil engineers, Ireland, I, 83-93.  

Nash, J. E., Sutcliffe, J. V. (1970). River flow forecasting through conceptual 
models. Part 1- A discussion of principles. Journal of Hydrology, 10, 282-
290.  

Nash, J. E. (1959). Synthetic determination of unit hydrograph parameters. Journal of 
Geophysics research, 64(1), 111-115.  

Nawi, N., Khan, A., & Rehman, M. (2013). A New Back-Propagation Neural 
Network Optimized with Cuckoo Search Algorithm. In Computational 
science and its applications– ICCSA 2013, 7971, 413-426, Springer Berlin 
Heidelberg. 

Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2005). Short-term 
flood forecasting with a neuro-fuzzy model. Water Resources Research, 
41(4), W04004.  
doi: 10.1029/2004wr003562 

Nayebi, M., Anmin, S., & Parsa, S. Z. (2006). Daily stream flow prediction 
capability of artificial neural networks as influenced by minimum air 
temperature data. Biosystems Engineering, 95(4), 557-567.  

Nor, N., Harun, S., & Kassim, A. (2007). Radial basis function modeling of hourly 
streamflow hydrograph. Journal of Hydrologic Engineering, 12(1), 113-123.  
doi:10.1061/(ASCE)1084-0699(2007)12:1(113) 

Nourani, V., Baghanam, A. H., Adamowski, J., & Gebremichael, M. (2013). Using 
self-organizing maps and wavelet transforms for space–time pre-processing 
of satellite precipitation and runoff data in neural network based rainfall–
runoff modeling. Journal of Hydrology, 476(0), 228-243.  
doi: http://dx.doi.org/10.1016/j.jhydrol.2012.10.054 



 

187 
 

Nourani, V., Kisi, O., & Komasi, M. (2011). Two hybrid artificial Intelligence 
approaches for modeling rainfall–runoff process. Journal of Hydrology, 
402(1-2), 41-59.  
doi: 10.1016/j.jhydrol.2011.03.002 

O'Connell, P. E. (1970). River flow forecasting through conceptual models part II - 
The Brosna catchment at Ferbane. Journal of hydrology, 10(4), 317-329.  

O'Connor K. M., 2006. River flow forecasting. In River basin modelling for flood 
risk mitigation: Taylor & Francis. 

Panday, S., & Huyakorn, P. S. (2004). A fully coupled physically-based spatially-
distributed model for evaluating surface/subsurface flow. Advances in Water 
Resources, 27(4), 361-382.  
doi: http://dx.doi.org/10.1016/j.advwatres.2004.02.016 

Partal, T. (2009). River flow forecasting using different artificial neural network 
algorithms and wavelet transform.NRC Research Press 36, 26-39. 

Partal, T., & Kisi, O. (2007). Wavelet and neuro-fuzzy conjunction model for 
precipitation forecasting. Journal of Hydrology, 342(1-2), 199-212.  
doi: 10.1016/j.jhydrol.2007.05.026 

Penning-Rowsell, E. C., Tunstall, S. M., Tapsell, S. M., & Parker, D. J. (2000). The 
Benefits of Flood Warnings: Real But Elusive, and Politically Significant. 
Water and Environment Journal, 14(1), 7-14.  
doi: 10.1111/j.1747-6593.2000.tb00219.x 

Perrin, C., Michel, C. & Andreassian, V. (2003). Improvement of a parsimonious 
model for streamflow simulations. Journal of Hydrology, 279, 275-289.  

Piotrowski, A. P., & Napiorkowski, J. J. (2011). Optimizing neural networks for 
river flow forecasting- Evolutionary Computation methods versus the 
Levenberg–Marquardt approach. Journal of Hydrology, 407(1–4), 12-27.  
doi: http://dx.doi.org/10.1016/j.jhydrol.2011.06.019 

Podger, G. (2004). Rainfall runoff library. CRC for catchment hydrology. Australia. 

Poff, N. L., Tokar, S., & Johnson, P. (1996). Stream Hydrological and ecological 
responses to climate change assessed with an artificial neural network. 
Limnology and Oceanography, 41(5), 857-863.  

http://dx.doi.org/10.1016/j.jhydrol.2011.06.019


 

188 
 

Pramanid, N.,Rabindra, K., Singh, A., (2011). Daily river flow forecasting using 
wavelet ANN hybrid models. Journal of Hydroinformatics, 13(1), pp49. 

Refsgaard, J. C. (1997). Parameterisation, calibration and validation of distributed 
hydrological models. Journal of hydrology, 198(1–4), 69-97.  
doi: http://dx.doi.org/10.1016/S0022-1694(96)03329-X 

Refsgaard, J. C., & Storm, B. (1995). MIKE SHE. In V. P. Singh, Computer models 
in hydrology (pp. 809-846), Water Resources Publications. Colorado, USA. 

Ren, L., Xiang, X., & Ni, J. (2013). Forecast Modeling of Monthly Runoff with 
Adaptive Neural Fuzzy Inference System and Wavelet Analysis. Journal of 
Hydrologic Engineering, 18(9), 1133-1139. 
doi:10.1061/(ASCE)HE.1943-5584.0000514 

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage 
and organization in the brain. Psychological Review, 65(6), 386-408.  

Rumelhart, D. E., Hintont, G. E., & Williams, R. J. (1986). Learning representation 
by back-propagating errors. Nature, 323 (9), 533-536.  

Sen, Z., & Altunkaynak, A. (2006). A comparative fuzzy logic approach to runoff 
coefficient and runoff estimation. Hydrological Processes, 20(9), 1993-2009.  
doi: 10.1002/hyp.5992 

Sene, K. (2010). Hydrometeorology: Forecasting and applicaions: Springer. 
doi:10.1007/978-90-481-3403-8 

Shamseldin, A. Y. (1997). Application of a neural network technique to rainfall-
runoff modelling. Journal of Hydrology, 199(3–4), 272-294.  
doi: http://dx.doi.org/10.1016/S0022-1694(96)03330-6 

Sivakumar, B., & Berndtsson, R. (2010). Advances in Data-based Approaches for 
Hydrologic Modeling and Forecasting: World Scientific. GB656.2.H9. 

Sivakumar, B., Jayawardena, A. W., & Fernando, T. M. K. G. (2002). River flow 
forecasting: use of phase-space reconstruction and artificial neural networks 
approaches. Journal of Hydrology, 265(1-4), 225-245.  

Srinivasulu, S., & Jain, A. (2006). A comparative analysis of training methods for 
artificial neural network rainfall–runoff models. Applied Soft Computing, 
6(3), 295-306.  



 

189 
 

doi: http://dx.doi.org/10.1016/j.asoc.2005.02.002 

Sudheer, C., Maheswaran, R., Panigrahi, B. K., & Mathur, S. (2014). A hybrid SVM-
PSO model for forecasting monthly streamflow. Neural Computing and 
Applications, 24(6), 1381-1389.  
doi: 10.1007/s00521-013-1341-y 

Sugawara, M. (1961). On the analysis of runoff structure about several Japanese 
rivers. Japanese Journal of Geophysics, 2(4), 210-216.  

Sugeno, M., & Kang, G.T. (1988). Structure identification of fuzzy model. Fuzzy Set 
and System, 28, 15-33.  

Takagi, T., Sugeno, M., (1985). Fuzzy Identification of Systems and its Applications 
to Modeling and Control. IEEE Transactions on Systems, Man and 
Cybernetics, 15, 116-132.  

Talei, A., Chua, L. H. C., & Wong, T. S. W. (2010). Evaluation of rainfall and 
discharge inputs used by Adaptive Network-based Fuzzy Inference Systems 
(ANFIS) in rainfall–runoff modeling. Journal of Hydrology, 391(3–4), 248-
262.  
doi: http://dx.doi.org/10.1016/j.jhydrol.2010.07.023" 

Tawfik, M., Ibrahim, A., & Fahmy, H. (1997). Hysteresis sensitive neural network 
for modeling rating curves. Journal of Computing in Civil Engineering, 11(3), 
206-211. 
doi: 10.1061/(asce)0887-3801(1997)11:3(206) 

Tetko, I. V., Livingstone, D. J., & Luik, A. I. (1995). Neural network studies. 1. 
Comparison of overfitting and overtraining. Journal of Chemical Information 
and Computer Sciences, 35(5), 826-833. 
 doi: 10.1021/ci00027a006 

Todini, E. (1988). Rainfall-runoff modeling - Past, present and future. Journal of 
hydrology, 100(1–3), 341-352.  
doi: http://dx.doi.org/10.1016/0022-1694(88)90191-6 

Turan, M. E., & Yurdusev, M. A. (2009). River flow estimation from upstream flow 
records by artificial intelligence methods. Journal of Hydrology, 369(1–2), 
71-77.  
doi: http://dx.doi.org/10.1016/j.jhydrol.2009.02.004 

http://dx.doi.org/10.1016/j.asoc.2005.02.002


 

190 
 

Tuteja, N. K., & Cunnane, C. (1999). A quasi physical snowmelt runoff modelling 
system for small catchments. Hydrological Processes, 13(12-13), 1961-1975.  
doi: 10.1002/(sici)1099-1085(199909)13:12/13<1961:aid-hyp887>3.0.co 

Vaze, J., Jorda, P., Beecham, R., Frost, A. Summerell, G. (2012). Guidelines for 
rainfall-runoff modelling: Towards best practice model application. eWater 
cooperative research centre. ISSN- 978-1-921543-51-7 

Valenca, M., Ludermir, T., & Valenca, A. (2005). River flow forecasting for 
reservoir management through neural networks. HIS '05. Fifth International 
Conference on Hybrid Intelligent Systems.  
doi: 10.1109/ICHIS.2005.95 

Wang, K., & Altunkaynak, A. (2012). Comparative case study of rainfall-runoff 
modeling between SWMM and fuzzy logic approach. Journal of Hydrologic 
Engineering, 17(2):283-291. 

Wang, W. (2006). Stochasticity, nonlinearity and forecasting of streamflow 
processes. Scitech Book News, 31. 

Wang, W., & Ding, J. (2003). Wavelet network model and its application to the 
prediction of hydrology. Nature and Science, 1(1), 67-71.  

Wei, S., Song, J., & Khan, N. I. (2012). Simulating and predicting river discharge 
time series using a wavelet-neural network hybrid modelling approach. 
Hydrological Processes, 26(2), 281-296.  
doi: 10.1002/hyp.8227 

Wei, S., Yang, H., Song, J., Abbaspour, K., & Xu, Z. (2013). A wavelet-neural 
network hybrid modelling approach for estimating and predicting river 
monthly flows. Hydrological Sciences Journal, 58(2), 374-389.  
doi: 10.1080/02626667.2012.754102 

Weilin, L., Lina, L., & Zengchuan, D. (2011). Neural network model for 
hydrological forecasting based on multivariate phase space reconstruction. In 
proceedings of Seventh International Conference on Natural Computation 
(ICNC) 2: 663-667. 
doi: 10.1109/icnc.2011.6022232. 



 

191 
 

Werner, M., Reggiani, P., De Roo, A., Bates, P., & Sprokkereef, E. (2005). Flood 
forecasting and warning at the river basin and at the european scale. Natural 
Hazards, 36(1-2), 25-42. 

Wilke, S. J. (2006). The Harvey River Restoration Taskforce: a Novel Community-
based Management Scheme. 9th international river symposium, Brisbane, 
Australia.  

Wu, C. L., Chau, K. W., & Li, Y. S. (2009). Methods to improve neural network 
performance in daily flows prediction. Journal of Hydrology, 372(1–4), 80-
93. 
doi: http://dx.doi.org/10.1016/j.jhydrol.2009.03.038 

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.  

Zeng, X., Kiviat, K. L., Sakaguchi, K., & Mahmoud, A. M. A. (2012). A toy model 
for monthly river flow forecasting. Journal of Hydrology, 452–453(0), 226-
231.  
doi: http://dx.doi.org/10.1016/j.jhydrol.2012.05.053 

Zhang, W. J., & Barrion, A. T. (2006). Function approximation and documentation 
of sampling data using artificial neural networks. Environmental Monitoring 
and Assessment, 122, 185-201.  

Zhao, R. J. (1977). Flood forecasting method for humid regions of China. East China 
college of hydraulic engineering Nanjing, 19-51.  

Zhou, H. Ch., Peng, Y., Liang, G.H. (2008). The research of monthly discharge 
predictor-corrector model based on wavelet decomposition. Water Resource 
Mange, 22, 217-227. 

 

Every reasonable effort has been made to acknowledge the owners of copyright 

material. I would be pleased to hear from any copyright owner who has been omitted 

or incorrectly acknowledged. 


	Honey Badrzadeh
	This thesis is presented for the Degree of
	Doctor of Philosophy
	Declaration
	Abstract
	Acknowledgements
	List of Publication
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Notations

	Research Overview
	1.1 Background
	1.2 Motivation
	1.3 Thesis Objective and scope
	1.4 Structure of the Thesis

	A Review on River Flow Forecasting Methods
	2.1 Introduction
	2.2 Physically-based models
	2.3 Conceptual models
	2.4 Data driven models
	2.4.1 Classical data driven approach
	2.4.2 Computational intelligence approach


	Computational Intelligence Approach
	3.1 Introduction
	3.2 Artificial Neural Networks
	3.2.1 Introduction
	3.2.2 Neuron Modeling and Activation functions
	3.2.3 Neural network architecture
	3.2.3.1 Feed-forward multilayer perceptron ANN

	3.2.4 Neural network learning
	3.2.4.1  Backpropagation algorithm

	3.3 Neuro-Fuzzy Modelling
	3.3.1 Introduction
	3.3.2 Fuzzy logic
	3.3.3 Fuzzy inference systems
	3.3.4 Adaptive neuro-fuzzy inference system
	3.3.5 Input space partitioning
	3.3.5.1 Grid partitioning
	3.3.5.2 Scatter partitioning (clustering)
	(a) Subtractive clustering
	(b) Fuzzy C-mean clustering (FCM)

	3.4 Wavelet Multi-Resolution Analysis
	3.4.1 Introduction
	3.4.2 Fourier Transform
	3.4.3 Short-Time Fourier Transform
	3.4.4 Continuous Wavelet Transform
	3.4.5 Discrete Wavelet Transform
	3.4.6 Mother wavelets
	3.4.7 Time Series Decomposition by Wavelet

	3.5 Summary

	Structure of Proposed Hybrid Models
	4.1 Introduction
	4.2 Wavelet neural networks
	4.2.1 Neural networks sub-model
	4.2.2 Wavelet sub-model

	4.3 Wavelet neuro-fuzzy with grid partitioning
	4.3.1 ANFIS sub-model with grid partitioning
	4.3.2 Wavelet sub-model

	4.4 Wavelet neuro-fuzzy with clustering
	4.4.1 Hybrid wavelet neuro-fuzzy model with subtractive clustering (WNFS)
	4.4.2 Hybrid wavelet neuro-fuzzy model with fuzzy C-mean clustering (WNFC)

	4.5 Performance criteria
	4.6 Summary

	Daily River Flow Forecasting Using Multivariate Inputs
	5.1 Introduction
	5.2 Case studies
	5.3 Application of ANN
	5.4 Application of ANFIS
	5.5 Improving the efficiency with hybrid models
	5.6 Conclusion

	Short Term and Long Term River Flow Forecasting
	6.1 Introduction
	6.2 Study area and data used
	6.3 Input selection for models
	6.4 Results and discussion
	6.4.1 Performance of ANN-based models in river flow forecasting
	6.4.2 Performance of Fuzzy-based models in river flow forecasting

	6.5 Conclusion

	Multi-Step Ahead River Flow Forecasting
	7.1 Introduction
	7.2 Study area and data used
	7.3 Results and Discussion
	7.3.1 Application of ANN
	7.3.2 Improving the efficiency of ANN with WNN


	/
	7.3.3 Application of ANFIS
	7.3.4 Improving the efficiency of ANFIS with WNF
	7.3.5 Model Comparison
	7.4 Conclusion

	Real Time Runoff Flow Forecasting for Flood Risk Management
	8.1 Introduction
	8.2 Study area and data used
	8.3 Analysis and results
	8.3.1 ANN-based models
	8.3.2 Fuzzy-based models

	/
	8.3.3 Models comparison

	8.4 Conclusion

	Conclusions and Future Work
	9.1 Conclusion
	9.2 Recommendation for future works
	References:


