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Abstract. Spherical harmonic expansions form partial sums of fully normalised asso-

ciated Legendre functions (ALFs). However, when evaluated increasingly close to the

poles, the ultra-high degree and order (eg. 2700) ALFs range over thousands of orders

of magnitude. This causes existing recursion techniques for computing values of indi-

vidual ALFs and their derivatives to fail. A common solution in geodesy is to evaluate

these expansions using Clenshaw’s (1955) method, which does not compute individual

ALFs or their derivatives. Straightforward numerical principles govern the stability of

this technique. This paper employs elementary algebra to illustrate how these principles

are implemented in Clenshaw’s method. It also demonstrates how existing recursion al-

gorithms for computing ALFs and their first derivatives are easily modified to incorporate

these same numerical principles. These modified recursions yield scaled ALFs and first

derivatives, which can then be combined using Horner’s scheme to compute partial sums,

complete to degree and order 2700, for all latitudes (except at the poles for first deriva-

tives). This exceeds any previously published result. Numerical tests suggest that this new

approach is at least as precise and efficient as Clenshaw’s method. However, the principal

strength of the new techniques lies in their simplicity of formulation and implementation,

since this quality should simplify the task of extending the approach to other uses, such

as spherical harmonic analysis.

Key words. Spherical harmonic expansions, Fully normalised associated Legendre Func-

tions, Clenshaw summation, Recursion, Horner’s scheme
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1 Introduction

Current geodetic practice is witnessing an increase in the construction and use of ultra-

high degree spherical harmonic expansions of the geopotential or topography. For ex-

ample, Wenzel (1998) released coefficients up to degree1800, which were empirically

derived to describe the gravitational potential of the Earth. Wenzel (1998) states that the

maximum degree of1800 for the spherical harmonic model was set by the numerical

stability of the recursion algorithm adopted to compute the required fully normalised as-

sociated Legendre functions (ALFs).

The recent interest in synthetic Earth gravity models, used for comparing and validat-

ing gravity field determination techniques, has already seen the use of ultra-high degree

spherical harmonic expansions. These have taken the form of simpleeffects models (eg.

Featherstone, 1999; Nov´ak et al., 2001) for which synthetic geopotential coefficients up to

degree and order2700 and2160, respectively, were produced without reference to a mass

distribution. There is also interest insource models in which synthetic geopotential coef-

ficients are generated by analytical or numerical Newtonian integration over a synthetic

global density distribution and topography (eg. Pail, 1999). Hybrids of source and effects

models also exist. For example, Haagmans (2000) combines empirically determined co-

efficients with synthetic ones derived from numerical integration over isostatically com-

pensated source masses to degree and order2160. Lastly, other scientific disciplines, such

as meteorology, quantum physics and electronic engineering, are also also showing in-

creased interest in high degree spherical harmonic modelling and analysis.

The numerical means for including the necessary ALFs constitutes the principal chal-

lenge to evaluating ultra-high degree spherical harmonic expansions. Therefore, it is timely
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to critically examine the accuracy and numerical efficiency of algorithms that compute in-

dividual ALFs and their partial sums.

1.1 Spherical Harmonic Expansions

Truncated spherical harmonic expansions of a function, or its derivatives, reduce to sums

S(d) of ALFs or theird-th derivatives, respectively. These are

S(d) = c

MX
m=0


(d)
m (1)

where


(d)
m =

2X
�=1

8>><
>>:
X

(d)
m� cosm� for � = 1

X
(d)
m� sinm� for � = 2

(2)

and

X(d)
m� =

MX
n=�

Enm�P
(d)

nm(�) (3)

For arguments of spherical polar coordinates (r, �, �) and for integer degreen � 0 and

order0 � m � n: M is the maximum finite degree of the spherical harmonic expansion;

� is an integer that may vary withm; c is a real numbered constant;Enm� is a real num-

ber incorporating the fully normalised spherical harmonic coefficients,Cnm1 andCnm2;

P nm(�) are the fully normalised ALFs; the superscript(d) indicates thed-th derivative

with respect to�, or definite integration (d = �1) between two parallels. This paper deals

only with undifferentiated functions (d = 0) or first derivatives of these functions (d = 1).

For d = 0, the superscript(d) is omitted. ThusS (0), 
(0)
m , X(0)

m� andP
(0)

nm(�) are written

S, 
m, Xm� andP nm, respectively. First derivatives of these quantities are writtenS (1),



(1)
m , X(1)

m� andP
(1)

nm(�), respectively. The general notationS(d), 
(d)
m , X(d)

m� andP
(d)

nm(�)

is used whenever a textual or mathematical reference applies to both the undifferentiated

quantities and the first derivatives simultaneously.
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The example of a truncated spherical harmonic expansion of the gravitational potential

V (r; �; �) is instructive here. Often, it is written as

V (r; �; �) =
GM

r
+
GM

r

MX
n=2

�a
r

�n nX
m=0

(Cnm1 cosm� + Cnm2 sinm�)P nm(�) (4)

whereGM is the product of the Universal gravitational constant and the mass of the

Earth. Alternatively, Eq. (4) may be written as

V (r; �; �) =
GM

r
+
GM

r

MX
m=0

"
cosm�

MX
n=�

�a
r

�n
Cnm1P nm(�)

+ sinm�
MX
n=�

�a
r

�n
Cnm2P nm(�)

#
(5)

where� is either2 orm; whichever is the greater. Relating Eq. (5) to the form of Eqs. (1)

to (3) yields

Enm� =

8>><
>>:
�
a
r

�n
Cnm1; for � = 1

�
a
r

�n
Cnm2; for � = 2

(6)

and

Xm� =
MX
n=�

�a
r

�n
Cnm�P nm(�) (7)

When evaluating gravimetric quantities (eg., disturbing potential, geoid heights, grav-

ity anomalies, etc.) in a sequence of points for whichr and� are constant (ie., along a

geodetic parallel), the form of Eq. (5) is numerically more efficient than that of Eq. (4) (cf.

Tscherning et al., 1983). This is because eachXm� in Eq. (3) is independent of�, and thus

need only be evaluated once for each parallel. If all such computation points are equally

spaced in longitude, further numerical efficiencies can be achieved through application

of the recursion algorithm developed by Rizos (1979). Abd-Elmotaal (1997) contains a

re-derivation of this algorithm which demonstrates that, contrary to the approach of Ri-

zos (1979), the algorithm can be applied in full without prior rotation of the geopotential

coefficients.
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1.2 Numerical Considerations When Evaluating Eq. (1)

The simplest approach to evaluating Eq. (1) is to use standard recursion relations, such

as those found in Colombo (1981) and described in Section 2.1 of this paper, to compute

the required values ofP
(d)

nm(�). These values can then be multiplied by the corresponding

values ofEnm� to yield the intermediate values forX (d)
m� in Eq. (3), and hence
(d)

m in

Eq. (2), which are then used to compute the final sumsS (d) in Eq. (1).

The principal problem with this approach is that for ultra-high values ofM (eg.2700),

the absolute values ofP nm(�) will range over thousands of orders of magnitude. For

example, Fig. 1 shows that, forM = 2700, jP (d)

nm(�)j ranges over� 5000 orders of mag-

nitude towards the poles (� ! 0Æ or � ! 180Æ; ie.cos � ! 1). This is impractical, because

the Institute of Electrical and Electronic Engineers’ (IEEE) standard 754 for binary float-

ing point arithmetic (cf. Coonen, 1980) only allocates eight bytes to store each double

precision floating point number (R). Thus,jRj may only take values within the range of

�10�310 < jRj < �10310. Any computed value wherejRj < �10�310 will ‘underflow’

and be set to zero, whilst any computed values for whichjRj > �10310 will ‘overflow’

and be designated ‘not a number’ (NaN), such that any subsequent computation which

employs thisR will also be so designated.

Underflows in the computation of anyP
(d)

nm(�) excludes the corresponding (matching

degree and order) coefficients from contributing toS(d), whereas an overflow in the com-

putation of one or moreP
(d)

nm(�) prevents any result forS(d) from being achieved at all.

Thus, IEEE double precision only permits a maximum range of� 620 orders of magni-

tude within which to compute and store the requiredP
(d)

nm(�) values. Figure 1 shows that,

for high latitudes, the range of values taken by theP nm(�) values forM = 2700 will

eventually exceed the range of magnitudes capable of being stored within the IEEE dou-
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ble precision format. Scaling all of the computations upwards by a factor of10200 allowed

Wenzel (1998) to compute values ofP nm(�) to a maximumM = 1900 for �20Æ � � �

�160Æ in IEEE double precision.

A numerically more stable alternative to these standard recursion relations is the Clen-

shaw (1955) method (cf. Tscherning and Poder, 1982; Gleason, 1985; Deakin, 1998). In

Section 3, it will be shown that this can be used to evaluate Eq. (1) up toM = 2700

(0Æ � � � 180Æ), as well asS(1) up toM = 2700 (0Æ < � < 180Æ). Standard derivations

of Clenshaw’s method (cf. Gleason, 1985; Deakin, 1998) utilise matrix algebra, and gen-

erally focus on the means by which this method can be used to evaluate partial sums,S (d),

without computing individual values ofP
(d)

nm(�). Such derivations are complete, concise

and rigorous, but they also obscure the numerical principles upon which the stability of

the Clenshaw summation is based. These principles are quite simple, both in concept and

in application.

This paper shows how existing algorithms for computing ALFs and first derivatives

are easily modified to incorporate these same numerical principles. The modified algo-

rithms can be used to compute scaled ALFs and their first derivatives, which can then be

combined using Horner’s scheme (cf. Harris and Stocker, 1998) to yield values for the re-

quired partial sums,S, up toM = 2700 (0Æ � � � 180Æ), as well asS(1) up toM = 2700

(0Æ < � < 180Æ). Straightforward examples and elementary algebra are then used to il-

lustrate the means by which these numerical principles are implemented in Clenshaw’s

method.

Results from numerical tests, presented in Section 4, suggest that the modified algo-

rithms are at least as efficient and precise as the standard Clenshaw techniques for eval-

uating partial sums ofP nm(�) or P
(1)

nm(�). However, it is the intuitive simplicity of the

new approaches, as well as the fact that they compute individual scaled values ofP
(d)

nm(�),
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which constitutes their principal strength over the standard Clenshaw methods. These two

properties should simplify the extension of these new approaches to other tasks, such as

stabilising current techniques for spherical harmonic analysis (eg. Lesur and Gubbins,

1999).

2 Forward Recursions for the Calculation of ALFs

The most direct approach for evaluatingS (d) (Eq. 1) employs a recursive algorithm to

computeP nm(�). Values ofP
(1)

nm(�), if required, are then computed directly from two

previously computed values ofP nm(�). These values ofP
(d)

nm(�) are multiplied by the

correspondingEnm� terms to yield the required series values ofX
(d)
m� (Eq. 3), which

subsequently yield
(d)
m (Eq. 2) and henceS(d) (Eq. 1).

The recursion relations forP nm(�) can be obtained by fully normalising standard re-

lations for (un-normalised)Pnm(�), which can be found, for example, in Magnus et al.

(1966) or Abramowitz and Stegan (1972). The full normalisation is given by (adapted

from Heiskanen and Moritz, 1967, Eq. (1-73))

P nm(�) =

s
k(2n+ 1)(n�m)!

(n+m)!
Pnm(�) (8)

wherek = 1 for m = 0 andk = 2 for m > 0. Similarly, quasi-normalised values of

~Pnm(�) are related toPnm(�) by (cf. Tscherning and Poder, 1982)

~Pnm(�) =

s
(n�m)!

(n+m)!
Pnm(�) (9)

Inspection of Eqs. (8) and (9) shows that

P nm(�) =
p
k(2n+ 1) ~Pnm(�) (10)

The relationships in Eqs. (8), (9) and (10) also hold for alldth derivativesP (d)
nm(�), P

(d)

nm(�)

and ~P
(d)
nm(�). However, unlikeP nm(�)

�
cosm�

sinm�

	
, P

(d6=0)

nm (�)
�
cosm�

sinm�

	
is not normalised in
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the correct usage of the word since its average squared value integrated over the unit

sphere is not unity. This paper focuses solely on the computation of fully normalised

ALFs and their first derivatives. No numerical tests were conducted for the above quasi-

normalisations. However, it is a trivial task to apply Eq. (10) to the algorithms presented

in this paper.

2.1 Standard Forward Column Methods

The most popular recursive algorithm used for computingP nm(�) in geodesy can be

obtained by fully normalising, for example, Magnus et al. (1966, Eq. 4.3.3(2)). This full

normalisation yields a recursion that computes non-sectoral (ie.,n > m) P nm(�) from

previously computedP nm(�). This recursion is given as (cf. Colombo, 1981)

P nm(�) = anm t P n�1;m(�)� bnm P n�2;m(�) ; 8 n > m (11)

wheret = cos �,

anm =

s
(2n� 1)(2n+ 1)

(n�m)(n +m)
and bnm =

s
(2n+ 1)(n+m� 1)(n�m� 1)

(n�m)(n+m)(2n� 3)

(12)

The sectoral (ie.,n = m) Pmm(�) serve as seed values for the recursion in Eq (11).

These are computed using the initial valuesP 0;0(�) = 1 andP 1;1(�) =
p
3u, where

u = sin �. The higher degree and order values ofPmm(�) are then computed using the

recursion (cf. Colombo, 1981)

Pmm(�) = u

r
2m+ 1

2m
Pm�1;m�1(�); 8m > 1 (13)

such that

Pmm(�) = um
p
3

mY
i=2

r
2i+ 1

2i
; 8m � 1 (14)
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where
Q

is the product symbol (eg. Abramowitz and Stegan, 1972).

The complete recursion process in Eqs. (11) and (13) may be visualised using the lower

triangular matrix in Fig. 2, where each circle corresponds to a particular combination ofn

andm. Thus, each circle represents a value ofP nm(�), as well as the corresponding pair

of recursive terms(anmt) andbnm. Note that in Fig. 2, the degree increases in rows down,

the order increases in columns to the right, and the diagonal elements of the matrix are the

sectoral values. The recursion in Eq. (11) computesP nm(�) of constantm (a ‘column’ in

Fig. 2) and sequentially increasingn (or down and away (ie., ‘forward’) from the diagonal

in Fig. 2). Thus, Eq. (11) will be referred to as astandard forward column recursion. This

nomenclature will be employed throughout the paper.

It appears from Eq. (11) that the computation of the first value ofPm+1;m(�) ‘forward’

from the sectoral diagonal (Fig. 2) requires a value ofPm�1;m(�) to be multiplied by the

recursive termbm+1;m. ThisPm�1;m(�) does not exist for ordinaryP nm(�). However, the

correspondingbm+1;m coefficient in Eq. (11) is always zero, thereby allowing the (non-

existant)Pm�1;m(�) to be disregarded.

For a forward column computation ofP
(1)

nm(�), normalisation of Magnus et al. (1966,

Eq. 4.3.3(9)) gives (cf. Colombo, 1981)

P
(1)

nm(�) =
1

u

�
n t P nm(�) � fnm P n�1;m(�)

�
; 8 n � m (15)

where

fnm =

s
(n2 �m2)(2n+ 1)

(2n� 1)
(16)

For all sectoralP
(1)

mm(�), fmm = 0 and Eq. (15) reduces to

P
(1)

mm(�) = m
t

u
Pmm(�) ; 8m � 0 (17)
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The first derivative of Eq. (13) with respect to� also gives Eq. (17). For alln � M ,

eachPnm(�) of a givenm can be computed using Eqs. (11) and (13). These values can

be substituted into Eq. (15) to compute, without the need for any further recursion, all

P
(1)

nm(�) of the same orderm and8 n � m.

2.2 Standard Forward Row Methods

The next approach is termed thestandard forward row recursion (Fig. 3), and appears

to be rarely used in geodesy. As with the standard forward column recursion (Section

2.1), the sectoralPmm(�) serve as seed values for the forward row recursion, and can

be computed using Eq. (13). However, the standard forward row recursion computes non-

sectoralP nm(�) of constantn (a ‘row’ in Fig. 3) and sequentially decreasingm (to the left

(ie., ‘forward’) from the diagonal in Fig. 3). Full normalisation of Magnus et al. (1966,

Eq. 4.3.3(1)) and substitutingP nm(�) = (�1)mP
m

n (�) yields

P nm(�) =
1p
j

�
gnm

t

u
P n;m+1(�) � hnm P n;m+2(�)

�
; 8 n > m (18)

wherej = 2 for m = 0 andj = 1 for m > 0, and

gnm =
2(m+ 1)p

(n�m)(n +m+ 1)
and hnm =

s
(n+m+ 2)(n�m� 1)

(n�m)(n+m + 1)
(19)

Using the same argument to that introduced for the forward column recursion, the non-

existant value ofP n;n+1(�) required to computeP n;n�1(�) in Eq. (18) may be disregarded

because the corresponding recursion coefficient,hn;n�1, is always zero.

Note that, to computeP nm(�) using the forward row recursion, Eq. (18) uses the cor-

responding sectoral values of the samen, rather than the samem, as seed values. In this

case, these sectoral values are more correctly denoted byP nn(�), which may be written
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in the form of Eq. (14) as

P nn(�) = un
p
3

nY
i=2

r
2i+ 1

2i
; 8 n � 1 (20)

TheP
(1)

nm(�) are obtained directly fromP nm(�) of matchingn by fully normalising

Abramowitz and Stegan (1972, Eq. 8.5.2) to yield

P
(1)

nm(�) = m
t

u
P nm(�) � enm P n;m+1 ; 8 n � m (21)

where

enm =

s
(n+m + 1)(n�m)

j
(22)

For all sectoralP
(1)

mm(�), or equivalentlyP
(1)

nn(�), emm = 0 and Eq. (21) reduces to

Eq. (17).

2.3 Numerical Problems with the Standard Forward Methods

Even when applied in IEEE double precision, both the standard forward column (Eq. 11)

and standard forward row (Eq. 18) recursions will underflow forM > 1900 in the co-

latitude range�20Æ � � � �160Æ. The numerical instability of both these forward recur-

sions is noted in the geodetic literature (eg. Gleason, 1985) and elsewhere (eg. Libbrecht,

1985). The cause of this instability is revealed by examining Eq. (14), which is first parti-

tioned into the factorsum and�m, such that

Pmm(�) = um �m; 8m � 1 (23)

whereum = sinm �, and

�m =
p
3

mY
i=2

r
2i+ 1

2i
; 8m � 1 (24)

Inspection of Fig. 4 shows that the�m factor introduces no computational difficul-

ties for an arbitrarily ultra-high value ofm = 5400. In contrast, theum term in Eq. (23)
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becomes increasingly small asu ! 0 (ie., towards the poles) and asm increases. Accord-

ingly, the high degree and order values ofPmm(�) will exceed the range of magnitudes

capable being stored in IEEE double precision, thereby resulting in an underflow. The

failure to compute and store values ofPmm(�) means that these cannot serve as seed val-

ues for the standard forward column and forward row recursions (Sections 2.1 and 2.2,

respectively). This ultimately limits the ranges of� andM over which these recursions

can be used, thereby restricting the practical application of spherical harmonic expansions

of ultra-highM at high latitudes.

2.4 Other Normalisations and the Edmonds Recursion

Belikov (1991) and Belikov and Taybatorov (1991) present a suite of recursive algorithms

for computing the quantitieŝP (d)
nm, whereP̂ (d)

nm are related to un-normalisedP (d)
nm according

to the modified normalisation

P̂nm(�) = 2m
n!

(n+m)!
Pnm(�) (25)

However, this approach is also subject to numerical limitations. As the computation ap-

proaches the poles, the range ofjP̂ (d)
nm(�)j is comparable to that ofjP (d)

nm(�)j, thereby re-

sulting in an underflow in IEEE double precision. For example, the sectoral values are

given by

P̂mm(�) = um = sinm(�) (26)

which, for� = 1Æ andM = 2700 yields values that range from 1 to�10�4747. Therefore,

employing the normalisation in Eq. (25) cannot solve the numerical problems discussed

in Section 1.2.

Risbo (1996) claims that the Edmonds (1957) recursion for D-matricies can be used to

compute fully normalised ALFs up to degree 200,000. However, the description of the test
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results which support this claim indicate that these computations were only performed at

the equator, although the point is not clear. Nevertheless, Risbo (1996) includes a Fortran

77 subroutine for this recursion. It was found that, when implemented in IEEE double

precision, the Risbo subroutine underflows for all polar distances� < 50Æ for M =

2700. This was not suprising, given that the corresponding ALFs cannot even be stored in

IEEE double precision (Section 1.2), irrespective of the algorithm used to compute them.

Therefore, although it may be possible to incorporate the new approaches presented here

into the Risbo (1996) approach, it is clear that the Edmonds recursion alone does not solve

the numerical problems encountered towards the poles as described in Section 1.2

2.5 The Modified Forward Row Method

A simple, yet effective, method by which this problem of underflowingP mm(�) may

be avoided is to eliminate theum term from the recursion process in Eq. (13). To this

end, Libbrecht (1985) adapted the standard forward row recursion (Section 2.2) to yield

a modified forward row recursion that computes the quantitiesPnm(�)
um

. A recursive algo-

rithm which computes the non-sectoralPnm(�)
um

is obtained by dividing Eq. (18) byum to

give

P nm(�)

um
=

1p
j

�
gnm t

P n;m+1(�)

um+1
� hnm u2

P n;m+2(�)

um+2

�
; 8 n > m (27)

Equation (27) is seeded by the sectoralPmm(�)
um

, the recursive algorithm for which is ob-

tained by dividing Eq. (13) byum to give

Pmm(�)

um
=

r
2m+ 1

2m

Pm�1;m�1(�)
um�1

; 8 m > 1 (28)

The valueP 1;1(�)

u1
=
p
3 serves as the seed for Eq. (28). Equation (23) yields

Pmm(�)

um
= �m ; 8m � 1 (29)
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Libbrecht’s (1985) original formula for computingPnm(�)
um

differs from Eq. (27) in that

it does not include the1p
j

term on the right hand side. This is because Libbrecht (1985)

employs a different ‘normalisation’ ofPnm(�) in whichk = 1; 8m. Moreover, Libbrecht

(1985) focuses solely on the actual computation of the values ofPnm(�)
um

. This paper shows

how Libbrecht’s (1985) method is easily extended to compute the quantitiesP
(1)
nm(�)
um

. It

also provides simple means by which values ofP
(d)
nm(�)
um

can be applied in practice without

dealing with the unmanageably smallum terms foru! 0.

The modified forward row recursion for computingP
(1)
nm(�)
um

is obtained by dividing

Eq. (21) byum to yield

P
(1)

nm(�)

um
= m

t

u

P nm(�)

um
� enm u

P n;m+1(�)

um+1
; 8 n � m (30)

such that allP
(1)
nm(�)
um

may be computed directly from previously computedPnm(�)
um

of the

samem.

To evaluate Eq. (1), the values ofP
(d)
nm(�)
um

are multiplied by the corresponding values

of Enm� (Eq. 3) and the resulting products summed to yield values ofX
(d)
m�

um
and 


(d)
m

um
,

instead ofX (d)
m� and
(d)

m , respectively. In order to computeS(d), Eq. (1) is factorised

using Horner’s scheme in terms ofu

S(d) = c

MX
m=0


(d)
m

= c

"(
:::

 "(



(d)
M

uM

)
u +



(d)
M�1

uM�1

#
u +



(d)
M�2

uM�2

!
u +

::: +



(d)
2

u2

)
u +



(d)
1

u1

#
u + c


(d)
0 (31)

From Eq. (31), the running total is repeatedly multiplied byu upon the addition of each



(d)
m

um
term. This allows the sumS (d) to be computed directly from the values of


(d)
m

um
, and

so avoids the need to compute underflowing values ofum asu ! 0 andm increases.

This will be demonstrated numerically in Section 4.
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2.6 Modified Forward Column Method

Values ofP
(d)
nm(�)
um

may also be computed using what will be termed thefirst modified for-

ward column recursion. To effect this computation, Eq. (28) is retained to compute the

sectoral values ofPmm(�)
um

. Equations (11) and (15) are divided byum, respectively, to give

P nm(�)

um
= anm t

P n�1;m(�)
um

� bnm
P n�2;m(�)

um
; 8 n > m (32)

P
(1)

nm(�)

um
=

1

u

�
n t

P nm(�)

um
� fnm

P n�1;m(�)
um

�
; 8 n � m (33)

A variation of the first modified forward column recursion, herein termed thesecond

modified forward column recursion, is to compute values ofP
(d)
nm(�)

Pmm(�)
in which the entire

sectoral value ofPmm(�) has been eliminated, rather than just the problematicum com-

ponent. An immediate result is that all the sectoral values ofPmm(�)

Pmm(�)
= 1. Dividing Eqs.

(11) and (15) byPmm(�) gives, respectively

P nm(�)

Pmm(�)
= anm t

P n�1;m(�)

Pmm(�)
� bnm

P n�2;m(�)

Pmm(�)
; 8 n > m (34)

P
(1)

nm(�)

Pmm(�)
=

1

u

�
n t

P nm(�)

Pmm(�)
� fnm

P n�1;m(�)

Pmm(�)

�
; 8 n � m (35)

Comparison of Eq. (11) with Eqs. (32) and (34) shows these recursions to be of iden-

tical form; similarly for the comparison of Eq. (15) with Eqs. (33) and (35). That is, for

Eqs. (32) and (34), and for Eqs. (33) and (35), the entire computation has simply been

divided byum or Pmm(�), respectively. Thus any computer program that already em-

ploys Eqs. (11) and (15) to computeP
(d)

nm(�) is quickly adapted to computeP
(d)
nm(�)
um

or

P
(d)
nm(�)

Pmm(�)
by simply altering the sectoral subroutine to returnPmm(�)

um
= �m or Pmm(�)

Pmm(�)
= 1,

respectively.

To evaluateS(d) in Eq. (1), the requiredP
(d)
nm(�)

Pmm(�)
of the samem may be multiplied by

their corresponding values ofEnm� (Eq. 3) and the results added to give values ofX
(d)
m�

Pmm(�)
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and subsequently

(d)
m

Pmm(�)
. These 


(d)
m

Pmm(�)
can be multiplied by�m in Eq. (14) to yield


(d)
m

um

for use in Horner’s scheme in Eq. (31). Alternatively, inspection of Eq. (14) shows that

Pmm(�) may be factorised into

Pmm(�) = um
p
3

mY
i=2

r
2i + 1

2i
=

mY
i=1

Ui ; 8 m � 1 (36)

where

Ui =

8>><
>>:
p
3u ; i = 1q
2i+1
2i
u ; 8 i > 1

(37)

Thus, Eq. (31) may be written using Horner’s scheme in terms ofUm

S(d) = c

MX
m=0


(d)
m ;

= c

"(
:::

 "(



(d)
M

PM;M(�)

)
UM +



(d)
M�1

PM�1;M�1(�)

#
UM�1 +



(d)
M�2

PM�2;M�2(�)

!
UM�2 +

::: +



(d)
2

P 2;2(�)

)
U2 +



(d)
1

P 1;1(�)

#
U1 + c


(d)
0 (38)

Due to the numerically stable behaviour of�m (Fig 4), using�m in this way, rather

than multiplying the values of 

(d)
m

Pmm(�)
by �m to yield 


(d)
m

um
for use in Eq. (31), gives

identical results forS(d) when performed in IEEE double precision. Moreover, the first

and second modified forward column recursions are essentially the same, differing only

in the treatment of�m, which is irrelevant to the numerical stability of each algorithm.

The second modified forward column recursion (Eqs. 34 and 35) and the implementation

of Horner’s scheme in Eq. (38) are introduced here primarily because of their relevance

to the Clenshaw-based methods, discussed in Section 3. For the purposes of numerical

testing (Sections 4.2, 4.3 and 4.4), the first and second modified forward column methods

will be treated as a singlemodified forward column recursion.
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2.7 IEEE Overflows and Global Scale Factors in Forward Methods

The entire range of maximum and minimum values taken by
���Pnm(�)

um

��� and

����P (1)
nm(�)
um

����, for

M = 2700, are shown in Figs. (5) and (6), respectively. Inspection of Figs. (5) and (6)

indicates that further factorisation is required to prevent the computations from overflow-

ing in IEEE double precision. Overflows can be prevented for all of the modified forward

methods introduced thus far simply by scaling all of the computations downwards by a

global scale factor of10�280. This is achieved for all of the forward methods by simply

multiplying the sectoral values ofPmm(�)
um

or Pmm(�)

Pmm(�)
by 10�280, and using these scaled

sectoral values as the recursive seeds in place of the original values. As such, this scale

factor propagates linearly through all subsequent computations, thereby generating val-

ues ofP
(d)
nm(�)
um

� 10�280 or P
(d)
nm(�)

Pmm(�)
� 10�280, respectively. These scaled values are used to

form 

(d)
m

um
� 10�280 or 


(d)
m

Pmm(�)
� 10�280, which, when used in place of


(d)
m

um
or 


(d)
m

Pmm(�)
in

Horner’s scheme in Eqs. (31) or (38), respectively, will yield values ofS (d)�10�280. This

is multiplied by10280 to yieldS(d).

Importantly, this global scaling allows, in IEEE double precision, the computation of

spherical harmonic seriesS for 0Æ � � � 180Æ andS(1) for 0Æ < � < 180Æ up toM =

2700. Note that the spherical coordinate system renders partial sumsS (1) indeterminate at

the poles, since here the meridian tangents no longer uniquely define the direction of the

derivative. There are useful ways around this problem (eg. Tscherning, 1976), but for the

sake of continuity they will not be considered here. Thus, for the remainder of this paper,

no partial sumsS(1) will be computed at the poles.
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3 Clenshaw-based Methods

3.1 The Forward Column Factorisation

It is instructive at this stage to consider a simple example of the summation described

in Eq. (3). The rectangle in Fig. (2) contains circles representing values ofP nm(�) and

Enm� for m = 2 and2 � n � 5. A summation of these elements in the form of Eq. (3)

may be expanded as

X2;� =
5X

n=2

En;2;�P n2(�)

= E2;2;� P 2;2(�) + E3;2;� P 3;2(�) + E4;2;� P 4;2(�) + E5;2;� P 5;2(�) (39)

The recursion relation in Eq. (11) gives theP nm(�) required in Eq. (39); these are

P 3;2(�) = [ a3;2 t ] P 2;2(�) (40)

P 4;2(�) = a4;2 t P 3;2(�) � b4;2 P 2;2(�) (41)

P 5;2(�) = a5;2 t P 4;2(�) � b5;2 P 3;2(�) (42)

Substitution of Eq. (40) into Eq. (41) yields

P 4;2(�) =
�
a4;2 a3;2 t

2 � b4;2
�
P 2;2(�) (43)

Likewise, substitution of Eqs. (40) and (43) into Eq. (42) gives

P 5;2(�) =
�
a5;2 a4;2 a3;2 t

3 � a5;2 b4;2 t � a3;2 b5;2 t
�
P 2;2(�) (44)

Therefore, eachPn;2(�) can be factored into two components: the seedP 2;2(�) value and

the aggregation of(al;2t) andbl;2 recursive terms (within the square brackets in Eqs. (40),

(43) and (44)), which constitute polynomials int = cos �. This factorisation will be used

in Section 3.2 to introduce the reverse column algorithms. Note thatl rather thann is

used here to denote the degree of the recursive terms, since eachP n;2(�) of degreen is
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comprised of an aggregation of all of the(al;2t) andbl;2 for 3 � l � n. In general, any

P nm(�) may be factored intoPmm(�) and an aggregation of all of the(almt) andblm terms

for (m+1) � l � n. Inspection of Eqs. (40), (43) and (44) shows that these aggregations

are simply values ofPnm(�)

Pmm(�)
, which are generated using Eq. (34). Substitution of Eqs. (40),

(43) and (44) into Eq. (39) gives

X2;� =

(
E2;2;�

+ E3;2;� [ a3;2 t ]

+ E4;2;�

�
a4;2 a3;2 t

2 � b4;2
�

+ E5;2;�

�
a5;2 a4;2 a3;2 t

3 � a5;2 b4;2 t � a3;2 b5;2 t
�)

P 2;2(�) (45)

The quantity in curly brackets in Eq. (45) equates toX2;�

P 2;2(�)
, which is used to form 
2

P 2;2(�)

or 
2

u2
(Section 2.6) for use in Eqs. (31) or (38), respectively.

3.2 Reverse Column Method

Results from timing tests presented in Section 4.3 show the reverse column methods, de-

scribed below, to be highly inefficient in comparison with the other approaches presented

in this paper for evaluating the required partial sums. The primary reason for describ-

ing the reverse column methods here is because these methods incorporate characteristics

of both the modified forward column methods (Section 2.6) and the standard Clenshaw

methods (Section 3.3). Thus, the reverse column methods are used here to highlight the

basic similarities and differences between these two approaches.

To compute any value ofPnm(�)

Pmm(�)
, the second modified forward column recursion (eg. 34)

aggregates the necessary(almt) andblm recursive terms in the sequence of increasing de-

greel (sequentially down each column in Fig. 2). An alternative is to reverse this process

and apply these same recursive terms in the sequence of decreasing degreel (sequentially
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up each column in Fig. 2). That is, a recursion may be employed whereby the(almt) and

blm recursive terms for whichl = n (ie., the largest value ofl) are applied first and the

recursive terms for whichl = m + 1 (ie., the smallest value ofl) are applied last. This

will be called areverse column recursion, and is illustrated schematically in Fig. 7.

It is now necessary to introduce the recursive algorithm

slm� = al+1;m t sl+1;m;� � bl+2;m sl+2;m;� + ylm� (46)

whereylm� are predetermined, real-numbered constants (described later), and the sub-

script� (� = 1; 2) is included here as it will be referred to later when discussing the

standard Clenshaw methods. Equation (46) is used as follows. The recursion begins at the

computation of a chosensnm�. For this initial computation,sn+1;m;� andsn+2;m;� are set

to predetermined values and then used in the first recursion to yieldsnm�. Equation (46)

is then used to achieve the recursive computation of allslm�, of constantm (a ‘column’ in

Fig. 7), and sequentially increasingl (upwards and towards the diagonal (ie. ‘reverse’) in

Fig. 7), until the recursion is terminated at the computation of the sectoralsmm� (on the

diagonal in Fig. 7).

Recursion algorithms resembling Eq. (46) form part of the standard Clenshaw methods

(cf. Tscherning and Poder, 1982) for evaluating the partial sumsS (d) without computing

individual scaled values ofP
(d)

nm(�) (Section 3.3). However, Eq. (46) can be used in a dif-

ferent context to compute individual values ofPnm(�)

Pmm(�)
. Settingsn+1;m;� = 0, snm� = 1

and allylm� = 0 allows the recursive computation of allslm�, of constantm and sequen-

tially decreasingl from sn�1;m;� to smm�. The effect of using the recursion in Eq. (46) in

this way is to sequentially aggregate the (almt) andblm recursive terms, in the sequence

of decreasingl, until the recursion terminates at the computation ofsmm� = Pnm(�)

Pmm(�)
.
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One drawback of this approach is that the intermediate values ofslm� in the recursion

do not constitute actual values ofP lm(�)

Pmm(�)
. Instead, eachPnm(�)

Pmm(�)
value must be computed

in isolation from the others using(n � m) recursions of Eq. (46). This necessitates�
(M�m)2

2
recursions to compute all non-sectoral values ofPnm(�)

Pmm(�)
of orderm and degree

(m + 1) � n � M . This contrasts with the second modified forward column recursion,

where these same values ofPnm(�)

Pmm(�)
can be computed using only(M �m) recursions of

Eq. (34). The relative numerical efficiency of these approaches is tested in Section 4.3.

To compute values ofP
(1)
nm(�)

Pmm(�)
, the first derivative of Eq. (46) with respect tot = cos �

gives

_slm� = al+1;m ( _sl+1;m;� t + sl+1;m;� ) � bl+2m _sl+2;m;� (47)

where_slm� = dslm�
dt

. The seed values for the recursion in Eq. (47) (ie.,sn;m;� andsn+1;m;�)

are differentiated with respect tot to give _snm� = _sn+1;m;� = 0. These initial values allow

the recursion in Eq. (47) to compute all_slm�, of constantm and sequentially decreasingl,

from _sn�1;m;� to _smm�. When used in this way, the recursion in Eq. (47) terminates at the

computation of_smm� =
d
�
Pnm(�)

Pmm(�)

�

dt
. Since sectoral

d
�
Pmm(�)

Pmm(�)

�

dt
are zero, their corresponding

_smm� are simply set to zero without the need for any recursion. Application of the product

rule and the chain rule to
d
�
Pnm(�)

Pmm(�)

�

dt
yields

P
(1)

nm(�)

Pmm(�)
= m

t

u
smm� � u _smm� ; 8 n � m (48)

where, as above,smm� = Pnm(�)

Pmm(�)
and _smm� =

d
�
Pnm(�)

Pmm(�)

�

dt

To compute all non-sectoral values ofP
(1)
nm(�)

Pnm(�)
of orderm and degree(m+1) � n �M ,

the reverse column technique requires� (M�m)2

2
recursions of Eqs. (46) and (47), as

well as (M � m) applications of Eq. (48). In the same manner as the reverse column

computation ofPnm(�)

Pmm(�)
(Eq. 46), the numerical efficiency of this approach (Section 4.3)

contrasts poorly against the second modified forward column recursion (Section 2.6) in
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which the P
(1)
nm(�)

Pmm(�)
are obtained from previously computed values ofPnm(�)

Pmm(�)
through only

(M �m) applications of Eq. (35).

As with the modified forward column and forward row recursion techniques (Sections

2.6 and 2.5, respectively), a global scale factor must be applied to the reverse column

computations to prevent a overflow in the computation ofP
(d)
nm(�)

Pmm(�)
. This is achieved by

simply setting the initial value,snm�, to 10�280 (rather than1) for use in Eq. (46). This

scale factor of10�280 will propagate linearly through the subsequent computations to

yield values ofP
(d)
nm(�)

Pmm(�)
� 10�280. Importantly, this global scaling allows, in IEEE double

precision, the computation of spherical harmonic seriesS for 0Æ � � � 180Æ andS(1) for

0Æ < � < 180Æ up toM = 2700.

3.3 Standard Clenshaw Methods

The standard Clenshaw methods, summarised below, closely resemble the reverse column

recursions (Section 3.2). The Clenshaw (1955) approach, which was formulated origi-

nally to evaluate partial sums of Chebyshev polynomials, was adapted for use in geodesy

by Gulick (1970) to compute partial sums ofP
(d)

nm(�). Section 3.3.1 introduces a sim-

ple implementation of the Clenshaw (1955) approach, whilst Section 3.3.2 presents the

implementation that is used more commonly in geodesy (cf. Gleason, 1985).

3.3.1 The first Clenshaw method

The simplest implementation of the Clenshaw (1955) technique, herein termed thefirst

Clenshaw method, uses the recursions in Eqs. (46) and (47) to compute, directly, the in-

termediate sumsX
(d)
m�

Pmm(�)
, without evaluating individual values ofP

(d)
nm(�)

Pmm(�)
. Undifferentiated

values of Xm�

Pmm(�)
may be computed using Eq. (46). Settingsn+1;m;� = sn+2;m;� = 0 and all
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ylm� = Elm� [ylm� = 0; 8l < � in Eq. (3)], allows the recursive computation of allslm�,

of constantm (a column in Fig. 7), and sequentially increasingl (upwards and towards the

diagonal in Fig. 7), fromsnm� to smm�. As in the reverse column recursion (Section 3.2),

the recursive process terminates at the computation ofsmm� (on the diagonal in Fig. 7),

except that, in this case, the sectoralsmm� = Xm�

Pmm(�)
.

The first Clenshaw method also may be extended to compute partial sumsS (1), S(2)

andS(�1), where ‘d = �1’ denotes definite integration (cf. Tscherning and Poder, 1982).

However, this study is confined to the computation ofS (1). For this task, the first Clenshaw

method uses the recursion in Eq. (47). The first derivative with respect tot = cos � of the

seed values used above (sn+1;m;� = sn+2;m;� = 0) gives _sn+1;m;� = _sn+2;m;� = 0. These

seed values allow the recursive computation of all_slm�, of constantm and sequentially

decreasingl, from _snm� to _smm�. As in the reverse column recursion (Section 3.2), this

recursive process terminates at the computation of_smm�, except that in this casesmm� =

d
�

Xm�
Pmm(�)

�

dt
. Application of the product rule and the chain rule to the quantity

d
�

Xm�
Pmm(�)

�

dt

yields (adapted from Gleason (1985))

X
(1)
m�

Pmm(�)
= m

t

u
smm� � u _smm� (49)

where, as above,smm� = Xm�

Pmm(�)
and _smm� =

d
�

Xm�
Pmm(�)

�

dt
.

3.3.2 The second Clenshaw method

In geodesy, what is termed thesecond Clenshaw method in this paper is more com-

monly used to evaluate spherical harmonic expansions such as Eq. (5) (eg. Gleason, 1985;

Deakin, 1998) For this task, Eq. (38) is reformulated using Horner’s scheme in terms of
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(Um q), whereq = a
r

S(d) = c

MX
m=0


(d)
m ;

= c

"(
:::

 "(



(d)
M

PM;M(�)qM

)
UMq +



(d)
M�1

PM�1;M�1(�)qM�1

#
UM�1q +



(d)
M�2

PM�2;M�2(�)qM�2

!
UM�2q + ::: +



(d)
2

P 2;2(�)q2

)
U2q +



(d)
1

P 1;1(�)q

#
U1q + c


(d)
0

(50)

Note that in the geodetic literature (eg. Gleason, 1985, Eqs. (2.38), (2.39) and (2.40) ),

the use of Horner’s scheme in Eq. (50) is presented as an implementation of Eq. (46).

For undifferentiated values ofS, the required 
m
Pmm(�)qm

quantities are computed using a

modified version of the reverse recursion algorithm in Eq. (46); this is (Gleason, 1985)

slm� = al+1;m t q sl+1;m;� � bl+2;m q2 sl+2;m;� + ylm� (51)

To produce the required values ofXm�

Pmm(�)qm
, the recursion in Eq. (46) is initiated exactly

as for the first Clenshaw method (sn+1;m;� = sn+2;m;� = 0), except that allylm� are set

to Elm�
ql

[ylm� = 0; 8l < � in Eq. (3)], rather thanE lm�. Thus, to evaluate the truncated

expansion of geopotential in Eq. (5), these values ofylm� are set toC lm�, rather than

�
a
r

�l
C lm�, as for the first Clenshaw method. This allows the recursive computation of

all slm�, of constantm (a column in Fig. 7), and sequentially increasingl (upwards and

towards the diagonal in Fig. 7), fromsnm� to smm�, wheresmm� = Xm�

Pmm(�)qm
.

Similarly, values of X
(1)
m�

Pmm(�)qm
may be computed by differentiating Eq. (51) with respect

to t to give (Gleason, 1985)

_slm� = al+1;m q ( _sl+1;m;� t + sl+1;m;� ) � bl+2m q2 _sl+2;m;� (52)

Differentiation (with respect tot) of the seed values used above (sn+1;m;� = sn+2;m;� = 0)

gives _sn+1;m;� = _sn+2;m;� = 0. These values allow the recursive computation of all_slm�,
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of the samem and sequentially decreasingl, from _snm� to _smm�. The recursive process

terminates at the computation of_smm�, where _smm� =
d
�

Xm�
Pmm(�)qm

�

dt
. Application of the

product rule and the chain rule to the quantity
d
�

Xm�
Pmm(�)qm

�

dt
yields (adapted from Gleason

(1985))

X
(1)
m�

Pmm(�)qm
= m

t

u
smm��u _smm� (53)

where, as above,smm� = Xm�

Pmm(�)qm
and _smm� =

d
�

Xm�
Pmm(�)qm

�

dt
.

Values of X
(d)
m�

Pmm(�)qm
, obtained from the second Clenshaw method, are used in place of

X
(d)
m� in Eq. (2) to form 


(d)
m

Pmm(�)qm
. The standard approach (cf. Gleason, 1985; Deakin,

1998) is to combine these values using the implementation of Horner’s scheme given

in Eq. (50). Alternatively, values of 

(d)
m

Pmm(�)qm
can either be multiplied byqm to yield



(d)
m

Pmm(�)
, which are combined using the implementation of Horner’s scheme in Eq. (38), or

multiplied byqm�m to yield values of

(d)
m

um
, which are combined using the implementation

of Horner’s scheme given in Eq. (31). The resulting numerical values ofS (d) are identical

in all cases (Section 4.2).

3.4 IEEE Overflows and Global Scale Factors in the Standard Clenshaw Methods

Overflows can be prevented in the both first and second Clenshaw methods by multi-

plying all ylm� by the global scale factor of10�280. This scale factor propagates lin-

early through subsequent recursions to finally produce values ofX
(d)
m�

Pmm(�)
� 10�280 and

X
(d)
m�

Pmm(�)qm
� 10�280. These are used in place ofX (d)

m� in Eq. (2) to form 

(d)
m

Pmm(�)
� 10�280

and 

(d)
m

Pmm(�)qm
� 10�280, respectively. Again, this global scaling allows, in IEEE double

precision, the computation of spherical harmonic seriesS for 0Æ � � � 180Æ andS(1) for

0Æ < � < 180Æ up toM = 2700.
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4 Numerical Tests

4.1 Viable Methods

The previous derivations have presented six apparently viable methods for computing

S (0Æ � � � 180Æ) andS(1) (0Æ < � < 180Æ) for M � 2700. These algorithms are

summarised in Table 1.

As mentioned in Section 2.6, the first (MFC-1) and second (MFC-2) modified forward

column recursions are, essentially, a single method. Therefore, for the remainder of this

Section, they will be treated as one algorithm, termed themodified forward column recur-

sion. This leaves, to this point, five separate methods for computing spherical harmonic

expansions. The purpose of this Section is to provide an initial, general assessment of

the relative merits of these algorithms using tests of precision, numerical efficiency and

accuracy. The tests of precision will compare partial sums,S (d), computed in IEEE dou-

ble precision and IEEE extended double precision. The tests of numerical efficiency will

compare the execution times of the algorithms. The tests of numerical accuracy will use

analytic solutions for the sum of the square ofP
(d)

nm(�), to compare the modified forward

row and modified forward column algorithms only.

4.2 Relative Numerical Precision

The first step in comparing different methods for computing the partial sumsS (d) in

Eq. (1) is to choose some appropriate values forEnm� and �. For Enm�, one might

use empirically generated coefficients such as EGM96 (Lemoine et al., 1998) and/or

GPM98B (Wenzel, 1998) to compute the lower degreeEnm�. Higher degree coefficients

could be generated synthetically to conform with the predicted spectral characteristics

of the Earth’s gravity field (eg. Tscherning and Rapp, 1974). However, the ubiquity of
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high degree spherical harmonic expansions across multiple scientific disciplines favours

a more general approach. For this reason, the following comparisons have employed the

testing regime utilised by Gleason (1985), which is to set allEnm� equal to1 and� equal

to 0. This testing regime has the advantage of being straightforward to present, as well as

being sufficiently general for a first assessment of the new algorithms. In this approach,

the computed estimatess(d), of the partial sumsS(d) (Eq. 1) reduce to

s(d) =
2700X
n=0

nX
m=0

P
(d)

nm(�) (54)

Each algorithm in Table (1) was evaluated in IEEE double precision on aSun Ultra�10

workstation. The algorithms were encoded in the Fortran 77 computer language and com-

piled using theSparkworksTM(v3:0:1) Fortran compiler. The values ofswere computed

for integer values of co-latitude0Æ � � � 180Æ and values ofs(1) were computed for in-

teger values of co-latitude1Æ � � � 179Æ. These were compared with the corresponding

‘control’ values, obtained from the second Clenshaw summation (Section 3.3.2) which

was implemented in IEEEextended double precision (ie.,16 bytes to store each floating

point number) (cf. Coonen, 1980). The relative precision (RP) for each� was calculated

using

RP =

����s(d)(double)� s(d)(extended)

s(d)(extended)

���� (55)

wheres(d)(double) is the value of Eq. (54) for the summation computed in double preci-

sion by each respective method ands(d)(extended) is the result for the same sum com-

puted using the second Clenshaw method in extended double precision. The values ofRP

are computed under the assumption that the results obtained from IEEE extended double

precision are correct to at least one significant figure more than those obtained from IEEE

double precision.
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The termprecision is used here since any systematic errors common to computations

in both the double precision and extended double precision formats will not be revealed

during such a comparison. Moreover, to insure that such systematic errors did not bias

the controls(d)(extended) values in favour of thes(d)(double) values computed using the

second Clenshaw method, a second set of control values was computed in extended double

precision using the modified forward column method. The two sets ofs(d)(extended)

control values agreed to a minimum of25 significant figures.

For each of the algorithms, the computed quantities (Table. 1) were globally scaled

to yield values of
m
um

� 10�280, 
m
Pmm(�)

� 10�280 or 
m
Pmm(�)qm

� 10�280, which were

then substituted into the implementations of Horner’s scheme in Eqs. (31), (38) and (50),

respectively, to yield values ofs(d) � 10�280 and thens(d). Recall thatEnm� = 1 and

� = 0, so Eqs. (31), (38) and (50) reduce to Eq. (54). It was found that, once the values

of 
m
um

� 10�280, 
m
Pmm(�)

� 10�280 or 
m
Pmm(�)qm

� 10�280 were computed, they may be

appropriately factorised for use in any of the three implementations of Horner’s scheme

with no change to the final computed value ofs(d). That is, all combinations of the five

algorithms with the three implementations of Horner’s scheme showed that the choice

of implementation of Horner’s scheme was irrelevant to the observed precision of the

algorithm.

Of the five algorithms to be tested in this way, the second Clenshaw method is the most

widely used in geodesy. Thus, it is useful to employ theRP error signature of this method

as a benchmark against which the performance of the other five methods can be assessed.

To test the second Clenshaw method, an extreme, but realistic, value forq was chosen to

provide a contrast to the first Clenshaw method. Thus,q was set tobGRS80
aGRS80

= 6;356;752:3141
6;378;137

,

whereaGRS80 andbGRS80 are the semi-major and semi-minor axes of the GRS80 ellipsoid

(Moritz, 1980).
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The relative precision signatures of the five algorithms for computings are shown in

Figs. (8) through (11), whilst the relative precision signatures of the five algorithms for

computings(1) are shown in Figs. (12) through (15). To facilitate easier visual compar-

isons, the error signatures obtained from the second Clenshaw method in the computation

of s ands(1) have been superimposed (dashed line) over the corresponding error signa-

tures obtained from each of the other four methods.

For the computation of the quantitiess =
2700P
n=0

nP
m=0

P nm(�), inspection of Figs. 8 and 9

shows no systematic differences between the performance of the Clenshaw methods and

the modified forward column method. One interesting feature is that the relative precision

signatures obtained from all of the column methods for the northern latitudes are almost

identical, whilst the signatures for the southern latitudes are not (cf. Figs. 8 through 10).

This is particularly evident for the relative precision signature for the reverse column

recursion (Fig. 10), which contrasts poorly, in the southern latitudes, against the signature

from the second Clenshaw method. Nevertheless, the relative precision is still< 10�9.

Inspection of the relative precision signature for the modified forward row recursion

(Fig. 11) reveals a slight, but clear, improvement in precision over the other algorithms.

This is particularly evident as computation approaches the poles.

For the computation of the quantitiess(1) =
2700P
n=0

nP
m=0

P
(1)

nm(�), Fig. 12 reveals no clear

differences between the relative precision signatures of the first and second Clenshaw

methods. Figure 13 shows, in the northern latitudes only, a moderately improved rela-

tive precision signature for the modified forward column method over that of the second

Clenshaw method. Similarly, the relative precision signature for the modified forward row

recursion (Fig. 15) shows an increasing improvement over the second Clenshaw method

towards the north pole. There is also a slight improvement towards the south pole. As with

the relative precision signatures fors, the reverse column method gives a relatively poor
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relative precision signature ins(1) for in the southern latitudes (Fig. 14). This result is to

be expected since the values ofP
(1)
nm(�)
um

are computed fromPnm(�)
um

.

None of the five recursions tested delivered a relative error of> 10�9 in the computa-

tion of eithers ands(1). No analysis was conducted to explain the hemisphere-dependent

performance observed (Figs. 8 to 15) during these tests. However, this phenomenon is

not observed in the accuracy tests for the two modified forward algorithms (Section 4.4).

These both produced relative accuracy signatures (Fig. 16 and Fig. 17) that are noticeably

more symmetric about the equator than the precision signatures (Figs. 9, 13 and Figs. 11,

15) for the corresponding algorithms.

For each algorithm, the accuracy tests used the same values ofP
(d)
nm(�)
um

as those used

in the precision tests. However, the accuracy tests squared these values before combining

them using Horner’s scheme. This suggests that, at least for the two modified forward al-

gorithms, the actual computation ofPnm(�)
um

and P
(1)
nm(�)
um

is performed equally well in both

hemispheres. In this case, the lack of symmetry in the relative precision signatures re-

turned by these algorithms might result from the change in sign, across the equator, of

half the Pnm(�)
um

and P
(1)
nm(�)
um

. This would create different cancelling effects in each hemi-

sphere when these values are combined using Horner’s scheme. Such an effect would not

be present when squared terms are combined. Further work may validate this explanation.

4.3 Numerical Efficiency

The five methods that successfully computedS (d), for M = 2700 and for integer values

of � to the poles, were tested for their relative numerical efficiency. Considerable attention

was given to eliminating all redundant computations from each algorithm. For example,

the square roots and inverted square roots required to construct the recursion coefficients

were computed once by each algorithm and then stored for multiple use in the synthesis
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subroutines. However, the latitude-independent components of the recursion coefficients

were not computed and stored in this way, but were generated from the square roots and

inverted square roots as they were required. This was done so that the efficiency results

would be applicable to the many PC’s, still widely used, which possess insufficient RAM

to store� 7:3 million recursion coefficients.

Table 2 shows the CPU time required by each of the five algorithms to compute:

1. s =
2700P
n=0

nP
m=0

P nm(�), for integer values of0Æ � � � 180Æ,

2. s as above ands(1) =
2700P
n=0

nP
m=0

P
(1)

nm(�), for integer values of1Æ � � � 179Æ simultane-

ously.

The CPU times for the reverse column algorithm are excessively large and so were extrap-

olated from the computation times for a single parallel. All computations were performed,

once again, on aSun Ultra� 10 (333MHz) workstation that uses a virtual or ‘swapped’

RAM configuration, which is slower than actual RAM.

It should be noted that these CPU times, in addition to showing the relative efficiency

of each approach, are also functions of the computer architecture, compiler and program-

ming language employed, as well as the programmer’s implementation of these algo-

rithms. Variations in any of these, particularly algorithmic implementation, can slightly

improve or worsen the relative performance of each algorithm. However, the results pre-

sented in Table 2 are sufficient for the current purpose, which is to demonstrate that all

algorithms, except the reverse column algorithm, appear to be of comparable numerical

efficiency in evaluating the required partial sums. Lastly, for the reasons outlined in Sec-

tion 3.2, the reverse column algorithm is extremely inefficient when compared with the

other four approaches, and thus will be excluded from further examination.
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4.4 Accuracy

As mentioned, the numerical evaluations presented in Section 4.2 are tests of precision

only, since both the tested algorithms and the ‘control’ algorithm computed in IEEE ex-

tended double precision may contain shared systematic errors. These could be due to any

one of compiler, computer architecture or programming errors, for example. Therefore,

it is prudent to supplement tests of precision with accuracy assessments that utilise exact

identities (ie. analytic results) incorporating the computed quantities. For this purpose,

starting with the well known identity

nX
m=0

�
P nm(�)

�2
= 2n+ 1; 8 � (56)

this can be shown to yield

�M =
MX
n=0

nX
m=0

�
P nm(�)

�2
= (M + 1)2; 8 � (57)

Differentiation of Eq. (56) gives

nX
m=0

�
P

(1)

nm(�)
�2

=

�
n(n+ 1)(2n+ 1)

2

�
; 8 � (58)

from which results

��
M =

MX
n=0

nX
m=0

�
P

(1)

nm(�)
�2

=

�
M(M + 1)2(M + 2)

4

�
; 8 � (59)

For M = 2700, Eq. (57) gives�2700 = 7; 295; 401 and (59) gives��
2700 = 13; 305;

717; 113; 850. However, these analytic values of�2700 and��
2700 cannot be used to verify

the accuracy of the first and second Clenshaw methods, because these methods do not

compute individual, scaled values ofP
(d)

nm(�). An alternative test for the standard Clen-

shaw approaches is to compute partial sums of second derivatives,S (2), and then use

these to evaluate Laplace’s equation (�f = 0). However, this study does not extend to
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the computation of second derivatives, and so will be confined to testing the accuracy of

the modified forward column approach and the modified forward row approach only.

To implement this accuracy test, both methods were applied, in IEEE double preci-

sion, to compute, forM = 2700, integer values ofPnm(�)
um

� 10�280 (0Æ � � � 180Æ) and

P
(1)
nm(�)
um

� 10�280 (1Æ � � � 179Æ). However, these values cannot be squared in IEEE dou-

ble precision without an underflow. This necessitates that the squaring ofP
(d)
nm(�)
um

�10�280,

as well as their combination using Horner’s scheme, be performed in IEEE extended dou-

ble precision. This means that the results from these tests will only reflect the accuracy

with which P
(d)
nm(�)
um

� 10�280 are computed, since this is the only operation which can

performed in IEEE double precision forM = 2700.

The values ofP
(d)
nm(�)
um

� 10�280 were converted to IEEE extended double precision,

squared, and then rescaled by10560 to yield values of

�
P
(d)
nm(�)

�2

u2m
. All the values of

�
P
(d)
nm(�)

�2

u2m

of the samem were summed to give the quantities�m =
2700P
n=m

(Pnm(�))
2

u2m
and� �

m =

2700P
n=m

�
P
(1)
nm(�)

�2

u2m
. These�m were then combined using Horner’s scheme

�2700(comp) =

"(
:::

 "(
�2700

u5400

)
u2 +

�2699

u5398

#
u2 +

�2698

u5396

!
u2 +

::: +
�2

u4

)
u2 +

�1

u2

#
u2 + �0 (60)

where�2700(comp) are the computed estimates of�2700. Exchanging� �
m for �m in

Eq. (60) yields��
2700(comp), which are the computed estimates of��

2700.

The numerical accuracy (NA) of Pnm(�) was calculated using the relation

NA =

�
�2700(comp)� 7; 295; 401

7; 295; 401

�
(61)

whereas the numerical accuracy (NA�) of P
(1)

nm(�) was calculated using the relation

NA� =

�
��

2700(comp)� 13; 305; 717; 113; 850

13; 305; 717; 113; 850

�
(62)
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The resulting�2700(comp) error signatures of both algorithms are plotted in Fig. 16 for

integer values of0Æ � � � 180Æ. The��
2700(comp) error signatures of both algorithms

are plotted in Fig. 17 for integer values of1Æ � � � 179Æ.

Figs. 16 and 17 show the accuracy of both methods to be almost identical. In the com-

putation of both�2700(comp) (Fig. 16) and��
2700(comp) (Fig. 17), the modified forward

column algorithm performs slightly, but consistently, better than the modified forward

row algorithm in the lower latitudes. However, the modified forward column algorithm

becomes increasingly less accurate than the modified forward row algorithm as the com-

putation approaches the poles. This observation is consistent with the results presented

in Section 4.2, in which, near the poles, the modified forward row algorithms remained

relatively stable in comparison with the other methods tested. Lastly, note that neither the

modified forward row method, nor the modified forward column method, delivered values

values ofNA or NA� greater than10�11. These results support those obtained for these

two algorithms in the precision tests (Section 4.2).

5 Summary, Conclusion and Recommendation

This paper has shown that standard Clenshaw methods for evaluating high degree spher-

ical harmonic expansions derive their stability from simple numerical principles. IEEE

underflows are avoided by first eliminating the numerically problematicum term from

the fundamental recursive algorithms, and then employing Horner’s scheme to gradually

reintroduce this term into the final computed value for the partial sumsS (d). Moreover,

existing algorithms for computing individual values ofP nm(�) andP
(1)

nm(�) are easily

modified to incorporate these two fundamental characteristics of the standard Clenshaw

methods.
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This last statement is strongly supported by the results of numerical tests. These show

that the two new algorithms (the modified forward row and the modified forward col-

umn methods) can be applied in IEEE double precision to compute the partial sumsS,

up toM = 2700 (0Æ � � � 180Æ), as well asS(1) up toM = 2700 (0Æ < � < 180Æ),

without IEEE underflow or overflow. Moreover, the results also suggest that the new algo-

rithms are equivalent to the standard Clenshaw methods in both precision and efficiency.

No doubt a more rigorous testing regime, specific to geodesy, will incorporate realistic

geopotential coefficients into the computed partial sumsS (d). The relatively stable per-

formance of the modified forward row method, near the poles, might also warrant further

examination.

Perhaps the most interesting characteristic of the new methods is their relative simplic-

ity. Unlike the standard Clenshaw methods, both the modified forward row and modified

forward column algorithms are easily formulated using elementary algebra. More impor-

tantly, the mechanisms within the computation process are highly intuitive and transper-

ant. These qualities should simplify the process of adapting these approaches to other

tasks, such as evaluating partial sums of even higher degree and order (eg.5400), for all

latitudes tested in this study. Two other useful adaptions include, forM = 2700, evaluat-

ing partial sums of second derivatives, and evaluating quantities that have been integrated

over geographic squares bordered by meridians and parallels.

Another potentially useful property of the new methods is the fact that they compute

individual, scaled values ofP
(d)

nm(�). This property, in conjunction with the inherent sim-

plicity of the principles presented here, renders the new approach an attractive starting

point for extending the maximumM over which existing algorithms for spherical har-

monic analysis can be applied.
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A Appendix A

This Appendix deals with some miscellaneous points on implementing the new methods

on a computer.

A.1 RAM conservation for the modified forward row method

The modified forward row method (Section 2.5) computesP
(d)
nm(�)
um

of matchingdegree.

However, efficient evaluation of the partial sumsS (d) requires thatP
(d)
nm(�)
um

of matching

order be combined to yield

(d)
m

um
for use using Horner’s scheme in Eq. (31). A straightfor-

ward approach is to precompute and store, for all degrees and orders, all theP
(d)
nm(�)
um

and

then combine theP
(d)
nm(�)
um

of matching order. However, many PC’s do not have sufficient

RAM to store, say,� 3:7 million values ofPnm(�)
um

and/orP
(1)
nm(�)
um

for M = 2700.

The alternative is to use the modified forward row method to computeP
(d)
nm(�)
um

for one

order at a time. The sectoralP
(d)
nm(�)
um

are computed and stored as before. Referring again to

Fig. 3, computation of all non-sectoralP
(d)
nm(�)
um

, of orderm and degree(m+ 1) � n � M

(a complete ‘column’in Fig. 3), requires only that previously computedPn;m+1(�)

um+1 and

Pn;m+2(�)

um+2 have been stored.

Three arrays are used in ‘rotation’. Arrays1 and2 contain all the previously computed

values ofPn;m+1(�)

um+1 and Pn;m+2(�)

um+2 , respectively. These are used in Eq. (27) to compute all

the required non-sectoralPnm(�)
um

, which are stored in arrayX. Values ofPn;m+1(�)

um+1 (array1)

and Pnm(�)
um

(arrayX) are then used in Eq. (30) to compute all the requiredP
(1)
nm(�)
um

, which

are stored in array2. 
m
um

and 

(1)
m

um
are obtained from the values ofPnm(�)

um
and P

(1)
nm(�)
um

,

respectively. For the next round of computation

�
P
(d)
n;m�1(�)

um�1
, corresponding to the next

‘column’ to the left in Fig. 3 ), the old arrayX becomes the new array1, the old array1

becomes the new array2, and the old array2 becomes the new arrayX.
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This method employs the same number of mathematical operations as that which pre-

computes and stores all the requiredPnm(�)
um

and P
(1)
nm(�)
um

. However, the method of three

‘rotated’ arrays requires a RAM allocation of only3M array elements to compute and

use the required non-sectoralPnm(�)
um

and P
(1)
nm(�)
um

. This contrasts with the ‘precompute’

approach, which requires a RAM allocation ofM(M+1)
2

array elements for the same task.

A.2 Underflows from Problematic Coefficients

For spherical harmonic synthesis of very high degree (eg.M = 2700), all of the methods

presented here will underflow for sufficiently small values ofEnm� in Eq. (3). For ex-

ample, all methods will report underflows (8 �) when EGM96 coefficients are employed

for the lower degrees. The sole cause of this isC360;360 � �4:5 � 10�25, which under-

flows when combined withP 360;360(�)

u360
�10�280 using Horner’s scheme. In this case, setting

C360;360 to zero prevents the underflow message and yields an error which is undetectable

in IEEE double precision. Of course, an entire coefficient set that is relatively homoge-

neous in magnitude can be scaled upwards or downwards as needed. Otherwise, a set of

coefficients which differ by twenty orders of magnitude or more can be partitioned, ac-

cording to magnitude, into subsets. Each subset is then scaled as a whole and then used

to compute a corresponding partial sum. The resulting partial sums are then rescaled and

combined to yield the final result.

A.3 Combining Components by Degree

The modified forward column and modified forward row recursions are immediately more

versatile than the standard Clenshaw methods, since they do not automatically combine

quantities of the same orderm. This feature is necessary, for example, to form interme-
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diate sums of quantities which share the samen, rather than the samem. For example,

consider the spherical harmonic expansion of gravitational potentialV in Eq. (4). Set

V (r; �; �) =
GM

r
+
GM

r

MX
n=2

�a
r

�n

(d)
n (63)

where


(d)
n =

nX
m=0

Z(d)
m (64)

and

Z(d)
m =

�
Cnm1 cosm� + Cnm2 sinm�

�
P

(d)

nm(�) (65)

For ultra-high values ofM , the modified forward column or modified forward row algo-

rithms are used to generate values ofP
(d)
nm(�)
um

. These replaceP
(d)

nm(�) in Eq. (65) to yield

Z
(d)
m

um
, which are combined using Horner’s scheme


(d)
n =

nX
m=0

Z(d)
m ;

=

"(
:::

 "(
Z

(d)
m

um

)
u +

Z
(d)
m�1

um�1

#
u +

Z
(d)
m�2

um�2

!
u +

::: +
Z

(d)
2

u2

)
u +

Z
(d)
1

u1

#
u + Z

(d)
0 (66)

to give each separate
(d)
n ; 8 2 � n �M . Inspection of Eq. (63) shows that this algorithm

provides an efficient means for computing multiple values ofV (or any other gravimetric

quantity) at multiple points along the geocentric radial through� and�.

B Appendix B

In addition to the forward row recursion in Eq. (27), Libbrecht (1985) provides a sec-

ond algorithm for computing values ofPnm(�)
um

. Fully normalising Magnus et al. (1966,
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Eq. 4.3.3(6)) and then dividing byum gives

P nm(�)

um
=

p
2n+ 1p

(2n� 1)(n+m)

�p
n�m t

P n�1;m(�)
um

+
p
�(n +m� 1)

P n�1;m�1(�)
um�1

�
; 8 n > m; m > 0 (67)

where
p
� accounts for thek term (Eq. 8) in the full normalisation of thePnm(�), and is

given by� = 2 for m = 1 and� = 1 8m > 1. Note that, similar to the modified forward

row recursion (Eq. 27, Section 2.5), Eq. (67) is presented in Libbrecht (1985, Eq. (4))

without the
p
� term, due to a different ‘normalisation’ which usesk = 1; 8 m > 0. A

schematic of thisstaggered recursion algorithm is given in Fig. (18).

To use the recursion in Eq. (67), both the sectoralPmm(�)
um

; 8 m � M (upper diagonal

in Fig. 18), and zonalPn;0(�)
u0

= P n;0(�); 8 n � M (leftmost column in Fig. 18), must be

computed independently beforehand. The sectoral values are computed as before using

Eq. (28), whilst the zonal values may be computed using the modified forward column

algorithm (Eq. 32). Eq. (67) can then be used to compute each of the remainingPnm(�)
um

from the adjacentPn�1;m(�)

um
(immediately above in Fig. 18), andPn�1;m�1(�)

um�1
(diagonally

above and to the left in Fig. 18). That is, once all of the sectoral and zonal values are

known, this is sufficient to compute allPn;1(�)
u1

(second column to the right in Fig. 67),

which may then be used to compute allPn;2(�)

u2
(third column to the right) and so on up to

m = M � 1.

Libbrecht (1985, p. 372) claims that, provided that the zonalP n;0(�) values are com-

puted with sufficient accuracy using a “...rapidly converging trigonometric expansion...”,

that “...one would have to go up to a very highl [degree] andm [order] indeed before

roundoff errors became a problem.” That is, the claim seems to be that the overall accu-

racy of this approach for computing values ofPnm(�)
um

is superior to that of implied mod-

ified forward row recursion. However, no numerical results are provided by Libbrecht
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(1985) for this staggered algorithm. Moreover, results from numerical tests conducted in

the current study contradict this claim. For these tests, sectoralPmm(�)
um

were computed

using Eq. (28), whilst the zonalP nm(�) were computed using the standard forward col-

umn recursion (Eq. 32) applied in IEEE extended double precision. A procedure identical

to that used for the precision trials of the other recursion methods (Section 4.2) was em-

ployed to yield a relative precision signature for the computation of
2700P
n=0

nP
m=0

P nm(�). The

plot of the relative precision statistic is shown in Fig. (19).

Inspection of Fig. (19) shows that the staggered algorithm for computingPnm(�)
um

is

highly unstable, except for points proximal to the poles and the equator. However, the

relative precision of this algorithm close to the poles does not exceed that of any of the

approaches presented in Section 4.2. Therefore, the staggered recursion algorithm should

not be used to compute ultra-high degree and order spherical harmonic expansions.

C Appendix C

This Appendix explores the possibility of formulating Clenshaw methods, based on row

recursions rather than column recursions, for evaluating the partial sumsS (d). These for-

mulations have proven, at present, less successful than than the other approaches pre-

sented in the main body of the paper. The general approach is outlined below in the event

that it may yet prove useful for future developments in this area.

C.1 Two Forward Row Factorisations

In Section 2.6, each of the standard (Eq. 11), first modified (Eq. 32) and second modi-

fied (Eq. 34) forward column recursion algorithms are of identical form such that only

the initial sectoral seed values differ. That is, Eqs. (11), (32) and (34) all employ the
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same recursive terms(almt) and blm but use different sectoral seed values. In contrast,

the modified forward row recursion (Eq. 27) for computingPnm(�)
um

differs in form from

the standard row recursion (Eq. 18) for computingP nm(�) because the denominatorum

varies with the order of eachPnm(�)
um

in any given row. That is, the recursive terms,gnm
t
u

andhnm, used in Eq. (18), are different from the equivalent terms,gnmt andhnmu2, used

in Eq. (27). Thus, the standard forward row recursion and the modified forward row re-

cursion will each yield a separate factorisation ofP nm(�). These factorisations serve to

introduce the quantitiesPnm(�)

Pnn(�)
and Pnm(�)

um�n
, which will be examined in the following two

subsections.

C.1.1 Standard Forward Row Factorisation: Pnm(�)

Pnn(�)

The rectangle in Fig. 3 for the forward row recursions contains allP nm(�) for which

n = 3 and0 � m � 3. For these values ofP nm(�), the standard forward row recursion

(Eq. 18) gives

P 3;2(�) =

�
g3;2

�
t

u

� �
P 3;3(�) (68)

P 3;1(�) =

"
g3;1 g3;2

�
t

u

�2

� h3;1

#
P 3;3(�) (69)

P 3;0(�) =

"
1p
2

 
g3;0 g3;1 g3;2

�
t

u

�3

� g3;0 h3;1

�
t

u

�
� g3;2 h3;0

�
t

u

� !#
P 3;3(�)

(70)

where the aggregations ofgnp tu andhnp terms within the square brackets are equal to

Pnm(�)

Pnn(�)
. Here,p has been used instead ofm to denote the order of each recursive term

gnp
t
u

andhnp, since eachP 3;m(�) of orderm is comprised of an aggregation of allgnp tu

andhnp terms form � p � 2. In general, anyP nm(�) may be factored intoP nn(�)

and an aggregation of all of thegnp tu andhnp terms form � p � (n � 1). Note that the
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denominator ofPnm(�)

Pnn(�)
is notPmm(�) , butP nn(�), which is the sectoral value of the same

n, rather than that of the samem.

The quantityPnm(�)

Pnn(�)
appears to be of no practical use. Inspection of Fig. (20), which

gives the range of magnitudes taken byPnm(�)

Pnn(�)
, shows that there is no global scale factor,

capable of storage in IEEE double precision, that will allow these quantities to be com-

puted for0Æ < � < 180Æ up toM = 2700. As such, the quantityPnm(�)

Pnn(�)
will not be used

to compute very high degree and order spherical harmonic expansions.

C.1.2 Modified Forward Row Factorisation: Pnm(�)
um�n

Expanding on the example in Section C.1.1, recall that the rectangle in Fig. 3 for the

forward row recursions containsP nm(�) for which n = 3 and0 � m � 3. For these

values ofP nm(�), the modified forward row recursion (Eq. 27) gives

P 3;2(�)

u2
= [ g3;2 t ] �n=3 (71)

P 3;1(�)

u1
=
�
g3;1 g3;2 t

2 � h3;1 u
2
�
�n=3 (72)

P 3;0(�)

u0
=

�
1p
2

�
g3;0 g3;1 g3;2 t

3 � g3;0 h3;1 tu
2 � g3;2 h3;0 tu

2
��

�n=3 (73)

where quantities in square brackets arePnm(�)
um�n

. Note that the�n term in the denominator

renders anyPnm(�)
um�n

different from the correspondingPnm(�)
um

(Fig. 5) by no more than one

order of magnitude.

C.2 Reverse Row Methods

To compute any value ofPnm(�)
um

, the modified forward row recursion begins with the seed

value�m and then aggregates the necessary(gnpt) and(hnpu2) recursive terms in order

of decreasingp (sequentially left across each row in Fig. 3). In a manner similar to the
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reverse column recursion (Eq. 46), an alternative to the modified forward row recursion

(Eq. 27) is to reverse this process and apply these same recursive terms in the sequence

of increasingp, (sequentially right across each row in Fig. 21). That is, a recursion may

be employed whereby the(gnpt) and(hnpu2) recursive terms, for whichp = m, and are

applied first and the recursive terms, for whichp = n � 1, are applied last. This will be

called areverse row recursion and is illustrated schematically in Fig. 21.

The reverse row recursion is applied using the algorithm

snp� = gn;p�1 t sn;p�1;� � hn;p�2 u
2 sn;p�2;� + ynp� (74)

To computePnm(�)
�num

, the recursion in Eq. (74) is used as follows.The seed values are set

to snm� = 1, sn;m�1;� = 0, and allynp� = 0. This allows the recursive computation

of all snp�, of constantn (a row in Fig. 21), and sequentially increasingp (across to the

right and towards the diagonal in Fig. 21), fromsn;m+1;� to snn�. The effect of using

the recursion in Eq. (74) in this way is to sequentially aggregate the(gnpt) and(hnpu2)

terms, in the sequence of increasingp, until the recursion terminates at the computation

of snn� =
p
j

Pnm(�)
�num

. Here, thej value (Section 2.2) is determined by the value ofm in

P nm(�).

To computeP
(1)
nm(�)
um�n

, differentiating Eq. (74) with respect tot = cos � gives

_snp� = gn;p�1 ( t _sn;p�1;� + sn;p�1;� )� hn;p�2
�
u2 _sn;p�2;� � 2t sn;p�1;�

�
(75)

The seed values for the recursion in Eq. (75),snm� andsn;m�1;�, are differentiated with

respect tot to give _snm� = _sn;m�1;� = 0. These seed values allow the recursion in Eq. (75)

to be used to compute all_snp�, of the samen, and sequentially increasingp, from _sn;m+1;�

to _snn�. When used in this way, the recursion in Eq. (75) will terminate at the computation

of _snn� =
p
j
d
�
Pnm(�)
um�n

�

dt
. The sectoral

d
�
Pnn(�)
un�n

�

dt
are zero, and so their corresponding_snn�

are simply set to zero without the need for any recursion. Application of the product rule
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and the chain rule to
p
j
d
�
Pnm(�)
um�n

�

dt
yields

P
(1)

nm(�)

um�n

=
1p
j

�
m

t

u
snn� � u _snn�

�
; 8 n � m (76)

where, as above,snn� =
p
j
Pnm(�)
�num

and _snn� =
p
j
d
�
Pnm(�)
um�n

�

dt

In terms of the number of recursions required, the efficiency of the reverse row tech-

niques for computing values ofPnm(�)
um�n

and P
(1)
nm(�)
um�n

is the same as for the reverse column

methods (Section 3.2) for computing values ofPnm(�)

Pmm(�)
and P

(1)
nm(�)

Pmm(�)
, respectively.

Similarly, overflows in the final computed values ofP
(d)
nm(�)
um�n

are prevented in the reverse

row method by setting the seed valuesnm� to 10�280 (rather than1) for use in Eq. (74).

This scaling propagates linearly though subsequent computations of
p
j

P
(d)
nm(�)
�num

to gen-

erate values of
p
j

P
(d)
nm(�)
�num

� 10�280. However, while this will prevent an overflow, the

reverse row method cannot be applied over the same ranges ofM and� as the reverse

column algorithm due to underflow problems during the computation. For example, for

M = 2700, the reverse row method will underflow for� <� 76Æ and� >� 104Æ. No

investigation of this underflow was conducted.

C.3 Row Clenshaw methods

The standard Clenshaw methods do not translate well to row-type recursions. The first

Clenshaw method uses the reverse column recursion in Eqs. (46) and (47) to compute

X
(d)
m�

Pmm(�)
. An equivalent utilisation of the reverse row recursion in Eq. (74) proves to be

of little use. In this case, settingsn;m�1;� = sn;m�2;� = 0 and allynp� = Enp�, allows

the recursive computation of allsnp�, of constantn (a row in Fig. 21), and sequentially

increasingp (across to the right and towards the diagonal in Fig. 21), fromsnm� to snn�.

In this case recursion terminates atsnn� =
MP
m=0

p
j
�
Enm�

Pnm(�)
um�n

�
.
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The
p
j term notwithstanding, the principal problem with the quantitysnn� =

MP
m=0

p
j�

Enm�
Pnm(�)
um�n

�
is that the denominator ofPnm(�)

um�n
, varies with bothn andm. This means

that this quantity has effectively summed components for which the scale factor is not

constant, thereby preventing such sums from being combined and rescaled to achieve the

final sumsS.
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Captions for 21 Figures

1. Logarithm plot of maximum (upper line) and minimum (lower line) values of
��P nm(�)

�� ;
8 n; m � 2700

2. A schematic of the recursion sequences employed in the standard, first modified and

second modified forward column algorithms to computeP nm(�), Pnm(�)
um

and Pnm(�)

Pmm(�)
,

respectively

3. A schematic of the recursion sequences employed in the standard and modified forward

row algorithms to computeP nm(�) andPnm(�)
um

, respectively

4. Variation of�m (Eq. 24) with order (m)

5. Logarithm plot of maximum (upper line) and minimum (lower line) values of
���Pnm(�)

um

��� ;
8 n; m � 2700

6. Logarithm plot of maximum (upper line) and minimum (lower line) values of

����P (1)
nm(�)
um

���� ;
8 n; m � 2700

7. A schematic of the recursion sequences employed in the reverse column, and the first

and second Clenshaw algorithms to compute the quantities

�
Pnm(�)

Pmm(�)
;
d
�
Pnm(�)

Pmm(�)

�

dt

�
,�

Xm�

Pmm(�)
;
d
�

Xm�
Pmm(�)

�

dt

�
and

�
Xm�

Pmm(�)qm
;
d
�

Xm�
Pmm(�)qm

�

dt

�
, respectively

8. Logarithm of the relative precision (Eq. 54) to evaluate
2700P
n=0

nP
m=0

P nm(�) using the first

Clenshaw (solid line) and the second Clenshaw (dashed line) methods

9. Logarithm of the relative precision (Eq. 54) to evaluate
2700P
n=0

nP
m=0

P nm(�) using the mod-

ified forward column (solid line) and the second Clenshaw (dashed line) methods

10. Logarithm of the relative precision (Eq. 54) to evaluate
2700P
n=0

nP
m=0

P nm(�) using the re-

verse column (solid line) and second Clenshaw (dashed line) methods

11. Logarithm of the relative precision (Eq. 54) to evaluate
2700P
n=0

nP
m=0

P nm(�) using the mod-

ified forward row (solid line) and second Clenshaw (dashed line) methods
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12. Logarithm of the relative precision (Eq. 54) to evaluate
2700P
n=0

nP
m=0

P
(1)

nm(�) using the first

Clenshaw (solid line) and the second Clenshaw (dashed line) methods

13. Logarithm of the relative precision (Eq. 54) to evaluate
2700P
n=0

nP
m=0

P
(1)

nm(�) using the mod-

ified forward column (solid line) and second Clenshaw (dashed line) methods

14. Logarithm of the relative precision (Eq. 54) to evaluate
2700P
n=0

nP
m=0

P
(1)

nm(�) using the re-

verse column (solid line) and second Clenshaw (dashed line) methods

15. Logarithm of the relative precision (Eq. 54) to evaluate
2700P
n=0

nP
m=0

P
(1)

nm(�) using the mod-

ified forward row (solid line) and second Clenshaw (dashed line) methods

16. Logarithm of the relative accuracy (Eq. 61) to evaluate
2700P
n=0

nP
m=0

�
P nm(�)

�2
using the

modified forward row (solid line) and modified forward column (dashed line) algo-

rithms

17. Logarithm of the relative accuracy (Eq. 62) to evaluate
2700P
n=0

nP
m=0

�
P

(1)

nm(�)
�2

using the

modified forward row (solid line) and modified forward column (dashed line) algo-

rithms

18. A schematic of the recursion sequences employed in staggered algorithm to compute

Pnm(�)
um

19. Logarithm of the relative precision (Eq. 54) to evaluate
2700P
n=0

nP
m=0

P nm(�) using the stag-

gered algorithm

20. Logarithm plot of maximum (upper line) and minimum (lower line) values of
���Pnm(�)

Pnn(�)

��� ;
8 n; m � 2700

21. A schematic of the recursion sequences employed in the reverse row algorithms to

compute the quantities
p
j
Pnm(�)
�num

and
p
j
d
�
Pnm(�)
�num

�

dt
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Captions for 2 Tables

1. Summary of algorithms for computing partial sumsS (d): first modified forward column

(MFC-1); second modified forward column (MFC-2); modified forward row (MFR);

reverse column (RC); first Clenshaw (CLEN-1) and second Clenshaw (CLEN-2)

2. CPU time required to compute,S =
2700P
n=0

nP
m=0

P nm(�), 8 integer values of0Æ � � �

180Æ, and the CPU time required to compute bothS,8 integer values of1Æ � � � 179Æ,

andS(1) =
2700P
n=0

nP
m=0

P
(1)

nm(�); 8 integer values of1Æ � � � 179Æ, together: modified for-

ward column (MFC); modified forward row (MFR); reverse column (RC); first Clen-

shaw (CLEN-1) and second Clenshaw (CLEN-2)
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FORMULAE COMPUTED

METHOD SECTION for S for S(d) QUANTITIES

MFC-1 2.6 (28) (32) (33) P
(d)
nm

(�)

um

MFC-2 2.6 (34) (35) P
(d)
nm

(�)

Pmm(�)

MFR 2.5 (28) (27) (30) P
(d)
nm

(�)

um

RC 3.2 (46) (47) (48) P
(d)
nm

(�)

Pmm(�)

CLEN-1 3.3.1 (46) (47) (49) X
(d)
nm�

Pmm(�)

CLEN-2 3.3.2 (51) (52) (53) X
(d)
nm�

Pmm(�)qm

Table 1.



TASK S S and S(1)

CLEN-1 192 sec 282 sec

CLEN-2 192 sec 282 sec

MFC 186 sec 408 sec

MFR 174 sec 258 sec

RC 41,862 sec 67,778 sec

Table 2.


