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Abstract

We develop well-posedness theory and analytical and neaiesblution
techniques for Boussinesg-type equations. Firstly, wesicken the Cauchy prob-
lem for a generalized Boussinesq equation. We show that soéeable conditions,
a global solution for this problem exists. In addition, weide sufficient conditions
for solution blow-up in finite time.

Secondly, a generalized Jacobi/exponential expansionaddor finding ex-
act solutions of non-linear partial differential equasads discussed. We use the
proposed expansion method to construct many new, previomsliscovered exact
solutions for the Boussinesq and modified Korteweg-de \msations. We also
apply it to the shallow water long wave approximate equatidview solutions are
deduced for this system of partial differential equations.

Finally, we develop and validate a numerical procedure dtrisg a class of
initial boundary value problems for the improved Boussinegquation. The finite
element method with linear B-spline basis functions is usediscretize the equa-
tion in space and derive a second order system involving amnary derivatives.
It is shown that the coefficient matrix for the second ordemtén this system is
invertible. Consequently, for the first time, the initiallswlary value problem can
be reduced to an explicit initial value problem, which cansbé/ed using many
accurate numerical methods. Various examples are presentalidate this tech-
nique and demonstrate its capacity to simulate wave spittvave interaction and

blow-up behavior.
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Chapter 1

Introduction

1.1 Background

The propagation of surface waves is of fundamental and ipehdémportance in
oceanography and marine engineering. Boussinesq-typsieqs are capable of
providing accurate description of water evolution in cahstgions (see [27, 87]).
The earliest original Boussinesq equation was derived lusBioesq in 1870s which
takes into account the effects of weak dispersion due tefaepth and weak non-
linearity due to finite amplitude. Boussinesg-type equetialso can be applied
to many other areas of mathematical physics dealing withevpdlnenomena. Ap-
plications to waves in one-dimensional anharmonic lagticen acoustic waves in
plasmas, and acoustical waves on circular elastic rodsemeribed in references
[41, 90, 91]. In addition, according to [38] (as quoted by Makkov [73]), Boussi-
nesq equation is also closely connected with the so-cakechiFPasta-Ulam prob-
lem.

The general form of thé + 1 dimensional Boussinesq equation is
Uyt + Q1 Ugy + CoUgzyy + as (UQ):E:E = 07 (11)

whereu := u(z, t) represents the wave height from the free surface in the dase o
shallow water wave propagation;, j = 1, 2, 3, are known constants, and the sub-
scripts denote partial differentiation. In the literatutree Boussinesq equation (1.1)

with o; = —1 (j = 1, 2, 3) is typically referred to as the “bad” or ill-posed Boussi-



nesq equation. The “bad” Boussinesq equation describesalistic instability at
short wavelengths (see [15, 73]) and so it can not be solvacsing a sufficiently
fine grid along ther-axis. Note that the dispersion relation of the “bad” Bonssq

equation is given as follows:
w? = K*(1 — k%), (1.2)

wherek is the wave number and is the wave circular frequency. Wheén> 1,

the “bad” Boussinesq equation gives rise to an unrealisgtability. This is the
physical reason why Cauchy problems for the “bad” Boussjmegiation become
incorrect fork > 1. Choosingas, = 1 anda; = a3 = —1, the Boussinesq
equation (1.1) is known as the “good” or well-posed Boussinequation whose

dispersion relation is given by
w? = K1+ k?).
An improved Boussinesq equation is as follows:
Ut — Ugy — Ugatt — (uQ)m =0, (1.3)

in whichu := u(x,t) stands for the plasma density in the case of ion-sound wave
propagation. Note that the dispersion relation of equdtlod) is defined by

2 ka

SR 1.4
W= Te (1.4)

The “improved” term means that, in comparison with the “b&dussinesq equa-
tion, equation (1.3) does not admit such a kind of instgbflir £ > 1. Hence,
the improved Boussinesq equation (1.3) is more suitabledarputer simulation.
Moreover, the improved Boussinesq equation (1.3) and $gsedtsion relation (1.4)
approach the “bad” Boussinesq equation and its dispersiation (1.2) wherk is
much smaller than.

The generalized Boussinesq equation has the form

Ut + O Ugy + QQUgzgs + [f(u)] =0, (15)

rxr



where constants;, j = 1,2, and functionf : R — R are given. Equation (1.5)
arises in the study of one-dimensional anharmonic lattiaees (see [90]). Note
that, if constantsy; anda, are negative, then equation (1.5) is referred to as the
generalized “bad” Boussinesq equation.

Equations (1.1) and (1.5) are certain perturbations of thegewequations
which take into account the effects of small non-linearity aispersion. It has
also been established that, in many practical scenariesftact of damping is at
least as significant as non-linearity and dispersion, ifnote so. Hence, Varlamov

[97] introduced the following damped Boussinesq equation:

U — 2051ut:m: + QQUggzy — Ugy + a3 (uQ)mm = 07 (16)

wherea;, j = 1,2, 3, denote constants satisfying, a; > 0 and the mixed deriva-
tive term is responsible for strong dissipation.

Next, we will introduce some well-known systems of Boussaype equa-
tions which have been studied in the scientific literaturevater waves.

As waves propagate toward shore or around marine structheew/ave field
is transformed due to the effects of shoaling, refractiaffragtion and reflec-
tion. Boussinesq-type equations have been shown to be leapfatimulating wave
diffraction in shallow waters. The classical Boussinesgatigpns derived by Pere-

grine [87] are as follows:

n+ V- [(h+n)u] =0, (1.7)
w + (u-V)u+gVn— V[V - (hw,)] + 102V(V - w,) = 0, '

whereu := u(z,y,t) =(u(z,y,t),v(z,y,t)) is the two-dimensional depth-averaged
velocity vector, := n(z,y,t) is the wave amplitude) := h(z,y) is the varying
water depth as measured from the still water level, congtasithe gravitational
acceleration, an®’ is the two-dimensional horizontal gradient operator. Thse d
persion relation of equations (1.7) is given as follows:

w2 = ghk?

1+ h2k*/3’

wherek? = k% + k2 andky, k, denote the components of the wave number vector

in the z— andy—directions, respectively. Equations (1.7) can be used sordee



the propagation of long waves in water of varying depth. Hevghis set of equa-
tions is not suitable for deep water.

To extend the applicability of the classical Boussinescpéiqus in deep wa-
ter, many efforts have been made to improve the dispersiopepty of the equa-
tions. By rearranging the dispersion terms, Beji and NaddaR] introduced the

following improved Boussinesq equations:

77t+V' [(h—FT})’U/] :0,
us+ (u-V)u+ gVn

S BVIY - (hue)] — 28ghV [V - ()] 49
FLA 4+ B2V (V - w) + L8gh>V (An) =0,
with the improved dispersion relation
w?  kh(1 + Bk*h?/3) (1.9)

gk 1+ (1+B)k2h2/3’
where the constant is determined to yield a better dispersion characteristics
[12], it has been shown that= 1/5 is the best choice.
Equations (1.7) and (1.8) are derived by using the depthageel velocity.
Instead, Nwogu [83] obtained the following extended Baussqg equations using

the velocityu := u(zx, y, t) at an arbitrary elevation := z(z, y):

AV [(hn)u] + V- (322 = 102) hV(V - w)
+ (24 3h) RV[V - (hu)] | =0, (1.10)
u+gVn+ (u-Viu+12°V(V-u,) + 2V [V : (hut)} = 0.

This set of equations can describe the horizontal propagati irregular, multi-
directional waves in water of varying depth. It is noted titet dispersion relation
of (1.10) is the same as (1.9)fis set to—(1 + 3)/3.
In[119], Zhao et al. introduced a variableand derived the following gener-
alized Boussinesq equations:
V- [(h+m)Ve] =3V - (12Vn) }
+eh?An, — £V - [AV (hiy)] = 0, (1.112)
¢+ 3(V9)? + gn — z9hV - (hVn) = 0.
The dispersion relation of (1.11) is the same as (1.9) wite- 1/5. However,

equations (1.11) are more efficient for calculations andmEarasily implemented



by any numerical methods since there are no spatial derdgtvith an order higher
than 2.

The following equations are referred to as the variant Bioess| equation [88]:

Ht + Hu)m + Uggy = 07 }
uwy + Hy + uu, =0, (1.12)

whereu := u(z,t) is the velocity andd := H(z,t) is the total depth of wave.
Compared with other systems of Boussinesg-type equatempstions (1.12) are
much more simple. Traveling wave solutions for equations3thave been derived
in the literature [11, 37, 63, 116, 117, 118].

1.2 Objectives

Although a significant advance in the study of Boussinegg-quations and their
associated initial or initial boundary value problems hasrbmade, there are still
many problems which require further investigation. In tthissis, we will study
Boussinesqg-type equations from three aspects. FirstlyviMeonsider a Cauchy
problem governed by the generalized Boussinesq equatiéh &hd derive con-
ditions for the existence of a global solution, as well asditions for the solu-
tion blow-up in finite time. Secondly, we develop a genesdiexpansion method
to construct exact solutions for non-linear partial déietial equations and derive
traveling wave solutions for Boussinesqg-type equationsmalfy, using the finite
element method, we will propose a numerical scheme to solveitial boundary
value problem for the improved Boussinesq equation (1.8g Jpecific objectives

are detailed below.

(I) Study the existence and blow-up of the solution for a Cauay problem for
the generalized Boussinesq equation

Consider the Cauchy problem for the following generalized€sinesqg equa-
tion

rxr



subject to the initial conditions
u(w,0) = u’(z), u(x,0) = u'(x), (1.14)

where positive constaatand functionsf, «°, u' : R — R are given. The objective
of this work is to establish conditions that ensure the exis¢ of a global solution
for the Cauchy problem (1.13)-(1.14). We will also estdblisnditions that guar-

antee solution blow-up in finite time.

(I1) Construct new traveling wave solutions for Boussinesetype equations

In this work, we aim to develop a generalized expansion ntetbofinding
traveling wave solutions of the Boussinesq equation (E@jthermore, to demon-
strate the flexibility and power of the proposed expansiothoet we will apply it
to study the modified Korteweg-de Vries equation and thd®halater long wave

approximate equations.

(111) Develop a numerical method for solving initial boundary value problems
for the improved Boussinesq equation
Consider the initial boundary value problem defined by therowed Boussi-

nesq equation

Ut = Ugg + Ugare + (u*) ;2 € (a,b), >0, (1.15)
the initial conditions
u(z,0) = u’(z), wu(z,0)=u'(z), =€ (a,b), (1.16)
and the boundary conditions
u(a,t) =0, wu(b,t)=0, t>0, (1.17)

whereu® andu! are given functions. In this work, we aim to stimulate comple
wave phenomena governed by the improved Boussinesq equditodo this, we
will propose an efficient and practical finite element schémesolve the initial
boundary value problem (1.15)-(1.17).



1.3 Outline of the thesis

In this thesis, we develop the theoretical results for theegalized Boussinesq
equation, construct exact solutions for some well-knownigladifferential equa-
tions and investigate the numerical solutions for the impdoBoussinesq equation.

The thesis is organized as follows:

¢ In Chapter 1, we describe the background of Boussinesqgdgpations and

the objectives of the research project.

e In Chapter 2, we review previous research results releeaBbtissinesq-type

equations.

¢ In Chapter 3, we construct sufficient conditions for the &xise and nonex-

istence of a global solution for the Cauchy problem (1.113)4).

¢ In Chapter 4, we propose a generalized expansion methodite éxact so-

lutions for non-linear partial differential equations.

¢ In Chapter 5, we present a numerical scheme to solve vandie boundary

value problems for the improved Boussinesq equation.

¢ In Chapter 6, we conclude the research project and discuse pooblems

for further research.



Chapter 2

Review

2.1 An overview

The Boussinesq’s theory is the first to give a satisfactangndific explanation of
the phenomena of solitary waves, which are of permanent &muariocalized within
a region, and can emerge from the collision with other sgliteaves unchanged,
except for a phase shift. However, the mathematical themryBbussinesg-type
equations is not so complete as the case for Korteweg-ds-Yree equations. Part
of the reason for relative paucity of results about Boussjrgpe equations may
be the fact that Cauchy problems for Boussinesqg-type empstre not always
globally well posed.

How to utilize modern mathematical techniques to study Bmesq-type
equations has been a major concern to mathematicians arsicisty. We will
review Boussinesg-type equations from the following thpeespectives: (1) well-
posedness theory for Boussinesq-type equations; (l)texdations of Boussinesg-

type equations; (Ill) numerical methods for Boussineguptgquations.

2.2 Well-posedness theory

As mentioned before, Cauchy problems for Boussinesq-tgpatens are not al-
ways globally well posed. Even if the initial wave and vetggrofiles are smooth,
the corresponding solution might lose regularity in finited. Hence, a time evolu-

tion of an arbitrary initial wave packet is one of the most ortpnt problems related



to Boussinesq-type equations.

In [77], the solitary-wave interaction mechanism for th@6g” Boussinesq
equation is investigated. It has been shown that when smmgdlitude solitons of
the “good” Boussinesq equation collide, they emerge fraamitm-linear interaction
with no change in shape or velocity. However, the large annbdéi solitons change
to the so-called antisolitons as they come out from theaatesn. This difference in
behavior is linked to a potential well of the “good” Boussgesquation. Moreover,
sufficient conditions on the initial data have been esthblisfor the existence and
nonexistence of a global solution for the “good” Boussineggation.

Using the Faedo-Galerkin method, Pani and Saranga [85] $laoen that
there exists a unique weak solution to the initial boundaye® problem for the
“good” Boussinesq equation. The weak solution is also dadlgeneralized solu-
tion, namely, a solution for which the derivatives appegimthe equation may not
all exist but which is nonetheless deemed to satisfy thetemuan some precisely
defined sense. An optimal rate of convergencéimorm has been derived and
priori error estimates for the fully descrete scheme in titaee been established.

Turitsyn [96] considered the Boussinesq equation (1.1h wit = —1 and
as = a3z = 1 for the case of periodic boundary conditions. Sufficientdibons
have been determined for the corresponding solution to &ueldy problem to blow
up in finite time.

The generalized Boussinesq equation (1.13) witk 1 has been studied in
references [16, 60, 65, 66, 67, 68, 69] through its equitagstem

vy : Ulgj’— Ugy — f(u)}x } (2.1)

In [16, 60, 65], local existence for Cauchy problems for sgst(2.1) has
been investigated. Using Kato’s abstract theory of quasar evolution equation
[52, 53], Bona and Sachs [16] have shown that the Cauchygmoisl always locally
well posed iff is an infinitely differentiable function satisfying(0) = 0. Applying
the contraction principle, Linares [60] has establisheddcal well-posedness the-

ory for system (2.1). Applying the semi-group theory [86]}4 [65] has shown that,



for any initial data from spac&*(R) x L*(R), if f is a continuously differentiable
function satisfyingf(0) = 0, then the corresponding Cauchy problem possesses a
uniquely weak solution. Moreover, the interval of existerman be extended to a
maximal interval for which either the solution exists gltjpaor it blows up in finite
time (see [65]).

It is well-known that, system (2.1) witlfi(s) = |s|P~1s for some real number
p > 1 admits the following solitary wave solutions for all speedsatisfyingc® < 1:

u(z,t) = Asech/"V(B(z — ct)), }

v(z,t) = —cAsect/ P~V (B(z — ct)), (2.2)

whered = [(p+ 1)(1 — ¢2)/2]V" " andB = (p — 1)v/1 — ¢2/2. Bona and Sachs
[16] verified that the solitary wave solutions (2.2) are &dh H'(R) x L*(R)-
normifl < p < 5and(p — 1)/4 < ¢* < 1. Combining the stability with the
local existence result [16], one can conclude that the mwistemanating from the
initial data lying relatively close to the stable solitarawe solutions exist globally.
In contrast to the stability, Liu [65] complemented the watkBona and Sachs
and obtained instability of solitary wave solutions (2.2)em eitherl < p < 5,
A< (p—1)/dorp>5c2<1.

In [66], Liu investigated conditions for the existence armhexistence of
global solutions to the generalized Boussinesq equatidiB)Wwitha = 1. Suf-
ficient conditions on the initial data and functighhave been established for the
blow-up of the corresponding solution in finite time. In peutar, whenf(s) =

|s|P~ts (p > 1), two invariant sets have been constructed in terms of teeggrof

o(x) = (Z%l) = sech T (@) .

Liu proved that, under some conditions, the solution exgdtbally if the initial

the function

wave belongs to one of the variant sets, while the solutiowslup in finite time

if the initial wave belongs to the other variant set. Note tha blow-up result for
the special case of is referred to as an improved blow-up theorem in which the
energy could be larger. Furthermore, Liu obtained the gtiostability of ¢(z).

More precisely, some solutions with initial waves arbityaclose to¢(z) blow up

10



in finite time. In [68], Liu investigated the strong instatyilof the solitary wave

solutions

bu() = {(p+ 1);1 - CQ)} = coctrs (\/1——02(]); 1)(x — ct))

with 0 < ¢ < 1 for the generalized Boussinesq equation (1.13) With = |s|P~'s
(p>1).

In [69], Liu and Xu investigated the existence and noneristeof global
solutions to the generalized Boussinesq equation (1.18) wi= 1 and f(s) =
+|s|? or +|s[P~1s (p > 1). A family of potential wells and the corresponding family
of outside sets have been introduced. Based on these setandiXu obtained
two invariant sets, vacuum isolating of solutions, and stimeshold results of the
existence and nonexistence of global solutions.

In [67], Liu studied the long-time behavior of small solutgfor the Cauchy
problem involving system (2.1) and obtained a lower boumdife degrees of non-
linearity to establish a non-linear scattering result foal perturbations.

The generalized “bad” Boussinesq equation has been stindiexferences
[109, 110]. In [109], Yang introduced a series of isomethycaomorphic Hilbert
spaces. By virtue of the topological invariance of thesespand the Galerkin ap-
proximation, it has been proved that, under rather mild ¢ on the functiory
and initial data, the initial boundary value problems adimdal weak solutions.
Furthermore, if the functiorf is concave, then sufficient conditions on initial data
and f have been determined such that the corresponding soluiothé initial
boundary value problem blows up in finite time. Yang and Waki] continued
the work of [109] and derived some blow-up results accortiirtpe energy method
and the Fourier transform method.

In Chapter 3, we will consider a Cauchy problem for equatibi¥). Note
that, in [66], Liu only considered the existence of a glolwalison for the general-
ized Boussinesq equation (1.13) for a special casefie),= |s[’"'s (p > 1) and
a = 1. In this thesis, we will generalize the global existenceotben of [66] and

derive sufficient conditions for the existence of a globdlison for equation (1.13)

11



whenf is in a more general form andis an arbitrary constant. In addition, we will
derive a similar but improved blow-up theorem of [66] allogif to be in a general

form.

2.3 Exact solutions

Finding analytical solutions for non-linear partial difatial equations is a difficult
and challenging task. By employing a computer algebra so#vguch as Maple
or Mathematica, the large amounts of tedious working reguto verify candi-
date solutions can be avoided. The capability and power edetlsoftwares has
increased dramatically over the past decade. Hence, & dearch for exact solu-
tions is now much more viable. In this section, we will firsroduce some popular
methods which have been employed to derive exact solut@mnsoin-linear partial
differential equations. Then, we will review previous riégswn exact solutions to
Boussinesqg-type equations.

Generally, for direct search methods, certain transfaonas required to re-
duce the partial differential equation under consideretoan ordinary differential
equation. To simplify the presentation, fetlenote the variable of the reduced or-
dinary differential equation. We can use the transfornrme§ic= k(z — vt) if the
partial differential equation i$ + 1 dimensional. Then, the solution of the reduced
ordinary differential equation is represented in terms given function with some
parameters to be determined later. For instance, the folpexpression has been

used in several direct search methods:

n

> @), (2.3)

=0
wheren is an integer determined by balancing the highest ordevatére term with
the highest order non-linear term in the reduced ordindfgrintial equation is
a given function and;, j = 0, ..., n, are constants to be determined later.

Using different functionp in (2.3) yields different expansion method, such as
the tanh method in whictk(-) = tanh(-), sine/cosine method whedg-) = sin(-)

or cos(-), and Jacobi elliptic function expansion method wheéfe) = sn(-, m),
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cn(-,m) or dn(-,m), andm € (0, 1) is the modulus of the Jacobi elliptic functions.
Moreover,® can be in a more general form. The generalized Jacobi elfymiction
expansion method presented in [22, 30] chodssatisfying the following ordinary

differential equation:

[@()]" = u[®)]" + g5 [®()]° + @ [2E)] + @1®(€) + a0, (2.4)

where’ denotes differentation with respectg@ndgq;, j = 0, ..., 4, are constants.
The improved tanh function method proposed in [32] dete be a solution of the

following Riccati equation:

O'(€) = pa[D(E)]” + pr®(E) + po, (2.5)

wherep,, j = 0, 1, 2, are constants.

It is noted thatanh(¢) is a solution of equation (2.5) with, = —1, p; = 0
andp, = 1. Hence, the tanh method is a subcase of the improved tankidonc
method [32]. It is also noted that the solutions of equatb) also satisfy equa-
tion (2.4) withqy = p3, g3 = 2p1p2, @2 = 2pop2 + P, @1 = 2pep1 andgy = pj.
However, the improved tanh function method has an advantaggng ® denote a
solution of (2.5) and substituting expression (2.3) int® téduced ordinary differ-
ent equation, we can obtain an equation in term®.df ¢ is a solution of (2.4), we
might end up with an equation in terms®fandd’.

Note that each solution of equation (2.4) generates a gonekng solution
to the partial differential equation. However, differentigions of (2.4) sometimes
create the same solution for the partial differential eiqumat Generally, the more
solutions of (2.4) you can find, the more solutions of theipbdifferential equation
you can generate. Many solutions of equation (2.4), indgdhe Jacobi elliptic
function solutions and the Weierstrass elliptic functiolusons, have been reported
in references [23, 30, 82, 116, 118].

On the other hand, the expression (2.3) also can be gereztalizo sim-
plify the presentation, le® denote a solution of equation (2.4),be an integer

determined by balancing the highest order derivative teith the highest order
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non-linear term in the equation;, C;, 1 andu; are constants to be determined
later.

The following generalized expression has been used in [22]:

ot zn: G[2©)) +Ci[@(9)) @'(g). (2.6)

(1) + 1)’
Note that expression (2.3) is a special case of (2.6). Int@didiwheng; = ¢35 = 0,

the following expressions have been studied in referented(], 42]:

S ee), @)
> ile) + [i(g (Z c, [@(&)V) , 29)
S ale] + o o (Z ¢ [@(&)}j) . 2.9

The expression (2.7) is a special case of the expressid@)safad (2.9). The expres-
sion (2.9) seems more general than the expression (2.8&edhdhey are the same
as the constand’, ;; in (2.9) will be equal to zero. For details, see Section 4.3 of

Chapter 4. In [113, 114], the special expression

¢ [sn(€))” + G [sn))”en(©)
* ; [ulsn(ﬁ) + pacn(§) + 1]j

has been used to derive the Jacobi elliptic function satstior the generalized

(2.10)

Hirota-Satsuma coupled KdV equations, asymmetric NizNokikov-Veselov equa-
tions and Davey-Stewartson equations.
The Exp-function method [45, 103] assumes that the solstman be ex-

pressed in the form

n2

Z Cjejg

Jj=—m1

S e

l=—n3

where the positive integers;, j = 1,...,4 will be determined later. Note that

this method includes the sine/cosine method and the onekialhwhe solution can

14



be expressed in terms of exponential functions, such asitterhethod, cosh/sinh
ansatz I-1ll method (see [100]) and those reported in [14, 105, 116]. However,
the method can not derive Jacobi elliptic function solusion Weierstrass elliptic
function solutions for non-linear partial differentialiegtions.

In [107], an interesting transformation

u(w,t) = 2% [arctar(gb(:c,t))] = % (2.11)

has been applied to convert the modified Kd&tuation
g + 6 Uy + Uggy = 0 (2.12)
into another partial differential equation

Hence, combining the existed solutions of (2.13) with tlEn$formation (2.11),
one can obtain binary traveling wave periodic solutionstfe@ modified Kd\*
equation (2.12). A different transformation is used to salve modified KdVv
equation in [107]. The method tells us that we can use a wamsition to convert
a partial differential equation into a new partial diffeti@h equation. By solving
the new partial differential equation, we can obtain exatutsons for the original
one. It should be addressed here that the exact solutioagettby this way are
different from the ones constructed by direct search method

Note that all the methods mentioned above are used to soh4mear partial
differential equations without boundary conditions. I®],7the tanh method has
been modified to solve partial differential equations witdubdary conditions. To
satisfy the boundary conditions, the expression of thetmwithas to be modified.
For example, if the solution must vanish &@s— +oo, then the solution can be

represented by

n—mni

[1—tanh(¢)]™ > ¢;[tanh(€)]’, (2.14)
=0
wheren; € {1,...,n} can be determined later.
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Now, let us turn to Boussinesg-type equations. Based oniteetdsearch
methods introduced above, some Boussinesqg-type equdtawesbeen solved in
references [11, 37, 49, 63, 81, 100, 116, 117, 118].

In [100], some new hyperbolic schemes have been introduwsslve the
Boussinesq equation (1.1). As mentioned before, theseslahdhethods are sub-
cases of the Exp-function method.

The generalized tanh function method developed in [49]rassuthat the so-

lution is represented by

n

> e[e©)]),

j=0
wherec; = ¢;(z,t) and§ = £(z,t) = ax + ¢(t), and® is a solution of the
Riccati equation (2.5). The method looks like more genédrahtthe improved tanh
function method [32]. However, applying these two methaushe Boussinesq
equation (1.1), you can obtain the same results.

The Boussinesq equation (1.1) and variant Boussinesgieqedi..12) have
been solved by the Jacobi elliptic function expansion mei{t3] and extended
Jacobi elliptic function expansion method [117]. Some Baediptic function so-
lutions to equations (1.1) and (1.12) have been reported . thidote that the ex-
tended Jacobi elliptic function expansion method [117]udes the Jacobi elliptic
function expansion method [63]. In [116, 118], by seeking/ mxact solutions of
equation (2.4), new exact solutions to equations (1.1) &ri} have been obtained.

The hyperbola function method [11], in which the solutionapresented by

n

2 cilesehE)]” + 3 O escHe)] cote),

=0
has been applied to solve the variant Boussinesq equati@)(1Note that the
method is also included in the Exp-function method.

In[37], a new algebraic method has been proposed to solwatient Boussi-
nesq equations (1.12). It is noted that in [37] only the case4 has been used to
solve equations (1.12). Hence, the new algebraic methdaeddp equations (1.12)

is technically the same as the generalized Jacobi elliptictfon expansion method
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[22, 30]. Compared with the methods presented in [11, 63, 115, 118], the pro-
posed method [37] gives new and more general solutions do®te solutions to
equation (2.4) available.

In addition, Natsis [81] derived a class of solitary waveusiohs for thel + 1
dimensional improved Boussinesq equations (1.8) with 0 by choosing expres-
sion (2.3) andb(-) = seclt-).

In Chapter 4, we will develop a generalized expansion methodnstruct ex-
act solutions for non-linear partial differential equasavithout considering bound-
ary conditions. Many new solutions of ordinary differehgguation (2.4) will be
reported. These new solutions together with expressi@) €hsure that the pro-
posed expansion method can yield many new solutions folinear partial differ-
ential equations. To demonstrate the proposed expansitirotheve apply it to the
Boussinesq equation (1.1), the improved Boussinesq exjuéli3) and the modi-
fied KdV equation. Clearly, we can obtain many additionalisohs using the new
solutions of (2.4) together with expression (2.6). We wilply expression (2.6) to

the shallow water long wave approximate equations.

2.4 Numerical methods

Up to now, Boussinesg-type equations are mostly solved byfitfite difference
method (see [12, 17, 18, 19, 20, 26, 27, 33, 34, 50, 83, 84, BA® 111]). The
finite difference method is easy to implement calculati@erivatives in the equa-
tion under consideration are approximated by finite difieesapproximations, such
as forward difference, back difference, and central déffiee. However, all such ap-
proximations cause truncation errors. Hence, it is imparta study the stability
and convergence of the finite difference method. Fouriehoteand matrix method
are two well-known methods for determining stability cride

In [84], Cauchy problems for the “good” Boussinesq equahiawe been in-
vestigated by the finite difference method. Some simpledfidifference schemes

have been developed and their non-linear stability and exgence have been an-
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alyzed. In addition, the numerical schemes have been testbd long-time inte-
gration of solitary waves and collision of solitary waves.

In [34], based on linearization and the finite-differencght@que, an implicit
scheme has been proposed for solving the initial bounddng\yaoblem involving
the “good” Boussinesq equation. By using Fourier’s stabilethod, it has been
proved that this numerical scheme is unconditionally stal#omplex wave phe-
nomena, such as wave splitting and wave interaction, hase fienulated by using
the proposed numerical scheme. The numerical results owdithe theoretical
results reported in [77].

In[17, 19], Bratsos considered initial boundary value peais for both “good”
and “bad” Boussinesq equations. Using finite differencenfdation, the original
problem has been converted to a Cauchy problem for a systemdwfary differ-
ential equations. Numerical methods have been developegplgcing the matrix-
exponential term in a recurrence relation by rational apipnations. In [17], Brat-
sos developed a seven-point three-level explicit and fiffga@nt three-level implicit
schemes. The later gives rise to a non-linear algebraiesyand is solved by the
Gauss-Seidel method. The local truncation and stabilitytfe schemes have been
analyzed. In [19], Bratsos developed a predictor-correstbeme and a modified
predictor-corrector scheme. Both numerical schemes aedoan the explicit and
implicit methods developed in [17]. The exact solutionsen&een used to test
the proposed numerical schemes. Numerical experimentg stad the numerical
schemes proposed in [19] are able to give a satisfactoryajppation.

Initial boundary value problems for the improve Boussineggation (1.3)
have been solved numerically in [18, 20, 33, 50]. In [50],ngsa linearization
technique and finite difference approximations, a threetlgerative scheme with
second-order local truncation error was derived to soleepitoblem numerically.
The scheme was used to investigate head-on collisions betaaitary waves. In
[33], an improved scheme with a Crank-Nicolson modificatias been developed.
A solitary wave solution of the equation has been used tothesticcuracy and

efficiency of the developed scheme. Numerical experimdmig/ghat the scheme
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is able to simulate complex wave phenomena, such as wavkitgeap and head-

on collision. In [18], Bratsos applied finite difference apgmations to reduce the
improved Boussinesq equation to a system of ordinary @iffeal equations and

employed a Padé approximation to derive a three-leveligpime-step scheme.

In addition, Bratsos [20] applied an implicit finite differee method associated with
a predictor-corrector scheme to solve the problem. Theefity of the proposed

method [20] has been tested by various wave packets and therioal results have

been compared with the relevant ones given in [15, 33, 50].

In [26], a class of initial boundary value problems for thengieed Boussinesq
equation (1.6) have been studied by the finite differencdnatetThe temporal and
spatial derivatives have been approximated by finite d@iffee formulae. Choo and
Chung applied the Fourier transform and perturbation teglento derive the sta-
bility of the proposed numerical scheme. In addition, eesiimate for the scheme
has been given.

In [62], a second-order accurate numerical scheme has loesered to solve
the extended Boussinesq equations (1.10). Finite difterdarmulae have been
used to approximate spatial derivatives of various ord&€hen, the equations are
matched in time by a predictor-corrector scheme, in whietpifedictor and correc-
tor steps are implemented by the explicit third-order Adddashforth and forth-
order Adams-Moulton methods respectively. The predictorector scheme has
been iterated until certain accuracy requirement on thar &etween two succes-
sive results has been satisfied. The stability of the predemimerical scheme has
been analyzed by a Von Neumann stability analysis and thdigtacondition for
the scheme has been given. Compared with available thabgr, mumerical results
from a Navier-Stokes equations solver [61] and experini€lata, the numerical ex-
periments show that the proposed numerical scheme has wed/goperties for
mass and energy conservation and that equations (1.10blareoadescribe a wide
range of water wave problems.

Although the finite difference method is easy to implemeidwdations, fine

grid will be required to increase the accuracy of the nuna¢solutions. More-
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over, if the computational domain is irregular, then thetérelement method, in
which the governing equations can be discretized in an uetstred mesh system,
is more preferable than the finite difference method. In 5,76, 85, 98, 119],

Boussinesg-type equations have been solved by using ttedieiment method.

In [76], using a Petro-Galerkin method with linear “hat"arfunctions and
cubic B-spline test functions, the Cauchy problem govetmethe “good” Boussi-
nesq equation has been converted to a system of ordinaeyatfifial equations. Us-
ing central differential approximation of the second orderivatives, a predictor-
corrector scheme has been developed to solve the ordindeyeditial equations.
Numerical experiments have been given to demonstrateptsoday in simulating
complex wave phenomena, such as wave splitting and wavaati@n. In addition,
an analytical formula for the two-soliton solution for thgobd” Boussinesq equa-
tion has been given and numerical experiments confirm theetieal result for the
two-soliton solution.

In [35], spectral hp discontinuous Galerkin methods for the classical Boussi-
nesq equations (1.7) have been developed on unstructimadutar meshes. Two
different numerical schemes have been proposed to sohexjthegtions. It has been
shown that these two schemes are equivalent and give iderggults in terms of
the accuracy, convergence and restriction on the time-step

In [119], the finite element method has been used to diserdizgeneralized
Boussinesq equations (1.11) in space. A fourth-order predcorrector scheme
which is similar to the predictor-corrector scheme presem [62] has been used
in the time integration. A damping layer has been applieche&odpen boundary
for absorbing the outgoing waves. In comparison with expernital data and other
numerical results available in literature [51, 57, 58, 72,96, 102], the numerical
results demonstrate that equations (1.11) are capablenodating wave transfor-
mation from relative deep water to shallow water.

In [98], using a linear element spatial discretization rodticoupled with a
sophisticated adaptive time integration package, a nwalescheme for Nwogu’s

one-dimensional extended Boussinesq equations (1.10)des developed. Nu-
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merical experiments with wave propagating in variable wdepth are compared
with theoretical and experimental data [28, 29, 115]. Thagarison confirms the
accuracy of the numerical results and shows that the propagsmerical scheme
competes well with the existing finite difference methods.

In [59], the improved Boussinesqg system (1.8) has beenedubly finite
element method. Based on quadrilateral elements withrlimgearpolating func-
tions, spatial derivatives have been discretized. Therptbblem was reduced
to a system of ordinary differential equations, which walvest by the Adams-
Bashforth-Moulton predictor-corrector method which ismigar to the one used in
[62, 119]. The numerical results are in good agreement \aghetxperimental re-
sults [102, 112]. Their numerical results show that the pssgl scheme is capable
of providing satisfactory results in engineering applmas.

The Adomian’s decomposition method [9] and its modificafibphave also
been applied to solve non-linear partial differential dgures. In the method, the
solution is expressed as a series, where the terms are deternecursively. An
approximation is obtained by truncating the series afteiffeceent number of terms.
However, it is difficult to prove the convergence of the seri8ome convergence
results have been given in references [3, 2, 4, 24, 25, 78].

In [10, 31, 47, 54, 55, 56, 99], Boussinesqg-type equations haen solved
by the Adomian’s decomposition method. To demonstrate ffi@escy and accu-
racy of the method, the numerical results have been compatie@xact solutions.
Moreover, some exact solutions can be derived by the Addsm@gatomposition
method (see [54, 99]).

In [1], the Adomian decomposition-Padé technique has hesed to solve
Cauchy problems for the “good” Boussinesq equation. No¢ tthe convergence
region in time for the Adomian’s decomposition method iseyally limited. Using
Padé’s technique, the region can be extended. Numerieahjgbes show that the
method can give approximate solutions with faster convergeate and higher ac-
curacy than using Adomian’s decomposition method alonevév¥er, the disadvan-

tage of Adomian’s decomposition method still remains, thathe error increases
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rapidly ast increases.

In addition, the variational iteration method introducedHe [43, 44] is ca-
pable of solving Boussinesqg-type equations (see [48]) hénmethod, a sequence
can be derived from a correction functional. Tatari and Detmy [94] established
sufficient conditions for the convergence of this sequeBaéensive numerical ex-
periences indicate that the variational iteration metlsoefficient for a large class
of non-linear partial differential equations (see [5, 6, 83, 44, 46, 48, 70, 79, 80,
94, 101]). Numerical examples show that the solutions abthby the variational
iteration method converge to their exact solutions fastan those obtained by the
Adomian’s decomposition method (see [44, 80, 101]).

In Chapter 5, a numerical scheme for solving the initial ltang value prob-
lem (1.15)-(1.17) will be developed. The finite element roettvith linear B-spline
basis functions is used to discretize the non-linear gadtféerential equation in
space. Consequently, the original problem is convertedantordinary differential
system. Thus, many accurate numerical methods are reggplicable. Various
examples are presented to validate this technique and dgrateits capacity to

simulate wave splitting, wave interaction and blow-up hebra
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Chapter 3

On the Cauchy problem for a
generalized Boussinesq equation

3.1 Introductory remarks

Over the past two decades, a great deal of work has beenccautenorldwide
to study the properties and solutions of the generalizeds8ioesq equation (1.13)
(see [16, 60, 65, 66, 67, 68, 69]). In this chapter, we studyftiowing Cauchy
problem:

and
u(z,0) = u’(z), w(z,0) =u'(z), (3.2)

whereu := u(z,t) : R x R" — R, a > 0is a constantf, «°, u! : R — R are
given functions and the subscripts denote partial difféation.

Problem (3.1)-(3.2) witlw = 1 has been previously considered in [16, 66].
More specially, the authors in [16] used Kato’s theory depel in [52, 53] to
show that the Cauchy problem (3.1)-(3.2) is locally well gabsThe solitary wave
solutions of equation (3.1) were also investigated and & feand that within a
certain range of phase speeds, those solutions are n@lirs¢able. In [66], based
on the ground state of a corresponding non-linear Eucliceatar field equation
(see Section 3.2 for a definition), sufficient conditions $otution blow-up were

established. In addition, whef(s) = |s|’~'s for somep > 1 in (3.1), conditions
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guaranteeing the existence of a global solution for prol{ed)-(3.2) were derived.

One of the aims of this chapter is to construct sufficient doas for the
existence of a global solution for problem (3.1)-(3.2) whfers in a more general
form anda is an arbitrary constant. To do this, we first generalize Té@02.6 of
[66]. As the method of proof employed in [66] is not suitabde the generalized
problem considered here, we use a different approach tblesstshis result. Based
on the new result, sufficient conditions for the existenca gflobal solution are
established. The other aim is to derive conditions for tlesvblip of the solution to
problem (3.1)-(3.2) for some more general cases. ¢for this purpose, we propose
a different approach to derive a necessary inequality andegpently establish the
blow-up results. It should be addressed here that our blowesults extend those
reported in [66] which is for the casés) = |s[P~ s (p > 1).

3.2 Preliminary results

Before proving our main results relating to problem (33.2], we first need to
establish some preliminary lemmas involving a correspomdon-linear Euclidean
scalar field equation. Although the space domain of (3.1,igve will study this
corresponding equation in the more general seffifig

The non-linear Euclidean scalar field equation that we wifisider is

—A¢ +ag = f(9), (3.3)

where¢ € H'(RM)\{0}, o > 0 is a constant ang is a given function. The
function f is required to satisfy some conditions. More specificallg, e@onsider

the following two cases:

Case 1. f(s) = |s[P~'s — |s|9~!s for some real numbersandq satisfyingl <

q < p < Kk, where

N
K = N—37 N23’
400, N =1,2.

Case 2. f satisfies the following hypotheses:

(H)). f € CY(R); fisodd;f'(0) = 0andf(s) > 0forall s > 0.
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f'(s)

/-1

(Hp). If N > 3, then lim M = 0 andlim sup

7 < +o0, where
s—+o0 S s—+oo S

¢ = £+2: otherwise, there exists @ne (1, oo) such that

lim @ = 0 and lim sup f’(s)

7 < 400
s—+oo § s——+00 st=

(Hs). There exists a real numbér= (0, 5) such that

= /OS f(r)ydr < 0sf(s)

forall s > 0.

f(s) .

(H4). The function——= is strictly increasing o0, +cc).
S

Remark 3.1. For both Cases 1 and 7, satisfies (H) and (H;). Note that if
f(s) = |s|P7's — |s|971s, thenf satisfies (H) and (H) by choosing) = 1/(q + 1)
and/=p+1if N =1,2.

For both Cases 1 and %, is an odd function satlsfy|an = 0 and (H).

Hence, there exists a positive constanguch that, for each € R,

sf(s) < Cls|™ + 55, (3.4)
where/ is defined as in (k) (according to Remark 3.¥, = p + 1 for Case 1 if

N =1,2).
In this chapter| - |, denotes the norm df(RY), while || - || ;1 g~ denotes the
norm of H1(RY). According to [14], if f is a continuously differentiable function

satisfying (H) and f(0) = f'(0) = 0, then the functionals

swira) = [ [GIve@f + §lu@ - Fu)de
and
R fo0) = [ [[Vo@) +alp@) — vi@)f(v(a)|do
are well-defined orf!(R"). Normally, we will omit f and« when referring to
those functions if the dependence is obvious.
Recall that a functionp € H'(R")\{0} is called a ground state of equa-
tion (3.3) if
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(i) ¢ isasolution of (3.3); and
(i) S(p; f,a) < S(¥; f,«) whenever) is a solution of (3.3).

In other words, minimizesS over the class of solutions of (3.3). For Case 2, it has
been shown in reference [13] that such a ground state eXisisresult is extended

further in the following two lemmas.

Lemma 3.1.Suppose that satisfies the conditions listed in either Case 1 or Case 2,
and thatn > 0 andy € H*(RY)\{0}. Then, there exists a unique € (0, +oo)
such that
>0, if0< A*< A,
rowssan{ 2§ RS

In addition,S(A\*¢; f, «) > S(\; f, a) whenever # \*.

Proof. From the definitions of and R, we see that, for each € [0, ),
Lo 2 @9 2
SOw) = | [GYIVe@I + 5N @) — F (i) |de
and

ROW) = [ P¥IT6(@)F + X o) - ()] (Vi) da.

A straightforward calculation shows that

AS(\) _ ROW) 5

d\ A

Now, we prove that there exists a unique real numtee (0, oo) such that
R(A\Y) =0, R(A) >0for0 < A < A*andR(\y) < 0 for A > \*. For Case 1,

let
g(A) =2t g\t p,
q+1 2 2
\Y%
whereq = ‘ME—: andb = %pll%. Then,
p+1 |77Z)|p+1

FON) = (p— W2 — a(g — DAT2 = (p— 1)\ [A - %} . 36)
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_1
p—q

> 0. Itis clear from (3.6) that

@Rl
Set>\0 = [m

=0, ifA=

, < 0, if A e 0, )\0)
g\
> 0, if A e ()\0, +OO)

Consequentlyy () is strictly decreasing of), \,| and strictly increasing of\g, +o0).
Sinceg(0) < 0 andAIirJ]ra g(\) = +o0, there exists a unique* € (\g, +00) such
that

=0, if A=\,
>0, if e (N, +00).

As R(\y) = —\2[y[PT1g(N), we derive thaR(\*)) = 0, R(Ay) > 0for0 < A <
A, andR(M\) < 0 for A > A*. For Case 2, the odd functighimplies that

<0, ifxe(0,1%),
g(A "

|2f(A|¢( z)|)

i)

ROW) = ¥ [w% ralvl— [ 1wt

Note thatf satisfies (H) andlir% @ = 0. Hence, there exists a unigie € (0, co)
such thatR(A\*y)) = 0, R(Ay) > 0for 0 < A < A* andR(A\y) < 0 for A > \*.

In addition, from (3.5), we have

>0, ifAe(0,\),
d5(09) =0, ifA=)\
dA <0, if Ae (M, +00).

Hence, it follows thatS(\*y) > S(Ay) whenever\ # \*. B

Lemma 3.2.Let M := {v € HY(RV)\{0} : R(¢; f,a) = 0}, @ > 0 and suppose
that f satisfies the conditions listed in either Case 1 or Case 2n,Tthere exists a
solutiony to the following problem:

min S(¢; f, ). (3.7)

bEM

Moreover, the set of solutions of problem (3.7) coincidethviihe set of ground

states of equation (3.3).

Proof. Multiplying both sides of (3.3) by, integrating oveiR" and using Green’s
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formula, we see that any solution of (3.3) belonggfo Sincef satisfies (H), we

have that

S(w) = 590+ 510B~ [ F(v(a))de

T2
1
> SIVUE+ 5l -0 [ v (wi)ds 38)
If v» € M, then it follows from (3.8) that
5)> (5 -0) (VwB +alul). 39)

Note thaty < 1/2. Hence,S is bounded below oid/. Accordingly, let{v,} C M
be a minimizing sequence such tgﬁ@m S(v,) = w%‘fﬂ S(w).

Let ¢)* denote the Schwarz spherical rearrangement of a fun@tipnFrom
[13], ¢* is the spherically symmetric non-increasing (with respedi|) function

having the same distribution function gg such that
[ ve@pda< [ V)i
RN RN

and

| @@= [ Gl@)de

RN

for any functionG : R — R. Therefore,

S(*) < S®) (3.10)

for eachyy € H'(RY). In addition, it is easy to check that, for each real number
7 >0, (V)" =T

For a givenn, it follows from Lemma 3.1 that there exists a unique real Aum
berv, > 0 such thatR(v,(v})) = 0. Letu, = v,(v,)* = (vu(v,))". Then,

according to (3.10) and Lemma 3.1, we get

S(un) = S((va(vn)) < S(valva)) < S(on).

Therefore, the spherically symmetric non-increasing eaqef{ ,, } is a minimizing

sequence i/ as well.
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By virtue of (3.9), we haveS(u,) > (3 — 6) (|Vua|3 + alu,|3). Hence, the
boundness of sequenéé&(u,,)} implies that sequencgu, } is uniformly bounded
in H(RY). Applying the compactness lemma of Strauss [92] (see akj), there
exists a subsequence i, }, relabeled by{u, } for notational convenience, such

that
Uy — Uy Weakly in HH(RY),
Uy — U A.€. INRY. (3.11)

Arguing by contradiction, we can conclude that # 0. Suppose that,, =
0. Noting thatu,, converges almost everywhereiasn — oo, it is clear from
R(u,) = 0that lim [|u, ||z &~y = 0. Thus,u, strongly converges to 0 iff' (RY)

asn — +oo. On the other hand, it follows from®(u,,) = 0 and (3.4) that
Vi alufi = [ (@) f (@) do
< Clualif} + Slual3,
where constant§' and/ are defined as in (3.4). Hence,

. (0%
min{1, Sl ey < Clunl {21

According to the definition of, we have the following Sobolev inequality

|Unler1 < Cppllun |l @y,

where the positive constagy. ; is independent of.,,. Hence, we obtain that there

exists a positive constantsatisfying
¢ < |[unllm@y)-

This leads to a contradiction.
According to Lemma 3.1, there is a unique real number 0 such that
R(pus) = 0. Let o := pus. In view of (3.11), we have

pu, — ¢ weakly in H(RY),
pu, — ¢ a.e. inRY, (3.12)

As R(u,) = 0, it follows from Lemma 3.1 that (uu,) < S(u,). Noticing thatS

is weakly sequential lower semi-continuousBh(R"), we have

S(¢) < liminf S(pu,) < lim S(u,) = inf S(¥).

n—-+o0o n——+00 peM
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Note thatp € M. Henceg is a solution of problem (3.7).
Now, we will prove thaty satisfies (3.3). Since solves problem (3.7), there

exists a Lagrange multipliex such that
S'(¢) = AR'(¢). (3.13)

We claim thatA = 0, which implies that is a solution of (3.3). Indeed, it follows

from [14] thatS and R are continuously Frechet-differentiable and

< 5(0).0> = Vol +alofi — | o@)f(o(@))de = A©) =0
< R0),6 > =2Voli + 2000 = [ [0@)f(6(@) + 0*@)f (o(e) ] dz,

where< .- >=< - - >pgagy) mey). If < R(¢),¢ > is negative, then it

follows from (3.13) that\ = 0. For Case 1, we have that

< R(¢),¢>=2|Vo[3+2a|gl3 — (p+ 1)|o[0I1 + (g + 1)||1]
< 2|Vo[3+2alof3 — (p+ D|o2r] + (p + 1)[]]
= (1-p)(|Ve|5 + a|9]3)

< 0.

For Case 2, itis clear thdt is an even function ag is odd. Thus, fromp € M, we

have that

<R@0>= [ [pl@)f (6@) - @)f (o) ] do

= [ Jle@lf (@) - lot@Pr (@) da.

In addition, condition (H) implies thats f'(s) — f(s) > 0 for eachs > 0. Thus, for
Case 2< R/'(¢), ¢ > is negative as well. Therefore, the solutions of probleri)(3.
are also ground states of (3.3). Recalling that each solati¢3.3) belongs td\/,
we can conclude that the set of ground states of (3.3) casaidth the set of solu-

tions of problem (3.7) &
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In view of Lemma 3.2, we see that equation (3.3) has a grousg st > 0

and f satisfies the conditions listed in either Case 1 or Case 2omaagly, set

d:= min 5(¢). (3.14)

Next we will prove a preliminary result that will be used inrdation of the
conditions for the blow-up of the solution to problem (3(3)2). To do this, the

following additional condition is required for Case 2:

(H),) There exists areal numbgr> 1 such that the functloﬁ(i is increasing

on (0, c0).

Note that the condition (i is stronger than the condition (H If f satisfies the
hypotheses (B, (H.), (Hs) and (H,), we refer to it as Case™2 Hence, Case®2
is included in Case 2. It is also noted thatffifs) = |s[’~'s for some real number

p > 1, thenf satisfies all the conditions listed in Case 2

Lemma 3.3. Suppose thatr > 0 and f satisfies the conditions listed in either
Case 1 or Case™2 If ¢y € HY(RM)\{0} satisfyingR(¢)) < 0, then, R(v)) <
(p+1)[S(¥) — d], wherep = ¢ for Case 1 ang = /3 for Case 2.

Proof. As R() < 0, it follows from Lemma 3.1 that there exists a unique number
A* € (0,1) such that?(\*y) = 0. Let

G(A) = (p+1)S(M) — R(A).

Now, we are in the position to prove th&t(\) is strictly increasing or{0, co).

Noting that the functiory is odd, we have

P X alu(a) 3 + [Ve(e)]
/ M) F(Ao(@)]) — (o + DE(Mu())] de
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and
G'(N) =Xp — D[aly (@)} + [Vi(z)]3]

YNk

Note that, for both Case 1 and Case the functionf (s)/s” is increasing o0, co).
Thus, f'(s) — pf(s)/s > 0 for eachs > 0. Hence,G'(\) > 0 for each)A > 0.
Consequently, we have th@t(1) > G(\*). That s,

row@) - el

(0 +1)S(¥) = R(¥) > (p + 1)S(AY) = R(A™).

Using the fact thaR?(\*y)) = 0 andS(A\*y) > d, we can obtain that

(p+1)[S(W) —d] > R(¥).

3.3 Main results

In this section, we first introduce an equivalent form of peob (3.1)-(3.2). Then,
on the basis of an existing local existence theorem, we naetstonditions for the
existence of global solution for problem (3.1)-(3.2) un@ase 1 and Case 2, and
then establish the sufficient conditions for the blow-uphef solution to problem
(3.1)-(3.2) under Case 1 and Case 2

Now, we consider the following problem which is equivalenptoblem (3.1)-
(3.2):

U = Uy,

U = Qg — Uggy — [ (1)), } (3.15)

subject to the initial conditions
u(z,0) = u’(z), v(z,0)=1"(x). (3.16)

Note thatu'(z) in problem (3.1)-(3.2) and®(x) in problem (3.15)-(3.16) satisfy

/

u'(z) = [°(2)] .
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Set

>l L, Lo
E(u,v) = /OO [§u (x,t) + qu(ffat) + v (z,t) — F(u(z, 1)) | dz,

V(u,v) = /_+00 u(z, t)v(z, t)dz,
I (u,v) = /_+oo u(z,t)dx,
L(u,v) := /+Oov(x,t)dx.

e}

According to [65, 66], it can be easily established that pewib(3.15)-(3.16) is al-

ways locally well posed, and the above four functionals avariant.

Theorem 3.1. (Local existence$® 8¢l If f is a continuously differentiable function
such thatf(0) = 0 and (u°,2°) € HY(R) x L?(R), then problem (3.15)-(3.16)
possesses a unique weak solutianv) in C([0,7); H*(R) x L*(R)) such that
E(u,v) = E(u® %), V(u,v) = V(u°,2°), I (u,v) = L(u’2°) and Ir(u,v) =
I(u®,v°). Moreover, the interval of existend@ 7') can be extended to a maximal

interval [0, T1,..x) such that either
() Tax = +o00; Or
(II) Thax < 400, lim H(u, 'U)HHI(R)XLQ(R) = 4|00,

t—Tmax

where||(u, v) || m@r)xr2®) = ||ull 1 r) + |v|2 denotes the norm off ' (R) x L*(R).

Remark 3.2. Note that Theorem 3.1 is slightly different from the onesorégd
in [65, 66] wheren = 1. Letg(s) := f(s) —as+sforeachs € R. If f satisfies the

conditions listed in Theorem 3.1, theris continuously differentiable ang0) = 0.

Now, we define two subsets &f' (R) which will be proved to be invariant under
the flow generated by problem (3.15)-(3.16) for Cases 1 ah@®.

Ki={pe H(R): SE)<d,R)>0}U{0}
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and
Ky:={¢p e H'(R): S(¢)<d R() <0},

whered is defined by (3.14). Suppose that, v°) € H'(R) x L*(R) are such that
E(u®v") < d. We will show that ifa > 0 and f satisfies the conditions listed
in either Case 1 or Case 2 aml € K, then the corresponding solution exists
globally. Furthermore, if, in addition to satisfying thendbtions listed in either
Case 1 or Case2a > 0 andu’ € K5, then the corresponding solution blows up
in finite time. All these results are furnished preciselytia following theorems.

To simplify the presentation, for the remainder of this gettve will use the

following notation:

u(t) := u(x,t),
Ug(t) := ug(z, t),

v(t) == v(x,t).

Lemma 3.4. Suppose thatv > 0 and f satisfies the conditions listed in either
Case 1 or Case 2. if € H'(R) satisfyingR(¢)) < 0, then, there exists a positive

constant which is independent af such that|t|| 1z > c.

Proof. SinceR(y) < 0, it follows from inequality (3.4) that

(0%
a3+ [wal3 < Cloli + S 1vE3,

where constant§’ and/ are defined as in (3.4). Applying the Sobolev inequality,

we obtain that there exists a positive constapt, depending orf such that

e .
mind S, TH9 13 ) < C(CE) 615k (3.17)

Note that bothC' andC7, , are independent af. Inequality (3.17) shows that there

is a positive constantwhich is independent af satisfying||+|| 1) > c. B

Theorem 3.2. (Invariant sets)Suppose thatv > 0 and f satisfies the conditions
listed in either Case 1 or Case 2, and that, +°) € H!(R) x L*(R) satisfying
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E(u® %) < d. Let(u,v) € C([0, Tmax); H'(R) x L?*(R)) be the weak solution
of problem (3.15)-(3.16). If, for each € {1,2}, u° € K;, thenu(t) € K; for
0<t<Tyax-

Proof. By virtue of Theorem 3.1, we have that(u(t),v(t)) = E(u’ %) < d
for eacht € [0, T,ax), Which implies thatS(u(t)) < d. Now we claim that if
R(u(t*)) = 0 wheret* € (0, Tax), thenu(t*) = 0. Indeed, ifu(t*) # 0, then, it
follows from Lemma 3.2 tha$ (u(t*)) > d. This contradictsS (u(t*)) < d.

Now, let us show that(t) € K, for eacht € [0, Tiax) if u° € K. Note that
R(u’) < 0 andR(u(t)) is continuous o0, T, ). If there exists & € [0, Trax)
such thatu(t) ¢ Ko, i.e., R(u(f)) > 0, then, there is & € (0,7] such that
R(u(t*)) = 0 andR(u(t)) < 0 whenevert € [0,t*). FromR(u(t*)) = 0, we
know thatu(t*) = 0. On the other hand, according to Lemma 3.4, we have that, for
eacht € [0,t*), there exists a positive constarguch that|u(t)|| g &) > ¢. Noting
that||u(t)|| m1 (=) is continuous o0, Tiyax), We obtain thaf|w(t*) || 1wy > ¢, which
contradictsu(t*) = 0.

Similarly, we can verify that ift.° € Ky, thenu(t) € K fort € [0, Thax)-
Suppose that there istae (0, T,,.x) Such thatu(t) ¢ K. Note that ifR(u(t)) = 0,
thenu(t) = 0, that is,u(t) € K;. Thus,R(u(t)) < 0 andu(t) # 0. Since
R(u’) > 0. according to the continuity aR (u(t)), there is a* € (0,%) such that
R(u(t*)) = 0, which implies that.(¢*) = 0, andR(u(t)) < 0 whenever € (t*,].
In view of Lemma 3.4, we can obtain that there is a positivestamtc satisfying

|w(t*)|| 1y > c. This contradicts:(t*) = 0. B

Theorem 3.3. (Global existence ink;) Suppose thatr > 0 and f satisfies the
conditions listed in either Case 1 or Case 2. Thenlifc K, andv® € L?(R)
such thatE(u°,v°) < d, problem (3.15)-(3.16) possesses a unique weak solution

(u,v) € C([0,+00); H'(R) x L*(R)).

Proof. As stated by Theorem 3.1, it suffices to prove thatt)|| 1) + |v(t)]2

35



is bounded fob <t < T,.x. Sincef satisfies (H), we have

S (u(t)) %/ (o, ) + @ fult, )] do — 9/_ "t ) f (ult, 2)) de
= (— — 0) [ua (2, )| + a|u(t, :C)|2] dz + 0R(u(t))

> ( - e) win {1, a}|u(t) Zp e, + OR(u(t)).

Applying Theorem 3.2 yields(t) € K, i.e. S(u(t)) < d andR(u(t)) > 0 for
0 <t < Thax- u(t)|| 1wy is bounded o010, T;y,.x) @andS (u(t)) > 0. On the
other hand, combining (u(t), v(t)) < d andS(u(t)) > 0, itis easily verified that
lv(t)]3 < 2dfor 0 <t < Trax. A

Theorem 3.4. (Solution blow-up inK5) Let o« > 0 and f satisfy the conditions
listed in either Case 1 or Case .2Suppose that’ € K, andv® € L%(R) such
that B(u,+°) < d and¢~1u® € L2(R), whereu? denotes the Fourier transform of
u’. Let (u,v) € C([0, Thax); H'(R) x L*(R)) be the weak solution of problem
(3.15)~(3.16). TheM .. < +oo and

lim  (fJu()llm@ + [v(t)]2) = +oo.

t—Tmax

Proof. Here we use proof by contradiction. Suppose hat. = +oco. According
to [66], it follows fromé—1u0 € L2(R) that

¢ lae C([0,00); L*(R)) .

Let
I(t) =g a(t, §)I3, t € [0,00).
Then,
I'(t) = 2(&7"a(t,§), € Vi (t, €)) (3.18)
and
I"(t) = 2lv(t) |2 — 2R(u(t)), (3.19)
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where(§a(t,€), € an(t,§)) = 727 € Va(t, €)€ T (t, §)de. Using the Cauchy-
Schwarz inequality, it follows from (3.18) that (¢)]> < 41(t)|v(t)|2 fort € [0, c0).
Let p = ¢ for Case 1 an@ = 3 for Case 2. We have for each € [0, o) that

ALY (O

> —1(0)[(0+ DIo(0) + 2R(u(t) |
=—I(t) {2(;) +1) [E(uo, o) — S(U(t))] + 2R(u(t))} :

I"(t)I(t)

Noting thatE (ug, v9) < d, we have from the above inequality that

> —1(0) {200+ D)|d = S(u(®)] + 2R (u®) }

It follows from Theorem 3.2 thaR (u(t)) < 0. Thus, using Lemma 3.3, we can
obtain that/”(t)1(t) — 222 [I'(t)]* > 0. Define J(t) := [I(t)]’%l, thenJ"(t) < 0
for eacht > 0.

Now, we will prove that there existst&a > 0 such that/’(¢*) > 0. If not, then,
forall ¢ >0, I'(¢t) < 0. From (3.19) and? (u(t)) < 0, it follows that”(t) > 0 for
all ¢ > 0. Note that

lim I'(t) = I'(0) + /OO I"(s)ds

t—o0

exists. Hence, there is a sequefeg} such that
lim I"(t,) = 0.
Combining (3.19) and?(u(t)) < 0, we get
lim R(u(t,)) = 0. (3.20)

n—oo

Using Lemma 3.3 again yields that
(p+ D[E@’ %) —d] > (p+ 1)[S(u(tn)) — d] > R(u(t,)).

By virtue of (3.20), we havé’(u°, v°) > d, which leads to a contradiction.
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For such a*, J(t*) > 0 andJ'(t*) < 0. Noting thatJ"(t) < 0 fort > 0,

there exists & € (0, —j((f;))] such that/(f) = 0. Hence,

lim I(t) = +o0. (3.21)

t—t—

Combining (3.18) and the Cauchy-Schwarz inequality, wetBat for eacht <
[0, ),

d[1(1))?

O = J i@ e < S o1 2001 ol = o)

from which we obtain that, for eaahe [0, 7),

N[

U@ﬁ<U®]+vamw

Thus, in view of (3.21), we obtain

t
/ |o(T)]odT = +00,
0

which implies that there exists a sequedeg} such that) < 7, < t, lim 7, = ¢

and

lirf [v(7) |2 = +00.

This contradictd},,.. = +oo. Thereforel},.. < +oo and

tim (Jut) g + [0(0)]2) = +oc.

t—Tmax

3.4 Concluding remarks

In this chapter, we have studied the solution to the Caucbliglpm for a general-
ized Boussinesq equation. Based on the ground state ofespoamding non-linear
Euclidean scalar field equation, we constructed two innasats. We have then
established the sufficient conditions under which a uniguetion exists globally

if the initial functionu® belongs to the first invariant set, while the solution blows

up if u° belongs to the second invariant set.
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Chapter 4

A generalized expansion method for
non-linear wave equations

4.1 Introductory remarks

Solutions of partial differential equations have attrdcsgynificant interest in the
literature. Exact traveling wave solutions, in particuke useful both in practice
and for verifying the accuracy and stability of popular nuiced schemes such as
the finite difference and finite element methods. The capylihd power of com-
puter algebra softwares such as Maple or Mathematica hesased dramatically
over the past decade. Hence, the large amounts of tedioudatans required to
verify candidate traveling wave solutions can be avoided.

Several effective direct search methods have been propogbkd literature.
These include the tanh method [74, 75], the Exp-functionhoe{45, 103], the
Jacobi elliptic function method [63, 89], the Weierstralgp#c function method
[82], and the cosh/sinh ansatz I-1Il method [100].

In this Chapter, we extend the generalized expansion metbeeloped in
references [22, 30]. More specifically, we obtain some negoliaelliptic and
exponential solution classes for the same auxiliary orgimbfferential equation
considered in these papers. The solutions of the ordindgreintial equation are
then used to construct candidate traveling wave solutiGns. new results ensure
that, when applied to the classical Boussinesq and modifid &quations, this

generalized expansion method not only recovers all of theisas reported in [45,

39



63, 89, 100, 117], but also discovers many new ones. Furthrexnthis approach
is flexible as well as powerful — it is easily adapted in Sect#o6 to handle the

system of shallow water long wave approximate equations.

4.2 Preliminary results

The Jacobi elliptic functions are discussed thoroughlBirp]. Since these special
functions play an important role in the sequel, we will bgigfitroduce them here.
We will also discuss some preliminary results that form thsi® for our work in
Sections 4.3-4.6. Note that we will follow the usual convemi&nd let i denote the
complex number satisfying i= —1. Moreover, for the remainder of this chapter,
m € (0,1) is arbitrary.

To begin, consider the integral

_ [ di
C—/0 V1 —m?2sin?(n)

Here, the constant is referred to as the modulus and the upper Ipnég called the

amplitude of¢, which we denote as

p = am(q).

On this basis, the first three Jacobi elliptic functions afned as

s1(¢) = sinfam(¢)] = sin(p),
en(() := cosfami(¢)] = cos(p).

and

\/1—mzs1n [am(¢)] \/1—mzs1n

Asm — 1, we have

sn(¢) — tanh(¢), cn(¢) — sech((), dn(¢) — sech(() .

Similarly, asm — 0,

sn(¢) — sin(¢), cn(¢) — cos(¢), dn(¢) — 1.
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Table 4.1: Definition of the constants;(vy),j =1,...,12,1=0,...,4.

il pio(¥) Pi1(y) Pi2(7) Pi3(Y) Pja(y)
1 m2 -1 4v(1 —m>) [2 =647 + 67v°m> — m? 27(27Z — 2+ m2 — 27%2m?%) YEmZ £ 277 =4 -1 —%Zm?
2 1 —4~ 672 — 1 —m> 27(1 + mZ — 27?) Y+ mZ %2 —%m?
3 1—m? 4v(m? — 1) [2m2% —67yZmZ + 692 — 1 2v(2v%2m?% — 2742 + 1 — 2m?) 272mZ + 4T —mZ —7TmZ — 7
22 2 T T3 p)
1 —3 1—2m : 2 —vT_1-4 2
4 I ul — T— y@m? 442 - 1) s e
5 —1 5 1—31;#»7712 (42 —1 = m?) 2724 2m2 7T 142+2m2 -t
5 _mTQ 2 77L‘:731;7n‘:72 ~v(y2m? —m?2 +2) 2w1m17747237m274w1
7 0 m? — 1 3y +2 — 3ym>% —m? 3vZmZ% 4 29ym> — 3797 —4y — 1 ~v(y+ D (y+ 1 —ym?)
8 0 —2V1—m2| 61 —m27y —4m? +5 [(8m2 — 10)y — (672> + D1 — m2[(4v + 295)V/1 —m2 + 1 + (5 — am?)4?
9 % 0 —m?2 + % 0 i
10 m2 m%—m2+41 om—3m244 m%—m241 m2
4(1—m?2) m2—1 2(1—m?2) m2—1 4(1—m?2)
1—m?2 14+m?2 1—m2
e e 0 - 0 ——
19| m2@=m?) V1—mt4m2 m*—4 Vi—md4m?2 m2(2-m?2)
4(1—m?2) m2—1 2(m?2—-1) m2—1 4(1—m?2)

Nine additional Jacobi elliptic functions can be definedeimts of these first three
— see references [8, 40] for details.
In [22, 30], the following auxiliary ordinary differenti@quation was intro-

duced:

[ = g0+ @ ®(€) + g2 [R(E)] + g3 @) + qu [2(€)]*,  (4.2)

whereg;, 7 = 0,...,4, are given coefficients. Various solutions of the ordinary
differential equation (4.1) were constructed using theBaelliptic functions, and
these results were exploited in the design of a systematiceplure for generat-
ing solutions of non-linear partial differential equatsoriWe will follow a similar
approach. In our work, the ordinary differential equatidril] will be considered
assumingy, # 0. We will need to determine more general solution classebef t
equation than those reported in [22, 30]. This is the matwebehind the prelimi-
nary results that follow.

Recall thatm is an arbitrary real number satisfyifig< m < 1. With this
in mind, for any (possibly complex) number define the constanis;;(v), j =
1,...,12, 1 = 0,...,4, according to Table 4.1. Furthermore, let the functions

0i(,7),7i=1,...,12,1l=1,...,4, be defined as follows:
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dn(§)

w11 (&) = ~dn(€) + 17
Vi—m?
P26 = A T
Vm?2 = 1sn(€)
w1,3(§7) = yWm2 —1sn(€) + cn(¢)’
1,4 (&7) = L@’
, yen(€) +isn(€)
sn(§
w21 (&,7) = vsn(g() _)’_ T
_ 1
P22 (§,7) = v+ msn(g)’
2,3 (&,7) = %’
~dn (&) + men(€)
p2,4 () = L@’
) yen(§) +dn(§)
cn(¢
P (69 = o
vVm2 =1
3,2 (§,7) = yV/mZ — 1 +men(€)
w3,3(6,7) = dn—(_f)7
, ~dn(£) + imsn(€)
B V1 —m?2 sn(g)
34 (67 = @) + dn®)”
1
P41 (£,7) = ~ +imsnE) + dne)’
B dn(¢)
pa2(§7) = v dn(&) +imen€) +vV1I—m?2’
a3 (&,7) = ¢’
v sNE) +i+icn(€)
B en(é)
a4 (§,7) =

v en(é) +idn(€) + vm? = Tsn)’
1

e5.1(67) = v+ mecn(€) 4+ dn(¢)’
B dan(¢)
#0267 = e+ mvT =2 sn(e) + VI m?’
5,3 (8,7) = .Sn(f) i '
v sn(€) +idn(e) +icn(€)
cn(¢)

5,4 (€,7) = v en(€) + vmZ — 1+ +v/m2 — 1sne)’
1

o1 (67 = e T o)’

v6,2 (§,7) = ; e ’
v dn(€) +icn(€) + v1—m?Zsné)
w63 (§,7) = o Sn_(i) i ’
ym sn(€) + i+ idn(¢)
poa (En) = im cn(¢)

iym en(€) + dn() + VI—m?’

B VI—m2[1 + sn¢)]

er1 (6 = e Ty £ 1) snE) 1 dnE)”
dn(¢) + cn(é)

ydn(§) + (v +1) en(§) + 1

)

$7,2 (67 ’Y) =
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e V1 —m2[1 +msn¢)]
’ ymyVT—m2 () + VI —m2(y+ 1) + mien()’
dn(€) + m cn(€)
my en(€) + (v + 1) dn(¢) +im sn(g)”
w81 (&,7)= RORS ST
, (1 + VI = m2y) sn€) 4 dn(e)’
VI—m?[cen(é) + 1]

P7.4 (57 ’\/):

8,2 (§,7)= VI —m2y + 1 —m2yen(€) + en(€)’

. V1 —m2 +im cn(€)
vs8,3(&§,7)= 14+ VI —m2y +iymen(€)’

() VT2 dn(e) 4 my/m? T sn(e)
©8,4 (&, Y dn(¢) + 'Ym dn(¢) + mmv sn(§) )

B sn(€) + 1 — m2 dn(¢)
9,1 (&,7)= mv2—m2 +v—mA +m2 + Len(e)’
_ m2

9,2 (§,7)= e

mv2 —m? dn(€) + /(—m* + m? + 1)(1 — m?) sn(€)’
0.3 (6,7)= dn(¢) + im(1 — m?) sn(¢) ,
) mQ\/mC”(g) i \/(7m4 +m2+1)(m2 —1)
1+mmcn(5)
2o )= S e snE) v —mE T dn(e)’
en(é) + V1 —m? dn(é)
m2 — 14+ vVm% —m? + Len(€)’
10,2 (§,7)= )+ A
, VI—mZdné) + vmE —m2 +1sn¢)’
14+ myv1—m? sn§)
mvm2 —Len(€) +vVmt —m2 + 1
B dn(¢) + mv/1 — m2 cn(€)
10,4 (§,7)= i(m3 —m) sné) + vVm% —m2 + 1dn(¢)’
w11,1 (§,7)= onE) V1 i ante)
S VT w2 g 1sne)]
VI—mZsné) — 1 +m?
p11,2 (§,7)= mdn(€) + vVmd —m2? t 1en(€)’
. 2
11,3 (§,7)= |7[n(ini25—:n\/i;fb7ﬂ ’
_Vm2 — 11+ myV1 — m? sn(¢)]
P11,4 (§,7)= m?2 en(€) + vVm? —m2 + 1dn(¢)’
on(g) +1 - m?
e12,1 (§,7)= VI—m2dné) + V1 —m* +m2cne)’
sn(€) + v1 —m?2 dn(€)
VI—mZ +VT—mE+m2sn)’
B 14+ myv/mZ — 1 cn(€)
v12,3 (§,7)= mvVI—m2snE) +vVI—mi +m2’
dn(é) +i(m® —m) sn(¢)

w12,4 (§,7)= mvI —m2cn(€) + V1 —m? +m2 dn(¢)

10,1 (€,7)=

10,3 (€,7)=

12,2 (§,7)=

Through lengthy calculation, we can readily verify the daing result. Note that

Maple can be used to help us for the calculation.
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Theorem 4.1. Let v be arbitrary. Then, for each= 1, ..., 12, the ordinary dif-

ferential equation (4.1) with coefficients = p;u(7), ¢ = 0,..., 4, has solutions
@), l=1,....4.

Remark 4.1. Theorem 4.1 can be generalized further. In fact, it remaadglv
even if cr(§), sn&) and dri¢) are replaced, respectively, Bycn(¢), £sn¢) and

+dn(¢) in the expressions fap,; given above.

In some cases, the solutions of the ordinary differentiab¢ign (4.1) can be used
to generate additional solutions. This observation isifimed precisely in Theo-
rem 4.2 and Theorem 4.3 below. Again, Maple can be used toecoently verify

these results.

Theorem 4.2. Suppose thap is a solution of the ordinary differential equation
(4.1) with coefficients; = ¢, 1 = 0,...,4, whereq; = ¢z = 0, andqo, ¢ andq,

are given constants such thgt# 0. Then,

i 1
[ S0+~
do ¥

is a solution of the ordinary differential equation (4.1}weoefficients

. . [da . . [da .
qo = 844 F 4G2 i’ g1 =0, g2=q2F6¢o i’ 3 =0, q4=do-

Theorem 4.3. Suppose thap is a solution of the ordinary differential equation
(4.1) with coefficientsy; = ¢, [ = 0,...,4, whereq, | = 0,...,4, are given

constants such that # 0 andg, = ‘13—;1% Then,
1

] 1

b, L

q ¥
is a solution of the ordinary differential equation (4.1}mecoefficients

~ 443(24ods — q1G2) A _ .~ 6gogs . .
qo = P s =443, g =G2— o BT0 a=d

1
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Remark 4.2. From Table 4.1 and Theorem 4.1, the reader will notice tioatany
v, Theorem 4.3 can be invoked with (-, v), j € {10,12},1 =1,....,4.

We also seek for non-Jacobi elliptic solutions of the ordindifferential equa-
tion (4.1). As such, to conclude this section, we presentdhewing two results.

Both can be proved easily via direct substitution.

Theorem 4.4. Let a_1, ag, a; andby be given constants such that; # 0 and
agp 7é a_1bg. Then,
Cl_le_5 + ag + (Zle§
e¢ -+ bo + aaTlleﬁ

is a solution of the ordinary differential equation (4.1}weoefficients

(4(171(11 — a(z)) a%l

q0 = —
(a_1bo — ap)?
2a_1 (—aoaflb() +8a_1a1 — a(z))
a= - ,
(a—1bo — aop)

a2_1b(2) + 4a_1a0bp — 24a_1a1 + ag

q2 =
(a_1bg — ag)?

2(8a1 — aflb(z) — apbo)
q3 = y
(a—1by — ap)?

aflbg — 4aq

q4 _—.
a—1 (a—1bo — ao)2

Theorem 4.5.Leta_1, aq, by andb; be given constants such that # b;a_; and
_ bo(a_1b1+a1)i(a_1b17a1)\/bgf4b1 Then

Qo 2b1

Cl_lei5 + ag + (Zleg
e + bo + ble‘f
is a solution of the ordinary differential equation (4.1}hwi

2 2
a” 07

N (bra—1 — a1)2 ’
72a_1a% — 2b1a2_1a1
@ = ra1—a?
a% +4a_1b1a1 + a%lb%
92 = (bra 1 —ar)? ;
—2a1b1 — 2a,1b%
(hra—1 — 0L1)2
i

o (bra—1 — a1)2.

q0

q3 =

q4
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Note that additional solutions of the ordinary differehéquation (4.1) can be con-
structed using Weierstrass’ elliptic function. The readefirected to [82] for more

details.

4.3 A generalized expansion method

We will briefly outline a generalized expansion method fongtoucting traveling
wave solutions. Similar procedures have been developedfarences [22, 30].
However, the new results given in the previous section enthiat our method yields
many new solutions when applied to some classical partitdrditial equations.
This will be clearly demonstrated in Sections 4.4-4.6.

We consider the following non-linear wave equation:
H (w, tgy gy Upgy Uy Ugt, - - ) = 0, (4.2)

wherew = u(x,t) is a real or complex-valued functiod{ is a given function
involving powers of its arguments and the subscripts deddterentiation. We

will consider candidate traveling wave solutions that tddesform
(e, ) = (€)= ¢ @, (4.3)
j=0

where¢ = k(x — vt), k > 0 is the wave numbet, is the traveling wave veloc-
ity, n is an integer® is a non-trival solution of the ordinary differential eqjat
(4.1) with coefficientsy, | = 0,...,4, andc;, j = 0,...,n, are constants with
¢, # 0. Depending on the form aff, £ andv will be determined or remain as free
parameters.

Note thatu given by (4.3) is a polynomial function @. Hence, it is readily
seen that, for each integer> 1, @" is also a polynomial irb. In this case, we use

the degree notatiofd(-) to denote the index of the highest powerdofThus,

O(a") =nk, k>1. (4.4)
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The derivatives of can be obtained by repeatedly differentiating both sidé4.aj.

For example,
P = L4 gpd+ 3—;’3@2 + 2, 9°,
" = (g2 + 3q3D + 6, P?) V',
P = (3q0q3 + 2(]1(]2) + (qg + 2@1613 + 12@0614) P (4.5)

+15 ( G293 + Q1Q4) P2 + (20q2q4 + 15 2) 3
+30g5: D" + 24205,

It is not difficult to show that only the even derivatives amymomials in®. The
odd derivatives also contain terms of the fodf(®’) , where; is a non-negative
integer. In this case, we defilig ®') = 2 and so

O (@) =j+2,  j=>0.

By differentiating (4.3), we can also deduce the derivatvigi. For example,

(4 = (c1+...+nc, @ Hd
' = (e +...+nc, @ 1)<I>” [2¢0 + ...+ n( —1)c, "2 (9')?,
" = (c1+...+nc, @ 1P + 32, v n(n — 1)cn<I>" 21"
+[6c3+ ... +n(n—1)(n— 2)cn<I>" 31(@")3,
a//// — (Cl + .+ ncnq)n 1)@////
+4[202 +... + n(n —1)c, "2 '"”
+3[2¢2 + ...+ n(n —1)c, @ 2|(")?
+6[6c3 + ... +n(n—1)(n — 2)c, " 3](P")?P”
\ +[24cs + ... +n(n —1)(n —2)(n — 3)e, " 1)(¥')*,

(4.6)
where the derivatives ab are given in (4.1) and (4.5). Higher order derivatives can
be obtained similarly. Again, only the even derivativesiare polynomials inb.

It is readily seen that

d"u
= > 1. .
O(d&”) b=l D

Whenw is substituted into (4.2), the original partial differeaitequation inz and

t is reduced to a non-linear ordinary differential equatiog.i We will normally
choosen so that the degrees of the highest order derivative term lamdhighest
order non-linear term in this reduced ordinary differeinéiquation are balanced.
However, this does not always result in an integral valuenfoin this case, it is
sometimes possible to proceed by letting: v=, wherer is the denominator of the
fractional value ofn (assuming the denominator and numerator have no common

factors), and solving the resulting equation#oiThis is illustrated in the following
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example.

Example 4.1.Consider the following Boussinesg-type equation:
Upp — Ugg + Uggge + (u5 - u3>mm =0.

By lettingu(x, t) = u(k(xz — vt)), the above partial differential equation is reduced

to the following ordinary differential equation:
V' — " + B+ (@® - a*) = 0.
Integrating twice yields
V2 — i+ kA 4+ a® — 0 = 0. (4.8)

Here, the highest order non-linear termiis and the highest order derivative term

is u”. Balancing these two terms using (4.4) and (4.7) gbres= n + 2, 0rn = %

Settingu = vz, (4.8) becomes
2

(v —1)? + %[QUU” — ()] +0v* —v® =0. (4.9)
Now, balancingv’)? andv* givesn = 1. Hence, we can search for traveling wave
solutions of (4.9) which take the form(k(x — vt)) = co + 1P (k(z — vt)), for

constantg, andc;. If such av can be determined, then it is easy to detivdl

It is noted in Example 4.1 that substitutiignto (4.2) yields a non-linear ordinary
differential equation ig. When the derivatives af are substituted into this reduced
ordinary differential equation, we will obtain a linear cbimation of®7(®')!, where

j > 0isanintegerande {0,1}. If v, k,andc;, 7 =0,...,n,andg;, 7 =0,...,4,
can be chosen to make each coefficient in this linear conbmagro, then the re-
sulting @ will satisfy the original partial differential equation.@. However, in
this procedure, we sometimes end up with= 0, j = 0,...,n (we encounter
this in Section 4.6). In this case, we can use the followitgraative solution form
proposed in [22]:

_ "L ¢ [®(6)] + O IT1P!(¢
e = o+ 3 (O][;@@){ fﬁl © (4.10)
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wherec; (7 =0,...,n),C; (j =1,...,n) andy are constants.
In [7, 30], the solutions to the reduced ordinary differahéiquation are rep-

resented by

. n ; I/(f) n+1 ;
u(é) = g ¢ |P(&)]” + 3 E C; P& . (4.11)
( ) j=—n [ ( )] [(I)<£):| (j_—n [ ( )} )

However, the degree af given in (4.11) isn + 1. Hence,C,,,; = 0. Thus, it

becomes

n

. i () . j
W6 =3 ¢ Y ol . 4.12
€3] 2 [@(8)] +_[®(€ﬂ <j:n [@(¢)] ) (4.12)

In (4.12), there ardn + 2 variables which need to be determined, while there are

only 2n + 2 variables ¢;, j = 0,...,n, C;, j = 1,...,n, andy) in (4.10). Note
that, in (4.12),¢; = g3 = 0 is required. Hence, combining Theorem 4.2 and
expression (4.10) withu = 0, we can derive the same result as the ones derived
from (4.12). But, (4.10) is much more easy than (4.12) focuaialtions.

Notice that each of the Jacobi elliptic solutions of the pady differential
equation (4.1) reported in [22, 64, 71] can be written as &ascaultiple of some
0;i(-,0), 7 € {1,...,6}, 1 € {1,...,4}. Hence, by applying our expansion
method with (4.3) and Theorem 4.1 to a non-linear partidedztial equation, we
can replicate every Jacobi elliptic solution obtained gdime methods presented
in [64, 71]. Applying our expansion method with (4.10) ande®rem 4.1 to a
non-linear partial differential equation, we can obtaihJalcobi elliptic solutions
obtained using the method presented in [22]. Similarlyhedacobi elliptic solu-
tion of the ordinary differential equation (4.1) reported 80, 36] withw = 1 can
be written as a scalar multiple of some,(-,0), j € {1,...,6},1 € {1,...,4}.

It is also evident that, for the special cage= 0, using our expansion method
with (4.10) and Theorem 4.1 and Theorem 4.2, we can recoegy dacobi elliptic
solution obtained using the method of [30, 106]. Hence, bygiof the new results
in Section 4.2, our method is a significant generalizatiothefwork reported in
[7, 22, 30, 36, 42, 64, 71, 106.
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4.4 Traveling wave solutions for the Boussinesq equa-
tion

Consider the Boussinesq equation

Ut + A Ugy + QoUgggr + O3 (UQ) = 07 (413)

Tx

whereu := u (z,t) is a real-valued function. Letting(z,t) = a(¢), whereg is as

defined in Section 4.3, (4.13) becomes an ordinary diffeakeguation

"

V" + ant” + aok®d” + ag (@) = 0. (4.14)
Now, let us solve the following ordinary differential eqiget

Bl (€) + BT (€) + 85 [T2(€)]" =0, (4.15)

where constants;, j = 1,2, 3, are non-zero. Balancing?(¢)]” and¥"””(¢) gives

2n+2 =n+4,orn = 2. Hence, we will search for candidate solutions of the form
U(E) = co+ a1 ®(E) + 2 [B(E))?, (4.16)

wherec, # 0 and ® satisfies the ordinary differential equation (4.1) with ftiee
cientsg;, j = 0,...,4. Substituting (4.16) into (4.15) and using (4.1) and (4.5)-
(4.6), we obtain the following sufficient conditions férto satisfy (4.15):

( o — 352613% — 1682q2q4 — 45104
’ 8334 7
¢ = _3ﬁ2613
fs
o 6354 (4.17)
2 - )
G
o= q3 (4G2q4 — q3)
\ 86]2 '

That is, if a solution® of the ordinary differential equation (4.1) with coefficien

4q2qa *qg)

satisfyingq; = as( e andg, # 0 can be found, then

T(E) = co+ a1 ®(&) + 2 [B(E))?, (4.18)
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wherecy, ¢1, co are as defined in (4.17), is a solution of the ordinary diffiéiee
equation (4.15). Now, we generalize this solution formHart Note that, ifj; =

g3 = 0, then (4.18) reduces to

W(g) = — Mt — 9B o (g)]. (4.19)

If g0 # 0, then using Theorem 4.2 with (4.19) gives the following sioluform for
equation (4.15):

4022 + 1 6B2qu 2 6320
Y(e) = — - B - —=22 4.20
Furthermore, note that (4.18) can be rewritten as
36205 — 832qoqs — 2614 602qs q3 12
w(e) = B S I LGET IR (4.21)

The solution forms (4.20) and (4.21) provide motivation foe following more

general candidate solution:

362q5 — 8 -2 6 2 d
() = Bas f;qj;u Braa %% [q)(ng?g] N . (4.22)
344 3 4 [(I)(g) + 4(%
whered is a constant. By substituting (4.22) into (4.15), the valti€ can be de-
termined. We summarize our results in the form of the folluyviheorem.

Theorem 4.6. For eachj = 1,2, lete; € {0,1}. Suppose tha® is a solution
of the ordinary differential equation (4.1) with coefficten,;, j = 0, . . ., 4, satisfy-

9
ing ¢s # 0 andg, = W Then,

36243 — 8B2q2q4 — 2B1q4 65244 q3 12
\1’1(5, ﬁla ﬁ2> ﬁ?)) = 3 4ﬂ3Q4 —£&1 ﬁ?, |:<I)(£) + 4_q4]
. 3B2(16¢3g2q4 — 5q3 — 25643 qo)

2
128043 | @(€) + ]

is a solution of the ordinary differential equation (4.15).

Remark 4.3. ¥, includes both (4.18) and (4.20) as special cases.

Remark 4.4. Wheng; = g3 = 0, using the method proposed in [42], where
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¢ [fb(g)]j has been used, the same results will be derived awith ¢, =
j=—n

Q3:0.

Applying Theorem 4.6 and using the solutions of (4.1) givenTheorems 4.1,
4.4 and 4.5, we can deduce many solutions for equation (4L)the functions

V(& Br, B2, 33), j = 1,...,26, be defined as follows:

Y1(€, 81, B2,03) = YR 25 e €t A + o€t

( 6‘75-{-)\1 +)\2e5 )2:|
+€2 )
e

—e—§ 4 \/)\%74)\24’)\2
28:+p41 382 (sin(i)i\/lfké)%rs < cos(€) + As )2
003(5) + A3 ? sin(f) +./1— )\g ’

282 —P1 302 |:5 < e_gi\/A%*‘l)‘?JF)‘?es)Q

P2 (€, B1,B2,03) = —

2033 2033

482 (m? +1) — B 662 [

¥3(&, B1, B2, 03) = e1m?sIP (€) + easm2(€)],

26s
Ya(§, B1, B2, B3) _1 (mzﬁ_j) —& 662 {e )+ 2;2(72)2} ,
¥s5(€, B, B2, B3) :W 662 {e ; L a _(:7:22()55)”2(6)} 7
¥Y6(§, B, B2, B3) :W 662 d g + S:zggﬂ
W26, B, B a) = — +4ﬁ226§m - Bi 1cn2(£) }
s 6, B, o, By) = — 2 *4@%’” -1 S 2‘ m2 (m —(gsnz(ﬁ)} |
i 0o
e =
b11(6, B, 2, ) = — 2F 26225(;”2 o w0 f?is}ng

)

b15(6, 61, B, s) = — 2T mjg(gm g Bﬁg(iéﬁnii%dfi’n@>§”(g)}7
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_BL+2B2 (m® —2)  3Bam?[dn() — VI —m?]

¥15(€, B1, B2, 83) =

283 283[dn(¢) + V1 —m?]
_ Bi+28(m?—2)  3Bym2[1 —dn(¢)]
¥16(€, B1, B2, 83) =— s T Tog+ane)]
B+ B(2mP+12m+2) 38 (m—1)? [[1-msn(¢)]? 14 /msn(€)]”
Y& O, ) = 205 BT {{Hmsn@)} +61{1—\/ﬁsr\(£>} ’
m2 m
P18(§, B1, B2, 63) __Pth 2 5 +12m +2)
B3
a1 f0E) o)) [aKE) + /ment)]
203 dn(¢) + v/men(€) dn(¢) — v/men(€) ’
Y19(€, B1, B2, B3) =t Bm’ ;gj s
31+ V=2 [ e - VI=mZsn©)]” | [en©) + VI—msne)]’
25 on(©) + VI—m2sne) | | |en(e) - VI—m2sne) | [’
U0 (€, Br. B, B3) __ B + Ba2(2m? ;4 —12/1 — m?)
O3
3621 — V1 m2)?2 dn(é) — v1 —m? 2 te dn(¢) + V1 —m2 2
263 an(é) + V1—m2 ane) - VI—m2| [
28(2m* 1)~ 38 | SnE) + VI = mZdn(¢) 2
P21(&, B1,B2,03) = 28; 285 _m\/2m2+\/m4+m2+1(1n(§):|
737,826 mv2 —m2 4+ v/—m?* +m?2 + 1en(€) 2
205 sn(E) + VI — m2dn(e) ’
28(2m*-1) -~ 38 | en(é) + (m2 — 1) 2
¥22(§, B, B2, B3) = 285 205 | mv/2 — m2dn(€) + /(—m? + mZ + D)(1 m2)sn(§)}

382 [mva—mZdn(e) + /(Cmi +m? + (1 —m?)sne) ]
' 265 cn(é) + (m? — 1) ’

bon(ELBr. o ) —— DL 202 (2 4 1) | 35a(m? — 1) [ on(§) + VT~ m2dn(e) 2
I 263 205 | m ot /T T TenE)

e 362(m? — 1) | m+ vm?* —m? + 1sn(£) 2
b 2ps en(é) + Vi —m2dn(e) |’
L Bid26 (m 1) 36(1—m?)? snE) + VI —m? ’
Y24(§, B, B2, B3) =— 20 YR (@) + vk —Z T In)

38 [man(e) + vim® —m? + 1en(g) |
1285 snE) + Vi—m? '
_BuL4282 (m® +1)  38(m* —1) | dn(§) + VI —mZen(é)
2033 2033 m2sn(¢) + vVm* —m2 + 1
 3Ba(m® —1) [m2sn() + VT —m? 41|
! 203 an(¢) + v1 — m2Zcen(€)
B2 (mP 1) | 31— m?)? 1+ my/I — m2sn(¢) :
203 203 m2cn(€) + vm* — m?2 + 1dn(€)
382 [m2en(©) + vVim® —m? + 1dn(g) |
1253 1+ mv1—m2sn(§) ’

25 (€, B1, B2, 83) =

Y

26 (€, B1, B2, 83) =

+e

wheresy, g5 € {0,1}, m € (0, 1) is the modulus of the Jacobi elliptic functions, and
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Aj, j = 1,2,3, are arbitrary real constants satisfyikg< 4\, and—1 < A3 < 1.

Through direct substitution, we can prove the followingutes

Theorem 4.7. For eachj = 1,...,26, the functiony; is a solution of the ordi-

nary differential equation (4.15).

Remark 4.5. It follows from Remark 4.1 that;, j = 3, ..., 26, still satisfy equa-
tion (4.15) even if cf¥), sn¢) and dri§) are replaced, respectively, hycn(¢),
+sn(¢) and+dn(¢).

Remark 4.6. It is interesting to note that, for eaghe {3, ...,26}, the solutiory;
becomes a special caseygfasm — 1. Similarly, asm — 0, ¢, becomes a special

case ofi)s.

Next, we will make use of the solutions, j = 1,. .., 26, to derive traveling wave
solutions for the Boussinesq equation (4.13).
Foreachj =1,..., 26, let

u;(z,t) =1, (k(:v — vt), a1 + V2, agk?, ag),

wherek andv are arbitrary real constants. According to Theorem 4.6 driti{,
we know that, for each = 1, . . ., 26, the functionu; is a solution of the Boussinesq
equation (4.13).

Note that, for some cases, the denominators in the expres$ie, can be
equal to zero at certain points, and thus, such a solutiomiewunded. For example,
u; With e = g5 = 1 and X, # 0 is unbounded. It is also noted that, for some cases,
the solutionu; is bounded. For instance; withe; = 1,55 = 0,0 < Xy < M\/4
and)\; > 0is bounded. For the bounded case, clearly, the solutiaives a single
wave that moves in the-direction with velocityr andu, (x,t) — (2a2k* — oy —

1) /(2a3) — 3aok?*(e1 + €2)/(2a3) ask(z — vt) — +oo.

To show the physical insight of these solutions, here we shag = —1,
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Figure 4.1: The plot of the solutian, to the Boussinesq equation (4.13) with=
—1,a9 = -1, 3 = =3, m = 0.99, k = 1 andv = —1 and the initial status af,.

as = —1, ag = —3 and takeuy, u; as examples. Figure 4.1 shows the wave
profile of the solutionu, with m = 0.99, £ = 1 andv = —1. Clearly, the so-
lution is a periodic function describing the traveling ofwga in the negative-
direction. Figure 4.2 shows the graph of the solutignfor m = 0.9, £ = 1
andrv = —2. Note thatu, becomes infinity when ¢ (z — vt), m) = 0, that is,
k(x —vt) = (2 + 1)K, whereK = fow/z(l — m? sinz(s))fl/zds andj = 0,

+1, ... For instance, in Figure 4.2;; becomes negative infinity when the point
(x,t) is close to the lines + 2t = 2.280549138(25 + 1), wherej = 0, £1,

... Itis also noted from the expression of the solutiegswith e, = 1 andu;,

j € 45,6,7,8,9,12,13,19, 20,21, 22,23, 24}, that these solutions are unbounded,
since the denominator in the expression can be zero atrc@aaits.

To show the power of the proposed expansion method, we ca@oparesults
with the solutions reported in [49, 63, 100, 116, 117, 118].[49], the multiple
soliton-like solutions and triangular periodic soluticerived by Inan and Kaya
are included in the solutions; andu,, respectively. In [100], the solutions of
(4.13) were obtained using the sinh/cosh ansatz I-1l mettiwa sinh-cosh ansatz
[l method, the tanh method and the sine-cosine method. Biittese solutions is

a special case af, or u,. In [116], two solutions of the Boussinesq equation (4.13)
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Figure 4.2: The plot of the solutian, to the Boussinesq equation (4.13) with =
—1, a0 = —1,a3 = =3, m = 0.9, k = 1 andv = —2 and the initial status of-.

are special cases of the solutian The solutionus is identical to the solutions
reported in [63, 117], and the solutian is the same as the solution reported in
[118]. However, all of the other Jacobi elliptic functionlgiions are new solutions.
Furthermore, if the candidate traveling wave solution & fbrms (2.7) and
(4.10) are considered and our new results in Section 4.2 @pked, then many
additional solutions can be obtained.
As mentioned in Remark 4.4;; includes the results derived by (2.7) for the

casey; = gz = 0. Hence, we will consider (2.7) under the cgge# 0. Substituting

(WOZ[Qéﬂf+®&y+%+q®gyﬂ3@@ﬂ

into (4.15), we can determine the coefficieatsj = -2, ..., 2.

Theorem 4.8.Let ¢ be a solution of the ordinary differential equation (4.1)wgo-

efficientsg; (j = 0, ..., 4). If g = wqiqg—ﬁiﬁqwﬁqé‘ andg, — % (g5 £ 0),

then a solution of the equation (4.15) is
2 30 65240

B gy[a(e)]”

Uy (&, B, B2, B5) = co + c1®(§) + 2 [q)(f)]

wherecy, ¢; ande, are as defined in (4.17).
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Note that the form (4.10) is more general than (4.16). Comsetly, (4.10) can

generate additional solutions for (4.15). Suppose thasthetions of (4.15) are

represented by

a®(€) + () | e[B(©)] + CR(©P ()

pd(§) +1 [u® () +1]°
where the constanis c; (j = 0, 1,2) andC; (5 = 1, 2) will be determined later.
If C, =Cy =0andu # 0, then (4.23) becomes

c1®(§) C2 [‘D(f)}

pRE) + 1 [ua(e) + 1]

The form (4.24) is not an ideal choice for solving exact sohg for non-linear

V() =co+ , (4.23)

2

V(&) = co+

(4.24)

partial differential equations. As far as we know, no onesugs form in the
literature. In the sequel, we will show why it is not a good ickeo

Note that if we want to derive exponential function solusiptihen the form (4.18)
is more preferable than the form (4.24), since they can déhig same results. Ac-
cording to Table 4.1, there are no sets of coefficignt§) = 0, ..., 4) satisfying
g0 = ¢1 = 0. Hence, to obtain Jacobi elliptic function solutions, wedéo delete
results satisfying, = ¢; = 0. Substituting (4.24) into (4.15) and using Maple, we
can only obtain the following three sets of results whgn = 0:

g0 =0,

q = (g — @p+ qp?),
_ 3q1B2p—q2P2—pF1

co = Mgy, (4.25)
o — _ 3B2(a34312q1—2q2p1)
1 203 )
Co = 0,
( _
do = 07 ) 3
_ 6q1B2c5—PB3ci+18q182c10200
QQ N 2 618201622 ' 2 3
__ Bacica—6q1B2c5u—9q1B2¢c1cop”+B3cip
43 = ) 236220102 ) ) ) (426)
_ _ Bscrc3—6q1Baciu® +2BscicaptBacin® —682q1 crcap’
4 5 ) 602c1c2 )
cn — Baci—24q1B2c5—6B1c1c2
[ 0 12B3c1c2 )
and ,
( _ q1(4g290—q7)
q3 = 8q(2) )
i
:u - 4q0’
__ 3P2q3—882¢2q0—2B1q0 (4.27)
Co = ) '
48390
ca =0, 2 4 3
Co — 382(16q7 q2q0—5q7 —2564; q4)
L 2 12883343 :
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Note that ify is a solution of equation (4.1) withy, = ¢;, j = 0,...,4, then
1/¢ is a solution of (4.1) withy; = ¢,—;, j = 0,...,4. Hence, using the solution
form ¥, with e; = 0 ande, = 1, we can derive (4.27). Actually, there exists
another set of results in whiafyc; # 0. However, it is too difficult to solve the
non-linear equations, evengf = ¢3 = 0. Note that¥; with ¢y = 0 andey, = 1
satisfiesgoc; # 0. This means that suchi; gives a solution for (4.24) under the
caseqoc; # 0. However, it is impossible to derivé; with e; = 1 andey, = 1
using (4.24).

In addition, we can derive solutions in the form (4.24) frofl@). Rewrit-

ing (4.24), it follows

o(¢) ®(E)
p® (&) +1 p®(§) +1

Note that ifp is a solution of the equation (4.1) with coefficients = ¢;, 7 =

V() =cot+a + e (4.28)

0,...,4,theny/(up + 1) is a solution of (4.1) with
Go = q07 .
@ =q —4qp, )
G2 =G> — 3G1p+ 6(10/~L2, o (4.29)
(3 = qs — 2¢ot + 3Gy p” — AGopt”,
G4 = G4 — g3/t + Q21" — q1p° + Gofb -

As we know, (4.16) is a solution of (4.15) if the coefficients(j = 0,...,4)

. 4 2
of (4.1) satisfyq, — W
4a;

have to solve a sixth order polynomial equatioruinlt is well-known that such

. Combining this condition with (4.29), we

equation is very difficult to solve. This is the reason why Mapan not solve the
casegyc; # 0 for (4.24).
Now, let us consider (4.23) with,Cy # 0. Substituting (4.23) into (4.15),

we obtain that

( o — _652M2<J0 — 3Bap1q1 + Bage + Bu
0 2253 ) )
o = 302(21q2 — 3pPqn — q3 + 414°qo)
233 ’
3 + plqo — pgs — pPqy +
o, — _352(at 140 gq?, on + 17g2) (4.30)
3
o 430 Vi + g0 — pgs — 1q + 12q
b By ’
o 30otin/qu + 11q0 — 11gs — 3@ + p2qe
2 — :F /83 .
\
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It is noted that there is no requirement@n(j = 0,...,4) as in Theorem 4.6. It
Is also noted that’, = —uC. Thus, we can simplify the expression of (4.23). In
addition, ifu = 0, we can apply Theorems 4.2 and 4.3 to generate new solutions f

equation (4.15) from (4.23). The results are summarizedarfdllowing theorem.

Theorem 4.9.Suppose thab is a solution of the ordinary differential equation (4.1)

with coefficientsg; ( = 0,...,4). Let

ad(©) | el + o)

U —
3(&, B, B2, B3) CO+M®(€)+1 + [M‘D(fﬂ’lf

Y

wherec; (j = 0,1,2) andC; are defined as in (4.30). For eaghif ¢4 + u*qo —
ugs — pdqr + p?qe > 0, then the function’; satisfies the ordinary differential
equation (4.15). Moreover, ifqy = ¢3q4, @ > 0 andg, > 0, then

65240
[2(8)]

Uy(&, B, o, ) = —2—153

2

By + Palg + 6e1y/Gotn) + 65204 [B()]” +

()
i%(el@@(&) T )]

wheree; € {1, -1}, is a solution of equation (4.15).

Remark 4.7. Without the condition;; = ¢3 = 0 as the authors assumed in [7, 30],
applying (4.12) to (4.15), we can get exactly the same resd,, ¥,, U3 with

u = 0 andWV,. However, there are too many variables involved in (4.12).

Using the solutions of equation (4.15), we also can deraeeling wave solutions

for the improved Boussinesq equation
Ut — Ugy — Ugatt — (uz)xx = 0.
Letting¢ = k(xz — vt), we have the following ordinary differential equation

"

(1 o V2),all + k2y2,al/// 4 (a2) = 0.
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Thus, according to Theorem 4.7, for egck {1,...,26} and any real numbers
andv,
Y, (k(x —ut),1 — v k"2, 1),

is a solution of the improved Boussinesq equation. Moreav&ng W, given in
Theorem 4.8 and’;, ¥, given in Theorem 4.9, many additional solutions can be

derived.

4.5 Traveling wave solutions for the modified KdV
equation

We consider the following modified KdV equation:
U + Pty + Upyy = 0, (4.31)

whereu := u (z,t) is a complex-valued function. Lettingz,t) = (&), where

is as defined in Section 4.3, (4.31) is reduced to the ordididfgrential equation
—vi + @2 + K2 = 0. (4.32)

Balancingi?a’ and@” yieldsn = 1. Thus, we now consider candidate traveling

wave solutions of the form

u(§) = co + c1®(§),

wherec; # 0, and® satisfies the ordinary differential equation (4.1) with ftiee
cientsg;, j = 0,...,4. Substitutingz into (4.32), we obtain the following sufficient

conditions forz to satisfy (4.32):

ct + 6k%qy = 0,
20001 + 3]{Z2(J3 = 0, (433)
—v 4§+ kg = 0.

According to (4.33),

u(z, t) = +k [ 5 _ —6q4® (k(z — 11t)) |, (4.34)
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is a solution of (4.31) in which, = &2 (q2 — %) andk is an arbitrary constant.
Now, if ¢; = g3 = 0 andqy, # 0, then Theorem 4.2 can be applied with (4.34) to
give the following solution form of (4.31):

u(z,t) = erk\/—6qo |:€2 \/%CD (k(z — wt)) + @(k(;] : (4.35)

T — 1ot))

wheree; = +£1,j = 1,2, vy = k? <q2 — €364 4 /g-;*) andk is an arbitrary constant.

In addition, ifq, = @043 andgoq; # 0, then Theorem 4.3 can be applied with (4.34)

ai

to yield another solution form of (4.31):

_ 38 e | B (ke — et
u(z,t) = ik(wm 6qo{q1®(k3( 3t))+q)(k(x — u?,t))D’ (4.36)

2 . .
wherev; = k? <q2 — 6‘1;—1% — %) andk is an arbitrary constant.

We can apply Theorem 4.4 with (4.34) to obtain the followifagss of travel-
ing wave solutions of (4.31):

39k>2
uy (z,t) = A+ A

e k(a—(k+X2)t) 4 9 4 792(2gi\;r3k2)ek(x—(k2+>\2)t)’

where )\, ¥ andk are arbitrary parameters such that£ 0. It is noted that, if\,
9 andk are all real constants satisfyingk +# 0, thenu,; describes a single wave
traveling in thez-direction andu, (z,t) — A, ask(z — (k? + \?)t) — +oc.

We can also apply Theorem 4.5 with (4.36) to obtain anotlassobf solutions
of (4.31):

e, VTOE [0+ oe he—vit) L IN(g + 1) + SeaVAZ — 49(0 — 1) 4 ekt
u (z,t) =€ oc—1 2 e k(z—vat) { \ + geh(z—vat)
v —6ko e klz—vat) 4 \ 4 geh(z—rat)
—€
o —1 |ge k@it 4 N+ 1) + LeaVA? — d0(0 — 1) + debla—vat) |

wheree; = +1,j = 1,2, 1, = (10750

, and\, ¥ ando are arbitrary constants
such thatr # 1. Note thatu, is the same as solution (18) in [45], obtained using
the Exp-function method. However; is a new solution.

We also can obtain Jacobi elliptic solutions to the modifietVkequation

(4.31) by combining Theorem 4.1 with (4.34)-(4.36).
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1. Forl e {1,...,4},5 € {1,...,12} andy arbitrary, (4.34) withd = ¢, (-, 7)
andg, = p;.(y),n=0,...,4,is a solution of (4.31).

2. Forl € {1,...,4} andj € {1,2,3,4,5,6,9,11}, (4.35) with® = ¢;,(-,0)
andg, = p;,(0),n =0, ...,4, is a solution of (4.31).

3. Forl € {1,...,4} andj € {10, 12}, (4.36) with® = ¢,,(-,0) andg, =
pin(0),n=0,...,4,is asolution of (4.31).

Thus, we can obtain many Jacobi elliptic solutions of (4.3b)keep the details to
minimum, we will not list them all here. Instead, we just stlsome of them to
compare our results with those reported in [89, 117]. Noa dkr method can also
be applied to the modified KdV equation considered in [89]117

Lety be suchthat # +1 andy # +m. Choosing;; = p2;(7),7 =0,...,4,
from (4.34), it follows that

()= k J(1+m?2 =293  /=6(m?—~?)(1 —~?) sn[k(z — vst)]
V—=6(m? — %) (1 —~?) vsn[ (x —V5t]+1 ’
ug(z, t)=k v+ m? — 27/2) \/ 6 m2 ( —7?)
’ V6T =)= vtm sn[kz( — vst)]
ws( ) k] B2 =27 /6(m7 —72)(1 —77) dnlk(z — vst)]
’ V=6(m?—12)(1—12)  ydnlk(z —vst)] +menlk(z — vst)]
)=k 2™ =2/ —60m? — %1 —4?) enlk(z — vst)
V—=6(m? — %) (1 —~2) yenlk(z —vst)] + dnfk(z —vst)] |’

are solutions of (4.31) in which; = &2 [672 —1—m2— %] andk
is an arbitrary constant. H is any real number such that < || < 1, thenu;,

j =3,...,6, are real and bounded. Moreover;it= 0, then according to (4.35),
we can obtain the following two unbounded solutions:

ur(z, t)= V—6k {im snlk(z — vet)] + ;}’

snlk(x — vgt)]

B dnlk(x — vgt)] menfk(z — vet)]
us ()= v/ =6k {i cnfk(z — ,,Zm * T dnk(e = yﬁi)] }

wherevs = —k*(1 & 6m + m?) andk is an arbitrary constant.
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Similarly, if g; = ps ;(7), 7 =0, ...,4, wherey is an arbitrary constant such

thaty 7 £1 andy 7 i 7=, then we get solutions of (4.31) as follows:
o 3y(1—2m2 — 292 + 292m?)
UQ(l’at) _k{ \/76(’)/27”2 —m2— 72)(1 - ’Y2)
V—6(y?m? —m? —12)(1 —?) en[k(z — vrt)]
- venlk(z — vrt)] + 1 }’
37(1 = 2m® — 292 + 29°m?)
uio(, ) :k{ V/—6(72m2 —m2 —42)(1 — 42)
V6(y?m2 —m? —9%)(1 — %) (1 —m?) }
yWm? — 1+ menlk(z — vrt)] ’
3v(1 —2m® — 29° 4+ 29°m?)
u11(z, 1) :k{ \/76(’y2m2 —m? —~2)(1 —~?)

_ V=6(12m2 — m2 — 42)(1 — +2) dn[k(z — v7t)] }
v dn[k(z — v7t)] + im sn[k(z — vrt)] ’

3v(1 —2m? — 272 + 292m?)
V=6(72m2 —m? —2)(1 —~?)
RO s~
V1 —m? snlk(z — v7t)] + dnlk(z — v7t)] ’

uya(z,t) :k{

_ 1.2 2 2,2 2 372(1—2m2—2+424292m?)? .
wherev; = k [2m —67*m* 4+ 6v° —1— ;(m%Lleﬁ)(]ﬂ% } andk is an ar-

bitrary constant. Moreover, if = 0, then we have the unbounded solutions

u13(x,t)= k\/m{i\/% cn[k(m — Vgt)] + m}v
- _ 1 dnfk(z — vst)] snk(z — vst)]
ura(z, t)= kv/6(1 —m?) {:Fm sn[k(z — 1/8815)] m dn[k(z — Vsst)] }’

wherevg = k?(2m? — 1 £+ 6m+/m?2 — 1) andk is an arbitrary constant.

If ¢ = pej(v), j = 0,...,4, wherey is an arbitrary constant such that
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m2y* +m? +4~% — 2m?2~? # 0, then we can obtain another four solutions of (4.31)

Bt = m? +2)
V6(Am? £ m? + 472 — 272m2)
- V(A m2 £ m? + 472 — 292m2) }
2v +i2snk(z — vot)] + 2 enlk(z — vot)] )’
BPm = m? + 2)
\/6(’y4m2 +m2 + 492 — 292m?2)
B V6(vAm?2 + m2 + 492 — 292m2) dn[k(z — vot)] }
2y dnk(z — vot)] +i2 en[k(z — vot)] + 2¢/1 — m2 sn[k(x — vot)]
3v(y?m? —m? + 2)
V6(Am? £ m? + 472 — 272m2)
B V6(yIm?2 + m2 + 492 — 22m2)m sn[k(z — vot)] }
2ym snik(z — vot)] +12 +i2 dn[k(x — vot)] ’
39(y°m® — m? +2)
\/6(’y4m2 +m2 + 442 — 2’y2m2)
B V6(vAm2 + m?2 + 442 — 292m2)im cn[k(z — vot)] }
i2ym cnlk(z — vot)] + 2 dnlk(z — vot)] + 2v/1 —m2 )’

uys(x, t) :k{

uie(a,t) :kz{

uyr(x,t) :k{

uig(x,t) :kz{

2 9.2 92 202,02 . 2 2 i i
wherevy = k2 [m 2y Q(mﬁﬂ(jmﬁﬂgjﬂw) and k& is an arbitrary con-

stant. Furthermore, choosing= 0 yields that, for any,

uyo(z,t)= v —6km snkz + k>(m? + 1)t],
1
snkx + k3(m2 + 1)t]’
- cnfkx + k3 (m? + 1)t]
Uz ()= v =Bkm e S ]
- dnlkz + k3(m? + 1)t]
ua(e, )=V =k T T )Y
ugs(z,t)= V6km cnkz — k3(2m? — 1)t],
1
cnkx — k3(2m? — 1)t]’
dnlkz — k3(2m? — 1)t]
snkz — k3(2m?2 — 1)t]’

kx — k3 (2m2 — 1)t
o=k /6 =) Z:[kx - k3((2m2 - 1§t]] ’

UQO($, t): \/TGk

uga(x,t)= k\/6(m? — 1)

’UQ5($, t): k\/TG

are solutions of (4.31).
Remark 4.8. It follows from Remark 4.1 that,;, ;7 = 3,...,26, still satisfy
(4.31) even if cir), sn(-) and dri-) are replaced, respectively, bycn(-), +sn(-)

and=dn(-).
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Figure 4.3: The plot of the solutiom; to the modified KdV equation (4.31) with
m = 0.95, k = 1 andy = 0.96 and the initial status af.

Remark 4.9. If v = 0, thenus, ug andu,5 are the same as the solutions reported
in [89] (with @ = 1 andb = 1), andus, us andu; are the same as those reported in
[117] (fora = 1 and$ = 1). However, all of the other Jacobi elliptic solutions are

new. More new solutions can be obtained if solution form@}i& used.

To demonstrate the physical insight of the new solutiongakeu; as an example.
By choosingn = 0.95 andk = 1, the wave profiles of the solutian; for two dif-
ferent values ofy, v = 0.96 and~y = —0.96, are displayed in Figures 4.3 and 4.4,
respectively. Clearly, in both cases, the solutions dbsdtie traveling of waves in

the z-direction. Different values of yield different wave shapes.
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Figure 4.4: The plot of the solutiom; to the modified KdV equation (4.31) with
m = 0.95, k = 1 andy = —0.96 and the initial status ai.

4.6 Traveling wave solutions for the shallow water
long wave approximate equations

In this section, we will apply the method discussed in Secti8 to a system of
partial differential equations. Consider the shallow wabdeg wave approximate

equations
{ PR T (4.37)

Vp — Vg — UV, — %vm =0,
whereu := u(z, t) is the horizontal velocity of water and:= v(x, t) is the height
that deviates from the equilibrium position of the waterb&ttutingu(z, t) = (&)
andov(z,t) = 0(§), where¢ is as defined previously, into (4.37) and balancing the
highest order derivative and non-linear terms, we obtgin= 1 andn, = 2. If
candidate traveling wave solutions are chosen accordir{g.8), then all of the
coefficients are required to be zero. Accordingly, we wilé use more general

form (4.10) and consider candidate solutions

{ M=+ T ET  escmarts (4.39)
~ o~ c1 +C19’ C2 +0C2 ' .
€)=+ "mmiT - T emnr

where® satisfies the ordinary differential equation (4.1) with fliceents¢;, j =

0,...,4. By substituting (4.38) into (4.37), we can ascertain tHevang suffi-
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cient conditions forz and v to satisfy the shallow water long wave approximate

equations (4.37):

JA——

«
R —4qoe1 3 + 3q1é1 11 — 2gaé1 11 + g361
Co =—V + 40&2 )
¢ =0,

A2

C
fo =7p7 120001 1” = 8q51° — (1240¢2 + 347 )" + (16q003 + dgr142)1s”

—(24q0g4 + 6¢1q3) 1 + 12q1qap + 3 — 4goqa]

_ B4l q0 — 31q + 2ug2 — g3)
‘= 402 ’

a2
a

wherea = /qout — qupi® + g — gzt + g4 andp, v, ¢, are arbitrary constants.
Note that these requirements are the same as those repof&s].i Note also that
there are no conditions restricting the choice of coeffisien j = 0, ..., 4, of the
ordinary differential equation (4.1). Using;;(-,0),7 = 1,...,6,1 = 1,...,4,
from Theorem 4.1, we can reproduce the same Jacobi elliphitisns of (4.37)
reported in [22]. By applying Theorems 4.1-3, we also carnudednany new so-
lutions. These solutions cannot be obtained using thetsesul22]. For example,
choosingu = 0 andg; = p7;(v), j = 0,...,4, we can obtain the following solu-

tions for the shallow water long wave approximate equat{dt®7):

9
uj(x,t) Z—V+r.i+ﬁ¢7,j(k(x—yt)), j=1...,4,
I} 1
vi(z,t) = — 192{ 167114 + 13P7 (k(z —vt)) — %go'm (k(z — vt))
1 .
+§g0$7j(k(x— Vt))}, j=1...,4,

whereypr;, j = 1,...,4, are as defined in Section 42,= ¥/a, o = [3(1 —
m?) + 772 = m?) + ]2, B = 72(3m? = 3) +y(2m? —4) — 1,5 = 74 (3m" -
6m? + 3) + 73 (4m* — 12m? + 8) +~%(6 — 6m?) — 1, andv, ~, ¥, m are arbitrary.

For the other solutions, we leave it to the reader.
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Figure 4.5: The plot of the solutiam, of the shallow water long wave approximate
equations (4.37) witlhn = 0.99, » = —2 andy = v = 1 and the initial status af; .

To show the physical insight of these solutions, we take thati®n (v, v;)
as an example. Figures 4.5 and 4.6 display the graphs afidv; with m = 0.99,
v = —2 andy = vy = 1. Clearly, the solution describes the propagation of waves

with horizontal velocityu; along the negative-direction.

4.7 Concluding remarks

In this chapter, we have presented a generalized expanstrothfor generating
traveling wave solutions of non-linear partial differetequations. This method
has been successfully applied to the Boussinesq equat®maddified KdV equa-
tion and the shallow water long wave approximate equatiammd many new results
have been obtained. For each equation investigated, webbrecareplicate solu-
tions previously derived in the literature, and discovenynaew ones. Extensions
to two and three dimensional partial differential equagiare possible. Other non-
linear partial differential equations can be tackled if @prapriate transformation
can be found. For example, in [45], the transformaticg In v was applied to the
Dodd-Bullough-Mikhailov equation to yield a non-linearrpal differential equa-

tion involving powers ob and its derivatives.
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Chapter 5

Linear B-spline finite element
method for the improved Boussinesq
equation

5.1 Introductory remarks

The improved Boussinesq equation (1.3) has been studiedsxely over the past
two decades (see [1, 18, 20, 33, 47, 50]). Iskandar and Jainwére the first
to investigate the improved Boussinesq equation (1.3) maal. Applying a lin-
earization technique and finite difference approximatitsisandar and Jain derived
a three-level iterative scheme with second order localtitian error. The scheme
was used to investigate head-on collisions between splitaves. Later, Zoheiry
[33] developed an improved scheme with a Crank-Nicolsonifivadion. For this
scheme, each time step is accompanied by an iterative réttatsensures the ac-
curacy requirements are satisfied. Hence, whilst accusamaintained, efficiency
is compromised.

In [47], Adomian’s decomposition method was applied to thehy problem
for the improved Boussinesq equation (1.3). Using this wekthhe solution is
expressed as a convergent series, and an approximatiotaisedb by truncating
the series after a sufficient number of terms. However, thepedation of each
term in this series is cumbersome, requiring the integnagiod differentiation of

several complex expressions. The symbolic manipulatickgge Maple was used
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and numerical results were calculated and compared witirtakytical solution, but
only for a very small value af. It remains to be seen how this method performs for
large values of. In fact, in order to maintain accuracy amcreases, it is expected
that a large number of more complicated terms will need tcabmutated. In [1], the
Adomian decomposition-Padé technique has been presantkitihas been shown
that this technique gives the approximate solution withefasonvergence rate and
higher accuracy than using Adomian’s decomposition me#iode. However, the
disadvantage of Adomian’s decomposition method still iesyathat is, the error
increases rapidly asincreases.

In [18], Bratsos considered the improved Boussinesq eguiéti.3) with bound-
ary conditions imposed on the first spatial derivative. teiniifference approxima-
tions were used to reduce the improved Boussinesq equdti8htp a system of
ordinary differential equations. Using a Padé approxiomata three level implicit
time-step scheme was developed. Relevant stability boweds also derived. In
addition, Bratsos has employed an implicit finite-diffexermethod associated with
a predictor-corrector scheme to solve the initial boundaitye problem governed
by the improved Boussinesq equation (1.3) (see [20]).

In this chapter, we develop a Galerkin-based finite elemetihad for a class
of initial boundary value problems governed by the improBalissinesq equa-
tion (1.3). The spatial axis is partitioned into a set of retements and the solution
is expressed in terms of the linear B-spline basis functi@rsthis basis, a system
involving only ordinary derivatives is obtained. Then, teicture of the system co-
efficient matrices is exploited to transform the problenoian explicit initial value
problem. Accordingly, many standard numerical integratgorithms are appli-
cable. In this manner, an approximate solution to the proldan be generated.
In contrast to existing methods, this method is simple tolement and capable
of handling the non-linearity in the governing equation. pvesent the results of
four numerical experiments to validate the method and deinate its capability in

simulating complex wave phenomena.
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5.2 Problem statement

Consider the initial boundary value problem consistinghefimproved Boussinesq

equation
Ut = Ugy + Uzt + (uQ)M, z € (a,b), t>0, (5.1)
the initial conditions
u(z,0) = u’(z), wu(z,0) =u'(z), forallz e (a,b), (5.2)
and the boundary conditions
u(a,t) =0, wu(b,t)=0, forallte (0,00), (5.3)

whereu®, u' : (a,b) — R are given functions.

For any fixedt, we multiply (5.1) by a test function € H}(a,b) = {w €
L*(a,b) : w, € L*(a,b),w(a) = w(b) = 0}, integrate the product ovér, b] using
integration by parts, and then apply the boundary condst{érB) to yield

b
/ (wav + gy + Upvy + (u?)40,) dz =0, (5.4)

where the function arguments are suppressed for clarityati@n (5.4) is required
to hold for all admissible test functions. On this basis, wre the following vari-

ational problem.

Problem 5.1.Find au € H}(a, ) such that (5.2) is satisfied and, for edch 0,
(Ug, V) + (Ug, Vz) + (Ustr, Vi) + ((uQ)x, vw) =0, forallve Hy(a,b), (5.5)
where \
(u,v) = / u(z)v(z)de.
5.3 Numerical method

We partition thex-axis inton finite elements by choosing a set of evenly-spaced

knots{z;}!,suchthatt = zp < x; < --- < x,,_1 < x, = bandx;;; — x; = h,
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i =0,...,n— 1. Consider an approximate solution of Problem 5.1 of the form

U(a,t) = Y wi(t)gi(), (5.6)
=0
where

Tr—Ti

———, T € [z,
Xy — Tj—1

dilw) = Mu T € [T, Tipa],
Tit1 — X4

0, elsewhere.

According to (5.6)u;(t) = U"(x;,t),i=0,...,n.
Applying the boundary conditions (5.3) giveg(t) = 0 andu,,(t) = 0 for all
t € (0,00). Hence, (5.6) can be simplified to

U (e, t) = 3 wlt)6(x). (5.7)

We then follow the standard Galerkin approach and choosduestionsv = ¢;,
i = 1,...,n — 1. On this basis, (5.5) must hold with= ¢;,7 = 1,...,n — 1.
Substituting (5.7) into (5.5) gives

n—1

n—1
> (wi,@-)uj + (0, 8)) uj + (¢}, 0) il +2Z(¢;¢;,¢j>ukuj> =0 (5.8)
j k=1

=1

<

foreachi = 1,...,n — 1, where’ and denote differentiation with respect toand
t, respectively.

In matrix notation, the system of equations (5.8) can betenias

(A+ B)U(t) + BU(t) + C(U())U(t) = 0, (5.9)
where0 € R"! is a zero vector anth(t) = [u(t), ua(?), . ..,un,l(t)]T. The
(n —1) x (n — 1) matricesA, B andC'(U(t)) are given as follows:

41 0 --- 0
h, 1 4 1 AR 0
A= [(i,0))] = 5 0 1 4 0 ,
000 - 4
2 -1 0 0
=12 =10
B=[@,op)=7] Y 1 2 0
0 0 0 L9



and

) = [iii(«z»;m,@)uk]

2U1 — U9 U1 — U2 0 0
1 Uo — U —U1+QUQ—U3 Ug — U3 0
— 0 Uz — U2 —U2+QU3—U4 0
h : : : . :

0 0 0 e —Up—2 —|— 2’U/n,1

Note thatC' is a time dependent matrix, whilst and B are constant. By virtue of

the structure ofA and B, we have the following theorem.
Theorem 5.1. The matrixA + B is invertible.

n—1

Proof. Lety € R"! be a non-zero vector and defin€z) = > v;¢;(x).
i=1

Then we have

n—1 n—1

y'By = Zzyibijyj

i=1 j=1

) ([ sws @)

i=1 j=1
pn—1n-1

= [ S S udiw@uds

i=1 j=1

p [/n—1 2
-/ (Z m;(:c)) di
¢ \i=1
b
- [ were
> 0!
Sincew’ is piecewise continuous, equality holds if, and only.if(xz) = 0 for all
x € [a,b]. Now, sincew(a) = 0, w'(x) = 0 for all x € [a, ] if, and only if,w = 0.
This, in turn, requirey = 0, which contradicts the assumption tlyais non-zero.
Hence,y” By > 0 for all non-zeroy and soB is positive definite. In a similar

manner, one can ascertain the positive definiteness @ince bothA and B are

74



positive definite, it readily follows that + B is positive definite and therefore in-

vertible.l

From Theorem 5.1, it follows that we can invert the mattix B in (5.9) to isolate
the second derivative term. Singe+ B is tridiagonal, this inversion can be per-
formed efficiently using a special algorithm (see Sectidghd.[21]). Introducing
the new variable/(t) = U(¢), it is clear that the system (5.9) is equivalent to the

following first order system of ordinary differential eqigats:

U(t) = V(t), (5.10)
V(t) = —(A+ B)™ [Bu(t) +C(U(t))U(t)]. (5.11)

Initial conditions for (5.10) and (5.11) are obtained by sidering (5.2). As such,
we have
U(0) = [u(z1),. .., u "z, 1)]" (5.12)

and
T

V(0) = [u'(z1),...,u' (zo1)] (5.13)

The system of ordinary differential equations (5.10) and 1} with initial condi-
tions (5.12) and (5.13) defines a standard initial value lerab This problem can
be solved using a standard numerical integration algor{fomexample, a Runge-

Kutta method).

5.4 Numerical examples

In this section, we implement the procedure developed iri@e&.3 and solve
some concrete problems. Firstly, in Example 5.1, we vatidae procedure by
comparing our numerical results with the exact solutiorei;fin Examples 5.2, 5.3
and 5.4, we demonstrate the capacity of this technique talatmmwave splitting,
wave interaction and blow-up behavior.

The differential equations (5.10) and (5.11) are solvedgithe Runge-Kutta-

Verner variable step-size method (see Section 5.5 of [2jus, the time-step is

75



actually dynamic and is modified within the preset maximuih sanimum bounds
to ensure that the given error tolerances are satisfied. amfples 5.1, 5.2 and 5.3,
the error tolerance i5.0 x 10~7; in Example 5.4, itid.0 x 10~%. All program codes

for the examples below were written in Fortran 95.

Example 5.1. (Numerical validation)

Note that, on an unbounded region with boundary conditignst) — 0 asz —

+o0, the improved Boussinesq equation (5.1) admits analysoaitions of the

u(z,t) = nsech (%\/g (r — vt — xo)) : (5.14)

wherez, is the initial position of the solitary wavey, > 0 is the wave amplitude
andv = +,/1+ %n is the wave speed. The validity of (5.14) is expected to hold

for bounded regions which are sufficiently large.

Setn = 0.5,z =0andv = /1 + %n with
1
u’(z) = nsech (;\/g (x — :1:0))

ul(z) = 21 gsecﬁ (%\/g (z — xo)) tanh G\/% (z — xo)) .

Under these conditions, the exact solution to Problem 5divien by (5.14). In

form

and

applying the procedure of Section 5.3, we discretize thelpro onz € [—30, 150]
using evenly-spaced knots with a distancé afetween consecutive nodes. In gen-
eral, the numerical error will depend @nand the time-step sizAt. Here, At is
chosen automatically by the integration routine to satigfynds on the local trun-
cation error, whiléh is determined through a convergence analysis. The nurherica

solution is compared with the exact solutiontat 10 for different values of: in
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Table 5.1: Comparison of the numerical results and exaatisaolfor Example 5.1.

x Numerical solution Exact solutiof
h = 1.000lh = 0.500[h = 0.250[h = 0.100/h = 0.05
5.010.07305210.07101010.07049210.070347 [0.070327] 0.070320
6.0 [0.11113710.110728[0.110658 [ 0.110641 [0.110638] 0.110637
7.010.165915[0.168348 [0.169026 [ 0.169220 [0.169248] 0.169258
8.010.240392 1 0.246098 | 0.247597 [ 0.248021 0.248082] 0.248102
9.010.33138410.339093 1 0.34104210.341589 10.341667] 0.341694
10.010.42337410.429964 [ 0.43155710.431999 [0.432062] 0.432083
11.010.48799110.49017210.490623 [ 0.490742 10.490759] 0.490765
12.010.497708 10.49472210.493915[0.493686 [0.493653] 0.493642
13.010.447066 [ 0.441326 [ 0.439898 1 0.439499 10.439442] 0.439423
14.010.35772810.352426 ] 0.35114210.350786 [0.350735]  0.350718
15.010.260700 [ 0.25747410.256703 ] 0.256489 [0.256459] 0.256448
£ 10.010309 ] 0.002601 | 0.000651 | 0.000105 ]0.000026
E=01<na§ {JTU(zm, t) — u(xm, t)|}, u(z, t) is the analytical solution.

Table 5.1. To examine the influence ofon the numerical solutions, Figure 5.1
shows the convergence process. Itis clear that convergeachieved ab = 0.1
(—1In(h) = 2.3) and thus this value fat is used here and in Examples 5.2 and 5.3.
To investigate the variation of numerical error with timeg wot the error at two
points against time in Figure 5.2. The time-step determethe local truncation

error is between 0.25 and 0.7.

0.012

]
001,

0008

0.006 -

0,004 \

0.002

.
15 2
- In(h)

Figure 5.1: Relationship betweérand E for Example 5.1.
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Figure 5.2: Numerical errors versus timerat 10 andz = 50 for Example 5.1.

The wave profile of the numerical solution fore [0, 72] is shown in Figure 5.3.
The results are in good agreement with those presented jnlB,83, 50]. The
average speed of this solitary wave is 1.1542, which is alitee to the theoretical
value of /1 + %77 = 1.154701. We note that our numerical method is much more
efficient than those presented in the references. For examgihg our method, an
accuracy of] = 3.96 x 10~* att = 72 is achieved with).25 < At < 0.7. In [18],

At needs to be in the order of 0.001 to generate results of cablgaaccuracy.
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Figure 5.3: Single soliton solution for Example 5.1.
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The results in Example 5.1 demonstrate that the methodaleselin Section 5.3 is
highly accurate for quite moderate time-steps and valués Bfving validated the

procedure, we will now present some simulations in the ramgiexamples.

Example 5.2. (Wave break-up)

We consider Problem 5.1 with!(z) = 0 andu’(x) defined as in Example 5.1,
where nowr, = 30. This problem is solved oA-30 < x < 90 for 0 < ¢ < 40 us-
ing the method of Section 5.3 witht¢ € [0.25,0.7]. The initial stationary wave and
the numerical solution are displayed together in Figure bive diagram shows the
initial stationary wave of amplitude 0.5 breaking into twoaller diverging solitary
waves. The break-up is completed at approximately 10, and the amplitudes of
these two solitary waves are approximately equal to 0.2& dtso noted that the

solution is symmetric about the plame= 30.

Figure 5.4: Wave break-up solution for Example 5.2.
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Example 5.3. (Wave collision)

As in [50], we investigate the interaction of two soliton veavmoving on a col-

lision course. Herey € [—60,90] andt € [0, 40] with

-
u’(x) = msech (i\/7 (z + 20 ) + npsech ( \/>(x B 5’50))

At € [0.15,0.7]. Flgure 5.5 dlsplays the head-on collision. The collisitarts
at approximately = 5.29484. Before the collision of the two waves, the speed
and amplitude of one of the waves are 1.28431 and 0.99998gcteely; while
the speed and amplitude of the other wave are -1.1521 an@9B48:spectively. A
negative speed indicates that the wave travels in the vegatidirection. When the
two waves interact, they become a single wave. At approxipat= 15.95779,
the amplitude of the solitary wave achieves its maximal @adti1.32705. When

= 22.32919, the collision is finished, and the amplitude of the largereves
0.97714; while the amplitude of the smaller wave become80¥4. According
to the contour map in Figure 5.5, the secondary solitons eable. Hence, the
collision is inelastic. Figure 5.6 shows another examplénefastic collision in
which xy = 20.0, 7, = 0.5, 5 = 2 andAt € [0.09, 0.7].

Now, we give some examples of waves of equal magnitude aadlidVhen

m = 12 = 0.4, the collision, shown in Figure 5.7, is elastic, while, fgr= 1, =
1, the interaction, illustrated in Figure 5.8, is inelastithe results are in good
agreement with those reported in [20]. However, accordinthé contour map in
Figure 5.9, the collision witly; = 7, = 0.5 is still elastic. Hence, we can conclude
that, for the case of equal magnitude colliding, if the atople is less than or equal

to 0.5, the collision is elastic.
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Figure 5.5: Inelastic collision witly; = 1.0 andn, = 0.5 in Example 5.3. The
contour line on the right illustration starts from 0.01 ahd tevel step is 0.2.

Figure 5.6: Inelastic collision witly; = 0.5 andn, = 2.0 in Example 5.3. The
contour line on the right illustration starts from 0.01 ahd tevel step is 0.3.
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Figure 5.7: Elastic collision withy; = 0.4 andn, = 0.4 in Example 5.3. The
contour line starts from 0.01 and the level step is 0.1.
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Figure 5.8: Inelastic collision witly; = 1.0 andn, = 1.0 in Example 5.3. The
contour line starts from 0.01 and the level step is 0.2.
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Figure 5.9: Elastic collision withy; = 0.5 andn, = 0.5 in Example 5.3. The
contour line starts from 0.01 and the level step is 0.1.

Example 5.4. (Solution blow-up)

In this example, we simulate the solution blow-up discussefd 08, 111]. The
improved Boussinesq equation (5.1) is consideredroa [0, 1] with the initial
boundary conditions (5.2) and (5.3) defineddyr) = —3sin(nz) andul(z) =
—sin(7x). Under these assumptions, it is known from [108] that thetiste a
T° > 0 such that a unique local solutian € C?([0,7°); H*(0,1) N H}(0,1))
exists, with

Ju(s )l z20,1) — +o00, ast — TY,

and X
I(t) = / u(x, t) sin(rz)dr — —oo, ast — T°.
0

To solve this problem numerically using the procedure dgyead in Section 5.3,
we discretize the space domain into evenly-spaced knots/wit 0.005. Note
that in this example, we had to set the minimum time-step sergll (0.00001) to
generate reasonable results unti# 1.8. The numerical solution at various values

of ¢ is shown in Figure 5.101(¢) is tabulated for these values in Table 5.2.
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Figure 5.10: Solution blow-up in Example 5.4.

Table 5.2: Numerical results for Example 5.4.
t 0.0 0.58 0.99 1.50 1.60 1.70 1.80
u(0.5,8)] —3.00 | —4.86 | —9.97 | —65.16 [—146.64]—535.13]—131146.69
I(t) [-0.0075/—0.0113]—0.0206/—0.0951] —0.18 | —0.49 —30.81

5.5 Concluding remarks

In this chapter, we have developed an efficient and pradiiué element scheme
for solving initial boundary value problems for the impravBoussinesq equa-
tion. Our numerical results were generated using an adaptinge-Kutta-Verner
method. This method proved highly accurate. Excellentegent between the
analytical and numerical solutions was obtained in Exarbpldor relatively large
time-steps, and wave interaction and wave break-up wereessfully simulated
in Examples 5.2 and 5.3. Additionally, we verified numellical type of solution
blow-up that has been shown to exist theoretically. The i of our scheme
is that it can be implemented easily using existing ordindifferential equation
solvers. Many such solvers of excellent quality are avélabA special time-
stepping scheme does not need to be developed to handlertimearity inherent

in the improved Boussinesq equation.
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Chapter 6

Summary and further research

6.1 Summary

In this thesis, we have studied Boussinesg-type equatincisiding the existence
and nonexistence of a global solution for a generalized 8aesqg equation, exact
solutions for the Boussinesq equation and numerical solgtio a class of initial
boundary value problems governed by the improved Bousgiegsation. Based on
previous work in the field and methods of research, we haveatbsome important

results. The main results achieved are summarized as fllow

(1) We have studied a generalized Boussinesq equation

Ut — QU + Uggry T [f(U)] =0

rx

and its corresponding Euclidean scalar field equation

_¢xx+a¢_ f(¢) = 07

whereq is a positive constant anfl satisfies the conditions listed in either Case 1
or Case 2 (Cases 1 and 2 are as defined in Section 3.2 of Chapt¥ve3have
shown that there exists a ground state of the Euclideanrdegthequation. Based
on the ground state, a constahis determined by (3.14). Then, according to the
constant/, two sets have been constructed. It has been shown thattthesets

are invariant under the flow generated by the generalized®&oesq equation if
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the initial data satisfy some conditions. By virtue of thedbexistence theorem
derived by Liu [65], we have established sufficient condisiéor Cauchy problems
involving the generalized Boussinesq equation such tleesakution exists globally
or blows up in finite time. More precisely, if the initial wav®longs to the first
invariant set, then the solution exists globally, while siadution blows up in finite

time if the initial wave belongs to the second invariant set some additional con-

ditions have been satisfied.

(2) Ageneralized expansion method for constructing exactisolsi of non-linear
partial differential equations has been proposed, in wihehsolutions of partial
differential equations can be derived from solutions of axileary ordinary differ-
ential equation. We have obtained some new Jacobi ellip@aponential solution
classes for an auxiliary ordinary differential equatiorur@ew results ensure that
the proposed expansion method is a significant generatithre @xpansion methods
in the literature. Moreover, the proposed expansion mettazdbeen successfully
applied to the Boussinesq equation, the modified Boussemsation, the modified
KdV equation and the shallow water long wave approximateatqguas. For each
equation considered, we are capable of replicating solstpreviously derived in

the literature and discovering many new ones.

(3) Applying the finite element method with linear B-spline Isafinctions, an
efficient numerical scheme has been established for soimiigl boundary value
problems for the improved Boussinesq equation. Using thite falement method,
the original problem is converted into a Cauchy problem fooalinary differential
system. Then, numerical results can be generated by usimgiaptive Runge-
Kutta-Verner method. Four numerical experiments have Ipeesented to validate
the method and demonstrate its capability in simulatingmesmwave phenomena.
Excellent agreement between the analytical and numeritatisns has been ob-
tained for relatively large time-steps, and wave intecacind wave break-up have

been successfully simulated. Furthermore, we have sudotlgssmulated a type of
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solutions which has been shown theoretically to blow up itfitime in [108, 111].

6.2 Further research

In this project, we use some techniques to investigate Boesg-type equations
and achieve some important results. Based on the obtaisatisgthere are some
problems for further research.

As mentioned in Chapter 2, the instability of solitary wawéusions for the
generalized Boussinesq equation has been investigatgdamihe casef(s) =
|s|P=*s (p > 1). Note that the instability for solitary waves is generaligrived
from the blow-up theorem. In this thesis, we consider theegaized Boussinesq
equation whery is in a general form and establish sufficient conditions umdech
the solution blows up in finite time. Using the new blow-updtem, we can in-
vestigate the instability for solitary wave solutions oétheneralized Boussinesq
equation whery is in a general form.

For the expansion method proposed in Chapter 4, we can dpjolythe in-
variant Boussinesq equations. Furthermore, it is possthbbpply the method to
other sets of Boussinesq-type equations. On the other hawtdjated by the inter-
esting transformation (2.11), we can investigate someairmansformation which
can be used to generate new exact solutions for non-lineaalpdifferential equa-
tions. In addition, we also can use the results given in 8ecti2 of Chapter 4 to
construct exact solutions for non-linear partial diffdralhequations with boundary
conditions.

For the numerical methods, we can generalize the technigee o derive
the proposed numerical scheme in Chapter 5 for the improeeg®nesq equation
in 1 + 1 dimensions t@ + 1 or 3 + 1 dimensional space. Furthermore, we can
apply the technigue to Boussineg-type systems to stimsiatee complex wave
propagations. In addition, other kind of numerical teclueis) can be applied to

solve Boussinesg-type equations.
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