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ay tracing by simulated annealing: Bending method
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ABSTRACT

We propose a new ray-tracing method based on the con-
cept of simulated annealing. Using this method, we find rays
between fixed sources and receivers that render traveltime
globally minimal. With our method, we are able to construct
rays and their associated traveltimes to satisfactory precision
in complex media. Furthermore, our algorithm can be modi-
fied to calculate rays of locally minimum traveltime, such as
reflected rays, by constraining the ray to pass through a set of
points that we are free to specify.

INTRODUCTION

The shooting and bending methods are two commonly used nu-
erical approaches to solve boundary-value ray-tracing problems.
he shooting method is based on solving ray equations as initial-val-
e problems by specifying the takeoff angle. The takeoff angle is
aried until the ray passes through the receiver position. The shoot-
ng method works well to find rays connecting sources and receivers
n simple 2D media. It breaks down in areas where ray equations
reak down, such as shadow zones, and in complicated media where
slight variation in the takeoff angle might result in a significantly
ifferent ray, thus causing difficulty in connecting sources to receiv-
rs �Červený, 2001�.

The bending method addresses intrinsically the problem of con-
ecting sources to receivers. One begins by connecting source S to
eceiver R with an initial path. This initial path is bent according to a
rescribed method based on minimizing traveltime according to Fer-
at’s principle until the desired ray is obtained. If we search for the

ay corresponding to the global minimum of the traveltime, our
ethod allows us to avoid obtaining only local minima. We can cal-

ulate paths that correspond to local minima of traveltime when we
onstrain them to pass through an interface.
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The bending method has been used extensively. Bending methods
sed by Julian and Gubbins �1977� and Pereyra et al. �1980� use fi-
ite-difference methods to solve ray equations, and to construct rays
onstrained to pass through a specified receiver. Um and Thurber
1987� and Prothero et al. �1988� take a different approach: each
hows how rays can be constructed by perturbing the shape of the ray
tself. Um and Thurber start with a three-point guess to the ray and
hen use geometric interpretation of the ray equations to perturb it.
rothero et al. make an initial guess and then perturb it locally to find

he ray. The approach of Um and Thurber is more efficient, although
ess accurate numerically than that of Prothero et al. In addition,
oketsu and Sekine �1998� show that the bending method of Um and
hurber is more stable numerically than the results of Pereyra et al.

1980�, especially in the presence of velocity-model discontinuities.
s shown by Pereyra et al. �1980�, accuracy of the pseudobending
ethod decreases as the number of discontinuities of the model in-

reases. These methods depend on the initial path; if the path is not
hosen carefully, one can end up with a ray corresponding to a local
inimum traveltime.
Other ray-tracing methods exist. Moser �1991� utilizes network

heory to calculate the entire rayfield in the shortest-path method.
his method always finds the global minimum traveltime, but accu-

acy of the results depends on geometry of the underlying network.
adeghi et al. �1999� propose the microgenetic algorithm, which
ombines the pseudobending method and a genetic algorithm to cal-
ulate rays. By combining these algorithms, they avoid complica-
ions that arise with discontinuities in the velocity function. Howev-
r, their method is dependent on the initial guess.

As an alternative to these search algorithms, Vinje et al. �1993�
nd Vinje et al. �1996a, 1996b, 1999� propose a method in which
avefronts are calculated by ray tracing short elements in two and

hree dimensions, respectively. This method uses ray tracing to cal-
ulate the shapes of elementary wavefronts that propagate in a
moothly varying inhomogeneous medium. Although fast and ro-
ust in practice, its main disadvantages are difficulty with mapping
rregularly spaced data onto regular grids �Gibson et al., 2005� and
ay tracing in caustic regions �Lambaré et al., 1996�.
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T26 Bóna et al.
Our purpose is to expand on the work of Smith �2006� in a new
ay-tracing method based on bending paths according to minimiza-
ion of associated traveltime using simulated annealing. Simulated
nnealing is used in mathematics and physics to obtain an optimal
olution to problems subject to constraints �Kirkpatrick et al., 1983;
erný, 1985�. Velis and Ulrych �1996� use this method in the context
f ray tracing, developing an algorithm to search for the takeoff an-
le of the ray that minimizes traveltime in a 2D medium. The authors
xtend their ray-tracing algorithm to calculate rays in 3D media �Ve-
is and Ulrych, 2001�. The key difference between their algorithm
nd ours is that their algorithm is based on varying the takeoff angle
f the initial ray, whereas ours is based on varying the path itself.

Our method overcomes two common shortcomings of other bend-
ng methods. First, solutions calculated using our algorithm are in-
ependent of the initial path. Second, our algorithm does not require
sing smoothly varying velocity models. We demonstrate the appli-
ability of our method with two complex velocity models. Using a
inearly inhomogeneous and elliptically anisotropic model, we show
hat our method can construct rays in smooth media and it can be
eneralized to a three-point problem, which is applicable for calcu-
ating rays constrained to pass through multiple interfaces. Then we
tudy the Marmousi model, calculating rays in complex velocity
tructures with accuracy comparable to existing ray-tracing meth-
ds.

BACKGROUND

ays

A ray describes a signal path. Properties of the medium are given
y function V�x�, which describes the velocity of a signal at any
oint x within the medium. In this work, we consider 2D media,
here we denote a single point in the medium by coordinates x
�x,z�.
The traveltime along a ray � depends on the velocity and path,

amely,

T�V�x�;� � � �
�

ds

V�x�
, �1�

here ds is an arc-length element and � connects the fixed end-
oints. The problem of finding rays can be solved as Fermat’s varia-
ional problem of finding a path of stationary traveltime between a
ource and a receiver �Červený, 2001; Bóna and Slawinski, 2003�.

imulated annealing

In physics, annealing is a physical process in which a solid in a
eat bath is melted by increasing the temperature of the heat bath to a
alue at which all particles arrange themselves randomly in the liq-
id phase. This is followed by cooling the particles back into the sol-
d phase by slowly lowering the temperature of the heat bath. As the
iquid cools, it must be allowed to reach thermal equilibrium with the
eat bath to ensure the particles settle in the state of minimum energy
pon reaching the freezing point. This is referred to as the ground-
tate configuration of the system or the ground state �Chaikin and
ubensky, 1995�. If the cooling process is carried out too fast, one

uns the risk of freezing defects in the structure of the solid.
Simulated annealing is based on the analogy between simulation

f the annealing of solids and the problem of solving large combina-
orial problems �Van Laarhoven and Aarts, 1987�. This method, de-
Downloaded 18 Feb 2010 to 134.7.248.129. Redistribution subject to S
eloped by Černý �1985� and Kirkpatrick et al. �1983�, applies statis-
ical mechanics reasoning to solve optimization problems. The goal
s to construct the optimal solution �the ground state� for a particular
roblem �the system� by varying a trial solution according to a spe-
ific protocol �heating, then cooling the system� with respect to a
articular parameter �temperature�. We use the Metropolis algo-
ithm to carry out the perturbations at each temperature. For a com-
lete description of the Metropolis algorithm and its application to
imulations of statistical mechanical systems, see Metropolis et al.
1953� and Newman and Barkema �2002�. To implement the simu-
ated annealing algorithm as a method for ray tracing, let us consider
nalogies between ray theory and statistical mechanics.

nalogies between ray theory and statistical mechanics

The goal of simulated annealing is to find the ground state of the
ystem under consideration. We associate system configurations
ith paths connecting sources and receivers. Let � �S,R� represent a
articular path connecting source S to receiver R, and let T�� � de-
ote the traveltime associated with this path.

Our goal is to find the path minimizing traveltime between source
nd receiver. In this context, it is natural to associate energy with
raveltime along a path. As a result, the ground state is the path that

inimizes traveltime. Hence, the ray corresponds to the ground
tate.

To represent the role of the heat bath in ray tracing, we use param-
ter � , which has units of time. We lower the value of this parameter
n the same way one would lower the temperature of the heat bath in
nnealing.

The transition probability A of moving from path � i to � j at � is

A�� i → � j� � � 1 �T � 0

exp��
�T

�
� �T � 0 � , �2�

here �T � T�� j� � T�� i� is the change in traveltime of the signal
ssociated with perturbation of the path.

Any perturbation that lowers traveltime along the path is accepted
utomatically, although any perturbations that increase traveltime
re accepted with a probability that decreases with temperature. For
xample, perturbations that increase the traveltime along the path by
T�� j��� have a 30% probability of acceptance at that particular
. When � is lowered, this probability decreases, so perturbations of

his size are less likely to be accepted.

RAY-TRACING METHODOLOGY

edia and rays: Discretization

In our method, we represent a 2D medium by a rectangular grid D
f N � Lx �Lz points, where Lx and Lz denote the number of grid
oints along the x-axis and z-axis, respectively. We let parameters hx

nd hz denote the spacing between points on D. We are not required
o adhere to a grid representation of the medium. Instead, we are free
o move points on the grid to other areas of the medium where ray
racing is frustrated by grid geometry, e.g., mapping points in a con-
tant velocity region to lie on an interface where tracing rays is hin-
ered by lattice geometry. The grid representation is natural because
t covers the medium uniformly.

We represent a path by a spline of straight lines that approximates
ts shape. Let S be a source, R a receiver, and � �s; S, R� be the path
EG license or copyright; see Terms of Use at http://segdl.org/
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Ray tracing by simulated annealing T27
onnecting these points. Arc-length parameter s traces the shape of
he path within the medium. Let �̄ �s; S, R� be a piecewise-continu-
us spline of M straight-line segments with endpoints on D that ap-
roximates � �s; S, R�:

� �s; S,R� � �̄ �s; S,R� � �
k�1

M

�̄ k�s� . �3�

Term �̄ k �s� in expression 3 represents the kth segment of the path
n splined representation �̄ . It is a linear function defined on interval
k � 	s0

k,sf
k
:

�̄ k�s� � mk�s � s0
k� � pk, �4�

here mk is the direction of the kth line segment in the space of arc-
ength parameterization and pk corresponds to its initial point.

raveltime: Calculations on grids

In view of approximating rays by equation 3, we approximate
raveltime 1 as the sum of traveltimes over each segment:

T�V�x�;� � � �
k�1

M

T�V�x�;�̄ k� , �5�

here T�V„x…;�̄ k� denotes the traveltime of a signal along the kth
egment of the ray and V�x� is the signal velocity. In our calculations,
elocity is scaled according to the dimensionless distances on the
rid and is expressed in units of s�1.

The traveltime of a signal propagating along straight line �̄ k is

T�V�x�;�̄ k�s�� � �
s0
k

sf
k

ds

V�x�s�,z�s��
. �6�

We can integrate expression 6 numerically using the composite
impson’s rule. In contrast to Moser et al. �1992�, we include the
upport points �in our case, nodal points� to calculate traveltime
long a line segment. Inclusion of nodal points is necessary to deter-
ine the locations of reflections along an interface. Furthermore, we

ntegrate over the entire line segment rather than just at its support
oints.

ay tracing by simulated annealing

For S � �xS,zS� and R � �xR,zR�, we begin with a guess of a ray
0�� � that has M segments. The parameterization is determined by

xpression 4, and its traveltime is calculated by expression 5. For
implicity, we choose a straight line as an initial guess. We begin the
nnealing process at a high temperature so all perturbations to the
ystem are accepted, and we cool the system until it settles into a sta-
ionary value. Hence, our solution does not depend on the initial
uess, which is annihilated upon starting the calculations.

At each step, we choose a point randomly, q � �xq,zq��D, that
onnects two segments on �̄ 0. Then, we choose one of three possible
erturbations randomly: the removal of the point, the addition of an-
ther point, or the shift of the point to another point on D.

If we choose to remove the point, we connect the points adjacent
o the chosen point q, as illustrated in Figure 1. If we choose to add
nother point, we split the segment to the left or right of q and con-
ect it to a randomly chosen point q��D, as illustrated in Figure 2.A
hift of point q to q is illustrated in Figure 3.
�

Downloaded 18 Feb 2010 to 134.7.248.129. Redistribution subject to S
Let �T denote the change in traveltime corresponding to the cho-
en perturbation: addition, removal, or shift of a point along the path.
or change in traveltime �T at � , where � has units of time and is

he analog of temperature in our formulation, we accept this pertur-
ation using transition probability A, given by expression 2.

igure 1. Perturbation that results in the removal of a point q� �̄ 0,
here the new path is the line joining points q � 1 and q � 1.

a)

b)

igure 2. Perturbation to the path resulting in the addition of a point.
oints q� �̄ 0 �open circle� and q��D �gray point� are chosen at ran-
om, and the original path is perturbed by splitting the segments
oining �a� q � 1 to q and �b� q to q � 1 and joining each at q�, yield-
ng the dashed and dot-dashed paths, respectively. Then we select
he path of smallest traveltime for ensuing calculations.

igure 3. Perturbation to the path via shifting point q to q .
�

EG license or copyright; see Terms of Use at http://segdl.org/
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T28 Bóna et al.
quilibration times and cooling schedules

By definition, a system is in equilibrium with its environment
hen each possible state is sampled according to the Boltzmann dis-

ribution. To equilibrate the path properly with respect to � , we need
o choose the number of paths � with care. We choose � to be an inte-
er multiple of the number of grid points N, so we select each point
n the grid at least once per temperature on average. If we choose �
o be small, the system will not equilibrate and we will end up with a
onfiguration that is not optimal. Conversely, if we choose � to be
arge, we sacrifice efficiency for accuracy. For the results presented
n this work, we set � � 10N. Smaller values of � yield results of
imilar accuracy; however, we keep � large enough to ensure we
ample all points on the grid sufficiently without sacrificing compu-
ational cost.

To simulate the cooling process in the annealing method, one can
ollow several schedules. Nourani and Andersen �1998� investigate
he properties of several cooling schemes implemented in various
imulated annealing studies. They consider constant thermodynam-
c speed, exponential, logarithmic, and linear cooling schedules.
omparisons are based on the amount of entropy produced during

he annealing process for given initial and final states, and a fixed
umber of iterations. The cooling scheme yielding the least amount
f entropy is deemed the best. In their study, the constant thermody-
amic speed schedule performed the best; it always found the global
inimum of the system in the prescribed number of iterations.
For our simulations, we use the exponential cooling schedule,

hich results in the following sequence:

� �i� � � 0 exp��	i� , �7�

here i � 0,1,2,. . . denotes the ith cooling step in the annealing
rocess, � 0 corresponds to the initial temperature, and 	 corre-
ponds to the rate of cooling.Although this schedule did not yield the
apid convergence of the constant thermodynamic speed schedule, it
id yield the best results of all fixed-rate cooling schedules consid-
red. Implementing adaptive schedules such as the constant thermo-
ynamic speed schedule can be studied in future work.

The final step before running the simulations is to choose appro-
riate values of � 0 and 	. The value of � 0 is chosen for each model
uch that the acceptance rate is near unity at the beginning of the cal-
ulation. For our cooling schedule, we choose 	 � 0.5. We cool for
5 temperatures. This allows us to cool our system by several orders
f magnitude of temperature. Larger values of 	 result in rapid cool-
ng schemes, where the possibility of quenching comes into play;
maller values result in a cooling scheme that samples many more
emperatures at a cost of computation time needed to cool the sys-
em. Optimization of the value of 	 can be studied in future work.

We derive our chosen cooling schedule by constructing 100 rays
etween a given source and receiver pair and observing what set of
arameters give the best balance between accuracy and efficiency.
ith the schedule outlined above, we construct a set of rays for
hich traveltimes differ on the order of milliseconds or less. Longer

ooling schedules with larger values of � are more accurate, at the
xpense of efficiency. Hence, we can say the data presented here are
ccurate on the scale of experimental error.

hree-point ray tracing

The main advantage of the bending method is that one needs to
pecify only the endpoints to calculate the ray and associated travel-
Downloaded 18 Feb 2010 to 134.7.248.129. Redistribution subject to S
ime. Thus, our method can be modified to find rays corresponding to
eflections or refractions at an interface. Such rays are associated
ith local traveltime minima.
To modify the method, we calculate the paths that pass through a

et of points on an interface. The constrained path yielding minimum
raveltime is the solution to the three-point problem. This method is
eneralized easily to an �M � 2�-point ray-tracing problem, where
he ray is constrained to pass through M interfaces or areas. If the
umber of constrained points per interface or area is on the order of
, this results in M �L possible paths to calculate. Here we consider

he simplest case, where M � 1, and propose a straightforward gen-
ralization to an �M � 2� point scheme.

EXAMPLES AND DISCUSSION

In this section, we use our method to construct rays and compute
raveltimes in two velocity models: layered elliptically anisotropic
nd Marmousi. We present results for two-point and three-point ray-
racing calculations connecting a single source and receiver.

At the beginning of each calculation, we calculate the traveltime
etween each possible set of points on the grid. As one increases the
umber of points, the time taken to calculate traveltime scales as
�N � 1�/2, where N is the number of points on the square grid.
We need to perform this calculation only once per simulation, as

ong as no modifications are made to the underlying grid. This is cru-
ial when N is large. However, the amount of available memory im-
oses strict limits on the number of points we can consider in our cal-
ulations. In addition, this step is not equivalent to calculating all
ossible rays; the purpose of this calculation is to provide a look-up
able to be used throughout the annealing process when calculating
erturbations to a path.

For each model, we construct rays between the source and all the
ossible pairs. Then we use this data to qualitatively reconstruct the
hapes of the wavefronts by plotting all points that lie on the isoch-
on T � t using Mathematica software. Before constructing the iso-
hron data for each model, we constructed 100 rays connecting the
ource to a specific receiver to acquire insight into how our algo-
ithm would behave in the media considered. Results obtained from
he algorithm could be viewed as accurate to one part in 104. Travel-
imes of constructed rays in our simulation agree with each other up
o a certain point.Although our algorithm does not yield the absolute

inimum traveltime with 100% accuracy, the difference in path be-
ween the minimum and maximum observed traveltime at zero tem-
erature is small.

All simulations were performed using a serialized code on a 2-
Hz AMD Opteron dual-core 285 SE processor. Using the anneal-

ng process outlined previously, calculating each ray took about 2 s
f CPU time. It took approximately 8 hours to calculate a set of rays
tarting from a specified source to all points on the grid. Citing the re-
ults of Smith �2006� and the results corresponding to the linearly in-
omogeneous and elliptically anisotropic medium for rays not pass-
ng through an interface, our method is highly accurate for suffi-
iently smooth media.

In addition, we will compare the results from the Marmousi model
o results published in the literature and comment on how our results
gree. Our primary concern with this work is to illustrate that our
ethod is accurate. To ensure this, we use a 101�101 grid to sample

he domain of each model. We make no appeal to comparisons of
PU time, other than to cite the amount of time taken to perform our
EG license or copyright; see Terms of Use at http://segdl.org/
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Ray tracing by simulated annealing T29
alculations, because our algorithm is still in the process of optimi-
ation.

odel 1: Linearly inhomogeneous and elliptically
nisotropic medium

The first model we consider combines a smoothly varying aniso-
ropic velocity model in one layer with two constant-velocity layers,
eparated by interfaces with nonzero slope. The model we consider
s given by

v�x,z�

� ��3.0 � 0.75z�f�
 � s�1, z � z̄1�x� and z � z̄2�x�
6.00 s�1, z̄1�x� � z � z̄2�x�
4.25 s�1, z � z̄2�x�

� ,

�8�

here f depends on the direction of signal propagation, measured by
with respect to the z-axis. Equations z̄1�x� � 0.5 � 0.25x and

2�x� � 0.75 � 0.25x represent interfaces within the medium.
In the layer z�0.75 � 0.25x, signal velocity depends on the

osition and direction of propagation of the signal. This model cor-
esponds to a medium that is linearly inhomogeneous along z
nd elliptically anisotropic. The anisotropy is given by f�
 �

��1 � 2
 �/��1 � 2
 cos2 
 �, where 
 measures the ellipticity
f the wavefronts. In our calculations, we set 
 � 0.3 �Slawinski,
003�. The analytical formula for traveltimes is given by Rogister
nd Slawinski �2005�.

The grid space of our medium lies on a square of side length 1.0.
or a 101�101-point grid, this corresponds to a grid spacing of
.01. In this section, all units corresponding to space are dimension-
ess. This proposed grid layout presents a problem: The interfaces
e specify have slopes not equal to unity. Thus, the number of points

long the interface for the raypath to pass through can reduce the ac-
uracy of our algorithm in the sense of adhering to Snell’s law along
he interfaces. To remedy this, we add extra points to interfaces z̄1�x�
nd z̄2�x�. The spacing between points along each interface is �s

5.0 � 10�3 units. This allows for increased accuracy in ray trac-
ng through interfacial boundaries. These points are used later to cal-
ulate reflections off the interfacial boundaries.

igure 4. Rays in the complex medium defined by expression 8 cor-
esponding to the direct arrival �DA�, reflected arrival from the inter-
ace given by z̄1�x� �R1�, reflected arrival from the interface given by
2�x� �R2�, and the reflected arrival from the bottom �BA�. Source lo-
ated at �0, 0� and receiver located at �1.0, 0.1�. Dashed gray lines
orrespond to the interfaces.
Downloaded 18 Feb 2010 to 134.7.248.129. Redistribution subject to S
In calculating reflections at the interfaces z̄1�x�, z̄2�x�, and z � 1.0,
e are able to determine the points corresponding to local minima

long each interface to within 5�10�3 units of distance. When cal-
ulating reflections along the bottom, we reduce grid spacing along x
o 5�10�3 units, corresponding to a range of �0.25, 0.75�. We plot
he rays corresponding to the direct and reflected arrivals of a signal
ropagating from �0, 0� in Figure 4. The ray corresponding to the re-
ection of the signal along z̄1�x�, R1, contains elements of a head
ave, which is a result of numerical optimization of traveltime along

he path constrained to pass through a point on this interface. Fur-
hermore, our method finds multiple optimal constraints in this re-
ion, all corresponding to the same ray and all located along the sec-
ion of the interface through which the ray passes. Thus, our method
nds multiple optimal constraints in areas where head waves opti-
ize traveltime along the path.
Table 1 contains traveltimes calculated for all considered paths.
e see good agreement between numerically obtained and analyti-

ally calculated traveltimes of the direct arrival. In Figure 5, we plot
sochrons corresponding to a wave propagating from a source at �0,
� in intervals of 0.05 s. This graph clearly shows the expected shape
f the wavefronts, including the ellipticity of wavefronts in the upper
egion of the medium.

able 1. Traveltimes (in seconds) in the complex medium
efined by expression 8, corresponding to the direct arrival
DA), reflected arrival from the interface given by z̄1„x… (R1),
eflected arrival from the interface given by z̄2„x… (R2), and
he reflected arrival from the bottom (BA). The source is
ocated at (0, 0) and receiver at (1.0, 0.1).

S Exact Calculated

DA 0.26194 0.26199

R1 N/A 0.41495

R2 N/A 0.40758

BA N/A 0.56330

igure 5. Isochrons in the complex medium defined by expression 8
orresponding to the elementary wavefront propagating from a
ource located at �0, 0�. Isochrons are spaced in 0.01-s intervals.
ashed gray lines correspond to interfaces.
EG license or copyright; see Terms of Use at http://segdl.org/
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odel 2: Marmousi model
Next, we consider the 2D Marmousi model �Versteeg and Grau,

991�. We calculate rays and their associated traveltimes using a
moothed version of Marmousi. Given the irregular nature of the ve-
ocity field, we use an underlying square grid of 101�101 points,
hich gives us the best possible approach to sampling the velocity

igure 6. Smoothed Marmousi model: velocity field plotted in Math-
matica using a set of 384�121 data points.

igure 7. Comparison of results obtained by our simulated annealing
ethod to the big ray-tracing method of Benamou �1996�. Plot of

raveltime versus receiver in the Marmousi model; source is located
t �6000 m, 2800 m�, and 384 receivers are spaced at 24-m intervals
long the surface.

igure 8. Wavefronts calculated using simulated annealing method;
ource located at �6000 m, 0 m�. Isochrons are plotted in 0.1-s inter-
als.

igure 9. Wavefronts calculated using wavefront-oriented ray trac-
ng. Time spacing between wavefronts is 0.1 s. From Coman and
Downloaded 18 Feb 2010 to 134.7.248.129. Redistribution subject to S
odel uniformly. Traveltimes between all points on the grid were
alculated from a data set of 384�122 points sampling the velocity
eld at 24-m intervals along x and z. When determining the travel-

ime along a segment, we calculate slowness according to the nearest
elocity point. The smoothed velocity model is plotted in Figure 6.

In Figure 7, we plot a set of traveltimes corresponding to first-ar-
ival traveltimes from a source at �6.0 km, 2.8 km� to a set of 384 re-
eivers, spaced evenly along the surface at 24-m intervals. We com-
are our results for a 101�101 grid to the results of Benamou �1996�
n Figure 7 and see that results from our method are in close agree-

ent. We notice slight deviations from the results of Benamou near
he end of the line of receivers only. Specifically, our method seems
o get caught in a local minimum near the end of the line of receivers,
here Benamou’s results seem to indicate crossings between wave-

ronts. We expect this can be remedied by increasing the number of
weeps or varying the cooling schedule. However, this is the only in-
tance in which one observes this discrepancy; our result matches
ell with those of Benamou throughout the calculation. Also, we do
ot consider multipathing in our results. Without extra constraints,
ur method is suitable for calculating traveltime corresponding to
rst arrivals only. This property is intrinsic to the method of simulat-
d annealing.

In addition, we compare shapes of wavefronts found here to the
hapes of wavefronts calculated by Coman and Gajewski �2005� us-
ng wavefront-oriented ray tracing. In Figure 8, we plot the data
oints corresponding to the predicted shapes of wavefronts in 0.1-s
ntervals. Predicted shapes of wavefronts using our gridpoint data

atch closely with that of Coman and Gajewski, shown in Figure 9,
side from observing wavefront crossings.

Thus, although the rays we calculate are not as smooth as those
alculated using other methods, traveltimes calculated by our meth-
d are at least as accurate as those calculated in other works using
ifferent methods.

CONCLUSION

Our primary purpose is to propose a new ray-tracing method
ased on simulated annealing. Velocity models presented here dem-
nstrate the usability of the proposed method. Results from the Mar-
ousi and elliptically anisotropic models show our method is suit-

ble to calculate rays within smooth media to an accuracy above ex-
erimental error. Furthermore, we are able to exploit the fact that
oints on the grid can be mapped to specific areas of the model for in-
reased accuracy — in this case, to points along an interface not par-
llel to the coordinate system of the underlying network. In other
ords, we are free to choose any grid pattern we desire. Results from

he Marmousi model show that our method can produce accurate re-
ults in complex media as compared to results obtained from other
ethods.
Results presented in this work show that a bending method using

imulated annealing shows promise. In view of the algorithm itself,
xtensions to 3D ray tracing are straightforward. The 3D Metropolis
lgorithm is, in principle, the same as the 2D algorithm; we specify
n initial path and anneal the solution to the minimum by choosing
oints in a 3D grid, and we proceed through the Metropolis algo-
ithm in the same manner.

The major drawback in moving to three dimensions with our algo-
ithm can be seen by considering a cubic grid of side length L. Where
he number of sweeps per temperature would scale with L2 in two di-
ensions, our calculations will now scale like L3. Furthermore, the
ajewski �2005�, their Figure 8.
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mount of time necessary to calculate traveltimes between all points
n the latter �and the amount of memory to store said calculations�
ould scale as L6. In our case, we would have to store more than
0,000 times more data before we could begin calculating rays. Giv-
n the amount of time needed to construct the rays for each model
ere, the algorithm in its current form is unsuitable for direct applica-
ion to 3D media. We suggest an improvement to the algorithm in
hich one starts with a small number of grid points to obtain an esti-
ate of the ray. Then one can increase the number of points around

he ray gradually and use the previously calculated ray as the initial
uess. In this way, we can solve for the desired ray recursively.

The current version of our code is not parallelized. An extension
f our method to parallel computing would reduce the overall time
eeded to calculate a set of rays. One simple scheme would be to
plit the work needed to calculate a set of rays between each of the
rocessors. For P processors, this would decrease the overall com-
utational time to calculate N rays by P. Schemes that involve calcu-
ating one ray using P processors are not as straightforward, as they
equire extensive communication between each of the processors,
hich can reduce the effectiveness of parallel computing. Exten-

ions to parallel computing will become important when we move to
alculating rays in three dimensions.

Another extension to our method relates to the problem of con-
training rays to pass through specified interfaces. Once these con-
traints are specified, we can choose configurations randomly, an-
eal each segment, and decide whether to accept a configuration ac-
ording to the Boltzmann distribution. As one can see, our method
an be generalized easily to M constraints in two or three dimensions
y isolating specific areas to study. Furthermore, this need not be re-
tricted to interfaces. We can specify a set of points to lie within a
ow-velocity region where rays that correspond to first arrivals
ould not pass through.
In addition, special cases such as a focusing reflector, in which the

ays render the stationary traveltime as maximum, can be accommo-
ated easily in our method by changing the transition probability to
ccept paths with longer traveltimes always. Furthermore, we have
ot taken into account the amplitudes of waves traveling along the
ays. This would suggest the amplitude of the wavefront along a ray
egment could be used as another parameter in the Metropolis algo-
ithm. However, one would need to take into account how the ampli-
ude of the entire wavefront would change by local perturbations to
he ray. Amplitude considerations in this algorithm will be the focus
f future work.

In addition, quenching at certain points during the algorithm can
e used to obtain local minima of the traveltime; thus, the algorithm
an be modified to find rays later than first arrivals.

We are aware that the presented algorithm can be adjusted further
o suit particular applications better by optimizing the cooling
chedule and the required equilibration times. Such improvements
re not our purpose here; our main goal is to bring this new approach
n ray tracing to the attention of interested researchers in the field.
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