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Abstract

We propose a novel power penalty approach to the bounded Nonlinear Com-
plementarity Problem (NCP) in which a reformulated NCP is approximated by a
nonlinear equation containing a power penalty term. We show that the solution to
the nonlinear equation converges to that of the bounded NCP at an exponential rate
when the function is continuous and ξ-monotone. A higher convergence rate is also
obtained when the function becomes Lipschitz continuous and strongly monotone.
Numerical results on discretized ‘double obstacle’ problems are presented to confirm
the theoretical results.
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1 Introduction

Complementarity Problems (CPs) appear naturally in many areas of science, engineering,

management and finance. Typical examples of such problems are obstacle and frictional

contact problems in mechanics, traffic equilibrium problem in transportation, Nash equi-

librium problems in economics and option pricing problems in financial engineering (cf.,
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Council of the Hong Kong Special Administrative Region, China (PolyU 5292/13E).
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for example, [2, 7, 12]). Extensive studies have been done on the theoretical and compu-

tational aspects of CPs in both finite and infinite dimensional spaces. For details of these

results, we refer the reader to the excellent monographs [2, 5, 7] and the references therein.

Complementarity problems are in both finite and infinite dimensions. Infinite-dimensional

problems usually contain partial differential operators. An infinite-dimensional CP is

normally approximated by a finite dimensional one using an appropriate discretization

technique (cf., for example, [5, 11]) so that numerical techniques for finite-dimensional

problems can be used. Popular numerical methods for solving finite dimensional CPs,

particularly for Linear Complementarity Problems (LCPs), include Newton methods, in-

terior point methods and nonsmooth equation methods [2]. Methods for the numerical

solution of Nonlinear Complementarity Problems (NCPs) have also been discussed in the

open literature, though most of the existing numerical methods have been developed for

unbounded NCPs, i.e., for problems defined on unbounded domains. Numerical methods

for bounded complementarity problems are scarce in the open literature ([4]). On the

other hand, many real world problems are often defined on bounded domains. One typi-

cal example is the ‘double obstacle’ type of problems arising in engineering, physics and

financial engineering [3] in which the set of feasible solutions are bounded.

Penalty methods have been used very successfully for solving LCPs and NCPs in

infinite dimensions such as the linear penalty methods in [5, 8, 9] and power penalty

methods proposed in [12, 13]. They have also been widely used for solving continuous

optimization problems (cf., for example, [10]). Recently, the power penalty methods have

been also developed for LCPs and NCPs in finite dimensions [14, 6]. The main merit of

the power penalty approach is its exponential convergence rates as established recently

in [13, 12] for linear and nonlinear infinite dimensional problems and in [14, 6] for a finite

dimensional linear and nonlinear problems. In this paper we present a power penalty

approach to bounded NCPs, based on the idea in [14, 6]. To the best of our knowledge,

there are no existing advances in the development of power penalty methods for bounded

NCPs in finite dimensions in the open literature. Our present work aims to fill this gap

by developing a power penalty method and establishing its convergence analysis. In this

work, we first reformulate bounded NCPs as a standard NCP and then approximate the

bounded NCPs by a nonlinear algebraic system of equations containing a power penalty

term with a penalty constant λ > 1 and a power parameter k > 0. We then show that,

under certain conditions, the solution to the penalty equation converges to that of the

bounded NCPs in the Euclidean norm at an exponential rate depending on λ and k as

λ → +∞. We also carry out numerical experiments of the power penalty method on

discretized non-trivial ‘double obstacle’ problems and our numerical results confirm our

theoretical findings.
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The rest of this paper is organized as follows. In the next section, we will state the

bounded NCPs and reformulate it as a variational inequality. A penalty method in form

of a system of nonlinear algebraic equations is then proposed to approximate the bounded

NCPs. In Section 3, we establish a convergence theory for the penalty method. Numerical

results are presented in Section 4.

2 The bounded nonlinear complementarity problem

Consider the following bounded nonlinear complementarity problem:

Problem 2.1 Find x, y ∈ Rn such that

f(x) + y ≤ 0, (2.1)

x ≤ 0, (2.2)

x>(f(x) + y) = 0, (2.3)

and

b− x ≤ 0, (2.4)

y ≤ 0, (2.5)

y>(b− x) = 0, (2.6)

where f(x) is an n-dimensional vector-valued function defined on Rn and b < 0 is a given

n-dimensional vector defining a lower bound on x.

It is easy to show that this problem arises from the KKT conditions for the minimization

problem minb≤x≤0 φ(x), where φ satisfies f(x) = ∇φ(x). Problem 2.1 is equivalent to the

bounded NCP discussed in [4]. Let

z =

(
x
y

)
and w(z) =

(
f(x) + y
b− x

)
. (2.7)

Then, Problem 2.1 can be written as the following unbounded NCP:

Problem 2.2 Find z ∈ R2n such that

w(z) ≤ 0, (2.8)

z ≤ 0, (2.9)

z>w(z) = 0. (2.10)

Let K = {s ∈ Rn : s ≤ 0} and denote K2 = K × K ⊂ R2n. It is obvious that K and

K2 are closed, convex and self-dual cones in respectively Rn and R2n. Using this K, we

define the following variational inequality problem corresponding to Problem 2.2:
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Problem 2.3 Find z ∈ K2 such that, for all u ∈ K2,

(u− z)>w(z) ≥ 0. (2.11)

Using a standard argument one can easily show that Problem 2.2 is equivalent to

Problem 2.3 in the sense that z is a solution to Problem 2.3 if and only if it is a solution

to Problem 2.2. For a detailed proof, we refer to, for example, [2, Vol.I, pp.4-5].

In what follows we use || · ||p to denote the usual lp-norm on Rn or R2n for any p ≥ 1.

When p = 2, it becomes the Euclidean norm. We also let ei denote the unit vector

in Rn defined by ei = (0, ..., 0, 1︸︷︷︸
i−th

, 0, ..., 0)> for any i ∈ {1, 2, ..., n}. Without causing

confusion, we will frequently use 0 to denote the zero vector in any dimensions. Before

further discussion, it is necessary to impose the following assumptions on the nonlinear

function f in Problem 2.1 which will be used in the rest of this paper.

A1. f is Hölder continuous on Rn, i.e., there exist constants β > 0 and γ ∈ (0, 1] such

that

||f(x1)− f(x2)||2 ≤ β||x1 − x2||γ2 , ∀x1, x2 ∈ Rn. (2.12)

A2. f is ξ-monotone, i.e., there exist constants α > 0 and ξ ∈ (1, 2] such that

(x1 − x2)>(f(x1)− f(x2)) ≥ α||x1 − x2||ξ2, ∀x1, x2 ∈ Rn.

When f(x) = Mx,, where M is a positive-definite matrix, γ = 1 and ξ = 2, A1 and

A2 were used in [14].

In the rest of this paper, we assume that Assumptions A1 and A2 are satisfied by f .

Using these assumptions we are able to establish the continuity and the partial mono-

tonicity of w(z) as given in the following theorem.

Theorem 2.1 The function w defined in (2.7) is Hölder continuous on R2n and satisfies

the following partial ξ-monotone property:

(z1 − z2)>(w(z1)− w(z2)) ≥ α||x1 − x2||ξ2 (2.13)

for any z1 = (x>1 , y
>
1 )> ∈ K2 and z2 = (x>2 , y

>
2 )> ∈ K2.

PROOF. From the definition of w it is easy seen that w is Hölder continuous on R2n

because of Assumption A1. Thus, we omit this discussion and only prove (2.13).
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Let z1 and z2 be two arbitrary elements in K2 and partition them into z1 = (x>1 , y
>
1 )>

and z2 = (x>2 , y
>
2 )> where x1, x2, y1, y2 ∈ Rn. Then, from (2.7) we have

(z1 − z2)>(w(z1)− w(z2)) =

(
x1 − x2

y1 − y2

)>(
f(x1)− f(x2) + y1 − y2

x1 − x2

)
= (x1 − x2)>(f(x1)− f(x2)) + (x1 − x2)>(y1 − y2)

+(y1 − y2)>(x2 − x1)

= (x1 − x2)>(f(x1)− f(x2))

≥ α||x1 − x2||ξ2

by Assumption A2. Thus, we have proved (2.13). 2

Combining this theorem with the fact that K2 is a self-dual cone we see from Theorem

2.3.5 of [2] that Problem 2.3, or equivalently Problem 2.2 has a solution. From Theorem

2.1 we see that the mapping w in Problem 2.2 is not ξ-monotone, and thus the uniqueness

of the solution to Problem 2.2 is not guaranteed by existing known results. Nevertheless,

for this particular problem, it is possible to show that the solution is also unique, as given

in the following theorem.

Theorem 2.2 There exists a unique solution to Problem 2.3.

PROOF. The existence of a solution to Problem 2.3 is simply a consequence of Theorem

2.3.5 of [2] as we commented above. Thus we omit this discussion and concentrate on the

uniqueness of the solution.

Suppose z1 := (x>1 , y
>
1 )> and z2 := (x>2 , y

>
2 )> are solutions to Problem 2.3 with

x1, x2, y1, y2 ∈ K. Then z1 and z2 satisfy

(u− z1)>w(z1) ≥ 0, (2.14)

(v − z2)>w(z2) ≥ 0 (2.15)

for any u, v ∈ R2n. Replacing u and v in (2.14) and (2.15) with z2 and z1 respectively,

adding the resulting inequalities up and rearranging the terms, we have

(z1 − z2)>[w(z1)− w(z2)] ≤ 0.

Combining this inequality and (2.13) gives x1 = x2 =: x.

Now we show that y1 = y2. From the above we have that z1 = (x>, y>1 )> and z2 =

(x>, y>2 )>. For any i ∈ {1, 2, ..., n}, if bi 6= xi, it is easy to see that both u := (x>, y>1 +

e>i (yi2−yi1)> and v := (x>, y>2 +e>i (yi1−yi2))> are in K2, where yi1 and yi2 denote respectively
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the ith components of y1 and y2. Thus, substituting these u and v into (2.14) and (2.15)

respectively yields

(yi2 − yi1)(bi − xi) ≥ 0,

(yi1 − yi2)(bi − xi) ≥ 0.

The above two inequalities imply

(yi2 − yi1)(bi − xi) = 0 (2.16)

for any i ∈ {1, 2, ..., n}. Thus yi2 − yi1 = 0.

In the case that bi − xi = 0 for some i ∈ {1, 2, ..., n}, replacing u in (2.14) with

respectively (x> ± e>i b
i, y>1 )> (or simply use the complementarity condition (2.10)), we

have

−bi(f i(x) + yi1) ≥ 0,

bi(f i(x) + yi1) ≥ 0.

This implies yi1 = f i(x). Similarly, replacing v in (2.15) by (x> ± e>i bi, y>2 )> respectively,

we have

−bi(f i(x) + yi2) ≥ 0,

bi(f i(x) + yi2) ≥ 0,

implying yi2 = f i(x). Therefore, we have yi1 = yi2 when bi− xi = 0 for any i ∈ {1, 2, ..., n}.
Combining this with (2.16) we get y1 = y2. Thus, we have proved the theorem. 2

3 The penalty formulation and its convergence anal-

ysis

Let k > 0 be a fixed parameter. Following [6], we propose the following penalty problem

to approximate Problem 2.2:

Problem 3.1 Find zλ = (x>λ , y
>
λ )> ∈ R2n with xλ, yλ ∈ Rn such that

w(zλ) + λ[zλ]
1/k
+ =

(
f(xλ) + yλ
b− xλ

)
+ λ

(
[xλ]

1/k
+

[yλ]
1/k
+

)
= 0, (3.1)

where λ > 1 is the penalty parameter, [u]+ = max{u, 0} (componentwise) for any u ∈ Rm

and vσ = (vσ1 , ..., v
σ
m)> for any v = (v1, ..., vm)> ∈ Rm and constant σ > 0.
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Clearly, (3.1) is a penalty equation which approximates Problem 2.2. Equation (3.1)

contains a penalty term λ[zλ]
1/k
+ which penalizes the positive part of zλ when (2.8) is

violated. It it easy to see from (3.1) that (2.8) is always satisfied by zλ because λ[zλ]
1/k
+ ≥ 0.

For this penalty equation, we have the following theorem:

Theorem 3.1 Problem 3.1 has a unique solution.

PROOF. In Lemma 2.1 we have shown that w is monotone. Since [v]+ is also monotone

in v for any function v, λ[zλ]
1/k
+ is also monotone in zλ. Therefore, from Theorem 2.3.5 of

[2] we see that there exists a solution to Problem 3.1.

We now show that the solution to Problem 3.1 is unique. To achieve, we let, omitting

the subscript λ for notation simplicity, zj = (x>j , y
>
j )>, j = 1, 2 be two solutions to

Problem 3.1. Left-multiplying both sides of (3.1) by (z1 − z2)> and using (2.13) and the

monotonicity of λ[zλ]
1/k
+ we have

α||x1 − x2||γ2 ≤ (z1 − z2)>
(
w(z1)− w(z2) + λ([z1]

1/k
+ − [z2]

1/k
+ )
)

= 0.

Therefore, x1 = x2. Using this result, it is easy seen from the block of the first n equations

in (3.1) that y1 = y2. Thus, the theorem is proved. 2

In [6] the authors show the convergence of this method for an unbounded NCPs. It

would be thought that the proof in [6] applies to our present case straightforwardly. But

this is not the case. As we will see later in this section, the convergence proof for Problem

3.1 is substantially different from that of the penalty method for unbounded NCPs. This

is mainly because, unlike the case in [6], the function w is no longer ξ-monotone.

We start our convergence analysis with the following lemma.

Lemma 3.1 Let zλ be a solution to (3.1) for any λ > 1. Then, there exists a positive

constant M , independent of zλ, λ and k, such that

||zλ||2 ≤M. (3.2)

PROOF. For any λ > 0, let zλ = (x>λ , y
>
λ )> be a solution to (3.1). Left-multiplying both

sides of (3.1) by z>λ gives

z>λ w(zλ) + λz>λ [zλ]
1/k
+ = 0. (3.3)

Since zλ = [zλ]+ − [zλ]−, where [u]− = max{−u, 0}, we have

z>λ [zλ]
1/k
+ = ([zλ]+ − [zλ]−)> [zλ]

1/k
+ = [zλ]

>
+[zλ]

1/k
+ ≥ 0.

Thus, we have from (3.3)

z>λ w(zλ) ≤ 0,
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or

(zλ − 0)>(w(zλ)− w(0)) ≤ −z>λ w(0).

Using (2.13), we have from the above inequality

α||xλ||ξ2 ≤ −z>λ w(0) = −x>λ f(0)− y>λ b. (3.4)

From the block of the first n equations in (3.1) we have

yλ = −f(xλ)− λ[xλ]
1/k
+ .

Substituting this into the right-hand side of (3.4) gives

α||xλ||ξ2 ≤ −x>λ f(0) + b>f(xλ) + λb>[xλ]
1/k
+ .

Since b < 0 and [xλ]+ ≥ 0, we have b>[xλ]
1/k
+ ≤ 0, and thus the above inequality becomes

α||xλ||ξ2 ≤ −x>λ f(0) + b>f(xλ)

≤ ||f(0)||2||xλ||2 + ||b||2(β||xλ||γ2 + ||f(0)||2)

≤ C1 (max {||xλ||2, ||xλ||γ2}+ 1) , (3.5)

where C1 = max{‖f(0)‖2 + β‖b‖2, ‖b‖2‖f(0)‖2}. In the above we used Cauchy-Schwarz

inequality and (2.12). We assume ||xλ||2 > 1, as otherwise ||xλ||2 is bounded above by

unity. From (3.5) we have

α||xλ||ξ2 ≤ C1 (||xλ||2 + 1) ,

or

||xλ||ξ−1
2 ≤ C1

α
(1 + ||xλ||−1

2 ) ≤ 2C1

α
(3.6)

since ||xλ||2 > 1 and γ ∈ (0, 1]. Therefore, ||xλ||2 is bounded for any λ > 0.

We now show yλ is bounded. Left-multiplying both sides of f(xλ) + yλ + λ[xλ]
1/k
+ = 0

by [yλ]
>
+ gives

[yλ]
>
+f(xλ) + [yλ]

>
+yλ + λ[yλ]

>
+[xλ]

1/k
+ = 0. (3.7)

But λ[yλ]
>
+[xλ]

1/k
+ ≥ 0 and

[yλ]
>
+yλ = [yλ]

>
+([yλ]+ − [yλ]−) = ||[yλ]+||22.

Therefore, we have from (3.7)

||[yλ]+||22 ≤ −[yλ]
>
+f(xλ) ≤ ||[yλ]+||2||f(xλ)||2,

or there is a constant C2 > 0 such that

||[yλ]+||2 ≤ ||f(xλ)||2 ≤ C2 (3.8)
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since xλ is bounded for any λ > 0 and f is continuous. This shows that [yλ]+ is bounded

uniformly in λ.

Suppose [yλ]− is unbounded. Then there exists an index i ∈ {1, 2, ..., n} such that

yiλ → −∞ as λ→∞. The ith equation in (3.1) is

f i(xλ) + yiλ + λ[xiλ]
1/k
+ = 0.

Since f i(xλ) is bounded uniformly in λ, λ[xiλ]
1/k
+ → ∞ since yiλ → −∞ when λ → ∞.

Therefore, xiλ > 0 when λ is sufficiently large. Now the (n+ i)th equation in (3.1) is

bi − xiλ + λ[yiλ]
1/k
+ = 0.

When λ is sufficiently large, yiλ < 0, and thus from the above equation we have xiλ = bi < 0,

contradicting the fact that xiλ > 0. Therefore, [yλ]− is also bounded uniformly in λ.

Combining this with (3.6) and (3.8), we have (3.2). 2

Remark 3.1 Lemma 3.1 shows that for any positive λ > 1, the solution of (3.1) always

lies in a bounded closed set D = {u ∈ R2n : ||u||2 ≤M}. This guarantees that there exists

a positive constant L, independent of zλ, λ and k, such that

||w(zλ)||2 ≤ L, (3.9)

due to Assumption A1. This result will be used in the proof of the following lemma which

establishes an upper bound for ||[zλ]+||2.

Lemma 3.2 Let zλ be the solution to (3.1). Then, there exists a positive constant C,

independent of zλ, λ and k, such that

||[zλ]+||2 ≤
C

λk
. (3.10)

PROOF. Decompose zλ into zλ = (x>λ , y
>
λ )> with xλ, yλ ∈ Rn. Left-multiplying both sides

of (b− xλ) + λ[yλ]
1/k
+ = 0 by [yλ]

>
+ gives

[yλ]
>
+(b− xλ) + λ[yλ]

>
+[yλ]

1/k
+ = 0.

This is of the form

[yλ]
>
+(b− xλ) + λ

n∑
i=1

[yiλ]
1+1/k
+ = 0.

Let p = 1 + 1/k and q = 1 + k. Clearly, p and q satisfy 1/p + 1/q = 1. Using Hölder’s

inequality, we have from the above equation

λ||[yλ]+||pp = [yλ]
>
+(xλ − b) ≤ ||[yλ]+||p(||xλ||q + ||b||q).
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Therefore,

||[yλ]+||p−1
p ≤ 1

λ
(||xλ||q + ||b||q) ≤

C1

λ
,

where C1 denotes a positive constant, independent of zλ and λ. In the above we used the

fact that all norms on Rn are equivalent and Lemma 3.1. Taking (p − 1)-root on both

sides of the above estimate and noticing p− 1 = 1/k, we finally have

||[yλ]+||p ≤
Ck

1

λk
.

Using the fact that all norms on Rn are equivalent again we see that the above inequality

implies

||[yλ]+||2 ≤
C2

λk
, (3.11)

where C2 is also a positive constant, independent of zλ and λ, that consists of Ck
1 and

the positive constant involved in the equivalence representation of ||[yλ]+||p and ||[yλ]+||2.

This gives an upper bound for part of [zλ]+.

Now, left-multiplying (3.1) by ([xλ]
>
+, 0

>) gives

[xλ]
>
+(f(xλ) + yλ) + λ||[xλ]+||pp = 0.

Thus, using Hölder’s inequality and the boundedness of ‖xλ‖, we have from the above

equality

||[xλ]+||pp = −1

λ
[xλ]

>
+(f(xλ) + yλ)

≤ 1

λ
||[xλ]+||p||f(xλ) + yλ||q

≤ 1

λ
||[xλ]+||p||w(zλ)||q.

Using (3.9) and the fact that all norms on Rn are equivalent we obtain from the above

estimates

||[xλ]+||p−1
p ≤ C3

λ
,

where C3 is a combination of L in (3.9) and the positive constant involved in the equiv-

alence representation of ||w(zλ)||q and ||w(zλ)||2 . Taking (p− 1)-root on both sides and

noticing again that all norms on Rn are equivalent, we get

||[xλ]+||2 ≤
C4

λk
,

where C4 is a positive constant, independent of zλ and λ. Finally, using this estimate and

(3.11) we have

||[zλ]+||2 =
√
||[xλ]+||22 + ||[yλ]+||22 ≤

C

λk
.

This completes the proof. 2
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Lemma 3.3 Let z = (x>, y>)> be a solution to Problem 2.2. Then y and f(x) + y are

orthogonal.

PROOF. When the ith component of y is non-zero, i.e., yi 6= 0 for an i ∈ {1, 2, ..., n},
from the complementarity condition (2.6) (or (2.10)) we have

xi = bi < 0.

Thus, the complementarity condition (2.3) gives f i(x) + yi = 0. Therefore, we have

y>(f(x) + y) = 0. (3.12)

2

Using Lemmas 3.2 and 3.3, we are ready to present and prove our main convergence

results as given in the following theorem.

Theorem 3.2 Let z := (x>, y>)> and zλ := (x>λ , y
>
λ )> be the solutions to Problems 2.2

and 3.1, respectively, where x>, y> ∈ K and x>λ , y
>
λ ∈ Rn. There exists a constant K > 0,

independent of zλ, λ and k, such that

||x− xλ||2 ≤ K max

{
1

λk/(ξ−γ)
,

1

λk/γ

}
, (3.13)

||y − yλ||2 ≤ K max

{
1

λk
,

1

λξk/[2(ξ−γ)]
,

1

λγk/(ξ−γ)

}
, (3.14)

for sufficiently large λ, where γ and ξ are constants used in Assumptions A1 and A2

respectively.

PROOF. In this proof we use Ci for any subscript i to denote a positive constant, in-

dependent of zλ and λ. We first show (3.13) in a similar way as that in [6], as given

below.

We decompose z − zλ into

z − zλ = z + [zλ]− − [zλ]+ =: rλ − [zλ]+, (3.15)

where rλ = z + [zλ]−. Noticing

z − rλ = −[zλ]− ≤ 0,

we have z − rλ ∈ K2. Note that z is a solution to Problem 2.2 and thus satisfies (2.11).

Therefore, replacing u in (2.11) with z − rλ gives

−r>λw(z) ≥ 0. (3.16)
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Since zλ satisfies (3.1), left-multiplying both sides of (3.1) by r>λ , we have

r>λw(zλ) + λr>λ [zλ]
1/k
+ = 0. (3.17)

Adding up both sides of (3.16) and (3.17) gives

r>λ (w(zλ)− w(z)) + λr>λ [zλ]
1/k
+ ≥ 0. (3.18)

Note that

r>λ [zλ]
1/k
+ = (z + [zλ]−)>[zλ]

1/k
+ = z>[zλ]

1/k
+ ≤ 0,

because [zλ]
>
−[zλ]

1/k
+ = 0, z ≤ 0 and [zλ]+ ≥ 0. Thus, (3.18) reduces to

r>λ (w(z)− w(zλ)) ≤ 0.

Using (3.15), we have from the above inequality

(z − zλ + [zλ]+)> (w(z)− w(zλ)) ≤ 0,

or equivalently

(z − zλ)> (w(z)− w(zλ)) ≤ −[zλ]
>
+ (w(z)− w(zλ)) .

Using (2.13) and Cauchy-Schwarz inequality we have from the above inequality

α||x− xλ||ξ2 ≤ (z − zλ)> (w(z)− w(zλ))

≤ −[zλ]
>
+ (w(z)− w(zλ))

≤ ||[zλ]+||2||w(z)− w(zλ)||2. (3.19)

From (3.9) and (3.10) we have from the above

||x− xλ||2 ≤
C1

λk/ξ
< 1 (3.20)

when λ is sufficiently large.

Now, using (2.12), (3.10) and (2.7) we have from (3.19)

||x− xλ||ξ2 ≤ 2||[zλ]+||2 (||f(x)− f(xλ)||2 + ||y − yλ||2 + |x− xλ||2)

≤ C2||[zλ]+||2 (||x− xλ||γ2 + ||y − yλ||2 + ||x− xλ||2)

≤ C3

λk
(||x− xλ||γ2 + ||y − yλ||2) (3.21)

when λ is sufficiently large, where C2 = max{β, 1} and C3 = 2C2C1. In the above we

used ||x− xλ||2 < ||x− xλ||γ2 because of (3.20) and γ ≤ 1.
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We now consider the estimation of ||y − yλ||2. Let sλ = y + [yλ]−. Then,

y − yλ = y − ([yλ]+ − [yλ]−) = sλ − [yλ]+. (3.22)

Left-multiplying (3.1) by (s>λ , 0
>) yields

s>λ (f(xλ) + yλ) + λs>λ [xλ]
1/k
+ = 0. (3.23)

From the definition of sλ we see that y − sλ = −[yλ]− ≤ 0 and so y − sλ ∈ K. Thus,

letting u = z + ((y − sλ)>, 0>)> in (2.11), we get

(y − sλ)>(f(x) + y) ≥ 0,

or equivalently,

−s>λ (f(x) + y) + y>(f(x) + y) ≥ 0. (3.24)

Adding up both sides of (3.23) and (3.24) gives

s>λ [(f(xλ)− f(x)) + (yλ − y)] + λs>λ [xλ]
1/k
+ + y>(f(x) + y) ≥ 0. (3.25)

From Lemma 3.3, y and f(x) + y are orthogonal. For the term s>λ [xλ]
1/k
+ in (3.25), we

have from the definition of sλ

s>λ [xλ]
1/k
+ = y>[xλ]

1/k
+ + [yλ]

>
−[xλ]

1/k
+ . (3.26)

If yiλ < 0 (or [yiλ]− > 0) for some i ∈ {1, 2, ..., n}, we have [yiλ]+ = 0, and the (n + i)th

(scalar) equation of (3.1) becomes

bi − xiλ = 0 or xiλ = bi < 0.

This implies that [xiλ]+ = 0. We thus have

[yλ]
>
−[xλ]+ = 0.

Using this complementarity relationship, we have from (3.26)

s>λ [xλ]
1/k
+ = y>[xλ]

1/k
+ ≤ 0, (3.27)

since y ≤ 0 and [xλ]
1/k
+ ≥ 0. Using (3.12) and (3.27) we obtain from (3.25)

s>λ [f(xλ)− f(x)] + s>λ (yλ − y) ≥ 0.

But sλ = y − yλ + [yλ]+ by (3.22). Thus, the above inequality becomes

(y − yλ + [yλ]+)>[f(xλ)− f(x)] + [yλ]
>
+(yλ − y)− (yλ − y)>(yλ − y) ≥ 0.

13



Using Cauchy-Schwarz inequality, (2.12) and (3.10) we have from the above inequality

||yλ − y||22 ≤ (y − yλ + [yλ]+)>[f(xλ)− f(x)] + [yλ]
>
+(yλ − y)

≤ (||yλ − y||2 + ||[yλ]+||2)||f(xλ)− f(x)||2
+||[yλ]+||2||yλ − y||2

≤ C4

((
||x− xλ||γ2 +

1

λk

)
||yλ − y||2 +

||x− xλ||γ2
λk

)
,

since γ ∈ (0, 1], where C4 = max{β, C,Cβ}. Let u = ||x−xλ||2 and v = ||y−yλ||2. Then,

the above inequality becomes

v2 ≤ C4

(
uγ +

1

λk

)
v +

C4u
γ

λk
.

This can be rewritten as(
v − C4

2

(
uγ +

1

λk

))2

≤ C4u
γ

λk
+
C2

4

4

(
uγ +

1

λk

)2

.

Taking square-root on both sides of the above and rearranging the resulting inequality,

we have

v ≤

(
C4u

γ

λk
+
C2

4

4

(
uγ +

1

λk

)2
)1/2

+
C4

2

(
uγ +

1

λk

)

≤ C
1/2
4 uγ/2

λk/2
+ C4

(
uγ +

1

λk

)
≤ C5

(
1

λk
+
uγ/2

λk/2
+ uγ

)
, (3.28)

where C5 = max{C1/2
4 , C4}. Replacing v = ||y − yλ||2 on the right-hand side of (3.21)

with the above bound and combining like terms, we get

uξ ≤ C6

λk

(
1

λk
+
uγ/2

λk/2
+ uγ

)
, (3.29)

where C6 = 1 + C5. If uγ ≤ uγ/2/λk/2, we have

u ≤ 1

λk/γ
. (3.30)

When uγ > uγ/2/λk/2, from (3.29) we have

uξ ≤ C6u
γ

λk
+
C6

λ2k
.

Rearranging the above gives

uγ
(
uξ−γ − C6

λk

)
≤ C6

λ2k
. (3.31)

14



Therefore, if uξ−γ − C6

λk
≤ 0, we have

u ≤ C6

λk/(ξ−γ)
. (3.32)

When uξ−γ − C6

λk
> 0, from (3.31) it is easy seen

min

{
u2γ,

(
uξ−γ − C6

λk

)2
}
≤ uγ

(
uξ−γ − C6

λk

)
≤ C6

λ2k
.

This yields either (3.30) or (3.32). Therefore, combining the two cases we have (3.13) for

some positive constant K, independent of zλ and λ.

Finally, replacing u on the right-hand side of (3.28) with the upper bound in (3.13)

we have (3.14). This completes the proof. 2

Theorem 3.2 establishes upper bounds for the approximation error between xλ and x

and that between yλ and y. These upper bounds depend on the parameters in Assumptions

A1 and A2 and Problem 3.1. In general, xλ and yλ converge respectively to x and y at

the different rates as given in (3.13) and (3.14). However, when f(x) becomes strongly

monotone and Lipschitz continuous, i.e., γ = 1 and ξ = 2 in Assumptions A1 and A2

respectively, both xλ and yλ converge to their counterparts at the same rate O(λ−k). This

is given in the following corollary.

Corollary 3.1 Let z and zλ be respectively the solutions to Problems 2.3 and 3.1. If f is

Lipschitz continuous and strongly monotone, then, when λ is sufficiently large, we have

||z − zλ||2 ≤
K1

λk
, (3.33)

for some positive constant K1, independent of zλ, λ and k.

PROOF. When f is Lipschitz continuous and strongly monotone, we have γ = 1 and ξ = 2

in Assumptions A1 and A2. Thus, (3.33) follows from (3.13)–(3.14) and the triangular

inequality. 2

4 Numerical Results

We now present some numerical results to support our theoretical findings. Two infinite-

dimensional double obstacle problems have been solved using our penalty method. Note

that the penalty equation (3.1) is nonlinear even when k = 1. To solve (3.1), we use

the usual damped Newton’s method with a damping parameter θ. Also, the penalty

term is non-smooth and in computation both [xλ]
1/k
+ and [yλ]

1/k
+ are smoothed out by the

smoothing technique used in [6]). For all the test cases below, we use xiλ = −0.1 = yiλ
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as the initial guess for the Newton’s method for all feasible i. The damping parameter

is chosen to be θ = 0.2 for all of the computation. All the computations have been

performed in double precision on a MacBook Pro with Intel Core i5 under Matlab R2012a

programming environment.

Test 1. The first test problem is chosen to be the following problem: find u and v such

that

−u′′(s) + u3(s)− g(s) + v(s) ≤ 0,

u(s) ≤ 0,

u(s)(−u′′(s) + u3(s)− g(s) + v(s)) = 0,

p(s)− u(s) ≤ 0,

v(s) ≤ 0,

v(s)(p(s)− u(s)) = 0

in s ∈ (0, 1) satisfying the boundary conditions u(0) = u(1) = 0, where g and p are

two given functions. It is easy to check that the above bounded NCP arises from the

application of the KKT conditions and the calculus of variations to the following ‘double

obstacle’ problem

min
p≤u≤0

J(u) =

∫ 1

0

(
1

2
(u′)2 +

1

4
u4 − ug

)
ds

satisfying that u is twice continuously differentiable and u(0) = u(1) = 0. We choose

g(s) = −4π2 sin(2πs) + sin3(2πs) and p(s) = sin(2πs) − 1.5. It is easy to verify that

the unconstrained problem corresponding to the above one has the exact solution u =

− sin(2πs).

To discretize the above bounded complementarity problem, we divide the solution

interval [0, 1] uniformly into n sub-intervals with n + 1 mesh points si = hi for i =

0, 1, ..., N , where h = 1/N . Applying the standard central finite difference scheme on

the mesh to the above problem yields the finite-dimensional bounded NCP of the form

(2.1)–(2.6) with

f(x) = Ax+ x3 − c,

where x = (x1, ..., xN−1)> and y = (y1, ..., yN−1)> are unknown nodal approximations to u

and v respectively at the mesh points, b = (p(s1), ..., p(sN−1))>, c = (g(s1), ..., g(sN−1))>

and A is the following symmetric, positive-definite (N − 1)× (N − 1) tri-diagonal matrix:

A =
1

h2


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

 .
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λ = 52−k×2i

h2
i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

k = 1 Errors 1.32e-1 7.95e-2 3.95e-2 1.97e-2 9.81e-3 4.90e-3
Ratios – 1.67 2.01 2.01 2.00 2.00

k = 2 Errors 2.30e-3 5.75e-4 1.44e-4 3.59e-5 8.97e-6 2.24e-6
Ratios – 4.01 4.00 4.00 4.00 4.00

k = 3 Errors 8.43e-4 1.05e-4 1.31e-5 1.64e-6 2.05e-7 2.57e-8
Ratios – 8.02 8.00 8.00 8.00 8.00

k = 4 Errors 8.01e-3 4.83e-4 3.01e-5 1.88e-6 1.18e-7 7.35e-9
Ratios – 16.6 16.0 16.0 16.0 16.0

Table 4.1: Computed rates of convergence in λ for Test 1.

We now choose N = 100 (h = 0.01) and consider the solution of the penalty equation

(3.1) corresponding to the above finite-dimensional bounded NCP.

To test the rates of convergence, we use the solution with k = 2 and λ = 1010/h2

as the ‘exact’ or reference solution, say z∗. Let us first investigate the computed rates

of convergence of the method in λ for a fixed value of k. To achieve this, we solve the

problem using one sequence of values of λ for each given value of k. This sequence is

chosen to be λi = 52−k × 2i/h2 for i = 0, 1, ..., 5. The computed errors ||z∗ − zλi ||2 are

listed in Table 4.1 for k = 1, 2, 3 and 4 and the chosen values of λ. We also list the ratios

||z∗ − zλi−1
||2/||z∗ − zλi ||2(i = 1, ..., 5) of two consecutive errors in the table for each k.

From (3.33) it is easy to see that the theoretical ratio for two consecutive values of λ is

equal to λki+1/λ
k
i = 2k. From Table 4.1, we see that our computed ratios are very close to

these theoretical ones, i.e., 2k, for all k = 1, 2, 3 and 4.

Finally, we plot the computed solution u along with the lower bound p(s) = sin(2πs)−
1.5 in Figure 4.1(a) and the computed v in Figure 4.1(b). From Figure 4.1 we see that u

is bounded above and below by respectively 0 and p(s). From Figure 4.1 (b) we see that

when the lower bound becomes active, v is negative. Otherwise, it is zero.

Test 2. Consider the following 2D obstacle problem:

min
p1≤u≤p2

J(u) :=

∫
Ω

(
1

2
∇u(s, t) · ∇u(s, t) +

(
1

4
u4(s, t)− g(s, t)

)
u

)
dsdt, (4.1)

satisfying u = 0 on the boundary of Ω, where Ω = (0, 1) × (0, 1), g1(s, t) and g2(s, t) are

given functions defining the lower and upper bounds on the solution u, and g(s, t) is also

a known function. This test problem is given in [1] with the forcing term (1
4
u4 − g).

As for Test 1, to solve this problem, it is necessary to discretize it first. Let Ω be

divided uniformly into N2 subdomains with mesh nodes (si, tj) = (ih, jh) for i, j =

0, 1, ..., N , where h = 1/N . We re-order the dof := (N − 1)2 mesh nodes inside Ω as

q1 = (s1, t1), q2 = (s2, t1),..., qN = (s1, t2), ..., qdof = (sN−1, tN−1). As mentioned in
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Figure 4.1: Computed solutions u and v along with the lower bound p of Test 1.

[1], application of a suitable finite difference scheme to (4.1) yields the following finite

dimensional problem:

min
b1≤x≤b2

(
1

2
x>Ax+

1

4
||x2||22 − d>x

)
, (4.2)

where x is an approximation of (u(q1), ..., u(qdof ))
>, bk = (pk(q1), ..., pk(qdof ))

> for k = 1, 2,

d = (g(q1), ..., g(qdof ))
> and A = (ai,j) is the dof × dof pentadiagonal matrix with the

entries

ai,i = 4, ai,j−(N−1) = ai,j−1 = ai,j+1 = ai,j+(N−1) = −1,

for all feasible (i, j) and ai,j = 0 otherwise.

Note that (4.2) is not in the desired form which has the KKT conditions as in Problem

2.1, as b2 6= 0. Let x̄ = x − b2 and b = b1 − b2, it is trivial to verify that (4.2) can be

transformed into the following problem:

min
b≤x̄≤0

(
1

2
(x̄+ b2)>A(x̄+ b2) +

1

4
||(x̄+ b2)2||22 − d>(x̄+ b2)

)
.

The KKT conditions corresponding the above minimization problem is of the same form

as in Problem 2.1 with f(x̄) = A(x̄+ b2) + (x̄+ b2)3 − d.
Now, we choose

p1 = −s− t,

p2 = 6[(s− 0.5)2 + (t− 0.5)2],

g = 4π sin(2πs)(1− 5 cos(4πt)) + sin(2πs)3(1− cos(4πt))3.

It is easy to verify that the unconstrained solution to (4.1) is uunc = sin(2πs)[1−cos(4πt)].

We also chose N = 50, and use the numerical solution from k = 2 and λ = 1010/h2 as the
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λ = 53−k×2i

h2
i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

k = 1 Errors 1.85e0 9.26e-1 4.72e-1 2.34e-1 1.17e-1 5.83e-2
Ratios – 2.00 1.96 2.01 2.01 2.00

k = 2 Errors 1.06e-1 2.63e-2 6.56e-3 1.64e-3 4.19e-4 1.03e-4
Ratios – 4.02 4.00 4.00 4.00 4.00

k = 3 Errors 1.78e-1 2.20e-2 2.74e-3 3.43e-4 4.28e-5 5.36e-6
Ratios – 8.09 8.01 8.00 8.00 8.00

k = 4 Errors 7.29e0 5.12e-1 3.13e-2 1.96e-3 1.23e-4 7.66e-6
Ratios – 14.2 16.2 16.0 16.0 16.0

Table 4.2: Computed rates of convergence in λ for Test 2.
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Figure 4.2: Computed solution u and the multiplier, along with the lower and upper
bounds p1 and p2 of Test 2.

reference solution for calculating rates of convergence. Table 4.2 contains the computed

rates of convergence in the same way as used in Test 1. From the table we see that the

computed rates match the theoretical one as for Test 1. The numerical solution to (4.1),

the lower and upper bounds p1 and p2, along with the multiplier y in Problem 2.1, are

plotted in Figure 4.2. From Figure 4.2(b) we see that the multiplier is zero when the lower

bound constraint p1 is inactive and negative when it is active. Note that the multiplier

corresponding the upper bound p2 was eliminated during the formulation of Problem 2.1.

To conclude this section, we present some numerical results to demonstrate the influ-

ence of the size of the problem and k on the number of Newton’s iterations and compu-

tational costs. In Table 4.3, we list the CPU time in seconds and numbers of Newton’s

iterations for difference mesh sizes and values of k. As can be seen from the figure, there

is a small to moderate increase in the number of iterations as the dimension of Prob-
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No. of Newton’s iter. CPU times in sec.
Mesh / k = 1 2 3 4 1 2 3 4

10× 10 124 115 96 96 0.29 0.24 0.21 0.23
20× 20 137 115 103 102 0.87 0.64 0.56 0.62
40× 40 151 126 112 110 2.61 2.34 2.25 2.25
80× 80 167 138 122 117 26.10 22.65 21.00 19.50

160× 160 187 156 140 127 120.86 99.65 92.58 82.67

Table 4.3: Numners of Newton’s iterations and CPU time in seconds for Test 2.

lem 2.1 is quadrupled, indicating that the numerical solution of the penalty equation is

insensitive to the number of unknowns. It is also interesting to see that the number of

Newton’s iterations decreases as k increases. However, the numbers of Newton’s iterations

for different values of k may not be absolutely comparable, as the results in Table 4.3

were obtained using the same damping parameter θ = 0.2. Our numerical experiments

show that θ can be chosen to be larger than 0.2 for k < 4. For example, when k = 1, the

standard Newton’s method (i.e., θ = 1) converges and thus it needs a smaller number of

iterations than the corresponding ones listed in Table 4.3 to solve the problem.

We comment that it is non-trivial to find a non-trivial example in which the mapping

only satisfies Hölder, not Lipschitz, continuity condition (2.12). We leave the numerical

verification of the convergence rates for this general case to our future research.
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