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ABSTRACT 

 

The leaching of phosphorus fertiliser directly affects pasture growth and contributes 

to environmental damage. Single superphosphate fertiliser is the commonly used 

phosphorus fertiliser for pastures and is derived from chemically treating rock 

phosphate into relative proportions of monobasic, dibasic and tribasic calcium 

phosphate. Eighty-six per cent of single superphosphate is the water-soluble 

monobasic calcium phosphate, which is also the form most likely to leach in soils 

with low phosphorus retention. Manipulating the fertiliser manufacturing process 

allows the ratio of monobasic, dibasic and tribasic calcium phosphate to be varied 

within the fertiliser. By altering the proportion of monobasic calcium to dibasic 

calcium which dissolves at a slower rate, it is possible to reduce the rate at which 

phosphorus leaches, thereby increasing the likelihood to be accessed by the plant. 

Using two customised fertilisers manufactured from rock phosphate and three pure 

phosphate forms, two experiments were undertaken to measure differences in 

phosphorus solubility, leaching and plant growth, one in hydroponic conditions and 

the other in leaching columns without plants. To remove the effect of soil reaction 

with phosphate, the experiments used perlite. The results showed that the two 

fertilisers and the forms of phosphate dissolve and leach at different rates and the 

rate is depended on its percentage of each phosphate form. There is no significant 

difference between the dry matter yield of clover or ryegrass grown with low water-

soluble superphosphate or single superphosphate. This experiment concluded that 

as cumulative rainfall increases, the amount of dibasic calcium phosphate should be 

increased relative to monobasic calcium phosphate in phosphorus fertiliser. This 

change of chemistry will maintain pasture growth and reduce phosphorus leaching.  

The second set of glasshouse and field experiments extending the hydroponic and 

leaching experiments involved the use of three soil types (light, medium, and heavy 

– PBI between 9 to 120) with two pasture species (clover and ryegrass) from the 

Swan Coastal Plain of Western Australia. This research determined if changing the 

chemical composition of phosphorus fertiliser will maintain plant growth while 

reducing phosphorus loss to leaching. Rainfall was simulated to 900 mm to mimic 

typical rainfall conditions in this region. The results demonstrated that reducing 

phosphate solubility of the low water-soluble superphosphate significantly reduces 

phosphorus leaching losses in all three soil types, with no significant difference in 

pasture dry matter yield. Leachate analysis confirms that, given the same amount of 
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rainfall, as the soil’s ability to retain phosphorus increases, the amount of 

phosphorus leaching is reduced. The results also show that manipulating the 

chemistry of single superphosphate fertiliser will reduce solubility on lighter, sandy 

soil types and, with 900 mm of rainfall, can significantly increase plant phosphorus 

use efficiency and decrease leaching. This research recommends that the 

percentage of dibasic calcium phosphate in superphosphate fertiliser should be 

increased as the soil’s ability to retain applied phosphorus decreases. 

This glasshouse research was then applied to two field trials over three years for a 

pasture grazing system. The two trial sites were soil collection sites for two of the 

soils types used in the glasshouse. The two fertilisers, single superphosphate and 

low water-soluble superphosphate were applied annually to the field experiment 

sites at 0, 5, 10, 15 and 25 kg/ha of phosphorus and the dry matter yield was 

measured. Results show that low water-soluble superphosphate does not reduce 

pasture dry matter yield at any applied rate and significantly reduces phosphorus 

leaching by 50%. The results indicate that a lesser soluble, modified phosphorus 

fertiliser maintains pasture dry matter yield and reduces phosphorus loss to leaching 

on a range of soils with different phosphorus buffering indexes and rainfall 

conditions. The research in this thesis was novel in that it found that the differences 

in solubility created from the customised fertiliser manufacture of superphosphate 

can be used to reduce phosphate loss in agricultural systems in Western Australia 

and has application on a global scale. 
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CHAPTER 1  GENERAL INTRODUCTION 

 

With a world population of seven billion people in 2015 and projections of population 

growth to increase up to 50% within the next four decades, combined with an 

expected increase in living standards, there is a huge challenge to increase food 

production within this timeframe (Cohen 2003; Sutovsky et al. 2015). Consequently, 

there is an increased demand for inputs such as fertiliser to sustain higher 

agricultural production of which phosphorus (P) is a critical nutrient that underpins 

modern agricultural crop and pasture production (George et al. 2016). Phosphorus 

plays a critical role in the nutrition of all plants as it is an essential element that 

contributes in a wide array of physiological and biochemical processes (Vance et al. 

2003). Modern inorganic phosphate fertilisers used in crop production is a non-

renewable resource that is derived from rock phosphate (Cordell et al. 2009). The 

most pessimistic scenario is that rock phosphate reserves could be depleted in 30 to 

40 years (Rengel and Zhang 2011). There is an increasing need to maintain or 

increase food production utilising current agricultural land while reducing 

environmental impacts from applied inorganic P fertiliser; this is the challenge that 

underpins this thesis.  

1.1 Research problem 

Soils have been formed by natural processes that have maintained a global system 

of biodiversity of life on land (Amundson et al. 2015). The ability of soil systems to 

maintain life on this planet is due to its inherent balance between nutrient inputs and 

outputs for plant growth. Humanity has exploited these soil resources for thousands 

of years, and this has allowed the evolution of the human species. The area and 

diversity in soil types and nutrients have allowed agriculture to expand with 

population growth and allows civilisation to relocate when soil nutrient natural 

reserves have been depleted. Knowledge of nutrient pathways has enabled the 

reinvigoration of depleted soils with the application of nutrients (fertilisers) to 

maintain or increase food production (Shen et al. 2011).  
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The introduction of P fertilisers on predominantly infertile soil types found in 

Australia has greatly improved crops and pasture production over the last 100 years 

(Henzell 2007). The Swan Coastal Plain (SCP) in the south-west of Western 

Australia is the geographical region where the Swan River traverses from east to 

west before terminating in the Indian Ocean (Cummings and Hardy 2000). The SCP 

is 30 km wide and bound by the Indian Ocean to the west, the Darling Scape Range 

to the east, Cape Naturaliste the south and the urban River to the north. It consists 

of mainly of infertile sandy soil that is currently being used for agriculture and 

supports the majority of the population of Western Australia. The SCP supports a 

mixture of farming and urban environments and is comprised of a mixture of soil 

types, ranging from heavy clays to light sandy soils, with the large majority being 

light sandy soils. Pasture production systems in reliable high winter rainfall areas 

with sandy soils, such as in the SCP require annual P application to maintain 

production (Weaver and Reed 1998; Gourley et al. 2012).  

The main sources of P in these pasture production systems are derived from rock 

phosphate that is manufactured into fertilisers. The effective application of P is 

critical to maintain long-term sustainability of agriculture. Pasture production 

requires high water-soluble superphosphate fertiliser as only the water-soluble form 

of P is taken up by plants (McLaren et al. 2015a). High water-soluble single 

superphosphate fertilisers are commonly used for agriculture on the SCP, however 

applying high water-soluble single superphosphate (SSP) on lighter soil types with 

high rainfall as recommended by Hanson and Foster (2012) increases P leaching 

through the soil, which accumulates in rivers, wetland and estuaries. The transport 

of excessively high levels of P each year to the waterways when introduced in large 

quantities creates problems such as algal blooms as outlined by Hodgkin and 

Hamilton (1993), mal-odours, fish deaths and eutrophication issues as discussed by 

(Carpenter 2008). 

For the Swan River, which is the main river on the SCP, Cahill (2009) estimates that 

26 tonnes of total P enter the Swan River catchment annually. Numerical modelling 

conducted by Cahill (2009) indicates that 14 tonnes of total P is an acceptable load 

for this system. To meet the goal of reducing 12 tonnes of total P entering the Swan 

and Canning River systems by fertiliser application alone would require removal of 

132 tonnes annually of SSP applied to the soils in this catchment. Farmers on the 

SCP require an average of 150 kg/ha of SSP applied annually for pasture 

production (Neuhaus (2010). To maintain pasture production, while reducing runoff 

into waterways would require a significant decrease in the use of SSP or removal of 
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a large area of pasture out of production (McLaren et al. 2015b). The optimum 

outcome for both farmers and the environment is reducing the movement of P while 

maintaining pasture production. Hence strategies and technologies need to be 

developed that can maintain this balance between P input and outputs. 

1.2 Research background 

Single superphosphate fertiliser has been essential for pasture production systems 

in Australian soils with low levels of P (Henzell 2007). As shown in Figure 1.1, P in a 

pasture system undergoes a complex series of chemical and physical reactions 

within a cycle where inputs such as fertiliser are required to maintain production, 

and P is lost, changed or exported as agricultural commodities. As shown in  

Figure 1.1, pastures require soluble P for plant growth. 

 

Figure 1.1 Phosphorus cycle in pastures (Price 2006). The movement of 
phosphorus within the agricultural system.  

The light sandy soils and high winter rainfall combined with slow pasture growth in 

the colder months, as commonly experienced on the SCP production systems, 

frequently result in applied P leaching into waterways where it causes environmental 

damage (King et al. 2015). The high P leaching pressure and use of shallow rooted 

annual pasture species means that P applied before the break of the season may 

leach away before the spring months when it is needed. Thus a high percentage of 

applied P is being lost from the soil-plant system (Summers and Weaver 2008). 

Fertiliser should be applied to achieve the highest P use efficiency for any P fertiliser 

applied (McLaughlin et al. 2011; IPNI 2015). 
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In September 2006, the Minister for the Environment announced that high water-

soluble superphosphate fertilisers will be phased out from environmentally sensitive 

areas of the south-west, Western Australia to reduce the environmental impact (Cox 

et al. 2007). The phase out was to occur over a four-year period, and if agriculture 

were to continue, a solution would have to be implemented. This phase out of high 

water-soluble superphosphate became known as the fertiliser action plan (Cox et al. 

2007). At the time, there was no viable replacement strategy available for the 

replacement of SSP within this area. However, this phase-out plan was not 

implemented due to a change in Western Australian State Government and the 

problem of reducing eutrophication while maintaining pasture production systems 

remained. 

Some methods can be used to reduce the loss of P leaching while maintaining 

pasture production systems including reducing the total rate of P applied in a single 

application and/or increasing the number of applications over the growing season 

(IPNI 2015). Multiple applications are not advisable as this is inefficient and it is not 

always possible to access the paddocks because of reduced trafficability during 

wetter months. There have been a number of attempts to find a solution to high P 

leaching (Yeates and Clarke 1993; Summers et al. 2001) which include applying 

increasing rates of bauxite residue as a soil amelioration to increase the soil 

capacity to hold onto P. The application of bauxite residue applied to sandy soil 

reduced P leaching and rates up to 1500 t/ha could be applied to the soils while 

maintaining a safe level of gamma radiation for human habitation (Summers et al. 

1993a). Even within the required radiation safety standards for humans, large-scale 

adoption of bauxite residue did not occur (Summers et al. 2000). All existing 

methods to retain P in the soil are not effective as they will also limit pasture growth, 

increase the cost of production and/or have difficulty for public acceptance. Hence a 

novel approach is required.  
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1.3 The niche for novel 

One possible solution to improve P fertiliser use is the manipulation of chemical 

properties of SSP to reduce P solubility. Fertiliser manufactured from rock 

phosphate such as SSP are comprised of three forms of phosphate (monobasic 

calcium, dibasic calcium and tribasic calcium) with the ratio of these dependent on 

the chemical reaction used (Agriculture 1964; Mclean and Wheeler 1964; Darlow 

2009). An innovative approach is to change the chemistry of SSP by increasing the 

percentage of dibasic calcium phosphate (DCP) to reduce its solubility and allow P 

to be accessed by the plant before it could be lost to leaching. There has been 

limited work conducted globally, national and on the SCP on changing the chemistry 

of SSP and the proposed research will use current scientific methods to ensure its 

interoperability with current and past research. Please note that this PhD research 

was initiated during the government initiated phase out stage of the high soluble 

superphosphate fertiliser for the SCP. 

1.4 Research objectives 

The general research objectives are to evaluate the effectiveness of a low water-

soluble superphosphate (LWSSP) fertiliser to maintain P within the plant rooting 

zone for a longer period within a pasture production system in south-west Western 

Australia. The effectiveness of LWSSP was determined through a series of 

comparative experiments with SSP fertiliser that involved hydroponics, glasshouse 

and the field. The specific research objectives are outlined below in Section 1.4.1. 

1.4.1 Specific research objectives 

The specific research objectives of this thesis are: 

 To compare P solubility and leaching of LWSSP and SSP fertilisers and their 

chemical components for pasture production in hydroponic no-soil conditions. 

 To compare P solubility, leaching and pasture production characteristics for 

LWSSP and SSP on three soil types soil under controlled glasshouse 

conditions.  

 To compare LWSSP and SSP interactions on pasture production in field 

conditions by measuring dry matter yield, P plant tissue percentage and soil P 

levels. 

 To develop a concept that models how LWSSP can fit into the pasture 

production system based on rainfall and P buffering index of the soil. 
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1.5 Thesis outline 

This thesis is structured into seven chapters with chapter’s four to six summarising 

scientific experiments with increasing complexity as explained in Figure 1.2. Chapter 

7 is a general discussion and includes a proposed concept that is derived from this 

research.  

 

Figure 1.2 Thesis conceptual framework. This framework outlines the flow input, 
output and flow of this research and thesis. This thesis is divided into 
seven chapters comprised of three experiment chapters, each of which 
answers two of the specific research objectives. Single super phosphate 
(SSP), low water soluble super phosphate (LWSSP), monobasic 
calcium phosphate (MCP), dibasic calcium phosphate (DCP) and 
tribasic calcium phosphate (TCP).  
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1.6 Research benefits 

Benefits of this research arise from a greater understanding of the manufacture of P 

fertilisers and the fertiliser requirements on a pasture production system within high 

rainfall zone to minimise P loss to the environment. Very little research has been 

done that assesses the components of fertiliser and how these can be optimised for 

pasture production. This research evaluates fertiliser components and has global 

impact in fertiliser manufacture, design and application for pasture production 

systems. Further benefits for science is a broad overview of the customisation of 

phosphate forms within SSP to match pasture production systems, soil and rainfall 

conditions. There is considerable scope for the improvement and understanding of 

these areas and it is hoped that the benefits outlined here can be expanded upon 

into the future. 
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CHAPTER 2  REVIEW OF LITERATURE 

2.1 Introduction 

This review of the literature examines the pasture cycle for phosphorus (P) and 

components of the interacting systems as described in Figure 2.1. The areas that 

are examined include, soil Section 2.2, environment Section 2.3, plants Section 2.4, 

phosphorus Section 2.5 and management Section 2.6. The review of these subject 

areas will provide a broad overview of the pasture production on a global, national 

and specific situation found in a high rainfall high leaching agricultural environment 

such as the SCP of south-west Western Australia. The biggest environmental 

impact on the SCP environment is caused by leaching of applied soluble P 

fertilisers. 

 

Figure 2.1 Flow diagram summarising the review of literature. The literature 
review will follow the flow of this diagram with the four topics each 
expanded upon and then methods for reduction of leaching for 
phosphorus fertilisers the last topic. 
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2.2 Soil 

Soil is a granular structure that contains minerals and various elements organic 

compounds and organisms that together support plant life (Marzaioli et al. 2010). 

“Soil structure can be described in terms of its grade or degree of structure, shape 

and size of aggregates, and stability of the aggregates. In agronomic terms, a `good' 

soil structure is one which shows the following attributes: optimal soil strength and 

aggregate stability, which offer resistance to structural degradation 

(capping/crusting, slaking and erosion, for example), optimal bulk density, which 

aids root development and contributes to other soil physical parameters such as 

water and air movement within the soil, optimal water holding capacity and rate of 

water infiltration. Unfortunately there is no ideal prescription for what is the best tilth” 

(Sharpley et al. 2003).  

Agricultural soils globally vary widely in their structure, chemical and physical 

properties however all soils require adequate nutrients and moisture for the 

production of pastures (Jobbágy and Jackson 2001). Physical factors can have a 

large influence on the availability of nutrients within soils such as bulk density, soil 

type, moisture, permeability, friability, location of nutrients in the profile and how 

tightly the nutrient is bound to the soil (Letey 1985; Schoenholtz et al. 2000). 

Chemical properties affect the availability of any present nutrients within the soil and 

while there could be adequate nutrients present they may not all be available to the 

plant. One of the major chemical constraints on nutrient availability in modern 

agricultural systems is pH (Chen and Barber 1990; Fageria and Stone 2006). The 

availability of different nutrients will change depending upon the pH level with 

elements such as aluminium becoming toxic to the plant at lower pH levels (Dong et 

al. 1999). Rainfall, soil moisture and permeability influences the growth of plants and 

affects the plants ability to extract nutrients from the soil and extended dry periods 

reducing nutrient availability (Oorschot et al. 1998). The lack of moisture will 

exacerbate nutrient deficiencies and the application of fertiliser to the plant is more 

critical in dryer conditions. 

Soils sorption-desorption properties affects all nutrients, with the soil physical 

properties determining how this process takes place and the rate of nutrient release 

(Fox and Kamprath 1970; Huang et al. 2014). As the soil particle size decreases, 

the ability for the soil to retain nutrients increases (Moore 2004). The availability of 

different nutrients varies with soil type and conditions of which P is just one nutrient 

(Dawson and Hilton 2011). The quantity and availability of nutrients required for 
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plant production will determine if there is a requirement for extra nutrition through 

fertilisation (Ezui et al. 2016). 

Typical Australian soils are relativity low in natural nutrients critical for agricultural 

crop production, such as nitrogen (N), phosphorus (P), potassium (K), sulphur (S), 

and zinc (Zn) (Moore 2004; Tan et al. 2005). There is a large variation in the 

distribution of nutrients in Australia soils, particularly P, with less than 0.3 t/ha 

present in the top 30 cm from soils in the south-west of Western Australia. In 

comparison with the eastern states of Australia that have P levels generally about 

1.5 t/ha of P within the top 30 cm. 

Soil can be classified on soil properties such as texture and profile, which aids 

farmers globally to understand soil differences and to manage their farming systems 

for productivity. Soil classification systems vary across regions but are generally 

based on texture, topography, geological history, use and nutrient content (Baruck 

et al. 2016). Within Australia agricultural soils, there are 14 classifications or types of 

soil based on the Australia Soil Classification (ASC) system outline by Isbell (2016), 

which is discribed in the Appendix Section 9.2.1. The distributions of these soils are 

outlined in Figure 2.2 and show the variation of soil types present in Australia. 

 

Figure 2.2 The distribution of Australian soil types (Ashton and McKenzie 
2001).  
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The structure and type of soil has a significant effect on the availability of nutrients 

and moisture retention for plant growth. The structure of soil can change over time 

through natural and agricultural process, and this can influence the growth of 

pastures. Five key issues have been identified by Taylor et al. (2010) that cause 

loss of soil productivity; these are soil compaction, loss of soil organic matter, 

excessively high fertility levels, erosion risk, and the accumulation of contaminants. 

The structure of soil can change due to compaction of grazing livestocks that could 

reduce water penetration and nutrient availability (Greenwood et al. 1998). 

The optimum soil type and structure for pasture production should include, a deep 

friable profile to allow easy of root penetration, good moisture holding capacity while 

not being water-logged, no physical or chemical barriers, adequate nutrients that are 

plant available and not tightly bound to the soil. Reduction of these factors can limit 

plant growth, but some can be overcome through management (Pulido et al. 2016). 

It is considered that duplex soils are better for the production of pasture systems 

than sandy soils (Moore 2004; Blume et al. 2016). 

2.2.1 Soil types of the Swan Coastal Plain, Western Australia 

The SCP is a narrow geographic area less than 40 km wide and is covered by 

sedimentary material. The eastern boundary follows Whicher Scarp from the south, 

then north along the Darling Scarp from Burekup to Muchea, and north-west along 

the Gingin scarp (Moore 2004). There are 11 soil types on the SCP and a series of 

dune systems located near the coast that formed as a result of sedimentary deposits 

from the ocean (Bolland 1998). The distribution of these 11 soil types is shown in  

Figure 2.3. The SCP is extensively cleared of native vegetation for agriculture or 

urban usage and supports most of the population of Western Australia. 

The three dune systems of the SCP run parallel to the Indian Ocean, with alluvial 

plains located further from the coast as summarised by (Moore 2004). The coastal 

edge contains beach ridges and parabolic dunes, known as the Quindalup dunes. 

Behind this first system lie dunes of siliceous sands overlying limestone ‒ the 

Spearwood dunes. The third system, the Bassendean dunes, is a complex of low 

dunes, sandplains, swamp flats and poorly drained plains. On the eastern side of 

the coastal plain are flat and often poorly drained alluvial plains (Pinjarra Plain), 

which meet the foot-slopes of the adjoining scarps (Ridge Hill Shelf) along the 

eastern edge (Bolland 1998). Once this landscape is reduced into dunes, it can be 

eroded by winds. This eroded sand is mostly from the dunes nearby the ocean and 

then redeposited on the dunes further inland, with the second major soil type formed 
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by this redeposited erosion (Bolland 1998). A description of the dominant soil types 

of the SCP and the corresponding Australia Soil Classification (ASC) are outlined in 

(see Table 2.1). 

 
Figure 2.3 Soil-landscape systems map of the Swan Coastal Plain. Soil types 

are explained in detail in Appendix 9.2.1 (Gool et al. 2005). 
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Table 2.1 Dominant soil types of the Swan Coastal Plain (Moore 2004). 

Location Soil description WRB* 

Quindalup dunes Calcareous deep sands. Calcaric Fluvisol 

(McArthur 1991) 

Spearwood dunes Dominant soils are yellow deep sands, yellow 

to brown shallow sands. 

Cambic or Ferralic 

Arenosol 

(McArthur 1991) 

Bassendean dunes Dominant soils are pale deep sands with brown 

deep sands on the poorly drained plains. Areas 

of the wet sand and bog iron soils are also 

found in swamps.  

Orthic Podsol or 

Ferralic or Albic 

Arenosol 

(McArthur 1991; 

Bolland 1998) 

Pinjarra Plain Dominant soils are deep sandy duplex soils, 

shallow duplex soils, brown sandy earths, 

brown shallow loamy duplex soils and brown 

loamy earths. Minor areas of poorly drained 

cracking clays and red-brown non-cracking 

clays along the western margins. Brown sandy 

earths and brown loamy earths on recent 

alluvium.  

Xanthic Ferralsol 

or Plinthic 

Ferralsol 

(McArthur 1991) 

Ridge Hill Shelf Dominant soils are sandy gravels, yellow deep 

sands and pale deep sands.  

Xanthic Ferralsol 

or Chromic 

Luvisol (McArthur 

1991) 

* World reference base (WRB) (Salama et al. 2000; Schoknecht 2013; Isbell 2016). 

 

Salama et al. (2000) studied the soils from the southern region of the Gnangara 

Mound on the SCP to determine the soil-water properties and nutrient leaching 

capacity of the soil. The physical, chemical and hydraulic characteristics of the 

topsoil (0‒15 cm) and the subsoil (40‒50 cm) were measured at 21 locations that 

represented the different land uses with the main soil types. Physical analysis of the 

two major dune systems the Bassendean and the Spearwood indicates that 

Bassendean sands contain the highest percentage of coarse sand particles and 

therefore have a higher hydraulic conductivity than the Spearwood dunes (Salama 

et al. 2000). 

2.2.2 Soil organic and inorganic phosphorus 

Components of the soil contain plant nutrients, of which P is stored in two forms ‒ 

inorganic (Pi) and organic (Po) ‒ and these P forms interact in the soil via complex 

processes (Yang et al. 2012a; Nash et al. 2014). Phosphorus is dynamic in the soil 

and undergoes a number of complex processes that have been described by 

(Sanyal and Datta 1991; Shen et al. 2011). The transformation of soil organic P is 
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complex and can be organised into a conceptual model as shown in Figure 2.4 

(Stewart and Tiessen 1987).  

 

Figure 2.4 Phosphorus transformations in natural soil ecosystems (Smeck 
1985). Soluble phosphorus (P) is also inorganic phosphorus. 

Microbial uptake of P and its later release and distribution through the soil plays a 

critical part in the organic P cycle (Smeck 1985). Phosphorus fertilisers 

manufactured from rock phosphate are inorganic, and when applied to the soil, they 

can undergo a number of processes. These processes are dependent on the 

chemical and physical properties of the fertiliser (granule size) and the soil (PBI) that 

determine how P goes into soil solution and the proportion that can be taken up by 

the plant. The PBI is a measure of the sorption and indirectly how much P enters 

into solution. Soils have different binding capacity to sorb P which is generally 

increased with increasing clay content. This is because clay particles have an 

increased surface area for P sorption to take place (Stone and Mudroch 1989). 

The rhizosphere is the interface between the soil and the plant and delineates the 

amount of P that the plant can access via, P diffusion, P transformation, P 

mobilisation, P adsorption, Pi transporter and microbial activity (Shen et al. 2011; 

Cesco et al. 2012; Dotaniya and Meena 2014). Phosphorus is absorbed by plant 

roots in the inorganic P form and that microbes and enzymes are critical for the 

mineralisation of soil organic P (Chen et al. 2002). Phosphorus in soil solution is 

readily accessible by plants, and this form of P (PO4³ˉ) can be readily taken up by 

roots of which it is normally taken up as hydrogen phosphate ion (HPO4 ²ˉ) (Black 
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1968). The amount of available inorganic P in solution is dependent on soil 

properties such as clay, aluminium and iron oxides, the amount of primary minerals 

such as apatites, and secondary P minerals such as calcium, aluminium and iron 

phosphate. Phosphorus can occur in organic forms and be released from microbial 

activities as stabilised P (inositol phosphates), and/or active P (orthophosphate 

dieters, monoesters, organic polyphosphates).  

The cycle between inorganic and organic P can provide a significant amount of P 

that is available to the plant. However this requires large amounts of organic matter 

of at least 11%–13% (Shand et al. 1994; Williams et al. 1999). As soil organic matter 

is increased, the soil structure often improves to absorb more nutrients (Shepherd et 

al. 2002). Australian soils are generally low in organic matter Dalal and Chan (2001) 

with most soils from the SCP generally less than 4% organic carbon. The amount of 

plant available P from this cycle (i.e. low organic matter), is significantly less on 

these soil types compared to other Australia soils and hence requires the inorganic 

application of P fertiliser annually to maintain pasture production. In general, the 

application of P fertilisers has resulted in the increased retention of total P average 

105% increase, Pi (154%) and Po (49%) when compared to their natural controls 

(Samadi and Gilkes 1998). 

2.2.3 Measurement of phosphorus and concentration in soils 

The measurement of P in soil can broadly be broken into two categories: 1) plant 

available P (PaP); and 2) total P (TP). The current methods for measurement of PaP 

include Olsen, Bray, Diffusive Gradient in Thin Films, and Colwell of which Olsen is 

currently the most commonly used method (Sparks et al. 1996; Christel et al. 2016). 

Currently, there is no globally adopted standard for P measurement.  

The Olsen method was first developed in 1954 and estimates the availability of P in 

soils by extraction with sodium bicarbonate (Olsen et al. 1954). The Bray method 

can also be used to determine the amount of PaP and TP (Bray and Kurtz 1945). 

The Colwell P method is a measure of P in the soil that is available for plant uptake 

and is a modified version of the original Olsen method (Olsen et al. 1954; Awty 

2011). The Olsen method is used widely in the United States of America (USA) and 

the eastern states of Australia. The advantage of the Colwell method is it can more 

accurately determine PaP at lower levels on the light soil types found in Western 

Australia (Bolland et al. 2003). Total P is a measurement of all P within a soil 

regardless if it is plant available or not (Allen and Jeffery 1990b). A more detailed 

description of these soil methods is outlined in Table 3.4. 
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Soil P can be defined into a number of categories, with these levels defined as a 

value or range through uses of the bicarbonate-extractable P and acid-extractable P 

methods as outlined in Table 2.2. Long-term applications of P fertilisers can 

increase total P levels by up to 300 percent from the original measured values in a 

soil (Colwell 1965).  

Table 2.2 Ratings for bicarbonate-extractable P and acid extractable in air-
dried soils from north-east Australia (Bruce and Rayment 1982). 

Rating Value/range (mg/kg) of phosphorus 

Very low < 10 

Low  10‒20 

Medium 20‒40 

High 40‒100 

Very high > 100 

 

The natural amount of P within soils can vary widely between soil types, land use 

and each country’s topography as outlined in Table 2.3. A comparison of unfertilised 

soil from the USA and Australia (as shown in Table 2.3) demonstrates that soil 

within Australia has a much lower natural P level.  

Table 2.3 Comparison of Australian and United States surface soil measured 
for total phosphate content – modified from (Wild 1957).  

Source of data 
Number of 

samples 

Phosphate content 

(% P2O5) 

United States (Marbut 1935): 

Podzols (Rustic Podzol) 

Grey-brown podzolic (Densic Podzol) 

Red podzolic (Xanthic Podzol) 

Prairie soils (Albic Lixisol) 

Chernozems (Ferric Lixisol) 

Dark brown soils (Dystric Arenosol) 

Grey desert soils (Albic Acrisol) 

  

7 0.11 

29 0.16 

47 0.08 

11 0.13 

13 0.19 

9 0.15 

6 0.24 

Australia, all soils weighted according to 

survey area (Wild 1957): 

  

HC1-soluble phosphate 2217 0.047 

Total phosphate (calculated)  0.069 

 

The soils within the SCP also have differing inherent levels of P which has generally 

increased due to agriculture and horticulture production (McArthur 1991). With the 

range of soil types on the SCP and the land use history, the soils will range in TP 
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levels which will determine the required amount of P fertiliser for maximum pasture 

dry matter yield (see Table 2.4) (Bolland 1998). The analysis of this soil indicates 

that there is a differing potential to P leaching on the SCP that cannot be corrected 

with a single fertiliser strategy. 

Table 2.4 Total phosphorus measured in soils collected from uncleared, 
previously unfertilised native vegetation on the Swan Coastal 
Plain, Western Australia. 

Soil Total Pᴬ (mg/kg P per grams of soil) 

Coastal dunes 

 1. Quindalup dunes 290 

2. Spearwood dunes 

 (a) Cottesloe 190 

(b) Karrakatta yellow phase 44 

(c) Karrakatta grey phase 22 

3. Bassendean Dunes 

 (a) Jandakot 18 

(b) Joel 30 

Pinjarra Plain Soils 

 (a) Coolup 52 

(b) Wellesley 180 

(c) Boyanup 120 

(d) Blythwood 130 

(e) Dardanup 510 

ᴬ Determined by digesting the soil in concentrated sulphuric acid and measuring the 
concentration of phosphorus in the digest (Bolland 1998). 

 

2.2.4 Measurement of soil ability to retain phosphorus 

The ability of soils to retain P is measured as an index. The two common indexes 

used in Australia are the Phosphorus Retention Index (PRI) and the Phosphorus 

Buffering Index (PBI). The PRI is a measure of the soil’s relative ability to extract P 

from solution mixing a quantity of soil in solution with a single amount of P for a set 

period of time. The amount of P remaining in solution measures the soil’s ability to 

fix P (Allen and Jeffery 1990b; Bolland et al. 2003). In Western Australia there are a 

number of measurements used to determine the order of the soils ability to absorb 

P. The measurement of the amount of extractive iron from the soil by using 

ammonium oxalate (AmOx-Fe) or reactive iron was a method of determining how 

much P will be retained by a soil (Bolland et al. 2003). The PRI measurement is 

preferred over the reactive iron method due to the soil’s PRI decreasing with the 
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saturation of absorption sites with the addition of cumulative inputs of P fertiliser 

over time; however, the P levels remain constant when tested using reactive iron. 

Phosphorus Buffering Index (PBI) is similar to PRI except that a range of P rates are 

mixed with the soil, and the index is adjusted for pH (Quinlan and Wherrett 2016). 

As a soil’s PBI level increases, its capacity to absorb applied P increases and these 

indexes will be the nominated soil comparison method to retain applied P fertiliser 

used in this research (Moore 2004). Phosphorus buffering index can be used in 

conjunction with Colwell P measurement to give an indication of the soil’s ability to 

‘lock’ up P. Phosphorus buffering index is measured on a scale of 1 to 800 and PRI 

is measured on a scale of 1 to 100 (see Table 2.5). The combination of the PBI and 

Colwell P measurement is generally used to provide producers with a recommended 

fertiliser rate (see Figure 2.5). Soils with a greater PBI have a greater ability to 

adsorb P onto soil exchange sites, and therefore it becomes unavailable to plants 

(Moody and Bolland 1999). Soils with lower PBI retain less P and therefore leave 

most of the P applied from fertiliser available to plants. Low PBI soils are also at an 

increased risk of losing P to leaching, owing to its reduced ability to hold onto 

applied P. Managing soils with higher PBI usually involves increasing the application 

rate of P fertiliser over a number of years. This would help to build up soil P levels 

so that it reaches a level that is available to the plant (Price 2006). 

Table 2.5 Phosphorus soil indexes rating and values. Phosphorus buffering 
index (PBI) and phosphorus retention index (PRI). The method of 
converting PBI to PRI values is outlined by (Bolland and Windsor 2007).  

P buffering capacity category PBI values PRI values 

Extremely low < 15 1 

Very very low 15‒35 2 

Very low 36‒70 15 

Low 71‒140 38 

Moderate 141‒280 100+ 

High 281‒840 100+ 

Very high > 840 100+ 
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Figure 2.5 The relationship between the percentage maximum (relative) yield 

and the amount of P fertiliser applied for 2 different soil types. The 
P was applied as single superphosphate in the current year of a soil 
with a low capacity to retain P (soil 1) and on a soil with a high capacity 
to retain P (soil 2) (Bolland and Gilkes 2001). 

2.2.5 Forms of phosphorus in the soil 

Within the soil, P can exist in different forms but P contained within the soil can only 

exist in one of three pools (solution P, active P or fixed P) (Busman et al. 2009; 

Damon et al. 2014b). The solution pool is relatively small and usually contains only a 

few kilograms of P per hectare. The P within this pool is usually in the 

orthophosphate form. However it may contain small amounts of organic P. 

Orthophosphate is the only form of P that plant can assimilate as outlined by 

(Heckrath et al. 1995). This pool is important because it is the one that plants can 

access and has considerable P mobility. The majority of the P assimilated by the 

plant during the growing season may have only moved a few centimetres from the 

soil to the plant roots. Rapidly growing crops can quickly exhaust the P in this pool if 

it is not continuously replaced (Bünemann et al. 2011).  

The active pool contains P that is in a solid phase and which is easily released into 

the soil solution surrounding the soil particle. As the plant assimilates P, the P 

amount in the solution decreases and some of the P from the active pool is 

released. This is due to the small size of the solution pool that is the primary source 

of P in close proximity to the root for plant use. The ability of the active pool to 

replace P into the solution P within the soil is considered as fertile soil in regards to 

P. Within a paddock, the soil P may vary between several kg/ha to containing 

several hundred kg/ha in the active pool depending upon soil type. This pool will 

contain inorganic P that is bound or adsorbed to the small soil particles. The P that 

has reacted with other elements such as calcium or aluminium can form soluble 
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solids and/or organic P that is somewhat soluble and is more easily mineralised. 

The adsorbed phosphate ions are retained onto the active areas on the surface of a 

soil particle. The amount of adsorbed P within the soil increases as the amount of P 

in the soil solution increases and vice versa. The soil particles can either act as a P 

source or store with the water surrounding the soil particle depending on the soils 

condition (Holtan et al. 1988). 

The fixed pool contains the inorganic P compounds that are highly insoluble and 

organic compounds that are highly resistant to mineralisation by microorganisms. 

Phosphorus within this pool can remain within the soil for a number of seasons 

without becoming available to plants and in general, does not increase soil fertility. 

Inorganic P compounds within this pool have a more crystalline structure and are 

less soluble than the compounds in the active pool. There is some slow conversion 

between the fixed and active pools within the soil (Hocking et al. 1997). 

2.2.6 Absorption and leaching of phosphorus in soils 

After water-soluble P fertiliser is applied to soil, a series of reactions occur between 

P, soil constituents and non-P components of the P fertiliser that can remove P from 

the solution phase and thus make it less plant available (Hedley and McLaughlin 

2005). These reactions may include adsorption to the surface of the soil particles, 

diffusion where P becomes bound to the soil particle and precipitation that forms 

new solids in the soil. In acidic and neutral soils, there are fast and reversible 

surface-based absorption reactions where P moves into the soil of Al and Fe oxides 

(Strauss et al. 1997). Phosphorus applied to soil will be adsorbed onto soil particles 

until the soil particles become saturated and unable to absorb anymore P, with any 

residual P in the solution being vulnerable to being lost to leaching (Pierzynski et al. 

2005; Andersson 2016). An important factor altering the extent of the absorption 

rate, particularly in neutral or acidic soils, is determining the abundance and type of 

aluminium and iron present in the soil (Borggaard et al. 1990). Adsorption reactions 

are therefore key processes regulating the efficiency of added P fertiliser, however 

when P concentration is increased (i.e. around fertiliser granules) with precipitation 

reactions of P, the type of fertiliser becomes an important consideration (McLaughlin 

et al. 2011).These precipitation reactions involve the creation of new solid phases 

from ions in solution and can be seen around fertiliser granules as shown in Figure 

2.6 (Hedley and McLaughlin 2005).  
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Figure 2.6 Diagrammatic representation of the movement of phosphate. The 
movement of phosphate by mass flow and diffusion from a granule of 
water-soluble P fertiliser through water-filled and water-lined large 
micropores in a well-aggregated soil. Note that the penetration of P into 
aggregates is incomplete due to the slow rate of P diffusion in smaller, 
intra-aggregate microspores and discontinuous microspores (not to 
scale). This is copied from (Hedley and McLaughlin 2005). 

Phosphorus is quickly released from water-soluble P fertiliser granules with most of 

the P leaving the granule within days of application to the soil (Williams 1971b, 

1971a; Benbi and Gilkes 1987). There is a strong relationship between the soil’s 

absorption capacity and the potential for applied water-soluble P to be leached 

through the soil profile (Shober and Sims 2007). If a soil has a low adsorption 

capacity and large aggregated soil particle sizes (small surface area), such as sand, 

the ability to retain P is reduced. The combination of low soil adsorption capacity 

and high rainfall results in an increased risk of dissolved P rapidly diffusing below 

the rhizosphere. Phosphorus sorption is the capacity of the soil to adsorb P and this 

capacity greatly influences the yield response and soil analysis calibration curves. 

As the capacity for the soils to absorb P increases, the P fertiliser application must 

also increase to maintain the same yield (Moore 2004).  
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2.2.7 Nutrient availability in soils 

Within the soil, there is a nutrient interaction with the soil that determines the nutrient 

availability to the plant. These interactions change over time and can include: the 

adsorption and/or release of nutrients, conversion through plant activity, moisture, 

temperature, microbial activity, management practices and pH (Brady and Weil 

1996; Barré et al. 2007; Delgado-Baquerizo et al. 2016; Niu et al. 2016). 

Phosphorus availability in the soil is a complex process that is dependent on a large 

number of factors that influences how the plant can access any applied P of which 

pH is a critical interacting factor (Rajan et al. 1991; Azhar et al. 2013). From these 

interacting factors, pH is one that can be reasonably controlled with the application 

of lime (Dick et al. 2000). 

The solubility of different inorganic phosphates directly affects the plant's ability to 

assimilate P. A pH between 6 to 7 is optimal for plant uptake (Oldham 2014). When 

the soil pH is lower than 6, P can become bound up in the aluminium phosphate 

form. As the acidity of a soil increases to below 5, P can also be fixed as iron 

phosphate. As soil alkalinity increase above 7.3, P becomes fixed as calcium 

phosphates. Inorganic P has a negative charge in most soils which is due to 

phosphate ion (PO4) reactivity with positively charged iron (Fe), aluminium (Al) and 

calcium (Ca) ions to form relatively insoluble substances. If this happens, the P is 

considered adsorbed and will not go into the solution pool for the plant to access 

(Cho and Caldwell 1959).  

Soil acidity has a large influence on P with the amount of soluble organic P that is 

available to the plant particularly on soils that have low fertility (or P binding) levels 

(Bolan et al. 1986; Vaz et al. 1993). The availability of different P binding elements 

varies at different pH with the optimum level to access all elements is between 6.5 

and 7.2 (Truog 1939; Sonneveld and Voogt 2009). These levels are outlined in 

Figure 2.7 and, for P; the optimum available level is between 6.5 and 8.0, with P 

also becoming more plant available once the soil becomes more alkaline from 8.6 to 

10.0. Rhizosphere acidification and soil pH does not necessarily increase phosphate 

solubility (Staunton and Leprince 1996). Carboxylates, the conjugate bases of 

organic acids could have an important role improving soil phosphate availability 

(Lambers et al. 2002).  
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Figure 2.7 Diagram illustrating general trend of relation of soil reaction (pH) 
and associated factors to the availability of plant nutrient 
elements (Truog 1939). 

Each element is represented by a band as labelled. The width of the band at any 

particular pH value indicates the relative favourableness of this pH value and 

associated factors to the availability of respective elements in question in readily 

available forms (the wider the band the more favourable the influence), but not to 

the actual amount necessarily present, this being influenced by other factors, such 

as cropping and fertilisation. The width of the heavily cross-hatched area between 

the curved lines at any pH is proportional to the hydrogen-ion concentration 

(intensity of acidity) less than pH 7, and to the OH-ion concentration (intensity of 

alkalinity) greater than pH 7 (Truog 1939). The application of lime to increase the pH 

of acid soils can influence the availability of P as described by Haynes (1982) and 

liming can increase the availability of P through stimulating mineralisation of soil 

organic P. However, soils that have a high pH; insoluble calcium phosphate can 

precipitate and reduce the amount of available P (Nahas 1996). 
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2.3 Environment  

The environment in the context of pasture production systems is the area that is 

being used for the production of crops and the surrounding area that can be 

influenced by this production. The environment includes rainfall, soil temperature, 

soil type, landscape and waterways that are utilised during the plant growth cycle in 

these production systems. Traditionally, nutrient applications were orientated 

towards optimising economic returns from applied nutrients for crop production 

(Beegle et al. 2000). Currently, the agronomic and economic return of nutrient 

management remain important, however, in addition to this, the process must now 

consider the possible impact of applied nutrients to the environment (Haygarth et al. 

2009). The nutrient application and management process is critical for maximising 

the economic benefit from applied nutrients while minimising the possible 

environmental damage (Radcliffe et al. 2009). The decision to apply nutrients to an 

agricultural environment should follow a process that should include, assessment, 

analysis, decision making, evaluation and refinement (Withers et al. 2009). There 

have been some factors identified as critical to implementation and success of 

nutrient-management which include: engagement by all key stakeholders, full 

utilisation of established infrastructure, focused nutrient management planning, 

voluntary vs. mandatory implementation, and the economic benefit of nutrient 

management (Maguire et al. 2009).  

Phosphorus loss from fertiliser is a significant problem that has caused 

environmental damage to aquatic environments (Sharpley et al. 1994a; Zimmer et 

al. 2016). The protection of these aquatic environments requires the reduction of 

nutrient inputs from P fertilisers into these ecosystems (Chen et al. 2016). The 

growth of algae removes oxygen from the water, resulting in an increase in fish 

deaths from asphyxiation and a general decline in river system health (Hodgkin and 

Hamilton 1993). 
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2.3.1 Seasonal climatic impact on agriculture  

Seasonal changes to the environment are generally from a change in rainfall and 

temperature over the time for plants to complete their growth cycle. These changes 

can have a significant influence on the growth of crops and pastures and the 

transformation of nutrients within agricultural systems (Marshall et al. 2016). 

Generally, moisture is the most limiting factor in dryland agricultural systems in the 

growing season, and subsequent yield potential is determined by the rainfall pattern 

of a region (Zhang et al. 2016). Rainfall is critical to increasing soil moisture and the 

availability of P but excess amounts of moisture will result in the leaching of P from 

agricultural systems (Hahn et al. 2012). To quantify P loss from the influence of 

rainfall and P forms with differing water-soluble content, as discussed in a research 

study conducted by Shigaki et al. (2007), that showed the movement of P was 

increased with the amount and intensity of rainfall. The P movement was for both 

dissolved P in solution and P particles. The study concluded that the water soluble 

content of P fertiliser and rainfall intensity had a major influence on P movement in 

the runoff, which is important in evaluating the long-term risks of P source 

application on P movement from agricultural systems.  

Temperature changes can impact on the availability of P and other nutrients within 

the soil (Zingaretti et al. 2013). These changes in soil P availability may reflect in the 

uptake by plants or mineralisation–immobilisation within the soil (Chen et al. 2003). 

Variations over a season in some soil P fractions have been observed by (Shi et al. 

2015). The changes were observed in winter for all soil P fractions and showed 

significant soil P transformation and movement over this period. This study showed 

that P in soils changed during winter months as a result of changes in the amount of 

labile P fractions, this could have been due to the solubilisation of applied P fertiliser 

combined with possible environmental factors. In pasture soil labile organic P, 

microbial biomass P and organic debris can increase over winter and decrease in 

spring. This has been attributed to increasing mineralisation and plant uptake during 

spring and the lower temperature activity of microbes and P mineralisation during 

winter (Perrott et al. 1992; Frossard et al. 2000).  

  



 

26 

In the future as the climate changes, there could be a significant increase in P 

movement and eutrophication of waterways in selected regions of the USA 

(Jeppesen et al. 2009). Phosphorus export from agricultural systems into waterways 

is expected to increase in the USA due to higher winter rainfall and increasing 

temperatures. Modelling has suggested that P exports could increase by 3.3% to 

16.5% in the next 100 years depending on soil type and region. In lakes, higher 

eutrophication could be expected, reinforced by the temperature-mediated 

increased release of P already present in sediment (Jeppesen et al. 2009). 

2.3.2 Global loss of phosphorus to the environment 

The removal and redepositing of P can significantly reduce soil fertility in a region 

(Heathwaite et al. 2003). Erosion can result in P loss for applied fertiliser at rates 

equivalent to that of removal by plants (Quinton et al. 2010). This problem is global 

and is not limited to a single location with rates of N and P loss to erosion outlined in 

Figure 2.8. 

 

Figure 2.8 Global fluxes of sediment, nitrogen and phosphorus. Shaded areas 
show the global distribution of sediment fluxes and information bars 
show the continental fluxes of nitrogen and phosphorus by water and 
tillage erosion compared with fertiliser use. Global fluxes of nitrogen 
and phosphorus (Tg yr–1) due to fertiliser input, erosion and crop uptake 
(Quinton et al. 2010). 
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Soil testing has often been used to estimate the risk of P exports associated with 

agricultural production systems although variability exists and further investigation is 

required (Nash et al. 2007). The relationship of soil P analysis is defined by (Olsen 

et al. 1954; Colwell 1965; Sims et al. 2000) and can be used to determine the 

potential for P export. Nash et al. (2007) concluded that the Colwell P soil test 

provides a better correlation to P export risk than the Olsen soil test. It was also 

concluded that a large study was required to define the relationship between soil P 

tests in Australian soils for the purpose of assessing P loss (Nash et al. 2007). 

2.3.3 National loss of phosphorus to the environment 

The landscapes of the Australian continent are generally flat, but even with this 

topography area of soil erosion still can occur that will reduce agricultural 

productivity (Prosser et al. 2001). It has been estimated that approximately one-half 

of Australia’s agricultural and pastoral lands are at risk of erosion and will require 

protection (Loughran 1989). There are a number of ways that P applied to the soil 

can be lost to the environment from the pasture production system and these factors 

can be broadly broken down into two categories, geographical and environmental 

(Quinton et al. 2010). The geographical factors are soil type, soil moisture content, 

location, and slope of the paddock (Singh and Thompson 2016). The environmental 

factors are management practices, rainfall timing and volume, crop, and wind 

speeds of the location. All these factors contribute to the loss of soil P and will 

determine how much and at what rate P is lost from the pasture production system 

(Sharpley et al. 1994b). The physical movement of soil is generated by water and 

the wind. Water can both cause leaching and surface topsoil erosion while wind can 

remove any loose light topsoil. A number of physical methods can be implemented 

to reduce P physical movement with these methods (see Section 2.2.5) based 

around the reduction of water and wind speeds across the soil surface (Sakadevan 

and Bavor 1998; Sharpley et al. 2003; Hart et al. 2004). Methods used to reduce soil 

and nutrient erosion from water erosion are, contour banks, drains that reduce the 

surface speed of water and its ability to pick up topsoil where P is contained. For 

wind erosion, the most commonly used methods are, cover crops, stubble retention 

from winter crops’ and windbreaks such as trees to reduce wind speed, and the 

ability of the wind to remove dry soil over the summer months. Soil physical 

structure and profile has a major influence on the movement of P down the soil 

profile and will affect the rate of leaching and where P settles in the soil.  
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2.3.4 Phosphorus loss on the Swan Coastal Plain 

The geographical location of the SCP is flat with a gentle gradient down to the major 

waterways and Indian Ocean. The majority of farming systems on the SCP are rain 

fed and generally have no cover crop over the summer months. This type of 

agricultural system means that the loss of P from the pasture production as physical 

erosion such as water and wind action of the topsoil is relatively low. The major loss 

of P to the environment is caused by leaching by winter rainfall which ends up in the 

waterways and estuaries of the Swan-Canning, Peel-Harvey, Leschenault, Vasse-

Wonnerup and Hardy Inlet in Western Australia. These areas are within the SCP 

due to the flat sandy soil topography of the SCP, increased eutrophication and 

discharge of P into the Peel-Harvey estuary are often through increased winter 

rainfall on lighter soil types (Summers and McLaughlin 1996). Reducing 

environmental damage to the SCP was prioritised in 2007 when the Western 

Australian Government released the ‘Fertiliser Action Plan’, which outlined phasing 

out of high water soluble phosphate fertilisers. The phase-out process was to take 

place over four years, concluding with a total ban starting in 2010‒11 (Cox et al. 

2007). 

There are substantial research findings from the catchments containing the river 

systems of the SCP indicating that at least a 50% reduction in annual P load is 

needed to significantly reduce the environmental damage to these river systems. 

Agriculture is the major contributor to the P pollution in these systems and it is 

estimated that annual P loss from pasture for beef and dairy production accounts for 

64% of the total P (Cox et al. 2007). In addition to the Fertiliser Action Plan, the 

Western Australia Government released the ‘Swan-Canning river quality 

improvement plan’ in 2009, with the Swan River Trust determining that an annual 

reduction of 12 tonnes or 46% of P from these river systems was required to 

improve water quality (Cahill 2009). 

2.3.5 Phosphorus export hazard on the Swan Coastal Plain 

The P export hazard is defined as the susceptibility of P entering the river and 

surface waterways causing eutrophication (Gool et al. 2008). The export hazard 

from applied P fertiliser through the landscape is affected by some factors, including, 

landform, soil types, catchment size, drainage density, the location of drains, 

rainfall/runoff, climate, and the amount and type of vegetation within the landscape 

(Summers et al. 1999b). The main factors in eutrophication of most waterways are 

the total flow of water, time taken from application to entering the surface waterway, 
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and the catchment size. These factors combine to create a P index that is used to 

determine the export loss risk of P from agricultural land (Lemunyon and Gilbert 

1993; Benskin et al. 2014). When heavy rainfall occurs, rapid movement of water on 

a soil with a low PBI can result in P that cannot be absorbed will be lost to leaching 

(Summers et al. 1999b). Soil characteristics such as PBI and soil profile can 

influence P leaching due to the rapidly vertical movement of water, thereby reducing 

the contact time between soil particles and P in solution that may be insufficient for 

adsorption to occur (Koopmans et al. 2001). Figure 2.9 highlights the areas on the 

SCP that are most susceptible to P loss. The rating is determined by the most 

limiting factor and does not take into account P leaching into deep groundwater 

(Gool et al. 2005). 

Frequent application of SSP to maintain agricultural production over a long period of 

time at some locations in the Peel-Harvey Catchment has led to a build-up of P in 

soils above the requirements for plant production (Richie et al. 1985). This 

excessive build-up of P has caused environmental damage due to the movement of 

P from soils with low PBI’s into waterways and sensitive areas (Richie et al. 1985). 

Richie et al. (1985) conducted a study within the Peel-Harvey Catchment to reduce 

P levels in soils while maintaining plant-available P in soils. The soil P levels were 

just adequate to maintain plant growth without causing further build-up in the soil P 

reserves. Their study found there is limited information and knowledge about the 

effect of repeated and long-term applications of adequate water-soluble P fertilisers. 

This limited information about the long-term application of adequate water-soluble P 

fertiliser outlines the need for long-term field experiments and laboratory research to 

improve knowledge about the long-term effect of reducing P levels in soil types on 

the SCP.  

Phosphorus application rates below 2 kg/ha annually are recommended to prevent 

algae blooms (Richie et al. 1985). Algal blooms have not occurred in the Harvey 

River when the P loading is less than 2 kg/ha and P levels need to be maintained 

below this level. Phosphorus run-down times on deep grey sands (Joel Soil) and 

duplex sands (Coolup Soil) were studied to determine the time taken to reach a 50% 

reduction in P losses. The study concludes that it is not possible to reduce these 

soils P levels back to historic status (i.e. theoretical level) to stop P leaching without 

reducing pasture dry matter yields (see Figure 2.10 and Figure 2.11). 
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Figure 2.9 Phosphorus loss hazard map of the Swan Coastal Plain (Goulding 

2015). The methodology to determine phosphorus loss hazard is 
outlined in Section 2.5. 
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Figure 2.10 Variation in annual loss of phosphorus (kg/ha) with time (years) 
since fertilisation of deep grey sands ceased (Richie et al. 1985). 
Joel soil is classified as a Tenosol under the Australia soil classification 
guide (Schoknecht and Pathan 2013).  

 

Figure 2.11 Variation in annual loss of phosphorus (kg/ha) with time (years) 
since fertilisation of duplex soils ceased (Richie et al. 1985). 
Coolup soil is classified as a Tenosol under the Australian soil 
classification guide (Schoknecht and Pathan 2013). 
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Richie et al. (1985) recommends that P levels in the soil be run down to that 

required for plant growth over a number of years and to replace SSP with a new 

coastal superphosphate (NCS). Applying superphosphate every second year or as 

required to maintain soil P levels at just above adequate levels for plant growth, will 

minimise P movement. However, it was outlined that changing superphosphate to 

NCS may not reduce P movement into the waterways due to a slower reversion and 

be moved in the following season  

(see Figure 2.12). 

 

Figure 2.12 Phosphorus levels in the acid-soluble soil fraction and their 
variation with time and application of different fertilisers (Richie et 
al. 1985). Superphosphate (S) and new coastal super (NCS). Coolup 
and Joel soils are as Tenosol as classified under the Australian soil 
classification guide (Schoknecht and Pathan 2013).  
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2.3.6 Environmental effect of phosphorus loss on the Swan Coastal Plain 

The Fertiliser Action Plan determined that highly water-soluble fertilisers were those 

containing more than 80% water-soluble P and that fertiliser with less than 40% 

water-soluble P for commercial broadacre farmers would reduce the total amount of 

P entering the waterways by the required amount (Cox et al. 2007). As outlined in 

Table 2.6, the analysis of current fertilisers used on the SCP, showed that all 

fertilisers have water-soluble well above the limit set by the Fertiliser Action Plan.  

Table 2.6 Typical analysis of a range of high water-soluble P fertilisers. 

Product 
Total phosphorus 

(%) 

Water-soluble 

phosphorus (%) 

Single Super (‘Superphosphate’) 8.8 77 

Double Super 17.1 80 

Triple Super 20.7 78 

MAP 21.9 83 

DAP 20.0 89 

‘Turf Special’ 1.8 83 

‘Potato E’ 7 83 

 

The Fertiliser Action Plan specified that the fertiliser industry had four years to find a 

replacement for high water-soluble P fertiliser and develop a cost effective lower 

water-soluble P (Cox et al. 2007). A number of replacements for low water-soluble P 

fertiliser were investigated and are outlined in Table 2.7 along with with their 

phosphate chemistry.  
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Table 2.7 Analyses of the new low water-soluble phosphorus fertilisers. This 
fertiliser was a mixture of separate granules of ordinary superphosphate 
and rock phosphate (Summers and Weaver 2008). Monobasic calcium 
phosphate (MCP), dibasic calcium phosphate (DCP), tribasic calcium 
phosphate (TCP). The percentage of each form of phosphate (within the 
brackets) and NA indicates that the data is not available. 

 
Fertiliser 

Total 

P % 
MCP DCP TCP 

Control Superphosphate 9.2 7.56 (82.2) 1.46 (15.9) 0.18   (1.96) 

A 
Super + 23% bauxite 

residue 7.4 3.01 (40.7) 4.16 (56.2) 0.23   (3.11) 

B Optiphos1 8.6 3.63 (42.2) 4.66 (54.2) 0.31   (3.60) 

C Optiphos2 9.2 4.08 (44.4) 2.35 (25.5) 2.77 (30.11) 

D Summit LWSSP 15.4 NA NA NA 

 

While the Fertiliser Action Plan was not implemented due to a change of 

government, research to reduce the problem of P loss from leaching continues as a 

research area. Eutrophication in surface waters (e.g. dams, lakes, estuaries and 

rivers), combined with physical-chemical factors (i.e. increased water inflow from 

rainfall) will continually lead to algal blooms (Robson and Hamilton 2003). The 

increase in algal growth deoxygenating the water and increase nutrient toxicity 

reducing the aesthetic value will result in changes the species diversity. These 

changes can also have a detrimental effect on drinking water and recreational use 

(Dougherty et al. 2004; McDowell et al. 2004; Drewry et al. 2006). 

Phosphorus is often the limiting nutrient for algal growth in the shallow river systems 

on the SCP, and when P from fertiliser is leached and enters these river systems, 

resulting in large areas of algal growth recurring in the river systems (Engineers 

1988; Hodgkin and Hamilton 1993). Wrigley et al. (1988) studied the P levels in 

waters of the coastal wetlands in agricultural areas of Western Australia. They 

analysed a total of 68 wetlands in this catchment area and found total P 

concentrations between 0.4 and 7.8 mg/L, with the higher P levels attributed to 

agricultural activities. The problem of eutrophication from agricultural fertilising has 

been detected at other locations in Australia, such as in the north-eastern wet-tropic 

cropping land in Queensland (Babare et al. 1997b). This problem is also not limited 

to Australia, with algal growth detected after a flood carried a large increase of P into 

a lake system in Wisconsin in the United States (Richardson and Vaithiyanathan 

1995; Carpenter 2008). 
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2.3.7 Economical effect of phosphorus loss on the Swan Coastal Plain  

Applying the correct amount of P fertiliser is critical to obtain the most economical 

pasture growth response (Cornforth et al. 1993; Morel et al. 2000). Phosphorus 

fertiliser is applied to pasture by broadcasting fertiliser across the surface of the soil 

before the break of the season (Price 2006). This method is used so that 

subsequent rainfall will dissolve P into the soil solution where it becomes available 

to plants. Phosphorus loss to the environment from the rhizosphere of a plant 

typically happens by surface runoff, and leaching. Phosphorus loss to surface run-

off is not a significant problem on the SCP due to the flat topography and free-

draining sandy soils. The impact from leaching of water-soluble P into the wetlands 

and river systems is the single greatest factors affecting the long-term amenity and 

environmental health of coastal waterways (Summers and Weaver 2008). 

Phosphorus entering waterways will reduce the economic return from pasture 

production systems. Fertiliser is generally considered the most expensive input in a 

farming system and any loss of this commodity can reduce the farmer's financial 

return on investment (Summers and Weaver 2008). As the price to manufacture, 

transport and apply P fertiliser increases, the efficiency of applied P fertiliser needs 

to increase to ensure an economic return. The increase in the price of P fertiliser 

and the need to increase P use efficiency is often coupled with environmental 

concerns from P lost to leaching (Simpson et al. 2011a). There are several ways to 

increase P use efficiency which include, soil and tissue analysis to determine the 

exact rate of P required, and understanding climate and plant requirements. 

Establishing pasture before applying P fertiliser and often splitting the applications of 

P fertiliser will also increase P use efficiency. These issues are discussed in more 

detail in the following sections (see Section 2.4). 
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2.4 Plant 

The main pasture species for livestock grazing underpins the global agricultural 

meat, milk and wool markets (Ludemann and Smith 2016). The management of 

plants in the pasture production system is critical in maximising farmer productivity. 

The management process requires the correct selection of plant species that are 

adapted to local conditions, livestock (i.e. sheep, cattle) condition and to maximise 

pasture dry matter production (Nie et al. 2004). The species and systems for plant 

dry matter production vary widely between regions and go from unfertilised rain-fed 

rangeland systems to intensive irrigated highly fertilised systems. The pasture 

species used can vary widely and be a combination of both annual and perennial 

species. The common combination of intensive agricultural systems is a grass 

(annual ryegrass) and legume (clover) system (Smith and Fennessy 2011). The 

selection of the correct species is critical to maximise, dry matter growth, 

productivity, P use efficiency, and be adapted to the environment (Bradshaw 2016).  

2.4.1 Typical pastures species of southern Australia 

The main pasture species in Temperate or Mediterranean areas of Europe, South 

America and Australia are a combined mixture of ryegrass and clover. This mixture 

of species is widely grown for high dry matter yield, high feed nutritional value, and 

ability to withstand a wide range of grazing conditions (Bryant et al. 2016). The 

composition of Australian pasture has changed over time with the introduction of 

new species and changes in farming practices to utilise a mixture of legume (clover) 

and grass (annual ryegrass) pastures (Howieson et al. 2000). The south-west 

Western Australian agro-ecological zones are broadly classified as dry temperate 

having a Mediterranean wet winters with mild to cool temperatures, and dry, warm to 

hot summers (Abberton and Marshall 2005; Vertessy 2014). 

Clover (Trifolium ssp.) is one of the most widely cultivated species for pasture 

production in Australia (Henzell 2007). Clover was selected for pasture production 

due to its ability to: adapt to different climatic conditions, ability to regrow after 

grazing or mowing, high dry matter yield, good nutrition, palatability for livestock, 

and ability to fix N into the soil to reduce the need for synthetic N fertiliser application 

(Thomas 1992; Caradus et al. 1996). Annual ryegrass (Lolium rigidum) is the most 

common grass pasture species for livestock grazing and silage production due to its 

high nutrition value. In the 1990’s  subterranean clover (Trifolium subterranean) and 

annual medics (Medicago spp.) dominated annual legume pastures in southern 

Australia (Nichols et al. 2007). Recent research has found that a mixture of species, 
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including clover and ryegrass is required to maximise the pasture dry matter yield 

and fodder quality (Snaydon 1987; Annicchiarico and Tomasoni 2010). Clover’s 

ability to fix N and ryegrass’s requirement for N means they have a symbiotic 

relationship that increases dry matter yield and forage quality (Thomas 1992; 

Williams et al. 2003; Annicchiarico and Tomasoni 2010). A mixture of the two 

species also ensures that if a season does not favour one, the other may still 

produce dry matter for livestock consumption.  

Over the last 15 years, several new clover varieties have been developed with traits 

that incorporate genes originating from the Mediterranean Basin that are better 

adaptation to Australian climates (Nichols et al. 2007). These traits include deeper 

root systems, protection from false breaks (i.e. germination-inducing rainfall events 

followed by death from drought), a range of hard seed levels, tolerance to acid soils, 

and pest and disease resistance (Nichols et al. 2007). Ryegrass is one of the most 

valuable pasture species in the world and plays a major role is Australian pastures 

(Cunningham et al. 1994; Oram and Lodge 2003). Annually over 6 million hectares 

of ryegrass-based pasture production systems in Australia is grazed for wool, dairy 

and meat industries. Ryegrass provides the main forage species for the cool season 

in the subtropics in Australia and is highly productive both regarding herbage and 

dry matter yield (Lowe et al. 1999).  

The plant root architecture of clover and ryegrass, particularly root type and surface 

area, is critical for the plant's ability to uptake P from the soil (Lynch 1995; Somma 

et al. 1998). The plant’s root system can significantly affect P uptake and increased 

root hair length significantly affects the plant dry matter weight due to increased P 

absorption (Caradus 1981). In pasture production systems, P fertilisers are normally 

applied using the surface broadcasted method onto the soil to address P nutrient 

deficiencies. Ryegrass have a fibrous root system that has a greater surface area to 

capture the surface-applied P (Tisdall and Oades 1979; Fitter and Stickland 1992). 

A fibrous root system has a greater ability to uptake P generally within the top 30 cm 

but does reduce the plant's ability to access P at depths below 30 cm (Caradus 

1981). Ryegrass has a more fibrous root system than clover and therefore has a 

greater ability to access P from the soil (Bolan et al. 1987). Consequently, clover 

requires a higher soil P level than ryegrass as its root system has less surface area 

and cannot obtain the same amount of P in a given volume of soil (Somma et al. 

1998). Clover and ryegrass are the two main annual species, grown in Australia for 

pasture production, and with their slightly differing requirement for P, they will be 

used in this research to determine dry matter yield and plant uptake of P. 
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2.4.2 Plant nutrient requirements 

For plants to grow, thrive and reproduce, they require the ability to capture from the 

environment both macronutrients (i.e. C, H, O, N, P, K, S, Ca, Mg) and 

micronutrients (i.e. molybdenum, copper, boron, manganese, iron, chlorine and 

zinc). Plants also require other microelements such as, sodium, silicon, cobalt, 

strontium and barium, which are not always essential for plant growth but can aid in 

livestock health (Fageria 2008). Reduced availability or a deficiency in one of the 16 

macro/micro nutrients will limit plant growth and production. This will have 

consequences even if all the other nutrients are available in adequate amounts 

(Foster 2015). The macronutrients, carbon, hydrogen and oxygen, are obtained from 

the atmosphere and water. These three elements combined make up to 95% of dry 

matter within the plant. The remaining 5% of the nutrients in the dry matter are 

obtained through the soil via the plant's root system. However, some plants such as 

legumes also have the ability to obtain and convert N into the plant from the roots. 

Nitrogen can also be taken up by the plant roots and leaves from applications of 

liquid fertiliser such as urea ammonia nitrate (Fageria and Baligar 2005; Suter et al. 

2013). As nutrients, these are used by the plants for growth and then consumed by 

livestocks or removed for export from the soil; hence it is critical that these nutrients 

are replaced to maintain optimum plant growth. The rate and type of removal are 

different between different agriculture production systems and will determine the 

requirement for, and replacement rate of all these nutrients. For example, a 1 t/ha 

hay crop comprising 30% clover and 70% ryegrass will remove approximately 35 kg 

of N, 3.5 kg of P, 25 kg of K and 3 kg of S (Foster 2015). 

The size of roots, stems and leaves normally function as interdependent parts of the 

plant (Caradus 1981). These three systems maintain a dynamic balance in biomass 

which reflects the relative abundance of above-ground resources (light and CO2) 

compared with root-zone resources (i.e. water and nutrients) (Poorter et al. 2012). 

Whole-plant growth rate and various summary measures such as root: shoot ratios 

are thus an outcome of developmental stage and environmental influences. 
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2.4.3 Plant uptake of phosphorus 

The growth of plant roots will favour colonisation of nutrient-rich areas within a soil 

(Desnos 2008). The rhizosphere is the narrow region of soil close to the surface that 

is directly influenced by root secretions and the activity of microorganisms (Giri et al. 

2005). The areas of the soil that are not part of this surface layer are known as bulk 

soil. The rhizosphere plays a critical role in nutrient cycling in soil ecosystems (Toal 

et al. 2000). The rhizosphere contains a large volume of bacteria that consume the 

sloughed-off plant cells, termed rhizodeposition, and the material that is released by 

plant roots. Plants obtain the majority of core nutrients, especially N, P and S from 

the rhizosphere (Chen et al. 2002). As plants require nutrients to be soluble, it is 

critical that there is adequate soil moisture within the rhizosphere to allow the plant 

to access them. The depth of the rhizosphere varies, but nutrients have to remain 

within this rhizosphere layer to be available to the plant. Nutrients such as N, P, S 

and iron act as signals that can be received by the plant roots. These nutrients can 

then trigger molecular mechanisms that modify cell division and cell differentiation 

processes within the root and have a significant influence on the plant root structure 

architecture (López-Bucio et al. 2003).  

Plants access P from the soil via their roots which is then transported to the plant for 

use where it is required (Cesco et al. 2012). Root morphology is critical for the 

acquisition of P from the soil and root structure can vary widely between pasture 

plant species (Hill et al. 2006). The application of P fertiliser on the soil surface 

requires rainfall to be dissolved and to infiltrate into the rhizosphere. As the 

frequency of rainfall events decreases, and depending on the volume of rainfall from 

these events, the rate of vertical movement of P affects plant growth due to the 

amount of time that a plant can access any applied P. It is critical that the correct 

rate of P fertiliser is applied and options investigated to maintain plant available P in 

the rhizosphere. Plant roots will adapt to nutrient availability in the soil depending on 

their location and the requirement of the plant (Caradus 1981; Flavel et al. 2012). A 

plant must be adapted (i.e. genetic by environment interaction) to sense and extract 

nutrients from the rhizosphere to ensure optimum growth. A simple outline of this 

method where P fertiliser is applied via surface broadcast of plant acquisition of P is 

outlined in Figure 2.13. 

https://en.wikipedia.org/wiki/Soil
https://en.wikipedia.org/wiki/Root
https://en.wikipedia.org/wiki/Microorganism
https://en.wikipedia.org/wiki/Bulk_soil
https://en.wikipedia.org/wiki/Bulk_soil
https://en.wikipedia.org/wiki/Bacteria
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Figure 2.13 Plant acquisition of soil P (modified) (Schachtman et al. 1998). 

Microbes within the soil can mobilise P by releasing immobile forms of P into soil 

solution (Sathya et al. 2016). The most soluble minerals such as K move through 

the soil via bulk flow and diffusion. The availability of P within the soil bulk can also 

influence plant uptake from diffusion. The rate of diffusion of P is slow (10ˉ¹² to 10ˉ¹5 

m²/s), a higher rate of plant P uptake (10-5 to 10-8), can create a zone around the root 

that is depleted of P (Schachtman et al. 1998). The plant availability to access P 

also depends on root architecture and mycorrhizal fungi while the availability of P is 

affected by acidification, root exudates from organic acids and other microbial 

effects (Richardson et al. 2009a; Richardson et al. 2009b). 

The methods that plants use to access and uptake P in the soil vary depending on 

species, plant root geometry and morphology which all affect maximum P uptake 

(Schachtman et al. 1998; Richardson et al. 2011). The root systems that have a high 

ratio of surface area to volume can effectively explore a larger volume of soil (Lynch 

1995). For this reason, mycorrhizae are important for acquiring P, since fungal 

hyphae generally increase the volume of plant roots (Smith and Read 2008). In 

some species, root clusters (proteoid roots) are formed in response to the limitation 

of P. These specialised roots extrude large amounts of organic acid, up to 23% of 

net photosynthesis. This process of acidification of the surrounding soil and chelate 
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metal ions around the roots results in P mobilisation (Marschner 2012). Phosphorus 

in soil solution can also rapidly react with other elements in the soil (precipitation) 

and on the surface of the soil constituents (adsorption) which combine some 

insoluble compounds (Menezes-Blackburn et al. 2016). The term sorption is 

commonly used to describe precipitation and adsorption events (Bolland and Allen 

2003). The replacement of P into soil solution can occur through some sources, 

including fertiliser application, desorption reactions and mineral dissolution of 

inorganic P and by the mineralisation of organic P by microorganisms (Sundara et 

al. 2002). 

Phosphorus can be very strongly adsorbed by soil particles which restrict movement 

while P can be transferred over larger distances once in the soil solution. Due to this 

lack of movement, adsorption of P in soil solution by the plant roots depends on 

roots intercepting the soil solution as they grow (Bolland et al. 1998). The 

concentration of P in soil solution required for optimum plant growth is about 2 mg/L. 

However, this can change depending on species and yield potential (Pierzynsk et al. 

1994). Available P is critical during the early stages of plant development when the 

root systems are small, and in reduced P situations, this will likely to reduce yield 

potential (Smith 1967; Bolland and Gilkes 2001).  

2.4.4 Measuring phosphorus in plant tissue  

Phosphorus is located in all living cells and is involved in a number of critical plant 

functions, including, photosynthesis, energy transfer, conversion of sugars and 

starches, movement of nutrients within the plant, and reproductive genetic transfer 

(Sultenfuss and Doyle 1999). Phosphorus is readily re-translocated from old leaves 

to new growth and is present in tissue at approximately 0.2% of plant dry matter 

(Snowball and Robson 1983; Schachtman et al. 1998). The recovery rate of applied 

P fertiliser in clover shoots is relatively low with 30%‒35% of P recovered (McLaren 

et al. 2015b).  

Plant analysis provides primary information on the nutrient status of plants and can 

be used as a guide for optimum plant production and nutrient management (Reuter 

and Robinson 1997). Plant analysis can determine if a nutrient is present and if 

levels are suitable for plant growth. The critical ranges of P concentrations in clover 

and ryegrass are between 0.20%‒0.40% depending on plant growth stage, with 

deficiency and toxicity range shown in Figure 2.14 (Haling et al. 2016). 
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Figure 2.14 Derivation of critical concentrations for nutrient deficiency and 
toxicity in plants (Reuter and Robinson 1997). 

2.4.5 Symptoms of phosphorus deficiency and critical limits 

Phosphorus deficiency symptoms can vary depending on factors, such as growth 

stage and status of other nutrients such as potassium, which result in stunting in 

plants (Snowball and Robson 1983). Phosphorus deficiency symptoms can be seen 

in clover with the leaves being smaller and darker green than leaves with adequate 

P (Snowball and Robson 1983). Phosphorus deficiency in ryegrass generally 

appears on the oldest leaves first, with darker green leaves, dead or brown leaf tips 

with curled leaves and stunted growth (Havilah et al. 2005). The critical 

concentration of P for a range for ryegrass and clover at different growth stages is 

shown in Table 2.8. 

Table 2.8 Critical phosphorus concentration in tissue analysis (Reuter and 
Robinson 1997). Perennial ryegrass is shown as no values for annual 
ryegrass is available from this source. 

Pasture species Growth stage Critical P range (%) 

Subterranean clover 

(Trifolium subterranean) 

Young open leaf 

Whole tops 

0.30–0.40 

0.28–0.32 

Perennial ryegrass 

(Lolium perenne) 

Young open leaf 

Whole tops 

0.20–0.28 

0.20–0.25 

 

Phosphorus toxicity in plants is indicated by interveinal chlorosis in younger leaves 

and may look like iron deficiency. The leaves will have symptoms of tip dieback and 

necrosis in vulnerable species (Bhatti and Loneragan 1970). The plants may also 

have interveinal necrosis, marginal scorch and shedding of their older growth 

(Reuter and Robinson 1997).  
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2.5 Phosphorus (nutrients) 

Australian agriculture requires the use of fertilisers to increase and improve crop and 

pasture production as defined by Speirs et al. (2013), with this due to inherently low 

fertility and concentrations of both available P and total P in Australian soils (Wild 

1957; Beadle 1962; McLaughlin et al. 2011). Generally Australian soils have 40% 

less P than the United Kingdom soils and up to 50% less than soil located in USA 

(Foster 2015). The use of SSP has rapidly increased between 1920 and the 1970s 

Donald and Williams (1954) up to about 480 kt P per year and then dropped to the 

current usage 300–500 kt per year (McLaughlin et al. 1992). Pasture production in 

the south-west of Western Australia involves using the 4Rs principle, right P source, 

applied at the right rate, at the right time and to the right place ((IPNI 2016). The 

application rate of P fertiliser to pasture is generally based on a number of factors 

including P buffering index (PBI) as defined by (Sounness 2008; Moody et al. 2013), 

soil analysis Colwell (1965), pasture species, and targeted dry matter yield.  

Once a target dry matter yield has been established, the application of P fertiliser 

pasture production systems is generally applied through the broadcast method 

(Khairo et al. 2009; Smith et al. 2016). This method is used because the majority of 

pastures paddocks are self-sown and can be re-sown periodically to improve 

pasture species or composition. Pasture fertilisers are applied by the broadcast 

method because of the relative quantity of SSP and that it will not pass through 

modern air-seeders due to variation in particle size and low granule strength. For 

these reasons, the broadcast method is used even through drilled P is more 

effective than surface broadcast applied P (Rudd and Barrow 1973).  

2.5.1 Development of phosphorus fertilisers 

Phosphorus was identified as an essential element for plant growth as early as 

1830, when bone meal and guano treated with sulphuric acid (H2SO4) was used to 

increase the solubility and plant availability of P (Foth and Ellis 1988). The chemistry 

of the solubilising action of acids on natural P was discovered around 1796 

(Agriculture 1964). Modern agriculture uses P from rock phosphate which is of 

marine origin and is mined and manufactured into chemical fertilisers (Johnston 

1994). The principal mineral from marine formed rock phosphate is Apatite, which 

accounts for at least 95% of P found in igneous rock. Phosphorus for agriculture can 

also be obtained from recycling, including biosolids from human waste (Pritchard 

2005). Use of P sourced from manures and organic sources to improve crop growth 

dates back to approximately 1000BC. The history, development, mining, 
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manufacture, chemistry and application of artificial fertilisers has not changed much 

since the 1920s, and this is summarised by (Parrish and Ogilvie 1927; Johnston 

1994).  

The main chemical fertiliser currently used in mixed pasture systems is single 

superphosphate (SSP), which is derived from rock phosphate, due to relatively low-

cost manufacture, and is suitable for plant nutrition. The chemical analysis of SSP 

varies depending on where the rock phosphate is sourced and the method of 

manufacture (Darlow 2009). Single superphosphate manufactured in Western 

Australia has a typical analysis of 9.1% phosphorus, 10.5% sulphur and 20% 

calcium (Darlow 2009). The manufacturing process by which rock phosphate is 

processed into single superphosphate is outlined below in Table 2.9. 

a. Phosphate rocks are blended and crushed to a fine powder (rock dust). 

b. The rock dust is mixed with sulphuric acid and water to form a thick slurry. 

c. The slurry is heated to approximately 120C. 

d. The slurry sets into a cake in 30 to 45 minutes. 

e. The cake is mechanically broken into fine pellets. 

f. The fine pellets are conveyed to a granulating plant where they are rolled into 

granules, sized, and sent to storage where it matures prior to dispatch. 

Table 2.9 The chemical reaction of the manufacture of single 
superphosphate (Darlow 2009). 

Rock phosphate  Single superphosphate 

Ca3 (PO4)2 + 2H2SO4 + H2O  Ca (H2PO4)2 H2O + 2CaSO4 

 

2.5.2 Phosphate forms 

Phosphorus derived from rock phosphate is made up of three types of phosphate 

with the ratio of these types determined by the quality of sulphuric acid applied as 

defined by Mclean and Wheeler (1964) and the purity of the rock phosphate (Parrish 

and Ogilvie 1939). The chemical form and analysis of these three types of 

phosphate contained within SSP are outlined in Table 2.10. The fertiliser 

manufacturing process from rock phosphate to SSP cannot completely convert all 

phosphate to a single form and consequently, there is always a percentage of all 

three forms in any fertiliser produced. Single superphosphate has always been 

designed to have the maximum amount of monobasic calcium phosphate as this 
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form is very soluble in water (Kao 2015). Monobasic calcium phosphate is readily 

used by plants (Wild 1988).  

Table 2.10 Chemical form, solubility and chemical structure of phosphate 
fertiliser derived from rock phosphate.  

Chemical forms Solubility Chemical analysis 

Monobasic calcium phosphate Water-soluble Ca (H₂PO4)₂ H₂O 

Dibasic calcium phosphate Citrate-soluble CaHPO4 2H₂O 

Tribasic calcium phosphate Citrate-insoluble Ca3 (PO4)2 

The three forms of phosphate present in fertilisers derived from rock phosphate with 
their solubilities and their chemical analysis. Monobasic calcium phosphate is the 
most soluble, with the solubility reducing as the ratio of calcium to phosphorus 
atoms increases. 
 

2.5.3 Manufacturing of low water-soluble superphosphate 

The manufacture of low water-soluble superphosphate (LWSSP) is similar to that of 

SSP with the process described by (Parrish and Ogilvie 1939; Agriculture 1964; 

Darlow 2009) and only requires lime-sand to alter the process (Smith 2015). As the 

SSP is manufactured, limesand is added to the material in a controlled way to 

maintain the ratio of SSP to lime-sand. A disintegrator provides the mixing to ensure 

homogenisation of the material and then it is granulated and screened as per the 

normal process. The resulting LWSSP is hot, damp and irregular in size. The 

granulation system then uses a disintegrator to break up the material into regular-

sized, fine particles, which is transferred into the granulation drum where water is 

sprayed to re-granulate the LWSSP to the required size range. This material is 

screened, and the correctly sized material is delivered to a storage shed and 

under/oversized material is processed again (Smith 2015). 

Water is critical to the reversion process due to the way that SSP and lime-sand 

react, it generates heat and slowly dries out. The application of water has to be 

controlled to provide sufficient water for the reaction and granulation but not too 

much as to make the material too wet and unstable. The quality of the lime-sand is 

critical, with the smallest particle size and highest neutralising value preferable 

(Riley 2011). Cumming Smith British Petroleum (CSBP) Limited uses lime-sand 

sourced from Lancelin, Western Australia, in the manufacture of LWSSP due to its 

high neutralising value. The rate of limesand application was determined by 

laboratory experimentation by CSBP. To reach 40% water-soluble P, approximately 

18.5% of limesand is needed, however, it is usually over-supplied (to account for 
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process inconsistencies) at 20% which gives 33 to 35% water-soluble P (Smith 

2015). The typical composition of SSP and LWSSP is outlined in  Table 2.11. 

Table 2.11 Percentage composition and phosphorus analysis of two 
superphosphate fertilisers.  

 

SSP LWSSP 

Total P (%) 9.1 8.3 

Monobasic calcium phosphateᴬ 7.8 (86) 2.9 (35) 

Dibasic calcium phosphateᴬ 0.8 (9) 3.7 (45) 

Tribasic calcium phosphateᴬ 0.5 (5) 1.7 (20) 

Single superphosphate (SSP) and low water-soluble superphosphate 
(LWSSP). The percentage of each form of phosphate (within the brackets). 

ᴬ Measured by standard (AOAC 1975). 
 

Adding limesand has a number of implications for SSP: 

1) Limesand consumes all the free acid in the product and hence stops the 

maturation process. The amount of acid-insoluble P remains fixed and does 

not change. 

2) A high rate of limesand reduces fertiliser granule strength and fertiliser quality.  

3) The reversion process is slow and can take up to six weeks for it to complete. 

The rate of reversion is related to the amount of moisture in the product, which 

makes the manufacturing process important. 

The reversion process needs water and a base (e.g. limesand) to convert the MCP 

into the DCP to lower the water-soluble component of superphosphate. The degree 

of reversion is dictated by the amount of basic material that is added, with the 

chemical equation outlined in  Equation 2.1: 

Ca (H₂PO4)₂ + H₂O = Ca (HPO4) + HзPO4 

HзPO4 + CaCOз = CaHPO4 + CO₂ + H₂O 

Equation 2.1 The chemical equation to create low water-soluble superphosphate 

from single superphosphate (Smith 2015). 

2.5.4 Phosphorus recommendation models 

Applying the correct rate of P is critical for maximising pasture dry matter yield and 

minimising over-application of P fertilisers (Summers and McLaughlin 1996). Using 

soil and tissue analyses, any nutrients or soil properties limiting dry matter yield can 

be determined and overcome. Determining the correct rate of P to apply is generally 

conducted through using a fertiliser recommendation model that is based on 
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glasshouse and field experiment data (Sinclair and Johnstone 1995). The rate of P 

required is determined by inputs such as: soil analysis, phosphorus binding index, 

Colwell P, pasture species, and the dry matter yield target (Sinclair et al. 1993; 

Ratkowsky et al. 1997; Cullen et al. 2008). A number of industry and commercial 

models (e.g. Nulogic by CSBP) have been developed to provide P application 

recommendation rates for better fertiliser decisions for pastures (Gourley et al. 2007; 

Dowling 2015). 
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2.6 Management of phosphorus fertilisers  

Environmental and climatic conditions must be matched with the management of P 

fertiliser to achieve the maximum dry matter production (McLaren et al. 2015a). It is 

also essential that soil analysis is used to determine the amount of P fertilisers that 

is required so the soil properties can then be compared to the known response 

curve and the optimum economical response rate determined. The cost of soil 

analysis to determine the optimum rate of P fertiliser can be expensive. Allen et al. 

(2001) compared two methods to establish a more cost-effective alternative to 

replacing the expensive PRI sorption curve method. This improved method has 

allowed more soil analyses to be undertaken at a reduced cost and time (Allen et al. 

2001).  

Inorganic P fertilisers are particularly important in Australia with its ancient nutrient 

depleted soils (Moore 2004). Australian soils have relatively low P reserves and a 

limited capacity to supply P to plants over an extended number of seasons in 

agricultural production systems. Therefore, it is a common practice to apply annual 

applications of P fertilisers to the soil to ensure P is not limiting and that P is 

maintained (Ozanne and Shaw 1967; McLaren et al. 2015a).  

The problem of P loss from leaching after applying fertiliser on lighter soil types is 

well understood, and a considerable amount of research has been conducted to 

mitigate this problem (Simpson et al. 2011b). These methods can be split into four 

categories: management methods, changing the physical properties of the soil, 

coating agents onto the fertiliser, and manipulating the physical and chemical 

properties of the fertiliser. These methods are discussed in the following sections. 

2.6.1 Management methods 

The simplest management method to minimise P leaching is to match P application 

with the plant’s specific requirements. A soil analysis will determine the required 

application rate of P fertiliser, and this requirement can be matched to the pasture 

species being grown (Chisholm and Blair 1988). This method is often associated 

with multiple applications of high water-soluble superphosphate, such as SSP (Bush 

and Austin 2001). It requires the application of enough P to ensure early plant 

growth and root establishment, and a number of subsequent fertiliser applications 

throughout the growing season. The subsequent applications are based on the 

plant's requirements and are normally applied post-grazing for a pasture system 

(Bush and Austin 2001). This method reduces the risk of P loss to leaching by 

minimising the P applied each time according to plant requirements. This method 
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can also be used to a lesser extent for applications of other nutrients, such as N to 

reduce leaching (Di and Cameron 2005). 

This ‘drip feeding’ approach has a number of limitations, the workload for farmers 

and the cost of fertiliser spreading increases as a function of the number of 

applications. Access to the land may be limiting due to low trafficability from winter 

rainfall that can stop farmers from using tractors and spreaders. Multiple P fertiliser 

applications, if not conducted at the appropriate time, can limit production if P 

becomes deficient (Bush and Austin 2001; Burkitt et al. 2011). To reduce P 

leaching, these fertiliser applications need to account for landscape topography and 

buffer zones around water systems (Cox et al. 2007). 

The combination of soil analysis using Colwell and PBI single point absorption 

analysis allows the accurate prediction of P fertiliser application rate to achieve 

optimum growth or yield response. The application of P fertiliser should take into 

account the two methods and a number of other factors including, the type of P 

fertiliser, rainfall, climate, plant species and required growth or plant yield, the 

number of samples and location of the sample area (Bolland 1987). The time of year 

that soil is collected can influence the results due to the amount of extractable P 

depending on seasonal condition, such as summer rainfall and temperature before 

sample collection (Moore 2004). 

2.6.2 Changing the physical properties of the soil 

The physical property of soil and the ability to retain applied P is quantifiable with 

measurement of PRI and PBI. The application of the material in the soil to reduce 

the solubility of P has been investigated at a number of locations globally where soil 

P is at least adequate for the requirement of plant growth (Seshadri et al. 2013). In 

the USA, a coal combustion byproduct was applied to the soil and it was successful 

in reducing soil P to a level that reduced loss to the environment while maintaining 

an adequate supply for plant production (Stout et al. 1998; Johnson et al. 2011). 

Bauxite residue is an alkaline, finely crushed by-product produced in large quantities 

by the alumina industry and has a high ability to retain P. A solution for safe 

environmental disposal of bauxite residue is required with a number of possible 

options proposed by CSIRO (Klauber et al. 2009). Summers et al. (1996b) 

investigated the effect of bauxite residue on P leaching on sandy soils over a 

12-month period with simulated rainfall and climatic conditions of those found on the 

SCP for a five-year period. Bauxite residue was applied to the soil surface of 
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bleached grey sands, with and without gypsum at rates from 5 to 80 t/ha and the 

leachate was analysed. It was determined that the economic optimum rate of 

bauxite application of 5 to 10 t/ha which reduced P leaching rates for at least five 

years after application (Summers et al. 1996b). The reduction in P leaching 

achieved from applying bauxite residue was further investigated to determine if this 

reduction would increase pasture production and to evaluate if heavy metals would 

be taken up by plants (Summers et al. 1996a). The bauxite residue did not increase 

levels of heavy metals in plant tissue, hay or soil. The application of bauxite residue 

did, however, increase P retention in the soil and pasture production, but it was not 

widely adopted due to practical and community concerns. The community concerns 

included the cost of transport and spreading, and the levels of radioactivity emitted 

from bauxite residue since it contains amounts of radioactive thorium, uranium and 

potassium. Summers et al. (1993b) It was determined that if the site were 100% 

occupied for a year (365 days), a rate of 1500 t/ha of bauxite residue would emit 

unacceptable levels of radioactivity for human occupation.  

Industry by-product fly ash and biochar have potential to be used as a soil 

ameliorant to reduce P leaching, and it was investigated at a number of locations 

globally (Pathan et al. 2002; Pathan et al. 2003; Buecker et al. 2016). Biochar has 

been shown to reduce the loss of P and K to the environment while increasing the 

pH of leachate when applied to Australian soils (Buecker et al. 2016). Fly-Ash 

applied to sandy soil significantly increased plant available P to rice when grown in 

South Korea at rates up to 120 Mg/ha-1 (Lee et al. 2007). In Western Australia, fly 

ash is a by-product of power generation and was obtained from the Kwinana power 

station, where approximately 50,000 tonnes are produced annually (Summers et al. 

1998). Fly ash contains P as unweathered (409.9 + 3.1 mg/kg) and weathered 

(92.5 + 3.1 mg/kg) compounds. Fly ash was applied to “Karrakatta sand” (Brown 

Podsol) sourced from the SCP in a leaching column experiment at 5, 10 and 20% 

weight/weight (McArthur and Bartle 1980; Pathan et al. 2002). This result indicated 

that fly ash could be used as a soil ameliorant to reduce the amount of P leaching 

on the SCP. However it was not widely adopted owing to the cost of transport and 

application to the soil. 
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2.6.3 Coating of phosphorus fertilisers 

Coating bauxite residue onto the surface of SSP was investigated by (Summers et 

al. 1999a). It was concluded that a coating of 30% reduced P leaching by half, and 

increased P uptake and plant dry matter yield. From this experiment a coating of 

25% bauxite residue was selected for a field experiment at Demark, Western 

Australia on a humic aquic podosol soil as defined by Isbell (1996), over a three 

years period with applications of bauxite residue coated and SSP applied every year 

Coating of SSP with bauxite residue reduced P loss to leaching and increased dry 

matter yield, however this method was not widely adopted due to high cost of 

integration and the infrastructure to manufacture it (Klauber et al. 2009).  

Aiming to increase P use efficiency, plant uptake and yield through the controlled 

release of P to match plant requirements, Pauly et al. (2002) studied the application 

of a polymer coating to the fertiliser granule. The results indicated that the thin-

coated released P more slowly and increased plant growth at early stages than 

control uncoated di-ammonium phosphate. The thicker-coated polymer released P 

even more slowly and at later growth stages (Pauly et al. 2002). This relationship 

between the thickness of coating and number of holes means that the relative 

amount of P released could be controlled and matched to plants 

requirements/environmental conditions to reduce P leaching. Although the study did 

not investigate the properties for a reduction in leaching, it can be inferred that this 

technology could be applied to SSP to slow the loss of P to leaching due to it 

increased plant uptake and P use efficiency. This polymer technology has not been 

further investigated but merits further investigation.  

2.6.4 Manipulating physical and chemical properties 

The relationship between P fertiliser particle size (i.e. surface area) and the effect of 

P solubility was investigated by (Owens et al. 1955; Williams and Lipsett 1968) in a 

glasshouse study using clover grown on four soil types. The larger a fertiliser 

granule, the less soluble it is (Williams and Lipsett 1968). Owens et al. (1955) found 

that as granule size increases or an increase in water-soluble P, the distance of P 

migration was reduced (see Table 2.12). 
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Table 2.12 Relationship between the water-soluble phosphorus content of 
fertiliser granules and the migration of phosphorus in soil adjacent 
to the granulesA (Owens et al. 1955). 

Water-soluble 

fraction of 

phosphorus 

fertiliser 

Specific activity of rings of soil concentric  

to fertiliser granuleB 

Counts per minuteC 

% 0 to 3.5 mm 3.5 to 6.0 mm 6.0 to 8.5 mm 8.5 to 11.5 mm 

2 to 3 153 116 * * 

8 to 10 1355 311 62 * 

18 to 20 1130 1004 20 * 

28 to 30 2530 1512 137 * 

40 to 45 3499 2478 844 225 

85 to 90 4288 3639 1391 475 

A After 7 day incubation period in Hillsdale sandy loam soil containing 11.5% 
moisture. 

B 4 to 6 mesh granules of 12‒12‒12 fertiliser. 
C Activity measurements represent the mean of 3 replicates. 
 

The process of granulating SSP is a relatively simple technology for most 

manufacturers of fertiliser and granulated fertiliser and is commonly used for 

growing broadacre crops, such as wheat, barley and canola. However, the 

effectiveness of granulated SSP is not often researched since farmers commonly 

use more than one fertiliser through air-seeders for cropping, thereby reducing the 

effectiveness of granulation. As rock phosphate is the base ingredient for the 

production of SSP fertilisers and the relative acidic nature of Australia soils, limited 

amounts of rock phosphate is dissolved when applied to these soils. A number of 

investigations have examined rock phosphate as a source of P for plant growth 

(Bolland et al. 1986; Hughes and Gilkes 1986; Weatherley et al. 1988; Bolan et al. 

1993). Phosphorus within rock phosphate is present in a very insoluble form. 

Manipulating the chemical composition of rock phosphate to increase P use 

efficiency is well known (Parrish and Ogilvie 1927, 1939; Bolan et al. 1990; Darlow 

2009; Yang et al. 2012b). Since plants require access to water-soluble P for uptake, 

most of the P fertilisers are designed to have the maximum percentage of P 

available in a highly soluble form. Several studies investigated the application of 

rock phosphate, partially acidified rock phosphate, or rock phosphate blended with 

water-soluble fertiliser to reduce leaching and increase plant dry matter yield 

(Mclean and Wheeler 1964; Bolland and Bowden 1982; Bolland et al. 1986; Hughes 

and Gilkes 1986; Bolland et al. 1987; Bolland et al. 1988; Weatherley et al. 1988; 
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Deeley 1989; Bolland 1994; Bolland et al. 1995; Babare et al. 1997a; Simpson 1997; 

Prochnow et al. 2008). In 1997, Bolland et al. (1997) reviewed all of the rock 

phosphate research which indicated that rock phosphate fertilisers are not an 

economical substitute for SSP for most agricultural production systems in Australia. 

This study did acknowledge that limited research has been conducted on the 

availability of P to plants from rock phosphate under favourable conditions, that have 

high rainfall, acidic soils and highly reactive rock phosphate (Bolland et al. 1986; 

Bolland et al. 1997). 
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2.7 Summary from literature review 

The literature suggests that there is limited research on manipulating the chemical 

properties of SSP to reduce P loss to the environment while maintaining available P 

for plant growth in pasture systems (Yeates and Clarke 1993; Yang et al. 2012b). 

The literature review concludes that it should be possible to determine the relative 

effectiveness of an LWSSP fertiliser compared to SSP, as a source of P to reduce P 

leaching and maintain pasture production systems (Rodríguez et al. 1996).  

There is a distinct lack of information about the effectiveness of LWSSP as a source 

of P for plant growth. Extrapolating from published reports, it is expected that 

LWSSP would be as effective as SSP based on its chemistry under high rainfall 

conditions on soils with a low PBI. It is expected that manipulating the phosphate 

chemistry contained within SSP, that will allow the plant to assimilate P from MCP 

that enters into the P solution pool within the soil. Since some soils on the SCP have 

a relatively low ability to adsorb P and results in a small solution pool, it is proposed 

that by increasing the percentage of DCP within SSP that the SSP will dissolve at a 

slower rate and enter the active pool. This modification will increase the amount of P 

available in the solution pool over a longer period. The change in SSP to make 

LWSSP ratios of MCP and DCP was based upon a number of issues that include, 

proposed government legalisation limiting the water soluble content of P fertilisers to 

40% or less, the physical chemistry process to convert the remaining phosphate to 

DCP, and the granular strength of the LWSSP fertiliser. The percentage of MCP 

within SSP can be decreased, and the percentage of DCP increased to make 

LWSSP, but the amount of TCP cannot be decreased as it is a by-product of the 

chemical process. With all these factors in mind, it was decided that the chemistry of 

LWSSP with a MCP proportion of 40% was correct for this research.  

Therefore, the three experimental chapters in this thesis further investigate the 

characteristics of LWSSP as a fertiliser for pasture production systems on the SCP 

in south-west, Western Australia. While the research will focus on the application of 

LWSSP, the information gained from modifying the types of P can be transferred to 

many other locations globally to reduce the impact of applied P. This research will 

focus on the, soil, plant growth, leaching, environment and soil chemistry in order to 

understand the complex interaction that takes place between these factors and P.  

  



 

55 

CHAPTER 3  GENERAL MATERIALS AND METHODS 

3.1 Introduction 

This chapter presents the materials and methods that relate to all chapters, details 

specific to individual experiments are given in the relevant chapter. Section 3.2 

contains additional site and soil descriptions, Section 3.7 describes the experimental 

design and treatment structure and Section 3.8 to 3.10 describes the data collection, 

experimental equipment and statistical analyses used for each experiment. Two 

glasshouse experiments, two leaching column experiments and two field 

experiments were conducted as part of this PhD research. 

The first glasshouse experiment was established in June 2014 at the South Perth 

office of the Department of Agriculture and Food, Western Australia Figure 3.1 to 

investigate solubility of P, SSP, LWSSP, MCP, DCP and TCP and their effect on 

plant growth. The second glasshouse experiment was established in October 2012 

at the South Perth office of the Department of Agriculture and Food, Western 

Australia to investigate P availability from LWSSP and SSP using three soil types to 

evaluate soil P retention, rate and amount of P leaching, plant dry matter yield and P 

concentration in plant tissue. Section 3.2 contains additional site and soil details, 

and this experiment is described in full in Chapter 5. The leaching column 

experiments were established at CSBP Limited, Kwinana, Western Australia to 

investigate P solubility of SSP, LWSSP, MCP, DCP and TCP under simulated 

rainfall conditions Figure 3.2. The experiment was conducted within the CSBP field 

research equipment shed between mid-January to late February 2014. Section 3.2 

contains additional site details, and this experiment is described in full in Chapter 9. 

The field experiments were established in May 2009 at two locations on the SCP. 

Site 1 was north of Pinjarra and site 2 east of Serpentine Western Australia  

Figure 3.3. Section 3.2 contains the site and soil descriptions and Chapter 6 present 

the results. The field experiment sites were used to evaluate the pasture response 

to LWSSP, compared to SSP. Annual clover and ryegrass were used as the 

indicative pasture species because they represent the pasture species grown in this 

area (Snaydon 1987). The field sites were selected for the following reasons: 

1) They were both located on the SCP; 2) both had a PBI of less than 15; 3) the 

sites would both be in pasture for three years with grazing stock available; 4) both 

sites had low initial Colwell P levels; 5) both sites were easily accessible and not 
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prone to waterlogging; and 6) and hence were susceptible to leaching of P and were 

located on properties with farmer support for this project. 

3.2 Site locations and soil descriptions 

3.2.1 Glasshouse experiments 

Glasshouse experiment 1 was located in building 27 and glasshouse experiment 2 

was located in building 21 as shown in Figure 3.1. 

 

Figure 3.1 Location of the two glasshouse experiments areas at the South 
Perth office of the Department of Agriculture and Food (Earth 
2015c). 

3.2.2 Leaching column experiments 

The leaching column experiments were located at CSBP Limited, Kwinana, Western 

Australia, within the field research equipment shed and used existing infrastructure 

of columns and benches (see Figure 3.2). 
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Figure 3.2 Location of the leaching column experiment at CSBP Limited, 
Kwinana Western Australia (Earth 2015a). 

3.2.3 Soil collection sites 

The three soil types for glasshouse experiment two as described in Chapter 5 were 

collected from three locations on the SCP that ranged in the soil’s ability to absorb P 

(see Figure 3.3). These soils were selected because: 1) they had a known PBI and 

represented the soil types typical of the SCP; 2) the light soil was from field site 2 

and would provide a comparison with field experiment; and 3) The researcher had 

farmer permission and support for the collection of the soil from these locations. The 

soils are classified as light, medium and heavy for the purpose of the experiment. 

The light soil type was collected from experiment site 2, east of Serpentine, Western 

Australia (see Figure 3.4). The medium soil type was collected 8.5 km on a bearing 

of 232 from Pinjarra, Western Australia, and the heavy soil type was collected 

16.5 km on a bearing of 176 from Pinjarra. 
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Figure 3.3 Location of the medium soil type longitude (south): 32° 47′ 930″ 
latitude (east): 115° 53′ 642″ and heavy soil type longitude (south): 
32° 40′ 586″ latitude (east): 115° 48′ 062″ collection sites (Earth 
2015d).  

The two field experimental sites were located on cattle grazing land and managed 

according to conventional high rainfall, dryland, temperate conditions. Site 1, 

Thompsons, is a flat open paddock located approximately 10 km on a bearing of 

347 from Pinjarra and 1.4 km east of Patterson Road. Site 2, Evans, is a small, flat 

open paddock that is fenced to allow cell grazing of the pasture by cattle. The site is 

approximately 4 km on a bearing of 256 from Serpentine. Before establishing the 

field experiments in mid-May 2009, both sites had 2.5 t/ha of limesand applied to 

increase soil pH as both sites initial soil test indicated that they had a pH below 4.6 

(CaCl2) at 0–10 cm (Riley 2011) (see Table 3.1). 
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Figure 3.4 Location of the two field experiment sites. The coordinates: field 
experiment site 1 longitude (south): 32° 32′ 323″ latitude (east): 115° 
50′ 596″ and field experiment site 2 (longitude (south): 32° 22′ 264″ 
latitude (east): 115° 55′ 583″ (Earth 2015b).  

3.2.4 Soil characteristics 

The physical and chemical properties of the three soils used in glasshouse 

experiment 2 and the field experiment sites are given in Table 3.2. The three soils 

used in glasshouse experiment 2 had different PBI levels of 8.9 (light soil type), 16.4 

(medium soil type) and 121.3 (heavy soil type) with pH (1:5 CaCl2) all less than 5.0. 

The soils at the field experiment sites had a low ability to retain P, with PBI levels of 

10.6–15 at 0–30 cm depth. The soil acidity at both sites was quite high, with a pH 

(1:5 CaCl2) less than 4.6. The soil types had increasing levels of P (Colwell) from 

10 mg/kg in the light soil type, 27 mg/kg in medium soil type and 70 mg/kg in the 

heavy soil type. 

Both field experiment sites had low levels of available P (Colwell) levels at less than 

12 mg/kg, with the average of samples recording 2–4 mg/kg. Levels of available 

potassium (K) (Colwell) were low, with 45 mg/kg at site 1, and 27 mg/kg at site 2, 

both levels declined to 15 mg/kg at 10–30 cm. Sulphur and N levels were also low, 

with sulphur ranging from 1.2 to 6 mg/kg and nitrate-N ranging between 3 to 

15 mg/kg (Foth and Ellis 1988). Glasshouse experiment one was conducted using 

perlite and the properties of this material are outlined in Table 3.3.  
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Field experiment site 1, 2 and the light soil from glasshouse experiment 2 are 

broadly classified as podzols (humus). The medium soil from glasshouse 

experiment 2 was broadly classified as a zanthic (ferrosol) and the heavy soil type 

as a chromic (vertisoil) (McArthur 1991). 
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Table 3.1 General physical and chemical characteristics (dry soil basis) of all the soils used.  

Sample identification 
Sample 

(year) 

Depth 

(cm) 

pH 

(1:5 CaCl2) 
PBI 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 
Texture Soil colour 

Field experiment 2009 0‒10 4.3 14.6 ND ND ND Loamy sand Grey 

Site 1 2009 10‒20 3.8 13.6 ND ND ND Loamy sand Dark grey 

 

2009 20‒30 3.8 14.7 ND ND ND Loamy sand Dark grey 

Field experiment 2009 0‒10 4.6 10.6 ND ND ND Loamy sand Grey 

Site 2 2009 10‒20 4.3 ND ND ND ND Loamy sand Light grey 

 

2009 20‒30 4.0 15.0 ND ND ND Loamy sand Light grey 

Glasshouse experiment light soil 2012 0‒10 4.6 8.9 96.09 < 0.01 3.91 Loamy sand Light grey 

Glasshouse experiment medium soil 2012 0‒10 4.5 16.4 92.96 2.02 5.01 Sandy loam Dark grey 

Glasshouse experiment heavy soil 2012 0‒10 4.9 121.3 59.70 7.24 35.10 Clay Grey brown 

ND – Data not recorded, phosphorus buffering index (PBI) (Allen and Jeffery 1990b).  
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Table 3.2 Nutrient concentrations (dry soil basis) for all soils used before the lime-sand was added.  

Sample identification 
Sample 

(Year) 

Depth 

(cm) 

P (Colwell) 

(mg/kg) 

P (total) 

(mg/kg) 

N (NO3
−) 

(mg/kg) 

K (Colwell) 

(mg/kg) 

S (KCI-40) 

(mg/kg) 

OC 

(%) 

Field experiment 2009 0‒10 3 ND 15 27 6 3.57 

Site 1 2009 10‒20 2 ND 7 15 2.8 3.22 

  2009 20‒30 2 ND 3 15 1.2 1.07 

Field experiment 2009 0‒10 12 ND 14 45 5.8 2.17 

Site 2 2009 10‒20 4 ND 3 15 1.3 0.48 

  2009 20‒30 3 ND 6 15 2.4 1.62 

Glasshouse experiment light soil 2012 0‒10 10 36 4 23 2.3 0.82 

Glasshouse experiment medium soil 2012 0‒10 23 100 42 83 7.1 2.13 

Glasshouse experiment heavy soil 2012 0‒10 70 478 144 312 24.3 3.09 

ND – Data not recorded, phosphorus (P) (Colwell 1965; Rayment and Lyons 2011), nitrogen (N) (Rayment and Lyons 2011), potassium (K) (Colwell 
1965), sulphur (S) (Blair et al. 1991) and organic carbon (OC) (Walkley and Black 1934; Rayment and Lyons 2011). 

Table 3.3 Perlite analysis. 

P (Colwell) 

(mg/kg) 

N (Nitrate) 

(mg/kg) 

K (Colwell) 

(mg/kg) 

S 

(mg/kg) 

OC 

(%) 

EC 

(dS/cm) 

pH 

(1:5 CaCl2) 
PBI 

4 < 1 160 5.5 0.13 0.042 6.7 5.4 

Phosphorus (P) (Colwell 1965; Rayment and Lyons 2011), nitrogen (N) (Rayment and Lyons 2011), potassium (K) (Colwell 1965), sulphur (S) (Blair 
et al. 1991), organic carbon (OC) (Walkley and Black 1934; Rayment and Lyons 2011), electric conductivity (EC) (Rhoades et al. 1999), pH (Sparks 
et al. 1996) and phosphorus buffering index (PBI) (Allen and Jeffery 1990b).  
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3.3 Soil sampling and analysis 

3.3.1 Sampling and characterisation 

At the soil collection sites, the surface layer of organic matter was removed and the 

top 0‒10 cm of soil was removed from an area approximately 5 m² and placed into 

50 kg polypropylene bags. The soil was then transported to CSBP Limited field 

research shed where they were then placed on a large tarpaulin and allowed to dry 

(Plate 3.1). The light and medium soils were then sieved through a 2.2 mm screen, 

and the heavy soil was transported to the CSBP Limited Laboratories in Bibra Lake, 

Western Australia. The heavy soil was ground and sieved using a 2 mm screen. 

Following this the soil was placed into three 40 kg bags and a single representative 

2 kg sample of each collected from each bag for each soil type. The nine soil 

samples were placed in a labelled sealed bag and submitted to CSBP Limited 

Laboratories, which is an Australasian Soil and Plant Analysis Council accredited 

laboratory for analysis. 

 

Plate 3.1 Soils used in the glasshouse 
experiment. Heavy soil type (left), medium soil 
type (centre), light soil type (right). 
 

  



 

64 

To characterise the soils for the 2009 field experiment site 1 at Pinjarra, a 

representative 2 kg sample was taken from seven depths, 0‒10 cm, 10‒20 cm,  

20‒30 cm, 30‒40 cm, 40‒50 cm, 50‒60 cm and 60‒70 cm. The 0–10 cm soil 

samples were collected from random locations across the experiment site using a 

20 mm hollow metal tube and the 10–70 cm samples were collected using a 

mechanic auger (Plate 3.2 and Plate 3.3).  

To characterise the soils for the 2009 field experiment site 2 at Serpentine, a 

representative 2 kg sample was taken at three depths: 0‒10 cm, 10–20 cm and  

20‒30 cm. The soil samples were collected using two methods, with 0‒10 cm 

sample collected from random locations across the experiment site using a 20 mm 

hollow metal tube and the 10–30 cm samples collected by digging a single 30 cm² 

hole at a single location within each replication. The soil was sieved through a 2 mm 

screen to remove stones and plant debris, placed in labelled containers and then 

dried at 50C for 12 hours before analysis.  

Post-experiment samples were collected in early January 2012, with all plots 

sampled at a depth of 0‒10 cm. Samples were taken at both field experiment sites 

by collecting 20 soil cores from each plot. A single core was collected at 10‒20 cm 

and 20‒30 cm depth by digging a single 30 cm² hole and removing the surface 

layers.  

  

Plate 3.2 Soil in field experiment site 1. Plate 3.3 Soil in field experiment site 2. 
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3.3.2 Glasshouse experiments sample collection  

Root material was removed and the soil placed into aluminium trays before 0‒10 cm 

of the soil was collected in 2 kg clear polyethylene bags. The soil samples were then 

analysed as per the experimental design and any of the residual soil sample 

material was placed into storage. Water samples from the two glasshouse 

experiments were collected in labelled 100 mL white polyethylene bottles with a 

screw lid. The samples were then refrigerated at 4C and/or transported to CSBP 

Limited laboratory for Inductively Coupled Plasma (ICP) analysis.  

Plant tissue samples from the glasshouse experiments were harvested at ground 

level and placed into paper bags. Wet weights were recorded and then the samples 

were dried with the dry matter weights were recorded. The tissue samples were then 

analysed as per the experimental design and then any residual material was placed 

into storage.  

3.3.3 Field experiments sample collection 

Plant tissue samples were collected in labelled paper bags. Two types of paper 

bags were used for collecting the tissue samples: small bags (approximately 15 cm 

in width and 30 cm in height) for collecting samples for nutrient analysis, and larger 

bags (approximately 30 cm in width and 50 cm in height) for collecting quadrat cuts 

for measurement of dry matter yield. 

3.3.4 Long-term sample storage 

All experimental samples are stored in a manner that reduces the probability of 

contamination between samples or from external sources, for at least five years 

after this thesis is published. Soil samples are stored in sealed plastic bags and then 

placed in into a large plastic tub and covered with plastic sheeting. Plant tissue 

samples are stored in paper bags, then placed in cardboard boxes and then placed 

on a standard size pallet and covered in plastic. After water samples had been 

analysed, the residual water was retained in bottles and frozen at -20˚C in a chest 

freezer for long-term storage. All physical experimental material is stored at 1289 

Mooliabeenee Road, Gingin, Western Australia, with soil and tissue sample stored 

in a large agricultural shed and the water samples in two chest freezers at a different 

location at the same address. 
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3.4 Soil analysis methods  

All soil analysis was conducted at CSBP Limited laboratory according to standard 

analysis procedures outlined by (Loss 2012). The methods and references in this 

section are publicly available from this laboratory and permission to be published in 

this thesis has been authorised by the author Dr Stephen Loss (see Appendix 9.3).  

Unless specified otherwise, all soils were dried at 40C for 24 hours or until dry, then 

crushed and sieved to less than 2 mm. Most of the following methods are based on 

those described by (Rayment and Lyons 2011). These analytical methods are 

outlined in: P soil analysis Table 3.4, other soil nutrient analyses Table 3.5, soil 

physical and chemical analysis Table 3.6, and plant, water and fertiliser analysis 

methods (see Table 3.7).  

3.4.1 International and Australia methods for soil, plant and water analysis 

There is no single standard for the analysis of P in soil and the method varies 

depending on location (Rayment and Lyons 2011). The two currently used methods 

used in Australia are (Olsen et al. 1954; Colwell 1965; ISO 1994). For example, the 

United States of America prefers the Olsen Method as outlined by Hughes et al. 

(2000) for the analysis of P. Even within Australia the analysis of P varies, with the 

Eastern Australia states preferring the Olsen method while Colwell is the current 

standard method in Western Australia (Brennan and Bolland 2007). Analysis of 

water, plant and material for nutrient content is conducted using inductively coupled 

plasma (ICP) spectrometry (ISO 1987; Zarcinas et al. 1987).  

3.4.2 Limitations and analytical methods for soil, plant and water analysis 

In this thesis, the samples collected for analysis are only as accurate as the 

sampling techniques used. The samples collected for this research have been 

collected to provide a representative sample for a site and is meant to reflect the 

range of samples from a location since it was not possible to analyse every 

treatment in the experiment. All analytical methods have some inherent variability in 

the measurements that they produce because of small variations in sample 

preparation and instrumentation. 
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The accuracy of any analysis can vary depending on the type of analysis and as 

such methodologies have been developed to ensure that any error is minimised and 

ensure that results are consistence. The reporting limits for the following tests in 

Australia are: Colwell P (+/- 2), Total P (+/- 1), pH (CaCl2) (+/- 0.2), and EC (+/- 

0.01). As analysis is conducted in batches, a number of control samples are 

included in the batch in random locations that have known results, and these are 

then checked to ensure that the methods and instrumentation are operating 

correctly and the results from each sample are accurate. 
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Table 3.4 Soil analysis methods for phosphorus*. 

Analysis Method References 

Colwell phosphorus 

and potassium (mg/kg) 

“Using a soil to solution ratio of 1:100, soils are extracted with 0.5 M sodium bicarbonate solution 

adjusted to pH 8.5 for 16 hours. The acidified extract is treated with ammonium molybdate/antimony 

trichloride reagent and the phosphorus is measured colorimetrically at 880 nm using a discrete 

analyser. The potassium in the extract is determined using a flame atomic absorption 

spectrophotometer at 766.5 nm.” 

(Colwell 1965; Rayment 

and Lyons 2011) 

Olsen (mg/kg) “Soil are extracted at a ratio of 1:20 with NaHCOз (pH 8.5) for 30 minutes. The orthophosphate ion 

reacts with ammonium molybdate and antimonyl tartrate, under acidic conditions to form a 

phosphomolybdic acid complex. This complex is reduced with ascorbic acid to form a blue complex 

which adsorbs light at 880 nm and can be detected on a discrete analyser.” 

(Olsen et al. 1954; 

Rayment and Lyons 2011) 

Total phosphorus “Soils are digested in sulphuric acid in the presence of a BDH Kjeldahl catalyst tablet in a microwave. 

The total P concentration measured colourimetrically at 880 nm after incubation with the colouring 

reagent ammonium molybdate/potassium antimonyl tartrate in an acid medium.” 

(Allen and Jeffery 1990b; 

Rayment and Lyons 2011) 

Acid extractable “Acid extractable P can be used to measure the labile P component in the pool. The test favour’s 

extraction of Ca-bound P, many forms of which are not available to plants and, as such, the test can 

overestimate P availability. Soils are extracted for 16 hours with 0.005 M sulphuric acid and the P in the 

cleared extract is determined colourimetrically on a discrete analyser.”  

(Rayment and Helyar 1980; 

Rayment and Lyons 2011) 

Phosphorus buffering 

index (PBI) 

“Phosphorus Buffering Index is measured by the amount of P sorbed by the soil when the solution 

concentration of P is increased by 100 (mg/mL). After extraction with a calcium chloride (+) sodium 

dihydrogen phosphate solution, this method determines the phosphorus buffering index of soils 

colorimetrically with ammonium molybdate/ammonium metavanadate reagent using a discrete 

analyser.” 

(Allen and Jeffery 1990b; 

Rayment and Lyons 2011) 

Phosphorus retention 

index (PRI) 

“Phosphorus retention index is defined as the ratio of the adsorbed phosphorus to the equilibrium 

concentration. The amount of phosphorus adsorbed/desorbed by each gram of the soil pads is the 

difference between the initial concentration of phosphorus (Po) and the equilibrium concentration (Peq). 

Phosphorus in soils is extracted in a 0.02 M potassium chloride equilibrating solution in a ratio of 1:20 

for 16 hours, and the concentration of P in the resulting solution (Peq) is determined colorimetrically on 

a discrete analyser.” 

(Allen and Jeffery 1990b) 

*(Loss 2011) 
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Table 3.5 Other soil nutrient analyses methods. 

Analysis Method References 

Nitrate and ammonium 

(mg/kg) 

“Soil nitrate nitrogen and ammonium nitrogen are extracted with a 2 M potassium chloride solution for 

1 hour at 25C. After dilution the resulting soil solution is measured on a Lachat Flow Injection Analyser. 

Ammonium is measured colorimetrically at 630 nm using the indo-phenol blue reaction. Nitrate is 

reduced to nitrite through a copperised-cadmium column and the nitrite is also measured 

colorimetrically at 520 nm.” 

(Searle 1984; Rayment and 

Lyons 2011) 

Sulphur (mg/kg) “Plant available sulphur in soils is determined by extraction with a 0.25M potassium chloride solution for 

3 hours at 40C. The sulphur content of extracts are analysed by Inductively Coupled Plasma 

Spectrometry. This method is known as the KCI-40 or Blair/Lefroy Extractable Sulphur method.” 

(Blair et al. 1991; Rayment 

and Lyons 2011) 

Organic carbon (%) “In the (Walkley and Black 1934) method concentrated sulphuric acid is added to soil wetted with 

dichromate solution. The chromic ions produced are proportional to oxidised organic carbon and are 

measured colorimetrically at 600 nm on a plate reader.” 

(Rayment and Lyons 2011) 

Total K (Kjeldahl) “Total K samples are digested with sulphuric acid and a Kjeldahl copper catalyst tablet in a microwave. 

Diluted samples are read for K using a flame atomic absorption spectrophotometer at 766.5 nm.” 

(Allen and Jeffery 1990a) 

Skene K (HCl) “This test is used to determine the available K fraction in the soil. Skene K values are typically lower 

than Colwell K values when the soils being tested are alkaline. Soils are extracted for 1 hour in 0.05 M 

hydrochloric acid and the resulting extract is read for K using a flame atomic absorption 

spectrophotometer at 766.5 nm.”  

(Haysom 1971; Rayment 

and Lyons 2011) 

Total nitrogen “Total nitrogen is determined by Dumas high temperature combustion (LECO analyser), where soil 

samples are loaded into a combustion tube at 950 C and flushed with oxygen. All gases generated are 

collected and measured on an infrared detector for carbon and a thermal conductivity cell for nitrogen.” 

(Rayment and Lyons 2011) 
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Table 3.6 Soil physical and chemical analysis methods. 

Analysis Method References 

Soil pH and electrical 

conductivity (ds/cm) 

“Using a soil to solution ratio of 1:5, soils are extracted in deionised water for 1 hour. The water pH and 

electrical conductivity of the extract are measured using a combination pH and conductivity electrode. 

After the water pH and EC have been measured, calcium chloride solution is added to the soil solution 

to the equivalent of 0.1 M and after thorough mixing for 10 minutes the calcium chloride pH is also 

measured. All measurements are recorded while the solution is stirred.” 

(Rayment and Lyons 2011) 

Texture “Texture is assessed by wetting the soil and feeling the wet soil between the forefinger and thumb. Six 

texture categories are used: sand (1.0), loamy sand (1.5), loam (2.0), clay loam (2.5), Clay (3.0) and 

heavy clay (3.5).” 

 

Colour “Soils are classified into the following colours: white, grey, yellow, brown, orange, red, pink and black. 

More than one colour may be included (e.g. brown yellow) and light and dark may also be assigned.” 

(Munsell 2000) 

Gravel content “The gravel content is estimated visually and by running the fingers through the soil. Approximate 

figures are reported, e.g. 10‒15 (%).” 

 

Physical observations “Unprepared soil samples are laid on a cardboard tray and soil texture, colour and gravel content are 

estimated by a quick physical observation. These procedures were devised to give an indication 

whether the soil type changed between samples, not as an accurate measurement of the soil 

characteristics. Our classification systems do not correspond to any other systems, e.g. Northcote 

classification” 

(Northcote 1979) 

Particle size “Prepared soil samples are treated with hydrogen peroxide to remove the organic matter, and then 

shaken with a 1:1 Calgon-Sodium Hydroxide mixture to disperse the soil particles. Using a table of 

particle sedimentation times, 25 mL aliquots of the solution are removed at the set times and the 

remaining sample is sieved. The aliquots are evaporated in an oven and weighed to determine the 

coarse and fine sand, silt and clay contents” 

(Indorante et al. 1990) 

Moisture, ash and 

organic matter (%) 

“Fresh soil samples are weighed heated in a furnace to 100C overnight and weighed a second time to 

determine percentage moisture. Soils are then heated in a furnace at extreme temperatures to 

determine loss on ignition (400C for 4 hours) and percentage ash (600C for 2 hours) values. Loss on 

ignition and percentage ash measurements are used to estimate of organic matter content of the soil.” 

(Rayment and Lyons 2011) 

Exchange acidity 

(meq/100 g) 

“Soils are extracted with 1 M KCl in a 1:5 ratio for 1 hour, and the exchangeable acidity Al³+ and H+ are 

measured by titration with NaOH and hydrochloric acid. Exchangeable Al³+ and H+ are held on 

exchange sites is largely dependent on the pH of the soil. The method for Al can be used to replace 

CaCl2 extractable method and the exchange acidity value is particularly useful for high pH soils.” 

(Rayment and Lyons 2011) 
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3.5 Plant and water analysis 

Unless specified otherwise, plants samples were dried at 40C for 24 hours or until 

dry, and then ground and sieved through 2 mm. Water samples were analysed for 

pH, electrical conductivity, nitrate and ammonium according to the methods 

described for soils and multi-element analysis are determined by inductively coupled 

plasma. Total dissolved solids can be calculated from the electrical conductivity 

results. These analytical methods are outlined in Table 3.7.  
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Table 3.7 Plant, water and fertiliser analysis methods. 

Analysis Method References 

Multi-elements (ICP) 

(mg/kg) (plant) 

“After complete digestion of the plant material with a combination of nitric acid and hydrogen peroxide at 

high temperatures, digest solutions are diluted with deionised water to dissolve all precipitates. The 

resulting solutions are subsequently analysed on the Inductively Coupled Plasma – Atomic Emission 

Spectrometry (ICP-AES) for determination of the elements, boron, copper, zinc, manganese, iron, 

calcium, magnesium, sodium, potassium, phosphorus and sulphur. They can also be read for 

molybdenum, cobalt and selenium.” 

(McQuaker et al. 1979) 

Nitrates and chlorides 

(mg/kg) (plant) 

“Plant nitrate and chloride are extracted by stirring plant material in deionised water for 30 minutes. The 

extracted nitrate is reduced to nitrite in a copperised cadmium column and the nitrite determined 

colorimetrically on the Lachat Flow Injection Analyser at 520 nm. For chloride the reaction is based on the 

liberation of thiocyanate ions from mercuric thiocyanate by the formation of soluble mercuric chloride. In 

the presence of ferric ion, free thiocyanate ion forms ferric thiocyanate which is read colorimetrically at 

480 nm in a flow injection analyser.” 

(Instruments 2012) 

Water analysis (mg/L) “Water samples were analysed for pH, electrical conductivity, nitrate and ammonium according to the 

methods described for soils and multi-element analysis are determined by inductively coupled plasma. 

Total dissolved solids can be calculated from the electrical conductivity results.” 

 

Phosphate fertilisers “This method determines the water-soluble phosphorus content in calcium phosphate fertilisers containing 

> 10% Phosphorus and Superphosphate in all stages of manufacture. The differences in phosphate 

solubility of SSP and LWSSP, such as P % (total), P % (monobasic calcium phosphate) and P % (dibasic 

calcium phosphate) were measured by established method and the P % (dibasic calcium phosphate) was 

determined by subtracting the measured P % (monobasic calcium phosphate) and P % (tribasic calcium 

phosphate) from the P % (total).” 

(McQuaker et al. 1979) 
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3.6 Fertiliser Analysis 

The methods outlined in this section were derived from three CSBP Limited 

standard laboratory procedures (Morris 2015c, 2015b, 2015a). The chemistry of 

MCP, DCP and TCP is outlined in Table 3.8, the analysis of SSP and LWSSP is 

outlined in Table 3.9 and the basal fertiliser applied to glasshouse experiments is 

outlined in Table 3.11 and Table 3.12. The predicted solubility of each fertiliser 

treatment applied to glasshouse experiment 1 is outlined in Table 3.10 with SSP and 

LWSSP calculated from the percentages of MCP, DCP and TCP. All of the fertiliser 

analysis in this research was conducted at CSBP Limited Kwinana fertiliser 

laboratory. 

Table 3.8 Chemical forms of phosphate in single superphosphate fertiliser. 

Type Solubility Chemical analysis 

Monobasic calcium phosphate Water-soluble Ca(H₂PO4)₂ H₂O 

Dibasic calcium phosphate Citrate-soluble CaHPO4 2H₂O 

Tribasic calcium phosphate  Citrate-insoluble Ca3 (PO4)2 

 

Table 3.9 Phosphorus concentrations (%W/W) in fertiliser use.  

Type SSP LWSSP 

Total P 9.1 8.3 

Monobasic calcium phosphateᴬ 7.8 (86) 2.9 (35) 

Dibasic calcium phosphateᴬ 0.8 (9) 3.7 (45) 

Tribasic calcium phosphateᴬ 0.5 (5) 1.7 (20) 

Values in parentheses are a percentage of total phosphorus. 

Single superphosphate (SSP) and low water-soluble superphosphate (LWSSP). 

ᴬ Measured by standard (AOAC 1975). 
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Table 3.10 Total predicted solubility of each treatment applied to glasshouse 
experiment 1.  

Fertiliser MCP (%) DCP (%) TCP (%) Total calculated solubility (%) 

MCP 100 0 0 99.9 

DCP 0 100 0 36.2 

TCP 0 0 100 0.01 

SSP 86 9 5 89.2 

LWSSP 35 45 20 51.3 

Monobasic calcium phosphate (MCP), dibasic calcium phosphate (DCP), tribasic 
calcium phosphate (TCP), single superphosphate (SSP) and low water-soluble 
superphosphate (LWSSP). Calculations used to determine total calculated solubility 
are based on 40 L of water outlined in Appendix 9.3.2.3 (Kotz et al. 2003). 
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Table 3.11 Glasshouse experiment 1 (hydroponics) basal nutrient solution (total applied to each system per run), Hydroponics basal 
nutrient mixture was designed and supplied by HyGen Limited (Perth, Western Australia). 

Boron Calcium Copper Iron Magnesium Manganese Phosphorus Potassium Sodium Sulphur Zinc 
(mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) 

13.14 4797.28 5.25 80 1461 35 0.11 7007 131 1753 6 

 

Table 3.12 Glasshouse experiment 2 (pot) basal nutrient solutions (applied per kg of soil). 

Boron Calcium Chorine Cobalt Copper Magnesium Manganese Mo Nitrogen Phosphorus Potassium Sulphur Zinc 
(mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) 

0.1 41 98 0.1 0.5 4 3 0.08 33 < 0.05 89 34 2 

* 0.23 mL per pot of urea ammonium nitrate-nitrogen and sulphur were also applied. 
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3.7 Experimental approach for experiments 

Demineralised water was used in the glasshouse experiments. Analysis of the 

demineralised water showed that nutrients concentrations (Boron, calcium, copper, 

iron, magnesium, manganese, phosphorus, potassium, sodium, sulphur and zinc) 

were less than 0.05 (mg/L). The demineralised water was sourced from CSBP 

Limited ammonium nitrate manufacturing plant number one Kwinana, Western 

Australia and placed into 20-litre plastic drums for transport to experimental areas as 

required.  

3.7.1 Design for glasshouse experiment 1 

3.7.1.1 Glasshouse experiment 1 (hydroponics) 

For this hydroponics experiment, a factorial experimental design was used with the 

2 plant-type treatments (Clover, Ryegrass), 6 fertiliser treatments (Nil, SSP, 

LWSSP, MCP, DCP, and TCP) and with 3 replicates (see Table 3.13). The 

treatment placement within/between replicates was also spatially adjusted to 

minimise the treatment covariances using trial program DiGGer. The final treatment 

design is shown in Appendix 9.3.2.1.  

Table 3.13 Hydroponics experimental design. 

Trt Plant species Fertiliser 

1 Clover Nil-P 

2 Ryegrass Nil-P 

3 Clover Single superphosphate 

4 Ryegrass Single superphosphate 

5 Clover Low water-soluble superphosphate 

6 Ryegrass Low water-soluble superphosphate 

7 Clover Monobasic calcium phosphate 

8 Ryegrass Monobasic calcium phosphate 

9 Clover Dibasic calcium phosphate 

10 Ryegrass Dibasic calcium phosphate 

11 Clover Tribasic calcium phosphate 

12 Ryegrass Tribasic calcium phosphate 
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3.7.1.2 Leaching column 

For the leaching column experiment, a factorial experimental design was used with 

6 fertiliser treatments (Nil, SSP, LWSSP, MCP, DCP, and TCP) and with 3 

replicates (see Table 3.14). The treatment placement within/between replicates was 

also spatially adjusted to minimise the treatment covariances using trial program 

DiGGer. The final treatment design is shown in Appendix 9.3.2.2. 

Table 3.14 Leaching column experimental design. 

Trt Fertiliser 

1 Nil-P 

4 Monobasic calcium phosphate 

5 Dibasic calcium phosphate 

6 Tribasic calcium phosphate 

7 Single superphosphate 

8 Low water-soluble superphosphate 

 

3.7.2 Design for glasshouse experiment 2 

For glasshouse experiment-2, a factorial experimental design was used with the 

2 plant-type treatments (Clover, Ryegrass), 3 soil types (heavy, medium, and light), 

3 fertiliser treatments (Nil, SSP, LWSSP) and with 3 replicates (see Section 3.15). 

The treatment placement within/between replicates was also spatially adjusted to 

minimise the treatment covariances using trial program DiGGer. The final treatment 

design is shown in Appendix 9.3.3. 
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Table 3.15 Pot experimental design. 

Trt Plant spices Soil Fertiliser 

1 Clover Heavy Low water-soluble superphosphate 

2 Clover Heavy Nil-P 

3 Clover Heavy Single superphosphate 

4 Nil Heavy Low water-soluble superphosphate 

5 Nil Heavy Nil-P 

6 Nil Heavy Single superphosphate 

7 Ryegrass Heavy Low water-soluble superphosphate 

8 Ryegrass Heavy Nil-P 

9 Ryegrass Heavy Single superphosphate 

10 Clover Light Low water-soluble superphosphate 

11 Clover Light Nil-P 

12 Clover Light Single superphosphate 

13 Nil Light Low water-soluble superphosphate 

14 Nil Light Nil-P 

15 Nil Light Single superphosphate 

16 Ryegrass Light Low water-soluble superphosphate 

17 Ryegrass Light Nil-P 

18 Ryegrass Light Single superphosphate 

19 Clover Medium Low water-soluble superphosphate 

20 Clover Medium Nil-P 

21 Clover Medium Single superphosphate 

22 Nil Medium Low water-soluble superphosphate 

23 Nil Medium Nil-P 

24 Nil Medium Single superphosphate 

25 Ryegrass Medium Low water-soluble superphosphate 

26 Ryegrass Medium Nil-P 

27 Ryegrass Medium Single superphosphate 

 

3.7.3 Design for field experiments 

For the field experiments, a randomised complete block (RCB) experimental design 

was used with the 3 fertiliser treatments (Nil, SSP, LWSSP), 5 application rates (0, 

5, 10, 15, 25 kg/ha) and with 3 replicates (see Table 3.16). The final treatment 

design for each field experiment is outlined in Appendix 9.3.4.  
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Table 3.16 Field experimental design. 

Trt Fertiliser Amount of applied P (kg/ha) 

1 Nil-P 0 

2 Low water-soluble superphosphate 5 

3 Single superphosphate 5 

4 Low water-soluble superphosphate 10 

5 Single superphosphate 10 

6 Low water-soluble superphosphate 15 

7 Single superphosphate 15 

8 Low water-soluble superphosphate 25 

9 Single superphosphate 25 

 

Basal solids fertiliser applications included muriate of potash, granular sulphate of 

ammonia, lime and urea. The basal liquid fertiliser applications included urea 

ammonia nitrate and urea ammonia nitrate sulphur. The application rates and dates 

of applications of all fertilisers are listed in the appendix (see Section 9.3.4).  

3.7.3.1 Site management 

Broad-leaf weeds, predominantly capeweed were controlled with Tiger X, a selective 

herbicide with MCPA (present as the iso-octyl ester) as the active constituent. Tiger 

X was periodically applied throughout the growing season at rates up to 1 L/ha (rate 

as per requirement by Blacklow (2008b) to ensure the pasture composition was 

dominated by clover and ryegrass. Insects, predominantly red-legged earth mites, 

were controlled with Lemat, an insecticide with Omethoate as the active constituent. 

This insecticide was periodically applied throughout the growing season at rates up 

to 300 mL/ha (rate as per requirement by Blacklow (2008a) to reduce the chance of 

insect damage. Electric fencing was erected around half of each field experiment to 

exclude cattle and allow pasture measurements. The fencing was separated into 

two sections (front and rear) to allow one section to be excluded from grazing and 

then measured at the optimum level of dry matter growth (2–2.5 t/ha), and then the 

fence was shifted to the other section which had been grazed. This design enabled 

pasture growth to be measured continuously over the season. Areas of cattle dung 

were avoided for all measurements so as not to bias the results. 
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3.8 Data collection 

3.8.1 Dry matter yield  

Dry matter yield was determined by three different methods: 

1) Removing the whole sample. 

2) Rising plate meter calibrated using quadrat cuts. 

3) Quadrat cuts from a representative area of the experiment plot. 

Removing the whole sample was the most accurate method for determining dry 

matter yield for the glasshouse experiments. The plant tissue was cut at 1 cm above 

the surface of the pot and oven dried. The dry matter yield was determined using the 

following (see Equation 3.1).  

Equation 3.1 

DM (t/ha) = 
𝑡𝑖𝑠𝑠𝑢𝑒 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑝𝑜𝑡 (𝑐𝑚2)
 x 100 

Measuring dry matter yield with a rising plate meter is a well-established method as 

defined by McQuaker et al. (1979) that allows a large number of plots to be 

measured in a non-destructive way. A rising plate meter is an instrument with a 

square plate that is allowed to move up and down placed on the surface of the 

pasture and has a counter that measures the height of the pasture. As some 

readings are taken (30 per plot), the average height of the plants can be determined, 

and the process is repeated for all plots within the field experiments. Once an 

average range of plate meter readings is known, the plate meter is then used to find 

a quadrat area (1 m2) of pasture within the average range. A dry matter cut is then 

taken from within this quadrant area (1 m2) to calibrate that height of the plate meter 

and the process is repeated at least 8 times to cover the range of the average plate 

meter readings. The quadrat cuts were then dried and weighed, with the dry matter 

weights multiplied by 40 and plotted against the rising plate meter that was taken 

from this quadrant and a linear line of best fit fitted. This line is used to determine 

the dry matter yield for all reading taken from the experiment using (see Equation 

3.2).  
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Equation 3.2 

DM (t/ha) =  
𝑌𝑖𝑒𝑙𝑑 𝑥 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑝𝑙𝑎𝑡𝑒_𝑟𝑒𝑎𝑑𝑖𝑛𝑔 + 𝑋

1000
    

 

Quadrat cuts were also used to determine the dry matter yield for each plot of the 

field experiments by taking a single cut from a representative area of the plant 

growth within that plot. The cuts were then dried and dry matter yield was 

determined using (see  

Equation 3.3). This method is less accurate and was only used for plants that had 

moved towards the reproductive phase of their life cycle, and the rising plate meter 

could not accurately determine the plant height. 

 

Equation 3.3 

DM (t/ha) = 
𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑐𝑢𝑡_𝑑𝑟𝑖𝑒𝑑_𝑤𝑒𝑖𝑔ℎ𝑡 𝑥 40

1000
 

3.8.2 Tissue analysis and plant uptake 

Tissue analysis was conducted using two methods: 

1) Removing the whole sample. 

2) Removing a representative sample. 

Analysing the whole sample was conducted for the glasshouse experiments after 

the dry matter yield was determined. Due to the low dry matter weight obtained from 

the glasshouse experiments, the samples were bulked together according to 

treatment to ensure there was enough material to analyse. 

Plant tissue analysis of the field experiment was conducted using the representative 

sampling method with ‘grab’ samples taken from 10 random locations within the 

plots. Grab samples were taken by preferentially selecting a single species (usually 

clover) to be consistent and removing the top leaves of the plants. If the amount of 

clover was inadequate for a sample, ryegrass was selected and the species 

recorded.  

For all experiments, plant uptake of P was used to determine the total amount of P 

removed by the given treatment. This method was adjusted to account for the 

dilution of a nutrient as the amount of dry matter increased. Plant uptake was 

determined using (see Equation 3.4). 
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Equation 3.4 

Plant uptake equals (dry matter yield (t/ha) multiplied by tissue P (%)) multiplied by 

10. 

Plant update = DM_yield(t/ha) x tissue_P(%) x 10 

3.8.3 Water samples 

Water samples collected from the glasshouse experiments using two methods: 

1) Hydroponics samples. 

2) Leachate and pot samples. 

Hydroponic samples were collected through the pot watering system that transfers 

tank solution to the perlite pots. The plastic bottle was then placed into one of the six 

pipes that were placed on the top of the pots until it was filled. This method was 

used to ensure the sample collected was the same as the solution being pumped 

over the pots. Leachate samples collected from experiment 2 were collected from 

clear plastic bags placed below the pots or columns. The volume of the leachate 

was recorded first and then if a P concentration measurement was required, the bag 

was then shaken to ensure the nutrients were distributed throughout the sample and 

then a 100 mL collection bottle was filled.  

3.8.4 Visual observations 

Visual observations (i.e. often photographs) of all experiments were recorded to 

support quantitative analyse and when accurate measurements using the outlined 

dry matter yield methods were not possible. All experiments had photographic 

records taken for dry matter yield measurements and checked against laboratory 

analysis to confirm the accuracy of the quantitative analysis. 
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3.9 Experimental equipment and design specifications  

3.9.1 Glasshouse experiment 1 

3.9.1.1 Hydroponics 

The hydroponics systems were custom designed with support from Perth 

Aquaponics, Belmont Western Australia. The design contained three identical tanks, 

comprising six pots per tank and a single P treatment applied to each tank. The 

cooling tanks where arranged in a U-shaped configuration and placed into three 

large tubs used as cooling jackets to ensure an even temperature of all three 

systems. The tubs were then connected by 19 mm poly pipe to allow the water to 

interchange between each tank (see Figure 3.5). The hydroponic tanks were 340 

mm (high), 600 mm (wide) and 450 mm deep (92 litres). 

The system design and placement are shown in Plate 3.4 and Plate 3.5. Each 

hydroponic tank was then placed into a large cooling tank, 360 mm height, 810 mm 

wide and 540 mm deep (157 L volume). The cooling tanks were filled with tap water 

190 mm (approx. 35 litres) to maintain an even temperature across the three 

hydroponic tanks. The experiment was conducted in a clear glasshouse with 

refrigerated air conditioning set at 22C to maintain a constant air temperature. 

 

Figure 3.5 Schematic layout of the hydroponic system. 
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Plate 3.4 Hydroponic tank 1 with 6 pots 
placed into the lid.  

Plate 3.5 Layout of the hydroponic tanks 
in the glasshouse. 

 

Polyvinyl chloride pots (125 mm diameter, 100 mm deep) were filled with perlite to 

approximately 1 L of volume.  

The internal system contained two elements: 

1) An aeration stone and air pump (AQUA PRO, AQUARIUM AIR PUMP S90) 

was used to continuously pump air from the bottom of the tank to agitate the 

nutrient solution and ensure an even nutrient distribution for the duration of the 

experiment. 

2) A pumping and distribution system that pumped the used nutrient solution 

over the pots where it would flow over the roots and return to the tank in a 

closed system for recycling. 

The air pump (AQUA PRO, WATER FEATURE PUMP AP550) was placed at the 

bottom of the tank and protected within a hydroponic pot to stop any material or 

plant roots from blocking the pump. The pump was then connected to a ring main to 

ensure that the pressure was even and the six small diameter pipes were then 

connected into the ring main pipe. Each of the six pipes was then connected to an 

individual pot though the cover of the tank for the liquid delivery to the plants. The 

nutrient solution and treatment fertiliser pumped onto the surface of the perlite. The 

nutrient pumping and distribution were run for 30 minutes of every hour for 11 hours 

per day (7 am to 6 pm). 
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Each tank had 40 L of demineralised water applied at the beginning of each 21 day 

experimental run and an additional 2 L applied at 14 days to ensure that water levels 

within the tanks remained above the level of the pump. The addition of 2 L was 

required as the system’s water gradually reduced in volume due to evaporation and 

transpiration over the 21 days. 

Possible experimental errors which were caused by the equipment and environment 

are: 

● Nutrient levels within treatments with high water-soluble P decreased as plant 

growth increased. 

● The amount of daylight for plant growth varied throughout the three-month 

experiment. 

● The physical location of the each tank in relation to light and distance from the 

air conditioning may have caused a slight variation of growth for the same 

treatment in each of the three tanks. 

These problems were accounted for through the uses of statistical analysis and the 

randomised experimental design throughout the experiment. Supplementary notes 

and information related to this experiment (see Appendix 9.3.2). 

3.9.1.2 Leaching column experiment  

The leaching column experiment was conducted in polyvinyl chloride pots (152 mm 

diameter, 400 mm deep) packed with perlite for a total volume of 6 L (see Plate 3.6). 

A fine stainless steel mesh was placed at the bottom of each column to retain any 

particles, not in solution. The columns were placed on two small benches in four 

rows with a circular hole cut out of the bottom to allow a collection bag to be placed 

beneath each column (see Plate 3.7 and Figure 3.6). The columns were pre-leached 

with demineralised water to the equivalent of 164 mm rainfall. The fertiliser 

treatments were applied to the surface of the columns. Each rainfall event was 

simulated by using a small plastic water can apply 1.5 L of demineralised water in a 

circulating manner to ensure even coverage across the surface of each column. The 

columns were watered three times per week on Monday, Wednesday and Friday 

and then allowed to drain for a minimum of 48 hours before the next watering. Water 

samples in clear plastic bags (approximately width 20 cm and height 30 cm) were 

collected just before the next watering, and a 100 mL subsample was taken and 

then refrigerated at 4C until they were transported to the laboratory for analysis. 

After each watering, a plastic cover was placed over the surface of all the columns 

to eliminate contamination from other sources. 
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Figure 3.6 Layout of the leaching columns and benches. 

  

Plate 3.6 Leaching column filled 
with 6 L of perlite prior to the start of 
the experiment.  

Plate 3.7 Leaching columns in position on 
the bench with the phosphorus fertiliser 
treatments applied to the surface. Note the 
clear plastic bag placed below each column 
for a collection of the leachate. 

 

Appendix 9.3.3 contains all supplementary notes and information related to this 

experiment. 
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3.9.2 Glasshouse experiment 2 

Polypropylene pots (130 mm diameter, 135 mm deep, 1.25 L in volume) were filled 

with the required weight of soil to fill the pot to 10 mm below the surface of the pot. 

The light and medium soils were applied at 2.0 kg/pot while the heavy soil was 

applied at 1.4 kg/pot to ensure the volume of all three soil types was kept constant.  

The pots had coffee filters applied to their base, held in place with rubber bands to 

ensure that no soil would be lost and only nutrients in solution would be leached. A 

total of 27 treatments were replicated 3 times in a randomised block design  

(see Figure 3.7). All pots were seeded with 20 seeds per pot using a pair of 

tweezers to drop a single seed into a hole no more than 10 mm below the soil 

surface. Ten days after the seeding had germinated the plants were thinned to 10 

plants per pot (see Plate 3.9). 

Plastic bags were placed below each pot for collecting leachate and were replaced, 

as required if a leak or algal growth occurred (see Plate 3.9). Using a garden 

pressure sprayer, demineralised water was sprayed over the soil to block the holes. 

All supplementary notes and information related to this experiment are outlined in 

Appendix 9.3.3.  

 

Figure 3.7 Layout of the pot experiment. 
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Plate 3.8 Layout of bench 1 of the pot 
experiment. 

Plate 3.9 Leachate collection bags under 
the pots on the bench 1 of the pot 
experiment.  

 

3.9.3 Field experiments 

The two field experiments were selected based on location, soil type and pasture 

system. Each field experiment had 27 plots that were pegged at 2.75 m wide and 

20 m long to allow application of fertiliser treatments using either the cone 

top-dresser (Plate 3.10) or spread by hand. Liquid fertilisers, herbicides and 

pesticides were applied using a four-wheel quad bike fitted with a boom spray  

(Plate 3.11) and were applied across the width of the experiment. Each field 

experiment was 74.25 m wide and 20 m long for a total of 1485 m². The plots were 

divided into 10 m long sections using electric fencing to exclude cattle. The electric 

fencing was erected by placing six copper logs at each of the corners of experiment 

and two at 10 m to divide the experiment into two sections. Star pickets with plastic 

insulators were then placed between the copper logs front to allow the electric 

fencing tap to be connected up to the required section. Nine treatments were 

replicated 3 times and the randomised block design outlined in Figure 3.8. Field 

experiments were conducted with a number of standard pieces of equipment. All 

supplementary notes and information related to this experiment are outlined in (see 

Appendix 9.3.4).  
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Figure 3.8 Layout of the field experiments. 

  

Plate 3.10 Cone top-dresser used to 
apply an even application of granular 
fertilisers and lime to the field experiment 
sites.  

Plate 3.11 Four-wheel quad bike used 
for applying of liquid fertilisers, 
herbicides and pesticides to the field 
experiment sites. 
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3.10 Statistical analysis, calculations and data storage  

The data was recorded on worksheets or direct into a data logger for loading into 

Microsoft Excel. After validating the data against the original worksheets, the data 

was loaded into Genstat (version 16) and summarised across replicates to identify 

outliers. The Genstat definition of an outlier is three standard deviations away from 

the mean (Nelder 2014). This definition was used when no biological reason could 

explain the variation in the data. The data for each experiment was then 

summarised separately before statistical analyses were applied on an individual or 

combined datasets. 

3.10.1 Experimental designs 

Experiments in glasshouses and/or field-based experiments may be compromised 

due to soil trends across the field experiment or amount of light on a bench in the 

glasshouse. Experimental trial designs that minimise the between plot co-variances 

or incorporation of autoregressive spatial trends can be undertaken using software 

such as Cyc-design (https://www.vsni.co.uk/software/cycdesign/) and DiGGer 

(http://www.austatgen.org/files/software/downloads/). This software was used in this thesis to 

ensure best possible precision between treatments. These experimental designs are 

often superior to standard randomised complete block or factorial trials since the 

treatments and/or plot/pots are stratified across the replicates.  

3.10.2 Statistical analysis 

The Genstat ‘Analysis of Variance (ANOVA)’ was used for statistical analyses from 

a balanced set of data without missing a treatment or spatial effects. The Genstat 

‘Unbalanced Analyses of Variance (UAOVA)’ was used when a treatment 

combination was missing and again not significant spatial trends. The UAOVA is 

based on regression analyses methodology to generate the predictions, and the 

variance estimates for testing significant treatment effects (Nelder 2014).  

In situations where there is a spatial trend in the field or glasshouse, a Restricted 

Maximum Likelihood regression (REML) model within Genstat was used to generate 

the predictions and variance estimates. The REML function in Genstat allows for 

fitting a random autoregressive trend to the rows and/or columns in an experiment. If 

the correlation from the auto-regressive trend was significant, then the REML output 

was used to generate the predictions. These REML models with fixed effects for 

treatments and random rows x column effects also can be used in situations of 

unbalanced data. Please note that the REML fixed effect for treatment models 

http://www.austatgen.org/files/software/downloads/
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(without random row and/or columns) will give the same predictions as ANOVA for 

balanced data and UAOVA for unbalanced data (Gilmour et al. 1995).  

3.10.3 Calculations 

From the statistical analyses using Genstat, means, standard errors and least 

significant difference estimates were generated, and the results (i.e. Residuals plots 

checked for outliers) before the summaries were used in presentations, figures and 

tables. Appendix 3.4.5 contains an example of the statistical analyses.  

3.10.4 Data storage 

All procedures of data storage follow the Australian code for the responsible conduct 

of research (Heaslop and Salisbury 2007).  

3.10.4.1 Digital data 

All electronic data collected is stored in accordance with Curtin University guidelines 

as defined by Heaslop and Salisbury (2007) and data produced from this research is 

stored on a computer protected by passwords and stored in a safe and secure 

location. It will also be held in another geographical location for a period of five years 

after this thesis is published. The data has been duplicated onto a number of 

separate devices to ensure that a single device failure will not result in the loss of 

the research results.  

3.10.4.2 Physical 

Physical copies of data collected and produced are stored in a locked filing cabinet 

located at my home personal residence.  
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CHAPTER 4  HYDROPONIC EXPERIMENT 

4.1 Introduction 

Phosphorus (P) is an indispensable element for plant life with increasing concern 

about the future of the global supply of P stimulating increased research into soil P 

(Kruse et al. 2015). The use and role of P in agriculture are well documented, with 

several recent reviews including (Khasawneh et al. 1980; Foth and Ellis 1988). 

Phosphorus is an essential nutrient (after N and K) for plant growth, and it is limiting 

agricultural production in the south-west of Western Australia because the 

agricultural soils are inherently low in P (Moore 2004). Consequently, P fertilisers 

are required to maximise pasture production.  

Plants need the majority of P during the early growth stages, and it must be in a 

water-soluble form for plant roots to access (Price 2006). The water-soluble form of 

P in solution is taken up by the plant (Richardson et al. 2009b). Increasing the 

efficiency of P fertiliser applied for pasture production and reducing the loss from 

leaching is very important to farmers faced with increasing costs of pasture 

production (Cornish 2009). Phosphorus use efficiency describes the amount of P 

applied to a pasture system relative to the amount recovered by the plant (Johnston 

and Syers 2009). Single superphosphate, which is designed to have a high 

percentage of water-soluble phosphorus that is plant available as defined by 

Prochnow et al. (2008), is currently the main P fertiliser used for pasture production. 

The problem with water-soluble P is that it can be readily leached when applied to 

soils that have a low ability to retain P (Weaver et al. 1988). 

The loss of applied P is a well-understood problem and a number of strategies have 

been developed to slow the release of P from SSP including: coating the surface of 

SSP with bauxite residue Summers et al. (1999a), coating polyethylene film to the 

surface of fertiliser Pauly et al. (2002), and changing the soil properties to increase 

P retention (Summers et al. 1993b; Pathan et al. 2002). However, none has been 

widely adopted because of cost, practicality or public concern. Therefore, a method 

is needed to reduce the solubility of P fertiliser to match the plant's requirements, 

while overcoming the problems mentioned earlier. To reduce the solubility of SSP 

fertiliser, Edmeades (2000) proposed that changing the chemical analysis would 

achieve similar yield improvements relative to existing SSP. A change in solubility 

would enable existing manufacturing equipment to be used without alternative 

approaches such as using slow-release coatings (Nyborg et al. 1996).  
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Fertilisers derived from rock phosphate, such as SSP are comprised of three forms 

of phosphate that differ in solubility: MCP is water-soluble, DCP is citrate-soluble, 

and TCP which is citrate-insoluble (see Table 4.1). Monobasic calcium phosphate is 

the most soluble and the solubility reduces as the ratio of calcium to phosphate 

atoms increase. Single superphosphate fertiliser is manufactured by crushing of 

rock phosphate and then applying sulphuric acid; this process can be modified 

through the application of lime-sand and altering processing methods to manipulate 

the ration of MCP, DCP and TCP.  

Table 4.1 Chemical form, solubility and chemical structure of phosphate 
fertiliser derived from rock phosphate. 

The three forms of phosphate present in fertilisers derived from rock phosphate with 
their solubilities and their chemical analysis. Monobasic calcium phosphate being 
the most soluble with the solubility reducing the ratio of calcium to phosphorus 
atoms increases. 

Chemical forms Solubility Chemical analysis 

Monobasic calcium phosphate Water-soluble Ca (H₂PO4)₂ H₂O 

Dibasic calcium phosphate Citrate-soluble CaHPO4 2H₂O 

Tribasic calcium phosphate Citrate-insoluble Ca3(PO4)2 

 

Converting rock phosphate into differing ratios (MCP, DCP, TCP) using acid for 

plant production is outlined by (Mclean and Wheeler 1964). The overall chemistry of 

converting rock phosphate to SSP is described as rock phosphate Ca³(PO4)4 + 

H₂SO4 + H₂O to single superphosphate Ca(H₂PO4)₂·H₂O + Ca₂SO4 (Agriculture 

1964). A more sustainable approach for a pasture production system is to customise 

the P fertiliser through manipulating the forms of MCP, DCP and TCP in SSP 

fertiliser to match conditions for plant uptake, thereby decreasing leaching 

(Summers and Weaver 2008). 

It is hypothesised that the P in the fertiliser applied as low water soluble super 

phosphate (LWSSP) will be less soluble than SSP and hence leach at a lower rate 

due to a function of its phosphate chemistry. The assumption is once the P is in 

solution regardless of its phosphate form, that it will be equally available for uptake 

by plants roots under hydroponic non-soil conditions. Therefore, it is expected that 

the P fertilisers will dissolve affecting plant dry matter yield and P uptake. The aim of 

this experiment is to compare P solubility and leaching of LWSSP and SSP 

fertilisers and their phosphate forms for pasture production in hydroponic no-soil 

conditions.   
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4.2 Methods and materials 

4.2.1 Hydroponics glasshouse experiment 

The study contains two experiments. The first experiment measures the P use 

efficiency of SSP and LWSSP, which differ in their ratios of MCP, DCP and TCP, 

and MCP, DCP and TCP in their pure forms for pasture growth in hydroponic 

conditions. The second experiment measures the solubility of SSP, LWSSP, MCP, 

DCP and TCP in leaching columns with simulated rainfall and no plants.  

The P forms and predicted solubility based on their chemistry as the ratio of calcium 

to P increases, the solubility decreases as shown in Table 4.2. The solubility of the 

two P fertilisers (SSP and LWSSP) is a function of their ratio of each phosphate 

form. 

Table 4.2 Phosphorus fertilisers with their composition percentage and 
phosphorus analysis. 

The phosphorus fertilisers used in these experiments with the amount of 
phosphorus present within each of them and the percentage of the total phosphorus 
of each phosphate form (within brackets). Single superphosphate (SSP), low water-
soluble superphosphate (LWSSP), monobasic calcium phosphate (MCP), dibasic 
calcium phosphate (DCP), tribasic calcium phosphate (TCP). 

 

SSP LWSSP MCP DCP TCP 

Total P 9.1 8.3 26.2 18.1 15.9 

Water-soluble Pᴬ 7.8 (86) 2.9 (35) 26.2 (100) 0 (0) 0 (0) 

Citrate-soluble Pᴬ 0.8 (9) 3.7 (45) 0 (0) 18.1 (100) 0 (0) 

Citrate-insoluble Pᴬ 0.5 (5) 1.7 (20) 0 (0) 0 (0) 15.9 (100) 

ᴬ Measured by standard (AOAC 1975). 
 

The design comprised three replicates of 12 treatments; six fertiliser treatments – 

SSP, LWSSP, MCP, DCP, TCP and a nil-P on two common pasture species used 

on the SCP, Dalkeith subterranean clover (Trifolium subterranean L.) and Wimmera 

annual ryegrass (Lolium rigidum). The experiment comprised a total of 108 pots 

divided into 6 experimental runs of 18 pots per run.  

Polyvinyl chloride pots (125 mm diameter, 100 mm deep and a volume 1 litre were 

packed with perlite and then 25–30 seeds of clover or ryegrass were sown in each 

pot. The pots were placed in aluminium trays and handed watered with 

demineralised water and a nutrient solution Table 4.3 for 21 days applied three days 

per week. The trays were filled with demineralised water to ensure pot dampness 

and aid in seed germination. At 21 days after sowing, each pot was thinned to 20. 
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The pots were then placed into black Polyvinyl chloride hydroponic tanks for 21 days 

(i.e. one experimental run). The pots were randomised in the tank (i.e. one treatment 

per tank) and three pots of each species per tank (i.e. 6 pots per tank) with three 

tanks per experimental run.  

The concentration of P in the P treatments are listed in Table 4.2. Phosphorus 

treatments were applied as a single application at the beginning of the experiment at 

25 kg/ha of P based on the combined surface area of the six pots. The P fertiliser 

treatments were weighted into two glass plates and placed at diagonally opposing 

corners of each tank. The SSP and LWSSP were made in Western Australia at 

CSBP Limited, Kwinana and the MCP, DCP and TCP were imported from China. 

The fertiliser was crushed and then sieved with particle sizes ranging from 75 to 

150 microns. The same fertiliser treatments and applications were used in the 

leaching column experiment.  

A complete liquid fertiliser solution (excluding P) was applied to 40 litres of 

demineralised water once at the beginning of the experiment to ensure that P was 

the only element limiting yield (see Table 4.3). The pots were watered for 11 hours 

per day (i.e. 7 am to 6 pm) for 30 min per hour and aerated 24 hours per day. The 

experiment contained six runs, with each treatment replicated three times and 

applied to each tank once to reduce any influence from slight differences in 

equipment and position within the glasshouse. 
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Table 4.3 Basal nutrient solution mixture composition 
applied to hydroponics experiment. 

Basal nutrient solution in milligrams per element applied to each 
hydroponic tank before the start of each experiment run. The 
mixture was applied in two parts because its chemical analysis 
would cause precipitation of the elements if contained within a 
single part. The solution is modified from Marschner (2012) to 
remove phosphorus.  

Element Amount applied to each tank (mg) 

Boron 13 

Calcium 4797 

Copper 5 

Iron 80 

Magnesium 1461 

Manganese 35 

Nitrogen 79 

Phosphorus 0.07 

Potassium 7007 

Sodium 131 

Sulphur  1753 

Zinc 6 

 

The demineralised water, basal nutrient solution and dissolved P fertiliser were 

pumped on the surface of the pots facilitating flow through the growth medium and 

recycling within the system. The pH and electric conductivity (EC) were checked 

three times per week throughout the experiment and adjusted to a target pH of 6.5 

in water (H₂O) and EC of 1.4 dS/cm. Water samples were taken four times during 

the experimental run of 21 days, at the begin of each week and the end of each run 

and subsequently analysed to determine P concentration (mg/L). The shoots of 

clover and ryegrass were harvested at the end of each run, dried, weighed, and then 

analysed for P concentration. Analysis for concentrations of P content in dry matter 

was conducted by bulking the replicates together. 

4.2.2 Leaching column experiment 

The design contained three replicates of six fertiliser treatments comprising SSP, 

LWSSP, MCP, DCP, TCP and a nil-P control. The fertiliser was ground and sieved 

to 75–150 microns to ensure equivalent particle sizes for all treatments. Polyvinyl 

chloride pots (152 mm diameter, 400 mm deep) were packed with perlite Table 4.4 

to a total volume of 6 L.  
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Table 4.4 Analysis of perlite used in both hydroponics and 
leaching column experiments. 

The critical chemical and physical properties of perlite relative to 
experimentation on phosphorus in hydroponics and leaching 
columns. 

Analysis 

 pH (1:5 perlite:0.01 M CaCl2) 6.7 

Bicarbonate-extractable P (Colwell 1965) (mg/kg) 4 

Phosphorus buffering index 5.4 

EC (dS/cm) 0.042 

 

The columns were pre-leached with the equivalent of 164 mm of rainfall using 

demineralised water. Phosphorus treatments were applied at a rate equivalent to 

120 kg P/ha to the surface of the columns as a single application at the beginning of 

the experiment. The columns were watered three times per week with 1.5 litres 

(equivalent to 84 mm of rainfall) of demineralised water and allowed to drain for a 

minimum of 48 hours between watering, throughout the four-week experiment. 

Leachate from the columns was collected in a clear plastic bag enclosing the base 

of the column. The total cumulative rainfall of 924 mm was designed to mimic above 

average annual rainfall at Mandurah (660–990 mm) on the SCP (Hanson and Foster 

2012).  

The rate of P leaching was measured by collecting leachate samples after each 

simulated rainfall event and analysed for total P (mg/L). The leachate collected was 

stirred and a sample taken, the bag was then emptied and replaced beneath the 

column. Residual undissolved mg P kg, determined post-experiment was analysed 

by removing the perlite from the column and sieving it into 3 fractions from the upper 

90% of the column (> 2.2 mm, < 2.2–4 mm and > 4 mm). The remaining lower 10% 

was analysed for P (mg/kg), and the weights of these samples were recorded. 
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4.2.3 Analysis of data 

Refer to Section 3.10 (Statistical analysis, calculations and data storage) for a 

detailed description of analysis. 

4.3 Results and Discussion  

4.3.1 Hydroponics Experiment 

The dry matter yield of the clover shoots at 42 days after sowing was increased with 

the addition of P treatments compared to the control (i.e. nil-P) treatment  

(See Figure 4.1). Since all phosphate forms (MCP, DCP, TCP, SSP and LWSSP) 

are available to plants when in solution, dry matter yield of clover was increased by 

the addition of MCP (1.08 g/pot) and DCP (1.00 g/pot) treatments.  

 
Figure 4.1 The effect of phosphate form on average dry matter yield (g/pot) of 

clover shoots 42 days after sowing. Monobasic calcium phosphate 
(MCP), dibasic calcium phosphate (DCP), tribasic calcium phosphate 
(TCP), low water-soluble phosphate (LWSSP) and single 
superphosphate (SSP). Error bars indicate the least significant 
difference for comparing phosphate forms between treatments 
(lsd = 0.36). 
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The dry matter yield of ryegrass shoots at 42 days after sowing Figure 4.2 was 

similar to the clover with a significant increase in dry matter yield for all P treatments 

applied compared to the control (i.e. nil-P) (p < 0.05). The dry matter yield of  

ryegrass for MCP was the same for clover, indicating that when P is not limited in 

solution, maximum plant growth is achieved. There was a significant increase in dry 

matter yield of ryegrass shoots in the TCP treatment compared to the clover yield. 

When TCP is applied to ryegrass, its yield was similar to that in the DCP, LWSSP 

and SSP treatments however the clover yield from TCP is significantly reduced 

compared to these treatments. The two species also differed in the nil-P control 

treatment with ryegrass producing more dry matter yield than the clover dry matter 

yield. Ryegrass dry matter yield more closely follows phosphate solubility than 

clover. The increased growth could be due to its more fibrous root systems with an 

increased volume to allow access to more P from solution (Lynch 1995). 

 
Figure 4.2 The effect of phosphate form on average ryegrass shoot dry matter 

yield 42 days after sowing for each phosphate form. Monobasic 
calcium phosphate (MCP), dibasic calcium phosphate (DCP), tribasic 
calcium phosphate (TCP), low water-soluble superphosphate (LWSSP) 
and single superphosphate (SSP). Error bars indicate the least 
significant difference for comparison between phosphate forms 
between treatments (lsd = 0.36). 
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Changing the pasture composition to include a greater percentage of ryegrass 

would increase dry matter yield, P use efficiency and reduce P loss to leaching 

(Bolan et al. 1987). There was no significant difference between the yield of clover 

and ryegrass, and hence the data has been combined and summarised. There is no 

significant difference between SSP and LWSSP for P use efficiency with both plants 

species using 45% of the P applied. These results are consistent with research from 

Price (2006) who indicated that only a certain amount of early P is critical for early 

plant development. Reducing the solubility by changing the chemical analysis of 

SSP Table 4.5 to LWSSP did not reduce the dry matter yield or the amount of P 

taken up by the plants.  

The uptake of P by clover is outlined in Figure 4.3 and for ryegrass in Figure 4.4. 

Phosphorus uptake indicates that P is required early for plant growth and that if it is 

limiting, then the amount of P that is available will be concentrated within dry matter 

and restrict growth. As P is assimilated into the plant, it is removed from the solution 

with the amount of P that is available dependent upon the solubility of each 

treatment. The concentration of P in the initial solution was adequate for plant 

growth for all treatments except TCP and the nil-P control increases between weeks 

1 and 2 (see Figure 4.5). As P is used for plant growth the concentrations of P in 

solution, then decline for all treatments except TCP and the nil-P control between 

weeks 2 to week 4. As the concentration of P in solution increased, the dry matter 

yield increases. The relationship between P availability and dry matter yield was 

more correlated for ryegrass. 

  



 

101 

 

Figure 4.3 The effect of phosphate form on average clover shoot phosphorus 
uptake 42 days after sowing. Monobasic calcium phosphate (MCP), 
dibasic calcium phosphate (DCP), tribasic calcium phosphate (TCP), 
low water-soluble superphosphate (LWSSP) and single 
superphosphate (SSP). Phosphorus per pot concentrations was 
calculated by (phosphorus tissue (%) multiplied by plant dry matter 
weight grams) multiplied by 10. Error bars indicate the least significant 
difference for comparison between phosphate forms between 
treatments (lsd = 2.385). 
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Figure 4.4 The effect of phosphate form on average ryegrass shoot 
phosphorus uptake 42 days after sowing. Monobasic calcium 
phosphate (MCP), dibasic calcium phosphate (DCP), tribasic calcium 
phosphate (TCP), low water-soluble superphosphate (LWSSP) and 
single superphosphate (SSP). Phosphorus per pot concentrations was 
calculated by (phosphorus tissue (%) multiplied by plant dry matter 
weight grams) multiplied by 10. Error bars indicate the least significant 
difference for comparison between phosphate forms between 
treatments (lsd = 2.385). 
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Figure 4.5 Phosphorus concentrations in solution. The concentration of 
phosphorus in hydroponic solution over the four weeks of the 
experiment. × monobasic calcium phosphate, □ single superphosphate, 
Δ low water-soluble superphosphate, * dibasic calcium phosphate, 
○ tribasic calcium phosphate, ◊ nil-phosphorus control and + predicted 
plant phosphorus usage. 
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Table 4.5 The phosphorus use efficiency of the fertilisers applied to the 
hydroponics experiment. 

The effectiveness of each fertiliser type in the hydroponics experiment is determined 
by its phosphorus use efficiency, with both clover and ryegrass samples combined 
based on fertiliser type., Monobasic calcium phosphate (MCP), dibasic calcium 
phosphate (DCP), tribasic calcium phosphate (TCP), low water-soluble 
superphosphate (LWSSP) and single superphosphate (SSP). The equation for 
calculating phosphorus use efficiency is P removed by the plant minus the P uptake 
nil divided by the amount of P applied, multiplied by 100. 

Fertiliser 

(type) 

P removed 

plant (mg) 

P removed plant 

minus control (mg) 

Applied amount  

of P applied (mg) 

PUE 

(%) 

Nil 9.3 0 0 0 

MCP 31.9 22.7 16.8 135* 

DCP 23.3 14.0 16.9 83 

TCP 16.0 6.7 16.8 40 

LWSSP 17.0 7.7 17.1 45 

SSP 16.9 7.6 17.0 45 

* Data is within the experimental sampling error. 
 

The P use efficiency for MCP, DCP and TCP Table 4.5 follows the same trend as 

the dry matter yield for clover and to a lesser extent the ryegrass with, an increase in 

solubility translating into increased P uptake in clover and ryegrass. Plants grown 

with DCP and TCP may have limited access to water-soluble P during the critical 

early growth stages (< 42 days after sowing) while these forms where dissolving. 

The results also indicate that all forms of P, once dissolved into water-soluble P, are 

available to be taken up by plant roots. 
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4.3.2 Leaching column experiment 

Figure 4.5 show that the higher concentration of the predicted water-soluble P, the 

greater the amount of P is leached under simulated rainfall conditions. Most of the 

water-soluble P is rapidly leached within the first 84 mm of rainfall (see Figure 4.6). 

 

Figure 4.6 Rate of dissolution of phosphate forms. The concentration of 
phosphorus in the solution applied to perlite in leaching columns 
following 84 mm of rainfall at each sampling event for a total of 924 mm 
of rainfall. × monobasic calcium phosphate, □ single superphosphate, 
Δ low water-soluble superphosphate, * dibasic calcium phosphate, 
○ tribasic calcium phosphate, ◊ nil-phosphorus control. The least 
significant difference for comparing phosphate forms between 
treatments (lsd = 2.8). 

The loss of P through leaching increased with the amount of MCP and was 

significantly reduced by the relative amounts of DCP contained in each fertiliser 

Table 4.4 with SSP 86% and LWSSP 35%. The P leaching was the same for DCP 

and TCP treatment. The leachate concentration for MCP increased to 94 mg P/L, 

SSP to 62 mg P/Land LWSSP to 34 mg P/L after the first 84 mm of rainfall, which 

indicates that high water-soluble P fertilisers are very susceptible to early loss from 

leaching under normal rainfall events. The total cumulative rates at which each P 

form dissolves follows the trends indicated by the concentrations Figure 4.7 with 

most of the MCP leaching during the first 84 mm of rainfall, DCP dissolves at a 

constant rate and TCP dissolved at a very slow rate comparable to the nil-P control 

treatment (see Figure 4.7). 
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Figure 4.7 Phosphate forms cumulative rate of dissolution. The cumulative 
amount of phosphorus dissolving in perlite in leaching columns 
following 84 mm of rainfall at each sampling event for a total of 924 mm 
of rainfall. × monobasic calcium phosphate, □ single superphosphate, 
Δ low water-soluble superphosphate, * dibasic calcium phosphate, 
○ tribasic calcium phosphate, ◊ nil-P control. The least significant 
difference for comparing phosphate forms between treatments 
(lsd = 5.5). 

The rate at which SSP and LWSSP dissolves into solution is consistent with their 

chemical composition Table 4.3, with the increase percentage of DCP and TCP 

requiring an increase in the relative amount of rainfall to dissolve them. The leaching 

of P in the MCP treatment is significantly higher than the other P treatments 

containing MCP. This indicates MCP contained within SSP and LWSSP dissolved 

into solution at the same rate. Low water-soluble superphosphate solubility indicates 

that the MCP component initially dissolves rapidly (0.40 mg P/L/mm) after 84 mm of 

rainfall and then there is a slower release of its DCP component. The DCP content 

of LWSSP released at a constant rate approximately of (0.05 mg P/L/mm). The TCP 

component of LWSSP content dissolves into water-soluble P at a slower rate and is 

not significant when compared to the nil-P control dissolving at approximately 

(0.003 mg P/L/mm). 

Most of the P leached in the MCP treatment accrued within the first 84 mm of rainfall 

and if it was applied in April, may have been lost soon after germination (see 

Appendix 9.3.4.3). Plants may have limited access to applied P fertiliser after two 

months because the P is leached below the rhizosphere, which is consistent with 

(Weaver et al. 1988). This rate of P loss to leaching assumes that all applied P will 

completely dissolve to water-soluble P with the addition of subsequent rainfall 

events. 
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This relatively slow rate at which TCP dissolves makes it ineffective as a P fertiliser 

for pasture production. If it is assumed that 100% of MCP dissolves after 924 mm of 

rainfall (132 mg P/L) and that DCP and TCP will dissolve at a constant rate, it will 

take approximately four times more rainfall for DCP and 1000 times more rainfall for 

TCP to dissolve to the equivalent amount of P as a water-soluble P plant available 

form. Consequently, the reduced rate that DCP dissolves to water-soluble P will 

allow it to be accessed by plants before it leaches into the environment. The 

reduction in solubility from SSP and LWSSP, and then constant release of P from 

DCP provides a P source that is available to plants after the initial plant requirement 

is provided by MCP. 

4.4 Summary 

The results indicate that there is a significant reduction in leaching from LWSSP 

when compared with SSP and this is because of increased percentage of DCP. 

There is no significant difference in dry matter yield or plant P uptake between 

LWSSP and SSP, which indicates that they are equally as effective for plant 

production under hydroponic non-soil conditions. Therefore it can be concluded that 

the chemistry of LWSSP will allow adequate P to enter in the solution pool for initial 

plant requirements early in plant growth via the MCP form and then DCP is soluble 

enough to maintain adequate P solution pool over an extended period with 

subsequent rainfall events 

Plant growth is influenced by the amount of P in the solution pool and this is 

characterised by the solubility of the phosphates forms as discussed in Section 2.25. 

Plants utilise increased amount of P (dry matter versus plant P uptake 

concentrations when P is available within the solution pool. In situations where P is 

limited in the solution pool, P uptake is decreased. This is reflected in the reduced 

dry matter yield and plant P uptake. As such it is critical that adequate levels of P be 

maintained in the solution pool as described in Section 2.4.3. 

The hydroponic experiment of this nature created a large P solution pool that is 

available to the plant. However, when P is present as an insoluble phosphate form 

(i.e. TCP), this will limit the amount and rate of P entering into the solution pool 

regardless of the size of solution pools. Both ryegrass and clover have the same 

requirement for water-soluble P and also dry matter yield, and plant uptake followed 

the same trend as described in Section 2.4.1. The solubility of TCP even 40 litres of 

water or above 900 mm of simulated rainfall still did not dissolve into the solution to 
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match plant requirements and resulted in significantly reduced dry matter yield and 

plant uptake for both species.  

Under simulated rainfall conditions, each phosphate form or combination of 

phosphate forms required a significantly different amount of rainfall to dissolve into 

solution (see Figure 4.7). This indicated that MCP is highly soluble, DCP is relatively 

soluble and TCP is insoluble. Through the reduction in phosphate solubility from 

MCP to DCP in LWSSP, the amount of P in the solution pool will be maintained over 

a longer period. However, if the phosphate form is too insoluble (i.e. TCP) then the 

amount of P in the solution pool is reduced, and plant dry matter yield is limited. The 

ideal situation is to match the phosphate form or combinations of phosphate forms 

to the size of the solution pool and the rainfall conditions. For example, the LWSSP 

fertiliser has an increased amount of DCP that dissolves at a slower rate that 

enables P to go into solution over a long period and remain within the rhizosphere 

for the plant to access. 
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CHAPTER 5  GLASSHOUSE EXPERIMENT 

5.1 Introduction 

The soil types of the SCP in the south-west of Western Australia include heavy 

clays, duplex soils and deep sands, with the majority being deep sand. These sandy 

soils have a coarse texture, very in depth, and often are overlaid with an 

impermeable layer of clay or ironstone (Bolland 1998). The SCP has a dry, 

temperate climate with hot, dry summers and cold, wet winters and a long-term 

average annual rainfall of greater than 800 mm, most of which falls during April to 

October (Hanson and Foster 2012). Nitrogen the predominately infertile sandy soils 

of the SCP, applying single superphosphate (SSP) fertiliser is the traditional 

practices for maximising the growth of pasture production. 

The dominant pasture combination species on the SCP is Dalkeith subterranean 

clover and Wimmera annual ryegrass (Price 2006). Annual applications of up to 18 

kg/ha of phosphorus (P) were previously recommended to maximise the growth of 

these pasture systems (Weaver et al. 1988). This rate of P application was 

determined through soil and tissue analysis, taking into account the soil type, 

background P levels and the soil’s ability to retain the applied P (Singh and Gilkes 

1991). The combination of relatively high rainfall on the SCP and its sandy soils has 

resulted in a system that has a low ability to retain nutrients, with nutrients from 

fertiliser applications being lost to the environment through leaching into waterways 

(Cox et al. 2007).  

After soluble phosphate fertilisers are applied to the soil, a series of reactions occur 

between the soil constituents and the non-P components, including adsorption, 

desorption, precipitation and dissolution (Shen et al. 2011). The applied phosphate 

can then be adsorbed from solution by the soil, hence reduced the amount of plant-

available P (Barrow 1973). The capacity of the soil to adsorb P is determined by the 

sorption and soil chemistry (Barrow 1999; Damon et al. 2014a). The reactions of 

sorption are highly influenced by the mineralogy and chemistry of the soil, and these 

influences are greatest on P availability when the soil sorption capacity is high 

(Damon et al. 2014a). Therefore, as soil’s ability to absorb P increases, the 

application rate of P must be increased to overcome the adsorption (Barrow 1975).  
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A study by Barrow (1975) on the SCP, using 11 soils indicated differing ability to 

adsorb P were sown with Dalkeith subterranean clover (Trifolium subterranean L.) or 

Wimmera ryegrass. Single superphosphate (SSP) was applied at 4 rates: clover at 

2, 4, 6 and 8 g/pot and ryegrass at 0.5, 1, 1.5 and 2 g/pot. Response curves were 

fitted, and it was determined that ryegrass requires less P 1 g/pot rather than 4 g/pot 

for clover to attain optimum growth.  

The particle size of P fertiliser correlates with the rate at which P dissolves and 

becomes plant available (Williams and Lipsett 1968). As the particle size of SSP 

decreases the rate at which the P enters solution increases. This was outlined by 

Williams and Lipsett (1968), where subterranean clover was grown on four soil types 

under non-leaching conditions. Clover dry matter yield on the four soils differed by 

12% to 25% because of the differences in SSP particle size. This difference in dry 

matter yield was attributed to both the spatial distribution and rate of solubility of 

different granule sizes (Williams and Lipsett 1968). Single superphosphate and 

LWSSP both have a particle size range of 1 to 5 mm which should counter this 

effect. This range of particle sizes within a fertiliser means that a large granule will 

be less soluble, dissolved at a decreased rate.  

The increasing cost of P fertilisers and stricter environmental regulations means 

there is a need to increase P use efficiency from fertiliser applications (McLaughlin 

et al. 2011). The P use efficiency is described as the amount of P fertiliser that is 

applied to a pastures system relative to the amount of P taken up by the plant. The 

formula for calculating P use efficiency is outlined in Equation 5.1 (Johnston and 

Syers 2009). 

Equation 5.1 

Phosphorus removed – Phosphorus removed by the control * 100 
          Amount of phosphorus applied 

Pasture management on the SCP is based on the 4Rs principles as outlined in 

Section 2.5. The application of P fertiliser to pastures is based on, the soil Colwell 

(1965), the PBI Sounness (2008) and Moody et al. (2013), P requirement of the 

pasture, rainfall, and the potential dry matter yield.  

The widespread application of SSP for pasture production on the SCP region has 

been responsible for eutrophication (Weaver et al. 1988; Bolland and Gilkes 2001). 

Phosphorus is a primary nutrient for algal growth in the shallow river systems of the 

SCP and fertiliser usage has contributed to eutrophication in these waterways since 
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1968 (Engineers 1988; Hodgkin and Hamilton 1993). The widespread application of 

SSP for pasture production in the SCP region has been responsible for 

eutrophication (Weaver et al. 1988; Bolland and Gilkes 2001). Consequently, a 

number of possible solutions have been proposed to slow the loss of P and maintain 

pasture production including, slow-release coatings such as Bauxite residue, 

responsible fertiliser management, and chemical manipulation of the water-solubility 

of SSP (Nyborg et al. 1996; Summers and Weaver 2008; IPNI 2015). 

Converting SSP to a LWSSP version through reaction (or reversion) is well known 

however it is difficult to manufacture into a commercial product. It is hypothesised 

that LWSSP will decrease P leaching while maintaining similar plant dry matter yield 

and P plant uptake when compared to SSP. This experiment aim to compare P 

solubility, leaching and pasture production characteristics from LWSSP and SSP on 

three soil types under controlled glasshouse conditions. 
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5.2 Methods and materials 

5.2.1 Glasshouse experiment 

The experimental design comprised of three replicates of 27 treatments to give a 

total of 81 pots comprising three soils types Table 5.1, three fertiliser types (SSP 

and LWSSP and a nil fertiliser control, and two most commonly grown pasture 

species on the SCP, Dalkeith subterranean clover and Wimmera ryegrass. The 

experiment was designed to include pots with no plants (i.e. controls) grown with 

and without fertiliser applied, to measure the amount of P leached without the 

interaction of plants. The pots were randomised in a replicated block design over 

three glasshouse benches. 

Table 5.1 Locations of the three soil collection sites used in the 
experiment. 

The light, medium and heavy soils used in this experiment were 
collected from 0‒10 cm at three locations around Pinjarra and 
Serpentine, Western Australia on the Swan Coastal Plain. The latitude 
and longitude of these locations are outlined in this table in degrees, 
minutes and seconds. 

Soil type Longitude (south) Latitude (east) 

Light  32° 22′ 418″ 115° 56′ 981″ 

Medium 32° 47′ 930″ 115° 53′ 642″ 

Heavy  32° 40′ 586″ 115° 48′ 062″ 

 

Phosphorus was applied as SSP or LWSSP at rates of 25 kg P/ha and a size 

fraction of 2‒4 mm was used to reduce variation due to particle size differences. The 

P treatments were applied to the surface of the pots at a rate of 0 fertiliser, 

0.37 g/pot of SSP and 0.40 g/pot of LWSSP. Urea and liquid ammonium nitrate 

were applied to the experiment to ensure N was not limiting. Twenty-seven 

polypropylene pots (130 mm diameter, 135 mm deep) were packed with each of the 

three soil types (see Table 5.2). 
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Table 5.2 Soil properties of pot experiment soils. 

The physical and chemical properties of the three soils relevant to this experiment 
are outlined in this table. These results are an average of three samples unless 
stated soils before fraction (0–10 cm). 

Chemical and physical analysis Light Medium Heavy 

pH (1:5 soil 0.01 M CaCl₂) 4.6 4.5 4.9 

Bicarbonate-extractable P (Colwell 1965) (mg/kg)ᴬ 10 23 70 

Phosphorus binding index (Allen and Jeffery 1990b) 9 16 123 

Clay %ᴮ 3.91 5.01 33.06 

Silt %ᴮ < 0.01 2.03 7.24 

Sand %ᴮ 96.09 92.96 59.70 

ᴬ Single sample. 

ᴮ CSBP Limited lab numbers SVS15173 ‒ SVS15175. 
 

The light and medium soils were air dry and screened to 2.2 mm and the heavy soil 

was oven dried and screened to 2.0 mm. The pots were packed with 1.4 kg of light 

or medium soil) and 2.0 kg of heavy soil. The light soil is coarse, acidic 

(pH 4.6 CaCI₂) and has a low capacity to retain P. The medium soil has a sandy 

duplex mixture with a moderate capacity to retain nutrients, and the heavy soil had 

smaller particles, a clay mixture and a high capacity to retain P. The pots were 

watered with 50 mm of de-mineralised water to bring them to field capacity (see 

Appendix 9.3.3) and then a basal nutrient mixture was applied (see Table 5.3). 
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Table 5.3 Basal nutrient mixture composition applied to 
experiment. 

Basal nutrient mixture applied to each pot before the start of 
and three regular intervals during the experiment. The mixture 
was applied in a three parts mixture because its chemical 
analysis would cause precipitation of the elements if it were 
contained in a single nutrient solution. The solution is modified 
from Marschner (2012) to remove phosphorus. 

Nutrient 
Amount applied to soil (mg/kg)  

per application 

Boron 0.12 

Calcium 40.97 

Chlorine 98.41 

Cobalt 0.11 

Copper 0.51 

Potassium  88.69 

Magnesium 3.95 

Manganese 3.26 

Molybdenum 0.08 

Phosphorus < 0.05 

Nitrogen 33.30 

Sulphur  34.18 

Zinc 2.05 

 

The pots sown with Dalkeith subterranean clover were inoculated with rhizobia to 

ensure clover nodulation. The clover and ryegrass were thinned to 10 plants after  

7 days and misted with de-mineralised water daily before the P fertiliser was applied 

to ensure uniform plant growth. 

The pots were watered four times per week to a total of 100 mm per week (weeks 

1‒7) and 50 mm per week (weeks 8–11). The total simulated rainfall represented a 

total of 900 mm which is an above average rainfall typically of 660 mm experienced 

on the SCP during the growing season (Hanson and Foster 2012). The extra 240 

mm of rainfall was applied (after week 11) to simulate above-average leaching 

conditions. 

At 45, 60 and 84 days after sowing, the clover and ryegrass shoots were harvested, 

by removing all plant tissue one cm above the surface of the pot. Harvested plant 

matter was dried, weighed and then analysed for P content. The volume of leachate 

from each pot was measured after every 50 mm of watering and samples were 

taken to measure the concentration of P (McQuaker et al. 1979). After the third 
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harvest (84 days), the roots were extracted from the soil, weighed and then dried 

before the P concentration was measured. 

The P analysis and percentage of MCP, DCP and TCP of SSP and LWSSP are 

listed in Table 5.3 with the chemistry of MCP, DCP and TCP  

Table 5.5. The SSP and LWSSP is a commercially manufactured product supplied 

by CSBP Limited.  

Table 5.4 Phosphorus fertilisers with their composition percentage 
and phosphorus analysis. 

The phosphorus fertilisers used in these experiments with the amount of 
phosphorus present within each of them and the percentage of each 
form of phosphate (within the brackets). Single superphosphate (SSP) 
and low water-soluble superphosphate (LWSSP). 

 SSP LWSSP 

Total P 9.1 8.3 

Water-solubleᴬ (MCP) 7.8 (86) 2.9 (35) 

Citrate-solubleᴬ (DCP) 0.8 (9) 3.7 (45) 

Citrate-insolubleᴬ (TCP) 0.5 (5) 1.7 (20) 

ᴬ Measured by standard (AOAC 1975). 
 

Table 5.5 Chemical form, solubility and chemical structure of phosphate 
fertiliser derived from rock phosphate. 

Monobasic Calcium phosphate is the most soluble and the solubility reduces as 
the ratio of calcium to phosphorus atoms increases. 

Type Solubility Chemical analysis 

Monobasic calcium phosphate Water-soluble Ca (H2PO4)2 H2O 

Dibasic calcium phosphate Citrate-soluble CaHPO4 2H2O 

Tribasic calcium phosphate Citrate-insoluble Ca3 (PO4)2 

 

5.2.2 Analysis of data 

Refer to Section 3.10 (Statistical analysis, calculations and data storage) for a 

detailed description of analysis. 
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5.3 Results and Discussion 

There was no significant difference in dry matter yield from either plant species in 

light or medium soils when no fertiliser was applied. However, there was an increase 

in clover growth (p < 0.05) in the control treatment on the heavy soil Figure 5.1 due 

to its relatively higher soil P levels (70 mg kg P/ha) adequate to sustain initial plant 

growth. There was no significant difference in the growth of ryegrass controls in any 

of the three soil types Figure 5.1, which may be explained by ryegrass requiring less 

P for growth (Barrow 1975). The plant P uptake is outlined in Figure 5.2. In a study 

by Barrow (1975) on the SCP, using 11 soils of differing ability to adsorb P was 

sown with Dalkeith subterranean clover or Wimmera ryegrass. Single 

superphosphate was applied at 4 rates; clover at 2, 4, 5, and 8 g/pot and ryegrass at 

0.5, 1, 1.5 and 2 g/pot. Response curves were fitted, and it was determined that 

ryegrass required less P 1 g/pot than clover 4 g/pot for optimum growth. 
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Figure 5.1 Cumulative total dry matter yields (g/pot) of clover and ryegrass from the combined three harvests on the three soil types. 
The order of fertiliser treatment from left to right is nil-P control, low water-soluble superphosphate (LWSSP) and single 
superphosphate (SSP). Clover (C) and ryegrass (RG). Error bars indicate the least significant difference for comparing phosphate 
forms between treatments (lsd = 1.28). The dry matter yield data is stacked with the first harvest at the bottom indicated in blue, 
the second harvest in the middle indicated in red and the third harvest at the top indicated in green.  

  

0

1

2

3

4

5

6

7

8

Nil LWSSP SSP Nil LWSSP SSP Nil LWSSP SSP Nil LWSSP SSP Nil LWSSP SSP Nil LWSSP SSP

Light Light Light Medium Medium Medium Heavy Heavy Heavy Light Light Light Medium Medium Medium Heavy Heavy Heavy

C C C C C C C C C RG RG RG RG RG RG RG RG RG

D
ry

 m
a
tt

e
r 

y
il

e
d

 (
g

ra
m

s
)



 

118 

 

Figure 5.2 Total phosphorus uptake (mg/pot) of clover and ryegrass from the combined three harvests on the three soil types. The 
order of fertiliser treatment from left to right is nil-P control, low water-soluble superphosphate (LWSSP) and single 
superphosphate (SSP). Clover (C) and ryegrass (RG). Error bars indicate the least significant difference for comparing phosphate 
forms between treatments (lsd = 1.26). The phosphorus uptake data is stacked with the first harvest at the bottom indicated in 
blue, the second harvest in the middle indicated in red and the third harvest at the top indicated in green. 
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Applying LWSSP increased the dry matter yield of ryegrass compared to the nil-P 

treatment in the light and heavy soils. The increase in dry matter yield of both 

species for LWSSP under leaching conditions is due to the reduced solubility of the 

DCP component, which P dissolves at a slower rate than the MCP, giving plants 

greater access to P before it is lost to leaching (Chapter 4). The ability of heavy soils 

to retain more applied P means that regardless of the nature of the fertiliser applied, 

the rate of leaching of water-soluble P is relatively low (< 10 mg/L). The dry matter 

yield of the clover significantly increased with the application of LWSSP on the light 

and heavy soil when compared to the medium soil.  

There was no significant difference in dry matter yield when SSP was applied to 

ryegrass when compared to control P treatment in any of the soil types. For clover, 

applying SSP significantly increased the dry matter yield when grown on the heavy 

soil compared to the light and medium soils. There was no significant difference in 

dry matter yield between the light and medium soils when SSP is applied. These 

results further support the concept that the heavy soil can retain more P for plant 

access and, with consistent rainfall more able to hold more moisture for plant 

growth.  

The dry matter yield results in control P treatment show no difference when ryegrass 

and clover are grown on soil types with increasing phosphorus sorption capacity, 

with a significant increase in yield of clover grown in the heavy soil. This yield 

increase may be explained by high levels of available P present (70 mg/kg) Colwell 

(1965) in the soil before the experiment. In response to LWSSP, compared to SSP, 

there was no significant difference in dry matter yield of clover or ryegrass on light or 

medium soils. The P use efficiency of clover increases when LWSSP is applied 

compared to the SSP and the nil-P for light and medium soils (see Table 5.6). 
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Table 5.6 Phosphorus use efficiency of clover. 

Determining the effectiveness of each fertiliser type was calculated by determining 
its phosphorus use efficiency based on soil and fertiliser type. The total amount of P 
removed is the sum of the three dry matter yield harvests. The equation to calculate 
phosphorus use efficiency was the ((P) removed by the plant subtract (P) uptake nil) 
divide the amount of (P) applied multiple 100. 

Soil Fertiliser 

Tissue P 

removed 

(mg/pot) 

Tissue P 

removed minus 

nil-P (mg) 

Amount of P 

applied (mg) 

PUE 

(%) 

Light Nil 9.6 0 0 0 

Light LWSSP 10.6 1.0 33.1 3 

Light SSP 9.5 -0.1 33.2 0 

Medium Nil 8.4 0 0 0 

Medium LWSSP 14.7 6.3 33.1 19 

Medium SSP 9.4 1.0 33.2 3 

Heavy Nil 16.0 0 0.0 0 

Heavy LWSSP 13.2 -2.8 33.1 0 

Heavy SSP 16.9 0.9 33.2 3 

 

Clover PUE on the medium soil increased from 3% for SSP to 19% for LWSSP. On 

the heavy soil, this trend is insignificant with the P use efficiency for SSP at 3% and 

LWSSP 0%. Ryegrass P use efficiency also increases for LWSSP, compared to 

SSP, for the light and medium soils, and this trend is insignificant on the heavy soil 

(see Table 5.7). Overall, ryegrass P use efficiency increases for all fertilisers on all 

soil types.  

  



 

121 

Table 5.7 Phosphorus use efficiency for ryegrass. 

Determining the effectiveness of each fertiliser type was calculated by determining 
its phosphorus use efficiency based on soil and fertiliser type. The total amount of P 
removed is the sum of the three dry matter yield harvests. The equation to calculate 
phosphorus use efficiency was the ((P) removed by the plant subtract (P) uptake nil) 
divide the amount of (P) applied multiple 100. 

Soil Fertiliser 

Tissue P 

removed 

(mg) 

Tissue P 

removed minus 

nil-P (mg) 

Amount of P 

applied (mg) 

PUE 

(%) 

Light Nil 3.7 0 0 0 

Light LWSSP 8.9 5.3 33.1 16 

Light SSP 6.8 3.1 33.2 9 

Medium Nil 5.3 0 0 0 

Medium LWSSP 12.5 7.1 33.1 21 

Medium SSP 6.3 0.9 33.2 3 

Heavy Nil 2.3 0 0.0 0 

Heavy LWSSP 6.9 4.6 33.1 14 

Heavy SSP 7.6 5.3 33.2 16 

 

The P use efficiency results in Table 5.7 indicate that LWSSP is more efficient than 

SSP for the light and medium soils where more P was lost to leaching. The LWSSP 

with increased DCP component dissolves at a slower rate, allowing the plant more 

time to access soluble P before it is lost to leaching. These results suggest that the 

application of LWSSP is comparable to SSP for dry matter yield on light and 

medium soil types, but not on heavy soil types. This result may occur because the 

DCP dissolves at a rate that is non-limiting to both pasture species. It is proposed 

that LWSSP contains enough MCP for the establishment of the plant's root system 

and then DCP dissolves at a rate that the plant can access the P later before it 

leached from the root zone. 

The leachate volume was collected for all treatments Appendix 9.3.3.1 with the 

amount for the controls (nil-P, nil-species) is shown in Figure 5.3. The simulated 

rainfall was divided and applied 4 times per week with the leachate collected twice 

per week. The leachate volume collected, and this watering regime indicated that 

moisture was not limiting for plant production on any soil type regardless of the soil 

type (light, medium and heavy) and individual water holding capacity. The calculated 

watering holding capacity is outlined in (see Appendix 9.3.3).  
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Figure 5.3 Leachate volumes for the nil species for three of the soil types, 

rainfall, is displayed along the X axis. × light soil, □ medium soil 

and ◊ heavy soil.  

Light soil (PRI = 1.1, PBI = 8.9) was prone to leaching of up to 55 mg P/L (total) after 

900 mm of rainfall (see Figure 5.4). Applying SSP and LWSSP to the soil in the 

absence of plants significantly increased leaching (see Figure 5.4). Growing clover 

and ryegrass significantly (p < 0.05) reduced P leaching from SSP and LWSSP. The 

uptake of P by plants reduced P leaching as plants removed P from solution before 

it was lost from the root zone. Plant roots possibly also reduced water infiltration rate 

and this may have contributed to a reduction in P leaching. 
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Figure 5.4 Cumulative totals of phosphorus in leachate from the light soil, 
rainfall is displayed along the X axis. * nil (nil-P), × nil (low water-
soluble superphosphate), ● nil (single superphosphate), □ clover (nil-
P), ◊ clover (low water-soluble superphosphate), Δ clover (single 
superphosphate), ○ ryegrass (nil-P), + ryegrass (low water-soluble 
superphosphate), ─ ryegrass (single superphosphate). The least 
significant difference for comparing phosphate forms between 
treatments (lsd = 1.1). 

In the medium soil (PRI = 3.7, PBI = 16.4), applying SSP to clover or ryegrass, 

compared to the control treatments with no plants, significantly increases P leaching 

with all three treatments accumulating approximately 40 mg/L of P (see Figure 5.5). 

Applying LWSSP to clover or ryegrass compared to the controlled treatments shows 

significantly less P leaching. One explanation for this difference is that plant roots, 

once established, use the dissolved P before it is lost to leaching. 
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Figure 5.5 Cumulative totals of phosphorus in leachate from medium soil, 
rainfall is displayed along the X axis. * nil (nil-P), × nil (low water-
soluble superphosphate), ● nil (single superphosphate), □ clover (nil-
P), ◊ clover (low water-soluble superphosphate), Δ clover (single 
superphosphate), ○ ryegrass (nil-P), + ryegrass (low water-soluble 
superphosphate), ─ ryegrass (single superphosphate). The least 
significant difference for comparing phosphate forms between 
treatments (lsd = 1.1). 

In the heavy soil (PRI = 89.4, PBI = 123.3), the leaching of P was lower than the 

other soil types with the majority of P leaching within the first 100 mm of rainfall (see 

Figure 5.6). These results indicate that in high rainfall situations on this heavy soil 

type, the chances of P leaching are reduced and applying a high water-soluble 

superphosphate will maximise P availability to plants. This reduction in leaching 

combined with the plant's requirement for water-soluble P means that LWSSP can 

be applied as it will not be lost to leaching. 
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Figure 5.6 Cumulative totals of phosphorus in leachate from the heavy soil, 
rainfall is displayed along the X axis. * nil (nil-P), × nil (low water-
soluble superphosphate), ● nil (single superphosphate), □ clover (nil-
P), ◊ clover (low water-soluble superphosphate), Δ clover (single 
superphosphate), ○ ryegrass (nil-P), + ryegrass (low water-soluble 
superphosphate), ─ ryegrass (SSP). The least significant difference for 
comparing phosphate forms between treatments (lsd = 1.1). 

As the soil’s ability to absorb P increases (i.e. from sand, to loam, to clay), the 

relative amount of P leaching decreases, given the same rainfall and environmental 

conditions. In general, under similar rainfall conditions, as the soil’s ability to retain P 

decreases, a P fertiliser should have a greater percentage of DCP to reduce the 

likelihood of P leaching to the environment. 
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5.4 Summary  

The size of the P solution pool varies depending upon the physical and chemical 

properties of the soil (see Section 2.2.5, 2.2.6 and 2.2.7). The application of 

inorganic fertiliser to the soil increases the amount of P within the active pool that 

can then move into the solution pool for utilisation by the plant. If the solution pool of 

the soil is relatively small (i.e. based on increased PBI), the applications of large 

amounts of highly soluble P (MCP) will rapidly fill it up and then the excess soluble P 

will likely be leached from the rhizosphere (Chapter 4).  

Under simulated rainfall conditions of up to 900 mm annually, reducing the solubility 

of P through increasing the amount of DCP in fertiliser produces a similar dry matter 

yield and P plant uptake on all soil types. However, increasing the amount of DCP in 

SSP had a significant reduction of P leaching on all soil types. As the size of the soil 

solution pool increased, the relative amount of P lost to leaching decreased. This 

indicates that the amount of DCP within a P fertiliser can be manipulated to match 

soil properties (i.e. measured using PBI), provide maximum available P to the plant 

and reduce P loss to leaching. As the PBI of soil increases, the amount of DCP can 

be decreased and the amount of MCP can be increased. Rainfall also has a 

significant effect on the amount of DCP within the fertiliser since rainfall is a major 

influence of soluble P leaching below the plant's rhizosphere.  

The SCP sandy soil types that have a low PBI of less than 16 has a limited ability to 

retain P and contribute to a greater loss of P. Hence, this research recommends that 

as the soil’s ability to retain P reduces, the relative solubility of P in fertiliser is 

decreased so that it is released in smaller amounts over a longer period to allow 

plants access to the pool of soluble P. Soils on the SCP require testing for Colwell P 

levels and PBI before fertiliser is applied to determine optimum P requirements. In 

summary, this research shows that the P chemistry (ratio of MCP to DCP) in SSP 

can be manipulated to reduce leaching losses caused by high rainfall on low PBI 

soils. Thereby improving pasture growth on the SCP and reducing P contamination 

of waterways. 
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CHAPTER 6  FIELD EXPERIMENTS 

6.1 Introduction 

In 2006 the Western Australian Government proposed that high water-soluble 

phosphate fertilisers with a phosphorus concentration greater than 40%, would be 

phased out of environmentally sensitive regions to reduce the impact of fertiliser 

used in agriculture on the waterways of the SCP in south-west Western Australia 

(Cox et al. 2007). The most common P fertiliser applied to pasture production 

systems in Western Australia is SSP that is manufactured from rock phosphate and 

typically has a water-soluble content > 80% (Agriculture 1964; Chien and Menon 

1995). Starting in 2009, the phasing out of the higher water-soluble phosphate 

fertilisers containing a P concentration above 40% was to occur over a period of four 

years. Phosphorus is a critical element for plant growth and pasture production 

because it is an essential element for genetic material, cell membranes, energy 

transfer and cell storage processes (Schachtman et al. 1998). The majority of P is 

needed during the early growth stages, and it must be available in a water-soluble 

form for plant roots to access (Black 1968; Price 2006).  

The soils of the SCP are predominantly sandy and infertile as defined by Moore 

(2004) and when they are used for pasture production, they require high inputs of 

fertiliser, commonly SSP (Yeates 1993). These soils have a low ability to retain 

applied P as defined by Bolland and Allen (2003), therefore fertiliser rates of greater 

than 15 kg/ha per year of P are normally required. The combination of the low 

capacity of the soil to retain P, high solubility of the applied fertiliser, and a relatively 

high rainfall results in excess P discharged into the waterways. These excess 

nutrients promote algal growth in the shallow river systems of the region, such as 

the Peel Inlet and Peel Harvey estuary, where large surface areas of algae growth 

have been occurring since the 1960s (Yeates 1993). 

Single superphosphate is comprised of three forms of calcium phosphate, MCP, 

DCP and TCP in proportions shown in Table 6.3. Tribasic calcium phosphate is 

considered an ineffective form for pasture production because it dissolves too slowly 

for plant growth and is only present in SSP as a by-product of the manufacturing 

process. The chemistry of SSP has been designed to ensure maximum availability 

to plants but these ratios can be varied in the manufacturing process (Mclean and 

Wheeler 1964). Each phosphate form differs in solubility, and hence the forms 

require different amounts of rainfall to become plant available. Tribasic calcium 
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phosphate is regarded as the least effective form for plant uptake because it is very 

insoluble and thus unavailable to plants. 

Many strategies to reduce phosphate leaching from SSP have been tried such as 

coating bauxite residues onto the granule surface as described by Summers et al. 

(1999a) or changing the soil properties to increase P retention (Summers et al. 

1993b; Pathan et al. 2002). None of these methods has been widely adopted 

because of cost, practicality or public concern. Consequently, a method to reduce 

the solubility of P fertiliser while matching plant requirements and overcoming the 

problems associated with P availability is required. The P cycle can be considered 

as a simple input and output system with P being added into the system as 

fertilisers, pasture assimilating the available P for plant growth, and excess P being 

lost from the system. Reducing the loss of P and maintaining the amount of P that is 

available to the plant over subsequent seasons is essential for sustainable 

agriculture. 

Edmeades (2000) found that similar dry matter yield responses could be obtained 

with DCP compared to SSP under certain conditions and proposed that reducing the 

proportion of water-soluble P in SSP would achieve similar dry matter yield 

improvements relative to current fertilisers. This change to SSP would enable 

existing manufacturing equipment to be used without additional alternative 

approaches, such as a slow-release coating (Nyborg et al. 1996; Summers et al. 

2000). It is possible to reduce leaching and obtain equivalent dry matter yields in the 

pasture to SSP by reducing the proportion of MCP and increasing the proportion of 

DCP and TCP. This change in the proportion MCP and DCP would enable a 

percentage of P to dissolve at a slower rate when applied to the soil but still is 

retained within the rhizosphere of the plant long enough for the plant to access.  

Several fertiliser models have been developed to quantify the amount of P required 

for growing cereal crops (Speirs et al. 2013; Dowling 2015). These models will differ 

between pasture species and cereal crops because the plant's requirement for P 

slightly differs for maximum pasture growth (Colwell 1963; Dowling 2015). The 

pasture requirements for P have been modelled through field and glasshouse 

experiments (Cornforth and Sinclair 1982; Nguyena and Goha 1992; Ratkowsky et 

al. 1997). A review of required application rate of P for optimum plant growth was 

outlined by Colwell (1965) and was found to be dependent on soil properties, PBI, 

and plants requirements to maximise pasture growth has been outlined by (Gourley 
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et al. 2007). As a general rule, the critical range of P to maintain plant growth 

increases the soil's ability to retain applied P increases. 

It is hypothesised that LWSSP will be as effective as SSP for pasture production 

systems under field conditions. It is predicted that under field conditions on lighter 

soil types (PBI < 20), that increasing the amount of DCP in SSP will produce similar 

plant dry matter yield, P plant uptake while reducing the loss of P from leaching 

below the rhizosphere. There is no fertiliser model which has been developed and 

tested for LWWSP. The objective of this field experiment (Chapter 6), is to test the 

optimum phosphate chemistry of SSP under field conditions, build on experimental 

data obtained from the Chapters 4 and 5 and develop a model based on the PBI of 

the soil and the rainfall. The aims are: (1) compare LWSSP and SSP interactions on 

pasture production in field conditions by measuring dry matter yield, P plant tissue 

percentage and soil P levels; and (2) to develop a concept that models how LWSSP 

can fit into the pasture production system based on rainfall and P buffering index.  
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6.2 Methods and materials 

6.2.1 Field experiments 

Two field experiments were conducted, site 1 is north-west of Pinjarra and site 2 is 

west of Serpentine, Western Australia (see Table 6.1). Both the sites have sandy 

soils, as characterised as Tenosols (Isbell 1996). 

Table 6.1 Location of the field experiment sites. 

The two field experiment sites are located on the Swan 
Coastal Plain of south-west Western Australia. The latitude 
and longitude of these sites are outlined in this table in 
degrees, minutes and seconds. 

Location Longitude (south) Latitude (east) 

Site 1 32° 32′ 323″ 115° 50′ 596″ 

Site 2 32° 22′ 264″ 115° 55′ 583″ 

 

Soil analysis of the field experiments and leaching column experiment was 

conducted pre (leaching column and field) and post-experiment (field) with the 

analysis for 0 and 25 kg/ha of P treatments outlined in Table 6.2. 
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Table 6.2 Soil properties of the field experiments and leaching column 
experiments. 

The relevant physical and chemical properties of the soils at the two experiment 
sites are outlined in this table. All samples were collected from 0–10 cm depth and 
the leaching columns were completely filled with the soil. Pre the application of 
phosphorus fertiliser to the experiment (pre-exp) and post the application of all 
phosphorus fertiliser to the experiment (post-exp). Single superphosphate (SSP) 
and low water-soluble superphosphate (LWSSP). 

Site 1 
(Pre- 

 exp) 

(Post- 

 exp) 

(Post- 

 exp) 

(Post- 

 exp) 

Leaching 

column 

(Pre-exp) 

Phosphorus rate (kg/ha) 0 0 25 25 0 

Fertiliser - - SSP LWSSP - 

Bicarbonate-extractable P 

(Colwell 1965) (mg/kg) 
3 5 8.5 9.3 4 

pH (1:5 soil 0.01 M CaCl2) 4.3 - - - 4.4 

Phosphorus buffering index 

(Allen et al. 2001) 
15 - - - 9 

Site 2 
(Pre- 

 exp) 

(Pre- 

 exp) 

(Pre- 

 exp) 

(Pre- 

 exp)  

Phosphorus rate (kg/ha) 0 0 25 25 - 

Fertiliser - - SSP LWSSSP - 

Bicarbonate-extractable P 

(Colwell 1965) (mg/kg) 
12 7.7 6.3 8.4 - 

pH (1:5 soil 0.01 M CaCl2) 4.6 - - - - 

Phosphorus buffering index 

(Allen et al. 2001) 
6.1 - - - - 

 

During this three-year experiment, both sites received rainfall above the average of 

660 mm per year, with the majority of the rainfall (i.e. 579 mm) falling during the 

growing season (April to October) (Hanson and Foster 2012).  

The two field experiments had the same experimental design but with different plot 

randomisations (see Appendix 9.3.4). They contained three replicates of nine 

treatments to give a total of 27 plots, with the nil-P treatment receiving no added P 

fertiliser. The plot sizes were 2.5 m by 10 m in 2009 and 2.5 m by 5 m in 2010 and 

2011 with both sites divided into two sections using a fence. The two fertilisers 

treatments (SSP and LWSSP), were applied at 5, 10, 15 and 25 kg P/ha. The 

recommended application rate of P was determined using a commercial model and, 

for optimum dry matter yield, with site 1 requires (22 kg P/ha) and site 2 requires (20 
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kg P/ha). The fertiliser treatments were applied once annually for three consecutive 

years. The sites were sown to a 50:50 mixture of clover and ryegrass.  

Dry matter yield measurements were taken using a rising plate meter method as 

defined by Earle and McGowan (1979) during the growing season of each year. The 

meter readings were calibrated with dry matter yield pasture cuts from within 

quadrats. The pasture was cut to ground level and dried at 75C in a forced-draft 

oven for at least 48 hours before being weighed to determine dry matter weights. 

The dry matter yield at site 1 was measured annually in 2009, 2010 and 2011. The 

dry matter yield at site 2 was measured three times in 2009, once in 2010 and three 

times in 2011. Tissue analysis samples were collected from random locations within 

the plots and this sampling technique was used throughout the experiment. The 

tissue samples were dried, and the ICP-AES method used to determine the 

concentration of P in the plant tissue. After each measurement, the fence was 

moved to the grazed section and cattle allowed to graze on the measured section. 

Soil samples at each site were collected using a metal tube, 20 mm in diameter to a 

depth of 100 mm before treatments were applied. Twenty soil sample cores were 

collected from random locations within each plot in January and February in 2010 

(all treatments), 2011 (treatments, nil-P, 25 kg/ha SSP and 25 kg/ha LWSSP) and 

2012 (all treatments). The soil was analysed for bicarbonate-extractable P using an 

automated version of the Colwell procedure (Colwell 1965). The SSP and LWSSP 

fertilisers were obtained from CSBP Limited and the analysis is shown in  

Table 6.3. Granule size ranged from 1 to 5.6 mm. 
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Table 6.3 Phosphorus fertilisers with their 
composition percentage and 
phosphorus analysis. 

The phosphorus fertilisers used in these experiments 
with the amount of phosphorus present within each of 
them and the percentage of total phosphorus of each 
phosphate form (within the brackets). Monobasic 
calcium phosphate (MCP), dibasic calcium phosphate 
(DCP), tribasic calcium phosphate (TCP). Single 
superphosphate (SSP) and low water-soluble 
superphosphate (LWSSP). 

Analysis SSP LWSSP 

Total P (%) 9.1 8.3 

MCP (%)ᴬ 7.8 (86) 2.9 (35) 

DCP (%)ᴬ 0.8 (9) 3.7 (45) 

TCP (%)ᴬ 0.5 (5) 1.7 (20) 

ᴬ Measured by standard (AOAC 1975). 
 

Basel nutrients Appendix 9.1.3 to 9.1.9 were applied throughout the experiment to 

ensure that P was the only element limiting dry matter yield. Basal nutrients and P 

fertilisers were applied to the soil surface (granular) at the start of the experiment as 

is common practice for fertilising pastures in Western Australia. 

6.2.2 Leaching column experiment 

The experimental design incorporated three replicates of three fertiliser treatments 

comprising SSP and LWSSP and a nil-P control. The fertiliser granules were sieved 

to ensure that particles size of P was 1‒2 mm for all treatments. Polyvinyl chloride 

pots (152 mm diameter, 400 mm deep) were packed with sand Table 6.2 to a total 

volume of 6 L. The columns were pre-leached with the equivalent of 164 mm rainfall 

using demineralised water. Phosphorus treatments were applied at a rate equivalent 

to 120 kg/ha of P in a single application at the beginning of the experiment and 

applied at 5 mm below the surface of the soil. The higher rate of P was selected to 

maximise leaching properties of the two P fertilisers. The columns were watered 

three times per week with 1.5 L of water (equivalent to 84 mm of rainfall) and 

allowed to drain for a minimum of 48 hours between watering throughout the four-

week experiment. Leachate from the columns was collected in a clear plastic bag 

enclosing the column. The total cumulative rainfall of 840 mm was designed to 

mimic the above-average annual rainfall on the SCP  

(660–990 mm) (Hanson and Foster 2012). The rate of P leaching was measured by 
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collecting leachate samples after each simulated rainfall event and analysing the 

total P (mg/L). 

6.2.3 Analysis of data 

Refer to Section 3.10 (Statistical analysis, calculations and data storage) for a 

detailed description of analysis. 
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6.3 Results and Discussion 

6.3.1 Field experiment 

The dry matter yield of the two field experiments varied because of seasonal 

conditions and soil properties over the three years. The pasture dry matter yield for 

site 1 is displayed by year in Figure 6.1–Figure 6.3 and site 2 Figure 6.4– 

Figure 6.6. The data is stacked with each dry matter yield measurement on top of 

one another and statistical means displayed as the totals of the year. 

 

Figure 6.1 Dry matter yield for field experiment site 1 (2009). Total dry matter 
yield in tonnes per hectare from all measurements combined for each 
of the five rates of phosphorus applied annually as either control, 
LWSSP or SSP. Dry matter yield was measured 138 days after 
phosphorus fertiliser application. The least significant difference for 
comparing phosphate forms between treatments (prob = 0.056, 
lsd = 0.06). 
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Figure 6.2 Dry matter yield for field experiment site 1 (2010). Total dry matter 
yield in tonnes per hectare from all measurements combined at the five 
rates of phosphorus applied annually. Dry matter yield was measured 
101 and 151 days after phosphorus fertiliser application. The least 
significant difference for comparing phosphate forms between 
treatments (prob = 0.012, lsd = 0.68). 

 

Figure 6.3 Dry matter yield for field experiment site 1 (2011). Total dry matter 
yield in tonnes per hectare from all measurements combined at the five 
rates of phosphorus applied annually. Dry matter yield was measured 
101 and 165 days after phosphorus fertiliser application. The least 
significant difference for comparing phosphate forms between 
treatments (prob =0.171, lsd = 0.55). 
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Figure 6.4 Dry matter yield for field experiment site 2 (2009). Total dry matter 
yield in tonnes per hectare from all measurements combined at the five 
rates of phosphorus applied annually. Dry matter yield was measured 
65, 135 and 155 days after phosphorus fertiliser application. The least 
significant difference for comparing phosphate forms between 
treatments (prob = 0.002, lsd = 0.39). 

 

Figure 6.5 Dry matter yield for field experiment site 2 (2010). Total dry matter 
yield in tonnes per hectare from all measurements combined at the five 
rates of phosphorus applied annually. Dry matter yield was measured 
100 days after phosphorus fertiliser application. The least significant 
difference for comparing phosphate forms between treatments (prob = 
0.485, lsd = 0.36). 
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Figure 6.6 Dry matter yield for field experiment site 2 (2011). Total dry matter 
yield in tonnes per hectare from all measurements combined at the five 
rates of phosphorus applied annually. Dry matter yield was measured 
165, 191 and 217 days after phosphorus fertiliser application. The least 
significant difference for comparing phosphate forms between 
treatments (prob = 0.284, lsd = 2.363). 

Dry matter yield at site 1 increased every season, from one t/ha in 2009 to 3 t/ha in 

2011, with a maximum P application rate of 25 kg/ha. The soil P Colwell (1965) level 

increased from 3‒5 to 8.5‒9.3 mg P/kg over three years, which reflects a moderate 

capacity throughout the growing season Table 6.2 P uptake measurements of the 

plants were taken for each season and these are shown in Figure 6.7 for site 1 and 

Figure 6.8 for site 2. 
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Figure 6.7 Phosphorous tissue analysis of field experiment site 1 for three 
years, sampled between 101 and 138 days from fertiliser 
application at 25 kg P/ha. Values in parentheses are days after 
application of phosphate fertiliser, with the year of sampling below. The 
samples are concentrations of total phosphorus (%). Nil-P (Nil), single 
superphosphate (SSP), low water-soluble superphosphate (LWSSP), 
phosphorus fertilisers were applied at 25 kg/ha of phosphorus. Error 
bars indicate the least significant difference for comparing phosphate 
forms between treatments (2009 (138) prob = 0.03 lsd = 0.06, 2010, 
(106) prob = 0.001 lsd = 0.12, 2011, (101) prob = < 0.001 lsd = 0.09).  

At site 2, dry matter yield Figure 6.8 increased every season from 1 t/ha in 2009 to 5 

t/ha in 2011, with a P application rate of 25 kg/ha. The soil at site 2 has a lower PBI 

than site 1 Table 6.2, PBI = 6.1 and shows a decrease in available soil P over the 

three seasons suggesting that P is not available to the plants as it is leached beyond 

the plant root zone. The plant P measurements for 2009 show that with more rainfall 

(43 days = 182 mm, 104 days = 411 mm, 125 days = 498 mm), the available soil P 

reduces, which is reflected in the concentration in plant shoots (see Figure 6.8).  
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Figure 6.8 Field experiment site 2 phosphorus tissue analysis. Values in 
parentheses are days after application of phosphate fertiliser with the 
number below the year of sampling. The samples are concentrations of 
total phosphorus (%). Nil-P (Nil), low water-soluble superphosphate 
(LWSSP), single superphosphate (SSP) phosphate fertilisers were 
applied at 25 kg/ha of phosphorus. Error bars indicate the least 
significant difference for comparing phosphate forms between 
treatments (2009 (43), prob= 0.09 lsd = 0.11, (104), prob = 0.13 lsd = 
0.04 (125), prob = 0.31 lsd = 0.03 2010 (100) prob = 0.048 lsd = 0.15 
2011 (165), prob = 0.09 lsd = 0.07, (191), prob = 0.01 lsd = 0.06 (217), 
prob = 0.273 lsd = 0.03). 

The 2011 season also show this trend of reducing tissue P with increased rainfall 

and available soil P. The difference between the 2009 season and the 2011 season 

is that much greater rainfall occurred during the early plant development in 2011, 

enabling greater plant growth and dry matter yield. These results show that using 

LWSSP causes no yield penalty on pasture production, compared to SSP.  

The amount of growing season rainfall had a dramatic effect on the amount of dry 

matter yield during that season. The long-term average for the growing season 

(March–October) is 594 mm at Mandurah. Growing season rainfall for the 2009 and 

2010 seasons was 517 mm and 432 mm respectively. Monthly rainfall in September 

and October was significantly reduced in both years. Consequently, the dry matter 

yield was limited by water deficiency. Growing season rainfall in 2011 was just 

below average with 575 mm.  
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The soil properties at each site are slightly different with site 1 having a greater 

ability to retain P but would likely require more moisture to allow plants to access it. 

In years where rainfall is less frequent, moisture would become limiting at both sites 

due to their soils being free draining and having low water-holding capacity.  

6.3.2 Leaching column experiment 

The leaching columns containing sand from field experiment 1 showed that applying 

P fertiliser undergoes significant leaching under simulated rainfall conditions. The 

majority of the MCP was rapidly leached within the first 300 mm of rainfall from both 

SSP and LWSSP (see Figure 6.9). 

 

Figure 6.9 Rate of dissolution of phosphate fertiliser rate of dissolution 
applied to leaching columns containing sand. The concentration of 
phosphorus in solution after each 84 mm of rainfall for a total of  
840 mm. □ single superphosphate (blue), Δ low water-soluble 
superphosphate (green). The least significant difference for comparing 
phosphate forms between treatments (lsd = 1.15). 

Reducing the solubility of SSP by increasing the percentage of DCP (i.e. forming 

LWSSP) significantly reduces the concentration of water soluble P in the solution 

pool by almost 50% (see Figure 6.9). A total of 60 mg P/L leached from LWSSP 

compared to a total of 110 mg/L from SSP. This quantity of P leached means that 

the majority of the P applied from SSP is lost during the first half of the growing 

season where plant P requirements are high. Since the use of LWSSP fertiliser does 

not affect the optimum plant growth, substitution of SSP with LWSSP is preferable in 

this high rainfall and sandy soil conditions.  
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The loss of applied P through leaching follows the predicted solubility of each 

phosphate form and was significantly reduced with LWSSP compared to SSP over 

each sampling event because of the lower amount of MCP (see Table 6.3). The total 

cumulative rates at which each P fertiliser dissolves to MCP follows the trends 

indicated by the concentrations (see Figure 6.10). 

 
Figure 6.10 Cumulative rate of dissolution of phosphate fertiliser applied to 

leaching columns containing sand. The cumulative concentration of 
phosphorus in solution after each 84 mm of rainfall for a total of 
840 mm. □ single superphosphate (blue) and Δ low water-soluble 
superphosphate (green). The least significant difference for comparing 
phosphate forms between treatments (lsd = 3.54). 

The majority of P in MCP was leached during the first 300 mm of rainfall and DCP 

dissolves at a slower rate. These results are consistent with results outlined in 

(Chapter 4).  

The amount of P leached during each of the growing seasons with rainfall greater 

than 300 mm would be minimal since the majority of P is leached within the first 300 

mm. There is significantly less leaching of P with LWSSP compared to SSP (p < 

0.05). This research provides evidence that increasing the proportion of DCP in P 

fertiliser in high leaching environments will significantly reduce P leaching, 

compared to high water-soluble P fertiliser, while maintaining pasture dry matter 

yield. The amount of P fertiliser required for optimum dry matter yield is well 

established, with several P fertiliser recommendation models developed from a large 

number of glasshouse and field experiments. These models are based on soil 

physiochemical properties (Colwell P, pH, PBI), and the plant requirements for P 

(see Figure 6.11). However, these current P fertiliser recommendation models often 

only account for the amount of P required for 95% of maximum plant growth and do 
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not take into account the potential leaching of P from fertiliser use. The findings of 

this research can be used to improve current fertiliser models by determining the 

optimum ratio of MCP and DCP to significantly reduce P leaching and maximising 

plant growth as shown in Figure 6.11. This research value-adds to existing P models 

by introducing the concept of customising of P fertiliser to specific environmental 

conditions on SCP (see Figure 6.12). 

 

Figure 6.11 Proposed fertiliser solubility model. New integrated model for 
reducing phosphorus fertiliser leaching while maintaining optimum 
pasture growth on the SCP. The model integrates the current fertiliser 
recommended rate method with a new phosphorus optimising 
chemistry ratio model, to provide a recommend rate phosphorus rate 
(kg/ha) and optimum chemistry. Monobasic calcium phosphate (MCP), 
dibasic calcium phosphate (DCP) and tribasic calcium phosphate 
(TCP). Tribasic calcium phosphate is considered an ineffective form for 
pasture production because it dissolves too slowly for plant growth, but 
it is a by-product of the manufacturing process and cannot be removed. 
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Band MCP (%) DCP (%) TCP* (%) Fertiliser ratio 

A 86 9 5 SSP (100) 
B 69 21 10 SSP (80): LWSSP (20) 
C 52 33 15 SSP (60): LWSSP (40) 
D 35 45 20 LWSSP (100) 

Figure 6.12 Phosphate optimisation chemistry model. Values in parentheses are the percentage of each P fertiliser. This model uses the 
concept of manipulating the chemical ratio of monobasic calcium phosphate (MCP), dibasic calcium phosphate (DCP) and tribasic 
calcium phosphate (TCP) within phosphate fertiliser to reduce phosphorus leaching and to maintain optimum pasture growth. 
Single superphosphate (SSP), low water-soluble superphosphate (LWSSP) The phosphorus buffering index was based on the 
scale outlined by Price (2006) with < 15 is extremely low, 15‒35 is very very low, 36‒70 is very low and 71‒140 is very low. While 
this model is based on a limited dataset, it provides a guide for the reduction in phosphorous leaching and may not apply to all 
environmental conditions. *Tribasic calcium phosphate is considered an ineffective form for pasture production because it dissolves 
too slowly for plant growth, but it is a by-product of the manufacturing process and cannot be removed. 
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This model proposes that a significant reduction in leaching loss on soils with a PBI 

of below 120 can be obtained through determining the optimum fertiliser rate and 

then overlaying the new phosphate optimisation chemistry model (Chapter 5). 

This new model has a basic structure with a sliding scale on the X and Y axis of a 

graph containing the relative amount of MCP and DCP required. The X axis is PBI 

(140–0), and the Y axis is rainfall (0–900 mm), and the basic output is determined 

by the intersection of these two variables. For example, the two field sites with PBI’s 

outlined the optimum mixture would be LWSSP. This model is optimised for high 

rainfall sites in Western Australian, but it also is a good diagnostic tool for other 

locations in Australia. For example Table 6.4 shows the optimum chemistry mixture 

of phosphates for three soils with differing PBI and rainfalls.  

Table 6.4 Examples of phosphate optimisation chemistry model. 

Three examples of the ratio of monobasic calcium phosphate (MCP), dibasic 
calcium phosphate (DCP) and tribasic calcium phosphate (TCP) within 
phosphorus fertiliser for reducing phosphorus leaching and maintaining 
optimum pasture growth. 

Soil PBI Rainfall (mm) MCP (%) DCP (%) TCP (%) 

9 800 35 45 20 

16 300 69 21 10 

123 900 86 9 5 
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6.4 Summary  

Low water soluble superphosphate is manufactured from SSP fertiliser with MCP 

being replaced with DCP to ensure MCP is below 40% of the total phosphorus. 

There was no significant difference in plant dry matter yield or P uptake following the 

application of SSP or LWSSP fertiliser at comparable P rates. The analysis of three 

years of field experiment results indicated that plants could access adequate P 

regardless of the type of fertiliser (SSP or LWSSP). However, under simulated 

rainfall conditions of up to 840mm on a soil low in available P and low PBI (< 10), 

there was a significant decrease in leaching of applied P when LWSSP was 

compared to SSP. These results reinforced the results from previous Chapters (4 

and 5) and indicate that increasing the amount of DCP allows an extended period 

for applied P to enter the solution pool from the active pool. Analysis of the soil (pre 

and post) from the field experiments also indicated that modifying the phosphate 

chemistry increased the amount of plant available P contained within the soil over 

three years of applications. 

Leaching is considered when P has moved below the rhizosphere and becomes 

unavailable for the plants to access. As shown in Figure 6.10, the impact of DCP in 

the LWSSP fertiliser is from the different proportions of MCP (85% vs 40%) by DCP 

in the fertiliser. The DCP leaches more slowly and represents the difference 

between the two curves and clearly shows that DCP does not impact on MCP 

solubility and leaching. It can be concluded that DCP is beneficial to fertiliser 

manufacture and increasing the amount of DCP will decrease the amount of P that 

can be leached.  

The amount of P fertiliser that is required to maximise dry matter yield is determined 

through P fertiliser recommendation models that use soil analysis and farmer input 

to determine the rate of application. The current limitations of these models is that 

they do not take into account the fertiliser solubility and rate of dissolution and size 

of the active P and solution P pools. Therefore P fertiliser applied with high 

concentrations of MCP (i.e. SSP) to soils with low sorption capacity would lead to 

leaching below the rhizosphere under higher rainfall conditions. The proposed 

model based on this research will allow farmers and consultants to determine the 

most optimum phosphate chemistry for any given soil type to reduce P leaching 

while maintaining dry matter yield for a range of situations based on the rainfall and 

a soil PBI. An option of combining fertilisers based on differing ratios of MCP and 
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DCP forms such as SSP and LWSSP will improve farming systems by reducing the 

amount of P leached without a reduction in pasture growth.  
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CHAPTER 7  GENERAL DISCUSSION 

7.1 Introduction 

The research of the thesis found that the difference in phosphate solubility created 

from customising the manufacture of single superphosphate fertilisers (SSP) can be 

used to create low water-soluble superphosphate (LWSSP) and reduce phosphorus 

(P) loss in pasture systems. On soils susceptible to leaching (i.e. SCP), this 

research verifies the impact of different fertiliser solubilities on plant dry matter yield, 

P uptake and P leaching in a range of experimental and field conditions. Figure 7.1 

shows the order in which this research was undertaken and Chapter 6 includes the 

integration of the experimental results into a model. 

 

Figure 7.1 Conceptual framework of this thesis. Single superphosphate (SSP), 
low water-soluble superphosphate (LWSSP), monobasic calcium 
phosphate (MCP), dibasic calcium phosphate (DCP), tribasic calcium 
phosphate (TCP). 
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The development of the experimental model was via a step-wise process to explain 

the interaction of phosphate solubility, plant and soil in leaching, glasshouse and 

field experiments over 3 years as a pasture production system. It is important to 

recognise that this research was started in 2009 when the Fertiliser plan was to be 

implemented and a fertiliser suitable for the SCP was not available. This research 

has led to the commercialisation of LWSSP as a “Super SR” with fertiliser 

production since 2010 being well over 100,000 tonnes. It was the research 

conducted as part of this PhD that verified the properties of this new fertiliser 

product in a pasture system. 

7.2 To compare the P solubility and leaching of LWSSP and SSP 

fertilisers and their chemical components for pasture production 

in hydroponic no-soil conditions 

This research found that the dissolution of various calcium phosphate fertilisers is 

governed by their relative solubility and follows the principles outlined by (Shen et al. 

2011). The rate that a fertiliser dissolves (i.e. SSP, LWSSP) without soil depends on 

the components of that fertiliser (Gilkes and Lim-Nunez 1980). Each component of 

the SSP and LWSSP fertilisers Table 4.1 has different rates of solubility and once P 

is in solution and has become saturated, an equilibrium is reached (Huffman et al. 

1957). This equilibrated P solution will be maintained unless P is removed by the 

plant, in which more P will dissolve until the solution becomes saturated again 

(Richardson et al. 2009a).  

The hydroponic research demonstrates that plant dry matter yield matches the 

chemical reaction concept of fertiliser solubility where the MCP dissolves quickly into 

solution and significantly increases yield as outlined by (Kotz et al. 2003). For the 

components of P fertilisers as explained by Edmeades (2000) with MCP dissolving 

very rapidly to reach saturation, while DCP which is less soluble and will reach the 

same saturation process in water over a longer period. For TCP which is very 

insoluble, dissolves very slowly with only a minimal amount of P available in solution 

for access by the plant (Tebman et al. 1958). Tribasic calcium phosphate is 

considered ineffective as a plant fertiliser, but it is present in fertiliser as a by-

product of the fertiliser manufacturing process and cannot be removed (Bolland et 

al. 1997; Darlow 2009). 
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The leaching column research using perlite as a soil substitute (i.e. without 

interaction of soil or plant properties that can influence the rate and amount of P 

leaching) showed that different rates of leaching and correlated to phosphate 

solubility. As water is added to the top of the column, the MCP dissolves rapidly in 

contact with water, and as the water leaches down the column, this dissolved P is 

available to the plant when present in the rhizosphere.  

This research was unique in the investigation and validation of different phosphate 

forms and chemistry of SSP in regards to solubility, plant dry matter yield and P 

uptake. While the chemistry of SSP is well understood, the chemical manipulation of 

this chemistry to reduce leaching while maintaining plant dry matter yield and P 

uptake was not. This research has validated the solubility of SSP, LWSSP and its 

component phosphates MCP, DCP and TCP. These results can now be used to 

create a new generation of P pasture fertilisers with new phosphate chemistry to 

match pasture plant requirements for P and environmental rainfall in a way that has 

not been implemented previously.  

7.3 To compare P solubility, leaching and pasture production 

characteristics for LWSSP and SSP on three soil types soil under 

controlled glasshouse conditions 

The amount of P available to the plant is defined by, its root area, the amount of P in 

solution, the ability to adsorb P, and the ability of the soil to retain P (Niu et al. 

2012). This research showed differences in fertiliser components (MCP, DCP and 

TCP) for different soil types. The concept developed from this research is that the 

percentage of MCP and DCP can be varied to ensure the amount of P in solution 

does not limit plant dry matter yield while reducing the amount of P lost to leaching. 

Since early plant growth roots have a limited surface area from which to obtain P 

from solution, monobasic calcium phosphate rapidly dissolves P into solution for the 

plant to access, but access time can be reduced if the soil has a low ability to retain 

P in solution and subsequent rainfall events leach P below the plant’s root zone 

(Rajan 1987). Dibasic calcium phosphate is less soluble and enters solution at a 

slower rate than MCP and this reduced solubility increases the amount of time that 

plants can obtain P from solution before it is leached after rainfall. Clover and 

ryegrass have different requirements for P and different abilities to obtain P from 

solution, with ryegrass having a more fibrous root system and hence a greater 

surface area to adsorb P. Even with different root systems, clover and ryegrass 
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requirement for P depends on the growth stage and root development and the 

amount of P that a plant can adsorb is affected by the amount of P in solution.  

This research was unique in the investigation and validation of LWSSP phosphate 

chemistry to reduce P leaching, to maintain pasture dry matter yield and P uptake 

on three soil types with a range of PBI. The phosphate chemistry (DCP to MCP 

ratio) of LWSSP is unique and has never been investigated previously to reduce the 

environmental damage from P leaching. The chemical phosphate of LWSSP has 

been designed for extreme leaching conditions but can be manipulated based on 

this research to a range of soil conditions for pasture production. These research 

results have shown that soils with a PBI of > 120 are not susceptible to P loss to 

leaching and regardless of rainfall should be disregarded from future research into 

this subject. The result of this research also indicates that phosphate chemistry 

should take into account different soils type and rainfall conditions. This method of 

matching the plant's requirement for P, the soils ability to retain P, and rainfall is a 

new novel method for the applications of P fertilisers.  

7.4 To compare LWSSP and SSP interactions on pasture growth 

by measurement dry matter yield, P plant tissue percentage and 

soil P levels in field conditions 

This research demonstrated that with increased demand for P (i.e. by the plants 

from livestock feeding) in field experiments LWSSP had no less significant effect of 

plant dry matter yield than SSP. Pasture production systems are often established 

for the maximum food on offer for livestocks to be converted into meat, milk or wool. 

Phosphorus is required for early plant growth as well as for replacing plant tissue 

that is removed by livestocks. The removal of plant shoots increases the 

requirement for P which is taken up from solution by the plant roots. The amount of 

P which a plant can access in the field is determined by the rate at which P is 

dissolved into solution and the soil’s ability to retain P in solution. These factors 

create a P solution pool within the soil that increases in size as the soil’s ability to 

retain P increases. If the amount of P in solution is less than the plant requires then 

dry matter yield will be reduced, but if there is an excess of P, then P will be leached 

(see Figure 6.9). The plant requirements and access to the P solution pool will 

determine how much and at what rate P is removed from the solution pool Figure 

7.2 demonstrates this P pool concept with three different tanks based on the soils 

ability to store P. Single superphosphate with a high percentage of MCP increases 
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the rate that the tanks will fill. If the tanks fill too rapidly the excess will be lost. 

Reducing the solubility of the fertiliser by increasing the percentage of DCP reduces 

the rate at which the P solution pool is filled and also increases the amount of time 

that plants can access the P before it is lost to leaching.  

This research was unique in demonstrating that phosphate chemistry modification is 

a key contribution to better plant growth. The novelty of the new LWSSP phosphate 

chemistry with a DCP level of 35% has been proven to maintain pasture dry matter 

yield and P uptake in multi-environment locations. From the results of experiments 

outlined in Chapters 4 and 5, farmers have already begun to implement these 

findings. This new approach will allow farmers to maintain pasture production 

systems, reduce environmental damage and utilise existing equipment. As the new 

LWSSP is manufactured using the same infrastructure and base products, the cost 

to the farmer is the same per P kg/ha applied as SSP. All these factors suggest that 

this novel approach to the reduction of P leaching could be implemented globally 

regardless of the soil type, rainfall or location.   
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7.5 Develop a concept that models how LWSSP can fit into the 

agricultural system based on rainfall and P buffering index 

This research concept shows that the optimum situation is to match the size of the P 

solution pool to the chemistry of the fertiliser so that the pool always remains full but 

not overflowing (i.e. leaching). Fertiliser will always require a minimum amount of 

MCP to fill the pool rapidly with the amount of DCP determined by the size of the 

pool and the amount of rainfall to dissolve the P into solution. 

 

Figure 7.2 The phosphorus solution pool. As the phosphorus buffering index 
(PBI) increases, so does the relative amount of soluble phosphorus that 
is stored within the soil before it is unable to store anymore and it is lost 
to leaching. 
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The balance between what is available to a plant and the plant’s requirements for P 

determine how well and at what rate the plant will grow. The solubility of LWSSP 

and SSP determines the concentration and rate that the P dissolves into solution 

and the amount that enters the P solution pool at any given time (Malik et al. 2012). 

Single superphosphate dissolves into solution and enters and exits the P solution 

pool very rapidly. Low water-soluble superphosphate with its lower solubility slows 

down the amount of P that enters the P solution pool and increases the amount of 

time that plants can access the pool before the P exits and is lost to leaching. A less 

soluble fertiliser will require more moisture over the season to dissolve the 

equivalent amount of P into the solution pool. 

The gap in knowledge that is addressed by this research is in determining how to 

apply this information to a pasture production system. The data from this research 

shows a predictable response for MCP and DCP for pasture production but not 

TCP. The reason for this may be due to the MCP, and DCP is more soluble typically 

with pasture production rainfalls of 400‒900 mm compared to TCP. The amount of 

rainfall affects the amount of P in solution in the plant root zone and the amount of 

rainfall required to dissolve MCP, DCP, TCP, LWSSP and SSP into solution. 

This research demonstrated that the fertiliser and the pasture species significantly 

affect the amount of P leaching through the soil. The difference in leaching of the 

fertiliser is a function of their solubility, and the differences in P leaching from the 

pasture species is a function of their roots increasing the permeability of the soil. 

The plants also extract P from the soil for dry matter production, which reduces the 

amount of P that is leached. Applying LWSSP significantly reduced P leaching, 

compared to SSP on the light and medium soil types. As the PBI increases, the 

amount of P leached significantly reduces, regardless of fertiliser type or plant 

species. These plant dry matter yield results confirm that LWSSP is a viable 

replacement for SSP for pasture production in these conditions. In summary, the 

research in this thesis is novel in that it found that the differences in solubility 

created from customising fertiliser manufacturing of SSP can be used to reduce 

phosphorus loss in pasture systems in high rainfall regions of Western Australia. 
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7.6 Future direction and research 

This research has outlined that modifying the chemistry of SSP to LWSSP is a 

viable, practical solution for maintaining pasture dry matter yield and significantly 

reducing P leaching. The phosphate optimisation chemistry model developed from 

this research outlines a new method for customising of MCP and DCP within 

fertilisers to reduce P leaching based on PBI and rainfall. 

It is recommended that further research and development be conducted to increase 

the accuracy of this model, with a greater number of different ratios of MCP and 

DCP over a range of soil types with a PBI between 1 and 120. It is suggested that 

10–15 soils across a range of soils based on PBI be selected with low Colwell P 

levels that are based on current P fertiliser recommendation models such as better 

fertiliser decisions and CSBP Limited Nulogic software (Dowling 2015; Neuhaus 

2015). For each soil type, the four (A, B, C and D) mixtures of MCP and DCP be 

applied (see Figure 6.12). Since the manufacturing properties of LWSSP will not 

allow the amount of DCP to increase (above 35%) as the granular strength is 

reduced and it will not be able to be applied using current farmer machinery. 

However, the amount of DCP can be reduced to current SSP levels (i.e. 8%) and 

changed to any level in between. This range of DCP should be investigated in 

conjunction with rainfall to refine the model. The recommended methodology for this 

investigation would be equivalent to the glasshouse experiment (Chapter 5) and 

vary the soil types and rainfall amount.  

The research has identified that TCP is not a plant available form of P and it is 

recommended that pasture fertiliser is manufactured without it. The process could 

be conducted by combining the pure forms of MCP and DCP into a fertiliser granule. 

However, it is yet to be seen if it will be cost effective method as SSP produced from 

rock phosphate is still relatively cheap.  

During this research, it has been noted that SSP also contains sulphur that is a 

critical macronutrient for plant production. The sulphur is present in a highly water 

soluble form, and while the manipulation of SSP phosphate chemistry has reduced 

P loss, sulphur can be leached. This loss will limit pasture production and it is 

recommended that research is conducted to reduce sulphur leaching with the 

introduction of elemental sulphur into SSP as a starting point. The research within 

this thesis has proven the concept of manipulating phosphate chemistry and the 

researcher hopes that future research continues and improves on the novel 

technology and ideas contained within.  
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CHAPTER 9  APPENDIX 

 

9.2 Review of literature 

9.2.1 Table 9.1 Australia soil classification system. 

(Burkitt et al. 2002; Isbell 2016) 

Name Texture Description 

Anthroposols  Soils resulting from human activities which have led to a 
profound modification, truncation or burial of the original 
soil horizons, or the creation of new soil parent materials 
by a variety of mechanical means. Where burial of a 
pre-existing soil is involved, the anthropic materials must 
be 0.3 m or more thick. Pedogenic features may be the 
result of in situ processes (usually the minimal 
development of an A1 horizon, sometimes the stronger 
development of typical soil horizons) or the result of 
pedogenic processes before modification or placement 
(i.e. the presence of identifiable pre-existing soil 
material). 

Calcarosols  Soils that are calcareous throughout the solum – or 
calcareous at least directly below the A1 or Ap horizon, 
or a depth of 0.2 m (whichever is shallower). Carbonate 
accumulations must be judged to be pedogenic1 (either 
current or relict), and the soils do not have clear or abrupt 
textural B horizons. Hydrosols, Organosols and Vertosols 
are excluded. 

Chromosols Loamy 
sand 

Soils other than Hydrosols with a clear or abrupt textural 
B horizon and in which the major part of the upper 0.2 m 
of the B2 horizon (or the major part of the entire B2 
horizon if it is less than 0.2 m thick) is not sodic and not 
strongly acid. Soils with strongly sub-plastic upper B2 
horizons are also included even if they are sodic. 

Dermosols Silty 
clay 
loam 

Have B2 horizons with structure more developed than 
weak1 throughout the major part of the horizon, and 
Do not have clear or abrupt textural B horizons. 

Ferrosols Clay Have B2 horizons in which the major part has a free iron 
oxide free iron oxide1 content greater than 5% Fe in the 
fine earth fraction (< 2 mm), and 
Do not have clear or abrupt textural B horizons or a B2 
horizon in which at least 0.3 m has vertic properties. 

Hydrosols Clay 
loam 

Soils other than Organosols, Podosols and Vertosols in 
which the greater part of the profile is saturated for at 
least 2–3 months in most years. 

Kandosols Silty 
clay 

B2 horizons in which the major part is massive or has 
only a weak grade of the structure. A maximum clay 
content in some part of the B2 horizon which exceeds 
15% (i.e. heavy sandy loam, SL+). 
Do not have a tenic B horizon. Do not have clear or 
abrupt textural B horizons. Are not calcareous throughout 
the solum, or below the A1 or Ap horizon or to a depth of 
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Name Texture Description 

0.2 m if the A1 horizon is only weakly developed. 

Kurosols Silty 
loam 

Soils other than Hydrosols with a clear or abrupt textural 
B horizon and in which the major part of the upper 0.2 m 
of the B2 horizon (or the major part of the entire B2 
horizon if it is less than 0.2 m thick) is strongly acid. 

Organosols  Have more than 0.4 m of organic materials within the 
upper 0.8 m. The required thickness may either extend 
down from the surface or be taken cumulatively within 
the upper 0.8 m. or 
Have organic materials extending from the surface to a 
minimum depth of 0.1 m, these either directly overlie rock 
or other hard layers, partially weathered or decomposed 
rock or saprolite, or overlie fragmental material such as 
gravel, cobbles or stones in which the interstices are 
filled or partially filled with organic material. In some soils 
there may be layers of humose and/or melacic horizon 
material underlying the organic materials and overlying 
the substrate. 

Podosols Sand Soils which possess either a Bs horizon (visible 
dominance of iron compounds), a Bhs horizon (organic-
aluminium and iron compounds), or a Bh horizon 
(organic-aluminium compounds). These horizons may 
occur singly in a profile or in combination (see Podosol 
diagnostic horizons). 

Rudosols  Soil with negligible (rudimentary) pedologic organisation 
apart from (a) minimal development of an Al horizon or 
(b) the presence of less than 10% of B horizon material 
(including pedogenic carbonate) in fissures in the parent 
rock or saprolite. The soils are apedal or only weakly 
structured in the A1 horizon and show no pedological 
colour changes apart from the darkening of an A1 
horizon. There is little or no texture or colour change with 
depth unless stratified or buried soils are present. 

Sodosols Sandy 
loam 

Soils with a clear or abrupt textural B horizon and in 
which the major part of the upper 0.2 m of the B2 horizon 
(or the major part of the entire B2 horizon if it is less than 
0.2 m thick) is sodic and not strongly acid. Hydrosols and 
soils with strongly sub-plastic upper B2 horizons are 
excluded. 

Tenosols Sandy 
clay 
loam 

A peaty horizon. 
A humose, melacic or melanic horizon, or conspicuously 
bleached A2 horizon, which overlies a calcrete pan, hard 
unweathered rock or other hard materials, or partially 
weathered or decomposed rock or saprolite, or 
unconsolidated mineral materials. 
A horizons which meet all the conditions for a peaty, 
humose, melacic or melanic horizon except the depth 
requirement, and directly overlie a calcrete pan, hard 
unweathered rock or other hard materials, or partially 
weathered or decomposed rock or saprolite, or 
unconsolidated mineral materials. 
A1 horizons which have more than a weak development 
of structure and directly overlie a calcrete pan, hard 
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Name Texture Description 

unweathered rock or other hard materials, or partially 
weathered or decomposed rock or saprolite, or 
unconsolidated mineral materials. 
An A2 horizon which overlies a calcrete pan, hard 
unweathered rock or other hard materials, or partially 
weathered or decomposed rock or saprolite, or 
unconsolidated mineral materials. 
Either a tenic B horizon, or a B2 horizon with 15% clay 
(SL) or less1 , or a transitional horizon (C/B) occurring in 
fissures in the parent rock or saprolite which contains 
between 10 and 50% of B horizon material (including 
pedogenic carbonate). 
A ferric or bauxitic horizon > 0.2 m thick. 
A calcareous horizon > 0.2 m thick. 

Vertosols Loam A clay field texture or 35% or more clay throughout the 
solum except for thin, surface crusty horizons 0.03 m or 
less thick and. 
When dry, open cracks occur at some time in most 
years1. These are at least 5 mm wide and extend 
upward to the surface or to the base of any plough layer, 
peaty horizon, self-mulching horizon, or thin, surface 
crusty horizon, and 
Slickensides and/or lenticular peds occur at some depth 
in the solum. 
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9.2.2 Swan Coastal Plain soil-landscape systems (soil classifications) 

(Gool et al. 2005) 

Quindalup South System 

Coastal dunes, of the Swan Coastal Plain, with calcareous deep sands and yellow 
sands. Coastal scrub. 

Spearwood System 

Sand dunes and plains. Yellow deep sands, pale deep sands and yellow/brown 
shallow sands. 

Bassendean System 

Swan Coastal Plain from Busselton to Jurien. Sand dunes and sandplains with 
pale deep sand, semi-wet and wet soil. Banksia-paperbark woodlands and mixed 
heaths. 

Moore River System 

Alluvial flats: Swan Coastal Plain west of Gingin, wet soil, semi-wet soil, pale and 
yellow deep sands, Woodlands and heaths. 

Yanga System 

Poorly drained plain with pale sands and deep sandy duplex, wet, semi-wet and 
saline wet soils. Banksia-pricklybark-marri-swamp sheoak-paperbark woodlands. 

Forrestfield System 

Undulating foot slopes of the Darling and Whicher Scarps. Duplex sandy gravels, 
pale deep sands and grey deep sandy duplexes. Woodland of E. marginata, 
calophylla and wandoo and some B. grandis. 

Vasse System 

Poorly drained estuarine flats, of the Swan Coastal Plain. Tidal flat soil, saline wet 
soil and pale deep sand. Samphire, sedges and paper bark woodland. 

Abba System 

Poorly drained flats, on the southern Swan Coastal Plain. Grey deep sandy 
duplex and wet soil. Jarrah-marri-paperbark woodland. 

Willyabrup Valleys System 

Granitic valleys, in the Leeuwin Zone. Loamy gravel, sandy gravel and loamy 
earth. Jarrah-marri-karri forest. 

Cowaramup Uplands System 

Lateritic plateau, in the Leeuwin Zone. Sandy gravel, loamy gravel and grey sandy 
duplex. Jarrah-marri forest. 

Gracetown Ridge System 

Limestone ridge, in the coastal edge of the Leeuwin Zone. Yellow deep sand and 
red deep sand. Coastal scrub, peppermint woodland and jarrah-marri-karri forest. 
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9.3 General methods and materials 

9.3.1 Correspondents from Dr Stephen Loss (26 May 2015) 

Rowan 

I now recall reviewing the lab methods when I was there. I remember there were two 

set of methods ‒ a brief summary of each test for external use, and a detailed one 

only for internal use. There will be no problem in using the external summaries. 

Cheers 

Dr Stephen Loss 

Email: stephenpeterloss@gmail.com 

9.3.2 Hydroponics experimental notes and attachments 

9.3.2.1 Hydroponics 

Table 9.2 Hydroponic full experimental design (2014). 

Trt Tank Species Fertiliser P kg/ha 

Run 1 

1 1 Clover Nil-P 0 

2 1 Ryegrass Nil-P 0 

5 2 Clover Low water-soluble superphosphate 25 

6 2 Ryegrass Low water-soluble superphosphate 25 

3 3 Clover Singe superphosphate 25 

4 3 Ryegrass Singe superphosphate 25 

Run 2 

7 1 Clover Monobasic calcium phosphate 25 

8 1 Ryegrass Monobasic calcium phosphate 25 

9 2 Clover Dibasic calcium phosphate 25 

10 2 Ryegrass Dibasic calcium phosphate 25 

11 3 Clover Tribasic calcium phosphate 25 

12 3 Ryegrass Tribasic calcium phosphate 25 

Run 3 

3 1 Clover Singe superphosphate 25 

4 1 Ryegrass Singe superphosphate 25 

7 2 Clover Monobasic calcium phosphate 25 

8 2 Ryegrass Monobasic calcium phosphate 25 

9 3 Clover Dibasic calcium phosphate 25 

10 3 Ryegrass Dibasic calcium phosphate 25 

Run 4 

5 1 Clover Low water-soluble superphosphate 25 

6 1 Ryegrass Low water-soluble superphosphate 25 

11 2 Clover Tribasic calcium phosphate 25 

12 2 Ryegrass Tribasic calcium phosphate 25 

1 1 Clover Nil-P 0 

2 1 Ryegrass Nil-P 0 
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190 

Trt Tank Species Fertiliser P kg/ha 

Run 5 

9 1 Clover Dibasic calcium phosphate 25 

10 1 Ryegrass Dibasic calcium phosphate 25 

3 2 Clover Singe superphosphate 25 

4 2 Ryegrass Singe superphosphate 25 

5 3 Clover Low water-soluble superphosphate 25 

6 3 Ryegrass Low water-soluble superphosphate 25 

Run 6 

11 1 Clover Tribasic calcium phosphate 25 

12 1 Ryegrass Tribasic calcium phosphate 25 

1 2 Clover Nil-P 0 

2 2 Ryegrass Nil-P 0 

7 3 Clover Monobasic calcium phosphate 25 

8 3 Ryegrass Monobasic calcium phosphate 25 

 

Table 9.3 Hydroponics plant position design (2014). 

Pot no. Tank 1 Tank 2 Tank 3 

Run 1 

1 Ryegrass Ryegrass Clover 

2 Clover Clover Ryegrass 

3 Ryegrass Ryegrass Ryegrass 

4 Clover Ryegrass Clover 

5 Ryegrass Clover Ryegrass 

6 Clover Clover Clover 

Run 2 

1 Ryegrass Clover Ryegrass 

2 Clover Ryegrass Clover 

3 Ryegrass Clover Ryegrass 

4 Clover Ryegrass Ryegrass 

5 Ryegrass Clover Clover 

6 Clover Ryegrass Clover 

Run 3 

1 Ryegrass Clover Ryegrass 

2 Clover Ryegrass Clover 

3 Clover Clover Clover 

4 Ryegrass Ryegrass Clover 

5 Clover Ryegrass Ryegrass 

6 Ryegrass Clover Ryegrass 
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Pot no. Tank 1 Tank 2 Tank 3 

Run 4 

1 Clover Ryegrass Clover 

2 Ryegrass Clover Ryegrass 

3 Ryegrass Clover Ryegrass 

4 Clover Ryegrass Clover 

5 Clover Ryegrass Clover 

6 Ryegrass Clover Ryegrass 

Run 5 

1 Ryegrass Ryegrass Clover 

2 Clover Ryegrass Clover 

3 Ryegrass Ryegrass Clover 

4 Clover Clover Ryegrass 

5 Ryegrass Clover Ryegrass 

6 Clover Clover Ryegrass 

Run 6 

1 Ryegrass Clover Ryegrass 

2 Clover Ryegrass Ryegrass 

3 Ryegrass Clover Clover 

4 Clover Clover Clover 

5 Clover Ryegrass Clover 

6 Ryegrass Ryegrass Ryegrass 

 

  



 

192 

Table 9.4 Hydroponics experiment visual observations and actions (2014). 
Single superphosphate (SSP), low water-soluble superphosphate 
(LWSSP), monobasic calcium phosphate (MCP), dibasic calcium 
phosphate (DCP) and tribasic calcium phosphate (TCP). 

Date Actions Run 

7 June Talked to Sandro and he has given me the following 
information about the nutrient solution mixture that he 
has made for the experiment: Apply 3 mL/L of A and B 
40 L in the tanks, so the starting mixture will be: 120 mL 
of both A and B target EC between 1.4–2.0, Target 
pH 5.8–6.4 (Rowan Maddern). 

2‒1 

16 June Experiment restarted and potted up run 1. 

Added 120 mL of A and 120 mL of B to the tanks. 

EC was about 1.4 and pH was about 4 so added 
4 mL/tank of pH up to each tank. Plant density 
increased to 20 plants per pot to increase 
demineralised water for analysis. Photos were taken 
and samples from all tanks as well as the A and B part 
of the nutrient solution mixture (Rowan Maddern and 
Dean Diepeveen). 

2‒1 
Start 

20 June Plants look good and samples taken from all 3 tanks. 
EC are about 1.8 and pH is up 8.0. Added 2 litres 
demineralised water to each tank. Talked to Deb and 
Brad and we have worked out that adding sulphurise 
acid and not phosphoric acid as within the pH down. 
Dropped off 180 L of demineralised water off. Photos 
taken (Rowan Maddern). 

2‒1 
Week 1 

26 June Experiment check EC and pH and EC was about 1.5 
and pH was about 8. Added 0.5 mL/tank hydrochloric 
acid to each tank as recommended by Brad. Check the 
levels again and the pH had dropped to 7.0.Water 
samples indicated that the nil P tank has some P in the 
water. Tank 3 SSP looks the best. Photos taken 
(Rowan Maddern).  

2‒1 
Week 2 

7 July Harvested Run 1 and plants looked a lot better. Tank 1 
still looked good with nil-P applied and for some reason 
that tank always looks good. Looks to be a plant weight 
response with SSP tank 3 wet weights greater than 
LWSSP wet weights tank 2. Rest set the tanks for the 
start of tank 2 and took water samples from the end of 
the last run and the start of this run. Photos taken 
(Rowan Maddern and Dean Diepeveen). 

2‒1 
Harvest 
2‒2 
Start 

10 July DMY water dropped off and EC and pH checked. pH 
was a little high so added 0.5 mL/tank acid. Plants look 
better and have grown over the last 3 days but ryegrass 
still looks a bit yellow. Photos taken (Rowan Maddern). 

2‒2 
Checked 

15 July Water samples taken from all tanks, EC and pH are 
both in range. All pot growing well, not much too visual 
yet (Rowan Maddern). 

2‒2 
Water samples 
Checked 
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Date Actions Run 

21 July Water samples taken from all tanks, EC and pH 
checked. pH was a little bit low so 1 mL/tank added to 
all tanks. 2 L of DM water added to each tank. All three 
tanks are growing very well, most growth to date. Not 
much visually. Photos were taken (Rowan Maddern). 

2‒2 
Water samples 
Checked 

28 July Run 2 harvested with production, with the greatest 
being about 25 grams of wet matter weight. Water 
analysis indicated that tank 1 and tank 2 fertiliser may 
have been switched and will have to check the next run. 
Reset the tanks for run 3. Water samples were taken 
from the end of run 2 and the start of run 3. Photos 
were taken (Rowan Maddern and Dean Diepeveen). 

2‒2 
Harvested 
2‒3 
Started 

4 Aug. Water samples taken from all tanks and pH/EC 
checked. All tanks growing well but no responses yet as 
plants are still small. Photos were taken (Rowan 
Maddern). 

2‒3 
Water samples 
Checked 

11 Aug. Water samples were taken and photos, looks like the 
order of best growth is MCP, DCP and then SSP. pH 
and EC both within range (Rowan Maddern). 

2‒3 
Water samples 
Checked 

18 Aug. Run 3 harvested and wet weights look constant with 
increased growth as a function of increased solubility. 
Water samples taken from the end and start of both 
runs. Run 4 started. Photos were taken (Rowan 
Maddern and Dean Diepeveen).  

2‒3 
Harvested 
2‒4 
Started 
Water samples 

26 Aug. Water samples were taken, and the pH/EC checked, pH 
was high so 0.5 mL/tank acid added. Best pot is pot 1 
then 2 and 3 Nil looks like it's dropping off. Photos were 
taken (Rowan Maddern). 

2‒4 
Water samples 
checked 

28 Aug. Photos taken, tanks look good. Tank 3 was in 24 hours 
as it was plugged into the air stone board. Changed it 
over to fix it. Nil-P tank dropping off and LWSSP looks 
better than Tri (Rowan Maddern). 

2‒4 
Checked 

1 Sep. Photos were taken and all tanks look good. Water 
samples were taken and 2 litres per tank demineralised 
water added. EC and pH both within range (Rowan 
Maddern). 

2‒4 
Water samples 
Checked 

5 Sep. Photos taken of all tanks. Thinned the pots to 20 plants 
for run 5. Checked the pH and EC, pH was a little bit 
high 7.5 so added 0.5 mL/tank of acid to all tanks. Nil-P 
tank looking very poor as would be expected (Rowan 
Maddern). 

2‒4 
Checked 

8 Sep. Run 4 harvested and run 5 started. Photos were taken 
and it looks like nil-P is very poor with only about 1.8 g 
per pot of both ryegrass and clover. Water samples 
were taken from the end of run 4 and the start of run 5 
(Rowan Maddern, Brad Smith). 

2‒4 
Harvested 
2‒5 
Started 
Water samples 

9 Sep. Photos were taken, and pH and EC checked. pH was a 
bit high, so 1 mL/tank acid added (Rowan Maddern). 

2‒5 
Checked 

15 Sep. Photos and water samples taken from all three tanks. 
pH was a little bit high, so 0.5 mL/tank acid added. Best 

2‒5 
Checked 
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Date Actions Run 

growth was SSP, then LWSSP and DCP (Rowan 
Maddern). 

Water samples 

18 Sep. Photos were taken, and EC/pH checked. pH on tanks 2 
and 3 was low so added 1 mL/tank pH up to each. 
Everything else looks good with good plant growth 
(Rowan Maddern). 

2‒5 
Checked 

22 Sep. Photos were taken, and the last load of demineralised 
water dropped off for run 6. EC and pH are checked 
and both ok. Added 2 L of demineralised water per tank 
and water samples taken (Rowan Maddern). 

2‒5 
Checked 
Water samples 

29 Sep. Run 5 harvested and start of run 6. Photos were taken 
and look to good growth response to all treatments. 
Water samples taken from the end of run 5 and start of 
run 6. Set up run 6 (Rowan Maddern and Deb 
Pritchard). 

2‒5 
Harvested 
2‒6 
Started 
Water samples 

6 Oct. Experiment checked, and water samples were taken. 
Tank 2 nil-P has reduced growth and photos taken 
(Rowan Maddern and Dean Diepeveen). 

2‒6 
Water samples 
Checked 

13 Oct. Experiment checked and water samples taken from all 
tanks. 2 litres of demineralised water added (Dean 
Diepeveen). 

2‒6 
Water samples 
Checked 

14 Oct. Experiment checked, and water samples were taken. 
Photos were taken, and growth order was tank 3 MCP, 
tank 1 TCP and tank 2 nil-P (Rowan Maddern and 
Dean Diepeveen). 

2‒6 
Checked 

16 Oct. Experiment checked, and photos were taken. Water 
level looks a little low in the tanks, and the plant looks a 
little burnt from the 35-degree day on the 15 Oct 
(Rowan Maddern and Brad Smith). 

2‒6 
Checked 

20 Oct. Run 6 harvested and water samples taken. Responses 
were following solubility with MCP best, TCP and then 
nil-P. Photos were taken. End of the experiment 
(Rowan Maddern and Dean Diepeveen). 

2‒6 
Harvested 
Water samples 
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9.3.2.2 Leaching column 

Table 9.5 Leaching column full experimental design (2014). Single 
superphosphate (SSP), low water-soluble superphosphate (LWSSP), 
monobasic calcium phosphate (MCP), dibasic calcium phosphate 
(DCP) and tribasic calcium phosphate (TCP). 

Column 
no. 

Trt Bench Row Col Applied Medium Form P % 

1 7 1 1 1 SSP Perlite Sieved 9.1 

2 9 1 1 1 LWSSP Light sand Sieved 8.3 

3 5 1 1 1 DCP Perlite Sieved 18.09 

4 - 1 1 1 LWSSP Light sand Sieved 8.3 

5 2 1 1 1 SSP Perlite Granular 9.1 

6 6 1 1 1 TCP Perlite Sieved 15.89 

7 1 1 1 1 Nil-P Perlite - 0 

8 2 2 2 1 SSP Perlite Granular 9.1 

9 1 2 2 1 Nil-P Perlite - 0 

10 4 2 2 1 MCP Perlite Sieved 26.16 

11 6 2 2 1 TCP Perlite Sieved 15.89 

12 9 2 2 1 LWSSP Light sand Sieved 8.3 

13 3 2 2 1 LWSSP Perlite Granular 8.3 

14 8 2 2 2 LWSSP Perlite Sieved 8.3 

15 3 3 1 2 LWSSP Perlite Granular 8.3 

16 4 3 1 2 MCP Perlite Sieved 26.16 

17 8 3 1 2 LWSSP Perlite Sieved 8.3 

18 2 3 1 2 SSP Perlite Granular 9.1 

19 7 3 1 2 SSP Perlite Sieved 9.1 

20 9 3 1 2 LWSSP Light sand Sieved 8.3 

21 5 3 1 2 DCP Perlite Sieved 18.09 

22 8 4 2 2 LWSSP Perlite Sieved 8.3 

23 6 4 2 2 TCP Perlite Sieved 15.89 

24 1 4 2 2 Nil-P Perlite - 0 

25 3 4 2 2 LWSSP Perlite Granular 8.3 

26 5 4 2 2 DCP Perlite Sieved 18.09 

27 4 4 2 2 MCP Perlite Sieved 26.16 

28 7 4 2 2 SSP Perlite Sieved 9.1 
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Table 9.6 Leaching column experiment visual observations and actions (2014). 
Single superphosphate (SSP), low water-soluble superphosphate 
(LWSSP), monobasic calcium phosphate (MCP), dibasic calcium 
phosphate (DCP) and tribasic calcium phosphate (TCP). 

Date Notes Actions 

13 Jan. Columns potted up as per protocol and first 
watering of 3 litres to wash and clean medium 
conducted.  

Perlite samples (3) taken to the lab for analysis 
(Rowan Maddern and Brad Smith). 

Potting up 

15 Jan. Columns watered with 2 L of water each. Will clean 
leachate bags out next watering on Friday the 17th. 

Watering 

17 Jan. Clean leachate bags out and applied 3 litres of 
demineralised water per column to keep wetting 
them up and clean any more dust out. Watering 
was conducted using a small watering can allow 
even application through the free draining perlite. 
Put the columns in the right position as design. 
Ground and shelved all fertilisers using the grinder 
in the fertiliser lab at Kwinana to separate the 
fertiliser between 75 and 150 microns. Fertilisers 
were SSP, LWSSP, MCP, DCP and TCP Photos 
taken (Rowan Maddern and Brad Smith). 

Watering 
Grinding and 
shelving 

20 Jan. Columns bags emptied and samples taken for a 
baseline of P from them. Fertilisers weighted out 
and applied to the surface of the medium. 1.5 L of 
demineralised water added to begin the 
experiment. The fertiliser looked to disappear from 
the surface on all columns and be wasted into the 
medium. Photos were taken (Rowan Maddern and 
Brad Smith). 

Samples were 
taken – 
(baseline) 
Fertiliser 
applied and 
watering 

22 Jan. Samples collected from all columns but 25 as it was 
missed in the last watering. Brad will collect that 
single pot tomorrow and water it again to catch it up 
to the rest of the experiment. Columns watered 
(Rowan Maddern and Brad Smith). 

Samples taken 
(84 mm) 
Watering 

24 Jan. Samples collected from all columns and watered. 
Samples dropped off at the lab (Rowan Maddern 
and Brad Smith). 

Samples taken 
(168 mm) 
Watering 

28 Jan. Samples collected from all columns and watered 
(Rowan Maddern and Brad Smith). 

Samples taken 
(252 mm) 
Watering 

29 Jan. Samples collected from all columns and watered. 
Sample from column 8 is missing (Rowan Maddern 
and Brad Smith). 

Samples taken 
(336 mm) 
Watering 

31 Jan. Samples collected from all columns and watered. 
Dave Mathews has come and taken some photos 
for the next article, watercolour from the light sandy 
pots is starting to lighten up (Rowan Maddern and 
Brad Smith). 

Samples taken 
(420 mm) 
Watering 
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Date Notes Actions 

3 Feb. Samples collected from all columns and watered 
(Rowan Maddern and Brad Smith). 

Samples taken 
(504 mm) 
Watering 

5 Feb. Samples collected from all columns and watered 
(Rowan Maddern and Brad Smith). 

Samples taken 
(588 mm) 
Watering 

7 Feb. Samples collected from all columns and watered. 
Column 18 had 2 watering’s and so the result will 
need to be doubled (total P) (Rowan Maddern and 
Brad Smith). 

Samples taken 
(672 mm) 
Watering 

10 Feb. Samples collected from all columns and watered 
(Rowan Maddern, Brad Smith). 

Samples taken 
(756 mm) 
Watering 

12 Feb. Samples collected from all columns and watered 
(Rowan Maddern and Brad Smith). 

Samples taken 
(840 mm) 
Watering 

14 Feb. Samples collected from all columns. Experiment 
finished and columns left as per design in case 
additional watering is required (Rowan Maddern 
and Brad Smith). 

Samples taken 
(924 mm) 
Watering 

28 Feb. Pulled apart column 5 as per protocol and removed 
Perlite for testing as a test to find out if the system 
will work. Photos were taken (Rowan Maddern and 
Brad Smith). 

Residual P 
removal from 
columns 

1‒11 Apr. All Perlite columns pulled apart and sieved into 
sections of less than 2.2 mm, 2.2–4 mm, greater 
than 4 mm and the bottom 10% of the column. All 
particle sizes accept greater than 4 mm were tested 
as a whole and greater than 4 mm was mixed, and 
subsampled. The bottom was washed out and oven 
dried, and the other samples were air dried in 
aluminium dished. The samples were weighed and 
then tested for total P. Photos taken, (Rowan 
Maddern and Brad Smith). 

Column testing 
to find residual 
P 
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9.3.2.1 Product solubility calculations  

Properties: 

i) Mono calcium phosphate  

mw: 234.05 g/mol 

ksp: n/a: soluble 

 

ii) Di calcium phosphate 

Mw(anhydrous): 136.06 g/mol 

Ksp:  1 multiplied by 10ˉ6.9 

* There are two stable forms of Dical but their solubilities are similar. 

Mw(dehydrate): 172.09 g/mol 

Ksp:  2.77 multiplied by 10ˉ7 

 1 multiplied by 10 ˉ6.95 

* More than are group has measured the ksp and values are different but 

similar. 

* There is no accepted ‘correct one’ but take the first as being ok. 

 

iii) Tri calcium phosphate Ca3 (po4)2 

Mw: 310.17 g/mol 

Recorded ksps 

α): 1 multiplied by 10ˉ25.5 

 1.3 multiplied by 10ˉ26 

b): 1 multiplied by 10ˉ28.9 

 2 multiplied by 10ˉ29 

 2.07 multiplied by 07 multiplied by 10ˉ3 

* Tri calcium phosphate has a number of stable forms and they have different 

solubilities. The α form is the most stable and the most common. 

The variances in the values show how difficult it is to measure the solubility of 

a very insoluble material.  
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Dissolution: 

1) Mono calcium phosphate 

 Dissolve in water: 

 Ca (H₂PO4)₂ ↔ (Ca²+) +2(H₂PO4) 

 1 mol = 1 mol added 2 mols 

 

 Assume 10 g material: 

Mols Mono calcium Phosphate = Mass product 
   Mw product 

 =   10 g  
  234.05 

 = 0.04275 mols 

Mols of phosphate in solution = 0.04275 multiplied by 2 

 = 0.0845 mol 

Note: mw of P: 30.97 

% of P in Mono calcium Phosphate: 26.46% 

 

= mols of phosphate in solution moles = concentration of P  

 = N = C.V (conc. Volume) 

Assume tank vol HOL  C = N 
  V 

 = 0.0545 
  40 

 = 0.002136 mol Lˉ¹ 

Conc of P: g/L = 0.002136 multiplied by 30.97 

 = 0.06616 g/L 

 = 66.161 mg/L or ppm 
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2) Di calcium phosphate 

As dical is insoluble its dissolution is governed by its solubility product: 

For a product example in equilibrium: 

Ca (HPO4) (5) → [Ca²+] [HPO4ˉ] 

The equilibrium constant K = 

K = [Ca²+] [HPO4ˉ] 
     [Ca(HPO4)] 

But for solids  [Ca(HPO4)] = 1 

K = [Ca²+] [HPO4ˉ] 

In this instance K = Ksp = solubility product. 

 
For the Dihydrate Ksp = 2.77 multiplied by 10ˉ7 

[HPO4] [Ca²+]  = 2.77 multiplied by 10ˉ7 

[×] [×] = 2.77 multiplied by 10ˉ7 

×² = 2.77 multiplied by 10ˉ7 

[×] = [HPO4ˉ] = √2.77 multiplied by 10ˉ7 

 = 5.26 multiplied by 10ˉ4 mol Lˉ¹ 

 
The concentration of P in solution = 5.26 multiplied by 10ˉ4 mol Lˉ¹ 

 
Concentration in mass (g/L) = 5.26 multiplied by 10ˉ4 multiplied by 

30.97 

 = 0.0163 g/L 

 = 16.30 mg/L or ppm 

Starting amount: 10 g 

Mw dical: 172.09 g/mol 

 

Mols  =  m/mw 

 = 10/172.09 

 = 0.058109 

0.058109 moles of P at the start 

 
The concentration of P in solution is 5.26 multiplied by 10ˉ4 

Mols of P = CV 

 = 5.26 multiplied by 10ˉ4 40 L 

 = 0.0210 

 
Theoretically: 36.2% of the Dical dissolves rapidly is available. 

As P is removed from the system the remaining dical will dissolve as required. 
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3) Tri calcium phosphate 

Its dissolution is also governed by its product solubility product. 

Ksp = [Caз (DO4)₂] = 3[Ca²+]+2[PO4³ˉ] 

 = [Caз (DO4)₂] = [Ca²+]³ [PO4³ˉ]² 

  1.3 multiplied by 10ˉ26 = [×]³ [×]² 

  1.3 multiplied by 10ˉ26 = ×5 

  × = 5√1.3 multiplied by 10ˉ26 

   = 5.7008 multiplied by 10ˉ13 

The phosphate concentration in solution will be 2 × = 1.140 multiplied by 10ˉ12 molˉ¹ 

Concentration in mass g/L = 1.140 multiplied by 10ˉ12 ×30.97 

 = 3.531 multiplied by 10ˉ11 g/L 

 or 3.531 multiplied by 10ˉ8 ppm 

Very little dissolves, the rate of P in solution is dictated by how quickly it is removed. 

If starting amount = 10 g 

Mw tri calcium phosphate: 310.17 g/mol 

Moles = mass/mw 

 = 10/310.17 

 = 0.0322 moles 

 = 0.0322 multiplied by 2 moles of P at the start 

 = 0.0644 moles of P 

Amounts of dissolution  = 1.140 multiplied by 10ˉ12 

   0.0644 

 = Nothing. 
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9.3.3 Pot experiment notes and attachments 

Table 9.7 Full experimental design (2012). Single superphosphate (SSP) and low 
water-soluble superphosphate (LWSSP). 

Plot no. Bench Section Row Plot Species Soil Fertiliser 

101 1 1 1 1 Clover Heavy LWSSP 

102 1 1 2 2 Clover Light SSP 

103 1 1 3 3 No plants Light LWSSP 

104 1 1 4 4 Ryegrass Heavy LWSSP 

105 1 1 5 5 Ryegrass Heavy SSP 

106 1 1 6 6 Ryegrass Medium SSP 

107 1 1 7 7 Clover Heavy Nil-P 

108 1 2 1 8 Ryegrass Light SSP 

109 1 2 2 9 No plants Medium LWSSP 

110 1 2 3 10 No plants Heavy SSP 

111 1 2 4 11 No plants Light Nil-P 

112 1 2 5 12 Ryegrass Medium LWSSP 

113 1 2 6 13 No plants Heavy LWSSP 

114 1 2 7 14 Clover Heavy SSP 

115 1 3 1 15 Ryegrass Heavy Nil-P 

116 1 3 2 16 No plants Medium Nil-P 

117 1 3 3 17 No plants Light SSP 

118 1 3 4 18 Ryegrass Light Nil-P 

119 1 3 5 19 Clover Medium LWSSP 

120 1 3 6 20 Clover Light Nil-P 

121 1 3 7 21 Clover Medium Nil-P 

122 1 4 1 22 Clover Medium SSP 

123 1 4 2 23 Ryegrass Light LWSSP 

124 1 4 3 24 Ryegrass Medium Nil-P 

125 1 4 4 25 Clover Light LWSSP 

126 1 4 5 26 No plants Medium SSP 

127 1 4 6 27 No plants Heavy Nil-P 

201 2 1 1 1 Clover Light LWSSP 

202 2 1 2 2 Ryegrass Light LWSSP 

203 2 1 3 3 Ryegrass Heavy LWSSP 

204 2 1 4 4 No plants Light Nil-P 

205 2 1 5 5 No plants Medium Nil-P 

206 2 1 6 6 No plants Medium SSP 

207 2 1 7 7 Ryegrass Medium Nil-P 

208 2 2 1 8 Clover Light SSP 

209 2 2 2 9 No plants Heavy Nil-P 

210 2 2 3 10 Clover Medium Nil-P 

211 2 2 4 11 Clover Medium SSP 

212 2 2 5 12 Clover Medium LWSSP 

213 2 2 6 13 No plants Heavy SSP 

214 2 2 7 14 Ryegrass Medium SSP 
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Plot no. Bench Section Row Plot Species Soil Fertiliser 

215 2 3 1 15 Clover Heavy SSP 

216 2 3 2 16 Clover Heavy LWSSP 

217 2 3 3 17 No plants Heavy LWSSP 

218 2 3 4 18 Ryegrass Light SSP 

219 2 3 5 19 Ryegrass Heavy SSP 

220 2 3 6 20 Ryegrass Light Nil-P 

221 2 3 7 21 Clover Light Nil-P 

222 2 4 1 22 No plants Light SSP 

223 2 4 2 23 No plants Medium LWSSP 

224 2 4 3 24 Clover Heavy Nil-P 

225 2 4 4 25 Ryegrass Heavy Nil-P 

226 2 4 5 26 Ryegrass Medium LWSSP 

227 2 4 6 27 No plants Light LWSSP 

301 3 1 1 1 Clover Medium SSP 

302 3 1 2 2 No plants Medium SSP 

303 3 1 3 3 Clover Light LWSSP 

304 3 1 4 4 No plants Heavy Nil-P 

305 3 1 5 5 No plants Medium Nil-P 

306 3 1 6 6 Clover Heavy LWSSP 

307 3 1 7 7 Ryegrass Heavy SSP 

308 3 2 1 8 No plants Heavy LWSSP 

309 3 2 2 9 No plants Medium LWSSP 

310 3 2 3 10 Clover Heavy Nil-P 

311 3 2 4 11 No plants Heavy SSP 

312 3 2 5 12 Clover Light Nil-P 

313 3 2 6 13 Ryegrass Heavy Nil-P 

314 3 2 7 14 Ryegrass Heavy LWSSP 

315 3 3 1 15 Ryegrass Light Nil-P 

316 3 3 2 16 Ryegrass Light SSP 

317 3 3 3 17 No plants Light Nil-P 

318 3 3 4 18 Clover Heavy SSP 

319 3 3 5 19 Ryegrass Light LWSSP 

320 3 3 6 20 No plants Light LWSSP 

321 3 3 7 21 Ryegrass Medium SSP 

322 3 4 1 22 Clover Medium LWSSP 

323 3 4 2 23 No plants Light SSP 

324 3 4 3 24 Ryegrass Medium LWSSP 

325 3 4 4 25 Ryegrass Medium Nil-P 

326 3 4 5 26 Clover Light SSP 

327 3 4 6 27 Clover Medium Nil-P 
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Table 9.8 Visual observations (2012). 

Date Notes Action 

16 Oct. Dropped all soils and supplies out at South Perth. I 
have also soil taken 3 soils samples from each soil 
type and random from the bags as well as 3 samples 
from the fertilisers (Rowan Maddern). 

Preparation  

17 Oct. Pot up all three soils types and completed design, the 
heavy soil had 1.4 kg applied to each pot, and the 
medium and light soils had 2.0 kg applied to each pot. 
The heavy soil only had 1.4 kg applied because of the 
bulk density and the volume was greater than the 
other two types. Each pot was filled to the bottom 
inner ring of the pots. Layout out an experiment in a 
glass house with plastic bags underneath each pot 
and applied 300 mL of demineralised water to each 
pot to soak in. Photos were taken and (Rowan 
Maddern, Dean Diepeveen and Deb Pritchard). 

Bench layout was: 

3 rows of 7 pots and a row of 6 pots. Pot 1 was 
located on the top of the bench next to the wall, and 
each row started that way. The row of 6 pots stopped 
at the normal position on the other rows leaving the 
seventh spot empty. Bench 3 was to the north-west; 
bench 1 was located next to bench 1 on the same side 
to the north east. Bench 2 was located by itself to the 
south-east in a direct line with bench 1. Bench 3 was 
located next to the air conditioner and was in the sun 
more; this could affect the outcome and results of the 
experiment (Rowan Maddern and Dean Diepeveen). 

Preparation 
Potting 
Setting up 

19 Oct. Added trace element mixture (A, B, and C) at 1.67 mL 
per kg of soil with Alsoca inoculants at 10 grams per 
20 L of water. The mixtures were added with 346 mL 
of DM water to make up to the 646 mL or 50 mL of 
rainfall. The heavy soil type was watered first, and 
then another batch was made up for the medium and 
light soils types. The light and medium soils have 
reached field capacity, and soil leachate has come 
through to the leaching bags. The heavy soil type still 
has not started to leach. The light soil has leached the 
most, followed by the medium as would be expected. 

All pots were seeded as per design with 20 seeds per 
plot and will be thinned to 10 plants after germination. 
The heavy soil type was seeded first followed by the 
light and medium. Seeding was conducted by using a 
pair of tweezers and dropping a single seed into each 
hole from a cup of seeds. 

The seed depth was to a maximum of 10 mm below 
the surface of the soil and demineralised water was 
misted using a garden pressure sprayer over the soil 
to close the holes. Photos were taken (Rowan 
Maddern and Dean Diepeveen). 

Nutrient 
solution 
Watering 
Seeding 
Photos 
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Date Notes Action 

26 Oct. 
(0 DAS) 
Growth 
block 1 

For the last week, the pots have been misted once a 
day. Due to low seed germination in some pots, 
mostly the heavy clays all plants were removed and all 
pots reseeded. The pots were reseeded by scratching 
the soil surface to a depth of about 5 mm and then 
added seed to the surface. The seed was added until 
the pot was even on the surface and then the pots 
were missed, and the surface levelled again. The 
surface seed was then incorporated a little bit by 
hand. Pots will be misted for another week and then 
thinned and fertiliser added. Photos were taken 
(Rowan Maddern and Dean Diepeveen). 

Experiment 
start 
Photos 

1 Nov. 
(6 DAS) 
Growth 
block 1 

Checked pot with Brad Smith, some have come up 
very well, but some are still slow mainly clover pots. 
We have thinned out some of the pots that have good 
plant numbers to reduce the numbers but will have to 
thin again to get back the target of ten plants. Pots 
301, 303, 306, 312, 310, 322, 326, 327, 102, 119, 
120, 121,122 and 125 are very slow to germinate. All 
clover on bench 2 has a good germination. Will come 
back on Monday and check again and may add P to 
pots. I have misted them twice today once before 
thinning and once after to build up soil moisture. 
Photos were taken (Rowan Maddern and Brad Smith). 

Photos 

2 Nov. 
(7 DAS) 
Growth 
block 1 

Weighted out all P application into small containers 
and combined them with the Urea. LWSSP was 
weighted out at 0.399 g, SSP, at 0.365 g and urea at 
0.143 g +/- 0.020 g. Photos were taken (Rowan 
Maddern). 

P Fertiliser 
applied 
Photos 

5 Nov. 
(10 DAS) 
Growth 
block 1 

Thinned the pots back to between 10–15 plants and 
will thin again once they are bigger. Added the P and 
N fertiliser to the surface of all pots and added 300 mL 
of water to start the experiment. For the first two 
harvest the watering program will be: 

Monday: 300 mL of water (23.2 mm rainfall). 

Tuesday: 346 mL of water 26.8 mm of rainfall). 

Wednesday: collect leachate and add 300 mL of 
water. 

Thursday: 346 mL of water. 

Friday: Collect leachate plus mist or add small 
amounts of water. Photos were taken and Jake the 
casual will be in charge of watering and collection. 

A collection of leachate will be conducted by removing 
the bags, taking a weight of the liquid and then a 
subsample for lab analysis from all pots (Rowan 
Maddern and Dean Diepeveen). 

Thinning 
pots 

9 Nov. 
(14 DAS) 
Growth 
block 1 

Dean and Jackson have finished thinning the pots 
back to 10 plants and have taken the first two leaching 
samples (Rowan Maddern). 

Thinning 
pots 
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Date Notes Action 

18 Nov. 
(23 DAS) 
Growth 
block 1 

Thinned the pots for the last time today to around 10 
plants and misted the pots twice. Pots will not be 
watered on Monday and will get the total 646 mL on 
Tuesday. Brad picked up the first weeks leachate 
samples last week (14 Nov.), and I have collected the 
second weeks today. They will get analysed for total P 
using the ICP test. I have taken photos, and there may 
be a slight P response and super maybe ahead. I 
have also picked up the leaching weight data and will 
input the data (Rowan Maddern). 

Thinning 
pots 

23 Nov. 
(27 DAS) 
Growth 
block 1 

Jackson has collected week 3 worth of leachate 
samples, and I have helped on the 300 mm rainfall 
collection that I have dropped at the lab today. Plants 
are growing well, and I do not want to thin them 
anymore. We will need to add the trace element 
mixture again soon. Dean has arranged to have the 
pots misted on Sundays to stop the pots from drying 
out. Photos were taken (Rowan Maddern). 

Photos 
taken 

7 Dec. 
(42 DAS) 
Growth 
block 1 

Good P response to both LWSSP and super with the 
heavy soil type looking the best. But visual response 
across all three soil types. LWSSP looks to be better 
on light soil type than super. Leachate samples taken 
to the lab for the last two weeks and ryegrass looks a 
bit low on n and will look at adding urea ammonium 
nitrate-NS to all pots along with the trace element 
mixture next week. Will do harvest 1 Monday next 
week, photos taken (Rowan Maddern). 

Photos 
taken 

10 Dec. 
(45 DAS) 
Growth 
block 2 

Conducted first harvest from all pots with plants in 
them. Photos were taken before cutting each pot. 
Plants were cut to about 1 cm height placed into paper 
bags and then wet weights taken from each pot. 
Paper bags were taken to the lab for dry matter 
weights and then I may have to bulk the three reps 
together for analysis. Added a basal trace element 
mixture as per start of experiment and 50 L/ha N and 
8 L/ha S in the form of urea ammonium nitrate-NS as 
well (Rowan Maddern). 

Harvest 1 
Nutrient 
solution 
applied 

12 Dec. 
(47 DAS) 
Growth 
block 2 

Leachate collected, and 300 mL of water added. 
Photos were taken, and plants are growing well after 
harvest. Ryegrass is coming back the best. Nil plant 
pots with the heavy soil type had a green moss 
growing on the surface (Rowan Maddern and Dean 
Diepeveen). 

 

14 Dec. 
(49 DAS) 
Growth 
block 2 

Leachate collected and pots misted after collection. 
Pots are growing strong with good P responses on all 
soil types but best on heavy. Heavy soil may have 
held on to P better while still allowing the volume of 
water to flow down the profile. Single superphosphate 
and LWSSP look about the same visually, and clover 
on the lighter soil types is starting to look p hungry. 
Photos were taken (Rowan Maddern and Dean 
Diepeveen). 

Photos 
taken 
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Date Notes Action 

19 Dec. 
(54 DAS) 
Growth 
block 2 

Leachate collected and pot watered with 300 mL per 
pot plus nutrient solution and urea ammonium nitrate 
sulphur mixture. Photos were taken (Rowan Maddern 
and Dean Diepeveen). 

Nutrient 
solution 
added 
Photos 

21 Dec. 
(56 DAS) 
Growth 
block 2 

Leachate collected and pots misted. Good visual 
responses to LWSSP and SSP in both ryegrass and 
clover. LWSSP maybe a head on heavy soil now. Nil-
P pots with both clover and ryegrass are now dropping 
away. Next week the watering is being reduced to 
50 mm per week (two watering) and a single leachate 
collection. 300 mL early in the week and 346 mL later 
in the week with leachate collected on Friday. Photos 
were taken (Rowan Maddern and Dean Diepeveen). 

Photos 

24 Dec. 
(56 DAS) 
Growth 
block 2 

Pots watered with 300 mL of demineralised water, 
may need to harvest on Friday or Monday next week. 
Photos were taken (Rowan Maddern). 

 

27 Dec. 
(59 DAS) 
Growth 
block 2 

Water plants with 346 mL per pot, they look very dry 
as it very hot (Rowan Maddern and Dean Diepeveen). 

 

28 Dec. 
(60 DAS) 
Growth 
block 2 

Leachate collected and pots misted, leachate may 
have evaporated because it is so hot; this will have to 
be allowed for. Harvest 2 conducted, will add nutrient 
solution mixture on Monday. Photos were taken 
(Rowan Maddern, Dean Diepeveen). 

Harvest 2 
Photos 
Nutrient 
solution 

31 Dec. 
(66 DAS) 
Growth 
block 3 

Watered plants with 300 mL of water plus nutrient 
solution mixture. Good plant growth since harvest, 
photos were taken (Rowan Maddern). 

 

Field experiment 4 visual observations: (2013) 

3 Jan. 
(66 DAS) 
Growth 
block 3 

Watered pot with 346 mL and they were misted 
between the last watering. Photos were taken (Rowan 
Maddern). 

Photos 

4 Jan. 
(70 DAS) 
Growth 
block 3 

Leachate collected, and pots misted, photos taken. 

The experiment will finish on the 17 of Jan. Still got 
phosphorus response and nil looking very low for dry 
matter yield production (Rowan Maddern and Dean 
Diepeveen). 

 

11 Jan. 
(77 DAS) 
Growth 
block 3 

Leachate collected, and pots misted, photos taken. 

So plants starting to look P-deficient and burnt tips on 
the ryegrass pots. Checked the data from the first 
harvest tissue analysis and it looks potassium and 
nitrogen deficient, and this may have limited the 
response, but it still had good P uptake and growth 
data (Rowan Maddern, Dean Diepeveen and James 
Easton). 
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Date Notes Action 

18 Jan. 
(84 DAS) 
Growth 
block 3 

Leachate collected and harvested 3 conducted. Pots 
taken to the lab to have the roots sieved and removed 
for analysis (dry matter yield) and phosphorus 
concentration and soil samples taken. Photos were 
taken, and this experiment is now finished (Rowan 
Maddern and Dean Diepeveen). 

Harvest 3 
Photos 

13–15 Feb. 
Post 
experiment 
Soil and 
roots 
analysis 
CSBP lab 
(Bibra 
Lake) 

Note: some pot on the heavy soil type may have 
reduced root weights because it was a trial and error 
method to try and remove the roots. The roots were 
first dry sieved, then was in the small amount of 
demineralised water, then washed in shade cloths and 
then finally washed with tap water over a 2 mm screen 
(most pots). 

Light and medium soils: (step 1) 

Pots were tipped upside down and placed in an 
aluminium tray. 

The soil placed on its side with the top of the pot away 
towards the middle of the bench. The total length of 
the soil is 12 cm. 

The soil was then split down the middle using an 
implement and two-sided opened up. 

The soil was then broken up using the implement for 
the top 10 cm of the pot and bottom 2 cm avoided. 

400 grams of soil is then placed into another tray and 
then screened over a 2 mm screen. The roots 
removed and the soil mixed up and placed into a soil 
sampling bag. The roots were then collected from the 
top of the screen and placed into a paper bag. (Both 
bags numbered with the pot number.) 

The rest of the soil was then screened through a 2 
mm screen and the roots removed into the paper bag 
and the rest of the soil discarded. 

Heavy soil: (step 1) 

Pots were tipped upside down and placed in an 
aluminium tray. 

The soil placed on its side with the top of the pot away 
towards the middle of the bench. The total length of 
the soil is 12 cm. 

The soil was then split down the middle using an 
implement, and two-sided opened up. 

The soil was then broken up using the implement for 
the top 10 cm of the pot and bottom 2 cm avoided. 

400 grams of soil is then placed into another tray and 
then screened over a 2 mm screen. The roots 
removed and the soil mixed up and placed into a soil 
sampling bag. The roots were then collected from the 
top of the screen and placed into a paper bag. (Both 
bags numbered with the pot number.) 

The rest of the soil was then placed onto a 2 mm 
screen and washed with tap water until all soil was 
removed and the roots placed into the paper bag. 

Post soil 
analysis 
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Date Notes Action 

Washing roots all soil types: (step 2) 

All roots were removed from the paper bag and then 
washed with DI water in a tray to remove all soil and 
any minerals from the tap water and then placed back 
into the paper bags. 

Soil and root analysis: 

All roots were then dried for dry matter weights and 
then for P analysis, all soils were then tested for P 
(Colwell), total phosphorus, pH, etc. (Rowan 
Maddern). 

 

Table 9.9 Water is holding capacity for the light, medium and heavy soils. 

    Wet Dry (38C) (Wet-Dry)/Dry   

Soil type Pot 5 April 7 April   % 

Heavy 1 134.2 97.5 0.376 37.6 

Heavy 2 158.4 112.8 0.404 40.4 

Heavy 3 167.6 126.4 0.326 32.6 

Average 153.4 112.2 0.4 36.9 

Medium 1 121.3 101.9 0.190 19.0 

Medium 2 148.8 117.8 0.263 26.3 

Medium 3 158.9 127.8 0.243 24.3 

Average 143.0 115.8 0.2 23.2 

Light 1 132.9 111.3 0.194 19.4 

Light 2 126.5 109.9 0.151 15.1 

Light 3 134.6 110.4 0.219 21.9 

Average 131.3 110.5 0.2 18.8 
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9.3.3.1 Leachate volume analysis data 

 

Figure 9.1 Light soil no species – leachate volume in vs volume of simulated 
rainfall (mm). □ single superphosphate, Δ low water soluble 
superphosphate and ◊ nil-phosphors control.  

 

Figure 9.2 Light soil clover – leachate volume in vs volume of simulated 
rainfall (mm). □ single superphosphate, Δ low water soluble 
superphosphate and ◊ nil-phosphors control.  
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Figure 9.3 Light soil ryegrass ‒ leachate volume in vs volume of simulated 
rainfall (mm). □ single superphosphate, Δ low water soluble 
superphosphate and ◊ nil-phosphors control.  

 

Figure 9.4 Medium soil no species ‒ leachate volume in vs volume of 
simulated rainfall (mm). □ single superphosphate, Δ low water soluble 
superphosphate and ◊ nil-phosphors control. 
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Figure 9.5 Medium soil clover ‒ leachate volume in vs. volume of simulated 
rainfall (mm). □ single superphosphate, Δ low water soluble 
superphosphate and ◊ nil-phosphors control. 

 

Figure 9.6 Medium soil ryegrass ‒ leachate volume in vs. volume of simulated 
rainfall (mm). □ single superphosphate, Δ low water soluble 
superphosphate and ◊ nil-phosphors control. 
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Figure 9.7 Heavy soil no species ‒ leachate volume in vs. volume of simulated 
rainfall (mm). □ single superphosphate, Δ low water soluble 
superphosphate and ◊ nil-phosphors control. 

 

Figure 9.8 Heavy soil clover ‒ leachate volume in vs. volume of simulated 
rainfall (mm). □ single superphosphate, Δ low water soluble 
superphosphate and ◊ nil-phosphors control. 
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Figure 9.9 Heavy soil ryegrass ‒ leachate volume in vs. volume of simulated 
rainfall (mm). □ single superphosphate, Δ low water soluble 
superphosphate and ◊ nil-phosphors control. 
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9.3.4 Field experiment notes and attachments 

Table 9.10 Field experiment equipment description and uses. 

Equipment Description and uses 

Cone top dresser  A machine designed around two fibreglass cones that place 

fertiliser into a belt for the even distributions of granular 

fertiliser. The fertiliser is then placed into a venturi and up to a 

distribution head and via 8 tubes onto the ground. The 

machine is calibrated for a plot length of 38 m and the rate 

applied can be varied depending on what is required. This 

machine was used to spread the lime, basal fertilisers and 

fertiliser treatments.  

Spray motorbike A machine designed for the even application of liquids and is 

a four-wheel quad bike with a spray system mounted onto its 

frame. This was used to apply all herbicide, pesticides and 

liquid basal fertilisers.  

Post hole digger A machine designed to dig holes for the placement of copper 

treated logs into the ground for fencing and exclusion of stock 

from field experiment locations. This machine was used to 

place 6 copper treated logs around each field experiment site 

3 at each end, one at the front, middle and the end.  
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9.3.4.1 Field experiment site-1 

Table 9.11 Full experiment design (2009–2011). 

Plot Trt Fertiliser P kg/ha 

1 6 Low water-soluble superphosphate 15 

2 2 Low water-soluble superphosphate 5 

3 3 Single superphosphate 5 

4 4 Low water-soluble superphosphate 10 

5 9 Single superphosphate 25 

6 8 Low water-soluble superphosphate 25 

7 5 Single superphosphate 10 

8 1 Nil-P 0 

9 7 Single superphosphate 15 

10 1 Nil-P 0 

11 2 Low water-soluble superphosphate 5 

12 3 Single superphosphate 5 

13 4 Low water-soluble superphosphate 10 

14 5 Single superphosphate 10 

15 6 Low water-soluble superphosphate 15 

16 7 Single superphosphate 15 

17 8 Low water-soluble superphosphate 25 

18 9 Single superphosphate 25 

19 3 Single superphosphate 5 

20 8 Low water-soluble superphosphate 25 

21 1 Nil-P 0 

22 2 Low water-soluble superphosphate 5 

23 4 Low water-soluble superphosphate 10 

24 7 Single superphosphate 15 

25 6 Low water-soluble superphosphate 15 

26 5 Single superphosphate 10 

27 9 Single superphosphate 25 
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Table 9.12 Visual observations (2009). 

Date Notes Action 

15 May The trial was pegged and top dressed as per design. 
The site had 2.2 t/ha of lime applied. The site had 
7 kg/ha Balansa clover top dressed over the site and 
the fencing posts were put in. The soil sample was 
taken from 0 to 70 cm and photos was taken (Rowan 
Maddern and Ryan Guthrie). 

Experiment 
pegged 
Seeded 
Soil samples 
Photos 

19 May Site sprayed with 250 mL/ha Telstar using the 
motorbike (Rowan Maddern). 

Spraying 

22 
June 

The trial was sprayed with 100 mL/ha Lemat and 
600 mL/ha MCPA. Not much clover but good grass and 
large amounts of capeweed. Good soil moisture but no 
visual response. Photos were taken and est. 0.5 t/ha 
dry matter yield. Solar panel had been blown over a few 
times and fixed by the farmer (Rowan Maddern). 

Spraying 
Photos 

23 July The site had the fence dropped and grazed by the 
cows. Photos were taken and no response yet (Rowan 
Maddern and Ryan Guthrie).  

Photos 

31 July The site had the front section fenced up, no signs of 
pest or weeds. Est. 500 kg/ha dry matter yield (Rowan 
Maddern and James Easton). 

Fencing 

3 Sept. Cows had got into the trial and chewed up the leads for 
the power pack. Still good visual responses to the high 
rate of super, est. 1 t/ha dry matter yield difference 
between nil plots and 25 P kg/ha plots. Taken 3 grab 
samples from Nil, 25 SSP and 25 LWSSP plots in the 
first rep. Photos were taken, and the fence is hocked up 
with a new power pack (Rowan Maddern and Ryan 
Guthrie).  

Tissue 
sampling 
Photos 

8 Sept. The fence is still up, and gardens hose put onto tape 
touching the copper logs (Rowan Maddern). 

Fencing 

1 Oct. The trial had 30 plates taken across the whole trial and 
grab samples taken. Photos are taken from the first rep. 
Looks like the LWSSP maybe ahead of the SSP, Ryan 
will do fencing next week (Rowan Maddern and Ryan 
Guthrie). 

DMY 
measurement 
Tissue 
sampling 
Photos 

9 Oct. Applied 80 kg/ha muriate of potash down every plot 
(plot by plot). Fences rolled up (cattle will be out for the 
rest of the season). Background area tightly grazed to 
300 kg/ha or so. Estimated dry matter yield in fenced off 
section plots range from 1.0 to 2.2 t/ha. Little bug 
activity and/or damage (James Easton and Ryan 
Guthrie). 

Fertiliser 
Fencing 
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Table 9.13 Visual observations (2010). 

Date Notes Action 

14 Jan. Trial soil sampled from nil-P and both 25 treatments. 1st 
rep also sampled the same treatments at 10‒20 cm and 
20‒30 cm. The paddock was sampled for a possible 
move of the trial (Rowan Maddern). 

Soil sampling 

29 Mar. Trial top-dressed with 200 kg/ha NS 3:1 and 150 kg/ha 
muriate of potash. The P applications, where spread by 
hand on the two blocks with plot 20, 21 in Block been 
top-dressed wrong and design, was fixed up. The site 
some perianal grasses growing and had 50 mm of rain 
7 days ago. Grass at half leaf, clover at cotyledon 
(Rowan Maddern and Ryan Guthrie). 

Fertiliser 

30 Mar. The trial had front block fenced up and photos taken 
(Rowan Maddern and Ryan Guthrie). 

Fencing 

17 June Experiment sprayed with 120 L/ha FNS, 1.5 L/ha MCPA 
500 and 200 mL/ha Lemat. Est. 1.0 t/ha dry matter yield 
with lots of capeweed present. Photos were taken, and 
the fence is up and operation (Rowan Maddern). 

Spraying 
Photos 
Fencing 

25 June Mass of capeweed but still good responses. Ryegrass 
better at the eastern end. Keep N up to this trial also. 
Background not very well grazed at this stage. Measure 
in 7‒10 days (Daniel Parnell). 

 

8 July The experiment measured at 20 plates per plot, good 
visual response but the cows have got in. Measured 
front section (1‒2) and taken 6 cuts. Will return next 
week and take photos and leaf samples. Cows are out 
of the paddock. The fence will need to be fixed and 
moved (Rowan Maddern). 

DMY 
measurement 

13 July Experiment grabs samples taken for all of block 1 and 
2. Moved the fence to the back section. Power not 
working so will fix on the 16/07/2010 but no cows in the 
paddock. Photos were taken (Rowan Maddern). 

Tissue 
sampling 
Photos 
Fencing 

16 July Sprayed 120 L/ha urea ammonium nitrate sulphur over 
the trial and hooked up power pack (Rowan Maddern 
and Ryan Guthrie). 

Spraying 

27 Aug. The site had front block measured at 15 plates per plot 
because the paddock had not been grazed. Looks to be 
good P response on the freshly applied section and 8 
cuts were taken. 3 grabs samples were taken from nil-P 
and high SSP/LSWP plots in the first rep. Photos were 
taken (Rowan Maddern). 

DMY 
measurement 
Tissue 
sampling 
Photos 

30 Aug. 150 kg/ha muriate of potash applied by hand to all 
plots. Est. 1.5 t/ha dry matter yield in fenced section, 
but the site is very dry, and some grasses are setting 
seed. The cows have grazed the open section (Rowan 
Maddern and Doug Hamilton).  

Fertiliser 

22 Sept. 100% ryegrass. Cape weeds dead. Very dry. Ryegrass 
at soft dough. The trial is finished for this season. No 
responses (photos were taken) (Rowan Maddern and 
Ryan Guthrie). 

Photos 

21 Oct. Fence rolled up, and pasture is setting seed (Rowan 
Maddern). 
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Table 9.14 Visual observations (2011 and 2012). 

Date Notes Action 

21 Jan. Soil sampled all plots from the front back block (0‒10 
cm) (54 Plots), site very bear photos taken. A = fresh, 
fertilisers 2010, B = residual fertiliser 2010 (Rowan 
Maddern). 

Soil sampling 

17 Mar. Soil sampled (10‒20) and (20‒30) cm from nil-P and 
25 kg/ha SSP/LWSSP plots. Site grazed well down and 
very dry. Photos were taken (Rowan Maddern). 

Soil sampling 
Photos 

4 Apr. Top dressed SSP/LWSSP by hand and then used cone 
top dresser to applied 150 kg/ha of MOP and 150 kg/ha 
GSOA. The site is very dry and photos taken (Rowan 
Maddern and Andreas Neuhaus).  

Fertiliser 
Photos 

21 Apr. Sowed trial using new pasture seeded with a mixture of 
62.5% Balansa clover and 37.5% Goose sub clover @ 
15 kg/ha. No soil moisture and the back section were 
fenced up with the hot wire. Photos were taken (Rowan 
Maddern and Ryan Guthrie). 

Fencing 
Photos 

3 June Sprayed out 100 mL/ha Lemat, good soil moisture and 
some clover coming through after seeding the site. Not 
as much as I would have thought coming up. Some 
capeweed, est. 0.5 t/ha dry matter yield and photos 
were taken (Rowan Maddern). 

Spraying 
Photos 

22 June Changed power pack, still no clover and Rob has put 
some cows in on the 23 of Jun (Rowan Maddern and 
Ryan Guthrie). 

Fencing 

11 July The experiment is looking good and will need a 
measure soon. The top plot is about 2.3 t/ha dry matter 
yield. Some responses and visual scores done on both 
fresh and residual blocks. 12 mm in the rain gauge and 
there may be more Guilford grass in the residual 
section, pointing to better comp with fresh P. 
Background grazed well. Photos were taken (Rowan 
Maddern and Ryan Guthrie). 

Photos 

14 July The experiment measured on both fresh and residual 
sections (back block) at 15 plates per plot, very grassy 
and little clover. Grab samples taken from all plots in 
both blocks and the first rep are the most responsive. 
Grab samples are all grass. Maybe a slight P response 
in the trial. Fence moved to the front section and photos 
taken. Est. Top plot had around 2–2.3 t/ha dry matter 
yield (Rowan Maddern and Ryan Guthrie). 

DMY 
measurement 
Tissue 
sampling 
Photos 

19 Aug. Applied 100 kg/ha of muriate of potash using a hand 
spreader to all plots. Lumpy but still P responses 
present (Rowan Maddern). 

Fertiliser 

5 Sept. Sprayed with 100 mL/ha urea ammonium nitrate 
sulphur and 125 mL/ha Lemat. The experiment looks ok 
and will need to measure in 1–2 weeks. Need to call 
Rob about grazing the back section. Photos were taken 
(Rowan Maddern). 

Spraying 
Photos 
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Date Notes Action 

16 Sept. The experiment measured, both fresh and residual and 
6 cuts taken. Look to be density response under the 
grass setting seed. Too late for grab samples, Rob has 
locked the paddock, and all species are setting seed. 
Rolled the fence up and will soil sample early next year. 
Photos were taken (Rowan Maddern). 

DMY 
measurement 
Photos 

2 Feb. 
2012 

Soil sampled all plots at 0‒10 cm in the back section 
(fresh and residual). Subsurface sampled all nil-P and 
25 kg/ha P plots from all reps at 10–20 and 20–30 cm. 
Pulled all logs and pegs out and packed up the site. 
Photos were taken (Rowan Maddern and Ryan 
Guthrie). 

Soil sampling 

 

9.3.4.2 Field experiment site-2 

Table 9.15 Full experiment design (2009–2011). 

Plot Trt Fertiliser P kg/ha 

1 9 Single superphosphate 25 

2 3 Single superphosphate 5 

3 5 Single superphosphate 10 

4 2 Low water-soluble superphosphate 5 

5 7 Single superphosphate 15 

6 1 Nil-P 0 

7 6 Low water-soluble superphosphate 15 

8 4 Low water-soluble superphosphate 10 

9 8 Low water-soluble superphosphate 25 

10 1 Nil-P 0 

11 2 Low water-soluble superphosphate 5 

12 3 Single superphosphate 5 

13 4 Low water-soluble superphosphate 10 

14 5 Single superphosphate 10 

15 6 Low water-soluble superphosphate 15 

16 7 Single superphosphate 15 

17 8 Low water-soluble superphosphate 25 

18 9 Single superphosphate 25 

19 2 Low water-soluble superphosphate 5 

20 9 Single superphosphate 25 

21 1 Nil-P 0 

22 3 Single superphosphate 5 

23 7 Single superphosphate 15 

24 8 Low water-soluble superphosphate 25 

25 4 Low water-soluble superphosphate 10 

26 6 Low water-soluble superphosphate 15 

27 5 Single superphosphate 10 
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Table 9.16 Visual observations (2009). 

Date Notes Action 

18 May The experiment was seeded with clover and ryegrass 
using the combine by Matt Evans on Sunday, 17 May. 
The site was pegged (Rowan Maddern and Ryan 
Guthrie). 

Seeding 

19 May The experiment was top dressed as per design and had 
2.5 t/ha of lime applied. The site was sprayed using the 
motorbike with 250 mL/ha Telstar (Rowan Maddern and 
James Easton). 

Fertiliser 
Spraying 

22 June The experiment is pest free with good grass coverage 
and some patches of clover. A Large amount of 
capeweed at about 5 cm in diameter. Site sprayed with 
100 mL/ha Lemat and 600 mL/ha MCPA. No visual 
responses. Est. 1 t/ha dry matter yield and Matt Evans 
has seeded the paddock and locked it up. The fence 
still working (Rowan Maddern). 

Spraying 

23 July Experiment plated at 30 plates per plot. Est. 1.8 t/ha dry 
matter yield. Scores were done, and the fence was 
disconnected because Matt has locked the paddock up. 
No signs of pest and cape weed have died off (Rowan 
Maddern and Ryan Guthrie). 

DMY 
measurement 

31 July The experiment looks P responsive to 25 kg/ha of P in 
the third rep in both SSP and LWSSP. The front block 
has better growth than the second block. Grab samples 
were taken from plots, 1, 6, 9, 10, 17, 18, 20, 21 and 
24. Photos were taken, and the experiment may need a 
100 L/ha of urea ammonium nitrate and maybe 
potassium and sulphur (Rowan Maddern and James 
Easton). 

Tissue 
sampling 
Photos 

6 Aug. Experiment plated at 30 plates per plot and 7 cuts 
taken. The site is 50% sub. Clover (Balansa) and grass. 
The fence was dropped, and the site will be grazed 
soon by Matt Evans, LWSSP looks about the same as 
the next lowest rate of SSP. Clover and grass look 
purple on the tips and has blotches in the middle of the 
clover leaf; there could be another problem, not nutrient 
related (Rowan Maddern and Ryan Guthrie). 

DMY 
measurement 
Fencing 

10 Aug. Clover ravished by potassium deficiency – suggest 
100 kg/ha muriate of potash be applied ASAP and 
100 kg/ha NS41 to boost production and to try and 
draw out the P responses. Estimate about 1.2 to 
1.8 t/ha dry matter yield – density a limiting factor. Plots 
uneven in their response – front of the trial responds 
best in the third and fourth reps. Good P responses 
nonetheless. Check soil test results down the profile 
(10‒20 cm and 20‒30 cm look like they should be the 
other way around (James Easton, CM, Brad Smith, AS). 

 

1 Sept. Matt has the 40 cows and 40 calves in the paddock and 
will be in for a week. Talked to Brad Smith and he said 
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Date Notes Action 

that P and S ratio are the same for the LWSSP so that 
the S rates will match up (Rowan Maddern). 

4 Sept. The trial has been grazed and will need to be fenced up 
at the start of next week. Top dressed out the 
September fertiliser and est. 1.5 (t/ha) dry matter yield 
(Rowan Maddern and Ryan Guthrie). 

Fertiliser 

8 Sept. The site was fenced up at the back section and 40 
plates taken as the background 0.85 t/ha dry matter 
yield, photos taken (Rowan Maddern). 

Photos 

1 Oct. 30 plates taken from all plots and 6 cut’s taken. Grab 
samples taken from all plots. Photos taken of all plots 
and it looks like SSP maybe ahead of LWSSP. Talked 
to Matt and maybe last measurement for the year and 
will have to look into letting set seed for next year 
(Rowan Maddern and Ryan Guthrie). 

DMY 
measurement 

6 Oct. Pasture is quite vigorous and obviously benefitting from 
nitrogen, sulphur and potassium fertiliser top ups. 
Excellent responses to P and LWSSP look to be as 
effective as SSP. Cattle being moved out, so no new 
fencing required. Background plots need measuring 
individually before next assessment (James Easton, 
Ryan Guthrie, CM and Brad Smith). 

 

9 Oct. Plated each of the background plots estimated dry 
matter yield ranging from 1.2 to 1.7 t/ha and took 6 
calibration cuts. Rolled up the fence – cows now out of 
the paddock until after the season (James Easton and 
Ryan Guthrie). 

DMY 
measurement 

12 Oct. Photos were taken of plots 13 and 14. Power pack 
picked up (Rowan Maddern and Ryan Guthrie). 

Photos 

21 Oct. Experiment plated at 30 plates per plot and 7 cuts 
taken. Est. 2.5 t/ha dry matter yield and grab samples 
taken from every plot. Matt will graze the trial site over 
summer to remove the dry matter, and I will now let 
self-seed for next year. Photos were taken of every plot 
(Rowan Maddern). 

DMY 
measurement 
Photos 
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Table 9.17 Visual observations (2010). 

Date Notes Action 

21 Jan. Soil sampled taken from the nil-P, 25 LWSSP and 25 
SSP kg/ha plots in all three rep. Sampled 10‒20 cm 
and 20‒30 cm in third rep of the same treatments. I 
have also sampled the paddock (Rowan Maddern). 

Soil sampling 

29 Mar. The trial has top-dressed with 200 kg/ha urea and 
granular sulphate of ammonia 3:1 and 150 muriate of 
potash. The P fertiliser was spread by hand on both 
sections. The site had 50mm of rain 7 days before, and 
clover and ryegrass had germinated. Matt has pulled 
the cows out and so will not need to fence up for a 
while yet. Grass at half leaf, clover at cotyledon (Rowan 
Maddern and Ryan Guthrie). 

Fertiliser 

30 Mar. Photos were taken (Rowan Maddern and Ryan 
Guthrie). 

Photos 

17 June Soil sampled nil-P and 25 kg/ha SSP at 0‒10 cm in the 
front block (Freshly applied). Lots of large capeweed 
and sprayed the site with 120 (L/ha) urea ammonium 
nitrate, 1.5 (L/ha) MCPA 500 and 100 mL/ha Lemat. 
The site has good soil moisture and Matt plans to move 
the cows in a week or two. Est. 1–1.5 t/ha dry matter 
yield. There was not much clover, and the site is very 
grassy. Photos were taken (Rowan Maddern). 

Soil sampling 
Spraying 
Photos 

7 July The experiment measured all section (Aa-Bb) and leaf 
samples were taken from nil-P, 25 SSP and 25 LWSSP 
kg/ha plot in block A. Matt will move the cows in next 
week and then will fence up a section. Photos were 
taken (Rowan Maddern). 

DMY 
measurement 
Photos 

23 July Site sprayed with 120 L/ha urea ammonium nitrate 
sulphur and 400 mL/ha Tiger X. Soil samples taken 
from nil-P, 25 LWSSP and 25 SSP kg/ha plots for 
Geoff. Large amounts of Capeweed and the 
background is between 0.5–2.0 t/ha dry matter yield. 
Have not fenced up the trial and will give the cows 
another week. The site does not look that good and 
may not be able to get anything out of it this year. I 
need a graze early in the season. Photos were taken 
(Rowan Maddern and Ryan Guthrie). 

Spraying 
Fertiliser 
Photos 

2 Aug. Site back section was fenced up. Cows have done a 
good job grazing the site down. Est. 0.8 t/ha dry matter 
yield and plated the section at 30 plates. Photos were 
taken no sign of bugs (Rowan Maddern and Andreas 
Neuhaus). 

DMY 
measurement 
Photos 

30 Aug. Soil samples taken from nil-P and high SSP/LWSSP 
plots for Geoff. Est. 1.0 (t/ha) dry matter yield and 150 
kg/ha muriate of potash applied by hand to all plots 
(Rowan Maddern and Doug Hamilton). 

Soil sampling 
Fertiliser 

22 Sept. 100% ryegrass. Capeweed dead. Very dry. 28C. 
Ryegrass at the milky dough. The trial is finished for this 
season. No responses (photos were taken) (Rowan 
Maddern and Ryan Guthrie). 

 

21 Oct. Experiment have finished (Rowan Maddern). Fencing 
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Table 9.18 Visual observations (2011‒2012). 

Date Notes Action 

20 Jan. Soil sampled all plots from front block 0‒10 cm 
(54 plots), very site bear. Photos were taken. (RM) A = 
fresh fertilisers 2010, B = residual fertiliser 2010 
(Rowan Maddern). 

Soil sampling 
Photos 

17 Mar. Soil sampled (10‒20) and (20‒30) cm from nil and 
25 kg/ha SSP/25 LWSSP plots. Site grazed well down 
and very dry. Photos were taken and Matt will re-sow 
the paddock just after first rainfall due to being grazed 
so hard. May need to spray out Kyk glass (Rowan 
Maddern). 

Soil sampling 

4 Apr. Top dressed SSP/LWSSP by hand and then used cone 
top dresser to applied 150 kg/ha of muriate of potash 
and 150 kg/ha granular sulphate of ammonia. The site 
is very dry, and photos were taken. Matt will sow 
paddock around ANZAC day (Rowan Maddern, 
Andreas Neuhaus). 

Fertiliser 

19 May Matt sowed the trial (Rowan Maddern). Seeding 

3 June Sprayed out 100 mL/ha Lemat, Good soil moisture and 
the trial has not come up as well as the paddock. Matt 
has run the harrows over the site so it is a bit slow. Est. 
0.3 t/ha dry matter yield and photos were taken (Rowan 
Maddern). 

Spraying 
Photos 

12 July Viewed the trial site, the site had good soil moisture and 
is looking a lot better than last time. Clover and 
ryegrass have come up and spread out, but still a lot of 
bare spots. Est. 1.2–1.3 t/ha dry matter yield and will 
not be able to measure due to low growth. Matt is going 
to graze the paddock and will graze the site and set up 
for next measurement. Need to spray out urea 
ammonium nitrate post-grazing. Scores did on back 
residual block and photos were taken (Rowan Maddern 
and Ryan Guthrie). 

Photos 

1 Aug. Sprayed out 100 L/ha urea ammonium nitrate using a 
motorbike. The site is grazed well and fenced up back 
section. About 0.6 t/ha Background dry matter yield. 
Site very wet and photos were taken (Rowan Maddern).  

Spraying 
Fertiliser 
Photos 

19 Aug. Applied 100 kg/ha muriate of potash using hand 
spreader to all plots. No much growth but still looks 
good. Photos were taken (Rowan Maddern). 

Fertiliser 
Photos 

5 Sept. Sprayed 100 L/ha urea ammonium nitrate sulphur and 
125 mL/ha Lemat. Trial looks ok and more growth than 
a week ago. Will need to measure and grab in 1–2 
weeks’ time. Cows are in the paddock. Photos were 
taken (Rowan Maddern). 

Spraying 
Fertiliser 

16 Sept. The experiment measured (6 cuts) and grab samples 
were taken (grass). Site composition is 80% grass, 10 
sub clover and 10% other. The fresh site looks darker 
then residual, but there is no good visual different 
between the treatments. Must be 3.0 t/ha dry matter 

DMY 
measurement 
Tissue 
sampling 
Photos 



 

225 

Date Notes Action 

yield in the section. Photos were taken and the fence 
moved to the front section. Good soil moisture and matt 
has had 40 mm for the last 5 days with more on the way 
this week (Rowan Maddern). 

12 Oct. The site was measured and grab samples (70% clover, 
30% grass) taken from both fresh and residual sections. 
Looks to be a slight phosphorus response and there is 
lots more clover in the residual section. Compression = 
60% grass, 20% clover and 20% capeweed. The fence 
was shifted to the back section and photos taken. The 
background was plated but there 1.2 t/ha dry matter 
yield (Rowan Maddern and Ryan Guthrie). 

DMY 
measurement 
Tissue 
sampling 
Photos 

17 Oct. Experiment sprayed with 120 L/ha urea ammonium 
nitrate sulphur (Rowan Maddern). 

Spraying 

5 Nov. Measured trial by eye because plots are too far gone 
and setting seed, so no grab samples possible. Look to 
be still P response of about 0.5 t/ha from nil-P to higher 
plots. Photos were taken and 6 cuts taken to calibrate 
visual scores. Fence rolled up (Rowan Maddern and 
Ryan Guthrie). 

Measurement 
Fencing 

7 Nov. Took a quad cut out of every plot (Fresh and Residual) 
in the rear section and will get the dry matter production 
data from the lab. I will then run the samples through for 
analysis to see if there is any different in P uptake at 
this late stage of the growth cycle. I will soil sample the 
site early next year as an experiment is finished for the 
year (Rowan Maddern). 

DMY 
measurement 

7 Feb. 
2012 

Experiment soil sampled from both fresh and residual 
sections (all plots) on the front block at 0–10 cm. 
Photos were taken (Rowan Maddern). 

Soil sampling 
Photos 

8 Feb. 
2012 

All control and 25 kg/ha of phosphorus plots sampled at 
10–20 and 20–30 cm in the fresh front section. Post 
pulled out and all pegs removed as an experiment is 
finished (Rowan Maddern, Ryan Guthrie). 

Soil sampling 
Fencing 
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9.3.4.3 Weather and climate data 

 

Figure 9.10 Mandurah climate for 2009. 
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Figure 9.11 Mandurah climate for 2010. 
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Figure 9.12 Mandurah climate for 2011. 
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9.3.4.5 Example of the statistical analyses 

ANOVA analysis of dry matter grams (glasshouse experiment 1) 

Analysis of an unbalanced design using GenStat regression 

Variate: DM_g 

Accumulated analysis of variance 

Change d.f. s.s. m.s. v.r. F pr. 

+ Run 5 68.6185 13.7237 93.99 < .001 

+ Run.Tank 12 23.6207 1.9684 13.48 < .001 

+ Species 1 0.0007 0.0007 0.00 0.945 

+ Fert 0 0.0000 *   

+ Species.Fert 5 2.0056 0.4011 2.75 0.024 

Residual 84 12.2651 0.1460   

Total 107 106.5106 0.9954   

Predictions from regression model 

The standard errors are appropriate for interpretation of the predictions as summaries of the data rather than as forecasts of new observations. 

Response variate: DM_g 

Species Prediction se 

Clover 1.882 0.05200 

Ryegrass 1.877 0.05200 

Least significant difference (at 5.0%) for predicted means 0.1462 
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Regression analysis of total dry matter yield  

REML variance components analysis 

Response variate: Total_Prod 

Fixed model: Constant + FERTILISER + SOIL + SPECIES + FERTILISER.SOIL + FERTILISER.SPECIES + SOIL.SPECIES + 
FERTILISER.SOIL.SPECIES 

Random model: BENCH.SECTION.ROW 

Number of units: 84 

BENCH.SECTION.ROW used as residual term with covariance structure as below. 

Sparse algorithm with AI optimisation 

Units with missing data values included 

Covariance structures defined for random model 

Covariance structures defined within terms: 

Term Factor Model Order No. rows 

BENCH.SECTION.ROW BENCH Identity 1 3 

 SECTION Auto-regressive 1 4 

 ROW Auto-regressive 1 7 

Residual variance model 

Term Factor Model (order) Parameter Estimate s.e. 

BENCH.SECTION.ROW  Sigma2 0.428 0.0931  

 BENCH Identity - - - 

 SECTION AR(1) phi_1 0.05318 0.18285 

 ROW AR(1) phi_1 0.4741 0.1379 



 

231 

 

Tests for fixed effects 

Sequentially adding terms to fixed model 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

FERTILISER 12.47 2 6.22 36.4 0.005 

SOIL 11.58 2 5.79 37.7 0.006 

SPECIES 689.22 2 344.55 41.6 < 0.001 

FERTILISER.SOIL 1.27 4 0.32 40.3 0.865 

FERTILISER.SPECIES 30.43 4 7.59 40.7 < 0.001 

SOIL.SPECIES 33.16 4 8.27 40.0 < 0.001 

FERTILISER.SOIL.SPECIES 11.77 8 1.46 38.0 0.203 

 

Dropping individual terms from full fixed model  

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

FERTILISER.SOIL.SPECIES 11.77 8 1.46 38.0 0.203 

 

Message: Denominator degrees of freedom for approximate F-tests are calculated using algebraic derivatives ignoring 
fixed/boundary/singular variance parameters. 
 

 


