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ABSTRACT 

Process models play an important role in the bioreactor design, optimisation and control. In 

previous work, the bioreactor models have mainly been developed by considering the 

microbial kinetics and the reactor environmental conditions with the assumption that the ideal 

mixing occurs inside the reactor. This assumption is relatively difficult to meet in the 

practical applications. In this paper, we propose a new approach to the bioreactor modelling 

by expanding the so-called Herbert’s Microbial Kinetics (HMK) model so that the developed 

models are able to incorporate the mixing effects via the inclusion of the aeration rate and 

stirrer speed into the microbial kinetics. The expanded models of Herbert’s microbial kinetics 

allow us to optimize the bioreactor’s performances with respects to the aeration rate and 

stirrer speed as the decision variables, where this optimisation is not possible using the 

original HMK model of microbial kinetics. Simulation and experimental studies on a batch 

ethanolic fermentation demonstrates the use of the expanded HMK models for the 

optimisation of bioreactor’s performances. It is shown that the integration of the expanded 

HMK model with the Computational Fluid Dynamics (CFD) model of mixing, which we call 

it as a Kinetics Multi-Scale (KMS) model, is able to predict the experimental values of yield 

and productivity of the batch fermentation process accurately (with less than 5% errors). 
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1. Introduction 

     Bioreactors are widely used in process industries for mixing and blending of liquids for 

biochemical reactions (Harvey and Rogers, 1996; Rahimi and Parvareh, 2005). Bioreactors 

used in biotechnological applications are commonly designed to meet the requirements of the 

microorganism cell-culture environment by addressing the key variables such as temperature, 

oxygen, pH, nutrients, metabolites and biologically active molecules (Hutmacher and Singh, 

2008). The bioreactor’s performances are characterized by its transport capacities in order to 

optimally supply the microorganism with the required nutrients during the fermentation 

process (Lübbert, 1992).  

It is very common that the bioreactors are equipped with impellers such that they operate in 

the turbulent flow regime in order to improve the mixing conditions. The presence of such 

mixing conditions often makes the task of bioreactor optimisation difficult (Ranade, 1997). It 

has been recognized that the awareness of the non-uniformity distribution of the intensity and 

quality of flow, turbulent kinetic energy, turbulent eddies and concentrations of species 

involved throughout the bioreactor is essential to devise an efficient operational strategies of 

bioreactors, not only to achieve good yield but also consistent product quality (Venneker et 

al., 2002).  

From systems engineering perspective, mathematical modelling has been one of the most 

successful scientific tools available to improve the performance of a bioreactor via the 

improvement of the metabolic capabilities of microorganism by mean of genetic 

manipulations of the cell metabolism and the bioprocess conditions (Wiechert, 2002). Hence, 

process models would become more pervasive in the design, optimisation and control of 

bioreactors (Jiang et al., 2002).  

The common approach in the bioreactor design, optimisation and control has always relied on 

the kinetics of fermentation, which assumes well-mixing behaviour. Our previous studies, for 

example Liew et al. (2009) showed that the deviation from the ideal mixing behaviour (i.e. 

non-ideal mixing phenomena) could lead to severe loss in yield and changes in microbial 

physiology. The integration of mixing phenomena into the bioreactor modelling is therefore 

vital, but it is not an easy task because the detailed description of the turbulent flow field, in 

combination with other transport equations, needs to be addressed for the interactions of 

mixing and fluid flow (Jenne and Reuss, 1999).  



Submitted to Chemical Engineering Science Journal   3 

 

The mixing is particularly important in the case of such practical applications as the industrial 

fermentation processes (Bezzo et al., 2003). It is also important to note that such a 

fermentation process can be highly sensitive to other variables such as batch time, liquid 

volume and initial nutrient concentrations due to their effects on cellular metabolism. The 

optimisation of bioreactors now implies the manipulation of both microbial culture and the 

environmental factors involved, i.e. a multivariable optimisation of the process (Konde and 

Modak, 2007). Model-based optimisation is therefore a vital tool in determining the batch 

operating strategies (Hjersted and Henson, 2006). One of the fundamental aspects to the 

success of the model-based optimisation is the model of microbial kinetics adopted, which 

must accurately capture the effects of decision variables (pH, temperature, aeration rate and 

stirrer speed) on the rates of growth, substrate consumption and product formation.  

To date, most of the currently available models of microbial kinetics do not capture the 

effects of the aeration rate (AR) and stirrer speed (SS) on the rates of growth, substrate 

consumption and product formation. Therefore, the main contribution of this paper lies in the 

development of bioreactor models, where three approaches to incorporating the effects of AR 

and SS into the model of microbial kinetics based on the Herbert’s concepts are proposed. 

Two of the three developed models are referred to in this paper as the expanded Herbert’s 

Microbial Kinetics (HMK) models. The proposed approaches can also be extended to any 

other conventional model of microbial kinetics if we want to incorporate the fluid mixing 

phenomena.  

The objectives of this paper are two folds. The first objective is to propose three modelling 

approaches to capturing the mixing mechanism so that AR and SS can be used as parameters 

to optimize the bioreactor’s performances, i.e. yield and productivity. The second objective is 

to determine the optimal values of AR and SS for a batch fermentation process by applying 

the Response Surface Methodology (RSM) to maximize the fermentation yield and 

productivity using the developed models. Simulation and experimental studies were 

performed to validate the results of this work. 
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2. Material and methods 

 

2.1. Microorganism and inoculum 

In this study, a set of experiments was conducted using the BIOSTAT A-plus 2L, MO-

Assembly bioreactor operated at batch mode. Rushton turbine is used as the agitation system, 

whereas air sparger is utilized as the aeration system. Rushton turbine is a disc turbine, which 

has been considered as the optimum design for use in many fermentation processes (Stanbury 

et al., 1995). This kind of disc turbine is most suitable in a bioreactor since it could break up a 

fast air stream without itself becoming flooded in air bubbles. The industrial Baker’s yeast 

was utilized as the inoculum culture with glucose as the substrate. The inoculum was grown 

in a 250mL conical flask and was incubated at room temperature for 8 hours. 

 

2.2.  Growth medium 

First, 1.5L of fermentation medium was prepared by adding 75g glucose, 7.5g yeast, 3.75g 

NH4Cl, 4.37g Na2HPO4, 4.5g KH2PO4, 0.38g MgSO4, 0.12g CaCl2, 6.45g citric acid and 4.5g 

sodium citrate. The medium culture was sterilized at 121
o
C for 20 minutes and then cooled 

down to room temperature. Then, 40mL of inoculum was added to the fermentation medium. 

The temperature and pH were maintained at 30°C and pH 5, respectively.  The batch process 

was stopped after 72 hours and the samples were taken at every 2-4 hours of sampling 

interval and were analyzed for glucose and ethanol concentrations. The experiments were 

repeated at various values of AR and SS within the range of 1.0-1.5LPM of AR and 150-

250rpm of SS i.e. [         ]  [    ]  [         ] . Therefore, the base-line 

condition or the mid-point of these ranges of AR and SS is at 1.25LPM of AR and 200rpm of 

SS.  

 

2.3.  Glucose and ethanol concentrations 

Each sample was first filtered, and then analyzed for the concentrations of substrate and 

ethanol using R-Biopharm test kits and UV spectrophotometer under a wavelength of 340nm, 

as outlined in the procedures provided by the test kits. All samples were tested at room 

temperature. 
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2.4. Optical Density 

Each sample was first filtered. The optical density was then analyzed by using UV 

spectrophotometer under a wavelength of 340nm, similar wavelength utilized for the analysis 

of glucose and ethanol concentrations, in order to show consistency of concentrations 

analysis. No test kits were required as the UV spectrophotometer could directly analyze the 

optical density. All samples were tested under room temperature. 

 

2.5.  Experiment designs for response surface methodology 

In this study, we adopt the Central Composite Design (CCD) for the design experiments since 

this design provides a solid foundation for the generation of a response surface map. To 

create a CCD, it is important to locate new points along the axes of the factor space. Table 1 

shows the CCD matrix employed for both AR and SS and the corresponding values of yield 

and productivity. For maximum efficiency, the axial or star points are to be located at a 

specific distance outside the original factor range. In the application of Response Surface 

Methodology, the regression analysis is employed to describe the experimental data 

collected. The least square technique is used to fit the model equation containing the input 

variables by minimizing the residual errors of the sum of squared deviations between the 

experiments and the estimated responses.  

 

In our study, a two-factor factorial design is selected since AR and SS are the two factors of 

interest to study on the effect of bioreactor performance. AR (X1, LPM) and SS (X2, rpm) are 

considered as input variables. Yield (Y1, %) and productivity (Y2, g/L.hr) are considered as 

output variables. The levels of the input variables are selected based on the range of 

reasonable formulations since the interpretation of the results are valid only within 

experimental limits in the laboratory available. Three levels are coded as -1, 0 and +1, which 

corresponded to the lower, middle and higher values respectively. The experiments are 

chosen to realize every possible combination between the variables, with the levels coded. 

Therefore, Table 1 shows the input variables and levels employed.  
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The experiments are randomized in order to make the experimental error as small as possible. 

For CCD, it is an extension of two-level full factorial design. A CCD enables a quadratic 

model to be fitted by including new levels. Therefore, there are 2 blocks available in the CCD 

matrix shown in Table 2. Once all experiments in Block 1 has been completed and all data 

were recorded, it is required to extend the experiments to Block 2. All experimental data from 

Block 1 and Block 2 will then be used to develop the mathematical model. 

 

As shown in Table 2, the experimental tests involved fourteen trials. Standard Order is the 

order of treatment combinations based on the level indicated in Table 2. Run Order is the 

order of experiments to be carried out. For each experimental trial, the new conditions of the 

AR and SS were utilized. These results were further analyzed by performing the ANOVA on 

the residuals for detecting outliers (Noordin et al., 2004).  

 

3. Bioreactor modelling 

 

3.1.  Objectives and approaches   

The majority kinetics of ethanol fermentation utilize a formal macro-scale approach to 

describe the microbial growth, whereby they are empirical and based on either Monod’s 

equation or on its numerous modifications which take into account the inhibition of microbial 

growth by a high concentration of product and/or substrate (Starzak et al., 1994). The models 

so far only explained the effect of ethanol inhibition via the mechanism of non-competitive 

inhibition of a simple reversible enzymatic reaction without taking into consideration of the 

mixing mechanism occurring inside the bioreactor, i.e. the assumption of well-mixing 

behaviour is applied. Deviation from the ideal mixing behaviour in practice could lead to 

severe loss in yield and changes in microbial physiology. Thus, the integration of mixing 

phenomena (and the effects of AR and SS) is necessary to be taken into account, and this is 

the objective of our modelling work. 

Three modelling approaches to incorporating the effects of mixing in a batch ethanolic 

fermentation process are therefore proposed in this paper: (1) statistical data-based (SDB) 

model, (2) kinetics hybrid (KH) model and (3) kinetics multi-scale (KMS) model. To validate 

the developed models, a series of experimental studies were conducted using the BIOSTAT 
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A-plus 2L, MO-Assembly bioreactor operated at batch mode with the ranges of AR of 1.0-

1.5LPM and SS of 150-250rpm.  

 

3.2.  Batch bioreactor model with Kinetics Herbert’s concept   

In order to predict the yield   and productivity    , a batch bioreactor can be modelled 

dynamically as follows:   
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where Z  is the vector of state variables consisting of optical density ( vX ), substrate ( S ) and 

product ( P ) concentrations. Φ is the vector of performance measure consisting of Y and rP . 

)0(0 SS  and )0(0 PP   is the initial substrate and ethanol concentrations (g/L) of the medium,  

( bt ) (hrs) is the batch time for the fermentation process. Other variables are the concentration 

profiles of substrate ( S ), product (ethanol) ( P ) and viable cell (optical density) ( vX ). The 

microbial kinetics are: (1) rate of growth ( xr ), (2) rate of product formation ( pr ) and (3) rate 

of substrate consumption ( sr ).  

In this work, the Herbert’s concept of endogenous metabolism is adopted since it has been 

used in numerous studies to describe the kinetics of ethanolic fermentation with sufficient 

accuracy (Starzak et al. 1994). Moreover, the by-product concentration is not included in this 

study because we focus on the impacts of AR and SS on the concentration profiles of 

substrate S , product (ethanol) P and viable cell (optical density) vX .  

The Herbert’s concept assumes that the observed rate of biomass formation ( xr ) comprised of 

the growth rate gxr )( and the rate of endogenous metabolism endxr )( . 

endxgxx rrr )()(       (3) 

where          



Submitted to Chemical Engineering Science Journal   8 

 

)exp()]/([)( 521 PkSkSXkr vgx       (4) 

vendx Xkr 6)(       (5) 

The rates of substrate consumption (rs) and product formation (rp) are assumed to be 

proportional to the biomass growth rate: 

gxs rkr )(3      (6) 

gxp rkr )(4      (7) 

Note that the kinetics of ethanolic fermentation based on the Herbert’s concept consists of six 

kinetic model parameters i.e. Tkkkkkk ][ 654321 .  

 

3.3.  Statistical Data-Based (SDB) model   

Rather than using the bioreactor models equations from (1-7), the SDB model is developed 

by applying a regression analysis to a set of experimental data for different AR, SS, yields (Y) 

and productivity ( rP ). By applying this approach, the effect of mixing arising from different 

values of AR and SS are included in the regression model by treating the AR and SS as inputs 

(or experimental variables X ) and the yield ( ) and productivity ( rP ) as outputs (or response 

variables   . After applying design experiments to the bioreactor, sets of experiment data for 

both inputs and outputs are obtained.   

Generally in the development of statistical-based model, it is assumed that there exists a 

relationship       where      is an n-dimensional vector of inputs,      is an m-

dimensional vector of outputs and      is an m-dimensional vector of functions space. As 

 is normally an implicit function of   , in real practice it is often difficult to obtain the exact 

relationship between the input and response vectors especially for complex systems. Thus, 

one way to develop an explicit relationship between them is by using a regression model 

where the model parameters are obtained by an optimisation.  

Let us consider the regression model as a quadratic model: 

 DXXBXA Tˆ      (8) 



Submitted to Chemical Engineering Science Journal   9 

 

where A, B, D are defined as model parameters, whereby A, B and D will be estimated in such 

a way that the sum of the squared errors between the predicted performance measure ( ̂ ) and 

experimental values ( ) of the responses are minimised. X is the vector of experimental 

inputs (AR and SS).   is the predicted error. So, this problem can be mathematically stated 

as: 

)]}ˆ[()]ˆ[(min{:
1

1 i

k

i
i

T
iP  

  (9) 

where i̂  is the predicted values by Eq. (8) and the subscript   indicates the experimental 

number. Based on the full factorial design, the total number of experimental runs for   inputs 

is given by     ; in our case     and hence    . Note that different values of   result 

in different experimental designs. 

To test the optimisation results of   , the Analysis of Variance (ANOVA) is performed where 

the results must be significant along with the analysis of curvature. Curvature analysis is vital 

to indicate whether the experimental results could fit well into the proposed model 

(Wadsworth, 1998). If the curvature is significant, i.e. the curvature lies in the region of the 

desired optimum response, the optimisation results are acceptable. If the curvature is 

insignificant, the optimisation results are not acceptable. A method based on the Path of 

Steepest Ascent (PSA) (Wadsworth, 1998) is adopted, and where the curvature is further 

analyzed until it is shown to be significant. 

Note that some process constraints such as maxmin XXX  where minX and maxX denote the 

lower and upper limits of inputs, respectively can be included in the optimisation of 1P . 

Furthermore, different model structures can also be selected while solving the optimisation 

such as linear or second order model as given by:  

 BXAˆ , or   (10) 

TT CXXBXA ̂    (11) 

where ̂ is the predicted values and C is an off-diagonal matrix defined as 









0

0
:

2

1

c

c
C . 
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3.4.  Kinetics Hybrid (KH) model 

The basic assumption underlying the development of Kinetics Hybrid model (Starzak et al., 

1994) is that the kinetic parameters are the function of the inputs X as: 

),(  Xh    (12) 

Here  mn
R


 is a matrix whose elements correspond to the parameters to be determined 

later. Therefore substituting Eq. (12) into Eq. (3-7), the microbial kinetics of Herbert’s can 

now be expressed as 

),,(  XZgR mx    (13) 

where Rx is the vector of microbial kinetics, i.e. rx, (rx)g and (rx)end. gm is the Herbert 

Microbial Model and X is the process constraint. 

The advantage of expanded Kinetics Herbert’s model, i.e. Eq. (13) over the original microbial 

kinetic model, i.e. Eq. (3-7) is that the expanded one can be directly used to optimize the 

yield   and the productivity    with respect to the aeration rate (AR) and stirrer speed (SS). 

The development of Kinetics Hybrid model involves two main steps: 

1. For experimental run i, obtain the kinetics parameters i  using the original kinetics 

Herbert’s model based on Eq. (3-7) and batch reactor model based on Eq. (1-2) 

2. For the obtained kinetic parameters },...2,1{, kii  and sets of aeration rates (ARi) and 

stirrer speeds (SSi) , find   in Eq. (12) using regression method 

The combination of the batch bioreactor model which is denoted by Eq. (1-2), the Herbert’s 

kinetics model, denoted by Eq. (3-7) and the regression model of Eq. (12) constitutes the so-

called kinetics hybrid (KH) model of bioreactor. Clearly, in this approach, the effect of 

mixing is now embedded into the bioreactor model, i.e. Eq. (1). 

In more details, the development of kinetics hybrid model follows the systematic procedure 

as follows: 

Step 1: Identification of Herbert’s Kinetic Parameters 
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The Herbert’s kinetic parameters ( 621 ,..., kkk ) is obtained via optimisation by solving the 

following quadratic problem. 

]}ˆ[{min: 12 jj
q
j ZZP      (14) 

Here jẐ  is the predicted value of Z  using the bioreactor model of Eq. (1-2) at the j-sample 

time, and q is the number of samples taken during the course of batch experiments. 

For the i-experimental run, the corresponding solution to problem 2P  will yield *
ii   that 

minimizes the sum of squared errors between the predicted values and experimental values of 

iZ . For a     number of experimental runs, we will obtain a set of },...,,{ **
2

*
1

*
0 kkkkk , 

which contains the solutions corresponding to all experimental runs including the base-line 

experimental run i.e *
0k . 

Step 2: Determine the Regression Model of Eq. (11) 

This step is to find the regression model of   in term of X. Thus, this is equivalent to finding 

*  where the problem can be stated as 

  ii
T

i
j
iP  ]},ˆ[]ˆ[{min: *

2
*
102    (15) 

where j is the number of experiment runs based on the design of experiment (i.e. j = 4 if 

factorial design is adopted). Here i = 0  indicates the experiment at the base-line conditions 

and ̂  denotes the predicted value of   based on a regression model, e.g. as Eq. (8), (10) or 

(11). As we have no a priori knowledge on the exact form of relationship Xh : , we use 

the statistical approach, i.e. the technique used for the SDB model, thus assuming   can be 

represented by model equations e.g. by Eq. (10) for linear model. 

 

3.5.  Kinetics Multi-Scale (KMS) model 

The kinetics multi-scale (KMS) model is developed based on the Kinetics Hybrid model 

described by Eq. (3-7) and Eq. (12-13), but we use the general mass-energy balance over an 

element of reactor volume combined with a mixing model to replace the bioreactor model 

which is denoted by Eq. (1-2). The mixing model is implemented using Computational Fluid 

Dynamics (CFD) based on the k-ε turbulence model (Dubey et al., 2006). This approach was 
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used to describe the mixing mechanism in a bioreactor with sufficient accuracy (Ranade, 

2002).  

The k-ε turbulence model is normally used in order to describe the mixing behaviour and to 

compute the turbulence in the bioreactor. The energy dissipation is expressed as: 

)/()(/))((  xPumPFu     (16)    

where Δp denotes the pressure drop, m the mass, F the tube cross-section, x the axial 

coordinate and u the velocity vector field.  Moreover, the fluid flow equations need to be 

solved for a constant density fluid (Bode, 1994). These consist of the continuity equation: 

0)( udiv      (17) 

and the transport equations: 

  Gkdivukdiv keff ])/[()(    (18) 

)/)((])/[()( 21 kCGCdivukdiv eff       (19) 

where k  and  denote the gradient of k  and  , respectively. k is the kinetic energy of 

turbulence at the point of interest. 

On the other hand, the Eddy Viscosity model is used to solve complex turbulent flows. This 

model has proven to be a valuable tool in the predictions of turbulent flow-field (Gatski and 

Jongen, 2000). Therefore, it would be useful to utilize this model to predict the turbulent 

flow-field in the bioreactor.  

The Eddy Viscosity is given by 

 /2kCuT     (20) 

Note that G is the scalar dissipation function )2/( effijijG   and the scalar values: 

1,92.1,44.1,09.0 21  kCCC  and 3.1 .  

The Navier-Stokes equation is used for flow equations to describe the instantaneous 

behaviour of the turbulent liquid flow in ethanolic fermentation process. The resulting 

Reynolds equations and the continuity equation are given by: 
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For model accuracy and computational expense, a reasonable eddy viscosity models relating 

the individual Reynolds stresses to mean flow gradients are adopted: 
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where vturb is the turbulent eddy viscosity. The transport of momentum is thought of as 

turbulent eddies, which like molecules, collide and exchange momentum. 

The general balance over an element of reactor volume is given by: 

  SxxxUt iiii  /)/)((/)(/)(    (24) 

where   is the density of fluid,   is the concentration of any component, iU  is the local 

velocity in the ix -direction,   is the effective diffusivity of   and S  is the volumetric 

source term (rate of production of   per unit volume). Note that, the reaction rates described 

by Eq. (13) are embedded into the source term S . Also note that the notation Z  denotes 

the output variables i.e. optical density, substrate and ethanol concentrations. 

Using the KMS model, we can compute the mass of substrate (
bt

MS ) and mass of product      

(
bt

MS ) at the end of batch time over the total reactor volume, i.e.: 
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where iS  is the substrate concentration at i location, iV is the volume of mesh at i location and 

the volume of medium in the reactor RV  is given by 

 
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h

i
iR VV
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   (27) 
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Here h is the number of discretizations (i.e. finite volume). Then, we can calculate as follows 
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Here 0MS and 0MP  correspond to the initial mass of substrate and mass of product (ethanol) in 

the fermentation medium, respectively. 

 

3.6.  Model analysis and validation 

In this section, we develop the models using the proposed approaches, then the models are 

analysed using the ANOVA and validated against the experimental data.  

The SDB model was developed using the input and output data as shown in Table 2, and the 

regression method results in the following quadratic model (Eq. 29) where the ANOVA 

analysis is presented in Tables 3 and 4:  
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34    (29) 

As shown in Tables 3 and 4, the ANOVA results of the model demonstrate that the model is 

highly significant, as indicated by the Fisher’s F test (Fmodel = 9.73 and 9.3) and a low “Prob > 

F” value (Pmodel > 0.0047 and > 0.0054). Additionally, the goodness of the fit of the model is 

also checked by the determination coefficient (R
2
). In this case, the values of the 

determination coefficient (R
2
 = 0.8743 and R

2
 = 0.8691) indicate that 87% of the sample 

variation in yield and productivity are well explained by the model. Thus, the SDB model is 

statistically adequate to predict the yield and productivity within the range of experimental 

setting.  

For the kinetics hybrid model, solving the optimisation problem of P2 gives the predicted 

Herbert’s kinetic parameters as shown in Table 5. This set of data is then used to obtain the 

following regressed linear model by solving the optimisation problem of P3: 
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By combining the linear model of Eq. (30) with the macro scale bioreactor of Eq. (1-7), the 

kinetics hybrid (KH) model can be obtained. This KH model is then validated against another 

set of experimental data of AR and SS, which were chosen within the experimental ranges of 

AR and SS, i.e. 1.2 LPM AR and 175rpm SS.  Figs. 1 to 3 show the results of model 

validation – prediction using the KH model as compared to experimental data. As observed, 

the kinetics hybrid model can fit the experimental data well.  

Similarly, a series of simulations were performed by using Runge Kutta method to validate 

the KMS model, where a set of AR and SS was generated using the CCD technique. The 

ANOVA results of the fitness of the KMS model are shown in Tables 6 and 7.  

The determination coefficients of the KMS model are R
2
 = 0.8353 and R

2
 = 0.8021, 

respectively for the yield and productivity. This result shows that more than 80% of the 

sample variation in yield and productivity are well explained by the model. Thus, statistically 

the model is sufficiently accurate in term of the prediction for yield and productivity within 

the experimental range.  

 

3.7.  Optimisation of bioreactor’s performances 

 

3.7.1. Problem Formulation 

Our objective is to find the optimum AR and SS by maximizing the yield and productivity 

using the developed models, i.e. SDB, KH and KMS models. The optimisation problem is 

formulated as follows: 

)}{(max:
maxmin4 T

X XX
P


   (31) 

Subject to: the model (either SDB, KH or KMS Model).  
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To solve this optimisation problem, we can use a nonlinear programming technique, but in 

this study, we employ the RSM technique to find the optimum AR and SS.  

3.7.2. Optimisation Results 

After applying the RSM technique, a number of 3D surface plots were generated for finding 

the optimum AR and SS using the SDB model as shown in Fig. 4.  From Fig. 4, we observe 

that there is a significant (quadratic) effect of AR and SS on the response surface. Within the 

experimental range, the optimum values of AR and SS maximizing yield and productivity are 

1.47LPM and 242rpm, respectively. The maximum values of yield and productivity are 

24.5% and 0.2g/L.hr, respectively. This value of yield corresponds to 97.8% of the 

maximum theoretical value for yield of ethanol. In general, the response of yield increases as 

the SS increases from 150rpm to its peak value at 242rpm. Additionally, the yield shows a 

significant increase with the increase in AR. Overall, the SDB model demonstrates a 

reasonable prediction of the impacts of AR and SS on the values of yield and productivity 

since the ANOVA results for SDB model, i.e. Tables 3 and 4 shows the significance of this 

model on yield and productivity. 

For the KH model, the effects of AR and SS on the yield and productivity are shown in Fig. 

5. The surface responses show that both yield and productivity are significantly affected by 

AR and SS. Also, it can be seen that the yield and productivity increase with the increase of 

AR and SS. Thus, this suggests that the KH model was able to capture the effect of both AR 

and SS on the yield and productivity. Just like the SDB model, the KH model is able to 

predict the impacts of AR and SS on the yield and productivity reasonably well. 

The optimum values of AR and SS were obtained using the KH model as 1.43LPM and 

250rpm, respectively. These optimum values lead to the maximum yield of 21.150% and 

maximum productivity of 0.150g/L.hr. Therefore, the maximum yield corresponds to 

96.6% of the maximum theoretical value for yield. Also, we note that the predicted maximum 

yield and productivity by the KH model are comparable with that of the SDB model.  

Fig. 6 shows the response surface plots for the KMS model. Like other models, the KMS 

model shows that the yield and productivity increase with the increase of AR and SS. Within 

the experimental range, the optimum values of AR and SS are 1.45LPM and 240rpm, 

respectively. These values correspond to the maximum yield of 24.128% and maximum 

productivity of 0.207g/L.hr. It is interesting to note, though, that the response surface plots 
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generated based on the KMS model are almost similar to those generated by the SDB model. 

In contrast, the response surface plots of the KMS model are quite different from those of the 

KH model. This is due to the assumption of well-mixing behaviour in the macro bioreactor 

model used in the original KH model.  

 

3.7.3. Experimental Validation 

In this section, we present the experimental validation of the optimum values of AR and SS 

found using different models. Tables 8 and 9 show the comparison of errors in the predictions 

of maximum yield and productivity using different models. The errors were calculated as: 

maxmax /%100 YieldYieldYieldErrorYield i     (32) 

maxmax Pr/PrPr%100Pr ododododError i    (33) 

Where the subscript i refers to the i-model, i.e. }.,,{ KMSKHSDBi  

 

Note that the KMS model exhibits the best prediction of maximum experimental yield and 

productivity (lowest prediction error). Despite its simplicity, the SDB model predictions are 

relatively good and better than the KH model predictions. This means that by including the 

CFD model in the macro bioreactor model, the effect of mixing arising from the AR and SS 

can reasonably be captured by the KMS model – provide the most accurate prediction of 

yield and productivity. Meanwhile, the KH model is only capable of taking into account the 

effect of AR and SS within the context of well-mixing condition inside the bioreactor. The 

fact that KH model resulted in the largest error in the predictions of maximum experimental 

yield and productivity suggested that there was a significant deviation from ideal mixing 

inside the bioreactor. Interestingly, despite this significant deviation from the ideal mixing 

condition, the SDB model, which directly expressed the yield and productivity as a quadratic 

function of AR and SS, was shown to be capable of predicting the maximum yield and 

productivity with a sufficient accuracy i.e. less than 5% error. 

To demonstrate that the non-ideal mixing conditions are occurring in the bioreactor, Fig. 7 

shows an example of the mixing phenomena obtained from the CFD simulation under the 

operation of AR 1.47LPM and SS 242rpm. It was observed that both AR and SS have 
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significant impacts towards the turbulence and mixing mechanism in the bioreactor. Thus, 

this simulation is showing the occurrence of non-ideal mixing behaviour, and explains the 

ability of the bioreactor models to capture the non-ideally mixing behaviour of the bioreactor, 

which is essential for a better prediction of yield and productivity. Further research will be 

done in order to fully evaluate this approach. Current study only shows the significant 

impacts of both AR and SS in terms of the bioreactor models developed in order to capture 

the non-ideally mixed behaviour of the bioreactor.  

 

4. Conclusions 

In this paper, we have proposed a new approach to the bioreactor modelling based on the 

expanded Herbert’s kinetics concept. The developed models were able to incorporate the 

mixing mechanism by adopting two input variables, namely the aeration rate and stirrer 

speed. It was shown that the models could be used to optimize the bioreactor’s performances. 

Furthermore, it was found from this study that the incorporation of mixing CFD model into 

the KH model of microbial kinetics (i.e. KMS modelling approach) could predict reasonably 

well (and optimize) the yield and productivity by adjusting the aeration rate and stirrer speed. 

It is important to note that using the conventional models of microbial kinetics it is not 

possible to optimize the yield and productivity using the AR and SS because of well-mixed 

assumption. As the results, the developed models could be used for studying the effects of 

AR and SS on the rates of growth, substrate consumption and product formation so that the 

AR and SS could be used as additional parameters to optimize the bioreactor. 
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Table 1 

Input variables and their levels employed in two-factor factorial design 

Factor Variable Units Low  

Level (-) 

Middle 

Level (0) 

High  

Level (+) 

X1 Aeration Rate 

(AR) 

LPM 1.0 1.25 1.5 

X2 Stirrer Speed 

(SS) 

rpm 150 200 250 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2  

CCD matrix for the two independent variables (Aeration Rate and Stirrer Speed) 

Standard 

Order 

Run Order Block X1: Aeration 

Rate (LPM) 

X2: 

Stirrer 

Speed (rpm) 

Y1: 

Yield (%) 

Y2: 

Productivity 

(g/L.hr) 

7 1 1 1.25 200 21.500 0.180 

1 2 1 1.0 150 14.788 0.099 

5 3 1 1.25 200 21.050 0.176 

6 4 1 1.25 200 21.250 0.178 

3 5 1 1.0 250 15.105 0.102 

4 6 1 1.5 250 24.040 0.160 

2 7 1 1.5 150 16.392 0.106 

13 8 2 1.25 200 24.000 0.230 

12 9 2 1.25 200 23.500 0.200 

14 10 2 1.25 200 22.000 0.190 

10 11 2 1.25 129.29 18.511 0.115 

9 12 2 1.60 200 22.250 0.195 

11 13 2 1.25 270.71 23.500 0.210 

8 14 2 0.90 200 20.500 0.165 

 

 

 

 

 

 

 

 

 

 



Table 3  

ANOVA results on yield for SDB model 

Source p-value 

Prob > F 

 

Model 0.0047 Significant 

A – AR 0.0117  

B – SS 0.0059  

AB 0.0309  

A2 0.0341  

B2 0.0201  

Residual   

Lack of Fit 0.0563 Not Significant 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 

ANOVA results on productivity for SDB model 

Source p-value 

Prob > F 

 

Model 0.0054 Significant 

A – AR 0.0718  

B – SS 0.0069  

AB 0.1978  

A2 0.0203  

B2 0.0035  

Residual   

Lack of Fit 0.2461 Not Significant 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5 

Predicted Herbert’s Kinetics Parameters  

Run Order 

X1: 

AR 

(LPM) 

X2: 

SS 

(rpm) 

1k̂  2k̂  3k̂  
4k̂  5k̂  6k̂  

1 1.25 200 1.4085 0.0010 0.6631 0.1040 0.7558 0.0143 

2 1.0 150 1.3245 0.0010 0.6559 0.0770 0.8788 0.0163 

3 1.25 200 1.1257 0.0010 0.6533 0.0909 0.7252 0.0173 

4 1.25 200 1.2591 0.0010 0.6731 0.0879 0.7127 0.0179 

5 1.0 250 2.0629 0.0010 0.6999 0.1026 0.8366 0.0125 

6 1.5 250 1.4925 0.0010 0.6703 0.1310 0.6328 0.0123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6 

ANOVA results on yield for the KMS model 

Source p-value 

Prob > F 

 

Model 0.0115 Significant 

Residual   

Lack of Fit 0.2003 Not Significant 

Pure Error   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 7 

ANOVA Results on productivity for the KMS model 

Source p-value 

Prob > F 

 

Model 0.0328 Significant 

Residual   

Lack of Fit 0.1693 Not Significant 

Pure Error   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 8 

Comparisons of model predictions and experimental results for yield 

 -Model 

Optimum 

Aeration Rate 

(LPM) 

Optimum 

Stirrer Speed 

(rpm) 

Model 

Predicted 

Maximum 

Yield (%) 

Experimentally 

Verified 

Maximum Yield 

(%)        

Error Yield 

(%) 

SDB 1.47 242 24.495 23.720 3.46 

KH 1.43 250 21.150 20.950 14.73 

KMS 1.45 240 24.128 24.570ℓ 1.80 

ℓ The yield obtained by using the AR and SS values from the KMS model is adopted as the experimentally maximum value, with respect to 

which the error is calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 9  

Comparisons of model predictions and experimental results for productivity 

 -Model 

Optimum 

Aeration Rate 

(LPM) 

Optimum 

Stirrer Speed 

(rpm) 

Maximum 

Productivity 

(g/L.hr) 

Experimentally 

Verified 

Maximum 

Productivity 

(g/L.hr)       

Error Prod 

(%) 

SDB 1.47 242 0.198 0.185 11.90 

KH 1.43 250 0.150 0.148 29.52 

KMS 1.45 240 0.207 0.210ℓ 1.43 

ℓ The productivity obtained by using the AR and SS values from the KMS model is adopted as the experimentally maximum value, with respect 

to which the error is calculated. 

 



 

Fig. 1.  Kinetics hybrid (KH) model fitting for actual glucose concentration (g/L solution) vs batch age (hr) for 

1.2LPM AR and 175rpm SS 
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Fig. 2.  Kinetic hybrid (KH) model fitting for actual ethanol concentration (g/L solution) vs batch age (hr) for 

1.2LPM AR and 175rpm SS 
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Fig. 3. Kinetics hybrid (KH) model fitting for optical density vs batch age (hr) for 1.2LPM AR and 175rpm SS 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 4.  Response surface plots for the SDB Model 
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Fig. 5.  Response surface plots for the KH Model 
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Fig. 6. Response surface plots for the KMS Model 

 

 

 

Design-Expert® Software

Yield

Design points above predicted value

Design points below predicted value

24.1

15.9

X1 = A: AR

X2 = B: SS

  1.00

  1.13

  1.25

  1.38

  1.50

150.00  

175.00  

200.00  

225.00  

250.00  

15.9  

18.125  

20.35  

22.575  

24.8  

  
Y

ie
ld

  

  A: AR    B: SS  

Design-Expert® Software

Productivity

Design points above predicted value

Design points below predicted value

0.25

0.11

X1 = A: AR

X2 = B: SS

  1.00

  1.13

  1.25

  1.38

  1.50

150.00  

175.00  

200.00  

225.00  

250.00  

0.11  

0.145  

0.18  

0.215  

0.25  

  
P

ro
d

u
c

ti
v

it
y

  

  A: AR    B: SS  



 

 

Fig. 7. CFD simulation of the mixing mechanism inside the bioreactor at AR of 1.47LPM and SS of 242rpm (Front 

view)  

 

 


