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Abstract

In this paper, a computational approach based on a new exact penalty function method
is devised for solving a class of continuous inequality constrained optimization prob-
lems. The continuous inequality constraints are first approximated by smooth function
in integral form. Then, we construct a new exact penalty function, where the summa-
tion of all these approximate smooth functions in integral form, called the constraint
violation, is appended to the objective function. In this way, we obtain a sequence of
approximate unconstrained optimization problems. It is shown that if the value of the
penalty parameter is sufficiently large, then any local minimizer of the corresponding
unconstrained optimization problem is a local minimizer of the original problem. For
illustration, three examples are solved using the proposed method. From the solu-
tions obtained, we observe that the values of their objective functions are amongst
the smallest when compared with those obtained by other existing methods available
in the literature. More importantly, our method finds solution which satisfies the
continuous inequality constraints.

1 Introduction

Many practical problems in engineering, such as circuit design and control system design
(see, for example, [16], [17] and [5]), can be formulated as continuous inequality constrained
optimization problems in the form given below:

min f(z) (1.1a)

subject to pj(z,w) <0, Vwe, j=1, ..., m, (1.1b)

where x € R” is the decision parameter vector, ) is a compact interval in R, f : R® — R
is continuously differentiable in z, and for each j =1, ... , m, ¢; : R" xR — R is a
continuously differentiable function in x and w. Let this problem be referred to as Problem
(P). This problem is also known as a semi-infinity optimization problem.

Since there are infinite many inequality constraints in (1.1b), conventional constrained
optimization methods are not applicable to solving this problem directly. In [8], a con-
strained transcription method is introduced, where the continuous inequality constraints
are first transformed into equivalent equality constraints in integral form. However, the
integrands are nonsmooth. Thus, a local smoothing technique is used to approximate
these nonsmooth integrands by smooth functions. In this way, Problem (P) is approxi-
mated by a sequence of optimization problems involving inequality constraints in integral
form, where each of which can be solved by using conventional constrained optimization
methods. There are two parameters, ¢ and 7, involved in these approximate constrained
optimization problems, where € > 0 controls the accuracy of the approximation and 7 > 0
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controls the feasibility. It is shown that, for any ¢ > 0 , if 7 > 0 is sufficiently small, then
the solution obtained satisfies the continuous inequality constraints. Furthermore, the
global optimal solution of the approximate constrained optimization problem converges
to the global optimal solution of the original problem as ¢ — 0. However, it is not known
if a local optimal solution of the approximate constrained optimization problem will con-
verge to a local optimal solution of the original problem. In [20], the smooth approximate
functions in integral form are appended to the objective function by using the concept of
the penalty function. This leads to a sequence of unconstrained optimization problems in
integral form, where each of which is solvable by conventional unconstrained optimization
techniques. Convergence results and the shortcomings similar to those reported in [8] are
also valid. In [21] and [24], discretization methods and nonlinear Lagrangian functions are
developed respectively. For all these algorithms, the feasibility condition is often missed
in actual numerical calculation.

In [9], [15], [23] and [22], numerical algorithms based on Newton method was developed
to solve semi-infinite programming problems, where the KKT system is formulated as a
system of nonsmooth equations. However, the number of Lagrange multipliers in KKT
system is not known a priori. For this, a different formulation of KKT system is introduced
in [3], where the equivalent nonsmooth function of the continuous inequality constraints
are approximated by smooth functions. Then, a projected Newton-Type algorithm is used
to solve the new KKT system.

For a semi-infinite optimization problem, where the objective function is quadratic
and the continuous inequality constraints are linear, it is found that dual parametrization
methods are effective, (see, for example, [7], [12], [11] and [13]), where the dual problem
of the linear-quadratic semi-infinite optimization problem, called the primal problem, is
transformed into an equivalent finite dimensional nonlinear programming problem. The
global solution of the primal problem can be obtained from that of the parameterized dual
problem.

For optimization problems with conventional smooth inequality constraints, the penalty
function method is, in general, recognized as an efficient method. However, to ensure that
the solution obtained is feasible, the penalty parameter o is required to go to +o0o. This
is clearly unsatisfactory. Thus, exact penalty functions are introduced for these inequality
constrained optimization problems,(see, for example, [2] and [19]). A main advantage of
the exact penalty function method is that a minimizer of the objective function could be
obtained without requiring the penalty parameter o to go to +o00. In [6], by adding a new
variable €, a new exact penalty function is introduced to deal with equality constrained
minimization problem. Under some mild assumptions, it is shown in [6] that, if the value
of the penalty parameter o is sufficient large, then every local minimizer of the penalty
problem with finite objective value (i.e. fs(x*,€*) is finite) is of the form (z*,0), where
x* is a local minimizer of the original problem.

In this paper, a new exact penalty function approach is proposed for solving semi-
infinite optimization problems, where a objective function is to be minimized subject to
continuous inequality constraints. This approach is motivated by the idea reported in
[20]. However, the summation of the integrals of the exact penalty functions, rather than
the summation of the integrals of the smooth approximate functions, is appended to the
objective function forming a new objective function. This gives rise to a sequence of
unconstrained optimization problems. In this way, the error caused by taking the smooth
approximation of the continuous inequality constraints, as it is done in [20], can be avoided.
Furthermore, any local minimizer of the unconstrained optimization problem when the
penalty parameter is sufficiently large is a local minimizer of the original problem. This
property is not shared by the approaches reported in [20], [21], [8] or [24]. Clearly, this is
a major advancement in the study of the solution methods for semi-infinite optimization



problems.

The rest of the paper is organized as follows. In Section 2, we give a new exact penalty
function and analyze its convergent properties. In Section 3, we devise an algorithm for
solving Problem (P) via solving a finite sequence of unconstrained optimization problems.
Several examples are solved by using the algorithm proposed. Section 4 concludes the

paper.

2 New exact penalty function method

Consider Problem (P). For each z € R", max{¢;(z,w),0} is a continuous function of w,
since ¢; is continuously differentiable. Define

Se={(z,e) e R" xRy : ¢pj(z,w) <EW;, Vwe, j=1, ..., m} (2.1)

where Ry ={aeR : a>0}, W; €(0,1),j=1, ... , m, are fixed constants and v is a
positive real number. Clearly, Problem (P) is equivalent to the following problem, which
is denoted as Problem (P).

min f(x) (2.2a)

subject to
(.%', 6) € 50 (2.2b)

where Sy = S, with € = 0.

We assume that the following conditions are satisfied:

(Al.) There exists a global minimizer of Problem (P), implying that f(x) is bounded
from below on Sj.

(A2.) The number of distinct local minimum values of the objective function of Problem
(P) is finite.

(A3.) Let L(P) denote the set of all local minimizers of Problem (P). If z* € L(P),
then Ly« = {z € L(P) : f(z) = f(2*)} is a compact set.

Motivated by the exact penalty function introduced in [6] and the constraint transcrip-
tion method for converting continuous inequality constraints into a sequence of inequality
constraints in integral form (see [8] and [25]), we introduce a new exact penalty function
fo(x,€) defined below.

f(z) ife=0,¢j(zr,w) <0 (weN)
fo(z,e) =< f(x) +e Az, e) + 0 ife>0 (2.3)
+00 otherwise

where A(z,€), which is referred to as the constraint violation, is defined by
s 2
Az, e) = Z/ [max {0,¢;(z,w) — e”Wj}] dw (2.4)
j=1"9

« and +y are positive real numbers, § > 2, and ¢ > 0 is a penalty parameter. We now
introduce a surrogate optimization problem, which is referred to as Problem (P,), as
follows.

min fo(x,¢€) (2.5a)

subject to
(xz,e) € R™ x [0, +00) (2.5b)

Intuitively, during the process of minimizing f,(z,¢€), if o is increased, ¢® should be re-
duced, meaning that e should be reduced as 3 is fixed. Thus €~“ will be increased,
and hence the constraint violation will also be reduced. This means that the value of
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[maX{O, dj(z,w) — e”VVj}} must go down, leading to the satisfaction of the continuous

inequality constraints, i.e.,
pj(x,w)—€W; <0, VweQ, j=1, ... ,m

In the next section, we will prove that, under some mild assumptions, if the parameter
oy, is sufficient large (o, — +oo as k — 400) and (z*)* €)% is a local minimizer of
Problem (P,,), then ¢®)* — ¢ =0, and z(®)* — z* with 2* being a local minimizer of
Problem (P). The importance of this result is quite obvious.

2.1 Convergence analysis
Taking the gradients of f,(x,€) with respect to x and € gives

Of(x,€) _ of (x)
ox ox

—« - ] ] a¢j($,W)
+ 2¢ ;/ﬂmax{O, gbj(l‘,w)—eWWj}iax dw (2.6)

Ofs(x,€ a1 i
o) _ e 1; /Q [max{0,6;(z,w) — W} d

—2yeral Z/ max{O, dj(x,w) — eVWj}Wjdw + o381
j=17¢
= e_o‘_l{ - aZ/ [max{O,%(x,w) - e"’Wj}rdw
j=17%

+2’yZ/ max{0, ¢;(z,w) — EVWj}(—GVWj)dw} + 03!
j=179

(2.7)

For every positive integer k, let (z(%)* ¢(®)*) be a local minimizer of Problem (P, ).
To obtain our main result, we need

Lemma 2.1. Let (z*)* e®)*) be a local minimizer of Problem (P, ). Suppose that
for (@®)* €)Y s finite and that € > 0. Then

(2R R)xy ¢ g

where S is defined by (2.1).

k), *

Proof. Since (2(F)* e¥)*) is a local minimizer of Problem (P,,) and ¢*)* > 0, we have

O fo, (xB) (k)%
Oe

=0 (2.8)
On a contrary, we assume that the conclusion of the lemma is false. Then, we have

¢ (@ ey < (PN vweQ, j=1, ... ,m.
Thus, by (2.7) and (2.8), we obtain

B 8f0k (x(k),*7 6(k),>»<)

3 = Bore® >0
€

0

This is a contradiction, and hence completing the proof. O

To continue, we introduce



Definition 2.2. Let T be such that % , j=1, ... ,m, are linearly independent for
each w € Q. Then, it is said that the constraint qualification is satisfied for the continuous
inequality constraints (1.1b) at x = T.

Let the conditions of Lemma 2.1 be satisfied. Then, we have

Theorem 2.3. Suppose that (z%)* eF)*) is a local minimizer of Problem (P,,) such that
fgk(:c(k)’*,e(k)’*) is finite and €®)* > 0. If (2> e®)*) - (2% €") as k — +o0, and
the constraint qualification is satisfied for the continuous inequality constraints (1.1b) at
x=a", then € =0 and =* € 5.

Proof. From Lemma 2.1, it follows that (z(*)* e®*)*) ¢ § ()« Furthermore,

0y (a0, D))

Oz
_ 9f @)
= o i 06, @ ) (2.9)
—|—2(6(k)’*)_aZ/Qmax{(),gbj(x(k)’*,w) - (e(k)’*)VWj}—j o dw

= 0

Ofo, (2 (k),* 6(k) *)
Oe

= _a(e(k),*)—a—lz/ max{0, ¢ (B w) — (E(k)’*)’ij}}2dw
—2y(eF)*)rmam 1Z/max{0 dj(x" " w ((k )W }W dw

+op (k)81 (2.10)

= (el)x)—a-1y _ ¢ Y max (F)* W) — () N w
) 4 > [ [maxto0,a7 wwj}] a
+2’yZ; /Q max{0, ¢; (2™ w) — (€)W} (— (B )T )dw}

+opB(eM) )7
= 0

Suppose that e¥)* — ¢* =£ 0. Then, by (2.10), we observe that its first term tends to a
finite value, while the last term tends to infinity as o — 400, when k& — +oo. This is
impossible for the validity of (2.10). Thus, €* = 0.

Now, by (2.9), we obtain

Of (xF)*) m ¢ (zF)* W)
(k) yor (o (R) — (BT, J J
(")) o +2jgl/gmax{0, ¢j (" w) — (€)W} o dw

—0 (2.11)



Thus,

. a.f (@*)*)
1 { (k),*\a
k—1>r—iI-100 (€ ) ox
m (1 (K),*
- * 8¢ '(1"*7 LU)
= 2;/Qmax{0,¢j(x,w)} ]83: dw =0
(2.12)
Since the constraint qualification is satisfied for the continuous inequality constraints (1.1b)
at x = x*, it follows that, for each j =1, ..., m,
max{0, ¢;(z*,w)} =0

for each w € 2. This, in turn, implies that, foreach j =1, ..., m, ¢;(z*,w) <0, Vw € Q.
The proof is complete. O

Corollary 1. If ()" — z* € Sy and e — ¢ =0, then A(z®F)*, F)*) = A(z*, ") =
0

Proof. The conclusion follows readily from the definition of A(z,¢) and the continuity of
dj(z,w). O

In [6], the construction of the form of the exact penalty function f,(x,w) is such that
it is continuously differentiable in S when € > 0. Its limit is continuous on the part of
the boundary when its values are finite. In particular, f,(x,0) is finite when z is such
that ¢j(z,w) <0,Vwe Q, j=1, ..., m. In what follow, we shall turn our attention
to the exact penalty function constructed in (2.3). We shall see that, under some mild
conditions, f,(z,w) is continuously differentiable with continuous limits.

Theorem 2.4. Assume that gzﬁj(x(k)’*,w) = 0((e(k)’*)5), 6>0, j=1, ..., m. Suppose
that vy >a, 6 >a, —a—1420>0, 2y—a—1>0. Then

elF)* ex—=0

fo (a0, M) ————— 1, (2%,0) = f(a¥) (2.13)
(k) g*xe Sy
* * ek x s er= * *
v(a:,e)ka (-r(k)’ ae(k)7 ) . v(w,e)fak (l‘ 70) = (Vf(-f )70) (214)

(k) g*xe Sy

Proof. By virtue of the conditions of the theorem, it follows that, for € # 0,

lim fO’k (x(k)y*’ f(k)’*)
e(k>’*—»6*:0
z(k>'*~>z*€SO

lim { (k)
o Jm f(@™r)
x(’@)’*—»x*eso

+(ek)=yme Z/ [max{(), ¢z, w) — (€(k)’*)7Wj}] *dw + O'k(e(k)’*)ﬁ}
=179

i Jo [max{(), ¢ (2 ®)* w) — (e(k)’*)VWj}rdw

Jj=1

_ * :
= flx*) + 6%)7*11%1%1*:0 (E(k’),*)a
z(k>**~>z*eso

(2.15)



For the second term of (2.15), it is clear from Lemma 2.1 that

s

1 Jo [max{O, ¢j(x(k)’*,w) — (e(k)’*)WWj}} 2dw
lim J

(k)% kg (e(k)’*)a

(k) * axeg)

— (k),* () (B =572
A U
(k)*ﬂz ESOJ 1

Since v > o and § > «, we have

*\y— < 2
ol 3 [ o = (@O s <o
z(k> R GSO J= 1

Combining (2.15) and (2.17) gives

o lim  fy, (x®* By = 7 (2*,0) = f(z¥)
SR e 5

Similarly, we have

: k k
(k) lim v(%e)fﬁk(m( )’*ae( )’*)
elF)* L ex=0
z(’f>a*~z*eso

=l |V fo (207, D7) Vo, (20, e0))]
S

where

lim Vo for (B k)%
e(k)v*ﬂe*:o
z(k)’*—vz*ESO

(k)
- T
€ K e*=0 T
z(k)x _axes
N 9 (x )+, w)
NORS Z/max{() b; (28, _(ew),*)ij}aa—xvdw}

sz(x*) Lrg B 22/ (k a¢ (k‘ )

— a;(k> * g [S1))

— ()1~ W;] o

8¢J( ,w)

dw

(2.16)

(2.17)

(2.18)

(2.19)



while

o lim Vefor (;U(k),*, 6(lf),*)
RS

—e*=0

—z*eSy

m
; Wiry-anif [ pRee
e(kL*ILI?*:O {(6 ) aZ/Q rnax{O, ¢j(x ,w)
= x(k)’*—»ac*eso j=1

2
_(ﬁ(k),*)ij}} dw
+272/ max {0, ¢ (z™)*,w) — (G(k)’*)VWj}((—e(k)’*)VWj)dw}
=178 (2.21)
+gk5(€(k),*)ﬁ—1}
i * *y—afl x\y— L 2
= E(k)7*1ir£1*:0 O‘Z/ 2(F) (E(k), )T 2 7(6(k), )% Wj] dw
z(k)v*_,z*eso
+QVZ/ [0 (2, w) — ()] ((—E(k)’*)'YWj)(e(’“)’*)—"‘—ldw}
j=1"9
= 0
Thus, the proof is complete. =

Results presented in Theorem 2.3, Corollary 1 and Theorem 2.4 form the foundation
for constructing a computational method to be presented in section 3.

Theorem 2.5. Let ¢®)* — ¢ =0, ) — g% € Sy be such that f,, (z*,¢*) is finite.
Then, z* is a local minimizer of Problem (P).

Proof. On a contrary, assume that z* is not a local minimizer of Problem (P). Then,
there must exists a feasible point y* of Problem (P), satisfying y* € N(z*), such that

fly*) < fz) (2.22)

where Ns(z*) is a d— neighborhood of z* in Sy for some § > 0. Since (z(*)* e#)*) is a
local minimizer of Problem (P, ), there exists a sequence {¢¥}, such that

Jor (2, €7 > fo (2@, M)

for any = € Nex (z*)*). Now, we construct a sequence {y*)*} satisfying

(o _ ey < &
ko ¥ < 2=
Iy — z®) < &
Clearly,
For (07, e7) > fo, (@7, ) (2.23)
Letting £ — +00, we have
li (k) _ % < li (k) _ .(K),x (k) _ % * ok
Jim [y -y < im0 s e T
< 040496
(2.24)
However, 6 > 0 is arbitrary. Thus,
lim y*)* =y (2.25)

k—-+o00



Letting k — +o0 in (2.23), it follows from the continuity of f and (2.25) that

L o (y y ), ) -
=L (5" 0) = Fly") = T o (2, D) = [, (27,0) = f(2)
This is a contradiction to (2.22), hence completing the proof. O

The exactness of the penalty function is given in the following theorem.

Theorem 2.6. If the conditions of Theorem 2.3 and Theorem 2.4 hold, then there exists
a ko > 0, such that €¥)* =0, 2W)* ¢ L(P), for k > k.

Proof. On a contrary, We assume that the conclusion is false. Then, there exists a sub-
sequence of {(z*)* e*)*)1 which is denoted by the original sequence such that for any
ko > 0, there ex1sts a k:’ > ko satisfying e*)* £ 0. By Theorem 2.3, we have

6(]6)7* — 6* = 0’ x(k)’* — x* (S SO, as k — +OO

Since e®)* £ 0 for all k, it follows from dividing (2.10) by (e()*)8=1 that

m 2
(e<k>:*)aﬁ{ —ay | [ max{0, 6 (2®*,w) - (e<k>v*)ij}] dw
]:

+27§1 [ mac{0,05(6) — (€97, (- )W)dw}Jrakﬁ:O 220
This is equivalent to
<e<k>v*>aﬂ{—aj§1 [ [max{0. 0529 0) = (9w}
P Q[maX{O,qﬁj(x(’“)’*, w) = (D)W} (=) wy) (2.28)

s {0, 65(9,) = ()17, b o b
—max {0, ¢;(z¥)*, w) — (e(k)’*)WWj}gtj(:z:(k)’*,w)] dw} +o6=0

Rearranging (2.28) yields
(e®)y=2=B(2y — o {2/ [maX{O, qu(x(k)’*,w)

_(E(k),*)ij}} de} + oW (2.29)

= 29(®7) 7078 37 [ max {0, ¢; (a7, w) — ()W} (2", w)du
j=1.J0
Letting £ — +o0 in (2.29) gives
2 (6(;{)7*),&,5 Z/ max {0, qﬁj(aﬁ(k)’*,w) - (e(k)’*)'YWj}éj(:c(k)’*,w)dw — 400 (2.30)
j=1"¢

Define m
yk = (e(k)’*)_a_ﬁ Zmax {O, d)j(a:(k)’*,w) - (e(k)’*)WWj} (2.31)



From (2.30) and (2.31), we have

y* — too, as k — 400 (2.32)
Define
2 =yF /| (2.33)
Clearly
li Ml =z* =1 2.34
i |4 = 7] (2:34)
Dividing (2.11) by ||y*|| yields
G P THOR
o /}m“{°¢f “
4 4 (2.35)
0 (x ), w)
R)yrpy; 3 =2 " dw =0
(e } ox “
For each j =1, ..., m, define
. (p(R)
(k),min __ . a(ybj (x( ,w) X QO
®; = mm{—&v D we R}
max 0, (k),x
¢§k)’ = max{w weQ}
Note that z®)* — 2* as k — 400 and that af(;) and, for each j =1, ..., m, ¢; and
&bjé-,w) are continuous in R" for each w € (), where () is a compact set.
x
Then, it can be shown that there are constants K, K and K, independent of k, such that
24z
[———I < (2.36)
k), min (k),max 72
ofm, o ) € KK (2.37)
Forall k=1,2,....
By substituting (2.31) and (2.33) into (2.35), we obtain
e (®) (*)
ax k . 7* = . 7* K
A +2/Qz 67w =0, o7 ¢ K, K] (2.38)
Since
1 B 1
El[(¢(R))8 m
all ) k) )—a—ﬁzmax{0,¢j($(k)’*, ) — (e (k). )W }H
j=1 .

13- max {0, 0,27, w) — (€)W | )7
j=1

(2.39)
From Theorem 2.4, we have ¢;(z*)* w) = o((¢)*)%) and v > a, § > . Thus
i (e (K) % (k)Y (k) %\ —
Jim Zmax{o,qﬁy(w L w) — (B} (B
(2.40)

= HZmax{O )7~ “W}H

= 0



1

From (2.36) and (2.41), it is clear that
af(@™~)
Oz — 400, k— 400 (2.42)

(G

However, for/ zktb( )* duw, we have |2¥|| = 1. Thus, it follows from (2.37) that/ zkgb(-k)’*dw

is bounded uniformly with respect to k. This is a contradiction to (2.38). Thus, the proof
is complete. ]

We may now conclude that, under some mild assumptions and the constraint qualifi-
cation condition, when the parameter o is sufficiently large, a local minimizer of Problem
(P,) is a local minimizer of Problem (P).

3 Algorithm and numerical results

Here we use the optimization tool box fmincon within MATLAB environment to solve
the optimization Problem (P,), where the integral appeared in f,(z,€) is calculated by
using the Simpson’s Rule. For Simpson’s Rule, the global error is of order h*, where h is
the discretization step size. Thus, the required accuracy of the integrations can be easily
achieved if the discretization step size is sufficient small.

In the following, we give definitions to the terms used.

o — The penalty parameter which is to be increased in every iteration.

@ —The point at which max ¢j($(k)’*,u_)) = max maxgb (k)" w).
1<5< 1<5<m we

— The value of k)x W),
g e value o rr§a<>;1rurjleas>2<¢j( W)

f — The objective function value.

€ — A new variable which is introduced in the construction of the exact penalty function.
— A lower bound of ¢®)* which is introduced for avoiding ¢*)* — 0.

With the new exact penalty function, we can construct an efficient algorithm, which is

given below

Algorithm 1

Step 1 set ¢ =10, e = 0.1, & = 1072, 3 > 2, choose an initial point (xo,€0), the
iteration index k = 0. The values of v and « are chosen depending on the specific structure
of Problem (P) concerned.

Step 2 Solve Problem (P, ), and let (z*)*, ¢k)-*) be the minimizer obtained.

Step 3 If ¢)* > ¢ ok < 108,

set oAt =10 x o) k = k+1. Go to Step 2 with (z(*)* ¢(F)*) as the new initial point
in the new optimization process

Else set e®)* = ¢*, then go to Step 4

Step 4 Check the feasibility of #(*)* (i.e., whether or not max maécgé (B> w) <0).
<j<m we

If z(F)* is feasible, then it is a local minimizer of Problem (P). Exit.

Else go to Step 5

Step 5: Adjust the parameters «, 6 and - such that conditions of Lemma 2.1 are satisfied.
Set ot = 100*) | ¢kt = 0.1 k:= k + 1. Go to Step 2.

Remark 1. In Step 3, if €¥)* > ¢* we obtain from Theorem 2.3 and Theorem 2.6 that
2®)* cannot be a feasible point, meaning that the penalty parameter o may not be large
enough. Thus we need to increase o. If o > 108, but still €¥)* > ¢*, then we should adjust



the value of o, B and vy, such that conditions assumed in the Theorem 2.4 are satisfied. Go
to Step 2.

Remark 2. Clearly, we cannot check the feasibility of ¢;j(z,w) <0, j =1, ..., m, for
every w € . In practice, we choose a set Q,Awhich contains a dense enough of points in
Q2. Check the feasibility of ¢j(x,w) < 0 over Q for each j =1, ..., m.

Remark 3. Although we have proved that a local minimizer of the exact penalty function
optimization problem (P,, ) will converge to a local minimizer of the original problem (P),
we need, in actual computation, set a lower bound € = 107 for e®)* 50 as to avoid the
situation of being divided by €¥)* = 0, leading to infinity.

Example 1 The following example is taken from Gonzaga (1980), and it was also used
for testing the numerical algorithms in [20] [21] and [24]. In this problem, the objective
function:

flz) = x9(122 4+ 17x1 + 6x3 — bxe + x123) + 18023 — 3621 + 1224 (3.1)
x2(408 4+ 561 — 50x2 + 60x3 + 102123 — 256%)
is to be minimized subject to
d(z,w) <0, Vwe (3.2)
0<z1,23 <100, 0.1 <29 <100 (3.3)

where Q = [107%,30] and (i = v/—1), while
bz, w) = ST (z,w) — 3.33[RT(z,w)]* + 1.0
T(r,w) =1+ H(zr,iw)G(iw)

H(z,s) =x1+x2/s+ 235
1

(s+3)(s>+2s+2)
Here, ST(x,w) and RT'(z,w) are, respectively, the imaginary and real parts of T'(x,w). The
initial point is (50 50 50). Actually, we can start from any point within the boundedness
constraints (3.3).

For the continuous inequality constraint (3.2), the corresponding exact penalty function
fo(z,€) is defined by (2.3) with the constraint violation A(z,€) given by

G(s) =

Az, e) = /Q [max {0,837 (z,w) — 3.33[RT (2, w)]* + 1.0 — eij}} de

Simpson’s Rule with = [107%,30] being divided into 3000 equal subintervals is used
to evaluate the integral. The value obtained is highly accurate. Also, these discretized
points define a dense subset O of Q. We check the feasibility of the continuous inequality
constraint by evaluating the values of the function ¢ over Q). Results obtained are given
in Table 1 and Table 2.

o w g f

10 5.35 1.7599¢-005 0.178251096
102 5.64 8.2356e-006 0.174782133
103 5.63 -2.0612e-005 0.174778004

Table 1: Result for Example 1



g T T2 I3 €

10 21.796685 49.5750243 31.7018582 0.000264
102 17.3494249 48.9435269 34.5556544 0.0001
103 17.3937883 48.7713471 34.5227014 0.00001

Table 2: Result for Example 1

As we can see, as the penalty parameter, o, is increased, the minimizer approaches
to the boundary of the feasible region. When o is sufficiently large, we obtain a feasible
point. It has the same objective function value as that obtained in [21]. However, for the
minimizer obtained in [21], there are some minor violations of the continuous inequality
constraints (3.2).

Example 2 Consider the problem:

min 22 + (29 — 3)?
subject to zy — 2+ a1 sin(miw) <0, Vtelo,n]

—1<2 <1, 0<2,<2

where w is a parameter which controls the frequency of the constraint. As in [21], w is
chosen as 2.032.

In this case, the corresponding exact penalty function f,(x,¢€) is defined by (2.3) with
the constraint violation given by

Alw,e) = / [max {0, = 2 4+ sin( ) — oW} e
0

ro — W
Simpson’s Rule with interval [0, 7] being divided into 1000 equal subintervals is used to
evaluate the integral. These discretized points also form a dense subset Q) of the interval
[0, 7]. The feasibility check is carried over (. By using Algorithm 1 with the initial point
taken as (29,29), the solution obtained is (x3,z3) = (0,2) with the objective function
value f* = 1. The results are presented in Table 3 and Table 4.

o w g f

10 1.41 3.735773915e-008 1.000000669
102 1.41 3.735773916e-008 1.000006691
103 1.41 3.735773916e-008 1.00006691
104 1.41 3.735773916e-008 1.000669101
10° 1.049 2.45667159e-007 1.000011501

Table 3: Result for Example 2

g T T2 €

10 3.735773981e-008 2.0000 5.481e-004
102 3.735773981e-008 2.0000 5.481e-004
103 3.735773981e-008 2.0000 5.481e-004
10* 3.735773981e-008 2.0000 5.481e-004
10° -5.504846644e-006 1.9999 1077

Table 4: Result for Example 2

It is observed that for sufficiently large o, the minimizer obtained is such that the
continuous inequality constraints are satisfied for all ¢ € [0, 7].



Example 3 Consider the problem:

min (11 + 12 — 2)? + (21 — 22)? + 30[min{0, 1 — 22}]?
subject to x1cost 4+ zosint —1 <0, V¢ € [0,n]

Again, Simpson’s Rule with the interval [0,7] being partitioned into 1000 equal subin-
tervals is used to evaluate the corresponding constraint violation in the exact penalty
function. These discretized points also define a dense subset Q) of the interval [0, ], which
is to be used for checking the feasibility of the continuous inequality constraint. Now, by
using Algorithm 1 with the initial point taken as [0.5,0.5], the result obtained are reported
in Table 5 and Table 6.

o) w g f

10 0.786 0.02497208416 0.3292584852
102 0.786 0.00400356933 0.3409679661
103 0.78 -0.00029665527 0.3437506884
10* 0.78 -0.00000024678 0.3432592109

Table 5: Result for Example 3

g I T2 €

10 0.7247764975 0.7247530305 0.04447211922
102 0.7100525572 0.7098229283 0.006961707112
103 0.7113565666 0.7024091525 0.000000009999
10* 0.7115629913 0.7026219620 0.00000000100

Table 6: Result for Example 3

By comparing our results with those obtained in [4, 20, 21, 8], it is observed that the
objective values are almost the same. However, for our minimizer, it is a feasible point
while those obtained in [4, 20, 21, 8] are not.

4 Conclusions

In this paper, a new exact penalty method is proposed for solving an optimization prob-
lem with continuous inequality constraints. Compared with the existing schemes, our
algorithm can be classified as an outer approximation method as the optimal solution is
approached from outside to the feasible region. Thus, there is no need to find an interior
point to start with. Furthermore, our method is based on exact penalty function, so the
penalty parameter o doesn’t need to go to co. Another very important properties of this
method is that all the minimizers obtained are feasible. Numerical testing shows that the
proposed exact penalty method is effective when compared with other existing methods.
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