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ABSTRACT

GPS ambiguity resolution is the process of resolving
the unknown cycle ambiguities of double difference
(DD) carrier phase data as integers. It is the key to fast
and high-precision relative GPS positioning. Critical in
the application of ambiguity resolution is its reliability.
Unsuccessful ambiguity resolution, when passed
unnoticed, will too often lead to unacceptable errors in
the positioning results. High success rates are required,
for ambiguity resolution to be reliable. In this
contribution we will introduce and evaluate such
diagnostic measures. They complement existing
methods of ambiguity resolution and allow the user
and/or analyst to infer their reliability.

1. INTRODUCTION

Integer carrier phase ambiguity resolution is often a
prerequisite for high precision GPS parameter
estimation. It applies to a great variety of GPS models
currently in use. Ambiguity resolution consists of two
distinct parts: the ambiguity estimation problem and the
ambiguity validation problem. The estimation part
addresses the problem of finding optimal estimates for
the unknown integer ambiguities. In this contribution
we will use the least-squares principle and assume the
data to be normally distributed. Validation is of
importance in its own right and quite distinct from the
estimation problem. One will namely always be able to
compute an integer ambiguity solution, whether it is of
good quality or not. The question addressed by
validation is therefore whether the quality of the
computed solution is such that one is also willing to
accept this solution.

In this contribution we will consider the expected
performance of validation. The chance of successful
ambiguity resolution can be inferred once the
probability mass function of the integer ambiguities is
known. Of this distribution, the probability of correct
integer ambiguity estimation is of particular interest. It
describes the reliability of ambiguity resolution in
terms of its expected success rate.

The variance matrix of the (real-valued) least-squares
ambiguities contains all the information necessary to
infer a priori whether or not the estimated integer
ambiguities have enough chance to coincide with the
true, but unknown integer ambiguities. It is shown how
this matrix can be used to evaluate the probabilities of
correct integer estimation. These success rates are
given for the ambiguity estimator that follows from
integer bootstrapping.

Although less optimal than integer least-squares,
integer bootstrapping provides useful and easy-to-
compute approximations to the integer least-squares
solution. In a similar manner, the bootstrapped success
rates provide bounds for the probability of correct
integer least-squares estimation. In fact, when the
bootstrapped success rates are closegnto one, the
simple bootstrapping ambiguity estimator may be
considered a useful alternative to the integer least-
squares estimator.

The success rates are evaluated for two types of GPS
models, the geometry-free model and the geometry-
based model. In both cases we neglect the atmospheric
delays and thus assume that the baselines are
sufficiently short. The success rates are given for
different measurement scenarios.

2. INTEGER AMBIGUITY ESTIMATION

Ambiguity resolution applies to a great variety of GPS
models currently in use. They range from single-
baseline models used for kinematic positioning to
multi-baseline models used as a tool for studying
geodynamic phenomena. GPS models may have the
relative receiver-satellite geometry included (geometry-
based) or excluded (geometry-free). The geometry is
included through the unit direction vectors in the design
matrix. When geometry is excluded, the baseline
components are not involved as unknowns in the
model, but instead, the receiver-satellite ranges
themselves. GPS models may also be discriminated as
to whether the slave receiver(s) are in motion (non-
stationary) or not (stationary). When in motion, one



solves for one or more trajectories, since with the
receiver-satellite geometry included, one will have new
coordinate unknowns for each new epoch. One may
also discriminate as to whether the differential
atmospheric delays (ionosphere and/or troposphere) are
included as unknowns or not. In case of sufficiently
short baselines these delays are often neglected.

An overview of these and other GPS models, together
with their applications in surveying, navigation and
geodesy, can be found in textbooks suctHagnann-
Wellenhof et al. (1997)Kleusberg and Teunissen
(1996) Leick (1995)Parkinson and Spilker (199@nd
Strang and Borre(1997) Despite the differences in
application of the various GPS models, it is important
to understand that their ambiguity resolution problems
are intrinsically the same. That is, the GPS models on
which ambiguity resolution is based, can all be cast in

the following conceptual frame of linear(ized)
observation equations
y= Aa+ Bb+ e (2.1)

wherey is the given GPS data vectar,andb are the
unknown parameter vectors, and wherg the noise
vector. The matrice#\ and B are the corresponding
design matrices. The data vecyowill usually consist

of the ‘observed minus computed’ single- or dual-
frequency DD phase and/or pseudorange (code)
observations, accumulated over all observation epochs.
The entries of vectoa are then the DD carrier phase
ambiguities, expressed in units of cycles rather than
range. They are known to hietegers The entries of
vector b will consist of the remaining unknown
parameters, such as for instance baseline components
(coordinates) and possibly atmospheric delay
parameters (troposphere, ionosphere).

2.1 The solution in three steps

Since any GPS model can be cast in the above frame of
observation equations, any method of ambiguity
resolution that solves EQ.(2.1) is automatically
applicable to each of the GPS models currently in use.
For the estimation part of ambiguity resolution, solving
the above model implies computing the ‘best’ estimates
of the integer vectoa and the real vectob. When
using the least-squares principle, these estimates can be
obtained in three steps. In tliest step one simply
disregards the integer constraints on the ambiguities
and performs a standard adjustment. As a result one
obtains the (real-valued) least-squares estimates of
andb, together with their variance-covariance matrix

a0 Qs Qaﬁ%
BE R %0

This solution is often referred to as the ‘float’ solution.
In the second step the integer constraints on the
ambiguities are applied. That is, the ‘float’ ambiguity
estimated is now used to compute the corresponding

2.2)

integer ambiguity estimatea. This can be written
symbolically as

a=F(&) (2.3)
where F(.) denotes the map from the real-valued
ambiguity estimates to the integer estimates. This
second step is the most demanding. The first difficulty
lies in the fact that the mdg(.) can often not be given
explicitly. It has to be mechanised by means of an
integer search. The second difficulty, typical for GPS
when short observation time spans are used, has to do
with the numerical efficiency with which this search
process can be executed. In order to have an efficient
search, the ambiguities need to be decorrelated first.
Once the integer ambiguities are computed, they are
used in thethird step to finally correct the ‘float’

estimate ofb. As a result one obtains the ‘fixed’
solution
b=b-Q,Q"(a- 3 (2.4)

In this final step the difference of the real-valued and
integer-valued ambiguity estimates is used to adjust the
‘float’ solution. The complete solution of the model

consists now ofa andb .

For more details on these three steps, as well as on the
numerical implementation of the least-squares
ambiguity decorrelation adjustment (LAMBDA), we
refer to e.gTeunisser{1993)or Jonge de and Tiberius
(1996) Fortran77 code implementing the LAMBDA
method can be obtained upon request. For more
information, see the appropriate pages on WWW site:
http://www.geo.tudelft.nl/mgp/.

3. INTEGER AMBIGUITY VALIDATION

It is of course not enough to compute the solution of
Eq.(2.1) and be done with it. One can always compute
an integer ambiguity solution, whether it is of good
quality or not. One therefore still needs to address the
question whether one is willing to accept the solution.
This concerns the second part of ambiguity resolution,
the validation.

In the actual practice of GPS, there are various schemes
in place for checking how well the ambiguity solution
fits the model. Some of them are ad hoc and primarily
based on experience, while others make use of concepts
from hypothesis testing. Although most of these
approaches work quite well in practice, none of them
provide the user with a rigorousliability description.
The user has therefore no way of knowing how often he
can expect the computed ambiguity solution to coincide
with the correct, but unknown solution. Is this nine out
of ten times, ninety-nine out of a hundred, or a higher
percentage? It will surely never equal one hundred
percent. After all, the integer ambiguities are computed
from the data. They are therefore subject to uncertainty,
just like the data are.

In order to obtain a proper reliability description, one
needs the probability distribution of the integer



ambiguities(Teunissen, 1997Yhis distribution will be

a probabilitymassfunction, due to the integer nature of
the ambiguities. Of this probability mass function, the
probability of correct integer estimation is particularly
of interest. This probability will be denoted as
P(a= a). It describes the frequency with which one
can expect to have a successful ambiguity resolution. It
equals the expected success rate.

3.1 The integer ambiguity success rate

In case of GPS, one usually requires a high success
rate. Thus

P(a=a)=1-¢ withé&small (3.1)

This probability depends on three contributing factors:
the observation equations (the functional model), the
precision of the observables (the stochastic model) and
the chosen method of integer ambiguity estimation.
Changes in any one of these will affect the success rate.
As to the method of integer estimation, one has a
variety of options available. For instance, one can
choose members from the class of unbiased integer
ambiguity estimatoréTeunissen, 1998Members from

this class are the ambiguity estimators that follow from
‘integer rounding’, ‘integer bootstrapping’ or ‘integer
least-squares’. In this contribution we will restrict our
attention to ‘integer bootstrapping’.

The integer bootstrapped ambiguity vector follows
from applying asequentialrounding scheme to the
entries of&. It goes as follows. Ih ambiguities are
available, one starts with the first ambiguély and
rounds its value to the nearest integer. Having obtained
the integer value of this first ambiguity, the real-valued
estimates of all remaining ambiguities are then
corrected by virtue of their correlation with the first
ambiguity. Then the second, but now corrected, real-
valued ambiguity estimate is rounded to its nearest
integer. Having obtained the integer value of the second
ambiguity, the real-valued estimates of all remaining

2 ambiguities are then again corrected, but now by
virtue of their correlation with the second ambiguity.
This process is continued until all ambiguities are taken
care of. In essence this ‘bootstrapping’ technique boils
down to the use of a sequential conditional least-
squares adjustment, with a conditioning on the integer
ambiguity values obtained in the previous steps. The
integer bootstrapped solution reads therefore

a=(al--[&4n])" (32)
where ‘[.]' denotes rounding to the nearest integer and
where the shorthand notaticda; stands for theth
least-squares  ambiguity = obtained through a
conditioning on the previods{1,...,(i-1} sequentially
rounded ambiguities.

The bootstrapped probability of correct integer
ambiguity estimation readq3eunissen, 1997)
n
= 1
P(a=4 =055 )~ (3.3)
i=1 ai“

where @(x) denotes the integral of the standardized
normal distribution from minus infinity tox. As
Eq.(3.3) shows, for the computation of the probability
one only needs the conditional standard deviations of
the ambiguities, aéi“ . Note however that these

standard deviations, and therefore the bootstrapped
probability as well, depend on the chosen ambiguity
parametrization. These standard deviations will already
change in value, when one changes the choice of
reference satellite in the definition of the DD
ambiguities. Since the bootstrapped probability gets
larger for smaller standard deviations, one should use
an ambiguity parametrization that provides ambiguities
with small standard deviations. The DD ambiguities are
therefore out of the question. Their precision is usually
very poor, in particular in case of short observation
time spans. Instead of the DD ambiguities, the
ambiguities as provided by the LAMBDA method
should be used. The decorrelating ambiguity
transformation of this method returns ambiguities
which are usually far more precise than the original DD
ambiguities. Thus before commencing with the
bootstrapping and the subsequent evaluation of the
probability, one should first transform the DD
ambiguities by means of the LAMBDA method.

4. SUCCESS RATES FOR SOME GPS MODELS

In this section we will apply the bootstrapped success
rate Eq.(3.3) to both the geometry-free and geometry-
based GPS model. The geometry-free model is the
simplest one can think of. It allows one to use the
pseudorange (code) data almost directly in combination
with the phase data to determine the integer
ambiguities, see e.ddatch (1982) Euler and Goad
(1991) Dedes and Goad (1994Fuler and Hatch
(1994) Teunissen(1996) Jonkman(1998) The DD
phase and code observation equations of the geometry-
free model are given for a single epachs

@) = p0)-plQ)+2Aa,

fpz(l_) = p(l)-_uzIG)M@z @.1)
pu(i) = p(i) + pql ()

po(i) = p(i) + pol ()

whereg(i) andg(i) are the DD phase observables on
L1 and L2;p,(i) andp,(i) are the DD code observables
on L1 and L2;p(i) is the DD form of the unknown
receiver-satellite rangel(i) is the DD form of the
unknown ionospheric delay ana, and a, are the
unknown but time-invariant integer DD ambiguities.
The known wavelengths are denotediaandA,. Since

the ionospheric delay is to a first order inversely
proportional to the square of the frequency, we have to
the same degree of approximatiqm=A,/A, and
MZZ/\Z//\I'

Note, due to the parametrization in terms of the DD
ranges, that no linearization is required for the above
observation equations. The absence of the receiver-



satellite geometry also implies that the model permits
both receivers to be either stationary or moving.
Furthermore, the parametrization in terms of the DD
ranges implies that the tropospheric delays need not be
modelled explicitly. When present, these delays will get
lumped with the DD ranges. Hence the estimated
ambiguities will always be free from tropospheric
biases.

The geometry-based model is obtained when the DD
ranges in Eq.(4.1) are further parametrized in terms of
the baseline components of the two receivers. In this
case a linearization is required due to the nonlinear
relation between the ranges and the baseline. The
relative receiver-satellite geometry enters in the model
because of the coupling of the ranges with this baseline.
In the linearized version of the model, this geometry
manifests itself through the receiver-satellite unit
direction vectors.

In the following it will be assumed that the models are
solved in a least-squares sense udingumber of
epochs. For the geometry-free model two satellites are
taken, while for the geometry-based model four
satellites or more. The ambiguities are considered to be
time-invariant for the duration of the observation
period. We also assume that time correlation and cross
correlation are absent. In all cases we neglect the
presence of the atmospheric delays. The results apply
therefore only to sufficiently short baselines.

4.1 The geometry-free model

We consider both the single-frequency and dual-
frequency case. The results shown are based on an
undifferenced phase variance of’=(3mm)* and a
varying undifferenced pseudorange (code) variance of
0,°=(10cm)?, (15cm)® and (3@m)? respectively.

The single-frequency case

In the single-frequency case, only a single ambiguity is
present in the model. In this scalar case, integer
bootstrapping, integer rounding and integer least-
squares become identical. Witlx1, Eq.(3.3) reduces

to

P(a= a) = 2d(—1L
(3= 3 =205

)-1 (4.2)

with the L1 variance of the least-squares ambiguity
given as

2 _ 4 2, 2

4 = H(a(p +0p) (4.3)
Figure 4-1 shows the probability of correct integer
estimation (the success rate) as functionkofthe
number of epochs) for the three different values of the
code variance. The overall conclusion that can be
drawn from this figure is that successful ambiguity
resolution is impossible, unless quite a number of
epochs are taken into account. For a code standard
deviation of 1@m more than 10 epochs are needed to

get at the 90% level and about 50 epochs to get at the
99.9% level. For a code standard deviation ofm5
even more than 100 epochs are needed to reach this
level.
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Figure 4-1: The geometry-free, single-frequency
success rate as function of the number of epochs used.

The dual-frequency case
In the dual-frequency case, two ambiguities are present
in the model. Thug=2 and Eq.(3.3) becomes

g
Sz = 1. 1y 1
P(a= = o) %m(z%) 1

We already observed that this probability depends on
the chosen ambiguity parametrization. That is, the
bootstrapped probability based on the use of DD
ambiguities  will differ from the bootstrapped
probability based on the use of another set of
admissible ambiguities. Here and in what follows the
ambiguities obtained through the decorrelation process
of the LAMBDA method are used. Figure 4-2 shows
the corresponding success rates. Note the different
vertical scale used. It now ranges from 0.99 to 1.00.
These results show a dramatic improvement when
compared with the single-frequency case. The figure
shows that instantaneous ambiguity resolution is
possible at the 99.5% level whep=10cm The 99.9%
level is reached fok=2 whengy,=15cm and for k=4
wheng,=30cm

(4.4)
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Figure 4-2: The geometry-free, dual-frequency success
rates as function of the number of epochs used.

4.2 The geometry-based model

A better performance of ambiguity resolution can be
expected when using the geometry-based model instead
of the geometry-free model. Additional redundancy
enters due to the fact that all ranges are now linked to
same baseline. Also the information content of the
relative receiver-satellite geometry and its change over
time, can now be taken into account.

For the geometry-based model a minimum of four
satellites is needed. In the following we will vary the
number of satellites, as well as the observation time
span. Again both the single-frequency and dual-
frequency cases are considered. For the undifferenced
pseudorange (code) variance the conservative value of
(30cm)? is used and for the undifferenced phase
variance again the value ofn(@)>.

Although a representative satellite configuration was
chosen for the examples following, one should bear in
mind that changes in relative receiver-satellite
geometry do have their effect on the probability of
correct integer estimation.

The single-frequency case

Figure 4-3 shows three graphs. Each graph shows the
success rate as function of the number of satellites
tracked. The three graphs differ in the observation time
spans used. For the first (top) graph only a single epoch
of data was used. These results show that even with
eight satellites only nine out of ten ambiguity
resolutions can expected to be successful. For the
second (middle) graph two epochs of data were used.
The two epochs are separated by 30 seconds. When
compared to the first graph, the success rates have
improved of course. In case of eight satellites the
success rate has now reached the 99.5% level. But this
would still not be good emngh when aiming at the
99.9% level or better.

For the third (bottom) graph again two epochs of data
were used, but now separated by 10 minutes. This
graph shows, when compared to the second graph, the
impact of the change over time of the relative receiver-

satellite geometry. In this case the 99.9% level is
already reached when tracking six satellites.
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Figure 4-3: The geometry-based, single frequency
success rates as function of the number of satellites
tracked: (top) one epoch data; (middle) two epochs of
data, separated by 30 seconds; (bottom) two epochs of

data, separated by 10 minutes.

The dual-frequency case
The previous results showed that instantaneous single
frequency ambiguity resolution is not possible at the



99.9% level wheno, =3mm and 0¢,=30cm As the
results of figure 4-4 show, this becomes possible
though in case of dual-frequency data. An
instantaneous success rate larger than 99.99% is
obtained when using six satellites. The same level is
reached for five satellites in case two epochs are used.
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Figure 4-4: The geometry-based, dual-frequency
success rates as function of the number of satellites
tracked: (top) one epoch of data; (bottom) two epochs

of data, separated by 30 seconds.

5. SUMMARY

In this contribution we considered the reliability of
ambiguity resolution. We emphasized that the problem
of ambiguity resolution is intrinsically the same for all
the different GPS models that one may think of. Any
rigorous method of ambiguity resolution should
therefore be applicable to each of these models and
should be able to efficiently provide the integer
ambiguity estimates together with a proper description
of the quality of the solution so obtained.

The expected performance of ambiguity resolution is
measured by its success rate. Without it the user and/or
analyst has no way of knowing how often he can expect
the computed ambiguity solution to coincide with the
true, but unknown solution. For many applications this
is not acceptable. We therefore introduced the success
rate as reliability measure of ambiguity resolution. For
integer bootstrapping this success rate is given as

1

2051'“

It requires the conditional standard deviations of the
ambiguities as input. Since this probability depends on
the chosen ambiguity parametrization, the decorrelation
process should be applied first, before commencing
with the integer bootstrapping.

The above success rate was evaluated for two type of
GPS models: the geometry-free model and the
geometry-based model. It was shown that it is virtually
impossible to have a fast and successful ambiguity
resolution when using the single-frequency geometry-
free model. It becomes possible however when the
second frequency is included. Only a few epochs are
then needed to reach the 99.9% level. Provided enough
satellites are tracked, the same level can be reached
within minutes when using the single-frequency
geometry-based model. And in the dual-frequency case
this level can even be reached instantaneously with six
satellites or more.

P(a=a)= i|f|l(2q>( )-1)
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