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Abstract. Spherical harmonic expansions form partial sums of fully normalised asso-
ciated Legendre functions (ALFs). However, when evaluated increasingly close to the
poles, the ultra-high degree and order (eg. 2700) ALFs range over thousands of orders
of magnitude. This causes existing recursion techniques for computing values of indi-
vidual ALFs and their derivatives to fail. A common solution in geodesy is to evaluate
these expansions using Clenshaw’s (1955) method, which does not compute individual
ALFs or their derivatives. Straightforward numerical principles govern the stability of
this technique. This paper employs elementary algebra to illustrate how these principles
are implemented in Clenshaw’s method. It also demonstrates how existing recursion al-
gorithms for computing ALFs and their first derivatives are easily modified to incorporate
these same numerical principles. These modified recursions yield scaled ALFs and first
derivatives, which can then be combined using Horner’s scheme to compute partial sums,
complete to degree and order 2700, for all latitudes (except at the poles for first deriva-
tives). This exceeds any previously published result. Numerical tests suggest that this new
approach is at least as precise and efficient as Clenshaw’s method. However, the principal
strength of the new techniques lies in their simplicity of formulation and implementation,
since this quality should simplify the task of extending the approach to other uses, such

as spherical harmonic analysis.

Key words. Spherical harmonic expansions, Fully normalised associated Legendre Func-

tions, Clenshaw summation, Recursion, Horner’s scheme



1 Introduction

Current geodetic practice is witnessing an increase in the construction and use of ultra-
high degree spherical harmonic expansions of the geopotential or topography. For ex-
ample, Wenzel (1998) released coefficients up to det)gee, which were empirically
derived to describe the gravitational potential of the Earth. Wenzel (1998) states that the
maximum degree of800 for the spherical harmonic model was set by the numerical
stability of the recursion algorithm adopted to compute the required fully normalised as-
sociated Legendre functions (ALFs).

The recent interest in synthetic Earth gravity models, used for comparing and validat-
ing gravity field determination techniques, has already seen the use of ultra-high degree
spherical harmonic expansions. These have taken the form of saffgals models (eg.
Featherstone, 1999; Nak'et al., 2001) for which synthetic geopotential coefficients up to
degree and orde&700 and2160, respectively, were produced without reference to a mass
distribution. There is also interest source models in which synthetic geopotential coef-
ficients are generated by analytical or numerical Newtonian integration over a synthetic
global density distribution and topography (eg. Pail, 1999). Hybrids of source and effects
models also exist. For example, Haagmans (2000) combines empirically determined co-
efficients with synthetic ones derived from numerical integration over isostatically com-
pensated source masses to degree and dtdér Lastly, other scientific disciplines, such
as meteorology, quantum physics and electronic engineering, are also also showing in-
creased interest in high degree spherical harmonic modelling and analysis.

The numerical means for including the necessary ALFs constitutes the principal chal-

lenge to evaluating ultra-high degree spherical harmonic expansions. Therefore, itis timely
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to critically examine the accuracy and numerical efficiency of algorithms that compute in-

dividual ALFs and their partial sums.

1.1 Spherical Harmonic Expansions

Truncated spherical harmonic expansions of a function, or its derivatives, reduce to sums

S(@ of ALFs or theird-th derivatives, respectively. These are

M

SO = ¢ (1)

m=0
where

2 | X9 cosmA for a =1
oD =3 (2)

a=1 X,(,il& sinm\ for a =2

and

M d
XD = 3" Fuma Py (0) 3)

n=[

For arguments of spherical polar coordinates)\ #) and for integer degree > 0 and
order0 < m < n: M is the maximum finite degree of the spherical harmonic expansion;
© is an integer that may vary with; ¢ is a real numbered constat;,,,.,, is a real num-
ber incorporating the fully normalised spherical harmonic coefficients,; andC,,,,2;
P,..(0) are the fully normalised ALFs; the superscrigy indicates thel-th derivative
with respect td@, or definite integrationd = —1) between two parallels. This paper deals
only with undifferentiated functionsi(= 0) or first derivatives of these functiong £ 1).
Ford = 0, the superscriptd) is omitted. ThusS®, 2, x and?g;)l(e) are written
S, 2, Xma andP,,,,,, respectively. First derivatives of these quantities are wriftéh
20, xD and P (9), respectively. The general notatisi®), 22, X%, and P\ ()
is used whenever a textual or mathematical reference applies to both the undifferentiated

guantities and the first derivatives simultaneously.



5
The example of a truncated spherical harmonic expansion of the gravitational potential

V' (r,0, \) is instructive here. Often, it is written as

M n
V(r,0,\) = GTM + GTM (g) Z(@nml cos MA + Cpz Sin mA) Py, (6) 4)
n= m=0

where GM is the product of the Universal gravitational constant and the mass of the

Earth. Alternatively, Eq. (4) may be written as

M M
V(r,0,\) = GTM + GTM [cos m)\z (%) Crm1 P (0)
n=p

M
: a\"= =
+ sinm\ n§_u: (;) cmpnm(e)] (5)
wherey is either2 or m; whichever is the greater. Relating Eq. (5) to the form of Egs. (1)

to (3) yields

_ (2)" o, fOr 0 = 1
Enma - (6)
(2)" Crma, for a=2

o =3 (%) ComaPun(6) (7)

n=p

When evaluating gravimetric quantities (eg., disturbing potential, geoid heights, grav-
ity anomalies, etc.) in a sequence of points for whicandé are constant (ie., along a
geodetic parallel), the form of Eq. (5) is numerically more efficient than that of Eq. (4) (cf.
Tscherning et al., 1983). This is because e&gh in Eq. (3) isindependent of, and thus

need only be evaluated once for each parallel. If all such computation points are equally
spaced in longitude, further numerical efficiencies can be achieved through application
of the recursion algorithm developed by Rizos (1979). Abd-Elmotaal (1997) contains a
re-derivation of this algorithm which demonstrates that, contrary to the approach of Ri-
zos (1979), the algorithm can be applied in full without prior rotation of the geopotential

coefficients.
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1.2 Numerical Considerations When Evaluating Eq. (1)

The simplest approach to evaluating Eq. (1) is to use standard recursion relations, such
as those found in Colombo (1981) and described in Section 2.1 of this paper, to compute
the required values c?f;i)l(e). These values can then be multiplied by the corresponding
values ofE,,,, to yield the intermediate values foel? in Eq. (3), and henc&'? in
Eq. (2), which are then used to compute the final s§fsin Eq. (1).

The principal problem with this approach is that for ultra-high values/dieg.2700),
the absolute values dP,,,, () will range over thousands of orders of magnitude. For
example, Fig. 1 shows that, fad = 2700, |ﬁ£§21(0)| ranges over 5000 orders of mag-
nitude towards the pole8 (- 0° orf — 180°,ie.cos @ — 1). Thisis impractical, because
the Institute of Electrical and Electronic Engineers’ (IEEE) standard 754 for binary float-
ing point arithmetic (cf. Coonen, 1980) only allocates eight bytes to store each double
precision floating point number). Thus,|R| may only take values within the range of
~107310 < |R| < ~103'°. Any computed value wherg?| < ~10~31° will ‘underflow’
and be set to zero, whilst any computed values for whigh> ~1031° will ‘overflow’
and be designated ‘not a number’ (NaN), such that any subsequent computation which
employs thisk will also be so designated.

Underflows in the computation of a@;ﬁ(e) excludes the corresponding (matching

degree and order) coefficients from contributingst®, whereas an overflow in the com-

(d)

nm

putation of one or moré, ' (9) prevents any result faf(® from being achieved at all.
Thus, IEEE double precision only permits a maximum range @20 orders of magni-
tude within which to compute and store the requiﬁ(ffn(e) values. Figure 1 shows that,

for high latitudes, the range of values taken by g, (6) values ford = 2700 will

eventually exceed the range of magnitudes capable of being stored within the IEEE dou-
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ble precision format. Scaling all of the computations upwards by a factdr’8f allowed
Wenzel (1998) to compute values Bf,,, () to a maximumi/ = 1900 for ~20° < 6 <

~160° in IEEE double precision.

A numerically more stable alternative to these standard recursion relations is the Clen-
shaw (1955) method (cf. Tscherning and Poder, 1982; Gleason, 1985; Deakin, 1998). In
Section 3, it will be shown that this can be used to evaluate Eq. (1) ug te 2700
(0° < 6 < 180°), as well asS™ up to M = 2700 (0° < # < 180°). Standard derivations
of Clenshaw’s method (cf. Gleason, 1985; Deakin, 1998) utilise matrix algebra, and gen-
erally focus on the means by which this method can be used to evaluate partiabstins,
without computing individual values 0?5:2(9). Such derivations are complete, concise
and rigorous, but they also obscure the numerical principles upon which the stability of
the Clenshaw summation is based. These principles are quite simple, both in concept and
in application.

This paper shows how existing algorithms for computing ALFs and first derivatives
are easily modified to incorporate these same numerical principles. The modified algo-
rithms can be used to compute scaled ALFs and their first derivatives, which can then be
combined using Horner’s scheme (cf. Harris and Stocker, 1998) to yield values for the re-
quired partial sumsS, up toM = 2700 (0° < § < 180°), as well asS) up to M = 2700
(0° < 0 < 180°). Straightforward examples and elementary algebra are then used to il-
lustrate the means by which these numerical principles are implemented in Clenshaw’s
method.

Results from numerical tests, presented in Section 4, suggest that the modified algo-

rithms are at least as efficient and precise as the standard Clenshaw techniques for eval-

(1)

nm

uating partial sums of,,,,,(8) or P, (9). However, it is the intuitive simplicity of the

new approaches, as well as the fact that they compute individual scaled vaﬁ&%(@l),
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which constitutes their principal strength over the standard Clenshaw methods. These two
properties should simplify the extension of these new approaches to other tasks, such as
stabilising current techniques for spherical harmonic analysis (eg. Lesur and Gubbins,

1999).

2 Forward Recursions for the Calculation of ALFs

The most direct approach for evaluatis§” (Eq. 1) employs a recursive algorithm to
computeP,,,, (). Values of?%(&), if required, are then computed directly from two
previously computed values a?,,,(6). These values oﬁgﬁl(e) are multiplied by the
correspondingF,.... terms to yield the required series valuesf), (Eq. 3), which
subsequently yiel®2' (Eq. 2) and hencs@ (Eq. 1).

The recursion relations faP,,,,(6) can be obtained by fully normalising standard re-
lations for (un-normalised},,,,,(#), which can be found, for example, in Magnus et al.
(1966) or Abramowitz and Stegan (1972). The full normalisation is given by (adapted

from Heiskanen and Moritz, 1967, Eq. (1-73))

Panl6) = \/ e p® ®

wherek = 1 form = 0 andk = 2 for m > 0. Similarly, quasi-normalised values of

P, (0) are related td>,,,,(#) by (cf. Tscherning and Poder, 1982)

Pam(0) = [ (o 5 Pom(6) (9)
Inspection of Eqgs. (8) and (9) shows that

Pun(0) = VE@2n+1) P,.(0) (10)

The relationships in Egs. (8), (9) and (10) also hold foriéliderivativesP\m (¢), PY (9)

nm

and P (6). However, unlikeP,,, () { <™}, P ) {e*m2 1 is notnormalised in

sinmA nm sin mA
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the correct usage of the word since its average squared value integrated over the unit
sphere is not unity. This paper focuses solely on the computation of fully normalised
ALFs and their first derivatives. No numerical tests were conducted for the above quasi-
normalisations. However, it is a trivial task to apply Eg. (10) to the algorithms presented

in this paper.

2.1 Sandard Forward Column Methods

The most popular recursive algorithm used for computing,(f) in geodesy can be
obtained by fully normalising, for example, Magnus et al. (1966, Eq. 4.3.3(2)). This full
normalisation yields a recursion that computes non-sectorali(ie.,m) P,,,(f) from

previously computed,,,,,(f). This recursion is given as (cf. Colombo, 1981)
ﬁnm(g) = Apm tﬁnfl,m(e) - bnm ﬁn72,m(9) ) v n>m (11)

wheret = cos 6,

_\/(2n—1)(2n+1) o bnm:\/(2n+1)(n+m—1)(n—m—1)

Apm — (n_m)(n+m) (n—m)(n+m)(2n—3)

(12)

The sectoral (iep = m) P,.,(0) serve as seed values for the recursion in Eq (11).
These are computed using the initial valuég,(9) = 1 and P, () = +/3u, where
u = sin f. The higher degree and order valuesif,,(f) are then computed using the

recursion (cf. Colombo, 1981)

Pom(0) = u ,/% Pt 1(0), Vi > 1 (13)

such that

P (0) :um\/EH,/m;l,vmy (14)
=2
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where] is the product symbol (eg. Abramowitz and Stegan, 1972).

The complete recursion process in Egs. (11) and (13) may be visualised using the lower
triangular matrix in Fig. 2, where each circle corresponds to a particular combination of
andm. Thus, each circle represents a valuéyf,(6), as well as the corresponding pair
of recursive termsa,,,,t) andb,,,,,. Note that in Fig. 2, the degree increases in rows down,
the order increases in columns to the right, and the diagonal elements of the matrix are the
sectoral values. The recursion in Eq. (11) compiitgs () of constantn (a ‘column’ in
Fig. 2) and sequentially increasingor down and away (ie., ‘forward’) from the diagonal
in Fig. 2). Thus, Eq. (11) will be referred to astandard forward column recursion. This
nomenclature will be employed throughout the paper.

It appears from Eq. (11) that the computation of the first valug,gf, ,,,(9) ‘forward’
from the sectoral diagonal (Fig. 2) requires a valuégf , ,,,(9) to be multiplied by the
recursive ternd,,, ; ,,. This P,, 1 ,.(#) does not exist for ordinarg,,,,,(#). However, the
corresponding,,,+1,,, coefficient in Eq. (11) is always zero, thereby allowing the (non-
existant)P,, 1,,(0) to be disregarded.

For a forward column computation ﬁ%(e), normalisation of Magnus et al. (1966,

Eq. 4.3.3(9)) gives (cf. Colombo, 1981)

Y g) = % (1t Pom(0) — fam Prcim(®)) , Y0 >m (15)
where

[ =m?)(2n + 1)
fum = \/ T (16)

For all sectoraﬁﬁzn(e), fmm = 0 and Eq. (15) reduces to

P (0) , Ym >0 (17)
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The first derivative of Eq. (13) with respect foalso gives Eq. (17). For alt < M,

eachP,,,(f) of a givenm can be computed using Egs. (11) and (13). These values can
be substituted into Eg. (15) to compute, without the need for any further recursion, all

?%(9) of the same orden andV n > m.

2.2 Sandard Forward Row Methods

The next approach is termed te&@andard forward row recursion (Fig. 3), and appears

to be rarely used in geodesy. As with the standard forward column recursion (Section
2.1), the sectoraP,,,,(f) serve as seed values for the forward row recursion, and can
be computed using Eqg. (13). However, the standard forward row recursion computes non-
sectoralP,,,, (#) of constant: (a ‘row’ in Fig. 3) and sequentially decreasing(to the left

(ie., ‘forward’) from the diagonal in Fig. 3). Full normalisation of Magnus et al. (1966,

Eq. 4.3.3(1)) and substituting,,,,(¢) = (—1)™P. (#) yields

_ 1 t —
Pom(0) = W (gnm " Prm+1(0) — hom, Pn,m+2(9)) ,Vn>m (18)

wherej = 2 form = 0 andj = 1 for m > 0, and

B 2(m+1) _ J(n+m+2)(n—m—1)
Jnm = \/(n—m)(n+m—|—1) and - fonm = \/ (n—m)(n+m+1) (19)

Using the same argument to that introduced for the forward column recursion, the non-
existant value of,, ., 1 (¢) required to comput®,, ,,_ () in Eq. (18) may be disregarded
because the corresponding recursion coefficignt, 1, is always zero.

Note that, to computé’,,,,,(¢) using the forward row recursion, Eq. (18) uses the cor-
responding sectoral values of the sameather than the same, as seed values. In this

case, these sectoral values are more correctly denotét), k), which may be written
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in the form of Eq. (14) as

ﬁm(e):u“ﬁr[\/m;l,vny (20)
=2

The ?21,31(9) are obtained directly fron®,,,, () of matchingn by fully normalising

Abramowitz and Stegan (1972, Eg. 8.5.2) to yield

_ t— o
szln)z(g) =m Epnm(e) — €um Pn,m+1 ) Vn>m (21)
where

J

For all sectoral?fizn(e), or equivalentlyFS,Z(H), emm = 0 and Eqg. (21) reduces to

Eqg. (17).

2.3 Numerical Problems with the Sandard Forward Methods

Even when applied in IEEE double precision, both the standard forward column (Eq. 11)
and standard forward row (Eq. 18) recursions will underflow¥6r> 1900 in the co-
latitude range~20° < § < ~160°. The numerical instability of both these forward recur-
sions is noted in the geodetic literature (eg. Gleason, 1985) and elsewhere (eg. Libbrecht,
1985). The cause of this instability is revealed by examining Eq. (14), which is first parti-

tioned into the factors™ andII,,, such that
Pom(0) = v II,,, Vm > 1 (23)
whereu™ = sin” #, and

/2041
i, = v3[[4/ Z;; C Ym>1 (24)
=2

Inspection of Fig. 4 shows that thé&,, factor introduces no computational difficul-

ties for an arbitrarily ultra-high value of: = 5400. In contrast, the:™ term in Eq. (23)
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becomes increasingly smallas— 0 (ie., towards the poles) and asincreases. Accord-

ingly, the high degree and order valuesrf,,, (#) will exceed the range of magnitudes
capable being stored in IEEE double precision, thereby resulting in an underflow. The
failure to compute and store valuesi@f,,,(f) means that these cannot serve as seed val-
ues for the standard forward column and forward row recursions (Sections 2.1 and 2.2,
respectively). This ultimately limits the rangesand M over which these recursions

can be used, thereby restricting the practical application of spherical harmonic expansions

of ultra-high M at high latitudes.

2.4 Other Normalisations and the Edmonds Recursion

Belikov (1991) and Belikov and Taybatorov (1991) present a suite of recursive algorithms
for computing the quantitieé’éf,%, whereP?) are related to un-normaliseef?) according
to the modified normalisation

n!

(n+m)!
However, this approach is also subject to numerical limitations. As the computation ap-
proaches the poles, the range|&‘f,2(9)| is comparable to that Qﬂ_Dgi)l(H)L thereby re-

sulting in an underflow in IEEE double precision. For example, the sectoral values are

given by
Pom(0) = u™ = sin™(0) (26)

which, ford = 1° andM = 2700 yields values that range from 1 tal0~*"*". Therefore,
employing the normalisation in Eq. (25) cannot solve the numerical problems discussed
in Section 1.2.

Risbo (1996) claims that the Edmonds (1957) recursion for D-matricies can be used to

compute fully normalised ALFs up to degree 200,000. However, the description of the test
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results which support this claim indicate that these computations were only performed at
the equator, although the point is not clear. Nevertheless, Risbo (1996) includes a Fortran
77 subroutine for this recursion. It was found that, when implemented in IEEE double
precision, the Risbo subroutine underflows for all polar distarices 50° for M =

2700. This was not suprising, given that the corresponding ALFs cannot even be stored in
IEEE double precision (Section 1.2), irrespective of the algorithm used to compute them.
Therefore, although it may be possible to incorporate the new approaches presented here
into the Risbo (1996) approach, itis clear that the Edmonds recursion alone does not solve

the numerical problems encountered towards the poles as described in Section 1.2

2.5 The Modified Forward Row Method

A simple, yet effective, method by which this problem of underflowifg,,(?) may

be avoided is to eliminate the™ term from the recursion process in Eq. (13). To this
end, Libbrecht (1985) adapted the standard forward row recursion (Section 2.2) to yield
amodified forward row recursion that computes the quantitiéi-)s;;"m—(”). A recursive algo-

rithm which computes the non-secto@# is obtained by dividing Eq. (18) by™ to

give
ﬁnmw) 1 Fn,erl (9) 2 ?n,m+2(9)
i = (ot P gt P ) @

Equation (27) is seeded by the secto?%l#, the recursive algorithm for which is ob-

tained by dividing Eq. (13) by™ to give

Pn(0 2 1 Poimei(0
(6) _  [2m+ b (0) o (28)
um 2m um-1

The value% = /3 serves as the seed for Eq. (28). Equation (23) yields

P (0)

um

=1I,, Vm>1 (29)
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Libbrecht’s (1985) original formula for computin%%@ differs from Eq. (27) in that
it does not include the\}7 term on the right hand side. This is because Libbrecht (1985)
employs a different ‘normalisation’ @?,,,,,(¢) in whichk = 1, V m. Moreover, Libbrecht
(1985) focuses solely on the actual computation of the valuggﬁ@. This paper shows
how Libbrecht’s (1985) method is easily extended to compute the quar@%’r)g@. It
also provides simple means by which valueg%ﬁ(—(’) can be applied in practice without
dealing with the unmanageably smalft terms foru — 0.

The modified forward row recursion for computir@%ﬂ is obtained by dividing
Eqg. (21) byu™ to yield

—(1) — _
Pon® _  1Pun® | Pris(6)

um U um um+1

, Vn>m (30)

(1) _
such that allp%(a) may be computed directly from previously compu@gﬁ of the
samem.

P (9) L .
To evaluate Eg. (1), the values gfbfm— are multiplied by the corresponding values

o

um, )

of En,ma (EQ. 3) and the resulting products summed to yield valueé}%%f and
instead of X\% and 2, respectively. In order to computel®, Eq. (1) is factorised

using Horner’s scheme in terms of

M
S@ = ¢ Z (91
m=0

), o], o,
=c [{( {u—M}u + M1 + M2 u +
Q(d) Q(d)
.+ u—é}u + u—11 u + C.Q(()d) (31)

From Eq. (31), the running total is repeatedly multiplied:bypon the addition of each
o) . (d) . d)

~z- term. This allows the surf'® to be computed directly from the values%fﬁ—, and
so avoids the need to compute underflowing valueg”ofasu — 0 andm increases.

This will be demonstrated numerically in Section 4.
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2.6 Modified Forward Column Method

Values ofP"m may also be computed using what will be termedfthg modified for-
ward column recursion. To effect this computation, Eq. (28) is retained to compute the
sectoral values o?"ﬁﬂ Equations (11) and (15) are divided 0¥, respectively, to give

ﬁnm(g) - a " anl,m(e) _ b ﬁn72,m(9)

um um um™

Y n>m (32)

—(1) — —
an(g) 1 (nt an(g) — fom Pn—l,m(g)
um

um U um

),Vnzm (33)

A variation of the first modified forward column recursion, herein termedst¢hend

(@)
modified forward column recursion, is to compute values o% in which the entire

mm)

sectoral value oP,,,,(f) has been eliminated, rather than just the probleméticom-

ponent. An immediate result is that all the sectoral valueg% = 1. Dividing Eqgs.

(11) and (15) byP,,...(0) gives, respectively

0 Posanl0)

?n—Z,m(e)

P,
Pum(f)  u Pum(®) """ Pum(9) )T

Comparison of Eq. (11) with Egs. (32) and (34) shows these recursions to be of iden-
tical form; similarly for the comparison of Eq. (15) with Egs. (33) and (35). That is, for
Egs. (32) and (34), and for Egs. (33) and (35), the entire computation has simply been
divided byu™ or P,,,(#), respectively. Thus any computer program that already em-
ploys Egs. (11) and (15) to compuﬁ(ﬁi(e) is quickly adapted to computggf%# or

B (g

P”m by simply altering the sectoral subroutine to retlfm’— 11, or gmmgzg =1,

respectively.

5(d)
To evaluateS® in Eq. (1), the require(%ldm—((g)) of the samen may be multiplied by

their corresponding values @f,,.,. (Eg. 3) and the results added to give value%&—

m 7'77,



17

and subsequentl%. These% can be multiplied by7,,, in Eq. (14) to yield%

for use in Horner's scheme in Eq. (31). Alternatively, inspection of Eq. (14) shows that

P,..,(6) may be factorised into

?mm(e) :um\/gl_[\/m;;l :HU,-,Vm21 (36)
=2 i=1
where

V3u,i=1
Ui = (37)

ly  Vi>1
1

Thus, Eq. (31) may be written using Horner’s scheme in ternis,of

M
S@ = ¢ Z(Zﬁ,‘f),
Q(d)
Uv-1 + %) Unv—2 +

m=0
d
= c _Qi UM + %
P (0) Pur1a-1(0) Prronr—o
Q(d) Q(d)
2 }U2 + o

Pys(0) P11(0)

4 Uy + e\ (38)

Due to the numerically stable behaviour i@f, (Fig 4), using/I,, in this way, rather
than multiplying the values o% by I11,, to yield % for use in Eq. (31), gives
identical results forS® when performed in IEEE double precision. Moreover, the first
and second modified forward column recursions are essentially the same, differing only
in the treatment of1,,, which is irrelevant to the numerical stability of each algorithm.
The second modified forward column recursion (Egs. 34 and 35) and the implementation
of Horner’s scheme in Eq. (38) are introduced here primarily because of their relevance
to the Clenshaw-based methods, discussed in Section 3. For the purposes of numerical

testing (Sections 4.2, 4.3 and 4.4), the first and second modified forward column methods

will be treated as a singl®odified forward column recursion.
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2.7 |EEE Overflows and Global Scale Factorsin Forward Methods

Pan(0)

The entire range of maximum and minimum values takerf%y—‘ and , for

M = 2700, are shown in Figs. (5) and (6), respectively. Inspection of Figs. (5) and (6)
indicates that further factorisation is required to prevent the computations from overflow-
ing in IEEE double precision. Overflows can be prevented for all of the modified forward
methods introduced thus far simply by scaling all of the computations downwards by a

global scale factor of0~2%, This is achieved for all of the forward methods by simply

Pmm
Pmm(

multiplying the sectoral values o?";’;;w or ) by 10728, and using these scaled
sectoral values as the recursive seeds in place of the original values. As such, this scale
factor propagates linearly through all subsequent computations, thereby generating val-

ues ofP ”m ) % 10280 or Pin() 1028, respectively. These scaled values are used to

Prum (0)
iy 280 op 24 ~280 \whi - @ g
form £z x 10280 or W x 10728, which, when used in place &= or = n in

Horner’s scheme in Egs. (31) or (38), respectively, will yield valueS@fx 10-2%°, This
is multiplied by10%%° to yield S(%)

Importantly, this global scaling allows, in IEEE double precision, the computation of
spherical harmonic seriegfor 0° < § < 180° andS™ for 0° < # < 180° up to M =
2700. Note that the spherical coordinate system renders partial Stirnsideterminate at
the poles, since here the meridian tangents no longer uniquely define the direction of the
derivative. There are useful ways around this problem (eg. Tscherning, 1976), but for the
sake of continuity they will not be considered here. Thus, for the remainder of this paper,

no partial sumss" will be computed at the poles.
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3 Clenshaw-based M ethods
3.1 The Forward Column Factorisation

It is instructive at this stage to consider a simple example of the summation described
in Eq. (3). The rectangle in Fig. (2) contains circles representing valués,gfd) and
Epme form = 2 and2 < n < 5. A summation of these elements in the form of Eq. (3)

may be expanded as

5
X2,a = ZEn,Q,a?nZ(e)
n=2

= EQ,z,a F2,2(9) + E3,2,a ?3,2(9) + E4,2,o¢ F4,2(9) + ES,Z,a ?5,2(9) (39)

The recursion relation in Eq. (11) gives tRg,,(#) required in Eq. (39); these are

?3,2(9) = [a3,2 t] P2’2(9) (40)
Pys(0) = aspt P3a() — byo Poo(h) (41)
?5,2(9) = Q52 tF4,2(9) — b5 ?3,2(9) (42)

Substitution of Eq. (40) into Eq. (41) yields

Pyy(0) = [ Q42 32 2 — by } Pys(0) (43)
Likewise, substitution of Egs. (40) and (43) into Eq. (42) gives

?5,2(9) = [a,572 Qg2 032 B — as2 byt — azo bso t] ?2,2(9) (44)

Therefore, eacl#, »() can be factored into two components: the s€ed(¢) value and
the aggregation dfu, »t) andb, , recursive terms (within the square brackets in Egs. (40),
(43) and (44)), which constitute polynomialstie= cos 6. This factorisation will be used

in Section 3.2 to introduce the reverse column algorithms. Notelthather tham is

used here to denote the degree of the recursive terms, sincePgath) of degreen is
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comprised of an aggregation of all of tle »¢) andb,» for 3 < I < n. In general, any

P,..(6) may be factored int®,,,,,(#) and an aggregation of all of tiie,,,t) andb;,,, terms

for (m+1) <1 < n. Inspection of Egs. (40), (43) and (44) shows that these aggregations
. _nm(g) . . . .

are simply values o:%w) which are generated using Eq. (34). Substitution of Egs. (40),

(43) and (44) into Eq. (39) gives

X2,a = { EQ,Z,@
+ E3,2,o¢ [asa t]
+ E4,2,o¢ [a4,2 a3,2 t? — bao ]

+ Es2a [%,2 Q4,2 032 t* — as2 bapt — azp bso t] } Py5(0) (45)

The quantity in curly brackets in Eq. (45) equate%’éz’(%), which is used to forn%

or % (Section 2.6) for use in Egs. (31) or (38), respectively.

3.2 Reverse Column Method

Results from timing tests presented in Section 4.3 show the reverse column methods, de-
scribed below, to be highly inefficient in comparison with the other approaches presented
in this paper for evaluating the required partial sums. The primary reason for describ-
ing the reverse column methods here is because these methods incorporate characteristics
of both the modified forward column methods (Section 2.6) and the standard Clenshaw
methods (Section 3.3). Thus, the reverse column methods are used here to highlight the
basic similarities and differences between these two approaches.

To compute any value % the second modified forward column recursion (eg. 34)
aggregates the necesséiy;,,t) andb,, recursive terms in the sequence of increasing de-
greel (sequentially down each column in Fig. 2). An alternative is to reverse this process

and apply these same recursive terms in the sequence of decreasing dsggeentially
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up each column in Fig. 2). That is, a recursion may be employed whereljy,thg and
b, recursive terms for which = n (ie., the largest value dj are applied first and the
recursive terms for which = m + 1 (ie., the smallest value dj are applied last. This
will be called areverse column recursion, and is illustrated schematically in Fig. 7.

It is now necessary to introduce the recursive algorithm

Stma = Ql+1,m t Sl+1,m,a — bl+2,m Sl+2,m,a + Yima (46)

wherey;.. are predetermined, real-numbered constants (described later), and the sub-
scripta (o = 1,2) is included here as it will be referred to later when discussing the
standard Clenshaw methods. Equation (46) is used as follows. The recursion begins at the
computation of a choses),,,.,. For this initial computations,, 1 ,, o anNds, 12, are set

to predetermined values and then used in the first recursion togjgld Equation (46)

is then used to achieve the recursive computation af,all, of constanin (a ‘column’in

Fig. 7), and sequentially increasih@upwards and towards the diagonal (ie. ‘reverse’) in

Fig. 7), until the recursion is terminated at the computation of the sectgral (on the
diagonal in Fig. 7).

Recursion algorithms resembling Eq. (46) form part of the standard Clenshaw methods
(cf. Tscherning and Poder, 1982) for evaluating the partial stiffiswithout computing
individual scaled values @2‘21(9) (Section 3.3). However, Eq. (46) can be used in a dif-
ferent context to compute individual values%. Settings,+1.ma = 0, Spma = 1
and ally;,,, = 0 allows the recursive computation of all,,,, of constantn and sequen-
tially decreasing from s,,_1 ,, o 10 S;uma. The effect of using the recursion in Eq. (46) in
this way is to sequentially aggregate the,{t) andb,,, recursive terms, in the sequence

— Pun(9)

of decreasing, until the recursion terminates at the computation,gf,., = P )"
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One drawback of this approach is that the intermediate valugg,@fin the recursion
1 e m(g) _nm(g)
do not constitute actual values % Instead, eacl%Tw) value must be computed

in isolation from the others using: — m) recursions of Eq. (46). This necessitates

(M;m)2 recursions to compute all non-sectoral value L ((%)) of orderm and degree

(m+ 1) < n < M. This contrasts with the second modified forward column recursion,
Pogm (0 . .

where these same values mm((e)) can be computed using on{y/ — m) recursions of

Eq. (34). The relative numerical efficiency of these approaches is tested in Section 4.3.

—-(1)
To compute values "m((?) the first derivative of EqQ. (46) with respect#te= cos €

gives
<Szlmcz = Qr+1,m (éH»l,m,at + Sl+1,m,a) - bl+2m <S2l+2,m,c¢ (47)

wheres;,,.. = % The seed values for the recursion in Eq. (47) €€m o ands,1.m.q)

are differentiated with respect tdo give s,ma = Sn+1,m.o = 0. These initial values allow

the recursion in EqQ. (47) to compute &j},.,, of constantn and sequentially decreasihg

from $,,_1 .o 10 $mmae. When used in this way, the recursion in Eq. (47) terminates at the
(E?’Lﬂl (0) ) (Eﬂlﬂl (0))

computation o, = —~22@~ Since sectorak"==%~ are zero, their corresponding

Smme @re simply set to zero without the need for any recursion. Application of the product

a( Lom®))

rule and the chain rule te-"22@~ yields

-1
P (0 t
_nm() :m_gmma—uémma,Vnzm (48)
mm (0) u
5 df Enm(0)
Where, as abovemma — gL((gg)) andsmma — (Pngtn(e))

(1)
To compute all non-sectoral valuesie Ez; of orderm and degreém+1) <n < M,

(M —m)
2

the reverse column technique requires * recursions of Egs. (46) and (47), as

well as (M — m) applications of Eq. (48). In the same manner as the reverse column
computation ofng((?) (Eq. 46), the numerical efficiency of this approach (Section 4.3)

contrasts poorly against the second modified forward column recursion (Section 2.6) in



23

which the% are obtained from previously computed value% through only
(M — m) applications of Eq. (35).

As with the modified forward column and forward row recursion techniques (Sections
2.6 and 2.5, respectively), a global scale factor must be applied to the reverse column
computations to prevent a overflow in the computationfé‘i(%. This is achieved by
simply setting the initial values,,., to 10728 (rather thanl) for use in Eq. (46). This

scale factor oftl0=2%° will propagate linearly through the subsequent computations to

-5 (d)
yield values ofgnm((?) x 10-28°, Importantly, this global scaling allows, in IEEE double
precision, the computation of spherical harmonic sesiésr 0° < 6 < 180° andS™" for

0° < 6 < 180° up to M = 2700.

3.3 Sandard Clenshaw Methods

The standard Clenshaw methods, summarised below, closely resemble the reverse column
recursions (Section 3.2). The Clenshaw (1955) approach, which was formulated origi-
nally to evaluate partial sums of Chebyshev polynomials, was adapted for use in geodesy
by Gulick (1970) to compute partial sums E@ﬁ(e). Section 3.3.1 introduces a sim-

ple implementation of the Clenshaw (1955) approach, whilst Section 3.3.2 presents the

implementation that is used more commonly in geodesy (cf. Gleason, 1985).

3.3.1 Thefirst Clenshaw method

The simplest implementation of the Clenshaw (1955) technique, herein termédsthe
Clenshaw method, uses the recursions in Egs. (46) and (47) to compute, directly, the in-

. x@ . e _g‘a(g) . .
termediate sumg nes, without evaluating individual values .k Undifferentiated

values ofﬁ m(va) may be computed using Eq. (46). Settiig 1 m.a = Snt2.m.« = 0andall
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Yima = Eima [Yime = 0, V1 < pin Eq. (3)], allows the recursive computation of &ll,,,

of constanin (a column in Fig. 7), and sequentially increasirfgpwards and towards the
diagonal in Fig. 7), fron¥,,,,,, t0 s;ume- AS in the reverse column recursion (Section 3.2),
the recursive process terminates at the computation,gf, (on the diagonal in Fig. 7),
except that, in this case, the sectorg),. = %

The first Clenshaw method also may be extended to compute partial $tms?
andS(-1, where 4 = —1’ denotes definite integration (cf. Tscherning and Poder, 1982).
However, this study is confined to the computatios 6f. For this task, the first Clenshaw
method uses the recursion in Eq. (47). The first derivative with respeéct tes 0 of the
seed values used abovg (1 .o = Snt2.ma = 0) 9IVESS, 11 m.a = Snt2ma = 0. These
seed values allow the recursive computation ofsgll,, of constantn and sequentially
decreasingd, from $,,,. 10 $,,ma- AS in the reverse column recursion (Section 3.2), this
recursive process terminates at the computation.gf,, except that in this casg,,.. =

( Xma Xma

d | = d | =
“37;”“’». Application of the product rule and the chain rule to the quan%ia(cﬁ@

dt

yields (adapted from Gleason (1985))

= = M — Soma — U Smma (49)
u

d (ames)
dt '

where, as above,,, . = ﬁXm?g) ands,ma =

3.3.2 The second Clenshaw method
In geodesy, what is termed tlsecond Clenshaw method in this paper is more com-
monly used to evaluate spherical harmonic expansions such as Eq. (5) (eg. Gleason, 1985;

Deakin, 1998) For this task, Eq. (38) is reformulated using Horner’'s scheme in terms of
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(U, q), Whereqg = &

r

M
S@ — ¢ ZQT(;[),

m=0
Q](\j) J(\ji[) 1
= C G UMq + fry — UM, q +
PM,M(Q)C]M 1DM—1,M—1(9)CIM_1 '

-Q](\j) ) Q(d) Q(d) @

— — Uni—oq + . + =——2—YUsq + —— Uiq + ¢S

PM—Z,M—Z(Q)QM72 ’ P2,2(9)C]2 ’ P1,1(9)q ' °
(50)

Note that in the geodetic literature (eg. Gleason, 1985, Egs. (2.38), (2.39) and (2.40) ),
the use of Horner's scheme in Eq. (50) is presented as an implementation of Eq. (46).
For undifferentiated values &, the requiredP”W quantities are computed using a

modified version of the reverse recursion algorithm in Eq. (46); this is (Gleason, 1985)

2
Stma = al—l—l,mtqsl—l—l,m,a - bl+2,m q Si+2,m,a + Yima (51)

To produce the required values%, the recursion in Eq. (46) is initiated exactly
as for the first Clenshaw methosl, (1m0 = Snt+2.m,a = 0), €xcept that aly;,,,, are set

to % [Yime = 0,VI < pin Eq. (3)], rather thark,,,,,. Thus, to evaluate the truncated
expansion of geopotential in Eq. (5), these valueg,gf, are set taC},,., rather than
(g)lama, as for the first Clenshaw method. This allows the recursive computation of
all s;,,«, Of constantn (a column in Fig. 7), and sequentially increasin@ipwards and
towards the diagonal in Fig. 7), froB3,,o t0 S,uma, Wheres, . = %

Similarly, values o% may be computed by differentiating Eq. (51) with respect

to ¢t to give (Gleason, 1985)

. . 9 .
Stma = Ql+1,m 4 (Sl+1,m,a t+ Sl+1,m,a ) - bl+2m q Si+2,m,a (52)

Differentiation (with respect t¢) of the seed values used aboyg.(i .o = Sn+2.m.a = 0)

QiVES5y,11,m,a = Snt2,ma = 0. These values allow the recursive computation ofgll,,
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of the samen and sequentially decreasihgfrom $,,,,. 10 $,.m. The recursive process

Xma

d [ =
terminates at the computation ©f,,,..., wheres, e = w Application of the

d Xma
product rule and the chain rule to the quanﬁfeglmg;(—"”") yields (adapted from Gleason

(1985))
ﬁ T(nga)qm =m E Smma — U Smma (53)
_ _ Xua : _ i (Flee)
where, as above,,,,,. = i ands,p, = —Lom@d®/
Values of—X52__ obtained from the second Clenshaw method, are used in place of

P (0)a

()

X9 in Eq. (2) to form 52— The standard approach (cf. Gleason, 1985; Deakin,

1998) is to combine these values using the implementation of Horner's scheme given

in Eg. (50). Alternatively, values o% can either be multiplied by™ to yield

mm (0)q

ot
Pmm(a)

, Which are combined using the implementation of Horner’s scheme in Eq. (38), or
multiplied by¢™I1,, to yield values o%, which are combined using the implementation
of Horner's scheme given in Eq. (31). The resulting numerical valugs®fare identical

in all cases (Section 4.2).

3.4 |EEE Overflows and Global Scale Factorsin the Sandard Clenshaw Methods

Overflows can be prevented in the both first and second Clenshaw methods by multi-
plying all 3, by the global scale factor af0=2%. This scale factor propagates lin-

early through subsequent recursions to finally produce valu%ég% x 10728 and

- (d) . . (d)
F"i?%)qm x 102 These are used in place &% in Eq. (2) to formFQ’g(e) x 107280

and% x 10289 respectively. Again, this global scaling allows, in IEEE double

precision, the computation of spherical harmonic sesiésr 0° < 6 < 180° andS™ for

0° < 6 < 180° up to M = 2700.
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4 Numerical Tests
4.1 Viable Methods

The previous derivations have presented six apparently viable methods for computing
S (0° < 6 < 180°) and S™M (0° < # < 180°) for M < 2700. These algorithms are
summarised in Table 1.

As mentioned in Section 2.6, the first (MFC-1) and second (MFC-2) modified forward
column recursions are, essentially, a single method. Therefore, for the remainder of this
Section, they will be treated as one algorithm, termedribdified forward column recur-
sion. This leaves, to this point, five separate methods for computing spherical harmonic
expansions. The purpose of this Section is to provide an initial, general assessment of
the relative merits of these algorithms using tests of precision, numerical efficiency and
accuracy. The tests of precision will compare partial susi8, computed in IEEE dou-
ble precision and IEEE extended double precision. The tests of numerical efficiency will
compare the execution times of the algorithms. The tests of numerical accuracy will use
analytic solutions for the sum of the squareﬁﬁﬁi(e), to compare the modified forward

row and modified forward column algorithms only.

4.2 Relative Numerical Precision

The first step in comparing different methods for computing the partial ssitfisin

Eg. (1) is to choose some appropriate values Agf,, and \. For E,,,,,,, one might

use empirically generated coefficients such as EGM96 (Lemoine et al., 1998) and/or
GPM98B (Wenzel, 1998) to compute the lower degkgg,... Higher degree coefficients
could be generated synthetically to conform with the predicted spectral characteristics

of the Earth’s gravity field (eg. Tscherning and Rapp, 1974). However, the ubiquity of
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high degree spherical harmonic expansions across multiple scientific disciplines favours
a more general approach. For this reason, the following comparisons have employed the
testing regime utilised by Gleason (1985), which is to seFall,, equal tol and\ equal
to 0. This testing regime has the advantage of being straightforward to present, as well as
being sufficiently general for a first assessment of the new algorithms. In this approach,
the computed estimate$?, of the partial sums$® (Eq. 1) reduce to

2700 n
s =3"S" P (6) (54)

n=0 m=0
Each algorithm in Table (1) was evaluated in IEEE double precisionamalltra — 10
workstation. The algorithms were encoded in the Fortran 77 computer language and com-
piled using theSpar kworks™™ (v3.0.1) Fortran compiler. The values sfvere computed
for integer values of co-latitudé&® < 6 < 180° and values of() were computed for in-
teger values of co-latitude® < # < 179°. These were compared with the corresponding
‘control’ values, obtained from the second Clenshaw summation (Section 3.3.2) which
was implemented in IEEExtended double precision (ie16 bytes to store each floating

point number) (cf. Coonen, 1980). The relative precision (RP) for éaghs calculated

using

s (double) — s (extended)

P =
h s(d) (extended)

(55)

wheres@ (double) is the value of Eq. (54) for the summation computed in double preci-
sion by each respective method asi@l (extended) is the result for the same sum com-
puted using the second Clenshaw method in extended double precision. The vadties of

are computed under the assumption that the results obtained from IEEE extended double
precision are correct to at least one significant figure more than those obtained from IEEE

double precision.
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The termprecision is used here since any systematic errors common to computations
in both the double precision and extended double precision formats will not be revealed
during such a comparison. Moreover, to insure that such systematic errors did not bias
the controls(¥) (extended) values in favour of the(® (double) values computed using the
second Clenshaw method, a second set of control values was computed in extended double
precision using the modified forward column method. The two sets®fextended)
control values agreed to a minimumif significant figures.

For each of the algorithms, the computed quantities (Table. 1) were globally scaled
to yield values of2z x 1072, % x 10728 or ﬁmf% x 107280 which were
then substituted into the implementations of Horner’s scheme in Egs. (31), (38) and (50),
respectively, to yield values of¥ x 10~2%° and thens(¥. Recall thatF,,,,, = 1 and
A = 0, so Egs. (31), (38) and (50) reduce to Eq. (54). It was found that, once the values
of £z x 107280, % x 107280 or ELSW x 107280 were computed, they may be
appropriately factorised for use in any of the three implementations of Horner’s scheme
with no change to the final computed valuest®. That is, all combinations of the five
algorithms with the three implementations of Horner's scheme showed that the choice
of implementation of Horner’'s scheme was irrelevant to the observed precision of the
algorithm.

Of the five algorithms to be tested in this way, the second Clenshaw method is the most
widely used in geodesy. Thus, it is useful to employ&¥e error signature of this method

as a benchmark against which the performance of the other five methods can be assessed.

To test the second Clenshaw method, an extreme, but realistic, valy&ts chosen to

i i b __ 6,356,752.3141
provide a contrast to the first Clenshaw method. Thwsas set tojcfsst — 25=r=er=,

whereag rsso andbg rsso are the semi-major and semi-minor axes of the GRS80 ellipsoid

(Moritz, 1980).
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The relative precision signatures of the five algorithms for computiage shown in

Figs. (8) through (11), whilst the relative precision signatures of the five algorithms for

computings®) are shown in Figs. (12) through (15). To facilitate easier visual compar-

isons, the error signatures obtained from the second Clenshaw method in the computation

of s ands") have been superimposed (dashed line) over the corresponding error signa-

tures obtained from each of the other four methods.

2700 n
For the computation of the quantities= > > P,,,(#), inspection of Figs. 8 and 9

n=0 m=0

shows no systematic differences between the performance of the Clenshaw methods and
the modified forward column method. One interesting feature is that the relative precision
signatures obtained from all of the column methods for the northern latitudes are almost
identical, whilst the signatures for the southern latitudes are not (cf. Figs. 8 through 10).
This is particularly evident for the relative precision signature for the reverse column
recursion (Fig. 10), which contrasts poorly, in the southern latitudes, against the signature
from the second Clenshaw method. Nevertheless, the relative precision<s Kiitl®.

Inspection of the relative precision signature for the modified forward row recursion
(Fig. 11) reveals a slight, but clear, improvement in precision over the other algorithms.
This is particularly evident as computation approaches the poles.

2700 n
For the computation of the quantities) = Y S PS,L(G), Fig. 12 reveals no clear

n=0 m=0
differences between the relative precision signatures of the first and second Clenshaw
methods. Figure 13 shows, in the northern latitudes only, a moderately improved rela-
tive precision signature for the modified forward column method over that of the second
Clenshaw method. Similarly, the relative precision signature for the modified forward row
recursion (Fig. 15) shows an increasing improvement over the second Clenshaw method

towards the north pole. There is also a slight improvement towards the south pole. As with

the relative precision signatures farthe reverse column method gives a relatively poor
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relative precision signature it for in the southern latitudes (Fig. 14). This result is to
be expected since the values—ﬁe;w are computed fron?jj#.

None of the five recursions tested delivered a relative error o —° in the computa-
tion of eithers ands("). No analysis was conducted to explain the hemisphere-dependent
performance observed (Figs. 8 to 15) during these tests. However, this phenomenon is
not observed in the accuracy tests for the two modified forward algorithms (Section 4.4).
These both produced relative accuracy signatures (Fig. 16 and Fig. 17) that are noticeably
more symmetric about the equator than the precision signatures (Figs. 9, 13 and Figs. 11,
15) for the corresponding algorithms.

For each algorithm, the accuracy tests used the same valﬁ%@i as those used
in the precision tests. However, the accuracy tests squared these values before combining

them using Horner’'s scheme. This suggests that, at least for the two modified forward al-

5 »1)
gorithms, the actual computation 682 and L %(9) is performed equally well in both

u

hemispheres. In this case, the lack of symmetry in the relative precision signatures re-

turned by these algorithms might result from the change in sign, across the equator, of

5 -1
half the Z2n®) and P22 This would create different cancelling effects in each hemi-
sphere when these values are combined using Horner’s scheme. Such an effect would not

be present when squared terms are combined. Further work may validate this explanation.

4.3 Numerical Efficiency

The five methods that successfully compuf#, for M = 2700 and for integer values

of # to the poles, were tested for their relative numerical efficiency. Considerable attention
was given to eliminating all redundant computations from each algorithm. For example,
the square roots and inverted square roots required to construct the recursion coefficients

were computed once by each algorithm and then stored for multiple use in the synthesis
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subroutines. However, the latitude-independent components of the recursion coefficients
were not computed and stored in this way, but were generated from the square roots and
inverted square roots as they were required. This was done so that the efficiency results
would be applicable to the many PC’s, still widely used, which possess insufficient RAM
to store~ 7.3 million recursion coefficients.

Table 2 shows the CPU time required by each of the five algorithms to compute:

2700 n
1l.s= > P.n(0), for integer values of° < 6 < 180°,
n=0 m=0
2700 n
2. sasabove and) = S PS,L(Q), for integer values of° < § < 179° simultane-
n=0 m=0
ously.

The CPU times for the reverse column algorithm are excessively large and so were extrap-
olated from the computation times for a single parallel. All computations were performed,
once again, on &un Ultra — 10 (333MHz) workstation that uses a virtual or ‘swapped’
RAM configuration, which is slower than actual RAM.

It should be noted that these CPU times, in addition to showing the relative efficiency
of each approach, are also functions of the computer architecture, compiler and program-
ming language employed, as well as the programmer’s implementation of these algo-
rithms. Variations in any of these, particularly algorithmic implementation, can slightly
improve or worsen the relative performance of each algorithm. However, the results pre-
sented in Table 2 are sufficient for the current purpose, which is to demonstrate that all
algorithms, except the reverse column algorithm, appear to be of comparable numerical
efficiency in evaluating the required partial sums. Lastly, for the reasons outlined in Sec-
tion 3.2, the reverse column algorithm is extremely inefficient when compared with the

other four approaches, and thus will be excluded from further examination.
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4.4 Accuracy

As mentioned, the numerical evaluations presented in Section 4.2 are tests of precision
only, since both the tested algorithms and the ‘control’ algorithm computed in IEEE ex-
tended double precision may contain shared systematic errors. These could be due to any
one of compiler, computer architecture or programming errors, for example. Therefore,

it is prudent to supplement tests of precision with accuracy assessments that utilise exact
identities (ie. analytic results) incorporating the computed quantities. For this purpose,

starting with the well known identity

n

S (Pun8)” = 20+1, 70 (56)
m=0
this can be shown to yield
M n )
Su= > (Pam(®)” = (M+1)*, V0 (57)
n=0 m=0
Differentiation of Eq. (56) gives

Z (FSTL(Q)Y _ (n(n+ 1)2(2n+ 1)) vy (58)

m=0

from which results

s ﬁ:f:i<ﬁn1%(9)>2 _ (M(M+122(M+2)>,V9 (59)

For M = 2700, Eq. (57) givesLyrgy = 7,295,401 and (59) givess.,, = 13,305,

717,113, 850. However, these analytic values bf;,, andX’;,,, cannot be used to verify

the accuracy of the first and second Clenshaw methods, because these methods do not
compute individual, scaled values Eﬁﬁ(e). An alternative test for the standard Clen-
shaw approaches is to compute partial sums of second deriva$iésand then use

these to evaluate Laplace’s equatiahf( = 0). However, this study does not extend to



34
the computation of second derivatives, and so will be confined to testing the accuracy of
the modified forward column approach and the modified forward row approach only.

To implement this accuracy test, both methods were applied, in IEEE double preci-

sion, to compute, fol/ = 2700, integer values o% x 107280 (0° < # < 180°) and

(1) .
Pum(® 5 10-280 (1° < § < 179°). However, these values cannot be squared in IEEE dou-

H(d)
ble precision without an underflow. This necessitates that the squarfng@ x 107280,
as well as their combination using Horner’s scheme, be performed in IEEE extended dou-

ble precision. This means that the results from these tests will only reflect the accuracy

(d)
with which P%(") x 107289 are computed, since this is the only operation which can
performed in IEEE double precision far = 2700.

B .
The values of22(®) x 10-2% were converted to IEEE extended double precision,

79 ) 7D )

squared, and then rescaled1y® to yield values of(’;’f_ﬁii)). All the values of(’;”%))
. . 210 (Pum ()’

of the samen were summed to give the quantitiéy, = > ~——-~ and[l, =

2700 (ﬁ%(g)f . .
Y. == Thesel}, were then combined using Horner’s scheme

n=m
Iz | o Toge9 | o Te98 | 5
Yaroo(comp) = [{( {u5400 u® + 5308 | U + a0 | U +
I I
e + —z}uz + —
u

U2
where Y700 (comp) are the computed estimates 8%7,,. Exchangingl’: for I, in

wu2m
n=m

u? + I (60)

Eq. (60) yields¥;., (comp), which are the computed estimates’sf, .

The numerical accuracyNA) of P,,,,(f) was calculated using the relation

NA— (Egmo(comp) — 7,295, 401) (61)

7,295,401

1)

whereas the numerical accuracy 4*) of Fﬁbm(e) was calculated using the relation

(62)

v — [ Zruolcomp) — 13,305, 717,113, 850
- 13,305, 717, 113,850
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The resulting¥y70 (comp) error signatures of both algorithms are plotted in Fig. 16 for
integer values 06° < # < 180°. The X;,,(comp) error signatures of both algorithms

are plotted in Fig. 17 for integer values of < 6 < 179°.

Figs. 16 and 17 show the accuracy of both methods to be almost identical. In the com-
putation of bothY¥y7o (comp) (Fig. 16) and¥,,, (comp) (Fig. 17), the modified forward
column algorithm performs slightly, but consistently, better than the modified forward
row algorithm in the lower latitudes. However, the modified forward column algorithm
becomes increasingly less accurate than the modified forward row algorithm as the com-
putation approaches the poles. This observation is consistent with the results presented
in Section 4.2, in which, near the poles, the modified forward row algorithms remained
relatively stable in comparison with the other methods tested. Lastly, note that neither the
modified forward row method, nor the modified forward column method, delivered values
values of N A or N A* greater tharl0~!!. These results support those obtained for these

two algorithms in the precision tests (Section 4.2).

5 Summary, Conclusion and Recommendation

This paper has shown that standard Clenshaw methods for evaluating high degree spher-
ical harmonic expansions derive their stability from simple numerical principles. IEEE
underflows are avoided by first eliminating the numerically problematicderm from

the fundamental recursive algorithms, and then employing Horner’'s scheme to gradually
reintroduce this term into the final computed value for the partial siffis Moreover,
existing algorithms for computing individual values Bf,,, () and FS,L(Q) are easily
modified to incorporate these two fundamental characteristics of the standard Clenshaw

methods.
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This last statement is strongly supported by the results of numerical tests. These show
that the two new algorithms (the modified forward row and the modified forward col-
umn methods) can be applied in IEEE double precision to compute the partialsums
up to M = 2700 (0° < # < 180°), as well asS™ up to M = 2700 (0° < 6 < 180°),
without IEEE underflow or overflow. Moreover, the results also suggest that the new algo-
rithms are equivalent to the standard Clenshaw methods in both precision and efficiency.
No doubt a more rigorous testing regime, specific to geodesy, will incorporate realistic
geopotential coefficients into the computed partial suifs. The relatively stable per-
formance of the modified forward row method, near the poles, might also warrant further
examination.

Perhaps the most interesting characteristic of the new methods is their relative simplic-
ity. Unlike the standard Clenshaw methods, both the modified forward row and modified
forward column algorithms are easily formulated using elementary algebra. More impor-
tantly, the mechanisms within the computation process are highly intuitive and transper-
ant. These qualities should simplify the process of adapting these approaches to other
tasks, such as evaluating partial sums of even higher degree and ordeto(ggfor all
latitudes tested in this study. Two other useful adaptions includé/fer 2700, evaluat-
ing partial sums of second derivatives, and evaluating quantities that have been integrated
over geographic squares bordered by meridians and parallels.

Another potentially useful property of the new methods is the fact that they compute
individual, scaled values c?ff?l(e). This property, in conjunction with the inherent sim-
plicity of the principles presented here, renders the new approach an attractive starting
point for extending the maximum/ over which existing algorithms for spherical har-

monic analysis can be applied.
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A Appendix A

This Appendix deals with some miscellaneous points on implementing the new methods

on a computer.

A.1 RAM conservation for the modified forward row method

- . 7Y 9) .
The modified forward row method (Section 2.5) compufe;ﬁ— of matchingdegree.
-(d)
However, efficient evaluation of the partial susi§) requires thatpn%nf‘)) of matching
order be combined to yieldz(i,i) for use using Horner’s scheme in Eq. (31). A straightfor-
. H(d)

ward approach is to precompute and store, for all degrees and orders, ﬁgﬁéﬁband
then combine théD"umT of matching order. However, many PC’s do not have sufficient
RAM to store, say; 3.7 million values ofp"m and/orZzz(?) i 9 for M = 2700.

The alternative is to use the modified forward row method to comﬁ%ﬂﬁ;L for one

. B (9) . .
order ata time. The sectorﬁi;;nm— are computed and stored as before. Referring again to
H(d)

Fig. 3, computation of all non-sectorﬁigglﬂ, of orderm and degreém + 1) <n < M

a complete ‘column’in Fig. 3), requires only that previously com uféé;“lﬂ and
( p g q y p y pLed

F”{;’,”nﬁ(e) have been stored.
Three arrays are used in ‘rotation’. Arrayand2 contain all the previously computed

values ofﬁ”;,’;iﬁ(‘)) and ﬁ";;ﬁ(g), respectively. These are used in Eq. (27) to compute all

the required non-sector&t=? which are stored in array . Values of=z2®) (array1)

and—z= P"” (arrayX) are then used in Eqg. (30) to compute all the requ@eﬁ— which

-(1)
are stored in arrag. 2n gnd 2z ” are obtained from the values 5?",;0 and Z» 0),

B
respectively. For the next round of computatlén%ﬁ() corresponding to the next

‘column’ to the left in Fig. 3 ), the old arrayX becomes the new arrdy the old arrayl

becomes the new arr&y and the old arrag becomes the new array.
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This method employs the same number of mathematical operations as that which pre-

- -(1)
computes and stores all the requir@%“# and P’;;—:n(a). However, the method of three

‘rotated’ arrays requires a RAM allocation of ordy/ array elements to compute and
) -(1)
use the required non-secto@%ﬂ and P%(g). This contrasts with the ‘precompute’

approach, which requires a RAM allocation%fﬂgL” array elements for the same task.

A.2 Underflows from Problematic Coefficients

For spherical harmonic synthesis of very high degree {ég= 2700), all of the methods
presented here will underflow for sufficiently small valuestyf,.. in Eq. (3). For ex-

ample, all methods will report underflowg ¢) when EGM96 coefficients are employed

for the lower degrees. The sole cause of thi@},@o,%o ~ —4.5 x 107%°, which under-

flows when combined witlﬁ%;}f%(”) x 107280 using Horner’s scheme. In this case, setting
6360,360 to zero prevents the underflow message and yields an error which is undetectable
in IEEE double precision. Of course, an entire coefficient set that is relatively homoge-
neous in magnitude can be scaled upwards or downwards as needed. Otherwise, a set of
coefficients which differ by twenty orders of magnitude or more can be partitioned, ac-
cording to magnitude, into subsets. Each subset is then scaled as a whole and then used
to compute a corresponding partial sum. The resulting partial sums are then rescaled and

combined to yield the final result.

A.3 Combining Components by Degree

The modified forward column and modified forward row recursions are immediately more
versatile than the standard Clenshaw methods, since they do not automatically combine

guantities of the same ordet. This feature is necessary, for example, to form interme-
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diate sums of quantities which share the sameather than the same. For example,

consider the spherical harmonic expansion of gravitational poténtialEq. (4). Set

M
M M n
Ve = M EH (2)" o (63)
T T 2 T
where
D = AS) (64)
m=0
and
ZW = (Cpmy cosmA + Chpzsinm) Fffﬁib(e) (65)

For ultra-high values o/, the modified forward column or modified forward row algo-

d)

5(d) —
rithms are used to generate values%f&. These replace?fm(e) in Eq. (65) to yield

z

um!

“Qr(zd) _ Z Zr(r;i)a
m=0

which are combined using Horner’'s scheme

Zs Zys o
= u—mu—i-umflu—i- el K
() Z(d)
.+ ﬁ}u + ﬁ u+ 7% (66)

to give each separafé,(f) ,V2 < n < M. Inspection of Eq. (63) shows that this algorithm
provides an efficient means for computing multiple value® @br any other gravimetric

guantity) at multiple points along the geocentric radial thro@igimd \.

B Appendix B

In addition to the forward row recursion in Eq. (27), Libbrecht (1985) provides a sec-

ond algorithm for computing values cff’;";—@ Fully normalising Magnus et al. (1966,
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Eq. 4.3.3(6)) and then dividing hy™ gives

Pom(0) v2n +1 — P 1m(0)
wr@n=1)(n+m) ( "
Fn—l,m—l(g)

+Vpn+m—1) o

),Vn>m,m>0 (67)

where,/p accounts for thé: term (Eq. 8) in the full normalisation of the,,,(¢), and is
given byp =2 form =1 andp = 1V m > 1. Note that, similar to the modified forward
row recursion (Eq. 27, Section 2.5), Eq. (67) is presented in Libbrecht (1985, Eq. (4))
without the,/p term, due to a different ‘normalisation’ which uses= 1,V m > 0. A
schematic of thistaggered recursion algorithm is given in Fig. (18).

To use the recursion in Eq. (67), both the sectéﬁ%@, V' m < M (upper diagonal
in Fig. 18), and zonaw = P,0(0), Vn < M (leftmost column in Fig. 18), must be
computed independently beforehand. The sectoral values are computed as before using
Eqg. (28), whilst the zonal values may be computed using the modified forward column
algorithm (Eq. 32). Eq. (67) can then be used to compute each of the remgifig}i#é
from the adjacenw (immediately above in Fig. 18), an%l%}l@ (diagonally
above and to the left in Fig. 18). That is, once all of the sectoral and zonal values are
known, this is sufficient to compute aﬁ”ull—@ (second column to the right in Fig. 67),
which may then be used to computeg{i;(—a) (third column to the right) and so on up to
m = M —1.

Libbrecht (1985, p. 372) claims that, provided that the zdnaj(#) values are com-
puted with sufficient accuracy using a “...rapidly converging trigonometric expansion...”,
that “...one would have to go up to a very highdegree] andn [order] indeed before
roundoff errors became a problem.” That is, the claim seems to be that the overall accu-
racy of this approach for computing valuesw is superior to that of implied mod-

ified forward row recursion. However, no numerical results are provided by Libbrecht
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(1985) for this staggered algorithm. Moreover, results from numerical tests conducted in
the current study contradict this claim. For these tests, secfé;fagl@ were computed
using Eq. (28), whilst the zonat,,,,,(#) were computed using the standard forward col-
umn recursion (Eq. 32) applied in IEEE extended double precision. A procedure identical
to that used for the precision trials of the other recursion methods (Section 4.2) was em-

2700 n
ployed to yield a relative precision signature for the computatiod of> P,,,,,(6). The

n=0 m=0
plot of the relative precision statistic is shown in Fig. (19).
Inspection of Fig. (19) shows that the staggered algorithm for complﬁw is
highly unstable, except for points proximal to the poles and the equator. However, the
relative precision of this algorithm close to the poles does not exceed that of any of the

approaches presented in Section 4.2. Therefore, the staggered recursion algorithm should

not be used to compute ultra-high degree and order spherical harmonic expansions.

c Appendix C

This Appendix explores the possibility of formulating Clenshaw methods, based on row
recursions rather than column recursions, for evaluating the partial ${ffnhese for-
mulations have proven, at present, less successful than than the other approaches pre-
sented in the main body of the paper. The general approach is outlined below in the event

that it may yet prove useful for future developments in this area.

C.1 Two Forward Row Factorisations

In Section 2.6, each of the standard (Eqg. 11), first modified (Eq. 32) and second modi-
fied (Eq. 34) forward column recursion algorithms are of identical form such that only

the initial sectoral seed values differ. That is, Egs. (11), (32) and (34) all employ the
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same recursive termsy,,,t) and b, but use different sectoral seed values. In contrast,
the modified forward row recursion (Eq. 27) for computiﬁgﬁ differs in form from

the standard row recursion (Eg. 18) for computing,,(6) because the denominatar
varies with the order of eacﬁ%ﬂ in any given row. That is, the recursive termgmﬁ
andh,,,,, used in Eg. (18), are different from the equivalent tergns,t andh,,,,,u?, used

in Eqg. (27). Thus, the standard forward row recursion and the modified forward row re-
cursion will each yield a separate factorisationftf,,(6). These factorisations serve to

introduce the quantitie_"m((g)) and%lg), which will be examined in the following two

subsections.
ﬁnm(a)

C.1.1 Sandard Forward Row Factorisation: 0

The rectangle in Fig. 3 for the forward row recursions containgPal},(9) for which

n = 3 and0 < m < 3. For these values a?,,,,(#), the standard forward row recursion

(Eq. 18) gives

Paal®) = | e (£) | Prato (68)

_ £\ 2 _
P3,1(9) = | 93,1 93,2 (a) - h3,1 P3,3(9) (69)

_ 1 £\? t t
P3,0(9) = ﬁ <93,o 93,1 93,2 (a) — 030 h3,1 (a) — 932 hs,o (a) )

where the aggregations @t,pﬁ and h,,, terms within the square brackets are equal to

P33(0)

(70)

Enm(a)

Pond) " Here,p has been used instead »f to denote the order of each recursive term

gnpﬁ andh,,,, since eachP; ,,,(0) of orderm is comprised of an aggregation of gupﬁ
and h,,, terms form < p < 2. In general, anyP,,,,,(#) may be factored inta,,,, ()

and an aggregation of all of tryebpﬁ andh,, terms form < p < (n — 1). Note that the
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denominator o% is notP,,,,(6) , butP,,(6), which is the sectoral value of the same
n, rather than that of the same.

P?’LT??,

The quantlty appears to be of no practical use. Inspection of Fig. (20), which
gives the range of magnitudes taken%, shows that there is no global scale factor,
capable of storage in IEEE double precision, that will allow these quantities to be com-

puted for0° < # < 180° up to M = 2700. As such, the quantlty}';"m— will not be used

to compute very high degree and order spherical harmonic expansions.

C.1.2 Modified Forward Row Factorisation: i’:n”—}g
Expanding on the example in Section C.1.1, recall that the rectangle in Fig. 3 for the
forward row recursions containg,,, () for whichn = 3 and0 < m < 3. For these

values ofP,,,, (f), the modified forward row recursion (Eq. 27) gives

Pso(0
Ps (0

3;1( ) — [93,1 93,2 t? — hs uz] II,—3 (72)
P3o(0 1

3;)0( ) _ 7 (930 931 G328 — g30 hajptu® — g3p hgotu®)| I—3 (73)

where quantities in square brackets M Note that the7,, term in the denominator
renders anyﬁ;’# different from the correspondin%%ﬂ (Fig. 5) by no more than one

order of magnitude.

C.2 Reverse Row Methods

To compute any value cﬁj}i—m the modified forward row recursion begins with the seed
valueI7,, and then aggregates the necessaryt) and(h,,u?) recursive terms in order

of decreasing (sequentially left across each row in Fig. 3). In a manner similar to the
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reverse column recursion (Eg. 46), an alternative to the modified forward row recursion
(Eq. 27) is to reverse this process and apply these same recursive terms in the sequence
of increasingp, (sequentially right across each row in Fig. 21). That is, a recursion may
be employed whereby thg,,t) and(h,,u?) recursive terms, for which = m, and are
applied first and the recursive terms, for whijech= n — 1, are applied last. This will be
called areverserow recursion and is illustrated schematically in Fig. 21.

The reverse row recursion is applied using the algorithm

Snpa - gn,pfl t Sn,pfl,a - hn,p72 UJQ Sn,p72,a + ynpa (74)
To compute};;””m , the recursion in Eq. (74) is used as follows.The seed values are set

t0 Spma = 1, Spm-1,. = 0, and ally,,, = 0. This allows the recursive computation
of all s,,,,, Of constant: (a row in Fig. 21), and sequentially increasingacross to the
right and towards the diagonal in Fig. 21), from,,+1.. 10 Sun.. The effect of using
the recursion in Eq. (74) in this way is to sequentially aggregatédhg) and (h,,u?)
terms, in the sequence of increasjguntil the recursion terminates at the computation
of Spna = V7 ?*’;m Here, thej value (Section 2.2) is determined by the valueroin

P (0).

To compute%, differentiating Eq. (74) with respect to= cos f gives

Snpa = Gnp—1 (tén,pfl,a T Snp-la ) = hnp2 (UQ Snp-2,a — 2t Sn,pfl,a) (75)

The seed values for the recursion in Eq. (&),, ands,, 1., are differentiated with
respecttd to gives,ma = $n,m—1,o = 0. These seed values allow the recursion in Eq. (75)
to be used to compute al},,, of the same:, and sequentially increasipgfrom s,, 11

to $,na- When used in this way, the recursion in Eq. (75) will terminate at the computation

Pnn(6)

d( ort : .
of $ppa = V7 w The sectoraM are zero, and so their corresponding.,

are simply set to zero without the need for any recursion. Application of the product rule
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Prm(0)

and the chain rule t¢/j M yields

-0
P (0 1 t
u%m](fn) = W (m - Suna U énm) ,Vn>m (76)

Prm(6)

d( 2%
where, as above,,,,, = /7 Ij;”"m andsune = VJj 7( udtH” )

In terms of the number of recursions required, the efficiency of the reverse row tech-

nigues for computing values d?’;’"( and an ) is the same as for the reverse column
methods (Section 3.2) for computing valueszéff”— and PZZ( )) respectively.

Similarly, overflows in the final computed values% are prevented in the reverse
row method by setting the seed valyg,, to 10728 (rather thanl) for use in Eq. (74).
This scaling propagates linearly though subsequent computatioo’s_‘d?%—(f) to gen-
erate values of/j ’ﬁlﬁfi) x 10728°, However, while this will prevent an overflow, the
reverse row method cannot be applied over the same rangesaidd as the reverse
column algorithm due to underflow problems during the computation. For example, for

M = 2700, the reverse row method will underflow fér<~ 76° andf >~ 104°. No

investigation of this underflow was conducted.

C.3 Row Clenshaw methods

The standard Clenshaw methods do not translate well to row-type recursions. The first

Clenshaw method uses the reverse column recursion in Egs. (46) and (47) to compute

x4
B (0)°

An equivalent utilisation of the reverse row recursion in Eq. (74) proves to be
of little use. In this case, setting, ,,—1,0 = Spm-2,0 = 0 and ally,p, = ana, allows

the recursive computation of al},,,, of constant: (a row in Fig. 21), and sequentially
increasing (across to the right and towards the diagonal in Fig. 21), fsgm, tO s,na.

M - _
In this case recursion terminatessgt, = Y. /7 (Enma}:;r?éi)>-
m=




49

M
The /;j term notwithstanding, the principal problem with the quantity, = > /7
m=0

(Enma i&yé‘”) is that the denominator o?ﬁl—é? varies with bothn andm. This means
that this quantity has effectively summed components for which the scale factor is not
constant, thereby preventing such sums from being combined and rescaled to achieve the

final sumss.
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Captionsfor 21 Figures

1. Logarithm plot of maximum (upper line) and minimum (lower line) vaIue}sTb,Im(H)\ ,
Vn, m <2700

2. A schematic of the recursion sequences employed in the standard, first modified and

second modified forward column algorithms to compatg, (6), ﬁ’;’"m((’) and ?m({;’),

respectively

3. A schematic of the recursion sequences employed in the standard and modified forward

row algorithms to computé,,,,,(#) andp%(g), respectively
4. Variation ofI1,, (Eq. 24) with order (m)
5. Logarithm plot of maximum (upper line) and minimum (lower line) values—?qf# ,

Vn, m <2700

1)
6. Logarithm plot of maximum (upper line) and minimum (lower line) valuegef?) ,

U

Vn, m <2700

7. A schematic of the recursion sequences employed in the reverse column, and the first

j— E?’Lﬂl(e)
and second Clenshaw algorithms to compute the quan t%%’”((?), (Pmm“’))),

dt
(= (>) ana (2% d(m’:f?w),respecnvely

Pmm(g) ’ dt Pmm(é)qm ’ dt
. ] o 2700 n ) _
8. Logarithm of the relative precision (Eq. 54) to evaluate > P,,.(6) using the first
n=0 m=0

Clenshaw (solid line) and the second Clenshaw (dashed line) methods

2700 n
9. Logarithm of the relative precision (Eq. 54) to evaludte > P,,,,(#) using the mod-

n=0 m=0
ified forward column (solid line) and the second Clenshaw (dashed line) methods

2700 n
10. Logarithm of the relative precision (Eq. 54) to evaluate > P,,,(#) using the re-

n=0 m=0
verse column (solid line) and second Clenshaw (dashed line) methods

2700 n
11. Logarithm of the relative precision (Eq. 54) to evaluate > ° P,,,,(#) using the mod-

n=0 m=0

ified forward row (solid line) and second Clenshaw (dashed line) methods
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2700 n
Logarithm of the relative precision (Eg. 54) to evaluate > P( ) . (0) using the first

n=0 m=0

Clenshaw (solid line) and the second Clenshaw (dashed line) methods

2700 n
Logarithm of the relative precision (Eq. 54) to evaluate > ° P( ) .. (0) using the mod-

n=0 m=0

ified forward column (solid line) and second Clenshaw (dashed line) methods

2700 n
Logarithm of the relative precision (Eq. 54) to evaludte > P( ) (0) using the re-

n=0 m=0

verse column (solid line) and second Clenshaw (dashed line) methods

2700 n
Logarithm of the relative precision (Eq. 54) to evaluafe > ° P( ) .. (0) using the mod-

n=0 m=0
ified forward row (solid line) and second Clenshaw (dashed line) methods

2700 n _
Logarithm of the relative accuracy (Eq. 61) to evaluate > (an(e))Q using the

n=0 m=0

modified forward row (solid line) and modified forward column (dashed line) algo-

rithms
_ _ 2700 n —) 2 )
Logarithm of the relative accuracy (Eq. 62) to evaluaie > ° (an(9)> using the
n=0 m=0

modified forward row (solid line) and modified forward column (dashed line) algo-

rithms

A schematic of the recursion sequences employed in staggered algorithm to compute

ﬁnm(a)
. . . . 2700 no— .
Logarithm of the relative precision (Eqg. 54) to evaluate > P,,,(f) using the stag-

n=0 m=0

gered algorithm

Logarithm plot of maximum (upper line) and minimum (lower line) value 7

Y

nn (0)
Vn, m <2700

A schematic of the recursion sequences employed in the reverse row algorithms to

P (6)
compute the quantitieg; = an 9 andy/j (nmm)
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Captionsfor 2 Tables

1. Summary of algorithms for computing partial sufi®: first modified forward column
(MFC-1); second modified forward column (MFC-2); modified forward row (MFR);

reverse column (RC); first Clenshaw (CLEN-1) and second Clenshaw (CLEN-2)

2700 n
2. CPU time required to computs, = > > P,,,(#), V integer values 0f° < 6 <

n=0 m=0
180°, and the CPU time required to compute b§tlv integer values of° < 6§ < 179°,

2700 n
ands® = 3 3 P (9),V integer values of° < § < 179°, together: modified for-

n=0 m=0

ward column (MFC); modified forward row (MFR); reverse column (RC); first Clen-

shaw (CLEN-1) and second Clenshaw (CLEN-2)
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Fig. 9.
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Fig. 10.
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Fig. 11.
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Fig. 13.
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Fig. 14.
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Fig. 15.
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Fig. 16.
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Fig. 17.
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FORMULAE COMPUTED

METHOD || SECTION for S for S | QUANTITIES
B(d)

MFC-1 26 29)(32) | (33) Pam(®)
P ®

MFC-2 2.6 (34) (35) Fhm o
H(d)

MFR 25 @3 @n | (0 Lam(®)
P (0

RC 3.2 (46) (47) (48) G
(d)

CLEN-1 331 (46) (47) (49) ;L@
xiB e

CLEN-2 332 (51) (52) (53) | porme

Table 1.




TASK S S and S

CLEN-1 192 sec 282 sec

CLEN-2 192 sec 282 sec

MFC 186 sec 408 sec

MFR 174 sec 258 sec

RC || 41,862 sec | 67,778 sec

Table 2.



