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Abstract

We develop well-posedness theory and analytical and numerical solution

techniques for Boussinesq-type equations. Firstly, we consider the Cauchy prob-

lem for a generalized Boussinesq equation. We show that under suitable conditions,

a global solution for this problem exists. In addition, we derive sufficient conditions

for solution blow-up in finite time.

Secondly, a generalized Jacobi/exponential expansion method for finding ex-

act solutions of non-linear partial differential equations is discussed. We use the

proposed expansion method to construct many new, previously undiscovered exact

solutions for the Boussinesq and modified Korteweg-de Vriesequations. We also

apply it to the shallow water long wave approximate equations. New solutions are

deduced for this system of partial differential equations.

Finally, we develop and validate a numerical procedure for solving a class of

initial boundary value problems for the improved Boussinesq equation. The finite

element method with linear B-spline basis functions is usedto discretize the equa-

tion in space and derive a second order system involving onlyordinary derivatives.

It is shown that the coefficient matrix for the second order term in this system is

invertible. Consequently, for the first time, the initial boundary value problem can

be reduced to an explicit initial value problem, which can besolved using many

accurate numerical methods. Various examples are presented to validate this tech-

nique and demonstrate its capacity to simulate wave splitting, wave interaction and

blow-up behavior.
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Chapter 1

Introduction

1.1 Background

The propagation of surface waves is of fundamental and practical importance in

oceanography and marine engineering. Boussinesq-type equations are capable of

providing accurate description of water evolution in coastal regions (see [27, 87]).

The earliest original Boussinesq equation was derived by Boussinesq in 1870s which

takes into account the effects of weak dispersion due to finite depth and weak non-

linearity due to finite amplitude. Boussinesq-type equations also can be applied

to many other areas of mathematical physics dealing with wave phenomena. Ap-

plications to waves in one-dimensional anharmonic lattices, ion acoustic waves in

plasmas, and acoustical waves on circular elastic rods are described in references

[41, 90, 91]. In addition, according to [38] (as quoted by Makhankov [73]), Boussi-

nesq equation is also closely connected with the so-called Fermi-Pasta-Ulam prob-

lem.

The general form of the1 + 1 dimensional Boussinesq equation is

utt + α1uxx + α2uxxxx + α3

(
u2
)
xx

= 0, (1.1)

whereu := u(x, t) represents the wave height from the free surface in the case of

shallow water wave propagation,αj , j = 1, 2, 3, are known constants, and the sub-

scripts denote partial differentiation. In the literature, the Boussinesq equation (1.1)

with αj = −1 (j = 1, 2, 3) is typically referred to as the “bad” or ill-posed Boussi-
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nesq equation. The “bad” Boussinesq equation describes unrealistic instability at

short wavelengths (see [15, 73]) and so it can not be solved byusing a sufficiently

fine grid along thex-axis. Note that the dispersion relation of the “bad” Boussinesq

equation is given as follows:

ω2 = k2(1 − k2), (1.2)

wherek is the wave number andω is the wave circular frequency. Whenk > 1,

the “bad” Boussinesq equation gives rise to an unrealistic instability. This is the

physical reason why Cauchy problems for the “bad” Boussinesq equation become

incorrect fork > 1. Choosingα2 = 1 andα1 = α3 = −1, the Boussinesq

equation (1.1) is known as the “good” or well-posed Boussinesq equation whose

dispersion relation is given by

ω2 = k2(1 + k2).

An improved Boussinesq equation is as follows:

utt − uxx − uxxtt −
(
u2
)
xx

= 0, (1.3)

in which u := u(x, t) stands for the plasma density in the case of ion-sound wave

propagation. Note that the dispersion relation of equation(1.3) is defined by

ω2 =
k2

1 + k2
. (1.4)

The “improved” term means that, in comparison with the “bad”Boussinesq equa-

tion, equation (1.3) does not admit such a kind of instability for k > 1. Hence,

the improved Boussinesq equation (1.3) is more suitable forcomputer simulation.

Moreover, the improved Boussinesq equation (1.3) and its dispersion relation (1.4)

approach the “bad” Boussinesq equation and its dispersion relation (1.2) whenk is

much smaller than1.

The generalized Boussinesq equation has the form

utt + α1uxx + α2uxxxx +
[
f(u)

]
xx

= 0, (1.5)
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where constantsαj , j = 1, 2, and functionf : R → R are given. Equation (1.5)

arises in the study of one-dimensional anharmonic lattice waves (see [90]). Note

that, if constantsα1 andα2 are negative, then equation (1.5) is referred to as the

generalized “bad” Boussinesq equation.

Equations (1.1) and (1.5) are certain perturbations of the wave equations

which take into account the effects of small non-linearity and dispersion. It has

also been established that, in many practical scenarios, the effect of damping is at

least as significant as non-linearity and dispersion, if notmore so. Hence, Varlamov

[97] introduced the following damped Boussinesq equation:

utt − 2α1utxx + α2uxxxx − uxx + α3

(
u2
)
xx

= 0, (1.6)

whereαj, j = 1, 2, 3, denote constants satisfyingα1, α2 > 0 and the mixed deriva-

tive term is responsible for strong dissipation.

Next, we will introduce some well-known systems of Boussinesq-type equa-

tions which have been studied in the scientific literature onwater waves.

As waves propagate toward shore or around marine structures, the wave field

is transformed due to the effects of shoaling, refraction, diffraction and reflec-

tion. Boussinesq-type equations have been shown to be capable of simulating wave

diffraction in shallow waters. The classical Boussinesq equations derived by Pere-

grine [87] are as follows:

ηt + ∇ ·
[
(h + η)u

]
= 0,

ut + (u · ∇)u + g∇η − 1
2
h∇
[
∇ · (hut)

]
+ 1

6
h2∇

(
∇ · ut

)
= 0,

}
(1.7)

whereu := u(x, y, t) =
(
u(x, y, t), v(x, y, t)

)
is the two-dimensional depth-averaged

velocity vector,η := η(x, y, t) is the wave amplitude,h := h(x, y) is the varying

water depth as measured from the still water level, constantg is the gravitational

acceleration, and∇ is the two-dimensional horizontal gradient operator. The dis-

persion relation of equations (1.7) is given as follows:

ω2 =
ghk2

1 + h2k
2/3

,

wherek
2 = k2

1 +k2
2 andk1, k2 denote the components of the wave number vectork

in thex− andy−directions, respectively. Equations (1.7) can be used to describe
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the propagation of long waves in water of varying depth. However, this set of equa-

tions is not suitable for deep water.

To extend the applicability of the classical Boussinesq equations in deep wa-

ter, many efforts have been made to improve the dispersion property of the equa-

tions. By rearranging the dispersion terms, Beji and Nadaoka [12] introduced the

following improved Boussinesq equations:

ηt + ∇ ·
[
(h + η)u

]
= 0,

ut + (u · ∇)u + g∇η
−1

2
h(1 + β)∇

[
∇ · (hut)

]
− 1

2
βgh∇

[
∇ · (h∇η)

]

+1
6
(1 + β)h2∇

(
∇ · ut

)
+ 1

6
βgh2∇

(
∆η
)

= 0,





(1.8)

with the improved dispersion relation

ω2

gk
=

kh(1 + βk
2h2/3)

1 + (1 + β)k2h2/3
, (1.9)

where the constantβ is determined to yield a better dispersion characteristics. In

[12], it has been shown thatβ = 1/5 is the best choice.

Equations (1.7) and (1.8) are derived by using the depth-averaged velocity.

Instead, Nwogu [83] obtained the following extended Boussinesq equations using

the velocityu := u(x, y, t) at an arbitrary elevationz := z(x, y):

ηt + ∇ ·
[
(h+ η)u

]
+ ∇ ·

[(
1
2
z2 − 1

6
h2
)
h∇(∇ · u)

+
(
z + 1

2
h
)
h∇
[
∇ · (hu)

]]
= 0,

ut + g∇η + (u · ∇)u + 1
2
z2∇

(
∇ · ut

)
+ z∇

[
∇ ·
(
hut

)]
= 0.





(1.10)

This set of equations can describe the horizontal propagation of irregular, multi-

directional waves in water of varying depth. It is noted thatthe dispersion relation

of (1.10) is the same as (1.9) ifz is set to−(1 + β)/3.

In [119], Zhao et al. introduced a variableφ and derived the following gener-

alized Boussinesq equations:

ηt + ∇ ·
[
(h + η)∇φ

]
− 1

2
∇ ·
(
h2∇ηt

)

+1
6
h2∆ηt − 1

15
∇ ·
[
h∇(hηt)

]
= 0,

φt +
1
2
(∇φ)2 + gη − 1

15
gh∇ · (h∇η) = 0.




 (1.11)

The dispersion relation of (1.11) is the same as (1.9) withβ = 1/5. However,

equations (1.11) are more efficient for calculations and canbe easily implemented
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by any numerical methods since there are no spatial derivatives with an order higher

than 2.

The following equations are referred to as the variant Boussinesq equation [88]:

Ht + (Hu)x + uxxx = 0,
ut +Hx + uux = 0,

}
(1.12)

whereu := u(x, t) is the velocity andH := H(x, t) is the total depth of wave.

Compared with other systems of Boussinesq-type equations,equations (1.12) are

much more simple. Traveling wave solutions for equations (1.12) have been derived

in the literature [11, 37, 63, 116, 117, 118].

1.2 Objectives

Although a significant advance in the study of Boussinesq-type equations and their

associated initial or initial boundary value problems has been made, there are still

many problems which require further investigation. In thisthesis, we will study

Boussinesq-type equations from three aspects. Firstly, wewill consider a Cauchy

problem governed by the generalized Boussinesq equation (1.5) and derive con-

ditions for the existence of a global solution, as well as conditions for the solu-

tion blow-up in finite time. Secondly, we develop a generalized expansion method

to construct exact solutions for non-linear partial differential equations and derive

traveling wave solutions for Boussinesq-type equations. Finally, using the finite

element method, we will propose a numerical scheme to solve an initial boundary

value problem for the improved Boussinesq equation (1.3). The specific objectives

are detailed below.

(I) Study the existence and blow-up of the solution for a Cauchy problem for

the generalized Boussinesq equation

Consider the Cauchy problem for the following generalized Boussinesq equa-

tion

utt − αuxx + uxxxx +
[
f(u)

]
xx

= 0, (1.13)
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subject to the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), (1.14)

where positive constantα and functionsf , u0, u1 : R → R are given. The objective

of this work is to establish conditions that ensure the existence of a global solution

for the Cauchy problem (1.13)-(1.14). We will also establish conditions that guar-

antee solution blow-up in finite time.

(II) Construct new traveling wave solutions for Boussinesq-type equations

In this work, we aim to develop a generalized expansion method for finding

traveling wave solutions of the Boussinesq equation (1.1).Furthermore, to demon-

strate the flexibility and power of the proposed expansion method, we will apply it

to study the modified Korteweg-de Vries equation and the shallow water long wave

approximate equations.

(III) Develop a numerical method for solving initial boundary value problems

for the improved Boussinesq equation

Consider the initial boundary value problem defined by the improved Boussi-

nesq equation

utt = uxx + uxxtt +
(
u2
)
xx
, x ∈ (a, b), t > 0, (1.15)

the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (a, b), (1.16)

and the boundary conditions

u(a, t) = 0, u(b, t) = 0, t > 0, (1.17)

whereu0 andu1 are given functions. In this work, we aim to stimulate complex

wave phenomena governed by the improved Boussinesq equation. To do this, we

will propose an efficient and practical finite element schemeto solve the initial

boundary value problem (1.15)-(1.17).

6



1.3 Outline of the thesis

In this thesis, we develop the theoretical results for the generalized Boussinesq

equation, construct exact solutions for some well-known partial differential equa-

tions and investigate the numerical solutions for the improved Boussinesq equation.

The thesis is organized as follows:

• In Chapter 1, we describe the background of Boussinesq-typeequations and

the objectives of the research project.

• In Chapter 2, we review previous research results relevant to Boussinesq-type

equations.

• In Chapter 3, we construct sufficient conditions for the existence and nonex-

istence of a global solution for the Cauchy problem (1.13)-(1.14).

• In Chapter 4, we propose a generalized expansion method to derive exact so-

lutions for non-linear partial differential equations.

• In Chapter 5, we present a numerical scheme to solve various initial boundary

value problems for the improved Boussinesq equation.

• In Chapter 6, we conclude the research project and discuss some problems

for further research.

7



Chapter 2

Review

2.1 An overview

The Boussinesq’s theory is the first to give a satisfactory, scientific explanation of

the phenomena of solitary waves, which are of permanent formand localized within

a region, and can emerge from the collision with other solitary waves unchanged,

except for a phase shift. However, the mathematical theory for Boussinesq-type

equations is not so complete as the case for Korteweg-de Vries-type equations. Part

of the reason for relative paucity of results about Boussinesq-type equations may

be the fact that Cauchy problems for Boussinesq-type equations are not always

globally well posed.

How to utilize modern mathematical techniques to study Boussinesq-type

equations has been a major concern to mathematicians and physicists. We will

review Boussinesq-type equations from the following threeperspectives: (I) well-

posedness theory for Boussinesq-type equations; (II) exact solutions of Boussinesq-

type equations; (III) numerical methods for Boussinesq-type equations.

2.2 Well-posedness theory

As mentioned before, Cauchy problems for Boussinesq-type equations are not al-

ways globally well posed. Even if the initial wave and velocity profiles are smooth,

the corresponding solution might lose regularity in finite time. Hence, a time evolu-

tion of an arbitrary initial wave packet is one of the most important problems related

8



to Boussinesq-type equations.

In [77], the solitary-wave interaction mechanism for the “good” Boussinesq

equation is investigated. It has been shown that when small amplitude solitons of

the “good” Boussinesq equation collide, they emerge from the non-linear interaction

with no change in shape or velocity. However, the large amplitude solitons change

to the so-called antisolitons as they come out from the interaction. This difference in

behavior is linked to a potential well of the “good” Boussinesq equation. Moreover,

sufficient conditions on the initial data have been established for the existence and

nonexistence of a global solution for the “good” Boussinesqequation.

Using the Faedo-Galerkin method, Pani and Saranga [85] haveshown that

there exists a unique weak solution to the initial boundary value problem for the

“good” Boussinesq equation. The weak solution is also called a generalized solu-

tion, namely, a solution for which the derivatives appearing in the equation may not

all exist but which is nonetheless deemed to satisfy the equation in some precisely

defined sense. An optimal rate of convergence inL2-norm has been derived and

priori error estimates for the fully descrete scheme in timehave been established.

Turitsyn [96] considered the Boussinesq equation (1.1) with α1 = −1 and

α2 = α3 = 1 for the case of periodic boundary conditions. Sufficient conditions

have been determined for the corresponding solution to the Cauchy problem to blow

up in finite time.

The generalized Boussinesq equation (1.13) withα = 1 has been studied in

references [16, 60, 65, 66, 67, 68, 69] through its equivalent system

ut = vx,
vt =

[
u− uxx − f(u)

]
x
.

}
(2.1)

In [16, 60, 65], local existence for Cauchy problems for system (2.1) has

been investigated. Using Kato’s abstract theory of quasi-linear evolution equation

[52, 53], Bona and Sachs [16] have shown that the Cauchy problem is always locally

well posed iff is an infinitely differentiable function satisfyingf(0) = 0. Applying

the contraction principle, Linares [60] has established the local well-posedness the-

ory for system (2.1). Applying the semi-group theory [86], Liu [65] has shown that,
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for any initial data from spaceH1(R)×L2(R), if f is a continuously differentiable

function satisfyingf(0) = 0, then the corresponding Cauchy problem possesses a

uniquely weak solution. Moreover, the interval of existence can be extended to a

maximal interval for which either the solution exists globally, or it blows up in finite

time (see [65]).

It is well-known that, system (2.1) withf(s) = |s|p−1s for some real number

p > 1 admits the following solitary wave solutions for all speedsc satisfyingc2 < 1:

u(x, t) = Asech2/(p−1)
(
B(x− ct)

)
,

v(x, t) = −cAsech2/(p−1)
(
B(x− ct)

)
,

}
(2.2)

whereA = [(p + 1)(1 − c2)/2]
1/(p−1) andB = (p− 1)

√
1 − c2/2. Bona and Sachs

[16] verified that the solitary wave solutions (2.2) are stable in H1(R) × L2(R)-

norm if 1 < p < 5 and (p − 1)/4 < c2 < 1. Combining the stability with the

local existence result [16], one can conclude that the solutions emanating from the

initial data lying relatively close to the stable solitary wave solutions exist globally.

In contrast to the stability, Liu [65] complemented the workof Bona and Sachs

and obtained instability of solitary wave solutions (2.2) when either1 < p < 5,

c2 < (p− 1)/4 or p ≥ 5, c2 < 1.

In [66], Liu investigated conditions for the existence and nonexistence of

global solutions to the generalized Boussinesq equation (1.13) withα = 1. Suf-

ficient conditions on the initial data and functionf have been established for the

blow-up of the corresponding solution in finite time. In particular, whenf(s) =

|s|p−1s (p > 1), two invariant sets have been constructed in terms of the energy of

the function

φ(x) =

(
p+ 1

2

) 1
p−1

sech
2

p−1

(
(p− 1)x

2

)
.

Liu proved that, under some conditions, the solution existsglobally if the initial

wave belongs to one of the variant sets, while the solution blows up in finite time

if the initial wave belongs to the other variant set. Note that the blow-up result for

the special case off is referred to as an improved blow-up theorem in which the

energy could be larger. Furthermore, Liu obtained the strong instability ofφ(x).

More precisely, some solutions with initial waves arbitrarily close toφ(x) blow up

10



in finite time. In [68], Liu investigated the strong instability of the solitary wave

solutions

φc(x) =

[
(p+ 1)(1 − c2)

2

] 1
p−1

sech
2

p−1

(√
1 − c2(p− 1)(x− ct)

2

)

with 0 < c2 < 1 for the generalized Boussinesq equation (1.13) withf(s) = |s|p−1s

(p > 1).

In [69], Liu and Xu investigated the existence and nonexistence of global

solutions to the generalized Boussinesq equation (1.13) with α = 1 andf(s) =

±|s|p or±|s|p−1s (p > 1). A family of potential wells and the corresponding family

of outside sets have been introduced. Based on these sets, Liu and Xu obtained

two invariant sets, vacuum isolating of solutions, and somethreshold results of the

existence and nonexistence of global solutions.

In [67], Liu studied the long-time behavior of small solutions for the Cauchy

problem involving system (2.1) and obtained a lower bound for the degrees of non-

linearity to establish a non-linear scattering result for small perturbations.

The generalized “bad” Boussinesq equation has been studiedin references

[109, 110]. In [109], Yang introduced a series of isometrically isomorphic Hilbert

spaces. By virtue of the topological invariance of these spaces and the Galerkin ap-

proximation, it has been proved that, under rather mild conditions on the functionf

and initial data, the initial boundary value problems admitlocal weak solutions.

Furthermore, if the functionf is concave, then sufficient conditions on initial data

and f have been determined such that the corresponding solution for the initial

boundary value problem blows up in finite time. Yang and Wang [110] continued

the work of [109] and derived some blow-up results accordingto the energy method

and the Fourier transform method.

In Chapter 3, we will consider a Cauchy problem for equation (1.13). Note

that, in [66], Liu only considered the existence of a global solution for the general-

ized Boussinesq equation (1.13) for a special case, i.e.,f(s) = |s|p−1s (p > 1) and

α = 1. In this thesis, we will generalize the global existence theorem of [66] and

derive sufficient conditions for the existence of a global solution for equation (1.13)

11



whenf is in a more general form andα is an arbitrary constant. In addition, we will

derive a similar but improved blow-up theorem of [66] allowingf to be in a general

form.

2.3 Exact solutions

Finding analytical solutions for non-linear partial differential equations is a difficult

and challenging task. By employing a computer algebra software such as Maple

or Mathematica, the large amounts of tedious working required to verify candi-

date solutions can be avoided. The capability and power of these softwares has

increased dramatically over the past decade. Hence, a direct search for exact solu-

tions is now much more viable. In this section, we will first introduce some popular

methods which have been employed to derive exact solutions for non-linear partial

differential equations. Then, we will review previous results on exact solutions to

Boussinesq-type equations.

Generally, for direct search methods, certain transformation is required to re-

duce the partial differential equation under consideration to an ordinary differential

equation. To simplify the presentation, letξ denote the variable of the reduced or-

dinary differential equation. We can use the transformation ξ = k(x − νt) if the

partial differential equation is1 + 1 dimensional. Then, the solution of the reduced

ordinary differential equation is represented in terms of agiven function with some

parameters to be determined later. For instance, the following expression has been

used in several direct search methods:
n∑

j=0

cj
[
Φ(ξ)

]j
, (2.3)

wheren is an integer determined by balancing the highest order derivative term with

the highest order non-linear term in the reduced ordinary differential equation,Φ is

a given function andcj , j = 0, . . . , n, are constants to be determined later.

Using different functionΦ in (2.3) yields different expansion method, such as

the tanh method in whichΦ(·) = tanh(·), sine/cosine method whereΦ(·) = sin(·)
or cos(·), and Jacobi elliptic function expansion method whereΦ(·) = sn(·, m),
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cn(·, m) or dn(·, m), andm ∈ (0, 1) is the modulus of the Jacobi elliptic functions.

Moreover,Φ can be in a more general form. The generalized Jacobi elliptic function

expansion method presented in [22, 30] choosesΦ satisfying the following ordinary

differential equation:

[
Φ′(ξ)

]2
= q4

[
Φ(ξ)

]4
+ q3

[
Φ(ξ)

]3
+ q2

[
Φ(ξ)

]2
+ q1Φ(ξ) + q0, (2.4)

where′ denotes differentation with respect toξ andqj , j = 0, . . . , 4, are constants.

The improved tanh function method proposed in [32] setsΦ to be a solution of the

following Riccati equation:

Φ′(ξ) = p2

[
Φ(ξ)

]2
+ p1Φ(ξ) + p0, (2.5)

wherepj , j = 0, 1, 2, are constants.

It is noted thattanh(ξ) is a solution of equation (2.5) withp2 = −1, p1 = 0

andp0 = 1. Hence, the tanh method is a subcase of the improved tanh function

method [32]. It is also noted that the solutions of equation (2.5) also satisfy equa-

tion (2.4) withq4 = p2
2, q3 = 2p1p2, q2 = 2p0p2 + p2

1, q1 = 2p0p1 andq0 = p2
0.

However, the improved tanh function method has an advantage. LettingΦ denote a

solution of (2.5) and substituting expression (2.3) into the reduced ordinary differ-

ent equation, we can obtain an equation in terms ofΦ. If Φ is a solution of (2.4), we

might end up with an equation in terms ofΦ andΦ′.

Note that each solution of equation (2.4) generates a corresponding solution

to the partial differential equation. However, different solutions of (2.4) sometimes

create the same solution for the partial differential equation. Generally, the more

solutions of (2.4) you can find, the more solutions of the partial differential equation

you can generate. Many solutions of equation (2.4), including the Jacobi elliptic

function solutions and the Weierstrass elliptic function solutions, have been reported

in references [23, 30, 82, 116, 118].

On the other hand, the expression (2.3) also can be generalized. To sim-

plify the presentation, letΦ denote a solution of equation (2.4),n be an integer

determined by balancing the highest order derivative term with the highest order

13



non-linear term in the equation,cj , Cj , µ andµj are constants to be determined

later.

The following generalized expression has been used in [22]:

c0 +
n∑

j=1

cj
[
Φ(ξ)

]j
+ Cj

[
Φ(ξ)

]j−1
Φ′(ξ)

[
µΦ(ξ) + 1

]j . (2.6)

Note that expression (2.3) is a special case of (2.6). In addition, whenq1 = q3 = 0,

the following expressions have been studied in references [7, 30, 42]:

n∑

j=−n
cj
[
Φ(ξ)

]j
, (2.7)

n∑

j=−n
cj
[
Φ(ξ)

]j
+

Φ′(ξ)
[
Φ(ξ)

]2

(
n∑

j=−n
Cj
[
Φ(ξ)

]j
)

, (2.8)

n∑

j=−n
cj
[
Φ(ξ)

]j
+

Φ′(ξ)
[
Φ(ξ)

]2

(
n+1∑

j=−n
Cj
[
Φ(ξ)

]j
)
. (2.9)

The expression (2.7) is a special case of the expressions (2.8) and (2.9). The expres-

sion (2.9) seems more general than the expression (2.8). Indeed, they are the same

as the constantCn+1 in (2.9) will be equal to zero. For details, see Section 4.3 of

Chapter 4. In [113, 114], the special expression

c0 +

n∑

j=1

cj
[
sn(ξ)

]j
+ Cj

[
sn(ξ)

]j−1
cn(ξ)

[
µ1sn(ξ) + µ2cn(ξ) + 1

]j (2.10)

has been used to derive the Jacobi elliptic function solutions for the generalized

Hirota-Satsuma coupled KdV equations, asymmetric Nizhnik-Novikov-Veselov equa-

tions and Davey-Stewartson equations.

The Exp-function method [45, 103] assumes that the solutions can be ex-

pressed in the form
n2∑

j=−n1

cjejξ

n4∑
l=−n3

Clelξ
,

where the positive integersnj , j = 1, . . . , 4 will be determined later. Note that

this method includes the sine/cosine method and the ones in which the solution can
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be expressed in terms of exponential functions, such as the tanh method, cosh/sinh

ansatz I-III method (see [100]) and those reported in [11, 104, 105, 116]. However,

the method can not derive Jacobi elliptic function solutions or Weierstrass elliptic

function solutions for non-linear partial differential equations.

In [107], an interesting transformation

u(x, t) = 2
∂

∂x

[
arctan

(
φ(x, t)

)]
=

2φx(x, t)

1 + φ2(x, t)
(2.11)

has been applied to convert the modified KdV+ equation

ut + 6u2ux + uxxx = 0 (2.12)

into another partial differential equation

(1 − φ2)(φt + φxxx) + 6φx(φ
2
x − φφxx) = 0. (2.13)

Hence, combining the existed solutions of (2.13) with the transformation (2.11),

one can obtain binary traveling wave periodic solutions forthe modified KdV+

equation (2.12). A different transformation is used to solve the modified KdV−

equation in [107]. The method tells us that we can use a transformation to convert

a partial differential equation into a new partial differential equation. By solving

the new partial differential equation, we can obtain exact solutions for the original

one. It should be addressed here that the exact solutions obtained by this way are

different from the ones constructed by direct search methods.

Note that all the methods mentioned above are used to solve non-linear partial

differential equations without boundary conditions. In [75], the tanh method has

been modified to solve partial differential equations with boundary conditions. To

satisfy the boundary conditions, the expression of the solution has to be modified.

For example, if the solution must vanish asξ → +∞, then the solution can be

represented by
[
1 − tanh(ξ)

]n1

n−n1∑

j=0

cj
[
tanh(ξ)

]j
, (2.14)

wheren1 ∈
{
1, . . . , n

}
can be determined later.
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Now, let us turn to Boussinesq-type equations. Based on the direct search

methods introduced above, some Boussinesq-type equationshave been solved in

references [11, 37, 49, 63, 81, 100, 116, 117, 118].

In [100], some new hyperbolic schemes have been introduced to solve the

Boussinesq equation (1.1). As mentioned before, these kinds of methods are sub-

cases of the Exp-function method.

The generalized tanh function method developed in [49] assumes that the so-

lution is represented by
n∑

j=0

cj
[
Φ(ξ)

]j
,

wherecj = cj(x, t) and ξ := ξ(x, t) = αx + q(t), andΦ is a solution of the

Riccati equation (2.5). The method looks like more general than the improved tanh

function method [32]. However, applying these two methods to the Boussinesq

equation (1.1), you can obtain the same results.

The Boussinesq equation (1.1) and variant Boussinesq equations (1.12) have

been solved by the Jacobi elliptic function expansion method [63] and extended

Jacobi elliptic function expansion method [117]. Some Jacobi elliptic function so-

lutions to equations (1.1) and (1.12) have been reported there. Note that the ex-

tended Jacobi elliptic function expansion method [117] includes the Jacobi elliptic

function expansion method [63]. In [116, 118], by seeking new exact solutions of

equation (2.4), new exact solutions to equations (1.1) and (1.12) have been obtained.

The hyperbola function method [11], in which the solution isrepresented by

n∑

j=0

cj
[
csch(ξ)

]j
+

n∑

j=1

Cj
[
csch(ξ)

]j−1
coth(ξ),

has been applied to solve the variant Boussinesq equation (1.12). Note that the

method is also included in the Exp-function method.

In[37], a new algebraic method has been proposed to solve thevariant Boussi-

nesq equations (1.12). It is noted that in [37] only the caser = 4 has been used to

solve equations (1.12). Hence, the new algebraic method applied to equations (1.12)

is technically the same as the generalized Jacobi elliptic function expansion method
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[22, 30]. Compared with the methods presented in [11, 63, 116, 117, 118], the pro-

posed method [37] gives new and more general solutions due tomore solutions to

equation (2.4) available.

In addition, Natsis [81] derived a class of solitary wave solutions for the1+1

dimensional improved Boussinesq equations (1.8) withβ = 0 by choosing expres-

sion (2.3) andΦ(·) = sech(·).
In Chapter 4, we will develop a generalized expansion methodto construct ex-

act solutions for non-linear partial differential equations without considering bound-

ary conditions. Many new solutions of ordinary differential equation (2.4) will be

reported. These new solutions together with expression (2.3) ensure that the pro-

posed expansion method can yield many new solutions for non-linear partial differ-

ential equations. To demonstrate the proposed expansion method, we apply it to the

Boussinesq equation (1.1), the improved Boussinesq equation (1.3) and the modi-

fied KdV equation. Clearly, we can obtain many additional solutions using the new

solutions of (2.4) together with expression (2.6). We will apply expression (2.6) to

the shallow water long wave approximate equations.

2.4 Numerical methods

Up to now, Boussinesq-type equations are mostly solved by the finite difference

method (see [12, 17, 18, 19, 20, 26, 27, 33, 34, 50, 83, 84, 87, 91, 98, 111]). The

finite difference method is easy to implement calculations.Derivatives in the equa-

tion under consideration are approximated by finite difference approximations, such

as forward difference, back difference, and central difference. However, all such ap-

proximations cause truncation errors. Hence, it is important to study the stability

and convergence of the finite difference method. Fourier method and matrix method

are two well-known methods for determining stability criteria.

In [84], Cauchy problems for the “good” Boussinesq equationhave been in-

vestigated by the finite difference method. Some simple finite difference schemes

have been developed and their non-linear stability and convergence have been an-
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alyzed. In addition, the numerical schemes have been testedin the long-time inte-

gration of solitary waves and collision of solitary waves.

In [34], based on linearization and the finite-difference technique, an implicit

scheme has been proposed for solving the initial boundary value problem involving

the “good” Boussinesq equation. By using Fourier’s stability method, it has been

proved that this numerical scheme is unconditionally stable. Complex wave phe-

nomena, such as wave splitting and wave interaction, have been simulated by using

the proposed numerical scheme. The numerical results confirmed the theoretical

results reported in [77].

In [17, 19], Bratsos considered initial boundary value problems for both “good”

and “bad” Boussinesq equations. Using finite difference formulation, the original

problem has been converted to a Cauchy problem for a system ofordinary differ-

ential equations. Numerical methods have been developed byreplacing the matrix-

exponential term in a recurrence relation by rational approximations. In [17], Brat-

sos developed a seven-point three-level explicit and fifteen-point three-level implicit

schemes. The later gives rise to a non-linear algebraic system and is solved by the

Gauss-Seidel method. The local truncation and stability for the schemes have been

analyzed. In [19], Bratsos developed a predictor-corrector scheme and a modified

predictor-corrector scheme. Both numerical schemes are based on the explicit and

implicit methods developed in [17]. The exact solutions have been used to test

the proposed numerical schemes. Numerical experiments show that the numerical

schemes proposed in [19] are able to give a satisfactory approximation.

Initial boundary value problems for the improve Boussinesqequation (1.3)

have been solved numerically in [18, 20, 33, 50]. In [50], using a linearization

technique and finite difference approximations, a three-level iterative scheme with

second-order local truncation error was derived to solve the problem numerically.

The scheme was used to investigate head-on collisions between solitary waves. In

[33], an improved scheme with a Crank-Nicolson modificationhas been developed.

A solitary wave solution of the equation has been used to testthe accuracy and

efficiency of the developed scheme. Numerical experiments show that the scheme
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is able to simulate complex wave phenomena, such as wave breaking-up and head-

on collision. In [18], Bratsos applied finite difference approximations to reduce the

improved Boussinesq equation to a system of ordinary differential equations and

employed a Padé approximation to derive a three-level implicit time-step scheme.

In addition, Bratsos [20] applied an implicit finite difference method associated with

a predictor-corrector scheme to solve the problem. The efficiency of the proposed

method [20] has been tested by various wave packets and the numerical results have

been compared with the relevant ones given in [15, 33, 50].

In [26], a class of initial boundary value problems for the damped Boussinesq

equation (1.6) have been studied by the finite difference method. The temporal and

spatial derivatives have been approximated by finite difference formulae. Choo and

Chung applied the Fourier transform and perturbation technique to derive the sta-

bility of the proposed numerical scheme. In addition, errorestimate for the scheme

has been given.

In [62], a second-order accurate numerical scheme has been presented to solve

the extended Boussinesq equations (1.10). Finite difference formulae have been

used to approximate spatial derivatives of various orders.Then, the equations are

matched in time by a predictor-corrector scheme, in which the predictor and correc-

tor steps are implemented by the explicit third-order Adams-Bashforth and forth-

order Adams-Moulton methods respectively. The predictor-corrector scheme has

been iterated until certain accuracy requirement on the error between two succes-

sive results has been satisfied. The stability of the presented numerical scheme has

been analyzed by a Von Neumann stability analysis and the stability condition for

the scheme has been given. Compared with available theory, other numerical results

from a Navier-Stokes equations solver [61] and experimental data, the numerical ex-

periments show that the proposed numerical scheme has very good properties for

mass and energy conservation and that equations (1.10) are able to describe a wide

range of water wave problems.

Although the finite difference method is easy to implement calculations, fine

grid will be required to increase the accuracy of the numerical solutions. More-
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over, if the computational domain is irregular, then the finite element method, in

which the governing equations can be discretized in an unstructured mesh system,

is more preferable than the finite difference method. In [35,59, 76, 85, 98, 119],

Boussinesq-type equations have been solved by using the finite element method.

In [76], using a Petro-Galerkin method with linear “hat” trial functions and

cubic B-spline test functions, the Cauchy problem governedby the “good” Boussi-

nesq equation has been converted to a system of ordinary differential equations. Us-

ing central differential approximation of the second orderderivatives, a predictor-

corrector scheme has been developed to solve the ordinary differential equations.

Numerical experiments have been given to demonstrate its capability in simulating

complex wave phenomena, such as wave splitting and wave interaction. In addition,

an analytical formula for the two-soliton solution for the “good” Boussinesq equa-

tion has been given and numerical experiments confirm the theoretical result for the

two-soliton solution.

In [35], spectral/hp discontinuous Galerkin methods for the classical Boussi-

nesq equations (1.7) have been developed on unstructured triangular meshes. Two

different numerical schemes have been proposed to solve theequations. It has been

shown that these two schemes are equivalent and give identical results in terms of

the accuracy, convergence and restriction on the time-step.

In [119], the finite element method has been used to discretize the generalized

Boussinesq equations (1.11) in space. A fourth-order predictor-corrector scheme

which is similar to the predictor-corrector scheme presented in [62] has been used

in the time integration. A damping layer has been applied to the open boundary

for absorbing the outgoing waves. In comparison with experimental data and other

numerical results available in literature [51, 57, 58, 72, 93, 95, 102], the numerical

results demonstrate that equations (1.11) are capable of simulating wave transfor-

mation from relative deep water to shallow water.

In [98], using a linear element spatial discretization method coupled with a

sophisticated adaptive time integration package, a numerical scheme for Nwogu’s

one-dimensional extended Boussinesq equations (1.10) hasbeen developed. Nu-
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merical experiments with wave propagating in variable water depth are compared

with theoretical and experimental data [28, 29, 115]. The comparison confirms the

accuracy of the numerical results and shows that the proposed numerical scheme

competes well with the existing finite difference methods.

In [59], the improved Boussinesq system (1.8) has been studied by finite

element method. Based on quadrilateral elements with linear interpolating func-

tions, spatial derivatives have been discretized. Then theproblem was reduced

to a system of ordinary differential equations, which was solved by the Adams-

Bashforth-Moulton predictor-corrector method which is similar to the one used in

[62, 119]. The numerical results are in good agreement with the experimental re-

sults [102, 112]. Their numerical results show that the proposed scheme is capable

of providing satisfactory results in engineering applications.

The Adomian’s decomposition method [9] and its modification[1] have also

been applied to solve non-linear partial differential equations. In the method, the

solution is expressed as a series, where the terms are determined recursively. An

approximation is obtained by truncating the series after a sufficient number of terms.

However, it is difficult to prove the convergence of the series. Some convergence

results have been given in references [3, 2, 4, 24, 25, 78].

In [10, 31, 47, 54, 55, 56, 99], Boussinesq-type equations have been solved

by the Adomian’s decomposition method. To demonstrate the efficiency and accu-

racy of the method, the numerical results have been comparedwith exact solutions.

Moreover, some exact solutions can be derived by the Adomian’s decomposition

method (see [54, 99]).

In [1], the Adomian decomposition-Padé technique has beenused to solve

Cauchy problems for the “good” Boussinesq equation. Note that the convergence

region in time for the Adomian’s decomposition method is generally limited. Using

Padé’s technique, the region can be extended. Numerical examples show that the

method can give approximate solutions with faster convergence rate and higher ac-

curacy than using Adomian’s decomposition method alone. However, the disadvan-

tage of Adomian’s decomposition method still remains, thatis, the error increases
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rapidly ast increases.

In addition, the variational iteration method introduced by He [43, 44] is ca-

pable of solving Boussinesq-type equations (see [48]). In the method, a sequence

can be derived from a correction functional. Tatari and Dehghann [94] established

sufficient conditions for the convergence of this sequence.Extensive numerical ex-

periences indicate that the variational iteration method is efficient for a large class

of non-linear partial differential equations (see [5, 6, 39, 43, 44, 46, 48, 70, 79, 80,

94, 101]). Numerical examples show that the solutions obtained by the variational

iteration method converge to their exact solutions faster than those obtained by the

Adomian’s decomposition method (see [44, 80, 101]).

In Chapter 5, a numerical scheme for solving the initial boundary value prob-

lem (1.15)-(1.17) will be developed. The finite element method with linear B-spline

basis functions is used to discretize the non-linear partial differential equation in

space. Consequently, the original problem is converted into an ordinary differential

system. Thus, many accurate numerical methods are readily applicable. Various

examples are presented to validate this technique and demonstrate its capacity to

simulate wave splitting, wave interaction and blow-up behavior.

22



Chapter 3

On the Cauchy problem for a
generalized Boussinesq equation

3.1 Introductory remarks

Over the past two decades, a great deal of work has been carried out worldwide

to study the properties and solutions of the generalized Boussinesq equation (1.13)

(see [16, 60, 65, 66, 67, 68, 69]). In this chapter, we study the following Cauchy

problem:

utt − αuxx + uxxxx + [f(u)]xx = 0, (3.1)

and

u(x, 0) = u0(x), ut(x, 0) = u1(x), (3.2)

whereu := u(x, t) : R × R
+ → R, α > 0 is a constant,f , u0, u1 : R → R are

given functions and the subscripts denote partial differentiation.

Problem (3.1)-(3.2) withα = 1 has been previously considered in [16, 66].

More specially, the authors in [16] used Kato’s theory developed in [52, 53] to

show that the Cauchy problem (3.1)-(3.2) is locally well posed. The solitary wave

solutions of equation (3.1) were also investigated and it was found that within a

certain range of phase speeds, those solutions are non-linearly stable. In [66], based

on the ground state of a corresponding non-linear Euclideanscalar field equation

(see Section 3.2 for a definition), sufficient conditions forsolution blow-up were

established. In addition, whenf(s) = |s|p−1s for somep > 1 in (3.1), conditions
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guaranteeing the existence of a global solution for problem(3.1)-(3.2) were derived.

One of the aims of this chapter is to construct sufficient conditions for the

existence of a global solution for problem (3.1)-(3.2) whenf is in a more general

form andα is an arbitrary constant. To do this, we first generalize Theorem 2.6 of

[66]. As the method of proof employed in [66] is not suitable for the generalized

problem considered here, we use a different approach to establish this result. Based

on the new result, sufficient conditions for the existence ofa global solution are

established. The other aim is to derive conditions for the blow-up of the solution to

problem (3.1)-(3.2) for some more general cases off . For this purpose, we propose

a different approach to derive a necessary inequality and consequently establish the

blow-up results. It should be addressed here that our blow-up results extend those

reported in [66] which is for the casef(s) = |s|p−1s (p > 1).

3.2 Preliminary results

Before proving our main results relating to problem (3.1)-(3.2), we first need to

establish some preliminary lemmas involving a corresponding non-linear Euclidean

scalar field equation. Although the space domain of (3.1) isR, we will study this

corresponding equation in the more general settingR
N .

The non-linear Euclidean scalar field equation that we will consider is

−∆φ + αφ = f(φ), (3.3)

whereφ ∈ H1(RN)\{0}, α > 0 is a constant andf is a given function. The

function f is required to satisfy some conditions. More specifically, we consider

the following two cases:

Case 1.f(s) = |s|p−1s − |s|q−1s for some real numbersp andq satisfying1 <

q < p < κ, where

κ =

{
N+2
N−2

, N ≥ 3,
+∞, N = 1, 2.

Case 2.f satisfies the following hypotheses:

(H1). f ∈ C1(R); f is odd;f ′(0) = 0 andf(s) ≥ 0 for all s ≥ 0.
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(H2). If N ≥ 3, then lim
s→+∞

f(s)

sℓ
= 0 andlim sup

s→+∞

f ′(s)

sℓ−1
< +∞, where

ℓ = N+2
N−2

; otherwise, there exists anℓ ∈ (1,∞) such that

lim
s→+∞

f(s)

sℓ
= 0 and lim sup

s→+∞

f ′(s)

sℓ−1
< +∞.

(H3). There exists a real numberθ ∈
(
0, 1

2

)
such that

F (s) :=

∫ s

0

f(τ)dτ ≤ θsf(s)

for all s ≥ 0.

(H4). The function
f(s)

s
is strictly increasing on(0,+∞).

Remark 3.1. For both Cases 1 and 2,f satisfies (H2) and (H3). Note that if

f(s) = |s|p−1s− |s|q−1s, thenf satisfies (H2) and (H3) by choosingθ = 1/(q + 1)

andℓ = p+ 1 if N = 1, 2.

For both Cases 1 and 2,f is an odd function satisfyinglim
s→0

f(s)
s

= 0 and (H2).

Hence, there exists a positive constantC such that, for eachs ∈ R,

sf(s) ≤ C|s|ℓ+1 +
α

2
s2, (3.4)

whereℓ is defined as in (H2) (according to Remark 3.1,ℓ = p + 1 for Case 1 if

N = 1, 2).

In this chapter,| · |l denotes the norm ofLl(RN), while‖ · ‖H1(RN ) denotes the

norm ofH1(RN). According to [14], iff is a continuously differentiable function

satisfying (H2) andf(0) = f ′(0) = 0, then the functionals

S(ψ; f, α) :=

∫

RN

[1
2

∣∣∇ψ(x)
∣∣2 +

α

2

∣∣ψ(x)
∣∣2 − F

(
ψ(x)

)]
dx

and

R(ψ; f, α) :=

∫

RN

[∣∣∇ψ(x)
∣∣2 + α

∣∣ψ(x)
∣∣2 − ψ(x)f

(
ψ(x)

)]
dx

are well-defined onH1(RN). Normally, we will omit f andα when referring to

those functions if the dependence is obvious.

Recall that a functionϕ ∈ H1(RN)\{0} is called a ground state of equa-

tion (3.3) if
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(i) ϕ is a solution of (3.3); and

(ii) S(ϕ; f, α) ≤ S(ψ; f, α) wheneverψ is a solution of (3.3).

In other words,ϕminimizesS over the class of solutions of (3.3). For Case 2, it has

been shown in reference [13] that such a ground state exists.This result is extended

further in the following two lemmas.

Lemma 3.1.Suppose thatf satisfies the conditions listed in either Case 1 or Case 2,

and thatα > 0 andψ ∈ H1(RN)\{0}. Then, there exists a uniqueλ∗ ∈ (0,+∞)

such that

R(λψ; f, α)

{
> 0, if 0 < λ < λ∗,
= 0, if λ = λ∗,
< 0, if λ > λ∗.

In addition,S(λ∗ψ; f, α) > S(λψ; f, α) wheneverλ 6= λ∗.

Proof. From the definitions ofS andR, we see that, for eachλ ∈ [0,∞),

S(λψ) =

∫

RN

[1
2
λ2|∇ψ(x)|2 +

α

2
λ2|ψ(x)|2 − F

(
λψ(x)

)]
dx

and

R(λψ) =

∫

RN

[
λ2|∇ψ(x)|2 + αλ2|ψ(x)|2 − λψ(x)f

(
λψ(x)

)]
dx.

A straightforward calculation shows that

dS(λψ)

dλ
=
R(λψ)

λ
. (3.5)

Now, we prove that there exists a unique real numberλ∗ ∈ (0,∞) such that

R(λ∗ψ) = 0, R(λψ) > 0 for 0 < λ < λ∗ andR(λψ) < 0 for λ > λ∗. For Case 1,

let

g(λ) := λp−1 − aλq−1 − b,

wherea =
|ψ|q+1

q+1

|ψ|p+1
p+1

andb =
α|ψ|22 + |∇ψ|22

|ψ|p+1
p+1

. Then,

g′(λ) = (p− 1)λp−2 − a(q − 1)λq−2 = (p− 1)λq−2

[
λp−q − a(q − 1)

p− 1

]
. (3.6)
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Setλ0 :=

[
(q−1)|ψ|q+1

q+1

(p−1)|ψ|p+1
p+1

] 1
p−q

> 0. It is clear from (3.6) that

g′(λ)

{
< 0, if λ ∈ (0, λ0),
= 0, if λ = λ0,
> 0, if λ ∈ (λ0,+∞).

Consequently,g(λ) is strictly decreasing on[0, λ0] and strictly increasing on(λ0,+∞).

Sinceg(0) < 0 and lim
λ→+∞

g(λ) = +∞, there exists a uniqueλ∗ ∈ (λ0,+∞) such

that

g(λ)

{
< 0, if λ ∈ (0, λ∗),
= 0, if λ = λ∗,
> 0, if λ ∈ (λ∗,+∞).

AsR(λψ) = −λ2|ψ|p+1
p+1g(λ), we derive thatR(λ∗ψ) = 0, R(λψ) > 0 for 0 < λ <

λ∗, andR(λψ) < 0 for λ > λ∗. For Case 2, the odd functionf implies that

R(λψ) = λ2

[
|∇ψ|22 + α|ψ|22 −

∫

RN

|ψ(x)|2f
(
λ|ψ(x)|

)

λ|ψ(x)| dx

]
.

Note thatf satisfies (H4) andlim
s→0

f(s)
s

= 0. Hence, there exists a uniqueλ∗ ∈ (0,∞)

such thatR(λ∗ψ) = 0,R(λψ) > 0 for 0 < λ < λ∗ andR(λψ) < 0 for λ > λ∗.

In addition, from (3.5), we have

dS(λψ)

dλ

{
> 0, if λ ∈ (0, λ∗),
= 0, if λ = λ∗,
< 0, if λ ∈ (λ∗,+∞).

Hence, it follows thatS(λ∗ψ) > S(λψ) wheneverλ 6= λ∗. �

Lemma 3.2.LetM := {ψ ∈ H1(RN)\{0} : R(ψ; f, α) = 0}, α > 0 and suppose

thatf satisfies the conditions listed in either Case 1 or Case 2. Then, there exists a

solutionψ to the following problem:

min
ψ∈M

S(ψ; f, α). (3.7)

Moreover, the set of solutions of problem (3.7) coincides with the set of ground

states of equation (3.3).

Proof. Multiplying both sides of (3.3) byφ, integrating overRN and using Green’s
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formula, we see that any solution of (3.3) belongs toM . Sincef satisfies (H3), we

have that

S(ψ) =
1

2
|∇ψ|22 +

α

2
|ψ|22 −

∫

RN

F
(
ψ(x)

)
dx

>
1

2
|∇ψ|22 +

α

2
|ψ|22 − θ

∫

RN

ψ(x)f
(
ψ(x)

)
dx. (3.8)

If ψ ∈M , then it follows from (3.8) that

S(ψ) >

(
1

2
− θ

)(
|∇ψ|22 + α|ψ|22

)
. (3.9)

Note thatθ < 1/2. Hence,S is bounded below onM . Accordingly, let{vn} ⊂ M

be a minimizing sequence such thatlim
n→+∞

S(vn) = inf
ψ∈M

S(ψ).

Let ψ∗ denote the Schwarz spherical rearrangement of a function|ψ|. From

[13], ψ∗ is the spherically symmetric non-increasing (with respectto |x|) function

having the same distribution function as|ψ| such that
∫

RN

|∇ψ∗(x)|2dx ≤
∫

RN

|∇ψ(x)|2dx

and

∫

RN

G
(
ψ∗(x)

)
dx =

∫

RN

G
(
ψ(x)

)
dx

for any functionG : R → R. Therefore,

S(ψ∗) ≤ S(ψ) (3.10)

for eachψ ∈ H1(RN). In addition, it is easy to check that, for each real number

γ > 0, (γψ)∗ = γψ∗.

For a givenn, it follows from Lemma 3.1 that there exists a unique real num-

ber νn > 0 such thatR(νn(v
∗
n)) = 0. Let un = νn(vn)

∗ = (νn(vn))
∗. Then,

according to (3.10) and Lemma 3.1, we get

S(un) = S
((
νn(vn)

)∗) ≤ S
(
νn(vn)

)
≤ S

(
vn
)
.

Therefore, the spherically symmetric non-increasing sequence{un} is a minimizing

sequence inM as well.
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By virtue of (3.9), we haveS(un) >
(

1
2
− θ
)
(|∇un|22 + α|un|22). Hence, the

boundness of sequence{S(un)} implies that sequence{un} is uniformly bounded

in H1(RN). Applying the compactness lemma of Strauss [92] (see also [14]), there

exists a subsequence of{un}, relabeled by{un} for notational convenience, such

that
un ⇀ u∞ weakly inH1(RN ),
un → u∞ a.e. inR

N .
(3.11)

Arguing by contradiction, we can conclude thatu∞ 6= 0. Suppose thatu∞ =

0. Noting thatun converges almost everywhere to0 asn → ∞, it is clear from

R(un) = 0 that lim
n→∞

‖un‖H1(RN ) = 0. Thus,un strongly converges to 0 inH1(RN)

asn→ +∞. On the other hand, it follows fromR(un) = 0 and (3.4) that

|∇un|22 + α|un|22 =

∫

RN

un(x)f
(
un(x)

)
dx

≤ C|un|ℓ+1
ℓ+1 +

α

2
|un|22,

where constantsC andℓ are defined as in (3.4). Hence,

min{1, α
2
}‖un‖2

H1(RN ) ≤ C|un|ℓ+1
ℓ+1.

According to the definition ofℓ, we have the following Sobolev inequality

|un|ℓ+1 ≤ C∗
ℓ+1‖un‖H1(RN ),

where the positive constantC∗
ℓ+1 is independent ofun. Hence, we obtain that there

exists a positive constantc satisfying

c ≤ ‖un‖H1(RN ).

This leads to a contradiction.

According to Lemma 3.1, there is a unique real numberµ > 0 such that

R(µu∞) = 0. Letφ := µu∞. In view of (3.11), we have

µun ⇀ φ weakly inH1(RN),
µun → φ a.e. inR

N .
(3.12)

As R(un) = 0, it follows from Lemma 3.1 thatS(µun) ≤ S(un). Noticing thatS

is weakly sequential lower semi-continuous onH1(RN), we have

S(φ) ≤ lim inf
n→+∞

S(µun) ≤ lim
n→+∞

S(un) = inf
ψ∈M

S(ψ).
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Note thatφ ∈M . Henceφ is a solution of problem (3.7).

Now, we will prove thatφ satisfies (3.3). Sinceφ solves problem (3.7), there

exists a Lagrange multiplierΛ such that

S ′(φ) = ΛR′(φ). (3.13)

We claim thatΛ = 0, which implies thatφ is a solution of (3.3). Indeed, it follows

from [14] thatS andR are continuously Frechet-differentiable and

< S ′(φ), φ > = |∇φ|22 + α|φ|22 −
∫

RN

φ(x)f
(
φ(x)

)
dx = R(φ) = 0,

< R′(φ), φ > = 2|∇φ|22 + 2α|φ|22 −
∫

RN

[
φ(x)f

(
φ(x)

)
+ φ2(x)f ′(φ(x)

)]
dx,

where< ·, · >=< ·, · >(H−1(RN ),H1(RN )). If < R′(φ), φ > is negative, then it

follows from (3.13) thatΛ = 0. For Case 1, we have that

< R′(φ), φ > = 2|∇φ|22 + 2α|φ|22 − (p+ 1)|φ|p+1
p+1 + (q + 1)|φ|q+1

q+1

< 2|∇φ|22 + 2α|φ|22 − (p+ 1)|φ|p+1
p+1 + (p+ 1)|φ|q+1

q+1

= (1 − p)(|∇φ|22 + α|φ|22)

< 0.

For Case 2, it is clear thatf ′ is an even function asf is odd. Thus, fromφ ∈M , we

have that

< R′(φ), φ > =

∫

RN

[
φ(x)f

(
φ(x)

)
− φ2(x)f ′(φ(x)

)]
dx

=

∫

RN

[
|φ(x)|f

(
|φ(x)|

)
− |φ(x)|2f ′(|φ(x)|

)]
dx.

In addition, condition (H4) implies thatsf ′(s)− f(s) > 0 for eachs > 0. Thus, for

Case 2,< R′(φ), φ > is negative as well. Therefore, the solutions of problem (3.7)

are also ground states of (3.3). Recalling that each solution of (3.3) belongs toM ,

we can conclude that the set of ground states of (3.3) coincides with the set of solu-

tions of problem (3.7) .�
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In view of Lemma 3.2, we see that equation (3.3) has a ground state if α > 0

andf satisfies the conditions listed in either Case 1 or Case 2. Accordingly, set

d := min
ψ∈M

S(ψ). (3.14)

Next we will prove a preliminary result that will be used in derivation of the

conditions for the blow-up of the solution to problem (3.1)-(3.2). To do this, the

following additional condition is required for Case 2:

(H′
4) There exists a real numberβ > 1 such that the functionf(s)

sβ is increasing

on (0,∞).

Note that the condition (H′4) is stronger than the condition (H4). If f satisfies the

hypotheses (H1), (H2), (H3) and (H′
4), we refer to it as Case 2+. Hence, Case 2+

is included in Case 2. It is also noted that iff(s) = |s|p−1s for some real number

p > 1, thenf satisfies all the conditions listed in Case 2+.

Lemma 3.3. Suppose thatα > 0 and f satisfies the conditions listed in either

Case 1 or Case 2+. If ψ ∈ H1(RN)\{0} satisfyingR(ψ) < 0, then,R(ψ) <

(ρ+ 1)
[
S(ψ) − d

]
, whereρ = q for Case 1 andρ = β for Case 2+.

Proof. AsR(ψ) < 0, it follows from Lemma 3.1 that there exists a unique number

λ∗ ∈ (0, 1) such thatR(λ∗ψ) = 0. Let

G(λ) := (ρ+ 1)S(λψ) − R(λψ).

Now, we are in the position to prove thatG(λ) is strictly increasing on(0,∞).

Noting that the functionf is odd, we have

G(λ) =
ρ− 1

2
λ2
[
α|ψ(x)|22 + |∇ψ(x)|22

]

+

∫

RN

[
λ|ψ(x)|f

(
λ|ψ(x)|

)
− (ρ+ 1)F

(
λ|ψ(x)|

)]
dx
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and

G′(λ) =λ(ρ− 1)
[
α|ψ(x)|22 + |∇ψ(x)|22

]

+ λ

∫

RN

|ψ(x)|2
[

f ′(λ|ψ(x)|
)
− ρ

f
(
λ|ψ(x)|

)

λ|ψ(x)|

]

dx.

Note that, for both Case 1 and Case 2+, the functionf(s)/sρ is increasing on(0,∞).

Thus,f ′(s) − ρf(s)/s ≥ 0 for eachs > 0. Hence,G′(λ) > 0 for eachλ > 0.

Consequently, we have thatG(1) > G(λ∗). That is,

(ρ+ 1)S(ψ) −R(ψ) > (ρ+ 1)S(λ∗ψ) −R(λ∗ψ).

Using the fact thatR(λ∗ψ) = 0 andS(λ∗ψ) ≥ d, we can obtain that

(ρ+ 1)
[
S(ψ) − d

]
> R(ψ).

�

3.3 Main results

In this section, we first introduce an equivalent form of problem (3.1)-(3.2). Then,

on the basis of an existing local existence theorem, we construct conditions for the

existence of global solution for problem (3.1)-(3.2) underCase 1 and Case 2, and

then establish the sufficient conditions for the blow-up of the solution to problem

(3.1)-(3.2) under Case 1 and Case 2+.

Now, we consider the following problem which is equivalent to problem (3.1)-

(3.2):
ut = vx,
vt = αux − uxxx − [f(u)]x ,

}
(3.15)

subject to the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x). (3.16)

Note thatu1(x) in problem (3.1)-(3.2) andv0(x) in problem (3.15)-(3.16) satisfy

u1(x) =
[
v0(x)

]′
.
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Set

E(u, v) :=

∫ +∞

−∞

[
α

2
u2(x, t) +

1

2
u2
x(x, t) +

1

2
v2(x, t) − F

(
u(x, t)

)
]
dx,

V (u, v) :=

∫ +∞

−∞
u(x, t)v(x, t)dx,

I1(u, v) :=

∫ +∞

−∞
u(x, t)dx,

I2(u, v) :=

∫ +∞

−∞
v(x, t)dx.

According to [65, 66], it can be easily established that problem (3.15)-(3.16) is al-

ways locally well posed, and the above four functionals are invariant.

Theorem 3.1. (Local existence)[65, 66] If f is a continuously differentiable function

such thatf(0) = 0 and (u0, v0) ∈ H1(R) × L2(R), then problem (3.15)-(3.16)

possesses a unique weak solution(u, v) in C
(
[0, T );H1(R) × L2(R)

)
such that

E(u, v) = E(u0, v0), V (u, v) = V (u0, v0), I1(u, v) = I1(u
0, v0) andI2(u, v) =

I2(u
0, v0). Moreover, the interval of existence[0, T ) can be extended to a maximal

interval[0, Tmax) such that either

(i) Tmax = +∞; or

(ii) Tmax < +∞, lim
t→T−

max

‖(u, v)‖H1(R)×L2(R) = +∞,

where‖(u, v)‖H1(R)×L2(R) = ‖u‖H1(R) + |v|2 denotes the norm ofH1(R) × L2(R).

Remark 3.2. Note that Theorem 3.1 is slightly different from the ones reported

in [65, 66] whereα = 1. Letg(s) := f(s)−αs+s for eachs ∈ R. If f satisfies the

conditions listed in Theorem 3.1, theng is continuously differentiable andg(0) = 0.

Now, we define two subsets ofH1 (R) which will be proved to be invariant under

the flow generated by problem (3.15)-(3.16) for Cases 1 and 2.Let

K1 := {ψ ∈ H1(R) : S(ψ) < d,R(ψ) > 0} ∪ {0}
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and

K2 := {ψ ∈ H1(R) : S(ψ) < d,R(ψ) < 0},

whered is defined by (3.14). Suppose that(u0, v0) ∈ H1(R)×L2(R) are such that

E(u0, v0) < d. We will show that ifα > 0 andf satisfies the conditions listed

in either Case 1 or Case 2 andu0 ∈ K1, then the corresponding solution exists

globally. Furthermore, if, in addition to satisfying the conditions listed in either

Case 1 or Case 2+, α > 0 andu0 ∈ K2, then the corresponding solution blows up

in finite time. All these results are furnished precisely in the following theorems.

To simplify the presentation, for the remainder of this section we will use the

following notation:

u(t) := u(x, t),

ux(t) := ux(x, t),

v(t) := v(x, t).

Lemma 3.4. Suppose thatα > 0 and f satisfies the conditions listed in either

Case 1 or Case 2. Ifψ ∈ H1(R) satisfyingR(ψ) < 0, then, there exists a positive

constantc which is independent ofψ such that‖ψ‖H1(R) > c.

Proof. SinceR(ψ) < 0, it follows from inequality (3.4) that

α|ψ|22 + |ψx|22 < C|ψ|ℓ+1
ℓ+1 +

α

2
|ψ|22,

where constantsC andℓ are defined as in (3.4). Applying the Sobolev inequality,

we obtain that there exists a positive constantC∗
ℓ+1 depending onℓ such that

min{α
2
, 1}‖ψ‖2

H1(R) < C(C∗
ℓ+1)

ℓ+1‖ψ‖ℓ+1
H1(R). (3.17)

Note that bothC andC∗
ℓ+1 are independent ofψ. Inequality (3.17) shows that there

is a positive constantc which is independent ofψ satisfying‖ψ‖H1(R) > c. �

Theorem 3.2. (Invariant sets)Suppose thatα > 0 andf satisfies the conditions

listed in either Case 1 or Case 2, and that(u0, v0) ∈ H1(R) × L2(R) satisfying
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E(u0, v0) < d. Let (u, v) ∈ C
(
[0, Tmax);H

1(R) × L2(R)
)

be the weak solution

of problem (3.15)-(3.16). If, for eachj ∈ {1, 2}, u0 ∈ Kj , thenu(t) ∈ Kj for

0 ≤ t < Tmax.

Proof. By virtue of Theorem 3.1, we have thatE
(
u(t), v(t)

)
= E(u0, v0) < d

for eacht ∈ [0, Tmax), which implies thatS
(
u(t)

)
< d. Now we claim that if

R
(
u(t∗)

)
= 0 wheret∗ ∈ (0, Tmax), thenu(t∗) = 0. Indeed, ifu(t∗) 6= 0, then, it

follows from Lemma 3.2 thatS
(
u(t∗)

)
≥ d. This contradictsS

(
u(t∗)

)
< d.

Now, let us show thatu(t) ∈ K2 for eacht ∈ [0, Tmax) if u0 ∈ K2. Note that

R(u0) < 0 andR
(
u(t)

)
is continuous on[0, Tmax). If there exists āt ∈ [0, Tmax)

such thatu(t̄) /∈ K2, i.e., R
(
u(t̄)

)
≥ 0, then, there is at∗ ∈ (0, t̄] such that

R
(
u(t∗)

)
= 0 andR

(
u(t)

)
< 0 whenevert ∈ [0, t∗). FromR

(
u(t∗)

)
= 0, we

know thatu(t∗) = 0. On the other hand, according to Lemma 3.4, we have that, for

eacht ∈ [0, t∗), there exists a positive constantc such that‖u(t)‖H1(R) > c. Noting

that‖u(t)‖H1(R) is continuous on[0, Tmax), we obtain that‖u(t∗)‖H1(R) > c, which

contradictsu(t∗) = 0.

Similarly, we can verify that ifu0 ∈ K1, thenu(t) ∈ K1 for t ∈ [0, Tmax).

Suppose that there is āt ∈ (0, Tmax) such thatu(t̄) /∈ K1. Note that ifR(u(t̄)) = 0,

thenu(t̄) = 0, that is,u(t̄) ∈ K1. Thus,R(u(t̄)) < 0 andu(t̄) 6= 0. Since

R(u0) > 0. according to the continuity ofR
(
u(t)

)
, there is at∗ ∈ (0, t̄) such that

R
(
u(t∗)

)
= 0, which implies thatu(t∗) = 0, andR

(
u(t)

)
< 0 whenevert ∈ (t∗, t̄].

In view of Lemma 3.4, we can obtain that there is a positive constantc satisfying

‖u(t∗)‖H1(R) > c. This contradictsu(t∗) = 0. �

Theorem 3.3. (Global existence inK1) Suppose thatα > 0 andf satisfies the

conditions listed in either Case 1 or Case 2. Then, ifu0 ∈ K1 andv0 ∈ L2(R)

such thatE(u0, v0) < d, problem (3.15)-(3.16) possesses a unique weak solution

(u, v) ∈ C
(
[0,+∞);H1(R) × L2(R)

)
.

Proof. As stated by Theorem 3.1, it suffices to prove that‖u(t)‖H1(R) + |v(t)|2
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is bounded for0 ≤ t < Tmax. Sincef satisfies (H3), we have

S
(
u(t)

)
≥1

2

∫ +∞

−∞

[
|ux(t, x)|2 + α |u(t, x)|2

]
dx− θ

∫ +∞

−∞
u(t, x)f

(
u(t, x)

)
dx

=

(
1

2
− θ

)∫ +∞

−∞

[
|ux(t, x)|2 + α |u(t, x)|2

]
dx+ θR

(
u(t)

)

≥
(

1

2
− θ

)
min{1, α}‖u(t)‖2

H1(R) + θR
(
u(t)

)
.

Applying Theorem 3.2 yieldsu(t) ∈ K1, i.e. S
(
u(t)

)
< d andR

(
u(t)

)
≥ 0 for

0 ≤ t < Tmax. Thus,‖u(t)‖H1(R) is bounded on[0, Tmax) andS
(
u(t)

)
> 0. On the

other hand, combiningE
(
u(t), v(t)

)
< d andS

(
u(t)

)
> 0, it is easily verified that

|v(t)|22 < 2d for 0 ≤ t < Tmax. �

Theorem 3.4. (Solution blow-up inK2) Let α > 0 andf satisfy the conditions

listed in either Case 1 or Case 2+. Suppose thatu0 ∈ K2 andv0 ∈ L2(R) such

thatE(u0, v0) < d andξ−1û0 ∈ L2(R), whereû0 denotes the Fourier transform of

u0. Let (u, v) ∈ C
(
[0, Tmax);H

1(R) × L2(R)
)

be the weak solution of problem

(3.15)-(3.16). ThenTmax < +∞ and

lim
t→T−

max

(
‖u(t)‖H1(R) + |v(t)|2

)
= +∞.

Proof. Here we use proof by contradiction. Suppose thatTmax = +∞. According

to [66], it follows fromξ−1û0 ∈ L2(R) that

ξ−1û ∈ C1
(
[0,∞);L2(R)

)
.

Let

I(t) := |ξ−1û(t, ξ)|22, t ∈ [0,∞).

Then,

I ′(t) = 2
(
ξ−1û(t, ξ), ξ−1ût(t, ξ)

)
(3.18)

and

I ′′(t) = 2|v(t)|22 − 2R(u(t)), (3.19)
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where
(
ξ−1û(t, ξ), ξ−1ût(t, ξ)

)
=
∫ +∞
−∞ ξ−1û(t, ξ)ξ−1ût(t, ξ)dξ. Using the Cauchy-

Schwarz inequality, it follows from (3.18) that[I ′(t)]2 ≤ 4I(t)|v(t)|22 for t ∈ [0,∞).

Let ρ = q for Case 1 andρ = β for Case 2+. We have for eacht ∈ [0,∞) that

I ′′(t)I(t) − ρ+ 3

4
[I ′(t)]

2

≥ −I(t)
[
(ρ+ 1)|v(t)|22 + 2R

(
u(t)

)]

= −I(t)
{

2(ρ+ 1)
[
E(u0, v0) − S

(
u(t)

)]
+ 2R

(
u(t)

)}
.

Noting thatE(u0, v0) < d, we have from the above inequality that

I ′′(t)I(t) − ρ+ 3

4
[I ′(t)]

2

≥ −I(t)
{

2(ρ+ 1)
[
d− S

(
u(t)

)]
+ 2R

(
u(t)

)}
.

It follows from Theorem 3.2 thatR
(
u(t)

)
< 0. Thus, using Lemma 3.3, we can

obtain thatI ′′(t)I(t) − ρ+3
4

[I ′(t)]2 > 0. DefineJ(t) := [I(t)]−
ρ−1
4 , thenJ ′′(t) < 0

for eacht ≥ 0.

Now, we will prove that there exists at∗ > 0 such thatI ′(t∗) > 0. If not, then,

for all t ≥ 0, I ′(t) ≤ 0. From (3.19) andR
(
u(t)

)
< 0, it follows thatI ′′(t) > 0 for

all t ≥ 0. Note that

lim
t→∞

I ′(t) = I ′(0) +

∫ ∞

0

I ′′(s)ds

exists. Hence, there is a sequence{tn} such that

lim
n→∞

I ′′(tn) = 0.

Combining (3.19) andR
(
u(t)

)
< 0, we get

lim
n→∞

R
(
u(tn)

)
= 0. (3.20)

Using Lemma 3.3 again yields that

(ρ+ 1)
[
E(u0, v0) − d

]
≥ (ρ+ 1)

[
S
(
u(tn)

)
− d
]
> R

(
u(tn)

)
.

By virtue of (3.20), we haveE(u0, v0) ≥ d, which leads to a contradiction.
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For such at∗, J(t∗) > 0 andJ ′(t∗) < 0. Noting thatJ ′′(t) < 0 for t ≥ 0,

there exists ât ∈
(
0,− J(t∗)

J ′(t∗)

]
such thatJ(t̂) = 0. Hence,

lim
t→t̂−

I(t) = +∞. (3.21)

Combining (3.18) and the Cauchy-Schwarz inequality, we seethat, for eacht ∈
[0, t̂),

d [I(t)]
1
2

dt
=

1

2
[I(t)]−

1
2 I ′(t) ≤ 1

2
[I(t)]−

1
2 2 [I(t)]

1
2 |v(t)|2 = |v(t)|2,

from which we obtain that, for eacht ∈ [0, t̂),

[I(t)]
1
2 < [I(0)]

1
2 +

∫ t

0

|v(τ)|2dτ.

Thus, in view of (3.21), we obtain

∫ t̂

0

|v(τ)|2dτ = +∞,

which implies that there exists a sequence{τn} such that0 < τn < t̂, lim
n→∞

τn = t̂

and

lim
n→+∞

|v(τn)|2 = +∞.

This contradictsTmax = +∞. Therefore,Tmax < +∞ and

lim
t→T−

max

(
‖u(t)‖H1(R) + |v(t)|2

)
= +∞.

�

3.4 Concluding remarks

In this chapter, we have studied the solution to the Cauchy problem for a general-

ized Boussinesq equation. Based on the ground state of a corresponding non-linear

Euclidean scalar field equation, we constructed two invariant sets. We have then

established the sufficient conditions under which a unique solution exists globally

if the initial functionu0 belongs to the first invariant set, while the solution blows

up if u0 belongs to the second invariant set.
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Chapter 4

A generalized expansion method for
non-linear wave equations

4.1 Introductory remarks

Solutions of partial differential equations have attracted significant interest in the

literature. Exact traveling wave solutions, in particular, are useful both in practice

and for verifying the accuracy and stability of popular numerical schemes such as

the finite difference and finite element methods. The capability and power of com-

puter algebra softwares such as Maple or Mathematica has increased dramatically

over the past decade. Hence, the large amounts of tedious calculations required to

verify candidate traveling wave solutions can be avoided.

Several effective direct search methods have been proposedin the literature.

These include the tanh method [74, 75], the Exp-function method [45, 103], the

Jacobi elliptic function method [63, 89], the Weierstrass elliptic function method

[82], and the cosh/sinh ansatz I-III method [100].

In this Chapter, we extend the generalized expansion methoddeveloped in

references [22, 30]. More specifically, we obtain some new Jacobi elliptic and

exponential solution classes for the same auxiliary ordinary differential equation

considered in these papers. The solutions of the ordinary differential equation are

then used to construct candidate traveling wave solutions.Our new results ensure

that, when applied to the classical Boussinesq and modified KdV equations, this

generalized expansion method not only recovers all of the solutions reported in [45,
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63, 89, 100, 117], but also discovers many new ones. Furthermore, this approach

is flexible as well as powerful — it is easily adapted in Section 4.6 to handle the

system of shallow water long wave approximate equations.

4.2 Preliminary results

The Jacobi elliptic functions are discussed thoroughly in [8, 40]. Since these special

functions play an important role in the sequel, we will briefly introduce them here.

We will also discuss some preliminary results that form the basis for our work in

Sections 4.3-4.6. Note that we will follow the usual convention and let i denote the

complex number satisfying i2 = −1. Moreover, for the remainder of this chapter,

m ∈ (0, 1) is arbitrary.

To begin, consider the integral

ζ =

∫ ρ

0

dη√
1 −m2 sin2(η)

.

Here, the constantm is referred to as the modulus and the upper limitρ is called the

amplitude ofζ , which we denote as

ρ = am(ζ).

On this basis, the first three Jacobi elliptic functions are defined as

sn(ζ) := sin[am(ζ)] = sin(ρ),

cn(ζ) := cos[am(ζ)] = cos(ρ),

and

dn(ζ) :=
√

1 −m2 sin2[am(ζ)] =
√

1 −m2 sin2(ρ).

Asm→ 1, we have

sn(ζ) → tanh(ζ) , cn(ζ) → sech(ζ) , dn(ζ) → sech(ζ) .

Similarly, asm→ 0,

sn(ζ) → sin(ζ) , cn(ζ) → cos(ζ) , dn(ζ) → 1.
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Table 4.1: Definition of the constantspj,l(γ), j = 1, . . . , 12, l = 0, . . . , 4.

j pj,0(γ) pj,1(γ) pj,2(γ) pj,3(γ) pj,4(γ)

1 m2
− 1 4γ(1 − m2) 2 − 6γ2 + 6γ2m2

− m2 2γ(2γ2
− 2 + m2

− 2γ2m2) γ4m2 + 2γ2
− γ4

− 1 − γ2m2

2 1 −4γ 6γ2
− 1 − m2 2γ(1 + m2

− 2γ2) γ4 + m2
− γ2

− γ2m2

3 1 − m2 4γ(m2
− 1) 2m2

− 6γ2m2 + 6γ2
− 1 2γ(2γ2m2

− 2γ2 + 1 − 2m2) 2γ2m2 + γ4
− m2

− γ4m2
− γ2

4 −
1
4

γ
−3γ2+1−2m2

2
γ(2m2 + γ2

− 1) −γ4
−1−4γ2m2+2γ2

4

5 −
1
4

γ
1−3γ2+m2

2
γ(γ2

− 1 − m2) 2γ2+2m2
−γ4

−1+2γ2m2
−m4

4

6 −
m2

4
γm2 m2

−3γ2m2
−2

2
γ(γ2m2

− m2 + 2) 2γ2m2
−γ4m2

−m2
−4γ2

4
7 0 m2

− 1 3γ + 2 − 3γm2
− m2 3γ2m2 + 2γm2

− 3γ2
− 4γ − 1 γ(γ + 1)(γ + 1 − γm2)

8 0 −2
p

1 − m2 6
p

1 − m2γ − 4m2 + 5 (8m2
− 10)γ − (6γ2 + 4)

p

1 − m2 (4γ + 2γ3)
p

1 − m2 + 1 + (5 − 4m2)γ2

9 1
4

0 −m2 + 1
2

0 1
4

10 m2

4(1−m2)

q

m4
−m2+1

m2
−1

2m4
−3m2+4

2(1−m2)

q

m4
−m2+1

m2
−1

m2

4(1−m2)

11 1−m2

4
0 1+m2

2
0 1−m2

4

12 m2(2−m2)

4(1−m2)

q

1−m4+m2

m2
−1

m4
−4

2(m2
−1)

q

1−m4+m2

m2
−1

m2(2−m2)

4(1−m2)

Nine additional Jacobi elliptic functions can be defined in terms of these first three

— see references [8, 40] for details.

In [22, 30], the following auxiliary ordinary differentialequation was intro-

duced:

[Φ′(ξ)]
2

= q0 + q1Φ(ξ) + q2 [Φ(ξ)]2 + q3 [Φ(ξ)]3 + q4 [Φ(ξ)]4 , (4.1)

whereqj , j = 0, . . . , 4, are given coefficients. Various solutions of the ordinary

differential equation (4.1) were constructed using the Jacobi elliptic functions, and

these results were exploited in the design of a systematic procedure for generat-

ing solutions of non-linear partial differential equations. We will follow a similar

approach. In our work, the ordinary differential equation (4.1) will be considered

assumingq4 6= 0. We will need to determine more general solution classes of the

equation than those reported in [22, 30]. This is the motivation behind the prelimi-

nary results that follow.

Recall thatm is an arbitrary real number satisfying0 < m < 1. With this

in mind, for any (possibly complex) numberγ, define the constantspj,l(γ), j =

1, . . . , 12, l = 0, . . . , 4, according to Table 4.1. Furthermore, let the functions

ϕj,l(·, γ), j = 1, . . . , 12, l = 1, . . . , 4, be defined as follows:
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ϕ1,1 (ξ, γ) =
dn(ξ)

γdn(ξ) + 1
,

ϕ1,2 (ξ, γ) =

√
1 −m2

γ
√

1 −m2 + dn(ξ)
,

ϕ1,3 (ξ, γ) =

√
m2 − 1sn(ξ)

γ
√
m2 − 1sn(ξ) + cn(ξ)

,

ϕ1,4 (ξ, γ) =
cn(ξ)

γcn(ξ) + isn(ξ)
,

ϕ2,1 (ξ, γ) =
sn(ξ)

γsn(ξ) + 1
,

ϕ2,2 (ξ, γ) =
1

γ +msn(ξ)
,

ϕ2,3 (ξ, γ) =
dn(ξ)

γdn(ξ) +mcn(ξ)
,

ϕ2,4 (ξ, γ) =
cn(ξ)

γcn(ξ) + dn(ξ)
,

ϕ3,1 (ξ, γ) =
cn(ξ)

γ cn(ξ) + 1
,

ϕ3,2 (ξ, γ) =

√
m2 − 1

γ
√
m2 − 1 +mcn(ξ)

,

ϕ3,3 (ξ, γ) =
dn(ξ)

γdn(ξ) + imsn(ξ)
,

ϕ3,4 (ξ, γ) =

√
1 −m2 sn(ξ)

γ
√

1 −m2sn(ξ) + dn(ξ)
,

ϕ4,1 (ξ, γ) =
1

γ + im sn(ξ) + dn(ξ)
,

ϕ4,2 (ξ, γ) =
dn(ξ)

γ dn(ξ) + im cn(ξ) +
√

1 −m2
,

ϕ4,3 (ξ, γ) =
sn(ξ)

γ sn(ξ) + i + i cn(ξ)
,

ϕ4,4 (ξ, γ) =
cn(ξ)

γ cn(ξ) + i dn(ξ) +
√
m2 − 1 sn(ξ)

,

ϕ5,1 (ξ, γ) =
1

γ +m cn(ξ) + dn(ξ)
,

ϕ5,2 (ξ, γ) =
dn(ξ)

γ dn(ξ) +m
√

1 −m2 sn(ξ) +
√

1 −m2
,

ϕ5,3 (ξ, γ) =
sn(ξ)

γ sn(ξ) + i dn(ξ) + i cn(ξ)
,

ϕ5,4 (ξ, γ) =
cn(ξ)

γ cn(ξ) +
√
m2 − 1 +

√
m2 − 1 sn(ξ)

,

ϕ6,1 (ξ, γ) =
1

γ + i sn(ξ) + cn(ξ)
,

ϕ6,2 (ξ, γ) =
dn(ξ)

γ dn(ξ) + i cn(ξ) +
√

1 −m2 sn(ξ)
,

ϕ6,3 (ξ, γ) =
m sn(ξ)

γm sn(ξ) + i + i dn(ξ)
,

ϕ6,4 (ξ, γ) =
im cn(ξ)

iγm cn(ξ) + dn(ξ) +
√

1 −m2
,

ϕ7,1 (ξ, γ) =

√
1 −m2[1 + sn(ξ)]

γ
√

1 −m2 +
√

1 −m2(γ + 1) sn(ξ) + dn(ξ)
,

ϕ7,2 (ξ, γ) =
dn(ξ) + cn(ξ)

γ dn(ξ) + (γ + 1) cn(ξ) + 1
,
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ϕ7,3 (ξ, γ)=

√
1 −m2[1 +m sn(ξ)]

γm
√

1 −m2 sn(ξ) +
√

1 −m2(γ + 1) +mi cn(ξ)
,

ϕ7,4 (ξ, γ)=
dn(ξ) +m cn(ξ)

mγ cn(ξ) + (γ + 1) dn(ξ) + im sn(ξ)
,

ϕ8,1 (ξ, γ)=
dn(ξ) +

√
1 −m2 sn(ξ)

(1 +
√

1 −m2γ) sn(ξ) + γ dn(ξ)
,

ϕ8,2 (ξ, γ)=

√
1 −m2[ cn(ξ) + 1]√

1 −m2γ +
√

1 −m2γ cn(ξ) + cn(ξ)
,

ϕ8,3 (ξ, γ)=

√
1 −m2 + im cn(ξ)

1 +
√

1 −m2γ + iγm cn(ξ)
,

ϕ8,4 (ξ, γ)=

√
1 −m2 dn(ξ) +m

√
m2 − 1 sn(ξ)

dn(ξ) + γ
√

1 −m2 dn(ξ) +m
√
m2 − 1γ sn(ξ)

,

ϕ9,1 (ξ, γ)=
sn(ξ) +

√
1 −m2 dn(ξ)

m
√

2 −m2 +
√
−m4 +m2 + 1 cn(ξ)

,

ϕ9,2 (ξ, γ)=
cn(ξ) − 1 +m2

m
√

2 −m2 dn(ξ) +
p

(−m4 +m2 + 1)(1 −m2) sn(ξ)
,

ϕ9,3 (ξ, γ)=
dn(ξ) + im(1 −m2) sn(ξ)

m2
√

2 −m2 cn(ξ) +
p

(−m4 +m2 + 1)(m2 − 1)
,

ϕ9,4 (ξ, γ)=
1 +m

√
m2 − 1 cn(ξ)

m2
√

2 −m2 sn(ξ) +
√
m4 −m2 − 1 dn(ξ)

,

ϕ10,1 (ξ, γ)=
cn(ξ) +

√
1 −m2 dn(ξ)

m2 − 1 +
√
m4 −m2 + 1 cn(ξ)

,

ϕ10,2 (ξ, γ)=
sn(ξ) +

√
1 −m2

√
1 −m2 dn(ξ) +

√
m4 −m2 + 1 sn(ξ)

,

ϕ10,3 (ξ, γ)=
1 +m

√
1 −m2 sn(ξ)

m
√
m2 − 1 cn(ξ) +

√
m4 −m2 + 1

,

ϕ10,4 (ξ, γ)=
dn(ξ) +m

√
1 −m2 cn(ξ)

i(m3 −m) sn(ξ) +
√
m4 −m2 + 1 dn(ξ)

,

ϕ11,1 (ξ, γ)=
cn(ξ) +

√
1 −m2 dn(ξ)

m+
√
m4 −m2 + 1 sn(ξ)

,

ϕ11,2 (ξ, γ)=

√
1 −m2 sn(ξ) − 1 +m2

m dn(ξ) +
√
m4 −m2 + 1 cn(ξ)

,

ϕ11,3 (ξ, γ)=
i[ dn(ξ) +m

√
1 −m2 cn(ξ)]

m2 sn(ξ) +
√
m4 −m2 + 1

,

ϕ11,4 (ξ, γ)=

√
m2 − 1[1 +m

√
1 −m2 sn(ξ)]

m2 cn(ξ) +
√
m4 −m2 + 1 dn(ξ)

,

ϕ12,1 (ξ, γ)=
cn(ξ) + 1 −m2

√
1 −m2 dn(ξ) +

√
1 −m4 +m2 cn(ξ)

,

ϕ12,2 (ξ, γ)=
sn(ξ) +

√
1 −m2 dn(ξ)√

1 −m2 +
√

1 −m4 +m2 sn(ξ)
,

ϕ12,3 (ξ, γ)=
1 +m

√
m2 − 1 cn(ξ)

m
√

1 −m2 sn(ξ) +
√

1 −m4 +m2
,

ϕ12,4 (ξ, γ)=
dn(ξ) + i(m3 −m) sn(ξ)

m
√

1 −m2 cn(ξ) +
√

1 −m4 +m2 dn(ξ)
.

Through lengthy calculation, we can readily verify the following result. Note that

Maple can be used to help us for the calculation.
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Theorem 4.1. Let γ be arbitrary. Then, for eachj = 1, . . . , 12, the ordinary dif-

ferential equation (4.1) with coefficientsql = pj,l(γ), l = 0, . . . , 4, has solutions

ϕj,l(·, γ), l = 1, . . . , 4.

Remark 4.1. Theorem 4.1 can be generalized further. In fact, it remains valid

even if cn(ξ), sn(ξ) and dn(ξ) are replaced, respectively, by±cn(ξ), ±sn(ξ) and

±dn(ξ) in the expressions forϕj,l given above.

In some cases, the solutions of the ordinary differential equation (4.1) can be used

to generate additional solutions. This observation is furnished precisely in Theo-

rem 4.2 and Theorem 4.3 below. Again, Maple can be used to conveniently verify

these results.

Theorem 4.2. Suppose thatϕ is a solution of the ordinary differential equation

(4.1) with coefficientsql = q̂l, l = 0, . . . , 4, whereq̂1 = q̂3 = 0, andq̂0, q̂2 and q̂4

are given constants such thatq̂0 6= 0. Then,

±
√
q̂4
q̂0
ϕ+

1

ϕ

is a solution of the ordinary differential equation (4.1) with coefficients

q0 = 8q̂4 ∓ 4q̂2

√
q̂4

q̂0
, q1 = 0, q2 = q̂2 ∓ 6q̂0

√
q̂4

q̂0
, q3 = 0, q4 = q̂0.

Theorem 4.3. Suppose thatϕ is a solution of the ordinary differential equation

(4.1) with coefficientsql = q̂l, l = 0, . . . , 4, where q̂l, l = 0, . . . , 4, are given

constants such that̂q1 6= 0 andq̂4 =
q̂0q̂23
q̂21

. Then,

q̂3
q̂1
ϕ+

1

ϕ

is a solution of the ordinary differential equation (4.1) with coefficients

q0 =
4q̂3(2q̂0q̂3 − q̂1q̂2)

q̂2
1

, q1 = −4q̂3, q2 = q̂2 −
6q̂0q̂3

q̂1
, q3 = q̂1, q4 = q̂0.
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Remark 4.2. From Table 4.1 and Theorem 4.1, the reader will notice that, for any

γ, Theorem 4.3 can be invoked withϕj,l(·, γ), j ∈ {10, 12}, l = 1, . . . , 4.

We also seek for non-Jacobi elliptic solutions of the ordinary differential equa-

tion (4.1). As such, to conclude this section, we present thefollowing two results.

Both can be proved easily via direct substitution.

Theorem 4.4. Let a−1, a0, a1 and b0 be given constants such thata−1 6= 0 and

a0 6= a−1b0. Then,
a−1e−ξ + a0 + a1eξ

e−ξ + b0 + a1
a−1

eξ

is a solution of the ordinary differential equation (4.1) with coefficients

q0 = −
`

4a−1a1 − a20
´

a2
−1

(a−1b0 − a0)2
,

q1 =
2a−1

`

−a0a−1b0 + 8a−1a1 − a20
´

(a−1b0 − a0)2
,

q2 =
a2
−1b

2
0 + 4a−1a0b0 − 24a−1a1 + a20

(a−1b0 − a0)2
,

q3 =
2(8a1 − a−1b20 − a0b0)

(a−1b0 − a0)2
,

q4 =
a−1b20 − 4a1

a−1 (a−1b0 − a0)2
.

Theorem 4.5. Let a−1, a1, b0 andb1 be given constants such thata1 6= b1a−1 and

a0 =
b0(a−1b1+a1)±(a−1b1−a1)

√
b20−4b1

2b1
. Then,

a−1e−ξ + a0 + a1eξ

e−ξ + b0 + b1eξ

is a solution of the ordinary differential equation (4.1) with

q0 =
a2
−1a

2
1

(b1a−1 − a1)2
,

q1 =
−2a−1a21 − 2b1a2−1a1

(b1a−1 − a1)2
,

q2 =
a21 + 4a−1b1a1 + a2

−1b
2
1

(b1a−1 − a1)2
,

q3 =
−2a1b1 − 2a−1b21

(b1a−1 − a1)2
,

q4 =
b21

(b1a−1 − a1)2
.
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Note that additional solutions of the ordinary differential equation (4.1) can be con-

structed using Weierstrass’ elliptic function. The readeris directed to [82] for more

details.

4.3 A generalized expansion method

We will briefly outline a generalized expansion method for constructing traveling

wave solutions. Similar procedures have been developed in references [22, 30].

However, the new results given in the previous section ensure that our method yields

many new solutions when applied to some classical partial differential equations.

This will be clearly demonstrated in Sections 4.4-4.6.

We consider the following non-linear wave equation:

H (u, ut, ux, utt, uxx, uxt, . . .) = 0, (4.2)

whereu := u(x, t) is a real or complex-valued function,H is a given function

involving powers of its arguments and the subscripts denotedifferentiation. We

will consider candidate traveling wave solutions that takethe form

u(x, t) = ũ (ξ) =

n∑

j=0

cj [Φ (ξ)]j , (4.3)

whereξ = k (x− νt), k > 0 is the wave number,ν is the traveling wave veloc-

ity, n is an integer,Φ is a non-trival solution of the ordinary differential equation

(4.1) with coefficientsql, l = 0, . . . , 4, andcj, j = 0, . . . , n, are constants with

cn 6= 0. Depending on the form ofH, k andν will be determined or remain as free

parameters.

Note thatũ given by (4.3) is a polynomial function ofΦ. Hence, it is readily

seen that, for each integerκ ≥ 1, ũκ is also a polynomial inΦ. In this case, we use

the degree notationO(·) to denote the index of the highest power ofΦ. Thus,

O(ũκ) = nκ, κ ≥ 1. (4.4)
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The derivatives ofΦ can be obtained by repeatedly differentiating both sides of(4.1).

For example,





Φ′′ = q1
2

+ q2Φ + 3q3
2

Φ2 + 2q4Φ
3,

Φ′′′ = (q2 + 3q3Φ + 6q4Φ
2)Φ′,

Φ′′′′ =
(
3q0q3 + 1

2
q1q2

)
+
(
q2
2 + 9

2
q1q3 + 12q0q4

)
Φ

+15
(

1
2
q2q3 + q1q4

)
Φ2 +

(
20q2q4 + 15

2
q2
3

)
Φ3

+30q3q4Φ
4 + 24q2

4Φ
5.

(4.5)

It is not difficult to show that only the even derivatives are polynomials inΦ. The

odd derivatives also contain terms of the formΦj(Φ′) , wherej is a non-negative

integer. In this case, we defineO(Φ′) = 2 and so

O(Φj(Φ′)) = j + 2, j ≥ 0.

By differentiating (4.3), we can also deduce the derivatives of ũ. For example,





ũ′ = (c1 + . . .+ ncnΦ
n−1)Φ′,

ũ′′ = (c1 + . . .+ ncnΦ
n−1)Φ′′ + [2c2 + . . .+ n(n− 1)cnΦ

n−2](Φ′)2,
ũ′′′ = (c1 + . . .+ ncnΦ

n−1)Φ′′′ + 3[2c2 + . . .+ n(n− 1)cnΦ
n−2]Φ′Φ′′

+[6c3 + . . .+ n(n− 1)(n− 2)cnΦ
n−3](Φ′)3,

ũ′′′′ = (c1 + . . .+ ncnΦ
n−1)Φ′′′′

+4[2c2 + . . .+ n(n− 1)cnΦ
n−2]Φ′Φ′′′

+3[2c2 + . . .+ n(n− 1)cnΦ
n−2](Φ′′)2

+6[6c3 + . . .+ n(n− 1)(n− 2)cnΦ
n−3](Φ′)2Φ′′

+[24c4 + . . .+ n(n− 1)(n− 2)(n− 3)cnΦ
n−4](Φ′)4,

(4.6)

where the derivatives ofΦ are given in (4.1) and (4.5). Higher order derivatives can

be obtained similarly. Again, only the even derivatives ofũ are polynomials inΦ.

It is readily seen that

O

(
dκũ

dξκ

)
= n+ κ, κ ≥ 1. (4.7)

When ũ is substituted into (4.2), the original partial differential equation inx and

t is reduced to a non-linear ordinary differential equation in ξ. We will normally

choosen so that the degrees of the highest order derivative term and the highest

order non-linear term in this reduced ordinary differential equation are balanced.

However, this does not always result in an integral value forn. In this case, it is

sometimes possible to proceed by lettingũ = v
1
τ , whereτ is the denominator of the

fractional value ofn (assuming the denominator and numerator have no common

factors), and solving the resulting equation forv. This is illustrated in the following

47



example.

Example 4.1.Consider the following Boussinesq-type equation:

utt − uxx + uxxxx + (u5 − u3)xx = 0.

By lettingu(x, t) = ũ(k(x− νt)), the above partial differential equation is reduced

to the following ordinary differential equation:

ν2ũ′′ − ũ′′ + k2ũ′′′′ + (ũ5 − ũ3)′′ = 0.

Integrating twice yields

ν2ũ− ũ+ k2ũ′′ + ũ5 − ũ3 = 0. (4.8)

Here, the highest order non-linear term isũ5, and the highest order derivative term

is ũ′′. Balancing these two terms using (4.4) and (4.7) gives5n = n + 2, or n = 1
2
.

Settingũ = v
1
2 , (4.8) becomes

(ν2 − 1)v2 +
k2

4
[2vv′′ − (v′)2] + v4 − v3 = 0. (4.9)

Now, balancing(v′)2 andv4 givesn = 1. Hence, we can search for traveling wave

solutions of (4.9) which take the formv (k(x− νt)) = c0 + c1Φ (k(x− νt)), for

constantsc0 andc1. If such av can be determined, then it is easy to deriveũ. �

It is noted in Example 4.1 that substitutingũ into (4.2) yields a non-linear ordinary

differential equation inξ. When the derivatives of̃u are substituted into this reduced

ordinary differential equation, we will obtain a linear combination ofΦj(Φ′)l, where

j ≥ 0 is an integer andl ∈ {0, 1}. If ν, k, andcj, j = 0, . . . , n, andqj , j = 0, . . . , 4,

can be chosen to make each coefficient in this linear combination zero, then the re-

sulting ũ will satisfy the original partial differential equation (4.2). However, in

this procedure, we sometimes end up withcj = 0, j = 0, . . . , n (we encounter

this in Section 4.6). In this case, we can use the following alternative solution form

proposed in [22]:

ũ(ξ) = c0 +
n∑

j=1

cj[Φ(ξ)]j + Cj[Φ(ξ)]j−1Φ′(ξ)

[µΦ(ξ) + 1]j
, (4.10)
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wherecj (j = 0, . . . , n), Cj (j = 1, . . . , n) andµ are constants.

In [7, 30], the solutions to the reduced ordinary differential equation are rep-

resented by

ũ(ξ) =
n∑

j=−n
cj
[
Φ(ξ)

]j
+

Φ′(ξ)
[
Φ(ξ)

]2

(
n+1∑

j=−n
Cj
[
Φ(ξ)

]j
)
. (4.11)

However, the degree of̃u given in (4.11) isn + 1. Hence,Cn+1 = 0. Thus, it

becomes

ũ(ξ) =

n∑

j=−n
cj
[
Φ(ξ)

]j
+

Φ′(ξ)
[
Φ(ξ)

]2

(
n∑

j=−n
Cj
[
Φ(ξ)

]j
)
. (4.12)

In (4.12), there are4n + 2 variables which need to be determined, while there are

only 2n + 2 variables (cj , j = 0, . . . , n, Cj, j = 1, . . . , n, andµ) in (4.10). Note

that, in (4.12),q1 = q3 = 0 is required. Hence, combining Theorem 4.2 and

expression (4.10) withµ = 0, we can derive the same result as the ones derived

from (4.12). But, (4.10) is much more easy than (4.12) for calculations.

Notice that each of the Jacobi elliptic solutions of the ordinary differential

equation (4.1) reported in [22, 64, 71] can be written as a scalar multiple of some

ϕj,l(·, 0), j ∈ {1, . . . , 6}, l ∈ {1, . . . , 4}. Hence, by applying our expansion

method with (4.3) and Theorem 4.1 to a non-linear partial differential equation, we

can replicate every Jacobi elliptic solution obtained using the methods presented

in [64, 71]. Applying our expansion method with (4.10) and Theorem 4.1 to a

non-linear partial differential equation, we can obtain all Jacobi elliptic solutions

obtained using the method presented in [22]. Similarly, each Jacobi elliptic solu-

tion of the ordinary differential equation (4.1) reported in [30, 36] withω = 1 can

be written as a scalar multiple of someϕj,l(·, 0), j ∈ {1, . . . , 6}, l ∈ {1, . . . , 4}.

It is also evident that, for the special caseµ = 0, using our expansion method

with (4.10) and Theorem 4.1 and Theorem 4.2, we can recover every Jacobi elliptic

solution obtained using the method of [30, 106]. Hence, by virtue of the new results

in Section 4.2, our method is a significant generalization ofthe work reported in

[7, 22, 30, 36, 42, 64, 71, 106].
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4.4 Traveling wave solutions for the Boussinesq equa-
tion

Consider the Boussinesq equation

utt + α1uxx + α2uxxxx + α3

(
u2
)
xx

= 0, (4.13)

whereu := u (x, t) is a real-valued function. Lettingu(x, t) = ũ(ξ), whereξ is as

defined in Section 4.3, (4.13) becomes an ordinary differential equation

ν2ũ′′ + α1ũ
′′ + α2k

2ũ′′′′ + α3

(
ũ2
)′′

= 0. (4.14)

Now, let us solve the following ordinary differential equation:

β1Ψ
′′(ξ) + β2Ψ

′′′′(ξ) + β3

[
Ψ2(ξ)

]′′
= 0, (4.15)

where constantsβj, j = 1, 2, 3, are non-zero. Balancing[Ψ2(ξ)]
′′ andΨ′′′′(ξ) gives

2n+2 = n+4, orn = 2. Hence, we will search for candidate solutions of the form

Ψ(ξ) = c0 + c1Φ(ξ) + c2 [Φ(ξ)]2 , (4.16)

wherec2 6= 0 andΦ satisfies the ordinary differential equation (4.1) with coeffi-

cientsqj, j = 0, . . . , 4. Substituting (4.16) into (4.15) and using (4.1) and (4.5)-

(4.6), we obtain the following sufficient conditions forΨ to satisfy (4.15):






c0 =
3β2q

2
3 − 16β2q2q4 − 4β1q4

8β3q4
,

c1 = −3β2q3
β3

,

c2 = −6β2q4
β3

,

q1 =
q3 (4q2q4 − q2

3)

8q2
4

.

(4.17)

That is, if a solutionΦ of the ordinary differential equation (4.1) with coefficients

satisfyingq1 =
q3(4q2q4−q23)

8q24
andq4 6= 0 can be found, then

Ψ(ξ) = c0 + c1Φ(ξ) + c2 [Φ(ξ)]2 , (4.18)
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wherec0, c1, c2 are as defined in (4.17), is a solution of the ordinary differential

equation (4.15). Now, we generalize this solution form further. Note that, ifq1 =

q3 = 0, then (4.18) reduces to

Ψ(ξ) = −4β2q2+β1

2β3
− 6β2q4

β3
[Φ(ξ)]2 . (4.19)

If q0 6= 0, then using Theorem 4.2 with (4.19) gives the following solution form for

equation (4.15):

Ψ(ξ) = −4β2q2 + β1

2β3
− 6β2q4

β3
[Φ(ξ)]2 − 6β2q0

β3 [Φ(ξ)]2
. (4.20)

Furthermore, note that (4.18) can be rewritten as

Ψ(ξ) =
3β2q

2
3 − 8β2q2q4 − 2β1q4

4β3q4
− 6β2q4

β3

[
Φ(ξ) +

q3
4q4

]2
. (4.21)

The solution forms (4.20) and (4.21) provide motivation forthe following more

general candidate solution:

Ψ(ξ) =
3β2q

2
3 − 8β2q2q4 − 2β1q4

4β3q4
− 6β2q4

β3

[
Φ(ξ)+

q3
4q4

]2
+

d
[
Φ(ξ) + q3

4q4

]2 , (4.22)

whered is a constant. By substituting (4.22) into (4.15), the valueof d can be de-
termined. We summarize our results in the form of the following theorem.

Theorem 4.6. For eachj = 1, 2, let εj ∈ {0, 1}. Suppose thatΦ is a solution
of the ordinary differential equation (4.1) with coefficients qj , j = 0, . . . , 4, satisfy-

ing q4 6= 0 andq1 =
q3(4q2q4−q23)

8q24
. Then,

Ψ1(ξ, β1, β2, β3) =
3β2q

2
3 − 8β2q2q4 − 2β1q4

4β3q4
− ε1

6β2q4

β3

[
Φ(ξ) +

q3

4q4

]2

+ ε2
3β2(16q

2
3q2q4 − 5q4

3 − 256q3
4q0)

128β3q
3
4

[
Φ(ξ) + q3

4q4

]2

is a solution of the ordinary differential equation (4.15).

Remark 4.3.Ψ1 includes both (4.18) and (4.20) as special cases.

Remark 4.4. When q1 = q3 = 0, using the method proposed in [42], where
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n∑
j=−n

cj
[
Φ(ξ)

]j
has been used, the same results will be derived asΨ1 with q1 =

q3 = 0.

Applying Theorem 4.6 and using the solutions of (4.1) given in Theorems 4.1,

4.4 and 4.5, we can deduce many solutions for equation (4.15). Let the functions

ψj(ξ, β1, β2, β3), j = 1, . . . , 26, be defined as follows:

ψ1(ξ, β1, β2, β3) =
2β2 − β1

2β3
− 3β2

2β3

"

ε1

„−e−ξ ±
q

λ2
1 − 4λ2 + λ2eξ

e−ξ + λ1 + λ2eξ

«2

+ ε2

„

e−ξ + λ1 + λ2eξ

−e−ξ ±
q

λ2
1 − 4λ2 + λ2eξ

«2
#

,

ψ2(ξ, β1, β2, β3) = − 2β2 + β1

2β3
− 3β2

2β3

"

ε1

„ sin(ξ) ±
q

1 − λ2
3

cos(ξ) + λ3

«2

+ ε2

„

cos(ξ) + λ3

sin(ξ) ±
q

1 − λ2
3

«2
#

,

ψ3(ξ, β1, β2, β3) =
4β2

`

m2 + 1
´

− β1

2β3
− 6β2

β3

ˆ

ε1m
2sn2(ξ) + ε2sn−2(ξ)

˜

,

ψ4(ξ, β1, β2, β3) =
4β2

`

m2 − 2
´

− β1

2β3
+

6β2

β3

»

ε1dn2(ξ) +
1 −m2

dn2(ξ)

–

,

ψ5(ξ, β1, β2, β3) =
4β2

`

m2 − 2
´

− β1

2β3
− 6β2

β3

»

ε1
cn2(ξ)

sn2(ξ)
+

(1 −m2)sn2(ξ)

cn2(ξ)

–

,

ψ6(ξ, β1, β2, β3) =
4β2

`

m2 + 1
´

− β1

2β3
− 6β2

β3

»

m2 cn2(ξ)

dn2(ξ)
+

dn2(ξ)

cn2(ξ)

–

,

ψ7(ξ, β1, β2, β3) = −
β1 + 4β2

`

2m2 − 1
´

2β3
− 6β2

β3

»

−m2cn2(ξ) +
1 −m2

cn2(ξ)

–

,

ψ8(ξ, β1, β2, β3) = −
β1 + 4β2

`

2m2 − 1
´

2β3
− 6β2

β3

»

dn2(ξ)

sn2(ξ)
+
m2(m2 − 1)sn2(ξ)

dn2(ξ)

–

,

ψ9(ξ, β1, β2, β3) =
2β2

`

2m2 − 1
´

− β1

2β3
− 3β2[1 − cn(ξ)]

2β3[1 + cn(ξ)]
,

ψ10(ξ, β1, β2, β3) =
2β2

`

2m2 − 1
´

− β1

2β3
− 3β2[dn(ξ) −

√
1 −m2sn(ξ)]

2β3[dn(ξ) +
√

1 −m2sn(ξ)]
,

ψ11(ξ, β1, β2, β3) = −
β1 + 2β2

`

m2 + 1
´

2β3
+

3β2(1 −m2)[1 −msn(ξ)]

2β3[1 +msn(ξ)]
,

ψ12(ξ, β1, β2, β3) = −
β1 + 2β2

`

m2 + 1
´

2β3
− 3β2(1 −m2)[1 − sn(ξ)]

2β3[1 + sn(ξ)]
,

ψ13(ξ, β1, β2, β3) = −
β1 + 2β2

`

m2 + 1
´

2β3
− 3β2(1 −m2)[dn(ξ) − cn(ξ)]

2β3[dn(ξ) + cn(ξ)]
,

ψ14(ξ, β1, β2, β3) = −
β1 + 2β22

`

m2 + 1
´

2β3
+

3β2(m2 − 1)[mcn(ξ) − dn(ξ)]

2β3[mcn(ξ) + dn(ξ)]
,
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ψ15(ξ, β1, β2, β3) =−
β1 + 2β2

`

m2 − 2
´

2β3
− 3β2m2[dn(ξ) −

√
1 −m2]

2β3[dn(ξ) +
√

1 −m2]
,

ψ16(ξ, β1, β2, β3) =−
β1 + 2β2

`

m2 − 2
´

2β3
− 3β2m2[1 − dn(ξ)]

2β3[1 + dn(ξ)]
,

ψ17(ξ, β1, β2, β3) =−
β1 + β2

`

2m2 + 12m + 2
´

2β3
+

3β2(m− 1)2

2β3

(

»

1 −√
msn(ξ)

1 +
√
msn(ξ)

–2

+ ε1

»

1 +
√
msn(ξ)

1 −√
msn(ξ)

–2
)

,

ψ18(ξ, β1, β2, β3) =−
β1 + β2

`

2m2 + 12m + 2
´

2β3

+
3β2(m− 1)2

2β3

(

»

dn(ξ) −√
mcn(ξ)

dn(ξ) +
√
mcn(ξ)

–2

+ ε1

»

dn(ξ) +
√
mcn(ξ)

dn(ξ) −√
mcn(ξ)

–2
)

,

ψ19(ξ, β1, β2, β3) =−β1 + β2(2m2 − 4 + 12
√

1 −m2)

2β3

−3β2(1 +
√

1 −m2)2

2β3

8

<

:

"

cn(ξ) − 4
√

1 −m2sn(ξ)

cn(ξ) + 4
√

1 −m2sn(ξ)

#2

+ ε1

"

cn(ξ) + 4
√

1 −m2sn(ξ)

cn(ξ) − 4
√

1 −m2sn(ξ)

#2
9

=

;

,

ψ20(ξ, β1, β2, β3) =−β1 + β2(2m2 − 4 − 12
√

1 −m2)

2β3

−3β2(1 −
√

1 −m2)2

2β3

8

<

:

"

dn(ξ) − 4
√

1 −m2

dn(ξ) + 4
√

1 −m2

#2

+ ε1

"

dn(ξ) + 4
√

1 −m2

dn(ξ) − 4
√

1 −m2

#2
9

=

;

,

ψ21(ξ, β1, β2, β3) =
2β2

`

2m2 − 1
´

− β1

2β3
− 3β2

2β3

"

sn(ξ) +
√

1 −m2dn(ξ)

m
√

2 −m2 +
√
−m4 +m2 + 1cn(ξ)

#2

−3β2

2β3
ε1

"

m
√

2 −m2 +
√
−m4 +m2 + 1cn(ξ)

sn(ξ) +
√

1 −m2dn(ξ)

#2

,

ψ22(ξ, β1, β2, β3) =
2β2

`

2m2 − 1
´

− β1

2β3
− 3β2

2β3

"

cn(ξ) + (m2 − 1)

m
√

2 −m2dn(ξ) +
p

(−m4 +m2 + 1)(1 −m2)sn(ξ)

#2

−ε1
3β2

2β3

"

m
√

2 −m2dn(ξ) +
p

(−m4 +m2 + 1)(1 −m2)sn(ξ)

cn(ξ) + (m2 − 1)

#2

,

ψ23(ξ, β1, β2, β3) =−
β1 + 2β2

`

m2 + 1
´

2β3
+

3β2(m2 − 1)

2β3

"

cn(ξ) +
√

1 −m2dn(ξ)

m+
√
m4 −m2 + 1sn(ξ)

#2

+ε1
3β2(m2 − 1)

2β3

"

m+
√
m4 −m2 + 1sn(ξ)

cn(ξ) +
√

1 −m2dn(ξ)

#2

,

ψ24(ξ, β1, β2, β3) =−
β1 + 2β2

`

m2 + 1
´

2β3
− 3β2(1 −m2)2

2β3

"

sn(ξ) +
√

1 −m2

mdn(ξ) +
√
m4 −m2 + 1cn(ξ)

#2

−ε1
3β2

2β3

"

mdn(ξ) +
√
m4 −m2 + 1cn(ξ)

sn(ξ) +
√

1 −m2

#2

,

ψ25(ξ, β1, β2, β3) =−
β1 + 2β2

`

m2 + 1
´

2β3
− 3β2(m2 − 1)

2β3

"

dn(ξ) +
√

1 −m2cn(ξ)

m2sn(ξ) +
√
m4 −m2 + 1

#2

−ε1
3β2(m2 − 1)

2β3

"

m2sn(ξ) +
√
m4 −m2 + 1

dn(ξ) +
√

1 −m2cn(ξ)

#2

,

ψ26(ξ, β1, β2, β3) =−
β1 + 2β2

`

m2 + 1
´

2β3
+

3β2(1 −m2)2

2β3

"

1 +m
√

1 −m2sn(ξ)

m2cn(ξ) +
√
m4 −m2 + 1dn(ξ)

#2

+ε1
3β2

2β3

"

m2cn(ξ) +
√
m4 −m2 + 1dn(ξ)

1 +m
√

1 −m2sn(ξ)

#2

,

whereε1, ε2 ∈ {0, 1},m ∈ (0, 1) is the modulus of the Jacobi elliptic functions, and
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λj , j = 1, 2, 3, are arbitrary real constants satisfyingλ2
1 ≤ 4λ2 and−1 ≤ λ3 ≤ 1.

Through direct substitution, we can prove the following result.

Theorem 4.7. For eachj = 1, . . . , 26, the functionψj is a solution of the ordi-

nary differential equation (4.15).

Remark 4.5. It follows from Remark 4.1 thatψj , j = 3, . . . , 26, still satisfy equa-

tion (4.15) even if cn(ξ), sn(ξ) and dn(ξ) are replaced, respectively, by±cn(ξ),

±sn(ξ) and±dn(ξ).

Remark 4.6. It is interesting to note that, for eachj ∈ {3, . . . , 26}, the solutionψj

becomes a special case ofψ1 asm→ 1. Similarly, asm→ 0, ψj becomes a special

case ofψ2.

Next, we will make use of the solutionsψj , j = 1, . . . , 26, to derive traveling wave

solutions for the Boussinesq equation (4.13).

For eachj = 1, . . . , 26, let

uj(x, t) := ψj
(
k(x− νt), α1 + ν2, α2k

2, α3

)
,

wherek andν are arbitrary real constants. According to Theorem 4.6 and (4.14),

we know that, for eachj = 1, . . . , 26, the functionuj is a solution of the Boussinesq

equation (4.13).

Note that, for some cases, the denominators in the expression of u1 can be

equal to zero at certain points, and thus, such a solution is unbounded. For example,

u1 with ε1 = ε2 = 1 andλ2 6= 0 is unbounded. It is also noted that, for some cases,

the solutionu1 is bounded. For instance,u1 with ε1 = 1, ε2 = 0, 0 ≤ λ2 ≤ λ2
1/4

andλ1 ≥ 0 is bounded. For the bounded case, clearly, the solutionu1 gives a single

wave that moves in thex-direction with velocityν andu1(x, t) → (2α2k
2 − α1 −

ν2)/(2α3) − 3α2k
2(ε1 + ε2)/(2α3) ask(x− νt) → ±∞.

To show the physical insight of these solutions, here we chooseα1 = −1,
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Figure 4.1: The plot of the solutionu4 to the Boussinesq equation (4.13) withα1 =
−1, α2 = −1, α3 = −3,m = 0.99, k = 1 andν = −1 and the initial status ofu4.

α2 = −1, α3 = −3 and takeu4, u7 as examples. Figure 4.1 shows the wave

profile of the solutionu4 with m = 0.99, k = 1 andν = −1. Clearly, the so-

lution is a periodic function describing the traveling of waves in the negativex-

direction. Figure 4.2 shows the graph of the solutionu7 for m = 0.9, k = 1

andν = −2. Note thatu7 becomes infinity when cn(k(x − νt), m) = 0, that is,

k(x − νt) = (2j + 1)K, whereK =
∫ π/2
0

(
1 − m2 sin2(s)

)−1/2
ds and j = 0,

±1, . . . For instance, in Figure 4.2,u7 becomes negative infinity when the point

(x, t) is close to the linesx + 2t = 2.280549138(2j + 1), wherej = 0, ±1,

. . . It is also noted from the expression of the solutionsu3 with ε2 = 1 anduj,

j ∈ {5, 6, 7, 8, 9, 12, 13, 19, 20, 21, 22, 23, 24}, that these solutions are unbounded,

since the denominator in the expression can be zero at certain points.

To show the power of the proposed expansion method, we compare our results

with the solutions reported in [49, 63, 100, 116, 117, 118]. In [49], the multiple

soliton-like solutions and triangular periodic solutionsderived by Inan and Kaya

are included in the solutionsu1 andu2, respectively. In [100], the solutions of

(4.13) were obtained using the sinh/cosh ansatz I-II method, the sinh-cosh ansatz

III method, the tanh method and the sine-cosine method. Eachof these solutions is

a special case ofu1 or u2. In [116], two solutions of the Boussinesq equation (4.13)

55



−20
−15

−10
−5

0
5

10
15

20
0

2

4

6

8

10

−20

0

20

t

x

u

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

x

u

Figure 4.2: The plot of the solutionu7 to the Boussinesq equation (4.13) withα1 =
−1, α2 = −1, α3 = −3,m = 0.9, k = 1 andν = −2 and the initial status ofu7.

are special cases of the solutionu1. The solutionu3 is identical to the solutions

reported in [63, 117], and the solutionu9 is the same as the solution reported in

[118]. However, all of the other Jacobi elliptic function solutions are new solutions.

Furthermore, if the candidate traveling wave solution of the forms (2.7) and

(4.10) are considered and our new results in Section 4.2 are applied, then many

additional solutions can be obtained.

As mentioned in Remark 4.4,Ψ1 includes the results derived by (2.7) for the

caseq1 = q3 = 0. Hence, we will consider (2.7) under the caseq3 6= 0. Substituting

Ψ(ξ) =
c−2[

Φ(ξ)
]2 +

c−1

Φ(ξ)
+ c0 + c1Φ(ξ) + c2

[
Φ(ξ)

]2

into (4.15), we can determine the coefficientscj, j = −2, . . . , 2.

Theorem 4.8.LetΦ be a solution of the ordinary differential equation (4.1) with co-

efficientsqj (j = 0, . . . , 4). If q0 =
16q24q

2
2−8q23q2q4+q

4
3

64q34
andq1 =

q3(q23−4q2q4)

8q24
(q4 6= 0),

then a solution of the equation (4.15) is

Ψ2(ξ, β1, β2, β3) = c0 + c1Φ(ξ) + c2
[
Φ(ξ)

]2 − 3β2q1
β3Φ(ξ)

− 6β2q0

β3

[
Φ(ξ)

]2 ,

wherec0, c1 andc2 are as defined in (4.17).
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Note that the form (4.10) is more general than (4.16). Consequently, (4.10) can

generate additional solutions for (4.15). Suppose that thesolutions of (4.15) are

represented by

Ψ(ξ) = c0 +
c1Φ(ξ) + C1Φ

′(ξ)

µΦ(ξ) + 1
+
c2
[
Φ(ξ)

]2
+ C2Φ(ξ)Φ′(ξ)

[
µΦ(ξ) + 1

]2 , (4.23)

where the constantsµ, cj (j = 0, 1, 2) andCj (j = 1, 2) will be determined later.

If C1 = C2 = 0 andµ 6= 0, then (4.23) becomes

Ψ(ξ) = c0 +
c1Φ(ξ)

µΦ(ξ) + 1
+

c2
[
Φ(ξ)

]2
[
µΦ(ξ) + 1

]2 . (4.24)

The form (4.24) is not an ideal choice for solving exact solutions for non-linear

partial differential equations. As far as we know, no one uses this form in the

literature. In the sequel, we will show why it is not a good choice.

Note that if we want to derive exponential function solutions, then the form (4.18)

is more preferable than the form (4.24), since they can derive the same results. Ac-

cording to Table 4.1, there are no sets of coefficientsqj (j = 0, . . . , 4) satisfying

q0 = q1 = 0. Hence, to obtain Jacobi elliptic function solutions, we need to delete

results satisfyingq0 = q1 = 0. Substituting (4.24) into (4.15) and using Maple, we

can only obtain the following three sets of results whenq0c1 = 0:





q0 = 0,
q4 = µ(q3 − q2µ+ q1µ

2),
c0 = 3q1β2µ−q2β2−β1

2β3
,

c1 = −3β2(q3+3µ2q1−2q2µ)
2β3

,
c2 = 0,

(4.25)






q0 = 0,

q2 =
6q1β2c22−β3c31+18q1β2c1c2µ

6β2c1c2
,

q3 = −β3c21c2−6q1β2c22µ−9q1β2c1c2µ2+β3c31µ

3β2c1c2
,

q4 = −β3c1c22−6q1β2c22µ
2+2β3c21c2µ+β3c31µ

2−6β2q1c1c2µ3

6β2c1c2
,

c0 =
β3c31−24q1β2c22−6β1c1c2

12β3c1c2
,

(4.26)

and 




q3 =
q1(4q2q0−q21)

8q20
,

µ = q1
4q0
,

c0 =
3β2q21−8β2q2q0−2β1q0

4β3q0
,

c1 = 0,

c2 =
3β2(16q21q2q0−5q41−256q30q4)

128β3q30
.

(4.27)
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Note that ifϕ is a solution of equation (4.1) withqj = q̂j , j = 0, . . . , 4, then

1/ϕ is a solution of (4.1) withqj = q̂4−j , j = 0, . . . , 4. Hence, using the solution

form Ψ1 with ε1 = 0 and ε2 = 1, we can derive (4.27). Actually, there exists

another set of results in whichq0c1 6= 0. However, it is too difficult to solve the

non-linear equations, even ifq1 = q3 = 0. Note thatΨ1 with ε1 = 0 andε2 = 1

satisfiesq0c1 6= 0. This means that suchΨ1 gives a solution for (4.24) under the

caseq0c1 6= 0. However, it is impossible to deriveΨ1 with ε1 = 1 andε2 = 1

using (4.24).

In addition, we can derive solutions in the form (4.24) from (4.16). Rewrit-

ing (4.24), it follows

Ψ(ξ) = c0 + c1

[
Φ(ξ)

µΦ(ξ) + 1

]
+ c2

[
Φ(ξ)

µΦ(ξ) + 1

]2

. (4.28)

Note that ifϕ is a solution of the equation (4.1) with coefficientsqj = q̂j, j =

0, . . . , 4, thenϕ/(µϕ+ 1) is a solution of (4.1) with





q0 = q̂0,
q1 = q̂1 − 4q̂0µ,
q2 = q̂2 − 3q̂1µ+ 6q̂0µ

2,
q3 = q̂3 − 2q̂2µ+ 3q̂1µ

2 − 4q̂0µ
3,

q4 = q̂4 − q̂3µ+ q̂2µ
2 − q̂1µ

3 + q̂0µ
4.

(4.29)

As we know, (4.16) is a solution of (4.15) if the coefficientsqj (j = 0, . . . , 4)

of (4.1) satisfyq1 =
q3 (4q2q4 − q2

3)

8q2
4

. Combining this condition with (4.29), we

have to solve a sixth order polynomial equation inµ. It is well-known that such

equation is very difficult to solve. This is the reason why Maple can not solve the

caseq0c1 6= 0 for (4.24).

Now, let us consider (4.23) withC1C2 6= 0. Substituting (4.23) into (4.15),

we obtain that




c0 = −6β2µ
2q0 − 3β2µq1 + β2q2 + β1

2β3

,

c1 =
3β2(2µq2 − 3µ2q1 − q3 + 4µ3q0)

2β3
,

c2 = −3β2(q4 + µ4q0 − µq3 − µ3q1 + µ2q2)

β3
,

C1 = ±3β2

√
q4 + µ4q0 − µq3 − µ3q1 + µ2q2

β3
,

C2 = ∓3β2µ
√
q4 + µ4q0 − µq3 − µ3q1 + µ2q2

β3
.

(4.30)
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It is noted that there is no requirement onqj (j = 0, . . . , 4) as in Theorem 4.6. It

is also noted thatC2 = −µC1. Thus, we can simplify the expression of (4.23). In

addition, ifµ = 0, we can apply Theorems 4.2 and 4.3 to generate new solutions for

equation (4.15) from (4.23). The results are summarized in the following theorem.

Theorem 4.9.Suppose thatΦ is a solution of the ordinary differential equation (4.1)

with coefficientsqj (j = 0, . . . , 4). Let

Ψ3(ξ, β1, β2, β3) = c0 +
c1Φ(ξ)

µΦ(ξ) + 1
+
c2
[
Φ(ξ)

]2
+ C1Φ

′(ξ)
[
µΦ(ξ) + 1

]2 ,

wherecj (j = 0, 1, 2) andC1 are defined as in (4.30). For eachµ, if q4 + µ4q0 −
µq3 − µ3q1 + µ2q2 ≥ 0, then the functionΨ3 satisfies the ordinary differential

equation (4.15). Moreover, ifq2
3q0 = q2

1q4, q0 > 0 andq4 > 0, then

Ψ4(ξ, β1, β2, β3) = − 1

2β3

[
β1 + β2(q2 + 6ǫ1

√
q0q4) + 6β2q4

[
Φ(ξ)

]2
+

6β2q0[
Φ(ξ)

]2

± 6β2

(
ǫ1
√
q4Φ

′(ξ) −
√
q0Φ

′(ξ)
[
Φ(ξ)

]2

)]
,

whereǫ1 ∈ {1,−1}, is a solution of equation (4.15).

Remark 4.7. Without the conditionq1 = q3 = 0 as the authors assumed in [7, 30],

applying (4.12) to (4.15), we can get exactly the same results asΨ1, Ψ2, Ψ3 with

µ = 0 andΨ4. However, there are too many variables involved in (4.12).

Using the solutions of equation (4.15), we also can derive traveling wave solutions

for the improved Boussinesq equation

utt − uxx − uxxtt −
(
u2
)
xx

= 0.

Letting ξ = k(x− νt), we have the following ordinary differential equation

(1 − ν2)ũ′′ + k2ν2ũ′′′′ +
(
ũ2
)′′

= 0.
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Thus, according to Theorem 4.7, for eachj ∈ {1, . . . , 26} and any real numbersk

andν,

ψj
(
k(x− νt), 1 − ν2, k2ν2, 1

)
,

is a solution of the improved Boussinesq equation. Moreover, usingΨ2 given in

Theorem 4.8 andΨ3, Ψ4 given in Theorem 4.9, many additional solutions can be

derived.

4.5 Traveling wave solutions for the modified KdV
equation

We consider the following modified KdV equation:

ut + u2ux + uxxx = 0, (4.31)

whereu := u (x, t) is a complex-valued function. Lettingu(x, t) = ũ(ξ), whereξ

is as defined in Section 4.3, (4.31) is reduced to the ordinarydifferential equation

−νũ′ + ũ2ũ′ + k2ũ′′′ = 0. (4.32)

Balancingũ2ũ′ and ũ′′′ yieldsn = 1. Thus, we now consider candidate traveling

wave solutions of the form

ũ(ξ) = c0 + c1Φ(ξ),

wherec1 6= 0, andΦ satisfies the ordinary differential equation (4.1) with coeffi-

cientsqj , j = 0, . . . , 4. Substituting̃u into (4.32), we obtain the following sufficient

conditions forũ to satisfy (4.32):
{
c21 + 6k2q4 = 0,
2c0c1 + 3k2q3 = 0,
−ν + c20 + k2q2 = 0.

(4.33)

According to (4.33),

u(x, t) = ±k
[

3q3
2
√−6q4

−
√

−6q4Φ
(
k(x− ν1t)

)]
, (4.34)
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is a solution of (4.31) in whichν1 = k2
(
q2 − 3q23

8q4

)
andk is an arbitrary constant.

Now, if q1 = q3 = 0 andq0 6= 0, then Theorem 4.2 can be applied with (4.34) to

give the following solution form of (4.31):

u(x, t) = ǫ1k
√

−6q0

[
ǫ2

√
q4
q0

Φ
(
k(x− ν2t)

)
+

1

Φ
(
k(x− ν2t)

)
]
, (4.35)

whereǫj = ±1, j = 1, 2, ν2 = k2
(
q2 − ǫ26q0

√
q4
q0

)
andk is an arbitrary constant.

In addition, ifq4 =
q0q23
q21

andq0q1 6= 0, then Theorem 4.3 can be applied with (4.34)

to yield another solution form of (4.31):

u(x, t) = ±k
(

3q1
2
√−6q0

−
√
−6q0

[
q3
q1

Φ
(
k(x−ν3t)

)
+

1

Φ
(
k(x− ν3t)

)
])

, (4.36)

whereν3 = k2
(
q2 − 6q0q3

q1
− 3q21

8q0

)
andk is an arbitrary constant.

We can apply Theorem 4.4 with (4.34) to obtain the following class of travel-

ing wave solutions of (4.31):

u1 (x, t) = λ+
3ϑk2

λ

e−k(x−(k2+λ2)t) + ϑ+ ϑ2(2λ2+3k2)
8λ2 ek(x−(k2+λ2)t)

,

whereλ, ϑ andk are arbitrary parameters such thatλ 6= 0. It is noted that, ifλ,

ϑ andk are all real constants satisfyingλϑk 6= 0, thenu1 describes a single wave

traveling in thex-direction andu1(x, t) → λ, ask(x− (k2 + λ2)t) → ±∞.

We can also apply Theorem 4.5 with (4.36) to obtain another class of solutions

of (4.31):

u2 (x, t) =ǫ1

√
−6k

σ − 1

[
σ + 1

2
− σe−k(x−ν4t) + 1

2λ(σ + 1) + 1
2ǫ2

√
λ2 − 4ϑ(σ − 1) + ϑek(x−ν4t)

e−k(x−ν4t) + λ + ϑek(x−ν4t)

]

−ǫ1

√
−6kσ

σ − 1

[
e−k(x−ν4t) + λ + ϑek(x−ν4t)

σe−k(x−ν4t) + 1
2λ(σ + 1) + 1

2ǫ2
√

λ2 − 4ϑ(σ − 1) + ϑek(x−ν4t)

]
,

whereǫj = ±1, j = 1, 2, ν4 = k2(σ2+10σ+1)
2(σ−1)2

, andλ, ϑ andσ are arbitrary constants

such thatσ 6= 1. Note thatu1 is the same as solution (18) in [45], obtained using

the Exp-function method. However,u2 is a new solution.

We also can obtain Jacobi elliptic solutions to the modified KdV equation

(4.31) by combining Theorem 4.1 with (4.34)-(4.36).
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1. Forl ∈ {1, . . . , 4}, j ∈ {1, . . . , 12} andγ arbitrary, (4.34) withΦ = ϕj,l(·, γ)
andqn = pj,n(γ), n = 0, . . . , 4, is a solution of (4.31).

2. For l ∈ {1, . . . , 4} andj ∈ {1, 2, 3, 4, 5, 6, 9, 11}, (4.35) withΦ = ϕj,l(·, 0)

andqn = pj,n(0), n = 0, . . . , 4, is a solution of (4.31).

3. For l ∈ {1, . . . , 4} andj ∈ {10, 12}, (4.36) withΦ = ϕj,l(·, 0) andqn =

pj,n(0), n = 0, . . . , 4, is a solution of (4.31).

Thus, we can obtain many Jacobi elliptic solutions of (4.31). To keep the details to

minimum, we will not list them all here. Instead, we just select some of them to

compare our results with those reported in [89, 117]. Note that our method can also

be applied to the modified KdV equation considered in [89, 117].

Let γ be such thatγ 6= ±1 andγ 6= ±m. Choosingqj = p2,j(γ), j = 0, . . . , 4,

from (4.34), it follows that

u3(x, t)= k

{
3γ(1 + m2 − 2γ2)√
−6(m2 − γ2)(1 − γ2)

−
√
−6(m2 − γ2)(1 − γ2) sn[k(x − ν5t)]

γ sn[k(x − ν5t)] + 1

}
,

u4(x, t)= k

{
3γ(1 + m2 − 2γ2)√
−6(m2 − γ2)(1 − γ2)

−
√
−6(m2 − γ2)(1 − γ2)

γ + m sn[k(x − ν5t)]

}
,

u5(x, t)= k

{
3γ(1 + m2 − 2γ2)√
−6(m2 − γ2)(1 − γ2)

−
√
−6(m2 − γ2)(1 − γ2) dn[k(x − ν5t)]

γ dn[k(x − ν5t)] + m cn[k(x − ν5t)]

}
,

u6(x, t)= k

{
3γ(1 + m2 − 2γ2)√
−6(m2 − γ2)(1 − γ2)

−
√
−6(m2 − γ2)(1 − γ2) cn[k(x − ν5t)]

γ cn[k(x − ν5t)] + dn[k(x − ν5t)]

}
,

are solutions of (4.31) in whichν5 = k2
[
6γ2 − 1 −m2 − 3γ2(1+m2−2γ2)2

2(m2−γ2)(1−γ2)

]
andk

is an arbitrary constant. Ifγ is any real number such thatm < |γ| < 1, thenuj,

j = 3, . . . , 6, are real and bounded. Moreover, ifγ = 0, then according to (4.35),

we can obtain the following two unbounded solutions:

u7(x, t)=
√
−6k

{
±m sn[k(x − ν6t)] +

1

sn[k(x − ν6t)]

}
,

u8(x, t)=
√
−6k

{
± dn[k(x − ν6t)]

cn[k(x − ν6t)]
+

m cn[k(x − ν6t)]

dn[k(x − ν6t)]

}
,

whereν6 = −k2(1 ± 6m+m2) andk is an arbitrary constant.
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Similarly, if qj = p3,j(γ), j = 0, . . . , 4, whereγ is an arbitrary constant such

thatγ 6= ±1 andγ 6= ±i m√
1−m2 , then we get solutions of (4.31) as follows:

u9(x, t) =k
{ 3γ(1 − 2m2 − 2γ2 + 2γ2m2)√

−6(γ2m2 − m2 − γ2)(1 − γ2)

−
√
−6(γ2m2 − m2 − γ2)(1 − γ2) cn[k(x − ν7t)]

γ cn[k(x − ν7t)] + 1

}
,

u10(x, t) =k
{ 3γ(1 − 2m2 − 2γ2 + 2γ2m2)√

−6(γ2m2 − m2 − γ2)(1 − γ2)

−
√

6(γ2m2 − m2 − γ2)(1 − γ2)(1 − m2)

γ
√

m2 − 1 + m cn[k(x − ν7t)]

}
,

u11(x, t) =k
{ 3γ(1 − 2m2 − 2γ2 + 2γ2m2)√

−6(γ2m2 − m2 − γ2)(1 − γ2)

−
p

−6(γ2m2 −m2 − γ2)(1 − γ2) dn[k(x− ν7t)]

γ dn[k(x− ν7t)] + im sn[k(x− ν7t)]

o

,

u12(x, t) =k
{ 3γ(1 − 2m2 − 2γ2 + 2γ2m2)√

−6(γ2m2 − m2 − γ2)(1 − γ2)

−
√
−6(γ2m2 − m2 − γ2)(1 − γ2)(1 − m2) sn[k(x − ν7t)]

γ
√

1 − m2 sn[k(x − ν7t)] + dn[k(x − ν7t)]

}
,

whereν7 = k2
[
2m2 − 6γ2m2 + 6γ2 − 1 − 3γ2(1−2m2−2γ2+2γ2m2)2

2(m2γ2−m2−γ2)(1−γ2)

]
andk is an ar-

bitrary constant. Moreover, ifγ = 0, then we have the unbounded solutions

u13(x, t)= k
√

6(m2 − 1)

{
± m√

m2 − 1
cn[k(x − ν8t)] +

1

cn[k(x − ν8t)]

}
,

u14(x, t)= k
√

6(1 − m2)

{
∓ 1√

m2 − 1

dn[k(x − ν8t)]

sn[k(x − ν8t)]
+ m

sn[k(x − ν8t)]

dn[k(x − ν8t)]

}
,

whereν8 = k2(2m2 − 1 ± 6m
√
m2 − 1) andk is an arbitrary constant.

If qj = p6,j(γ), j = 0, . . . , 4, whereγ is an arbitrary constant such that
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m2γ4 +m2 +4γ2 −2m2γ2 6= 0, then we can obtain another four solutions of (4.31)

u15(x, t) =k
{ 3γ(γ2m2 − m2 + 2)√

6(γ4m2 + m2 + 4γ2 − 2γ2m2)

−
√

6(γ4m2 + m2 + 4γ2 − 2γ2m2)

2γ + i2 sn[k(x − ν9t)] + 2 cn[k(x − ν9t)]

}
,

u16(x, t) =k
{ 3γ(γ2m2 − m2 + 2)√

6(γ4m2 + m2 + 4γ2 − 2γ2m2)

−
√

6(γ4m2 + m2 + 4γ2 − 2γ2m2) dn[k(x − ν9t)]

2γ dn[k(x − ν9t)] + i2 cn[k(x − ν9t)] + 2
√

1 − m2 sn[k(x − ν9t)]

}
,

u17(x, t) =k
{ 3γ(γ2m2 − m2 + 2)√

6(γ4m2 + m2 + 4γ2 − 2γ2m2)

−
√

6(γ4m2 + m2 + 4γ2 − 2γ2m2)m sn[k(x − ν9t)]

2γm sn[k(x − ν9t)] + i2 + i2 dn[k(x − ν9t)]

}
,

u18(x, t) =k
{ 3γ(γ2m2 − m2 + 2)√

6(γ4m2 + m2 + 4γ2 − 2γ2m2)

−
√

6(γ4m2 + m2 + 4γ2 − 2γ2m2)im cn[k(x − ν9t)]

i2γm cn[k(x − ν9t)] + 2 dn[k(x − ν9t)] + 2
√

1 − m2

}
,

whereν9 = k2
[
m2−3γ2m2−2

2
+ 3γ2(γ2m2−m2+2)2

2(m2γ4+m2+4γ2−2m2γ2)

]
and k is an arbitrary con-

stant. Furthermore, choosingγ = 0 yields that, for anyk,

u19(x, t)=
√
−6km sn[kx + k3(m2 + 1)t],

u20(x, t)=
√
−6k

1

sn[kx + k3(m2 + 1)t]
,

u21(x, t)=
√
−6km

cn[kx + k3(m2 + 1)t]

dn[kx + k3(m2 + 1)t]
,

u22(x, t)=
√
−6k

dn[kx + k3(m2 + 1)t]

cn[kx + k3(m2 + 1)t]
,

u23(x, t)=
√

6km cn[kx − k3(2m2 − 1)t],

u24(x, t)= k
√

6(m2 − 1)
1

cn[kx − k3(2m2 − 1)t]
,

u25(x, t)= k
√
−6

dn[kx − k3(2m2 − 1)t]

sn[kx − k3(2m2 − 1)t]
,

u26(x, t)= km
√

6(1 − m2)
sn[kx − k3(2m2 − 1)t]

dn[kx − k3(2m2 − 1)t]
,

are solutions of (4.31).

Remark 4.8. It follows from Remark 4.1 thatuj, j = 3, . . . , 26, still satisfy

(4.31) even if cn(·), sn(·) and dn(·) are replaced, respectively, by±cn(·), ±sn(·)
and±dn(·).
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Figure 4.3: The plot of the solutionu6 to the modified KdV equation (4.31) with
m = 0.95, k = 1 andγ = 0.96 and the initial status ofu6.

Remark 4.9. If γ = 0, thenu3, u9 andu15 are the same as the solutions reported

in [89] (with a = 1 andb = 1), andu3, u4 andu7 are the same as those reported in

[117] (for α = 1 andβ = 1). However, all of the other Jacobi elliptic solutions are

new. More new solutions can be obtained if solution form (4.10) is used.

To demonstrate the physical insight of the new solutions, wetakeu6 as an example.

By choosingm = 0.95 andk = 1, the wave profiles of the solutionu6 for two dif-

ferent values ofγ, γ = 0.96 andγ = −0.96, are displayed in Figures 4.3 and 4.4,

respectively. Clearly, in both cases, the solutions describe the traveling of waves in

thex-direction. Different values ofγ yield different wave shapes.
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Figure 4.4: The plot of the solutionu6 to the modified KdV equation (4.31) with
m = 0.95, k = 1 andγ = −0.96 and the initial status ofu6.

4.6 Traveling wave solutions for the shallow water
long wave approximate equations

In this section, we will apply the method discussed in Section 4.3 to a system of

partial differential equations. Consider the shallow water long wave approximate

equations {
ut − uux − vx + 1

2
uxx = 0,

vt − vux − uvx − 1
2
vxx = 0,

(4.37)

whereu := u(x, t) is the horizontal velocity of water andv := v(x, t) is the height

that deviates from the equilibrium position of the water. Substitutingu(x, t) = ũ(ξ)

andv(x, t) = ṽ(ξ), whereξ is as defined previously, into (4.37) and balancing the

highest order derivative and non-linear terms, we obtainnu = 1 andnv = 2. If

candidate traveling wave solutions are chosen according to(4.3), then all of the

coefficients are required to be zero. Accordingly, we will use the more general

form (4.10) and consider candidate solutions

{
ũ(ξ) = ĉ0 + ĉ1Φ(ξ)+Ĉ1Φ′(ξ)

µΦ(ξ)+1
,

ṽ(ξ) = c̃0 + c̃1Φ(ξ)+C̃1Φ′(ξ)
µΦ(ξ)+1

+ c̃2Φ2(ξ)+C̃2Φ(ξ)Φ′(ξ)
(µΦ(ξ)+1)2

,
(4.38)

whereΦ satisfies the ordinary differential equation (4.1) with coefficients qj, j =

0, . . . , 4. By substituting (4.38) into (4.37), we can ascertain the following suffi-
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cient conditions for̃u and ṽ to satisfy the shallow water long wave approximate

equations (4.37):

k =± ĉ1

α

ĉ0 =−ν +
−4q0ĉ1µ

3 + 3q1ĉ1µ
2 − 2q2ĉ1µ + q3ĉ1

4α2
,

Ĉ1 =0,

c̃0 =
ĉ2
1

16α4

[
12q0q1µ

5 − 8q2
0µ

6 − (12q0q2 + 3q2
1)µ

4 + (16q0q3 + 4q1q2)µ
3

−(24q0q4 + 6q1q3)µ
2 + 12q1q4µ + q2

3 − 4q2q4

]
,

c̃1 =
ĉ2
1(4µ3q0 − 3µ2q1 + 2µq2 − q3)

4α2
,

c̃2 =− ĉ2
1

2
,

C̃1 =± ĉ2
1

2α
,

C̃2 =∓ ĉ2
1µ

2α
,

whereα =
√
q0µ4 − q1µ3 + q2µ2 − q3µ+ q4 andµ, ν, ĉ1 are arbitrary constants.

Note that these requirements are the same as those reported in [22]. Note also that

there are no conditions restricting the choice of coefficients qj , j = 0, . . . , 4, of the

ordinary differential equation (4.1). Usingϕj,l(·, 0), j = 1, . . . , 6, l = 1, . . . , 4,

from Theorem 4.1, we can reproduce the same Jacobi elliptic solutions of (4.37)

reported in [22]. By applying Theorems 4.1-3, we also can deduce many new so-

lutions. These solutions cannot be obtained using the results in [22]. For example,

choosingµ = 0 andqj = p7,j(γ), j = 0, . . . , 4, we can obtain the following solu-

tions for the shallow water long wave approximate equations(4.37):

uj(x, t) = − ν +
ϑβ

4α2
+ ϑϕ7,j

(
k(x− νt)

)
, j = 1 . . . , 4,

vj(x, t) = − ϑ2
{ η

16α4
+

β

4α2
ϕ7,j

(
k(x− νt)

)
− 1

2α
ϕ′

7,j

(
k(x− νt)

)

+
1

2
ϕ2

7,j

(
k(x− νt)

)}
, j = 1 . . . , 4,

whereϕ7,j, j = 1, . . . , 4, are as defined in Section 4.2,k = ϑ/α, α =
[
γ3(1 −

m2) + γ2(2 −m2) + γ
]1/2

, β = γ2(3m2 − 3) + γ(2m2 − 4) − 1, η = γ4(3m4 −
6m2 + 3) + γ3(4m4 − 12m2 + 8) + γ2(6 − 6m2) − 1, andν, γ, ϑ,m are arbitrary.

For the other solutions, we leave it to the reader.
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Figure 4.5: The plot of the solutionu1 of the shallow water long wave approximate
equations (4.37) withm = 0.99, ν = −2 andϑ = γ = 1 and the initial status ofu1.

To show the physical insight of these solutions, we take the solution (u1, v1)

as an example. Figures 4.5 and 4.6 display the graphs ofu1 andv1 with m = 0.99,

ν = −2 andϑ = γ = 1. Clearly, the solution describes the propagation of waves

with horizontal velocityu1 along the negativex-direction.

4.7 Concluding remarks

In this chapter, we have presented a generalized expansion method for generating

traveling wave solutions of non-linear partial differential equations. This method

has been successfully applied to the Boussinesq equation, the modified KdV equa-

tion and the shallow water long wave approximate equations,and many new results

have been obtained. For each equation investigated, we are able to replicate solu-

tions previously derived in the literature, and discover many new ones. Extensions

to two and three dimensional partial differential equations are possible. Other non-

linear partial differential equations can be tackled if an appropriate transformation

can be found. For example, in [45], the transformationu = ln v was applied to the

Dodd-Bullough-Mikhailov equation to yield a non-linear partial differential equa-

tion involving powers ofv and its derivatives.
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Chapter 5

Linear B-spline finite element
method for the improved Boussinesq
equation

5.1 Introductory remarks

The improved Boussinesq equation (1.3) has been studied extensively over the past

two decades (see [1, 18, 20, 33, 47, 50]). Iskandar and Jain [50] were the first

to investigate the improved Boussinesq equation (1.3) numerically. Applying a lin-

earization technique and finite difference approximations, Iskandar and Jain derived

a three-level iterative scheme with second order local truncation error. The scheme

was used to investigate head-on collisions between solitary waves. Later, Zoheiry

[33] developed an improved scheme with a Crank-Nicolson modification. For this

scheme, each time step is accompanied by an iterative process that ensures the ac-

curacy requirements are satisfied. Hence, whilst accuracy is maintained, efficiency

is compromised.

In [47], Adomian’s decomposition method was applied to the Cauchy problem

for the improved Boussinesq equation (1.3). Using this method, the solution is

expressed as a convergent series, and an approximation is obtained by truncating

the series after a sufficient number of terms. However, the computation of each

term in this series is cumbersome, requiring the integration and differentiation of

several complex expressions. The symbolic manipulation package Maple was used
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and numerical results were calculated and compared with theanalytical solution, but

only for a very small value oft. It remains to be seen how this method performs for

large values oft. In fact, in order to maintain accuracy ast increases, it is expected

that a large number of more complicated terms will need to be calculated. In [1], the

Adomian decomposition-Padé technique has been presentedand it has been shown

that this technique gives the approximate solution with faster convergence rate and

higher accuracy than using Adomian’s decomposition methodalone. However, the

disadvantage of Adomian’s decomposition method still remains, that is, the error

increases rapidly ast increases.

In [18], Bratsos considered the improved Boussinesq equation (1.3) with bound-

ary conditions imposed on the first spatial derivative. Finite difference approxima-

tions were used to reduce the improved Boussinesq equation (1.3) to a system of

ordinary differential equations. Using a Padé approximation, a three level implicit

time-step scheme was developed. Relevant stability boundswere also derived. In

addition, Bratsos has employed an implicit finite-difference method associated with

a predictor-corrector scheme to solve the initial boundaryvalue problem governed

by the improved Boussinesq equation (1.3) (see [20]).

In this chapter, we develop a Galerkin-based finite element method for a class

of initial boundary value problems governed by the improvedBoussinesq equa-

tion (1.3). The spatial axis is partitioned into a set of finite elements and the solution

is expressed in terms of the linear B-spline basis functions. On this basis, a system

involving only ordinary derivatives is obtained. Then, thestructure of the system co-

efficient matrices is exploited to transform the problem into an explicit initial value

problem. Accordingly, many standard numerical integration algorithms are appli-

cable. In this manner, an approximate solution to the problem can be generated.

In contrast to existing methods, this method is simple to implement and capable

of handling the non-linearity in the governing equation. Wepresent the results of

four numerical experiments to validate the method and demonstrate its capability in

simulating complex wave phenomena.
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5.2 Problem statement

Consider the initial boundary value problem consisting of the improved Boussinesq

equation

utt = uxx + uxxtt +
(
u2
)
xx
, x ∈ (a, b), t > 0, (5.1)

the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), for all x ∈ (a, b), (5.2)

and the boundary conditions

u(a, t) = 0, u(b, t) = 0, for all t ∈ (0,∞), (5.3)

whereu0, u1 : (a, b) → R are given functions.

For any fixedt, we multiply (5.1) by a test functionv ∈ H1
0 (a, b) = {w ∈

L2(a, b) : wx ∈ L2(a, b), w(a) = w(b) = 0}, integrate the product over[a, b] using

integration by parts, and then apply the boundary conditions (5.3) to yield
∫ b

a

(
uttv + uxvx + uxttvx + (u2)xvx

)
dx = 0, (5.4)

where the function arguments are suppressed for clarity. Equation (5.4) is required

to hold for all admissible test functions. On this basis, we define the following vari-

ational problem.

Problem 5.1.Find au ∈ H1
0 (a, b) such that (5.2) is satisfied and, for eacht > 0,

(utt, v) + (ux, vx) + (uxtt, vx) +
(
(u2)x, vx

)
= 0, for all v ∈ H1

0 (a, b), (5.5)

where

(u, v) =

∫ b

a

u(x)v(x)dx.

5.3 Numerical method

We partition thex-axis inton finite elements by choosing a set of evenly-spaced

knots{xi}ni=0 such thata = x0 < x1 < · · · < xn−1 < xn = b andxi+1 − xi = h,
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i = 0, . . . , n− 1. Consider an approximate solution of Problem 5.1 of the form:

Un(x, t) =

n∑

i=0

ui(t)φi(x), (5.6)

where

φi(x) =






x− xi−1

xi − xi−1
, x ∈ [xi−1, xi],

xi+1 − x

xi+1 − xi
, x ∈ [xi, xi+1],

0, elsewhere.

According to (5.6),ui(t) = Un(xi, t), i = 0, . . . , n.

Applying the boundary conditions (5.3) givesu0(t) = 0 andun(t) = 0 for all

t ∈ (0,∞). Hence, (5.6) can be simplified to

Un(x, t) =
n−1∑

i=1

ui(t)φi(x). (5.7)

We then follow the standard Galerkin approach and choose test functionsv = φi,

i = 1, . . . , n − 1. On this basis, (5.5) must hold withv = φi, i = 1, . . . , n − 1.

Substituting (5.7) into (5.5) gives

n−1∑

j=1

(
(φi, φj) üj +

(
φ′
i, φ

′
j

)
uj +

(
φ′
i, φ

′
j

)
üj + 2

n−1∑

k=1

(φ′
iφ

′
k, φj) ukuj

)
= 0 (5.8)

for eachi = 1, . . . , n− 1, where′ anḋ denote differentiation with respect tox and

t, respectively.

In matrix notation, the system of equations (5.8) can be written as

(A+B)Ü(t) +BU(t) + C
(
U(t)

)
U(t) = 0, (5.9)

where0 ∈ R
n−1 is a zero vector andU(t) =

[
u1(t), u2(t), . . . , un−1(t)

]T
. The

(n− 1) × (n− 1) matricesA, B andC
(
U(t)

)
are given as follows:

A =
[
(φi, φj)

]
=
h

6





4 1 0 · · · 0
1 4 1 · · · 0
0 1 4 · · · 0
...

...
...

. . .
...

0 0 0 · · · 4



 ,

B =
[
(φ′

i, φ
′
j)
]

=
1

h





2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2



 ,
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and

C
(
U(t)

)
=

[
2
n−1∑
k=1

(φ′
iφ

′
k, φj)uk

]

=
1

h





2u1 − u2 u1 − u2 0 · · · 0
u2 − u1 −u1 + 2u2 − u3 u2 − u3 · · · 0

0 u3 − u2 −u2 + 2u3 − u4 · · · 0
...

...
...

. . .
...

0 0 0 · · · −un−2 + 2un−1



 .

Note thatC is a time dependent matrix, whilstA andB are constant. By virtue of

the structure ofA andB, we have the following theorem.

Theorem 5.1. The matrixA+B is invertible.

Proof. Let y ∈ R
n−1 be a non-zero vector and definew(x) =

n−1∑
i=1

yiφi(x).

Then we have

yTBy =

n−1∑

i=1

n−1∑

j=1

yibijyj

=
n−1∑

i=1

n−1∑

j=1

yi

(∫ b

a

φ′
i(x)φ

′
j(x)dx

)
yj

=

∫ b

a

n−1∑

i=1

n−1∑

j=1

yiφ
′
i(x)φ

′
j(x)yjdx

=

∫ b

a

(
n−1∑

i=1

yiφ
′
i(x)

)2

dx

=

∫ b

a

(w′(x))
2
dx

≥ 0.

Sincew′ is piecewise continuous, equality holds if, and only if,w′(x) = 0 for all

x ∈ [a, b]. Now, sincew(a) = 0, w′(x) = 0 for all x ∈ [a, b] if, and only if,w ≡ 0.

This, in turn, requiresy = 0, which contradicts the assumption thaty is non-zero.

Hence,yTBy > 0 for all non-zeroy and soB is positive definite. In a similar

manner, one can ascertain the positive definiteness ofA. Since bothA andB are
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positive definite, it readily follows thatA + B is positive definite and therefore in-

vertible.�

From Theorem 5.1, it follows that we can invert the matrixA+B in (5.9) to isolate

the second derivative term. SinceA + B is tridiagonal, this inversion can be per-

formed efficiently using a special algorithm (see Section 6.6 of [21]). Introducing

the new variableV(t) = U̇(t), it is clear that the system (5.9) is equivalent to the

following first order system of ordinary differential equations:

U̇(t) = V(t), (5.10)

V̇(t) = −(A +B)−1
[
BU(t) + C

(
U(t)

)
U(t)

]
. (5.11)

Initial conditions for (5.10) and (5.11) are obtained by considering (5.2). As such,

we have

U(0) =
[
u0(x1), . . . , u

0(xn−1)
]T

(5.12)

and

V(0) =
[
u1(x1), . . . , u

1(xn−1)
]T
. (5.13)

The system of ordinary differential equations (5.10) and (5.11) with initial condi-

tions (5.12) and (5.13) defines a standard initial value problem. This problem can

be solved using a standard numerical integration algorithm(for example, a Runge-

Kutta method).

5.4 Numerical examples

In this section, we implement the procedure developed in Section 5.3 and solve

some concrete problems. Firstly, in Example 5.1, we validate the procedure by

comparing our numerical results with the exact solution. Then, in Examples 5.2, 5.3

and 5.4, we demonstrate the capacity of this technique to simulate wave splitting,

wave interaction and blow-up behavior.

The differential equations (5.10) and (5.11) are solved using the Runge-Kutta-

Verner variable step-size method (see Section 5.5 of [21]).Thus, the time-step is
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actually dynamic and is modified within the preset maximum and minimum bounds

to ensure that the given error tolerances are satisfied. In Examples 5.1, 5.2 and 5.3,

the error tolerance is1.0×10−7; in Example 5.4, it is1.0×10−4. All program codes

for the examples below were written in Fortran 95.

Example 5.1. (Numerical validation)

Note that, on an unbounded region with boundary conditionsu(x, t) → 0 asx →
±∞, the improved Boussinesq equation (5.1) admits analyticalsolutions of the

form

u(x, t) = ηsech2
(

1

ν

√
η

6
(x− νt− x0)

)
, (5.14)

wherex0 is the initial position of the solitary wave,η > 0 is the wave amplitude

andν = ±
√

1 + 2
3
η is the wave speed. The validity of (5.14) is expected to hold

for bounded regions which are sufficiently large.

Setη = 0.5, x0 = 0 andν =
√

1 + 2
3
η with

u0(x) = ηsech2
(

1

ν

√
η

6
(x− x0)

)

and

u1(x) = 2η

√
η

6
sech2

(
1

ν

√
η

6
(x− x0)

)
tanh

(
1

ν

√
η

6
(x− x0)

)
.

Under these conditions, the exact solution to Problem 5.1 isgiven by (5.14). In

applying the procedure of Section 5.3, we discretize the problem onx ∈ [−30, 150]

using evenly-spaced knots with a distance ofh between consecutive nodes. In gen-

eral, the numerical error will depend onh and the time-step size∆t. Here,∆t is

chosen automatically by the integration routine to satisfybounds on the local trun-

cation error, whileh is determined through a convergence analysis. The numerical

solution is compared with the exact solution att = 10 for different values ofh in
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Table 5.1: Comparison of the numerical results and exact solution for Example 5.1.
x Numerical solution Exact solution

h = 1.000 h = 0.500 h = 0.250 h = 0.100 h = 0.05
5.0 0.073052 0.071010 0.070492 0.070347 0.070327 0.070320
6.0 0.111137 0.110728 0.110658 0.110641 0.110638 0.110637
7.0 0.165915 0.168348 0.169026 0.169220 0.169248 0.169258
8.0 0.240392 0.246098 0.247597 0.248021 0.248082 0.248102
9.0 0.331384 0.339093 0.341042 0.341589 0.341667 0.341694
10.0 0.423374 0.429964 0.431557 0.431999 0.432062 0.432083
11.0 0.487991 0.490172 0.490623 0.490742 0.490759 0.490765
12.0 0.497708 0.494722 0.493915 0.493686 0.493653 0.493642
13.0 0.447066 0.441326 0.439898 0.439499 0.439442 0.439423
14.0 0.357728 0.352426 0.351142 0.350786 0.350735 0.350718
15.0 0.260700 0.257474 0.256703 0.256489 0.256459 0.256448
E 0.010309 0.002601 0.000651 0.000105 0.000026
E= max

0≤m≤n
{|Un(xm, t) − u(xm, t)|}, u(x, t) is the analytical solution.

Table 5.1. To examine the influence ofh on the numerical solutions, Figure 5.1

shows the convergence process. It is clear that convergenceis achieved ath = 0.1

(− ln(h) = 2.3) and thus this value forh is used here and in Examples 5.2 and 5.3.

To investigate the variation of numerical error with time, we plot the error at two

points against time in Figure 5.2. The time-step determinedby the local truncation

error is between 0.25 and 0.7.
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− ln(h)
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Figure 5.1: Relationship betweenh andE for Example 5.1.
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Figure 5.2: Numerical errors versus time atx = 10 andx = 50 for Example 5.1.

The wave profile of the numerical solution fort ∈ [0, 72] is shown in Figure 5.3.

The results are in good agreement with those presented in [18, 15, 33, 50]. The

average speed of this solitary wave is 1.1542, which is quiteclose to the theoretical

value of
√

1 + 2
3
η = 1.154701. We note that our numerical method is much more

efficient than those presented in the references. For example, using our method, an

accuracy ofE = 3.96 × 10−4 at t = 72 is achieved with0.25 ≤ ∆t ≤ 0.7. In [18],

∆t needs to be in the order of 0.001 to generate results of comparable accuracy.
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Figure 5.3: Single soliton solution for Example 5.1.
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The results in Example 5.1 demonstrate that the method developed in Section 5.3 is

highly accurate for quite moderate time-steps and values ofh. Having validated the

procedure, we will now present some simulations in the remaining examples.

Example 5.2. (Wave break-up)

We consider Problem 5.1 withu1(x) = 0 andu0(x) defined as in Example 5.1,

where nowx0 = 30. This problem is solved on−30 ≤ x ≤ 90 for 0 ≤ t ≤ 40 us-

ing the method of Section 5.3 with∆t ∈ [0.25, 0.7]. The initial stationary wave and

the numerical solution are displayed together in Figure 5.4. The diagram shows the

initial stationary wave of amplitude 0.5 breaking into two smaller diverging solitary

waves. The break-up is completed at approximatelyt = 10, and the amplitudes of

these two solitary waves are approximately equal to 0.26. Itis also noted that the

solution is symmetric about the planex = 30.
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Figure 5.4: Wave break-up solution for Example 5.2.
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Example 5.3. (Wave collision)

As in [50], we investigate the interaction of two soliton waves moving on a col-

lision course. Here,x ∈ [−60, 90] andt ∈ [0, 40] with

u0(x) = η1sech2
(

1

ν1

√
η1

6
(x+ x0)

)
+ η2sech2

(
1

ν2

√
η2

6
(x− x0)

)

and

u1(x) = 2η1

√
η1

6
sech2

(
1

ν1

√
η1

6
(x+ x0)

)
tanh

(
1

ν1

√
η1

6
(x+ x0)

)

−2η2

√
η2

6
sech2

(
1

ν2

√
η2

6
(x− x0)

)
tanh

(
1

ν2

√
η2

6
(x− x0)

)
,

whereν1 =

√
1 +

2

3
η1, ν2 =

√
1 +

2

3
η2, x0 = 20.0, η1 = 1.0, η2 = 0.5 and

∆t ∈ [0.15, 0.7]. Figure 5.5 displays the head-on collision. The collision starts

at approximatelyt = 5.29484. Before the collision of the two waves, the speed

and amplitude of one of the waves are 1.28431 and 0.99998, respectively; while

the speed and amplitude of the other wave are -1.1521 and 0.49999, respectively. A

negative speed indicates that the wave travels in the negativex−direction. When the

two waves interact, they become a single wave. At approximately t = 15.95779,

the amplitude of the solitary wave achieves its maximal value of 1.32705. When

t = 22.32919, the collision is finished, and the amplitude of the larger wave is

0.97714; while the amplitude of the smaller wave becomes 0.49071. According

to the contour map in Figure 5.5, the secondary solitons are visable. Hence, the

collision is inelastic. Figure 5.6 shows another example ofinelastic collision in

whichx0 = 20.0, η1 = 0.5, η2 = 2 and∆t ∈ [0.09, 0.7].

Now, we give some examples of waves of equal magnitude colliding. When

η1 = η2 = 0.4, the collision, shown in Figure 5.7, is elastic, while, forη1 = η2 =

1, the interaction, illustrated in Figure 5.8, is inelastic.The results are in good

agreement with those reported in [20]. However, according to the contour map in

Figure 5.9, the collision withη1 = η2 = 0.5 is still elastic. Hence, we can conclude

that, for the case of equal magnitude colliding, if the amplitude is less than or equal

to 0.5, the collision is elastic.
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Figure 5.5: Inelastic collision withη1 = 1.0 andη2 = 0.5 in Example 5.3. The
contour line on the right illustration starts from 0.01 and the level step is 0.2.
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Figure 5.7: Elastic collision withη1 = 0.4 andη2 = 0.4 in Example 5.3. The
contour line starts from 0.01 and the level step is 0.1.
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contour line starts from 0.01 and the level step is 0.2.
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Example 5.4. (Solution blow-up)

In this example, we simulate the solution blow-up discussedin [108, 111]. The

improved Boussinesq equation (5.1) is considered onx ∈ [0, 1] with the initial

boundary conditions (5.2) and (5.3) defined byu0(x) = −3 sin(πx) andu1(x) =

− sin(πx). Under these assumptions, it is known from [108] that there exists a

T 0 > 0 such that a unique local solutionu ∈ C2([0, T 0);H2(0, 1) ∩ H1
0 (0, 1))

exists, with

‖u(·, t)‖L2(0,1) → +∞, ast→ T 0,

and

I(t) =

∫ 1

0

u(x, t) sin(πx)dx→ −∞, ast→ T 0.

To solve this problem numerically using the procedure developed in Section 5.3,

we discretize the space domain into evenly-spaced knots with h = 0.005. Note

that in this example, we had to set the minimum time-step verysmall (0.00001) to

generate reasonable results untilt = 1.8. The numerical solution at various values

of t is shown in Figure 5.10.I(t) is tabulated for these values in Table 5.2.
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Figure 5.10: Solution blow-up in Example 5.4.

Table 5.2: Numerical results for Example 5.4.
t 0.0 0.58 0.99 1.50 1.60 1.70 1.80

u(0.5, t) −3.00 −4.86 −9.97 −65.16 −146.64 −535.13 −131146.69
I(t) −0.0075 −0.0113 −0.0206 −0.0951 −0.18 −0.49 −30.81

5.5 Concluding remarks

In this chapter, we have developed an efficient and practicalfinite element scheme

for solving initial boundary value problems for the improved Boussinesq equa-

tion. Our numerical results were generated using an adaptive Runge-Kutta-Verner

method. This method proved highly accurate. Excellent agreement between the

analytical and numerical solutions was obtained in Example5.1 for relatively large

time-steps, and wave interaction and wave break-up were successfully simulated

in Examples 5.2 and 5.3. Additionally, we verified numerically a type of solution

blow-up that has been shown to exist theoretically. The advantage of our scheme

is that it can be implemented easily using existing ordinarydifferential equation

solvers. Many such solvers of excellent quality are available. A special time-

stepping scheme does not need to be developed to handle the non-linearity inherent

in the improved Boussinesq equation.
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Chapter 6

Summary and further research

6.1 Summary

In this thesis, we have studied Boussinesq-type equations,including the existence

and nonexistence of a global solution for a generalized Boussinesq equation, exact

solutions for the Boussinesq equation and numerical solutions to a class of initial

boundary value problems governed by the improved Boussinesq equation. Based on

previous work in the field and methods of research, we have derived some important

results. The main results achieved are summarized as follows.

(1) We have studied a generalized Boussinesq equation

utt − αuxx + uxxxx +
[
f(u)

]
xx

= 0

and its corresponding Euclidean scalar field equation

−φxx + αφ− f(φ) = 0,

whereα is a positive constant andf satisfies the conditions listed in either Case 1

or Case 2 (Cases 1 and 2 are as defined in Section 3.2 of Chapter 3). We have

shown that there exists a ground state of the Euclidean scalar field equation. Based

on the ground state, a constantd is determined by (3.14). Then, according to the

constantd, two sets have been constructed. It has been shown that thesetwo sets

are invariant under the flow generated by the generalized Boussinesq equation if
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the initial data satisfy some conditions. By virtue of the local existence theorem

derived by Liu [65], we have established sufficient conditions for Cauchy problems

involving the generalized Boussinesq equation such that the solution exists globally

or blows up in finite time. More precisely, if the initial wavebelongs to the first

invariant set, then the solution exists globally, while thesolution blows up in finite

time if the initial wave belongs to the second invariant set and some additional con-

ditions have been satisfied.

(2) A generalized expansion method for constructing exact solutions of non-linear

partial differential equations has been proposed, in whichthe solutions of partial

differential equations can be derived from solutions of an auxiliary ordinary differ-

ential equation. We have obtained some new Jacobi elliptic and exponential solution

classes for an auxiliary ordinary differential equation. Our new results ensure that

the proposed expansion method is a significant generation ofthe expansion methods

in the literature. Moreover, the proposed expansion methodhas been successfully

applied to the Boussinesq equation, the modified Boussinesqequation, the modified

KdV equation and the shallow water long wave approximate equations. For each

equation considered, we are capable of replicating solutions previously derived in

the literature and discovering many new ones.

(3) Applying the finite element method with linear B-spline basis functions, an

efficient numerical scheme has been established for solvinginitial boundary value

problems for the improved Boussinesq equation. Using the finite element method,

the original problem is converted into a Cauchy problem for an ordinary differential

system. Then, numerical results can be generated by using anadaptive Runge-

Kutta-Verner method. Four numerical experiments have beenpresented to validate

the method and demonstrate its capability in simulating complex wave phenomena.

Excellent agreement between the analytical and numerical solutions has been ob-

tained for relatively large time-steps, and wave interaction and wave break-up have

been successfully simulated. Furthermore, we have successfully simulated a type of
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solutions which has been shown theoretically to blow up in finite time in [108, 111].

6.2 Further research

In this project, we use some techniques to investigate Boussinesq-type equations

and achieve some important results. Based on the obtained results, there are some

problems for further research.

As mentioned in Chapter 2, the instability of solitary wave solutions for the

generalized Boussinesq equation has been investigated only for the casef(s) =

|s|p−1s (p > 1). Note that the instability for solitary waves is generallyderived

from the blow-up theorem. In this thesis, we consider the generalized Boussinesq

equation whenf is in a general form and establish sufficient conditions under which

the solution blows up in finite time. Using the new blow-up theorem, we can in-

vestigate the instability for solitary wave solutions of the generalized Boussinesq

equation whenf is in a general form.

For the expansion method proposed in Chapter 4, we can apply it to the in-

variant Boussinesq equations. Furthermore, it is possibleto apply the method to

other sets of Boussinesq-type equations. On the other hand,motivated by the inter-

esting transformation (2.11), we can investigate some similar transformation which

can be used to generate new exact solutions for non-linear partial differential equa-

tions. In addition, we also can use the results given in Section 4.2 of Chapter 4 to

construct exact solutions for non-linear partial differential equations with boundary

conditions.

For the numerical methods, we can generalize the technique used to derive

the proposed numerical scheme in Chapter 5 for the improved Boussinesq equation

in 1 + 1 dimensions to2 + 1 or 3 + 1 dimensional space. Furthermore, we can

apply the technique to Boussineq-type systems to stimulatesome complex wave

propagations. In addition, other kind of numerical techniques can be applied to

solve Boussinesq-type equations.
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