

LOW-CALCIUM FLY ASH-BASED GEOPOLYMER CONCRETE: REINFORCED BEAMS AND COLUMNS

By

M. D.J. Sumajouw and B. V. Rangan

Research Report GC 3 Faculty of Engineering Curtin University of Technology Perth, Australia

2006

PREFACE

From 2001, we have conducted some important research on the development, manufacture, behaviour, and applications of **Low-Calcium Fly Ash-Based Geopolymer Concrete**. This concrete uses no Portland cement; instead, we use the low-calcium fly ash from a local coal burning power station as a source material to make the binder necessary to manufacture concrete.

Concrete usage around the globe is second only to water. An important ingredient in the conventional concrete is the Portland cement. The production of one ton of cement emits approximately one ton of carbon dioxide to the atmosphere. Moreover, cement production is not only highly energy-intensive, next to steel and aluminium, but also consumes significant amount of natural resources. In order to meet infrastructure developments, the usage of concrete is on the increase. Do we build additional cement plants to meet this increase in demand for concrete, or find alternative binders to make concrete?

On the other hand, already huge volumes of fly ash are generated around the world; most of the fly ash is not effectively used, and a large part of it is disposed in landfills. As the need for power increases, the volume of fly ash would increase.

Both the above issues are addressed in our work. We have covered significant area in our work, and developed the know-how to manufacture low-calcium fly ash-based geopolymer concrete. Our research has already been published in more than 30 technical papers in various international venues.

This Research Report describes the behaviour and strength of reinforced low-calcium fly ash-based geopolymer concrete structural beams and columns. Earlier, Research Reports GC1 and GC2 covered the development, the mixture proportions, the short-term properties, and the long-term properties of low-calcium fly ash-based geopolymer concrete.

Heat-cured low-calcium fly ash-based geopolymer concrete has excellent compressive strength, suffers very little drying shrinkage and low creep, excellent resistance to sulfate attack, and good acid resistance. It can be used in many infrastructure applications. One ton of low-calcium fly ash can be utilised to produce about 2.5 cubic metres of high quality geopolymer concrete, and the bulk price of chemicals needed to manufacture this concrete is cheaper than the bulk price of one ton of Portland cement. Given the fact that fly ash is considered as a waste material, the low-calcium fly ash-based geopolymer concrete is, therefore, cheaper than the Portland cement concrete. The special properties of geopolymer concrete can further enhance the economic benefits. Moreover, reduction of one ton of carbon dioxide yields one carbon credit and, the monetary value of that one credit is approximately 20 Euros. This carbon credit significantly adds to the economy offered by the geopolymer concrete. In all, there is so much to be gained by using geopolymer concrete.

We are happy to participate and assist the industries to take the geopolymer concrete technology to the communities in infrastructure applications. We passionately believe that our work is a small step towards a broad vision to serve the communities for a better future.

For further information, please contact: Professor B. Vijaya Rangan BE PhD FIE Aust FACI CPEng, Emeritus Professor of Civil Engineering, Faculty of Engineering, Curtin University of Technology, Perth, WA 6845, Australia; Telephone: 61 8 9266 1376, Email: V.Rangan@curtin.edu.au

ACKNOWLEDGEMENTS

The authors are grateful to Emeritus Professor Joseph Davidovits, Director, Geopolymer Institute, Saint-Quentin, France, and to Dr Terry Gourley, Rocla Australia for their advice and encouragement during the conduct of the research.

The first author was financially supported by the Technological and Professional Skills Development Sector Project (TPSDP) of the University of Sam Ratulangi, Indonesia. The authors are grateful to Mr Djwantoro Hardjito and Mr. Steenie Wallah, the other members of the research team, for their contributions.

The experimental work was carried out in the laboratories of the Faculty of Engineering at Curtin University of Technology. The authors are grateful to the support and assistance provided by the team of talented and dedicated technical staff comprising Mr. Roy Lewis, Mr. John Murray, Mr. Dave Edwards, Mr. Rob Cutter, and Mr. Mike Ellis.

TABLE OF CONTENTS

PREFACE				2
ACKNOWL	EDG	MENTS	5	3
TABLE OF	CON	TENTS		4
CHAPTER	1	INTR	ODUCTION	7
	1.1	Backg	round	7
	1.2	Resear	rch Objectives	9
	1.3	Scope	of Work	9
	1.4	Repor	Arrangement	10
CHAPTER	2	LITE	RATURE REVIEW	11
	2.1	Introd	action	11
	2.2	Geopo	lymer Materials	11
	2.3	Use of	Fly Ash in Concrete	13
	2.4	Fly As	h-based Geopolymer Concrete	13
CHAPTER	3	SPEC	IMEN MANUFACTURE AND TEST PROGRAM	14
	3.1	Introd	action	14
	3.2	Beams		14
		3.2.1	Materials in Geopolymer Concrete	14
			3.2.1.1 Fly Ash	14
			3.2.1.2 Alkaline Solutions	15
			3.2.1.3 Super Plasticiser	16
			3.2.1.4 Aggregates	16
		3.2.2	Mixture Proportions of Geopolymer Concrete	16

		3.2.3	Reinforcing Bars	17
		3.2.4	Geometry and Reinforcement Configuration	17
		3.2.5	Specimen Manufacture and Curing Process	19
		3.2.6	Test Set-up and Instrumentation	23
		3.2.7	Test Procedure	24
		3.2.8	Properties of Concrete	25
	3.3	Colun	nns	27
		3.3.1	Materials in Geopolymer Concrete	27
			3.3.1.1 Fly Ash	27
			3.3.1.2 Alkaline Solutions	28
			3.3.1.3 Super Plasticiser	28
			3.3.1.4 Aggregates	29
		3.3.2	Mixture Proportions of Geopolymer Concrete	29
		3.3.3	Reinforcing Bars	30
		3.3.4	Geometry and Reinforcement Configuration	30
		3.3.5	Specimen Manufacture and Curing Process	32
		3.3.6	Test Set-up and Instrumentation	34
		3.3.7	Test Procedure	38
		3.3.8	Concrete Properties and Load Eccentricities	40
CHAPTER	4	PRES	SENTATION AND DISCUSSION OF TEST	
		RESU	JLTS	41
	4.1	Introd	uction	41
	4.2	Beam	S	41
		4.2.1	General Behaviour of Beams	41
		4.2.2	Crack Patterns and Failure Mode	42
		4.2.3	Cracking Moment	45
		4.2.4	Flexural Capacity	47
		4.2.5	Beam Deflection	50
		4.2.6	Ductility	57
	4.3	Colun	nns	59
		4.3.1	General Behaviour of Columns	59
		4.3.2	Crack Patterns and Failure Modes	60

5

		4.3.3 Load-Deflection Relationship	61
		4.3.4 Load-Carrying Capacity	68
		4.3.5 Effect of Load Eccentricity	68
		4.3.6 Effect of Concrete Compressive Strength	69
		4.3.7 Effect of Longitudinal Reinforcement	70
CHAPTER	5	CORRELATION OF TEST AND CALCULATED	
		RESULTS	72
	5.1	Introduction	72
	5.2	Reinforced Geopolymer Concrete Beams	72
		5.2.1 Cracking Moment	72
		5.2.2 Flexural Capacity	73
		5.2.3 Deflection	75
	5.3	Reinforced Geopolymer Concrete Columns	76
CHAPTER	6	CONCLUSIONS	78
CHAPTER	6 6.1	CONCLUSIONS Reinforced Geopolymer Concrete Beams	78 78
CHAPTER			
CHAPTER	6.1	Reinforced Geopolymer Concrete Beams	78
CHAPTER	6.1 6.2	Reinforced Geopolymer Concrete Beams	78
	6.1 6.2 CES	Reinforced Geopolymer Concrete Beams	78 80
REFERENC	6.1 6.2 CES	Reinforced Geopolymer Concrete Beams Reinforced Geopolymer Concrete Columns Test Data A.1 Beams	78 80 82 86 86
REFERENC	6.1 6.2 CES	Reinforced Geopolymer Concrete Beams Reinforced Geopolymer Concrete Columns Test Data	78 80 82 86
REFERENC	6.1 6.2 XES A	Reinforced Geopolymer Concrete Beams Reinforced Geopolymer Concrete Columns Test Data A.1 Beams A.2 Columns Load-Deflections Graphs	78 80 82 86 86 98 110
REFERENC APPENDIX	6.1 6.2 XES A	Reinforced Geopolymer Concrete BeamsReinforced Geopolymer Concrete ColumnsTest DataA.1A.1BeamsA.2ColumnsLoad-Deflections GraphsB.1Beams	78 80 82 86 86 98 110 110
REFERENC APPENDIX	6.1 6.2 XES A	Reinforced Geopolymer Concrete Beams Reinforced Geopolymer Concrete Columns Test Data A.1 Beams A.2 Columns Load-Deflections Graphs	78 80 82 86 86 98 110
REFERENC APPENDIX	6.1 6.2 XES A B	Reinforced Geopolymer Concrete BeamsReinforced Geopolymer Concrete ColumnsTest DataA.1A.1BeamsA.2ColumnsLoad-Deflections GraphsB.1Beams	78 80 82 86 86 98 110 110
REFERENC APPENDIX APPENDIX	6.1 6.2 XES A B	Reinforced Geopolymer Concrete BeamsReinforced Geopolymer Concrete Columns Test Data A.1A.1BeamsA.2ColumnsB.1BeamsB.2Columns	78 80 82 86 86 98 110 110 114

CHAPTER 1

INTRODUCTION

This Chapter describes the background, research objectives and scope of work. An overview of the Report arrangement is also presented.

1.1 Background

Portland cement concrete is a mixture of Portland cement, aggregates, and water. Concrete is the most often-used construction material. The worldwide consumption of concrete was estimated to be about 8.8 billion tons per year (Metha 2001). Due to increase in infrastructure developments, the demand for concrete would increase in the future.

The manufacture of Portland cement releases carbon dioxide (CO_2) that is a significant contributor of the greenhouse gas emissions to the atmosphere. The production of every tonne of Portland cement contributes about one tonne of CO₂. Globally, the world's Portland cement production contributes about 1.6 billion tons of CO₂ or about 7% of the global loading of carbon dioxide into the atmosphere (Metha 2001, Malhotra 1999; 2002). By the year 2010, the world cement consumption rate is expected to reach about 2 billion tonnes, meaning that about 2 billion tons CO₂ will be released. In order to address the environmental effect associated with Portland cement, there is a need to use other binders to make concrete.

One of the efforts to produce more environmentally friendly concrete is to replace the amount of Portland cement in concrete with by-product materials such as fly ash. An important achievement in this regard is the development of high volume fly ash (HVFA) concrete that utilizes up to 60 percent of fly ash, and yet possesses excellent mechanical properties with enhanced durability performance. The test results show that HVFA concrete is more durable than Portland cement concrete (Malhotra 2002). Another effort to make environmentally friendly concrete is the development of inorganic alumina-silicate polymer, called Geopolymer, synthesized from materials of geological origin or by-product materials such as fly ash that are rich in silicon and aluminium (Davidovits 1994, 1999).

Fly ash, one of the source materials for geopolymer binders, is available abundantly world wide, but to date its utilization is limited. From 1998 estimation, the global coal ash production was more than 390 million tons annually, but its utilization was less than 15% (Malhotra 1999). In the USA, the annual production of fly ash is approximately 63 million tons, and only 18 to 20% of that total is used by the concrete industries (ACI 232.2R-03 2003).

In the future, fly ash production will increase, especially in countries such as China and India. Just from these two countries, it is estimated that by the year 2010 the production of the fly ash will be about 780 million tones annually (Malhotra 2002). Accordingly, efforts to utilize this by-product material in concrete manufacture are important to make concrete more environmentally friendly. For instance, every million tons of fly ash that replaces Portland cement helps to conserve one million tons of lime stone, 0.25 million tons of coal and over 80 million units of power, not withstanding the abatement of 1.5 million tons of CO2 to atmosphere (Bhanumathidas and Kalidas 2004).

In the light of the above, a comprehensive research program was commenced in 2001 on **Low-Calcium Fly Ash-Based Geopolymer Concrete**. Earlier Research Reports GC1 and GC2 described the development and manufacture, short-term properties, and long-term properties of geopolymer concrete (Hardjito and Rangan 2005, Wallah and Rangan 2006). It was found that heat-cured low-calcium fly ash-based geopolymer concrete possesses high compressive strength, undergoes very little drying shrinkage and moderately low creep, and shows excellent resistance to sulphate and acid attack. Other researchers have reported that geopolymers do not suffer from alkali-aggregate reaction (Davidovits, 1999), and possess excellent fire resistant (Cheng and Chiu, 2003).

The work described in this Report compliments the research reported in Research Reports GC1 and GC2, and demonstrates the application of heat-cured low-calcium fly ash-based geopolymer concrete in large-scale reinforced concrete beams and columns.

1.2 Research Objectives

The primary objectives of this research are to conduct experimental and analytical studies to establish the following:

- a) The flexural behaviour of reinforced geopolymer concrete beams including flexural strength, crack pattern, deflection, and ductility.
- b) The behaviour and strength of reinforced geopolymer concrete slender columns subjected to axial load and bending moment.
- c) The correlation of experimental results with prediction methods currently used for reinforced Portland cement concrete structural members.

1.3 Scope of Work

The scope of work involved the following:

- a) Based on the research described in Research Reports GC1 and GC2 (Hardjito and Rangan 2005, Wallah and Rangan 2006), select appropriate geopolymer concrete mixtures needed to fabricate the reinforced test beams and columns.
- b) Manufacture and test twelve simply supported reinforced geopolymer concrete rectangular beams under monotonically increasing load with the longitudinal tensile reinforcement ratio and the concrete compressive strength as test variables.
- c) Manufacture and test twelve reinforced geopolymer concrete square columns under short-term eccentric loading with the longitudinal reinforcement ratio, the load eccentricity and the concrete compressive strength as test variables.
- d) Perform calculations to predict the strength and the deflection of geopolymer concrete test beams and columns using the methods currently available for Portland cement concrete members.

e) Study the correlation of test and calculated results, and demonstrate the application of heat-cured low-calcium fly ash-based geopolymer concrete in reinforced concrete beams and columns.

1.4 Report Arrangement

The Report comprises six Chapters. Chapter 2 presents a brief review of literature on geopolymers. The manufacture of test specimens and the conduct of tests are described in Chapter 3. Chapter 4 presents and discusses the test results. The correlations of analytical results with the test results are given in Chapter 5. The conclusions of this work are given in Chapter 6. The Report ends with a list of References and Appendices containing the details of experimental data.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This Chapter presents a brief review of geopolymers and geopolymer concrete. This review compliments similar reviews given in Research Reports GC1 and GC2 (Hardjito and Rangan 2005, Wallah and Rangan 2006).

2.2 Geopolymer Materials

Davidovits (1988) introduced the term 'geopolymer' in 1978 to represent the mineral polymers resulting from geochemistry. Geopolymer, an inorganic alumina-silicate polymer, is synthesized from predominantly silicon (Si) and aluminium (Al) material of geological origin or by-product material. The chemical composition of geopolymer materials is similar to zeolite, but they reveal an amorphous microstructure (Davidovits 1999). During the synthesized process, silicon and aluminium atoms are combined to form the building blocks that are chemically and structurally comparable to those binding the natural rocks.

Most of the literature available on this material deals with geopolymer pastes. Davidovits and Sawyer (1985) used ground blast furnace slag to produce geopolymer binders. This type of binders patented in the USA under the title Early High-Strength Mineral Polymer was used as a supplementary cementing material in the production of precast concrete products. In addition, a ready-made mortar package that required only the addition of mixing water to produce a durable and very rapid strength-gaining material was produced and utilised in restoration of concrete airport runways, aprons and taxiways, highway and bridge decks, and for several new constructions when high early strength was needed.

Geopolymer has also been used to replace organic polymer as an adhesive in strengthening structural members. Geopolymers were found to be fire resistant and durable under UV light (Balaguru et al 1997)

van Jaarsveld, van Deventer, and Schwartzman (1999) carried out experiments on geopolymers using two types of fly ash. They found that the compressive strength after 14 days was in the range of 5 - 51 MPa. The factors affecting the compressive strength were the mixing process and the chemical composition of the fly ash. A higher CaO content decreased the microstructure porosity and, in turn, increased the compressive strength. Besides, the water-to-fly ash ratio also influenced the strength. It was found that as the water-to-fly ash ratio decreased the compressive strength of the binder increased.

Palomo, Grutzeck, and Blanco (1999) studied the influence of curing temperature, curing time and alkaline solution-to-fly ash ratio on the compressive strength. It was reported that both the curing temperature and the curing time influenced the compressive strength. The utilization of sodium hydroxide (NaOH) combined with sodium silicate (Na₂Si₃) solution produced the highest strength. Compressive strength up to 60 MPa was obtained when cured at 85° C for 5 hours.

Xu and van Deventer (2000) investigated the geopolymerization of 15 natural Al-Si minerals. It was found that the minerals with a higher extent of dissolution demonstrated better compressive strength after polymerisation. The percentage of calcium oxide (CaO), potassium oxide (K₂O), the molar ratio of Si-Al in the source material, the type of alkali and the molar ratio of Si/Al in the solution during dissolution had significant effect on the compressive strength.

Swanepoel and Strydom (2002) conducted a study on geopolymers produced by mixing fly ash, kaolinite, sodium silica solution, NaOH and water. Both the curing time and the curing temperature affected the compressive strength, and the optimum strength occurred when specimens were cured at 60°C for a period of 48 hours.

van Jaarsveld, van Deventer and Lukey (2002) studied the interrelationship of certain parameters that affected the properties of fly ash-based geopolymer. They reported that the properties of geopolymer were influenced by the incomplete dissolution of the materials involved in geopolymerization. The water content, curing time and curing temperature affected the properties of geopolymer; specifically the curing condition and calcining temperature influenced the compressive strength. When the samples were cured at 70°C for 24 hours a substantial increase in the compressive strength was observed. Curing for a longer period of time reduced the compressive strength.

2.3 Use of Fly Ash in Concrete

Fly ash has been used in the past to partially replace Portland cement to produce concretes. An important achievement in this regard is the development of high volume fly ash (HVFA) concrete that utilizes up to 60 percent of fly ash, and yet possesses excellent mechanical properties with enhanced durability performance. The test results show that HVFA concrete is more durable than Portland cement concrete (Malhotra 2002).

Recently, a research group at Montana State University in the USA has demonstrated through field trials of using 100% high-calcium (ASTM Class C) fly ash to replace Portland cement to make concrete. Ready mix concrete equipment was used to produce the fly ash concrete on a large scale. The field trials showed that the fresh concrete can be easily mixed, transported, discharge, placed, and finished (Cross et al 2005).

2.4 Fly Ash-Based Geopolymer Concrete

Past studies on reinforced fly ash-based geopolymer concrete members are extremely limited. Palomo et.al (2004) investigated the mechanical characteristics of fly ash-based geopolymer concrete. It was found that the characteristics of the material were mostly determined by curing methods especially the curing time and curing temperature. Their study also reported some limited number of tests carried out on reinforced geopolymer concrete sleeper specimens. Another study related to the application of geopolymer concrete to structural members was conducted by Brooke et al. al (2005). It was reported that the behaviour of geopolymer concrete beam-column joints was similar to that of members made of Portland cement concrete.

Curtin research on fly ash-based geopolymer concrete is described in Research Reports GC1 and GC2 (Hardjito and Rangan 2005, Wallah and Rangan 2006), and other publications listed in References at the end of this Report.

CHAPTER 3

SPECIMEN MANUFACTURE AND TEST PROGRAM

3.1 Introduction

This Chapter describes the manufacture of test specimens, and presents the detail of the test program. Twelve reinforced geopolymer concrete beams and twelve reinforced geopolymer concrete columns were manufactured and tested. The test parameters covered a range of values encountered in practice. The sizes of test specimens were selected to suit the capacity of test equipment available in the laboratory. The compressive strength of concrete and the tensile reinforcement ratio were the test parameters for beam specimens. In the case of column specimens, the compressive strength of concrete, the longitudinal reinforcement ratio, and the load eccentricity were the test parameters.

3.2 Beams

3.2.1 Materials in Geopolymer Concrete

3.2.1.1 Fly Ash

In this study, the low-calcium (ASTM Class F) dry fly ash obtained from Collie Power Station in Western Australia was used as the base material.

The chemical composition of the fly ash as determined by X-Ray Fluorescence (XRF) test is given in Table 3.1. The Department of Applied Chemistry, Curtin University of Technology, conducted the XRF test.

Table 3.1	Chemical	Composition	of Fly .	Ash (mass	%)
-----------	----------	-------------	----------	-------	------	----

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	Na ₂ O	K ₂ O	TiO ₂	MgO	P_2O_5	SO ₃	H_2O	LOI ^{*)}
48.0	29.0	12.7	1.76	0.39	0.55	1.67	0.89	1.69	0.5	-	1.61
*) 7											

^{*)}Loss on ignition

The particle size distribution of the fly ash is given in Figure 3.1. In Fig 3.1, graph A shows the size distribution in percentage by volume, and graph B shows the size

distribution in percentage by volume cumulative (passing size). The CSIRO-Division of Minerals (Particle Analysis Services) in Perth, Western Australia, conducted the particle size analysis of the fly ash.

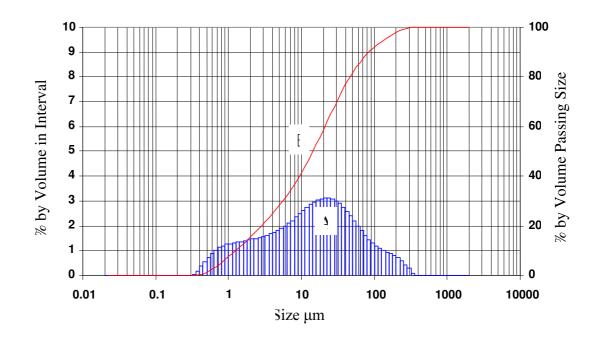


Figure 3.1 Particle Size Distribution of Fly Ash

3.2.1.2 Alkaline Solutions

A combination of sodium silicate solution and sodium hydroxide solution was used to react with the aluminium and the silica in the fly ash.

The sodium silicate solution comprised Na₂O=14.7%, SiO₂=29.4%, and water=55.9% by mass; it was purchased in bulk from a local supplier. Sodium hydroxide (commercial grade with 97% purity) pellets, bought in bulk from a local supplier, were dissolved in water to make the solution. In the case of beams, the concentration of the sodium hydroxide solution was 14 Molars. In order to yield this concentration, one litre of the solution contained 14x40 = 560 grams of sodium hydroxide pellets. Laboratory measurements have shown that the solution comprised 40.4% sodium hydroxide pellets and 59.6% water by mass. The alkaline solutions were prepared and mixed together at least one day prior to use.

3.2.1.3 Super Plasticiser

To improve the workability of the fresh concrete, a sulphonated-naphthalene based super plasticiser supplied by MBT Australia was used.

3.2.1.4 Aggregates

Three types of locally available aggregates, i.e. 10mm aggregate, 7mm aggregate, and fine sand were used. All aggregates were in saturated surface dry (SSD) condition, and were prepared to meet the requirements given by the relevant Australian Standards AS 1141.5-2000 and AS 1141.6-2000.

The grading combination of the aggregates is in accordance with the British Standard BS 882:1992. The fineness modulus of the combined aggregates was 4.5. Table 3.2 shows the grading combination of the aggregates.

Sieve		Aggregate	s	Combination ^{*)}	BS 882:1992
Size	10mm	7mm	Fine sand		
14	100	100	100	100.00	100
10	74.86	99.9	100	92.42	95-100
5	9.32	20.1	100	44.83	30-65
2.36	3.68	3.66	100	37.39	20-50
1.18	2.08	2.05	99.99	36.34	15-40
No. 600	1.47	1.52	79.58	28.83	10-30
No. 300	1.01	1.08	16.53	6.47	5-15
No. 150	0.55	0.62	1.11	0.77	0-18

 Table 3.2
 Grading Combination of Aggregates

^{*)} 30% (10 mm) + 35% (7 mm) + 35%(fine sand)

3.2.2 Mixture Proportions of Geopolymer Concrete

The mixture proportions were developed based on the test results given in Research Report GC1 (Hardjito and Rangan 2005). Several trial mixtures were manufactured and tested in order to ensure consistency of results prior to casting of the beam specimens.

Three mixtures, designated as GBI, GBII, and GBIII, were selected to yield nominal compressive strengths of 40, 50, or 75 MPa respectively. The details of the mixtures

are given in Table 3.3. It can be seen that the only difference between the three mixtures is the mass of extra water added.

Material	Mass (kg/m ³)
10mm aggregates	550
7mm aggregates	640
Fine Sand	640
Fly ash	404
Sodium hydroxide solution	41 (14M)
Sodium silicate solution	102
Super plasticizer	6
Extra water	25.5 (GBI), 17.0 (GBII), 13.5(GBIII)

 Table 3.3 Mixture Proportions of Geopolymer Concrete for Beams

3.2.3 Reinforcing Bars

Four different sizes of deformed steel bars (N-bars) were used as the longitudinal reinforcement. Samples of steel bars were tested in the laboratory. The results of these tests are given in Table 3.4.

Tε	able	3.4	Steel	Reinf	orcemen	nt I	Properties
----	------	-----	-------	-------	---------	------	------------

Diameter (mm)	Nominal area (mm ²)	Yield Strength (MPa)	Ultimate Strength (MPa)
12	110	550	680
16	200	560	690
20	310	560	675
24	450	557	660

3.2.4 Geometry and Reinforcement Configuration

All beams were 200mm wide by 300mm deep in cross-section; they were 3300mm in length and simply-supported over a span of 3000mm. The beams were designed to fail in a flexural mode. Four different tensile reinforcement ratios were used. The clear cover to reinforcement was 25 mm on all faces. The geometry and

reinforcement details of beams are shown in Figure 3.2, and the specimen details are given in Table 3.5.



Figure 3.2 Beam Geometry and Reinforcement Details

Series	Beam	Beam	Reinforce	ment	Tensile - Reinforcement	
		Dimensions (mm)	Compression	Tension	ratio (%)	
1	GBI-1	200x300x3300	2N12	3N12	0.64	
	GBI-2	200x300x3300	2N12	3N16	1.18	
	GBI-3	200x300x3300	2N12	3N20	1.84	
	GBI-4	200x300x3300	2N12	3N24	2.69	
2	GBII-1	200x300x3300	2N12	3N12	0.64	
	GBII-2	200x300x3300	2N12	3N16	1.18	
	GBII-3	200x300x3300	2N12	3N20	1.84	
	GBII-4	200x300x3300	2N12	3N24	2.69	
3	GBIII-1	200x300x3300	2N12	3N12	0.64	
	GBIII-2	200x300x3300	2N12	3N16	1.18	
	GBIII-3	200x300x3300	2N12	3N20	1.84	
	GBIII-4	200x300x3300	2N12	3N24	2.69	

 Table 3.5
 Beam Details

3.2.5 Specimen Manufacture and Curing Process

The coarse aggregates and the sand in saturated surface dry condition were first mixed in 80-litre capacity laboratory pan mixer with the fly ash for about three minutes. At the end of this mixing, the alkaline solutions together with the super plasticizer and the extra water were added to the dry materials and the mixing continued for another four minutes.

Figure 3.3 Moulds with Reinforcement Cages

Immediately after mixing, the fresh concrete was cast into the moulds. All beams were cast horizontally in wooden moulds in two layers. Each layer was compacted using a stick internal compacter. Due to the limited capacity of the laboratory mixer, six batches were needed to cast two beams. With each batch, a number of 100mm diameters by 200mm high cylinders were also cast. These cylinders were tested in compression on the same day as the beam tests. The slump of every batch of fresh concrete was also measured in order to observe the consistency of the mixtures. Figure 3.3 shows the moulds with reinforcement cages, and Figure 3.4 shows the compaction process.

Figure 3.4 Beam Compaction

After casting, all specimens were kept at room temperature for three days. It was found that postponing the curing for periods of time causes an increase in the compressive strength of concrete (Hardjito and Rangan, 2005). At the end of three days, the specimens were placed inside the steam-curing chamber (Figure 3.5), and cured at 60° C for 24 hours.

Figure 3.5 Curing Chamber

To maintain the temperature inside the steam-curing chamber, the solenoid valve complete with digital temperature controller and thermocouple were attached to the boiler installation system (Figure 3.6). The digital controller automatically opened the solenoid valve to deliver the steam, and closed after desired temperature inside the chamber was reached. To avoid condensation over the concrete, a sheet of plastic was used to cover the concrete surface.

After curing, the beams and the cylinders were removed from the chamber and left to air-dry at room temperature for another 24 hours before demoulding. The test specimens (Figure 3.7) were then left in the laboratory ambient conditions until the day of testing. The laboratory temperature varied between 25° and 35°C during that period.

Figure 3.6 Steam Boiler System

Figure 3.7 Beams after Demoulding

3.2.6 Test Set-up and Instrumentation

All beams were simply supported over a span of 3000 mm and tested in a Universal test machine with a capacity of 2500 kN. Two concentrated loads placed symmetrically over the span loaded the beams. The distance between the loads was 1000 mm. The test configuration is shown in Figure 3.8 and Figure 3.9.

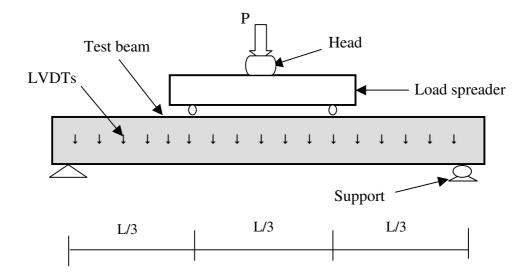


Figure 3.8 Arrangement for Beam Tests

Digital data acquisition unit was used to collect the data during the test. Linear Variable Data Transformers (LVDTs) were used to measure the deflections at selected locations along the span of the beam. All LVDTs were calibrated prior to tests. The relationship between output of the LVDTs in milli-volts (mV) and real movement in millimetres (mm) was determined to be linear.

The LVDTs were calibrated by using a milling machine. The LVDTs were attached to the milling machine, and a dial gauge measured their movement. The output of the LVDTs movement was expressed in mV and correlated to measured change of the dial gauge in mm. These data were used to transform the LVDTs reading from mV to mm.

3.2.7 Test Procedure

Prior to placing the specimens in the machine, the beam surfaces at the locations of supports and loads were smoothly ground to eliminate unevenness. All the specimens were white washed in order to facilitate marking of cracks.

The tests were conducted by maintaining the movement of test machine platen at a rate of 0.5mm/minute. The rate of data capture varied from 10 to 100 samples per second. Higher rate was used when the test beam was approaching the expected peak load to ensure that enough data were captured to trace the load-deflection curve near failure.

LVDTs were positioned at selected locations along the span of the beam to monitor the deflection. Prior to loading, the entire data acquisition system was checked and the initial readings were set to zero.

Both the ascending and descending (softening) parts of the load-deflections curve were recorded for each test beam. The measurement of softening part (after peak load) was continued until either the limit of LVDT travel at mid-span was reached or no further information was recorded by data logger due to the complete failure of the specimen.

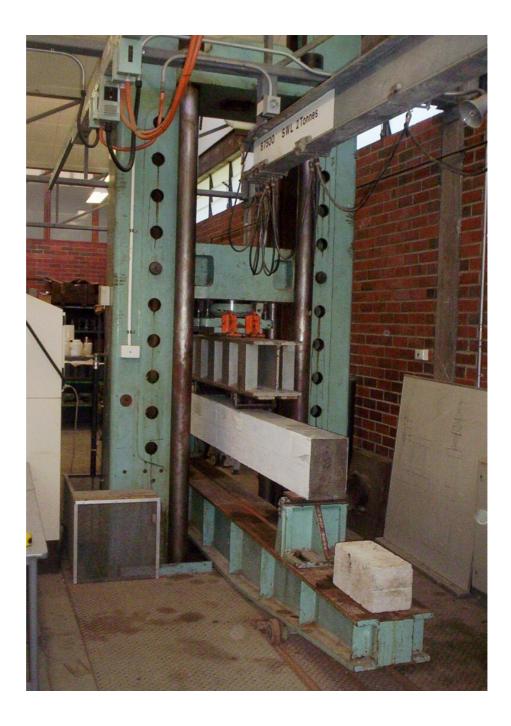


Figure 3.9 Beam Test Set-up

3.2.8 Properties of Concrete

Samples of fresh concrete were collected from each batch to conduct the slump test (Figure 3.10) and to cast 100mmx200mm cylinders for compressive strength test. The data from the slump tests indicated that the different batches of concrete from each mixture were consistent. The average slump values for each series are presented on Table 3.6.

Figure 3.10 Slump Test of Fresh Concrete

All test cylinders were compacted and cured in the same manner as the beams, and tested for compressive strength when the beams were tested. At least three cylinders were made from each batch of fresh concrete. The test data indicated that the compressive strength of cylinders from various batches of concrete were consistent. The average cylinder compressive strengths of concrete are given in Table 3.6, together with the average density of hardened concrete.

Series	Beam	Slump (mm)	Concrete compressive strength (MPa)	Density (kg/m ³)
Ι	GBI-1	255	37	2237
	GBI-2	254	42	2257
	GBI-3	254	42	2257
	GBI-4	255	37	2237
II	GBII-1	235	46	2213
	GBII-2	220	53	2226
	GBII-3	220	53	2226
	GBII-4	235	46	2213
III	GBIII-1	175	76	2333
	GBIII-2	185	72	2276
	GBIII-3	185	72	2276
	GBIII-4	175	76	2333

 Table 3.6
 Properties of Concrete

3.3 Columns

3.3.1 Materials in Geopolymer Concrete

3.3.1.1 Fly Ash

Similar to the beams, low-calcium (ASTM Class F) dry fly ash obtained from Colli Power Plant in Western Australia was used as the base material. The fly ash used for columns was from a different batch to the one used for beams. The chemical composition of the fly ash as determined by X-ray Fluorescence (XRF) analysis is given in Table 3.7, and the particle size distribution is shown in Figure 3.11.

 Table 3.7 Chemical Composition of Fly Ash (mass %)

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	Na ₂ O	K ₂ O	TiO ₂	MgO	P_2O_5	SO ₃	H_2O	LOI ^{*)}
47.8	24.4	17.4	2.42	0.31	0.55	1.328	1.19	2.0	0.29	-	1.1
*) т											

^{*)}Loss on ignition

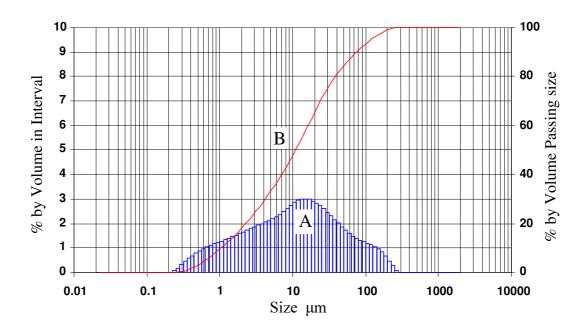


Figure 3.11 Particle Size Distribution of Fly Ash

3.3.1.2 Alkaline Solutions

As in the case of beams (Section 3.2.1.2), sodium hydroxide solution and sodium silicate solution were used as alkaline solutions. Analytical grade sodium hydroxide (NaOH) in flake form with 98% purity was dissolved in water to produce a solution with a concentration of 16 or 14 Molars. One litre of sodium hydroxide solution with a concentration of 16 Molars contained 16x40=640 grams of NaOH flakes. Laboratory measurements have shown that this solution comprised 44.4% of NaOH flakes and 55.6% water by mass. The details of the solution with a concentration of 14 Molars are the same as given earlier in Section 3.2.1.2. The sodium silicate solution (Na₂O=14.7%, SiO₂=29.4% and water=55.9% by mass) was mixed with NaOH solution at least one day prior to use.

3.3.1.3 Super Plasticiser

As for the beams (Section 3.2.1.3), a sulphonated-naphthalene based super plasticiser was used.

3.3.1.4 Aggregates

Three types of locally available aggregates comprising 10mm and 7mm coarse aggregates, and fine sand were used. The fineness modulus of combined aggregates was 4.50. The aggregate grading combination is shown in Table 3.8

			-		
	Aggregates				
Sieve Size	10mm	7mm	Fine sand	Combination ^{*)}	BS 882:1992
	(all-in)				
14	100.00	100	100	100.00	100
10	84.94	99.9	100	92.45	95-100
5	17.27	20.1	100	46.65	30-65
2.36	4.43	3.66	100	37.76	20-50
1.18	2.74	2.05	99.99	36.68	15-40
No. 600	1.96	1.52	79.58	29.06	10-30
No. 300	1.50	1.08	16.53	6.70	5-15
No. 150	1.19	0.62	1.11	1.08	0-18

Table 3.8Grading Combination of Aggregates

^{*)} 50% (10 mm) + 15% (7 mm) + 35% (Fine sand)

3.3.2 Mixture Proportions of Geopolymer Concrete

The mixture proportions of geopolymer concrete used to manufacture column specimens are given in Table 3.9. The mixtures were designed to achieve an average compressive strength of 40 MPa for GCI and GCII, and 60 MPa for GCIII and GCIV.

	Column series			
Material	GCI & GCII (kg/m ³)	GCIII & GCIV (kg/m ³)		
10mm aggregates	555	550		
7mm aggregates	647	640		
Find sand	647	640		
Fly ash	408	404		
Sodium hydroxide solution	41 (16M)	41 (<i>14M</i>)		
Sodium silicate solution	103	102		
Extra added water	26	16.5		
Super plasticizer	6	6		

 Table 3.9 Mixture Proportions of Geopolymer Concrete for Columns

3.3.3 Reinforcing Bars

The columns were longitudinally reinforced with N12 deformed bars. Plain 6 mm diameter hard-drawn wires were used as lateral reinforcement. Three samples of bars were tested in tension in a universal test machine. The steel reinforcement properties are given in Table 3.10

Diameter (mm)	Nominal area (mm ²)	Yield Strength (MPa)	Ultimate Strength (MPa)
6	28	570	660
12	110	519	665

 Table 3.10
 Steel Reinforcement Properties

3.3.4 Geometry and Reinforcement Configuration

All columns were 175 mm square and 1500 mm in length. Six columns contained four 12mm deformed bars, and the other six were reinforced with eight 12mm deformed bars as longitudinal reinforcement. These arrangements gave reinforcement ratios of 1.47% and 2.95% respectively. A concrete cover of 15mm was provided between the longitudinal bars and all faces of the column. The column geometry and reinforcement details are shown in Figure 3.12. The column details are given in Table 3.11.

Due to the use of end assemblages at both ends of test columns (Section 3.3.6), the effective length of the columns measured from centre-to-centre of the load knife-edges was 1684mm.

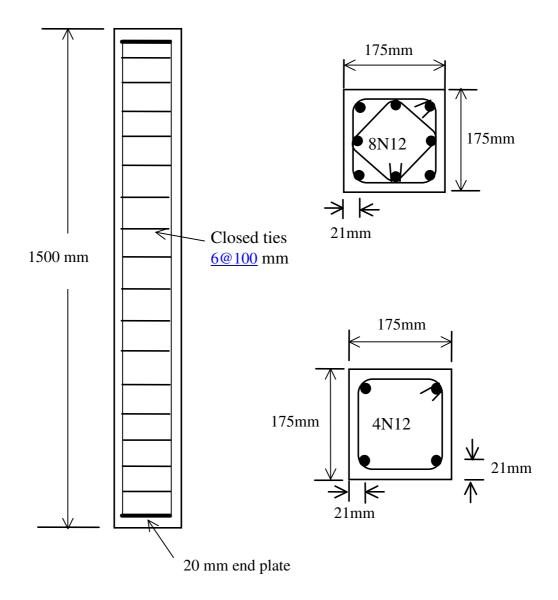


Figure 3.12 Column Geometry and Reinforcement Details

Column No.	Column Dimensions (mm)	Lateral Reinforce- ment	Long. Reinforce- ment	Long. Reinforce- ment Ratio (%)
GCI-1	175x175x1500	6@100mm	4N12	1.47
GCI-2	175x175x1500	6@100mm	4N12	1.47
GCI-3	175x175x1500	6@100mm	4N12	1.47
GCII-1	175x175x1500	6@100mm	8N12	2.95
GCII-2	175x175x1500	6@100mm	8N12	2.95
GCII-3	175x175x1500	6@100mm	8N12	2.95
GCIII-1	175x175x1500	6@100mm	4N12	1.47
GCIII-2	175x175x1500	6@100mm	4N12	1.47
GCIII-3	175x175x1500	6@100mm	4N12	1.47
GCIV-1	175x175x1500	6@100mm	8N12	2.95
GCIV-2	175x175x1500	6@100mm	8N12	2.95
GCIV-3	175x175x1500	6@100mm	8N12	2.95

Table 3.11Column Details

3.3.5 Specimen Manufacture and Curing Process

The coarse aggregates and sand were in saturated surface dry condition. The aggregates and the dry fly ash were first mixed in a pan mixer for about three minutes. While mixing, the alkaline solutions and the extra water were mixed together and added to the solid particles. The mixing of the wet mixture continued for another four minutes.

The fresh concrete was cast into the moulds immediately after mixing. All columns were cast horizontally in wooden moulds in three layers. Each layer was manually compacted using a rod bar, and then vibrated for 30 seconds on a vibrating table. With each mixture, a number of 100mm diameters by 200mm high cylinders were also cast. Figure 3.13 shows the moulds and column cages seating on the vibrating table.

Figure 3.13 Moulds and Column Cages

Immediately after casting, the GC-I and GC-II column series and the cylinders were cured in a steam-curing chamber at a temperature of 60°C for 24 hours. The specimens of GC-III and GC-IV series were kept in room temperature for three days and then cured in the steam-curing chamber at a temperature of 60°C for 24 hours. The curing procedure was similar to that used in the case of beams. To avoid condensation over the concrete, a sheet of plastic was used to cover the concrete surface.

After curing, the columns and the cylinders were removed from the chamber and left to air-dry at room temperature for another 24 hours before demoulding. The test specimens were then left in the laboratory ambient conditions until the day of testing (Figure 3.14). The laboratory temperature varied between 25° and 35°C during that period.

Figure 3.14 Columns after Demoulding

3.3.6 Test Set-up and Instrumentation

All columns were tested in a Universal test machine with a capacity of 2500 kN. Two specially built end assemblages were used at the ends of the columns. The end assemblages were designed to accurately position the column to the specified load eccentricity at all stages of loading during testing (Kilpatrick, 1996).

Each of the end assemblage consisted of three 40mm thick steel plates. The end assemblages were attached to the test machine by rigidly bolted base plates at the top and bottom platens of the machine. The male plates had a male knife-edge that was fitted to female knife-edge slotted into a female plate. The tips of the knife-edges were smooth and curved in shape in order to minimize friction between them. The adaptor plate had a number of holes to accommodate different load eccentricity ranging from 0 to 65mm with 5mm intervals. Once the end assemblage positioned on the test machine, the male and female plates remained fixed in the position relative to

the platen of test machine. The details of end assemblage are shown in Figure 3.15 and Figure 3.16 (Kilpatrick 1996).

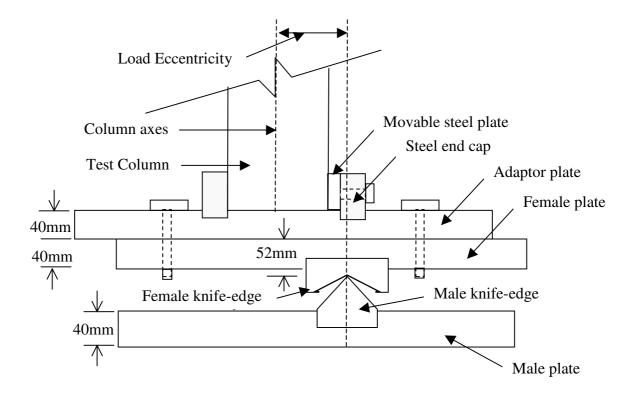


Figure 3.15 Section View of the End Assemblage

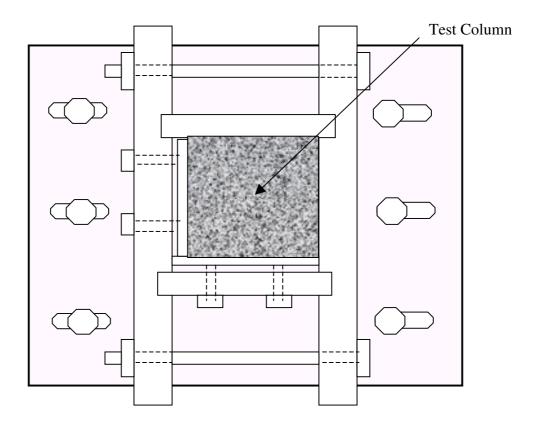


Figure 3.16 Plan View of the End Assemblage

The end assemblage simulated hinge support conditions at column ends, and has been successfully used in previous column tests at Curtin. The steel end caps attached at end assemblage units and located at all sides of the test column prevented failure of the end zones of the column. The complete end assemblage arrangement is shown in Figure 3.17.

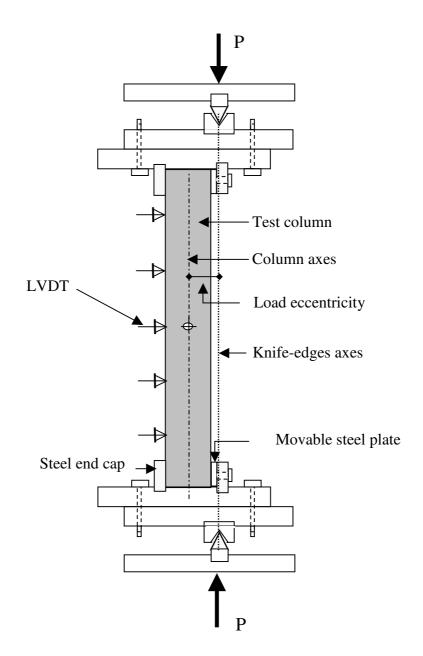


Figure 3.17 End Assemblage Arrangement for Column Tests

An automatic data acquisition unit was used to collect the data during the test. Six calibrated Linear Variable Differential Transformers (LVDTs) were used. Five LVDTs measured the deflections along the column length, and were placed at selected locations of the tension face of test columns. One LVDT was placed on the perpendicular face to check the out of plane movement of columns during testing.

3.3.7 Test Procedure

In order to eliminate loading non-uniformity due to uneven surfaces, the column ends were smoothly ground before placing the specimen into the end assemblages. Prior to placing the column in the machine, the end assemblages were adjusted to the desired load eccentricity. The line through the axes of the knife-edges represented the load eccentricity (Figure 3.17).

The base plates were first attached to the top and bottom platen of the machine. The female plate, with female knife-edge, was attached to base plate and fitted to male knife-edge. The specimen was then placed into the bottom end cap. Having the specimen properly positioned into the bottom end assemblage, the test machine platens were moved upward until the top of the column was into the top end cap. To secure the column axes parallel to the axes of the knife-edges, a 20 kN preload was applied to the specimen. When the column was correctly positioned, the appropriate movable steel plates were inserted, and firmly bolted between column and steel end cap.

LVDTs were positioned at selected locations to monitor the lateral deflection of the column. The specimens were tested under monotonically increasing axial compression with specified load eccentricity. The movement of the bottom platen of the test machine was controlled at a rate of 0.3mm/minute. Figure 3.18 shows a column ready for testing.

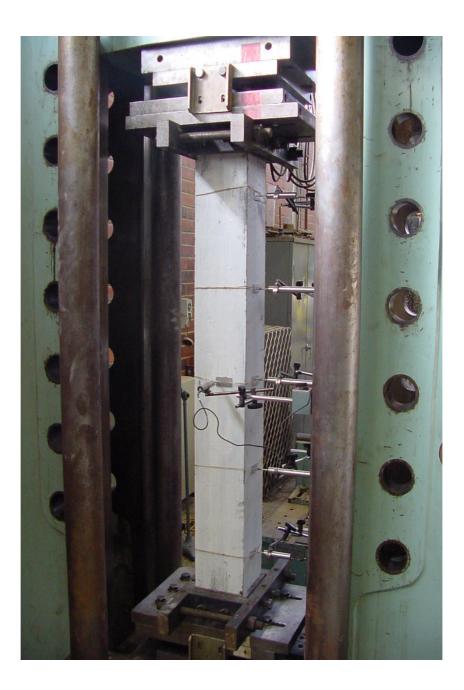


Figure 3.18 Column in the Test Machine

The rate of data capture varied from 10 to 100 samples per second. Higher rate was used when the test column was approaching the expected peak load to ensure that enough data were captured to trace the load-deflection curve near the peak load. Both the ascending and descending (softening) parts of the load-deflections curve were obtained for each test column.

The measurement of softening part (after peak load) continued until either the limit of LVDT travel at mid-height was attained or the deflected column approached the rotation limit of knife-edges.

3.3.8 Concrete Properties and Load Eccentricities

As the columns were cast, representative samples of concrete were taken from the mixer to conduct slump test, and to cast 100mmx200mm cylinders for compressive strength test. The casting, compacting, and curing process of the cylinders were the same as the test columns. They were tested on the same day when the columns were tested. The average values of slump of fresh concrete and, the compressive strength and density of hardened concrete are given in Table 3.12.

The load eccentricities were achieved by setting the adopter plates of the end assemblages to the desired values. These data are also given in Table 3.12.

Series	Column	Load Eccentricity (mm)	Slump (mm)	Concrete Compressive Strength (MPa)	Density (kg/m ³)
Ι	GCI-1	15	240	42	2243
	GCI-2	35	240	42	2243
	GCI-3	50	240	42	2243
II	GCII-1	15	240	43	2295
	GCII-2	35	240	43	2295
	GCII-3	50	240	43	2295
III	GCIII-1	15	219	66	2342
	GCIII-2	35	219	66	2342
	GCIII-3	50	219	66	2342
IV	GCIV-1	15	212	59	2313
	GCIV-2	35	212	59	2313
	GCIV-3	50	212	59	2313

 Table 3.12
 Load Eccentricity and Concrete Properties

CHAPTER 4

PRESENTATION AND DISCUSSION OF TEST RESULTS

4.1 Introduction

This Chapter presents the results of the experimental program on geopolymer reinforced concrete beams and columns. The behaviour, the crack patterns, the failure modes, and the load-deflection characteristics are described. The effects of different parameters on the strength of beams and columns are also presented.

4.2 Beams

4.2.1 General Behaviour of Beams

The specimens were tested under monotonically increasing load until failure. As the load increased, beam started to deflect and flexural cracks developed along the span of the beams. Eventually, all beams failed in a typical flexure mode.

Figure 4.1 shows an idealized load-deflection curve at mid-span of beams. The progressive increase of deflection at mid-span is shown as a function of increasing load. The load-deflection curves indicate distinct events that were taking place during the test. These events are identified as first cracking (A), yield of the tensile reinforcement (B), crushing of concrete at the compression face associated with spalling of concrete cover (C), a slight drop in the load following the ultimate load (C'), and disintegration of the compression zone concrete as a consequence of buckling of the longitudinal steel in the compression zone (D). These features are typical of flexure behaviour of reinforced concrete beams (Warner et al 1998).

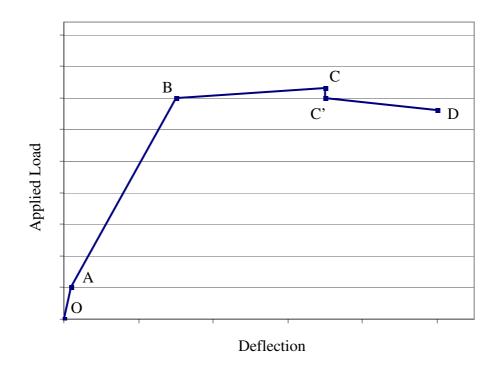
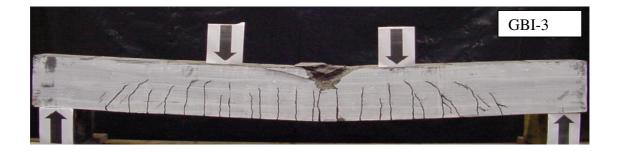
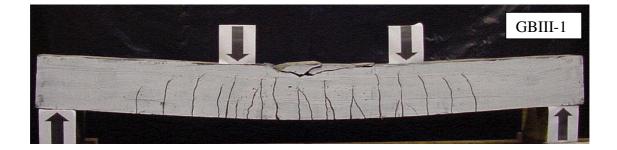


Figure 4.1 Idealized load-deflection Curve at Mid-span

All beams behaved in a similar manner, although the distinct events shown in Figure 4.1 were not clearly identified in all cases. All test beams were designed as underreinforced beams; therefore the tensile steel must have reached its yield strength before failure. The effects of different parameters on the flexural behaviour of the test beams are presented latter in this Chapter.


4.2.2 Crack Patterns and Failure Mode


As expected, flexure cracks initiated in the pure bending zone. As the load increased, existing cracks propagated and new cracks developed along the span. In the case of beams with larger tensile reinforcement ratio some of the flexural cracks in the shear span turned into inclined cracks due to the effect of shear force. The width and the spacing of cracks varied along the span. In all, the crack patterns observed for reinforced geopolymer concrete beams were similar to those reported in the literature for reinforced Portland cement concrete beams.

The cracks at the mid-span opened widely near failure. Near peak load, the beams deflected significantly, thus indicating that the tensile steel must have yielded at failure. The final failure of the beams occurred when the concrete in the compression zone crushed, accompanied by buckling of the compressive steel bars. The failure mode was typical of that of an under-reinforced concrete beam.

The crack patterns and failure mode of several test beams are shown in Figure 4.2.

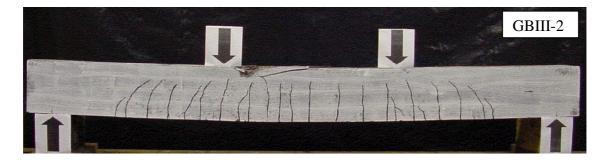


Figure 4.2 Crack Patterns and Failure Mode of Test Beams

4.2.3 Cracking Moment

The load at which the first flexural crack was visibly observed was recorded. From these test data, the cracking moments were determined. The results are given in Table 4.1.

Beam	Concrete	Tensile	Cracking
	compressive	Reinforce-	Moment M_{cr}
	strength (MPa)	ment ratio	(kNm)
		(%)	
GBI-1	37	0.64	13.40
GBI-2	42	1.18	13.55
GBI-3	42	1.84	13.50
GBI-4	37	2.69	14.30
GBII-1	46	0.64	15.00
GBII-2	53	1.18	16.20
GBII-3	53	1.84	16.65
GBII-4	46	2.69	16.05
GBIII-1	76	0.64	19.00
GBIII-2	72	1.18	20.00
GBIII-3	72	1.84	21.00
GBIII-4	76	2.69	19.90

Table 4.1Cracking Moment of Test Beams

Figure 4.3 and Figure 4.4 show the variation of cracking moment with the concrete compressive strength. As to be expected, the cracking moment increased as the concrete compressive strength increased. The test data also indicated that the effect of longitudinal steel on the cracking moment is marginal (Table 4.1).

These test trends are similar to those observed in the case of reinforced Portland cement concrete beams.

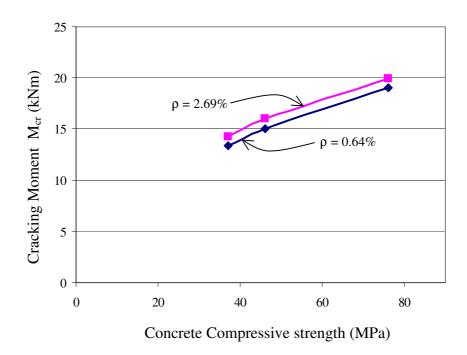


Figure 4.3 Effect of Concrete Compressive Strength on Cracking Moment (ρ = 0.64% and ρ = 2.69%)

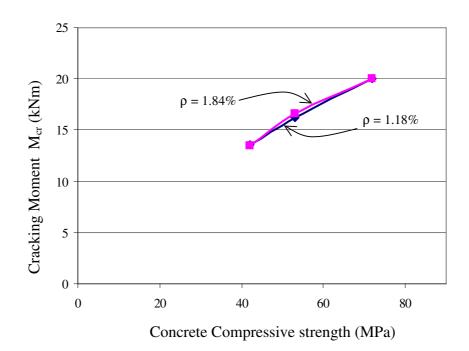


Figure 4.4 Effect of Concrete Compressive Strength on Cracking Moment ($\rho = 1.18\%$ and $\rho = 1.84\%$)

4.2.4 Flexural Capacity

The ultimate moment and the corresponding mid-span deflection of test beams are given in Table 4.2.

Beam	Tensile Reinforce- ment ratio (%)	Concrete compressive strength (MPa)	Mid-span Deflection at Failure Load (mm)	Experimental Ultimate Moment (kNm)
GBI-1	0.64	37	56.63	56.30
GBI-2	1.18	42	46.01	87.65
GBI-3	1.84	42	27.87	116.85
GBI-4	2.69	37	29.22	162.50
GBII-1	0.64	46	54.27	58.35
GBII-2	1.18	53	47.20	90.55
GBII-3	1.84	53	30.01	119.0
GBII-4	2.69	46	27.47	168.7
GBIII-1	0.64	76	69.75	64.90
GBIII-2	1.18	72	40.69	92.90
GBIII-3	1.84	72	34.02	126.80
GBIII-4	2.69	76	35.85	179.95

 Table 4.2 Flexural Capacity of Test beams

Figure 4.5 to Figure 4.7 show the effect of tensile reinforcement on the flexural capacity of each series of beams. These test trends show that, as expected, the flexural capacity of beams increased significantly with the increase in the tensile reinforcement ratio. Because all beams are under-reinforced, the observed increase in flexural strength is approximately proportional to the increase in the tensile reinforcement ratio.

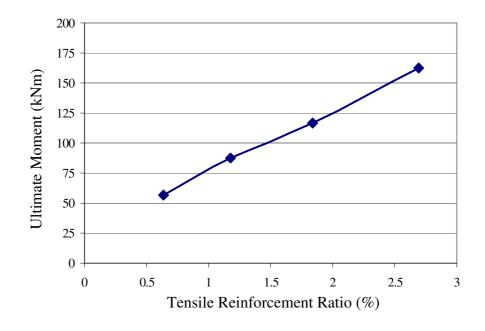


Figure 4.5 Effect of Tensile Reinforcement Ratio on the Flexural Capacity of Beams (GBI Series)

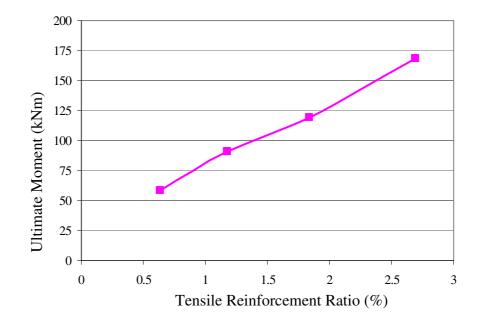


Figure 4.6 Effect of Tensile Reinforcement Ratio on the Flexural Capacity of Beams (GBII Series)

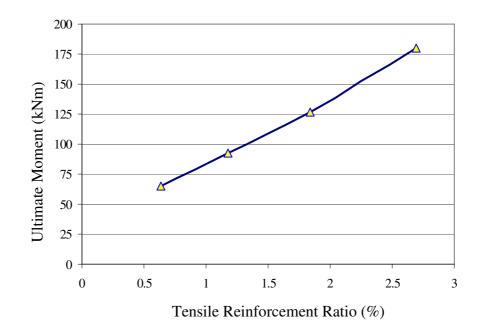


Figure 4.7 Effect of Tensile Reinforcement Ratio on the Flexural Capacity of Beams (GBIII Series)

The flexural capacity of beams is also influenced by the concrete compressive strength, as shown by the test data plotted in Figure 4.8. Because the beams are under-reinforced, the effect of concrete compressive strength on the flexural capacity is only marginal.

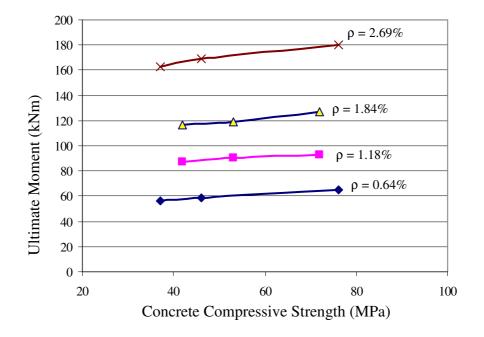


Figure 4.8 Effect of Concrete Compressive Strength on Flexural Capacity of Beams

4.2.5 Beam Deflection

The load versus mid-span deflection curves of the test beams are presented in Figure 4.9 to Figure 4.20. Complete test data are given in Appendix A to Appendix C. The distinct events indicated in Figure 4.1 are marked on the load-deflection curves.

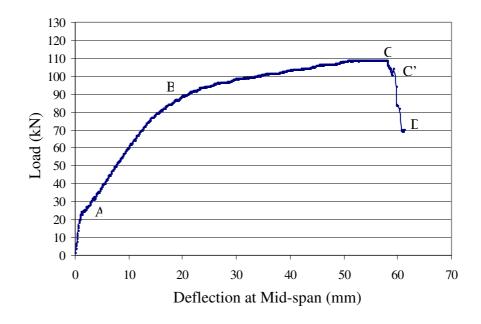


Figure 4.9 Load versus Mid-span Deflection of Beam GBI-1

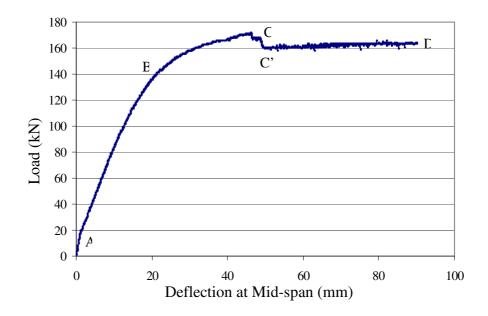


Figure 4.10 Load versus Mid-span Deflection of Beam GBI-2

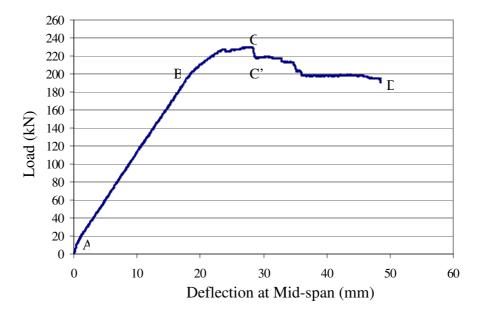


Figure 4.11 Load versus Mid-span Deflection of Beam GBI-3

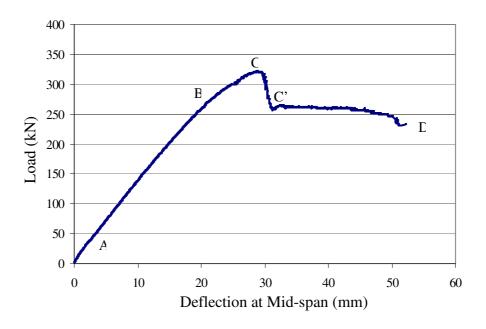
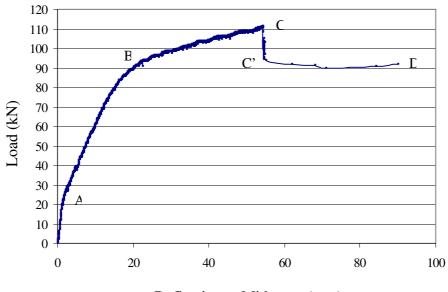



Figure 4.12 Load versus Mid-span Deflection of Beam GBI-4

Deflection at Mid-span (mm)

Figure 4.13 Load versus Mid-span Deflection of Beam GBII-1

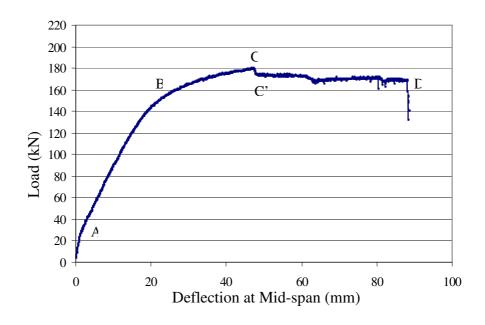


Figure 4.14 Load versus Mid-span Deflection of Beam GBII-2

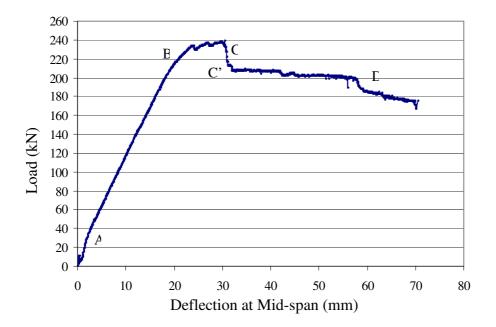


Figure 4.15 Load versus Mid-span Deflection of Beam GBII-3

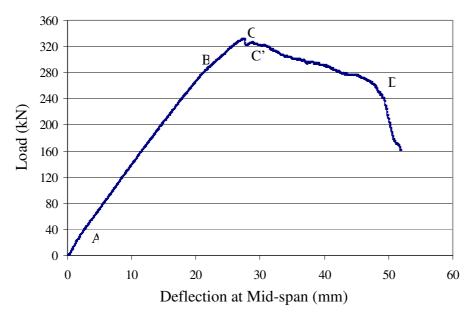


Figure 4.16 Load versus Mid-span Deflection of Beam GBII-4

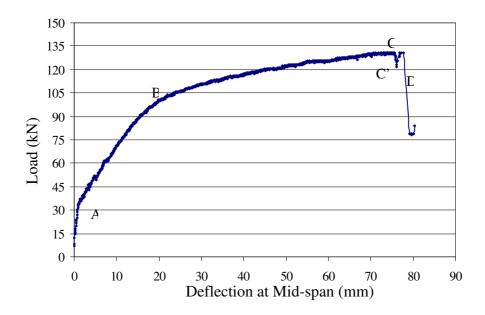


Figure 4.17 Load versus Mid-span Deflection of Beam GBIII-1

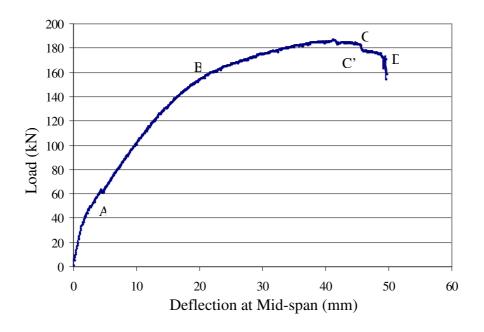


Figure 4.18 Load versus Mid-span Deflection of Beam GBIII-2

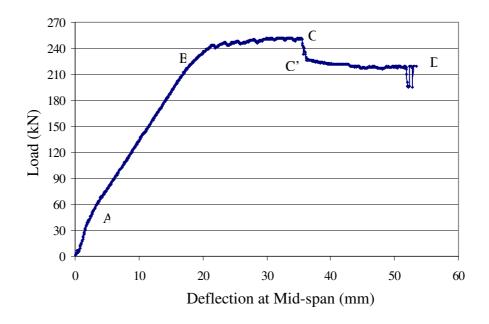


Figure 4.19 Load versus Mid-span Deflection of Beam GBIII-3

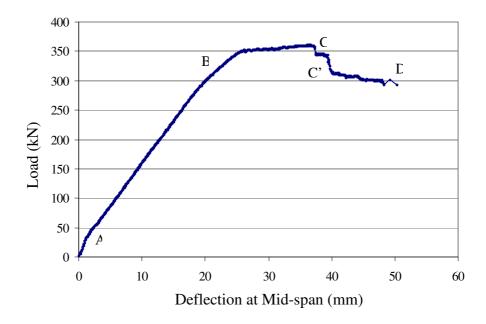


Figure 4.20 Load versus Mid-span Deflection of Beam GBIII-4

The test data plotted in Figures 4.9 to 4.20 were used to obtain the deflections at the service load (P_s) and the failure load (P_u). For this purpose, the service load was taken as $P_u/1.5$. The results are summarised in Table 4.3.

Beam	Tensile Reinforce- ment ratio (%)	Concrete Compressive Strength (MPa)	Service Load -P _s (kN)	$\Delta_{\mathbf{s}}$ (mm)	Failure Load - P _u (kN)	$\Delta_{\mathbf{u}}$ (mm)
GBI-1	0.64	37	75	13.49	112.6	56.63
GBI-2	1.18	42	117	15.27	175.3	46.01
GBI-3	1.84	42	156	13.71	233.7	27.87
GBI-4	2.69	37	217	15.60	325.0	29.22
GBII-1	0.64	46	78	14.25	116.7	54.27
GBII-2	1.18	53	121	14.38	181.1	47.20
GBII-3	1.84	53	159	13.33	238.0	30.01
GBII-4	2.69	46	225	16.16	337.4	27.47
GBIII-1	0.64	76	87	14.10	129.8	69.75
GBIII-2	1.18	72	124	12.55	185.8	40.69
GBIII-3	1.84	72	169	12.38	253.6	34.02
GBIII-4	2.69	76	240	14.88	359.89	35.85

 Table 4.3
 Deflection of Beams at Various Load Levels

4.2.6 Ductility

In this study, the ductility of the test beams was observed by calculating the ratio of deflection at ultimate moment, Δ_u to the deflection at yield moment, Δ_y . For this purpose, the elastic theory was used to calculate the yield moment M_y (Warner et al 1998). The deflections corresponding to M_y and M_u were determined from the load-deflection test curves shown in Figures 4.9 to 4.20. The ductility index μ_d is then calculated as the ratio of deflection at ultimate moment-to-deflection at yield moment. Table 4.4 gives the ductility index of test beams.

Beam	Concrete Compressive Strength (MPa)	$\Delta_{\rm y}({\rm mm})$	$\Delta_{\rm u}({\rm mm})$	Ductility Index $\mu_d = \Delta_u / \Delta_y$
	ě (
GBI-1	37	13.49	56.63	4.20
GBI-2	42	15.27	46.01	3.01
GBI-3	42	13.71	27.87	2.03
GBI-4	37	15.60	29.22	1.87
GBII-1	46	14.25	54.27	3.80
GBII-2	53	14.38	47.20	3.28
GBII-3	53	13.33	30.01	2.25
GBII-4	46	16.16	27.47	1.70
GBIII-1	76	14.10	69.75	4.95
GBIII-2	72	12.55	40.69	3.24
GBIII-3	72	12.38	34.02	2.74
GBIII-4	76	14.88	35.85	2.41

Table 4.4 Deflection Ductility of Test Beams

Figures 4.21 to 4.23 show the influence of tensile reinforcement on ductility index. These Figures show that the ductility index decreased as the tensile reinforcement is increased. The deflection ductility significantly increased for beams with tensile reinforcement ratio less than 2%, whereas the deflection ductility is moderately unaffected for beams with tensile reinforcement ratio greater than 2%. These test trends are similar to those observed in the case of reinforced Portland cement concrete beams (Warner et al 1998).

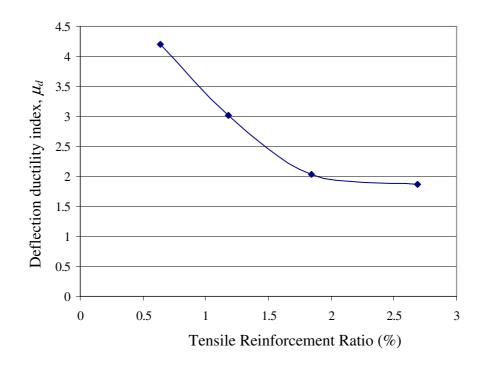


Figure 4.21 Effect of Tensile Reinforcement Ratio on Ductility (GBI Series)

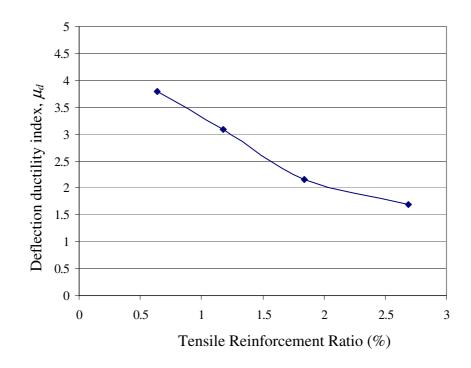


Figure 4.22 Effect of Tensile Reinforcement Ratio on Ductility (GBII Series)

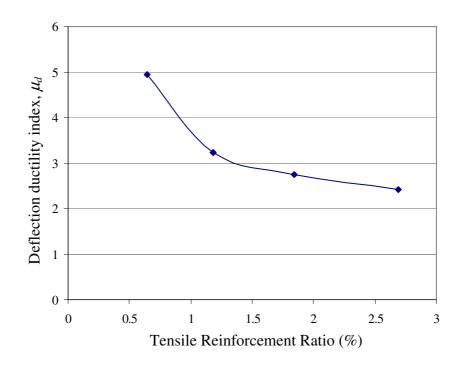


Figure 4.23 Effect of Tensile Reinforcement Ratio on Ductility (GBIII Series)

4.3 Columns

4.3.1 General Behaviour of Columns

All columns were tested under monotonically increasing load with specified load eccentricity until failure. The load eccentricity, concrete compressive strength, and longitudinal reinforcement ratio influenced the load capacity of the test columns. The load capacity increased with the increase of concrete compressive strength and longitudinal reinforcement ratio. The load capacity of test columns decreased when the load eccentricity increased.

4.3.2 Crack Patterns and Failure Modes

In all cases, cracks initiated at column mid-height at the tension face. As the load increased, the existing cracks propagated and new cracks formed along the length of the columns. The width of cracks varied depending on the location. The cracks at the mid-height widely opened near failure.

The location of the failure zone varied plus or minus 250 mm from the column midheight. The failure was due to crushing of the concrete in the compression zone. The longitudinal bars in the compression zone buckled especially in the case of columns subjected to low eccentricity.

Some typical failure modes of test columns are presented in Figure 4.24 to Figure 4.25.

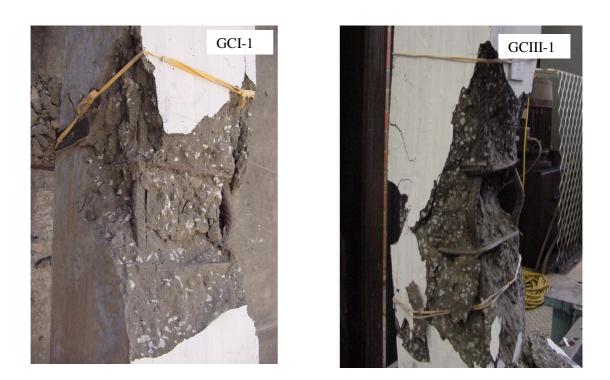


Figure 4.24 Failure Mode of GCI-1 and GCIII-1

Figure 4.25 Failure Mode of GCII-3 and GCIV-3

4.3.3 Load-Deflection Relationship

The loads versus mid-height deflection graph of test columns are presented in Figure 4.26 to Figure 4.37. Complete test data are given in Appendix A and Appendix B. As expected, the mid-height deflection of columns at failure increased as the load eccentricity increased (Table 4.5).

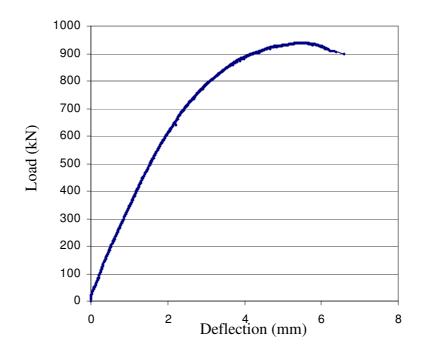


Figure 4.26 Load versus Mid-height Deflection Curve (GCI-1)

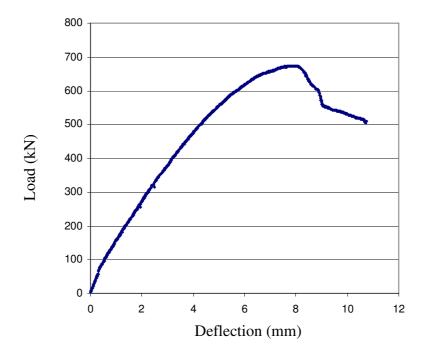


Figure 4.27 Load versus Mid-height Deflection Curve (GCI-2)

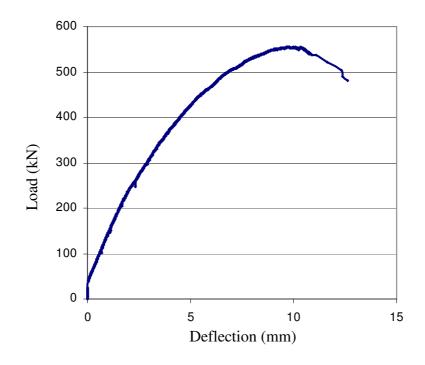


Figure 4.28 Load versus Mid-height Deflection Curve (GCI-3)

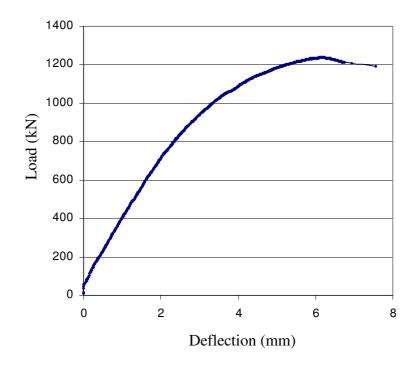


Figure 4.29 Load versus Mid-height Deflection Curve (GCII-1)



Figure 4.30 Load versus Mid-height Deflection Curve (GCII-2)

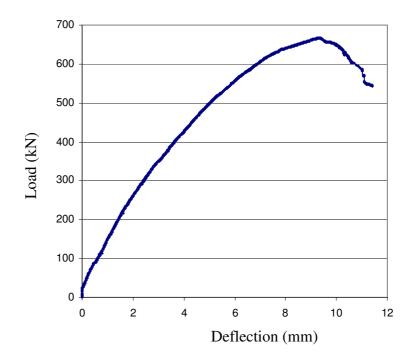


Figure 4.31 Load versus Mid-height Deflection Curve (GCII-3)

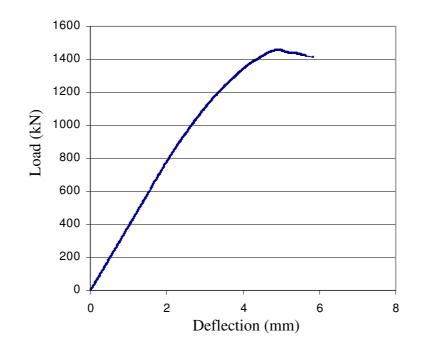


Figure 4.32 Load versus Mid-height Deflection Curve (GCIII-1)

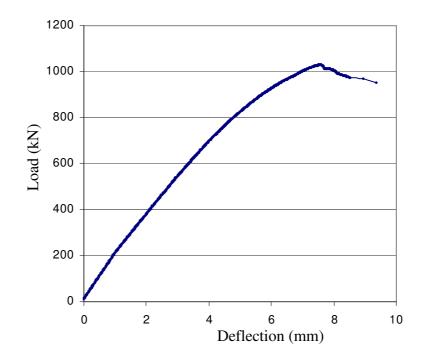


Figure 4.33 Load versus Mid-height Deflection Curve (GCIII-2)

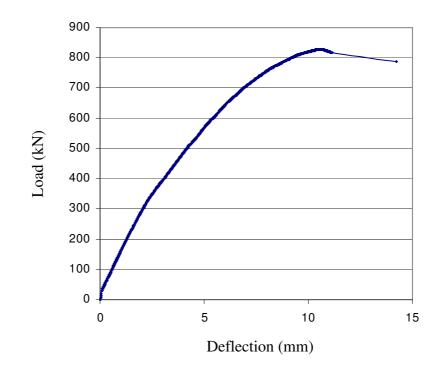


Figure 4.34 Load versus Mid-height Deflection Curve (GCIII-3)

Figure 4.35 Load versus Mid-height Deflection Curve (GCIV-1)

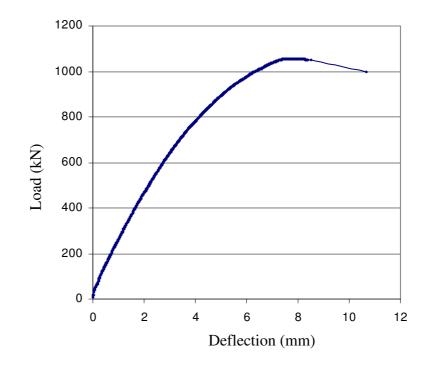


Figure 4.36 Load versus Mid-height Deflection Curve (GCIV-2)

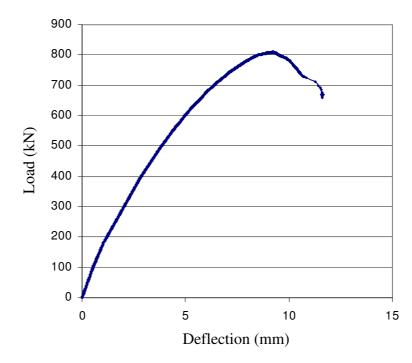


Figure 4.37 Load versus Mid-height Deflection Curve (GCIV-3)

4.3.4 Load Capacity

The test results are presented in Table 4.5. The load capacity of columns is influenced by load eccentricity, concrete compressive strength, and longitudinal reinforcement ratio. As expected, when the load eccentricity decreased, the load capacity of columns increased. The load capacity also increased when the compressive strength of concrete and the longitudinal reinforcement ratio increased.

Column	Concrete Compres -sive Ec Strength (MPa)	Load Eccentricity (mm)	Longitudinal Reinforcement		At Failure	
No.			Bars	Ratio (%)	Failure Load (kN)	Mid-height deflection at failure load
GCI-1	42	15	4Y12	1.47	940	5.44
GCI-2	42	35	4Y12	1.47	674	8.02
GCI-3	42	50	4Y12	1.47	555	10.31
GCII-1	43	15	8Y12	2.95	1237	6.24
GCII-2	43	35	8Y12	2.95	852	9.08
GCII-3	43	50	8Y12	2.95	666	9.40
GCIII-1	66	15	4Y12	1.47	1455	4.94
GCIII-2	66	35	4Y12	1.47	1030	7.59
GCIII-3	66	50	4Y12	1.47	827	10.70
GCIV-1	59	15	8Y12	2.95	1559	5.59
GCIV-2	59	35	8Y12	2.95	1057	7.97
GCIV-3	59	50	8Y12	2.95	810	9.18

 Table 4.5
 Summary of Column Test Results

4.3.5 Effect of Load Eccentricity

Figure 4.38 shows a plot of failure load versus load eccentricity of the test columns. As expected, the failure load decreased as the load eccentricity ratio increased.

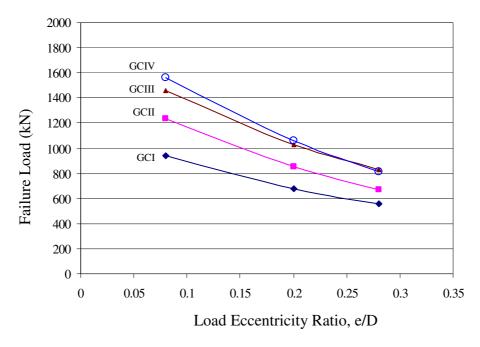


Figure 4.38 Effect of Load Eccentricity

4.3.6 Effect of Concrete Compressive Strength

The effect of concrete compressive strength on the column strength is shown in Figure 4.39 and Figure 4.40. These Figures show that the load capacity of test columns increased as the concrete compressive strength increased.

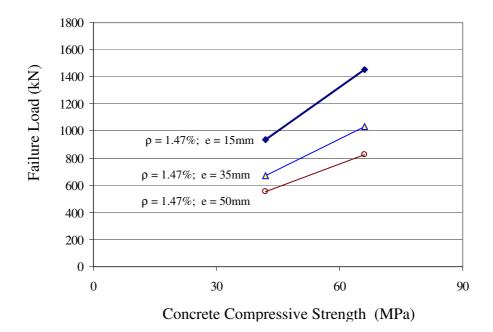


Figure 4.39 Effect of Concrete Compressive Strength on Load Capacity (GCI and GCI III Series)

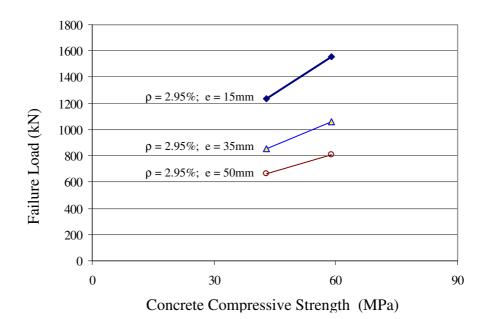


Figure 4.40 Effect of Concrete Compressive Strength on Load Capacity (GCII and GCI IV Series)

4.3.7 Effect of Longitudinal Reinforcement

The effect of longitudinal reinforcement ratio on the column failure load is demonstrated in Figure 4.41. As expected, an increase in the longitudinal reinforcement ratio increased the failure load of columns.

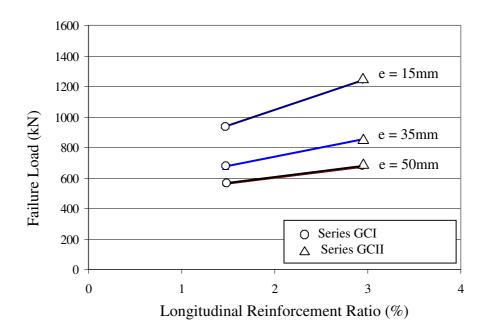


Figure 4.41 Effect of Longitudinal Reinforcement on Load Capacity

CHAPTER 5

CORRELATION OF TEST AND CALCULATED RESULTS

5.1 Introduction

In Section 5.2, the calculated values of cracking moment and ultimate moment of reinforced geopolymer concrete beams are compared with the test values. The calculated values were obtained by using the methods given in the draft Australian Standard for Portland cement concrete, AS 3600 (2005). The measured deflections of beams are also compared with those calculated using the serviceability design provisions given in draft AS 3600 (2005).

In Section 5.3, the failure loads of reinforced geopolymer test columns are compared with the values calculated using the slender column design provisions given in AS 3600 and the American Concrete Institute Building Code ACI 318 (2002). The test values are also compared with those predicted using a simplified stability analysis method developed by Rangan (1990).

In all strength calculations, the strength reduction factor is taken as unity.

5.2 Reinforced Geopolymer Concrete Beams

5.2.1 Cracking Moment

The theoretical cracking moment M_{cr} was calculated by taking the flexural tensile strength of geopolymer concrete as equal to $0.6\sqrt{f_c}$ (Clause 6.1.1.2, AS 3600). The drying shrinkage strain needed for the calculations was based on the test data reported by Wallah and Rangan (2006) for heat-cured low-calcium fly ash-based geopolymer concrete. Both these data are given in Table C.1 of Appendix C.

The calculated cracking moments are compared with the test values in Table 5.1. The average test to calculated ratio of cracking moment is 1.35, with a standard deviation of 0.09.

Beam	Tensile Reinforce- ment ratio (%)	Concrete compressive strength (MPa)	Moment at 1^{st} Crack – M_{cr} (kNm)	Calculated Cracking Moment (kNm)	Ratio Test/Calc.
GBI-1	0.64	37	13.40	10.39	1.28
GBI-2	1.18	42	13.55	10.86	1.24
GBI-3	1.84	42	13.50	10.61	1.27
GBI-4	2.69	37	14.30	9.66	1.48
GBII-1	0.64	46	15.00	11.65	1.28
GBII-2	1.18	53	16.20	12.27	1.32
GBII-3	1.84	53	16.65	12.02	1.38
GBII-4	2.69	46	16.05	10.91	1.47
GBIII-1	0.64	76	19.00	15.13	1.25
GBIII-2	1.18	72	20.00	14.43	1.38
GBIII-3	1.84	72	21.00	14.18	1.48
GBIII-4	2.69	76	19.90	14.39	1.38
				Average	1.35
			Standa	rd Deviation	0.09

 Table 5.1
 Correlation of Test and Calculated Cracking Moment of Beams

5.2.2 Flexural Capacity

The flexural strength of the beams was calculated using the design provisions contained in the draft Australian Standard for Concrete Structures, AS 3600 (2005), and the usual flexural strength theory for reinforced concrete beams (Warner et al 1988).

The test and the calculated values are compared in Table 5.2 and Figure 5.1. For beams with tensile reinforcement ratio of 1.18%, 1.84%, and 2.69%, the test and calculated values agree well. In the case of beams GBI-1, GBII-1 and GBIII-1, with a tensile steel ratio of 0.64%, the calculated values are conservative due to the neglect of the effect of strain hardening of tensile steel bars on the ultimate bending moment. In all, the average of ratio of test/calculated values is 1.11, with a standard deviation of 0.14.

Beam	Tensile Reinforce- ment ratio	Concrete compressive strength	Mid-span Deflection at Failure	Mor	mate nent Mm)	Ratio Test/Calc.
	(%)	(MPa)	Load (mm)	Test	Calc.	
GBI-1	0.64	37	56.63	56.30	45.17	1.24
GBI-2	1.18	42	46.01	87.65	80.56	1.09
GBI-3	1.84	42	27.87	116.85	119.81	0.98
GBI-4	2.69	37	29.22	160.50	155.31	1.03
GBII-1	0.64	46	54.27	58.35	42.40	1.28
GBII-2	1.18	53	47.20	90.55	81.50	1.11
GBII-3	1.84	53	30.01	119.0	122.40	0.97
GBII-4	2.69	46	27.47	168.7	162.31	1.04
GBIII-1	0.64	76	69.75	64.90	45.69	1.42
GBIII-2	1.18	72	40.69	92.90	82.05	1.13
GBIII-3	1.84	72	34.02	126.80	124.17	1.02
GBIII-4	2.69	76	35.85	179.95	170.59	1.05
					Average	1.11
				Standard D	eviation	0.14

 Table 5.2
 Comparison of Test and Calculated Ultimate Moment of Beams

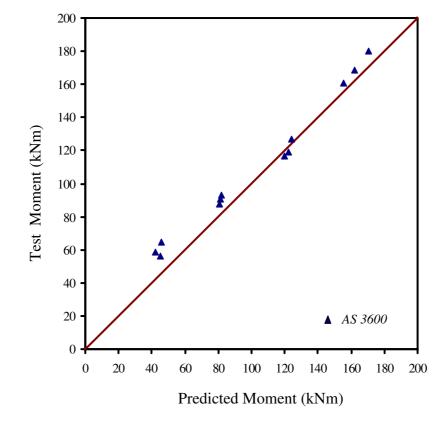


Figure 5.1 Comparison of Test to Predicted Ultimate Moment of Beams

5.2.3 Deflections

Maximum mid-span deflection at service load for the test beams was calculated using the elastic bending theory and the serviceability design provisions given in draft AS 3600 (2005). According to AS3600, the calculation of short-term deflection of the beams should include the effects of cracking, tension stiffening, and shrinkage properties of the concrete.

In these calculations, the cracking moment was taken as the calculated value given in Table 5.1. The modulus of elasticity of concrete, E_c , was interpolated from the measured data reported earlier by Hardjito and Rangan (2005) for geopolymer concrete similar to that used in the present study. The service load, P_s was taken as the test failure load divided by 1.5. All data used in these calculations are given in Table C.1 of Appendix C.

Comparison between the calculated and the corresponding experimental deflection at service load is given in Table 5.3. The average ratio of the test-to-calculated values is 1.15, with the standard deviation of 0.06.

Beam	P _s (kN)	Δ_{exp} (mm)	Δ_{cal} . (mm)	Ratio= Δ_{exp} ./ Δ_{cal} .
GBI-1	75	13.49	11.88	1.17
GBI-2	117	15.27	12.49	1.25
GBI-3	156	13.71	12.41	1.14
GBI-4	217	15.60	14.21	1.14
GBII-1	78	14.25	11.91	1.21
GBII-2	121	14.38	12.58	1.20
GBII-3	159	13.33	12.36	1.14
GBII-4	225	16.16	14.18	1.17
GBIII-1	87	14.10	12.07	1.21
GBIII-2	124	12.55	12.41	1.08
GBIII-3	169	12.38	12.59	1.05
GBIII-4	240	14.88	14.16	1.10
			Average	1.15
		Stand	lard deviation	0.06

 Table 5.3
 Comparison of Test-to-Calculated Deflections of Beams

5.3 Reinforced Geopolymer Concrete Columns

The load-carrying capacity of test columns was calculated using both a simplified stability analysis proposed by Rangan (1990) and the moment-magnifier method incorporated in the daft Australian Standard for Concrete Structures AS 3600 (2005) and the American Concrete Institute Building Code ACI 318-02 (2002).

The calculated failure loads are compared with the test values in Table 5.4. The mean value of test-to-calculated failure load by the simplified stability analysis proposed by Rangan (1990) is 1.01 with a standard deviation of 0.07. The mean value of test-to-calculated failure load by AS 3600 is 1.03 with a standard deviation of 0.06. The mean value of test-to-calculated failure load by ACI 318-02 is 1.11 with a standard deviation of 0.08. Figure 5.2 shows the correlation between test and calculated failure loads in the form of a scatter diagram.

These results demonstrate that the methods of calculations used in the case of reinforced Portland cement concrete columns are applicable for reinforced geopolymer concrete columns.

Column	f_c	e	ρ	Test Failure		alculate e Load		Failur	e Load	Ratio*
	(MPa)	(mm)	(%)	Load (kN)	Rangan	AS 3600	ACI 318-02	1	2	3
GCI-1	42	15	1.47	940	988	962	926	0.95	0.98	1.01
GCI-2	42	35	1.47	674	752	719	678	0.90	0.94	0.99
GCI-3	42	50	1.47	555	588	573	541	0.94	0.97	1.03
GCII-1	43	15	2.95	1237	1149	1120	1050	1.08	1.10	1.18
GCII-2	43	35	2.95	852	866	832	758	0.98	1.02	1.12
GCII-3	43	50	2.95	666	673	665	604	0.99	1.00	1.10
GCIII-1	66	15	1.47	1455	1336	1352	1272	1.09	1.08	1.14
GCIII-2	66	35	1.47	1030	1025	1010	917	1.00	1.02	1.12
GCIII-3	66	50	1.47	827	773	760	738	1.07	1.09	1.12
GCIV-1	59	15	2.95	1559	1395	1372	1267	1.11	1.14	1.23
GCIV-2	59	35	2.95	1057	1064	1021	911	0.99	1.04	1.16
GCIV-3	59	50	2.95	810	815	800	723	0.99	1.01	1.12
							Mean	1.01	1.03	1.11
					Star	ndard De	eviation	0.07	0.06	0.08

 Table 5.4
 Comparison of Test and Calculated Failure Loads of Columns

*1 = Test/ Rangan; 2 = Test/AS3600; 3 = Test/ACI318-02

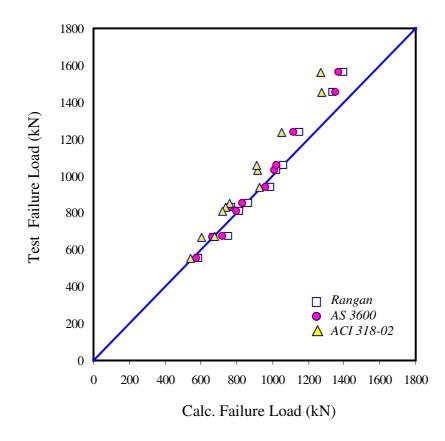


Figure 5.2 Comparison of Test and Calculated Failure Loads of Columns

CHAPTER 6

CONCLUSIONS

The research reported herein comprised experimental and analytical studies on the behaviour and strength of reinforced fly ash-based geopolymer concrete beams and columns. Low-calcium (ASTM Class F) dry fly ash obtained from a local power station was used as the source material to make geopolymer concrete. Sodium silicate solution and sodium hydroxide solution were mixed together to form the alkaline liquid. The silicon and the aluminium in fly ash reacted with the alkaline liquid to form the geopolymer paste that bound the loose aggregates and other unreacted materials to produce the geopolymer concrete. The aggregates consisted of 10mm and 7mm granite-type coarse aggregates, and fine sand. The mixture proportions and the manufacturing process used to make the geopolymer concrete were based on earlier research at Curtin (Hardjito and Rangan 2005).

Twelve reinforced geopolymer concrete beams and twelve reinforced geopolymer concrete columns were made and tested. The test results were compared with the predictions of methods of calculations available for reinforced Portland cement concrete and the design provisions given in the Australian Standard for Concrete Structures AS3600 and the American Concrete Institute Building Code ACI318-02. The major conclusions drawn from this research are presented in the following Sections.

6.1 Reinforced Geopolymer Concrete Beams

Twelve 200 mm wide by 300 mm deep by 3300 mm long rectangular doublyreinforced geopolymer concrete beams were manufactured and tested. The beams were simply supported over a span of 3000 mm and loaded with two concentrated loads placed symmetrically over the span. The distance between the concentrated loads was 1000 mm. The test parameters were the tensile reinforcement ratio and the concrete compressive strength. From the experimental and analytical studies the following conclusions are made:

1. The crack patterns observed for reinforced geopolymer concrete beams were similar to those reported in the literature for reinforced Portland cement concrete beams. All beams failed in flexure in a ductile manner accompanied by crushing of the concrete in the compression zone.

- 2 As expected, the cracking moment increased as the concrete compressive strength increased.
- The cracking moments of reinforced geopolymer concrete beams were calculated using the design provisions contained in the draft AS3600 (2005). The mean value of test/calculated cracking moments is 1.35 with a standard deviation of 0.09.
- 4. As expected, the flexural capacity of the beams was influenced by the longitudinal tensile reinforcement ratio and the concrete compressive strength. As the longitudinal tensile reinforcement ratio increased, the flexural capacity of the beams increased significantly. Because the test beams were underreinforced, the flexural capacity increased only marginally when the compressive strength of concrete increased.
- 5. The ductility of reinforced geopolymer concrete beams, as indicated by the ratio of mid-span deflection at ultimate moment-to-mid-span deflection at yield moment, increased as the tensile reinforcement ratio decreased. Test results showed that the ductility increased significantly for beams with tensile reinforcement ratio less than 2%. For beams with tensile reinforcement ratio greater than 2%, the ductility was moderately unaffected. These test trends are comparable to the behaviour of reinforce Portland cement concrete beams.
- 6. The flexural capacity of test beams were calculated using the flexural design provisions contained in the draft AS3600 (2005). Good correlation is found between the test and calculated ultimate bending moments. In the case of beams with low tensile steel ratio, the test values are conservative due to the neglect of the strain-hardening effect of tensile steel bars on the ultimate bending moment. In all, the mean value of ratio of test/calculated ultimate moments is 1.11 with a standard deviation of 0.14.
- 7. The measured service load deflections of test beams were compared with the values calculated using the serviceability provisions of draft AS3600 (2005). For the purpose of these calculations, the service load was taken as the failure load/1.5. Good correlation between test and calculated values is found. The mean value of ratio of test/calculated deflections is 1.15 with a standard deviation of 0.06.

8. The study demonstrated that the design provisions contained in the draft Australian Standard for Concrete Structures AS3600 (2005) are applicable to reinforced geopolymer concrete beams.

6.2 Reinforced Geopolymer Concrete Columns

Twelve 175 mm wide by 175 mm deep by 1500 mm long square reinforced geopolymer concrete columns were manufactured and tested. The test columns were subjected to eccentric compression in single curvature bending. The columns were pin-ended, and the effective length was 1684 mm. The test parameters were the longitudinal reinforcement ratio, the concrete compressive strength, and the load eccentricity. From the experimental and analytical studies the following conclusions are drawn:

- 1. The crack patterns and failure modes observed for geopolymer concrete columns were similar to those reported in the literature for reinforced Portland cement concrete columns. Flexural cracks initiated at column mid-height, followed by cracks along the length of the column. Failure of the columns occurred in the region plus or minus 250 mm from the mid-height. The mode of failure was flexural, as indicated by opening of the cracks and the crushing of the concrete in the compression zone in the mid-height region. The longitudinal bars in the compression zone buckled especially when the load-eccentricity was low.
- As expected, the capacity of test columns was influenced by the longitudinal reinforcement ratio, concrete compressive strength, and the load-eccentricity. The failure load of test columns increased as the load-eccentricity decreased, and as the longitudinal reinforcement ratio and concrete compressive strength increased.
- The mid-height deflection of test columns decreased as the load-eccentricity decreased. The behaviour of geopolymer test columns was similar to that of reinforced Portland cement columns reported in the literature.
- 4. The load capacity of test columns were calculated using a simplified stability analysis proposed by Rangan (1990) for reinforced Portland cement concrete columns, and the design provisions contained in Section 10.4 of AS3600 and Rule 10.12 of ACI318-02. Good correlation between test and calculated failure

loads is found. The mean value of test failure load/calculated failure load is 1.01 with a standard deviation of 0.07 in the case of simplified stability analysis. The mean value of test failure load/calculated failure load and the standard deviation are, respectively, 1.03 and 0.06 for AS3600, and 1.11 and 0.08 for ACI318.

 The study demonstrated that the design provisions contained in the Australian Standard for Concrete Structures AS3600 and the American Concrete Institute Building Code ACI318-02 are applicable to reinforced geopolymer concrete columns.

REFERENCES

- ACI 318-02 (2002) "Building Code Requirements for Structural Concrete." Reported by ACI Committee 318, American Concrete Institute, Farmington Hills, MI.
- ACI 232.2R-03 (2003) "Use of Fly Ash in Concrete." Reported by ACI Committee 232, American Concrete Institute, Farmington Hills, MI.
- Balaguru, P N, Kurtz, S, & Rudolph, J. (1997) "Geopolymer for Repair and Rehabilitation of Reinforced Concrete Beams." The State University of New Jersey Rutgers, Geopolymer Institute:5.
- Bhanumathidas, N. and Kalidas, N. (2004) "Fly ash for Sustainable Development." Ark communications, Chennai.
- Brooke, N.J., Keyte, L.M., South, W., Megget, L.M., and Ingham, J.M. (2005)
 "Seismic Performance of 'Green Concrete' Interior Beam-Column Joints." In
 Proceeding of Australian Structural Engineering Conference (ASEC),
 September 2005, Newcastle.
- Cheng, T. W. and Chiu J.P. (2003) "Fire-resistant Geopolymer Produced by Granulated Blast Furnace Slag." Minerals Engineering 16(3): pp. 205-210.

Cross, D., Stephens, J., and Vollmer, J. (2005) "Field Trials Of 100% Fly Ash Concrete." Concrete International, Vol.27:9, pp.47-51

- Davidovits, J. & Sawyer, J. L. (1985) Early high-strength mineral, US Patent No.4, 509,985, 1985.
- Davidovits, J. (1988) "Soft Mineralurgy and Geopolymers." In proceeding of Geopolymer 88 International Conference, the Université de Technologie, Compiègne, France.
- Davidovits, J. (1994) "High-Alkali Cements for 21st Century Concretes. in Concrete Technology, Past, Present and Future." In proceedings of V. Mohan Malhotra Symposium. 1994. Editor: P. Kumar Metha, ACI SP- 144. pp. 383-397.

- Davidovits, J. (1999) "Chemistry of geopolymer systems, terminology." In Proceedings of Geopolymer '99 International Conferences, France.
- Gourley, T. (2000) "Inorganic Polymer." Personal Communication.
- Hardjito, D., Wallah, S. E. & Rangan, B. V. (2002) "Study on Engineering Properties of Fly Ash-Based Geopolymer Concrete." Journal of the Australasian Ceramic Society, vol. 38, no. 1, pp. 44-47.
- Hardjito, D., Wallah, S. E., Sumajouw, D. M. J. & Rangan B. V. (2004a) "Properties of Geopolymer Concrete with Fly Ash as Source Material: Effect of Mixture Composition." In Proceedings of the Seventh CANMET/ACI International Conference on Recent Advances in Concrete Technology, Las Vegas, SP-222-8, pp. 109-118.
- Hardjito, D., Wallah, S. E., Sumajouw, D. M. J. & Rangan B. V. (2004b) "On the development of fly ash based geopolymer concrete." Technical paper No. 101-M52, ACI Material Journal, Vol. 101, No. 6, November-December, American Concrete Institute.
- Hardjito, D., Wallah, S. E., Sumajouw, D. M. J. & Rangan, B. V. (2004c) "The Stress-Strain Behaviour of Fly Ash-Based Geopolymer Concrete." In *Development in Mechanics of Structures & Materials*, vol. 2, Eds. A.J. Deeks and Hong Hao, A.A. Balkema Publishers - The Netherlands, pp. 831-834.
- Hardjito, D., Wallah, S. E., Sumajouw, D. M. J. & Rangan, B. V. (2005) "Effect of Mixing Time and Rest Period on the Engineering Properties of Fly Ash-Based Geopolymer Concrete." In proceeding of Geopolymer 2005 Fourth International Conference, Saint-Quentin, France.
- Hardjito, D. and Rangan, B. V. (2005) "Development and Properties of Low-Calcium Fly Ash-based Geopolymer Concrete." Research Report GC-1, Faculty of Engineering, Curtin University of Technology.
- Kilpatrick. A. E. and Rangan, B.V. (1999) "Test on High-Strength Concrete-Filled Steel Tubular Columns." ACI Structural Journal, Vol. 96:2, pp.268-274

- Malhotra, V. M. (2002) "Introduction: Sustainable development and concrete technology, ACI Board Task Group on Sustainable Development." ACI Concrete International, 24(7); 22.
- Malhotra, V. M. (1999) "Making concrete 'greener' with fly ash." ACI Concrete International, 21, pp. 61-66.
- Malhotra, V. M. and Ramezanianpour A.A. (1994). "Fly Ash in Concrete." Ottawa, Ontario, Canada, CANMET.
- Metha, P. K. (2001) "Reducing the environmental impact of concrete." ACI Concrete International, 23(10); pp. 61-66.
- Palomo, A., Fernandez-Jimenez, A., Lopez-Hombrados, C., Lleyda, J.L. (2004)
 "Precast Elements Made of Alkali-Activated Fly Ash Concrete. Eighth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete", Las Vegas, USA.
- Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999) "Alkali-activated fly ash cement for future." Cement and Concrete Research, 29(8); pp.1323-1329.
- Rangan, B.V. (1990) "Strength of Reinforced Concrete Slender Columns." ACI Structural Journal, Vol. 87. No.1, pp. 32-38.
- Standards Australia (2005) "Concrete Structures." Draft Australian Standard to be AS3600-200x, Committee-BD-002-Concrete Structures, Standards Australia
- Standards Australia (2001) "Concrete Structures, AS3600-2001", Standards Australia.
- Standards Australia (2000). "Methods for Sampling and Testing Aggregate." Method5: Particle Density and Water Absorption of Fine Aggregates, StandardsAustralia: 8.
- Standards Australia (2000). "Methods for Sampling and Testing Aggregates."Method 6.1: Particle Density and Water Absorption of Coarse Aggregate -Weighing in Water Method: 8.

- Swanepoel, J. C. & Strydom, C. A. (2002) "Utilisation of fly ash in geopolymeric material." Journal of Applied Geochemistry, 17:pp.1143-1148.
- van Jaarsveld, J. G. S., van Deventer, J. S. J., & Schartzman, A.(1999) "The potential use of geopolymer materials to immobilise toxic metals: Part II, Material and leaching characteristics." Mineral Engineering, 12(1),pp.75-91.
- van Jaarsveld, J. G. S., van Deventer J. S. J., & Lukey, G. C. (2002) "The effect of composition and temperature on the properties of fly ash and kaolinite-based geopolymers." Chemical Engineering Journal, 4001:1-11.
- Wallah, S. E., Hardjito D., Sumajouw, D. M. J., and Rangan, B. V. (2005a) "Sulfate and Acid Resistance of Fly Ash-Based Geopolymer Concrete." In Proceeding of Australian Structural Engineering Conference (ASEC), September 2005, Newcastle.
- Wallah, S. E., Hardjito, D., Sumajouw D. M. J., and Rangan, B. V. (2005b) "Creep and Drying Shrinkage Behaviour of Fly Ash-Based Geopolymer Concrete." In proceedings of the 22nd Biennial Conference Concrete 2005, Melbourne.
- Wallah, S.E. and Rangan, B.V. (2006) "Low-Calcium Fly Ash-Based Geopolymer Concrete: Long-Term Properties", Research Report GC2, Faculty of Engineering. Curtin University of Technology.
- Warner, R.F., Rangan, B.V., Hall, A.S., & Faulkes, K. A. (1998) "Concrete Structures," Melbourne, Longman.
- Xu, H and van Deventer J.S.J (2000) "The Geopolymerisation of Alumino-Silicate Minerals." International Journal of Mineral Processing 59(3): 247-226.

APPENDIX A TEST DATA

A.1 Beams

Table A.1.1Test Data Beam GBI-1

	Mid-span		
Total Load P (kN)	Deflection (mm)		
1.26808	0.05652		
4.84453	0.16957		
7.26598	0.28262		
10.42894	0.39567		
13.1384	0.50872		
16.29312	0.62177		
19.47046	0.79135		
22.16735	1.01744		
24.62191	1.69574		
26.7406	2.43056		
28.99707	2.82623		
31.67653	3.33495		
33.85866	3.9002		
34.65616	4.18282		
36.84353	4.8046		
39.46952	5.25679		
42.22905	6.04814		
44.90665	6.55686		
46.91574	6.95253		
49.61722	7.63083		
52.43358	8.2526		
55.50402	8.87437		
58.66466	9.60919		
61.48495	10.28749		
64.23471	11.07883		
67.31746	11.87018		
71.25543	12.77457		
74.35072	13.79202		
79.14042	15.60081		
83.65507	17.52264		
88.04538	19.84015		
92.78078	23.34468		
96.00191	27.58403		
99.52293	33.80175		
102.9841	39.96293		
106.5204	48.89383		
108.4633	56.63771		
106.0878	58.16387		
103.1854	58.6726		
99.90723	59.01174		
93.74011	59.74656		
83.25602	59.91614		
69.89394	61.15968		
02102027	01.10/00		

	Mid-span
Total Load P (kN)	Deflection (mm)
1.69155	0.05652
6.81629	0.33915
11.9101	0.56525
15.38975	0.84787
19.81434	1.35659
24.2657	1.86531
28.85328	2.60013
32.20113	2.93928
36.82648	3.56105
41.58893	4.18282
45.73151	4.8046
50.26197	5.42637
54.78097	6.04814
59.35846	6.66991
64.22453	7.23516
68.79757	7.85693
73.11982	8.30912
77.52289	9.04395
82.04387	9.72224
85.47618	10.17444
89.98622	10.85273
94.29515	11.53103
98.67381	12.43542
103.4624	13.17025
107.5254	13.79202
111.3975	14.41379
115.7272	15.26166
120.382	16.22258
125.3862	17.24002
129.8094	18.37051
133.6075	19.38796
140.6102	21.42285
146.2565	23.79688
151.0943	25.83177
157.0723	29.27977
162.1396	33.4626
165.1509	37.41932
168.0708	42.22392
171.1852	46.01107
170.8942	46.18064
167.6121	47.19809
167.2152	47.93291
165.5045	48.66773
163.0107	49.00688
159.9441	50.25042
162.8118	90.04378

Table A.1.2Test Data Beam GBI-2

	Mid-span
Total Load P (kN)	Deflection (mm)
1.69523	0.05652
8.60178	0.33915
14.56613	0.6783
20.74164	1.18702
26.66542	1.75226
32.25399	2.37404
38.05109	2.88276
43.92188	3.448
49.88509	4.01325
56.15009	4.5785
70.33842	5.93509
76.40172	6.50034
82.46311	7.06558
88.58877	7.63083
95.14021	8.2526
101.3649	8.87437
107.8505	9.49614
113.8728	10.00486
119.2309	10.57011
125.2842	11.13536
130.4609	11.64408
136.6502	12.26585
144.5721	13.00067
150.4005	13.62244
156.2042	14.18769
162.7485	14.86598
169.5216	15.43123
175.146	15.99648
182.5465	16.7313
188.0969	17.29655
194.2278	17.69222
199.8892	18.48356
204.9627	19.16186
209.852	20.12278
214.5034	20.80107
219.5492	21.98809
222.4729	22.60986
226.5843	23.40121
229.3742	27.86666
218.9758	28.60148
212.7581	33.2365
208.7568	34.81919
202.6267	35.72358
197.1503	44.9371
194.9757	46.68937
190.2067	48.49816

 Table A.1.3
 Test Data Beam GBI-3

	Mid-span		
Total Load P (kN)	Deflection (mm)		
1.90407	0.05652		
10.21979	0.4522		
19.10043	1.01744		
28.48619	1.69574		
38.30102	2.43056		
46.58322	3.10886		
55.7146	3.78715		
64.13797	4.40892		
72.85799	5.03069		
80.52036	5.65247		
88.55124	6.21771		
96.20696	6.78296		
106.00179	7.5743		
114.12787	8.13955		
122.23866	8.7048		
130.44379	9.38309		
139.14834	10.00486		
147.67432	10.62664		
155.90461	11.36146		
163.51659	11.9267		
181.08471	13.28329		
189.94707	14.01812		
197.15286	14.69641		
212.14868	15.88343		
221.68271	16.61825		
238.41333	18.08789		
247.42456	18.93576		
256.55188	19.78363		
266.03383	20.68802		
274.14871	21.59242		
282.11738	22.44029		
290.35052	23.34468		
298.35025	24.58823		
306.72526	26.05787		
312.65381	26.67964		
316.14517	27.41446		
318.06073	27.86666		
320.48986	29.22325		
308.72736	29.78849		
291.08772	30.12764		
263.95242	32.21906		
259.01874	38.15414		
251.61819	47.02851		
249.15135	48.21553		
246.68451	49.5156		
231.88344	52.05921		

Table A.1.4Test Data Beam GBI-4

	Mid-span
Total Load P (kN)	Deflection (mm)
0.28948	0.02101
4.04816	0.21014
8.14633	0.48331
12.37534	0.71446
16.14333	0.88257
20.41527	1.2398
24.18712	1.66007
28.77986	2.41656
32.00731	3.42521
36.19535	4.09765
40.18361	5.4215
43.31321	5.75772
47.08457	6.74536
50.70016	7.48083
53.95433	8.09023
57.39927	8.90976
61.33474	10.04449
64.13797	10.6749
70.15707	12.10382
73.51199	12.94436
77.85807	14.3943
81.64774	15.73917
85.05404	17.14708
88.66342	18.8912
91.17326	20.84546
92.13666	21.45486
94.09252	23.97649
97.87571	28.11616
98.30004	28.36832
100.7178	33.7478
103.6075	38.01356
107.5759	46.81824
107.9842	47.5327
108.1712	48.73048
109.8171	52.40786
110.8359	54.15198
111.1233	54.27806
108.8714	54.32009
104.9771	54.50921
99.94976	54.59327
96.70033	54.63529
94	55
92	62
90	71
	/ 1

 Table A.1.5
 Test Data Beam GBII-1

Total L and D (I-N)	Mid-span
Total Load P (kN)	Deflection (mm)
4.65122	0.05652
9.14376	0.2261
14.55017	0.4522
20.17666	0.73482
24.96683	1.01744
29.0284	1.52617
32.3094	1.80879
37.8956	2.48708
42.10101	3.22191
46.37893	3.78715
50.36177	4.3524
54.7871	4.97417
59.00647	5.59594
63.52568	6.27424
69.02061	6.89601
73.20778	7.46126
77.90497	8.19608
82.47012	8.87437
86.75148	9.55267
91.78582	10.34401
96.13586	11.13536
100.8064	11.75713
105.4133	12.32238
110.6179	13.22677
115.7511	14.07464
121.3837	15.14861
127.6123	16.2791
132.8786	17.1835
138.4857	18.65314
144.5714	20.06625
150.0085	22.04462
156.6989	24.92737
162.1725	28.03623
166.2376	30.86246
170.9975	35.10181
174.6903	38.83244
179.3666	47.19809
173.6648	48.27206
171.5655	55.90289
170.7908	61.55535
170.0865	69.01661
168.854	84.67393
167.6215	88.0089
154.3104	88.34804
147.197	88.40456
140.5063	88.51762

 Table A.1.6
 Test Data Beam GBII-2

	Mid-span
Total Load P (kN)	Deflection (mm)
0.40564	0.05652
8.21674	0.16957
15.11975	1.18702
22.25007	1.46964
28.58093	1.80879
34.63737	2.20446
40.65446	2.76971
46.66424	3.22191
53.93468	4.01325
60.04794	4.63502
66.5556	5.25679
72.85088	5.82204
79.07791	6.38729
85.21392	6.95253
91.20582	7.51778
105.3886	8.81785
111.2838	9.43962
117.9102	10.00486
123.0236	10.51359
129.7423	11.13536
136.8812	11.75713
142.6105	12.3789
148.6626	13.0572
155.0992	13.62244
162.6915	14.41379
170.3648	15.14861
178.8902	15.99648
186.3483	16.7313
194.3043	17.52264
200.8993	18.20094
206.8612	18.93576
213.0151	19.78363
220.8458	21.02717
226.7025	22.10114
231.3087	23.06206
235.4507	26.51007
239.1071	30.46679
232.5338	30.63636
212.533	31.20161
210.9355	31.82338
206.2402	35.61053
202.1318	42.28045
199.6668	54.94197
186.7254	59.12479
183.0279	62.00755
175.0166	70.3732

 Table A.1.7
 Test Data Beam GBII-3

Total Load P (kN)	Mid-span
	Deflection (mm)
0.70481	0.05652
9.14847	0.6783
18.70529	1.18702
27.60074	1.75226
36.37551	2.31751
45.74876	3.05233
55.7707	3.78715
62.13105	4.29587
70.68927	4.91765
79.02127	5.53942
87.49078	6.16119
96.82367	6.83948
105.9202	7.46126
116.4043	8.19608
125.8817	8.98742
135.3681	9.66572
144.1254	10.34401
155.0258	11.13536
163.3874	11.81365
171.4914	12.3789
181.0664	13.11372
189.4696	13.79202
198.3792	14.47031
206.4095	15.09208
214.8358	15.77038
224.1066	16.44868
232.7571	17.1835
241.2575	17.80527
250.2987	18.59661
258.8966	19.33143
266.0127	19.89668
275.7174	20.68802
283.4629	21.53589
293.7124	22.66639
306.5513	24.19255
315.6376	25.04042
321.6208	25.83177
326.5206	26.51007
330.9871	27.47098
325.393	28.82758
315.0695	31.82338
304.6979	34.08437
297.666	36.62798
278.0487	42.95874
261.4856	47.59376
246.6845	48.72425
160.3449	51.83311
100.3447	51.05511

 Table A.1.8
 Test Data Beam GBII-4

Total L and D (IN)	Mid-span
Total Load P (kN)	Deflection (mm)
8.60174	0.05652
14.50158	0.16957
18.04019	0.33915
21.70236	0.4522
25.06106	0.62177
28.59426	0.73482
31.0972	0.84787
34.89447	1.13049
38.86411	1.92184
42.2223	2.82623
45.64856	3.78715
48.83534	4.29587
52.60039	5.59594
55.91296	6.27424
60.1316	6.95253
63.2132	8.2526
66.45289	8.98742
69.60553	9.72224
72.96465	10.45706
76.29445	11.47451
82.21797	13.11372
85.43247	13.84854
88.61754	15.14861
92.24871	16.44868
96.01463	17.97484
99.72775	99.72775
102.7093	21.47937
105.6387	24.19255
108.2714	27.18836
110.3206	29.3363
113.0315	33.97132
116.0532	39.73684
119.7076	44.65448
120.8309	48.8373
123.3281	52.90708
125.6757	58.2204
127.4078	62.5728
127.0761	64.04243
128.4656	67.03825
129.956	69.75143
130.3504	73.93425
125.7161	76.19524
130.2437	75.29085
130.6462	77.15616
125.7161	76.19524
78.88071	79.98239

 Table A.1.9
 Test Data Beam GBIII-1

Total Load P (kN)	Mid-span Deflection (mm)
5.66955	0.05652
9.57775	0.28262
14.9852	0.4522
21.82637	0.73482
26.98818	0.96092
31.32439	1.13049
36.33625	1.46964
41.46293	1.86531
46.57594	2.31751
51.48259	2.93928
56.36127	3.448
61.62555	4.46545
65.28457	5.08722
71.09643	5.82204
77.22242	6.55686
82.73727	7.34821
87.99057	7.96998
91.20582	8.59175
96.24623	9.21352
101.6942	10.00486
107.016	10.73969
112.2234	11.58755
117.569	12.26585
122.4395	13.11372
127.6071	14.01812
132.3887	15.09208
137.425	16.10953
142.0469	16.9574
147.3731	18.20094
152.3931	19.50101
157.1452	20.8576
162.1686	22.89249
165.3619	24.7578
170.0329	26.96226
173.3989	28.99715
177.4816	32.04948
181.2739	34.81919
183.9376	37.3628
185.8542	40.92385
184.3109	42.84569
183.6441	44.71101
183.1049	45.05015
181.7883	45.50235
176.1464	47.70681
169.0301	49.34603
157.7614	49.62865

 Table A.1.10
 Test Data Beam GBIII-2

Total Load P (kN)	Mid-span
	Deflection (mm)
1.7148	0.05652
9.4437	0.73482
15.47125	1.01744
21.86368	1.24354
28.15315	1.46964
34.58655	1.69574
41.31993	2.14794
47.73179	2.54361
53.25079	2.88276
59.90395	3.448
73.6852	4.63502
79.6098	5.20027
85.27547	5.70899
91.37015	6.27424
97.45337	6.78296
103.1201	7.29168
111.096	8.0265
117.4066	8.59175
123.6683	9.15699
131.3572	9.77877
136.4652	10.17444
142.4956	10.79621
148.4027	11.36146
154.0423	11.87018
162.7956	12.605
170.3241	13.33982
176.5187	13.84854
183.3165	14.47031
191.2409	15.14861
198.5911	15.77038
207.1075	16.56173
212.9548	17.1835
220.1429	17.97484
228.4121	18.93576
234.2945	19.95321
237.0858	20.34888
243.3906	21.42285
250.4799	35.49749
239.518	35.83663
226.0004	37.02365
221.0974	42.39349
218.2718	48.55468
218.7857	51.66354
196.3801	52.28531
216.9219	52.79403
194.7367	52.85056

Table A.1.11 Test Data Beam GBIII-3

Total Load P (kN)	Mid-span Deflection (mm)
2.49097	0.05652
10.71954	0.4522
21.05387	0.79135
30.50154	1.13049
	1.69574
39.82956	2.37404
50.78972	
58.45027	3.10886 3.6741
67.37727	
76.55263	4.29587
85.20127	4.91765
94.05007	5.53942
103.0174	6.16119
112.4429	6.78296
121.1433	7.34821
130.6119	8.0265
139.9947	8.64827
148.6004	9.21352
155.1514	9.66572
164.5696	10.28749
175.6433	11.07883
183.0656	11.58755
194.2692	12.3789
216.3796	13.96159
227.528	14.75294
242.9416	15.77038
258.6561	16.90087
270.9788	17.74874
287.8126	18.99228
298.0291	19.89668
309.0668	20.97065
319.0613	21.98809
337.2561	23.96646
344.8456	24.9839
350.9295	25.88829
351.9087	26.96226
352.1522	28.99715
352.4981	30.97551
358.2699	34.14089
359.5197	36.96712
357.976	37.24975
344.9661	38.0411
338.9405	39.39769
311.0036	40.58471
305.0465	44.31533
300.7327	45.05015
294.8259	48.21553
293.3376	50.30695

 Table A.1.12
 Test Data Beam GBIII-4

A.2 Columns

 Table A.2.1
 Test Data Column GCI-1

Mid-height			
Axial Load (kN)	Deflection (mm)		
6.73166	0.00159		
40.38924	0.05719		
61.25796	0.13344		
84.17885	0.20016		
100.8629	0.23829		
132.1693	0.31454		
161.2835	0.40032		
203.4915	0.53376		
242.0332	0.6672		
260.6827	0.72439		
280.2359	0.79111		
310.1409	0.88643		
330.0932	0.95315		
359.182	1.05799		
389.422	1.15331		
421.7095	1.25815		
450.0311	1.363		
481.624	1.47738		
508.0971	1.57269		
532.4514	1.66801		
560.0337	1.78238		
581.2061	1.86817		
600.8381	1.95395		
627.0011	2.07786		
640.7261	2.14458		
658.7224	2.23036		
676.9698	2.30662		
691.7169	2.38287		
731.3425	2.63069		
750.8696	2.74506		
789.0548	3.01194		
800.3415	3.10726		
842.0458	3.47899		
866.7514	3.7268		
881.4809	3.89837		
903.311	4.29869		
920.564	4.64183		
930.0706	4.98496		
939.8707	5.44247		
935.3521	5.72841		
932.8874	5.8142		
930.4227	5.89045		
898.3817	6.59578		

Axial Load (kN)	Mid-height Deflection (mm)	
3.193988	0.005766	
30.34285	0.149297	
55.89472	0.284385	
84.10775	0.427916	
121.0782	0.706535	
153.6738	0.976711	
190.3097	1.272216	
210.7315	1.466405	
250.1666	1.812568	
270.295	1.972985	
290.218	2.141845	
315.7549	2.38287	
330.68	2.51631	
357.2269	2.81178	
375.9688	2.97382	
395.7206	3.15492	
410.3529	3.30742	
425.8942	3.45992	
440.6592	3.6029	
453.6294	3.74587	
470.1551	3.9365	
483.4765	4.089	
496.5242	4.23197	
505.2627	4.34635	
515.7226	4.46073	
530.7569	4.65136	
543.1172	4.83246	
560.7526	5.09934	
579.7929	5.34715	
600.4958	5.69982	
615.7889	5.9667	
632.0576	6.27171	
641.6782	6.47187	
655.2218	6.89125	
665.5064	7.30111	
670.7054	7.64424	
673.3902	8.0255	
665.8787	8.19706	
660.8466	8.26378	
653.7606	8.3305	
643.9018	8.41629	
629.1136	8.5116	
510.1921	10.74197	

 Table A.2.2
 Test Data Column GCI-2

	Mid-height
Axial Load (kN)	Deflection (mm)
0.905411	0.000352
10.86479	0.004235
22.63496	0.008824
39.94861	0.02859
43.50188	0.05719
56.48262	0.1811
69.78171	0.30501
81.95114	0.42892
95.87667	0.54329
108.0358	0.65767
122.0025	0.78158
135.2502	0.91502
148.4979	1.03893
161.7457	1.16284
174.9934	1.30581
191.6301	1.46785
204.8779	204.8779
216.4825	1.73473
228.7546	1.8777
241.2664	2.0302
254.5483	2.23036
267.8303	2.23030
280.2711	2.59256
293.7096	2.79272
305.1088	2.9272
318.2196	3.14539
332.5286	3.33601
	3.52664
345.3313	
358.6133	3.7554
372.7853	3.98415
397.8723	4.44166
410.3308	4.68948
414.0337	4.7562
428.7846	5.05168
441.2366	5.28997
456.3795	5.65216
470.3461	6.07155
493.573	6.6339
506.0373	7.03422
520.3589	7.58705
534.2229	8.13988
554.0284	10.34164
546.5463	10.59899
539.7684	10.7515
504.0303	12.31466
481.8481	12.61013

 Table A.2.3
 Test Data Column GCI-3

Axial Load (kN)	Mid-height Deflection (mm)
14.78818	0.001058
56.91907	0.00953
93.00984	0.12391
131.8612	0.20969
173.9665	0.31454
213.4137	0.44798
254.6339	0.57189
296.5477	0.68627
336.431	0.80064
375.8661	0.91502
412.9393	1.0294
455.0885	1.16284
496.6362	1.30581
537.7967	1.42972
581.6683	1.55363
620.9088	1.67754
660.4088	1.82051
700.5214	1.95395
740.6411	2.09692
782.695	2.26849
824.4911	2.44006
865.2124	2.62115
900.5446	2.79272
930.0462	2.94522
960.2852	3.11679
990.3538	3.28836
1020.261	3.45992
1059.569	3.7554
1094.202	4.04134
1114.892	4.21291
1155.251	4.65136
1165.631	4.77527
1181.635	4.9659
1190.53	5.09934
1199.339	5.23278
1204.796	5.32809
1216.83	5.54732
1222.046	5.67122
1226.298	5.75701
1231.239	5.87139
1236.524	6.23358
1230.91	6.38608
1226.578	6.49093
1225.099	6.51953
1218.616	6.62437
1215.403	6.67203
1194.145	7.54892

 Table A.2.4
 Test Data Column GCII-1

	Mid-height
Axial Load (kN)	Deflection (mm)
3.236493	0.009624
24.27373	0.135191
43.69272	0.251099
63.11171	0.367007
84.14894	0.492574
103.5679	0.608482
124.6052	0.73392
144.0242	0.8483
165.0614	0.97221
184.4804	1.08659
205.9782	1.22956
223.231	1.33441
245.8534	1.45831
265.1191	1.58222
284.6724	1.71566
303.7738	1.83004
325.8328	1.97301
363.8948	2.22083
383.8764	2.3638
405.4425	2.49725
403.4423	2.62115
445.7308	2.76413
465.4168	2.9071
485.3911	3.05007
503.8021	3.19304
524.9063	3.35508
543.5603	
564.631	3.49805
	3.66962
605.0196	3.99369
624.4954	4.17478
644.7473	4.36541
664.8842	4.56557
684.9261	4.80386
704.458	5.07074
724.8671	5.37575
738.9789	5.57591
750.612	5.75701
770.2859	6.09061
805.3394	6.8436
825.5124	7.41548
849.0421	8.36863
838.9356	8.56879
826.0957	8.59739
783.8681	8.62598
699.6791	8.65457

Table A.2.5Test Data Column GCII-2

Axial Load (kN)	Mid-height Deflection (mm)
2.136789	0.000537
16.46865	0.006356
32.86261	0.07625
49.74794	0.1811
65.53851	0.28594
83.25195	0.41938
95.87667	0.57189
121.5095	0.80064
138.177	0.92455
152.107	1.01987
168.4209	1.16284
184.236	1.29628
200.3446	1.42019
217.263	1.56316
233.2219	1.7252
250.6596	1.89676
266.6493	2.04927
282.2077	2.23036
297.612	2.3924
314.6595	2.5735
330.6801	2.73553
346.5979	2.94522
362.0259	3.17398
378.6389	3.36461
394.1973	3.55524
410.6457	3.76493
444.6916	4.2415
460.8981	4.4512
492.8878	4.91824
508.9597	5.15653
524.4814	5.44247
540.1135	5.71888
556.0628	5.98576
574.1445	6.3289
590.3507	6.67203
609.6928	7.08188
625.5557	7.50127
635.4707	7.78721
647.2084	8.3305
666.2895	9.37897
649.9403	9.98898
634.3511	10.26539
602.6182	10.68478
570.1663	11.05651
554.3431	11.10416
544.0816	11.4187

Tuble Hille Test Duta Column Cell e	Table A.2.6	Test Data	Column	GCII-3
-------------------------------------	-------------	------------------	--------	--------

 Table A.2.7
 Test Data Column GCIII-1

Axial Load (kN)	Mid-height Deflection (mm)
16.926224	0.01211
41.106544	0.13325
67.704896	0.2665
91.885216	0.38764
116.06554	0.50877
142.66389	0.64202
169.26224	0.77527
193.44256	0.89641
217.38619	1.01755
242.2444	1.16291
267.933	1.32039
290.34119	1.45364
315.68647	1.599
339.20378	1.74437
366.16139	1.90184
392.06272	2.05932
417.76596	2.20468
442.56696	2.36216
468.06402	2.51964
492.24599	2.665
519.08256	2.82248
543.67084	2.97996
567.90704	3.13743
592.93543	3.29491
617.58238	3.45239
642.72548	3.62198
668.98572	3.80369
693.28106	3.96116
718.43604	4.14287
743.14907	4.33669
768.40898	4.51839
794.36029	4.72432
815.28349	4.90603
843.23412	5.16041
868.10878	5.37846
894.06845	5.62073
917.37432	5.87512
942.69971	6.16585
968.6255	6.51714
994.6542	6.88055
1016.6871	7.23185
1029.1369	7.59526
1011.5112	7.8981
992.16334	8.12826
977.25195	8.45533
953.83734	9.36385

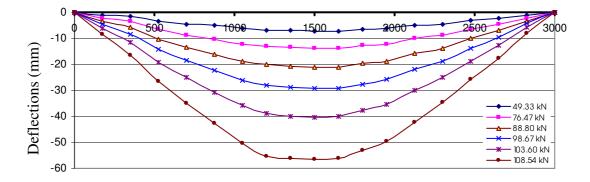
 Table A.2.8
 Test Data Column GCIII-2

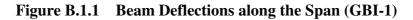
Axial Load (kN)	Mid-height Deflection (mm)
2.6662123	0.01211
21.044711	0.06057
44.090673	0.16959
64.355948	0.31495
84.374757	0.46032
103.86933	0.59357
125.17135	0.73893
145.94521	0.89641
165.7508	1.02966
185.02825	1.17502
204.44653	1.30827
223.95124	1.45364
244.49783	1.61112
264.54402	1.76859
285.35701	1.92607
304.6638	2.08355
324.63566	2.25314
344.56449	2.44696
364.92904	2.665
384.49256	2.88305
403.79935	3.11321
424.74927	3.33125
463.979	3.76734
484.31275	3.98539
506.18693	4.22766
524.98022	4.48205
544.69781	4.72432
566.88007	4.9666
586.84411	5.22098
606.56166	5.4996
626.44357	5.7661
650.37165	6.09316
670.89023	6.42023
692.98008	6.77153
712.62575	7.13494
732.69935	7.52257
752.38085	7.91021
774.31576	8.45533
789.93506	8.90353
807.35598	9.40019
826.68145	10.72058
825.10438	10.79326
822.59226	10.9144
819.51141	10.98708
817.04669	817.04669
788.7027	14.22142

 Table A.2.9
 Test Data Column GCIII-3

Axial Load (kN)	Mid-height
	Deflection (mm)
5.36603	0.00727
37.56221	0.05088
75.12442	0.10175
112.68663	0.16959
150.24884	0.25439
193.17708	0.3513
230.73929	0.43609
268.3015	0.52089
305.86371	0.60568
348.79195	0.70259
386.35416	0.78739
424.38625	0.86007
463.16825	0.94486
503.19232	1.04177
543.05466	1.13868
584.09045	1.23559
624.38964	1.3325
663.25995	1.42941
703.11054	1.52632
747.18205	1.63534
783.58372	1.73225
824.50926	1.84127
866.66493	1.9503
908.63257	2.07143
948.11924	2.19257
986.94641	2.30159
1014.4715	2.38639
1054.6018	2.51964
1091.8222	2.64078
1130.2014	2.77403
1172.139	2.91939
1212.3261	3.07687
1249.1104	3.23434
1294.1006	3.42816
1329.0113	3.60987
1371.4764	3.8158
1410.4118	4.04596
1449.6607	4.33669
1481.309	4.55473
1510.7783	4.82123
1533.3695	5.11196
1558.0986	5.59651
1554.551	5.74187
1549.8829	5.82666
1533.0409	6.12951
1473.8882	7.13494
1175.0002	1.15-17-1

Table A.2.10Test Data Column GCIV-1


Axial Load (kN)	Mid-height
	Deflection (mm)
8.9345225	0.002422
32.258521	0.03634
59.694934	0.14536
85.820712	0.24227
114.66704	0.33918
140.04755	0.4482
167.26323	0.56934
195.06308	0.69048
211.47091	0.76316
237.84315	0.8843
265.87907	1.01755
290.58766	1.13868
316.71343	1.24771
344.16117	1.38096
371.4969	1.51421
396.69281	1.63534
423.83291	1.76859
449.22709	1.90184
476.80663	2.05932
503.48261	2.20468
529.90963	2.35005
556.40512	2.49541
583.78083	2.65289
609.32762	2.79825
636.15562	2.96784
662.81363	3.13743
682.85769	3.27068
708.18931	3.44028
735.14296	3.63409
761.80854	3.84003
787.69041	4.04596
810.23637	4.23978
840.02769	4.49416
866.60008	4.74855
892.75709	4.99082
928.60353	5.36635
954.48976	5.69341
980.40981	6.04471
1006.7256	6.44446
	6.84421
<u>1030.551</u> 1044.3176	7.14705
1056.533	7.97078
1053.4814	8.23728
1051.1929	8.30996
1048.7281	8.49167
996.96948	10.68424


 Table A.2.11
 Test Data Column GCIV-2

	Mid-height				
Axial Load (kN)	Deflection (mm)				
1.720623	0.009111				
22.368099	0.118443				
43.015575	0.227775				
63.663051	0.337107				
84.310527	0.446439				
104.18126	0.555771				
126.10691	0.692436				
146.57085	0.81999				
167.03479	0.947544				
187.49873	1.09023				
207.96267	1.25982				
228.42661	1.42941				
248.89055	1.599				
269.35449	269.35449				
289.81843	1.93818				
310.28237	2.10777				
330.74631	2.27737				
351.21025	2.44696				
371.67419	2.61655				
414.86114	3.00418				
433.5811	3.18589				
453.68011	3.37971				
473.39767	3.57353				
493.46733	3.76734				
514.50528	3.9975				
535.02863	4.21555				
555.37815	4.44571				
576.73883	4.68798				
597.14106	4.94237				
617.89925	5.19675				
637.61259	5.45114				
657.17455	5.75398 5.99626				
676.12407					
<u>696.96443</u> 716.51408	6.32332				
	6.66251				
736.71708	7.02592				
758.04186	7.44989				
778.36468	7.8981				
798.08444	8.45533				
809.36826	9.18215				
795.31847	9.66669				
770.21747	10.15124				
741.87347	10.51465				
725.85297	10.84171				
699.97363	11.41106				
669.16498	11.64122				

 Table A.2.12
 Test Data Column GCIV-3

B.1 Beams

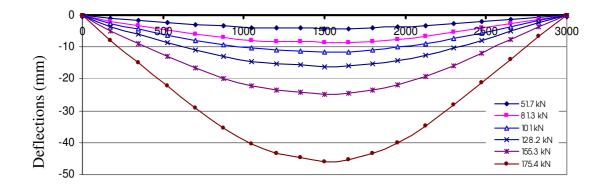


Figure B.1.2 Beam Deflections along the Span (GBI-2)

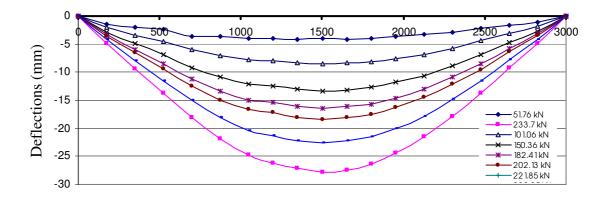


Figure B.1.3 Beam Deflections along the Span (GBI-3)

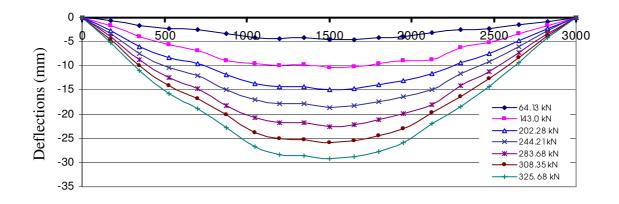


Figure B.1.4 Beam Deflections along the Span (GBI-4)

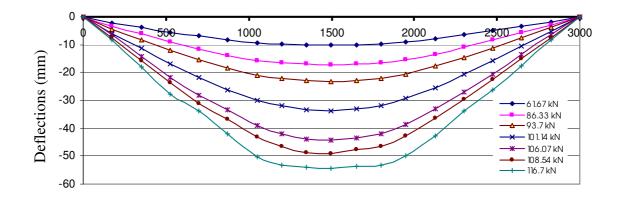


Figure B.1.5 Beam Deflections along the Span (GBII-1)

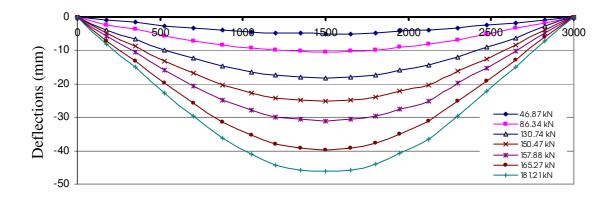


Figure B.1.6 Beam Deflections along the Span (GBII-2)

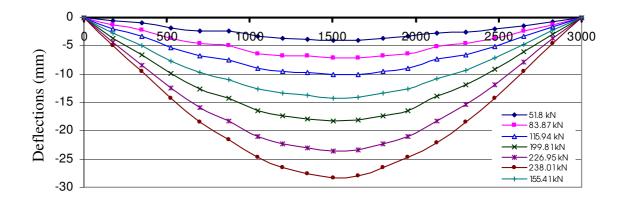


Figure B.1.7 Beam Deflections along the Span (GBII-3)

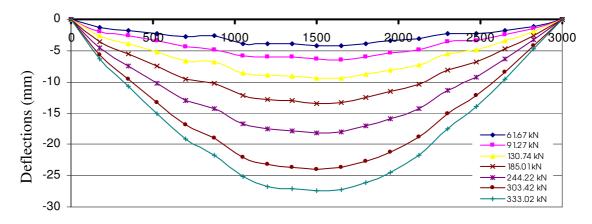


Figure B.1.8 Beam Deflections along the Span (GBII-4)

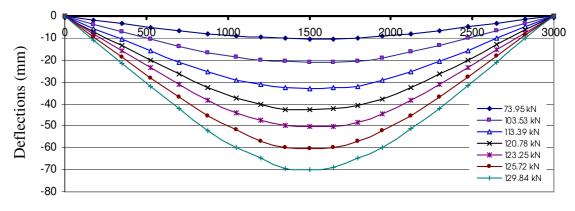


Figure B.1.9 Beam Deflections along the Span (GBIII-1)

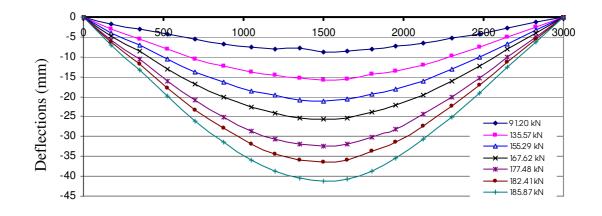


Figure B.1.10 Beam Deflections along the Span (GBIII-2)

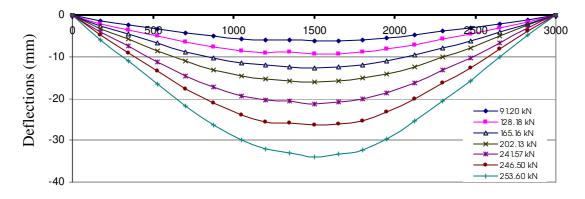


Figure B.1.11 Beam Deflections along the Span (GBIII-3)

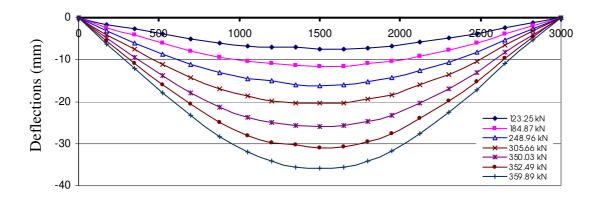


Figure B.1.12 Beam Deflections along the Span (GBIII-4)

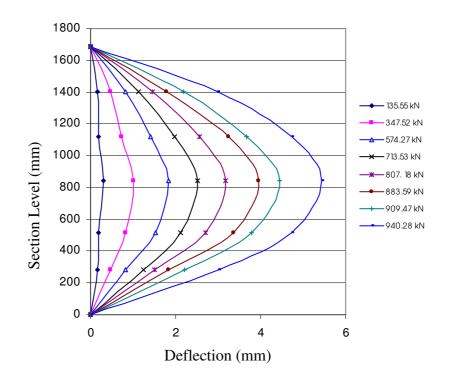


Figure B.2.1 Deflected Shape of Column GCI-1

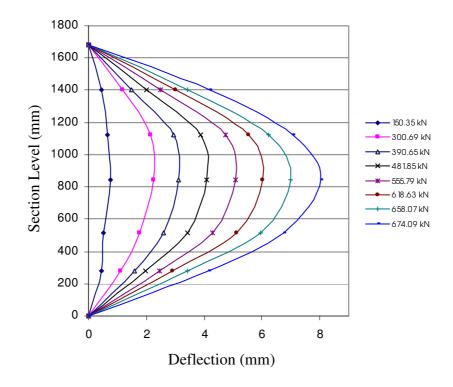


Figure B.2.2 Deflected Shape of Column GCI-2

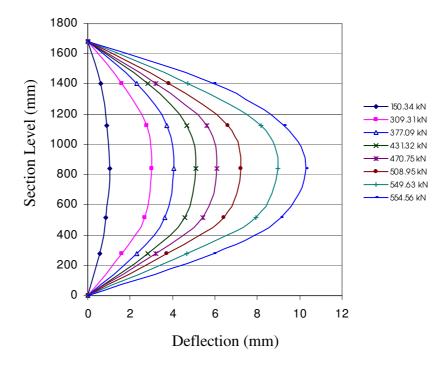


Figure B.2.3 Deflected Shape of Column GCI-3

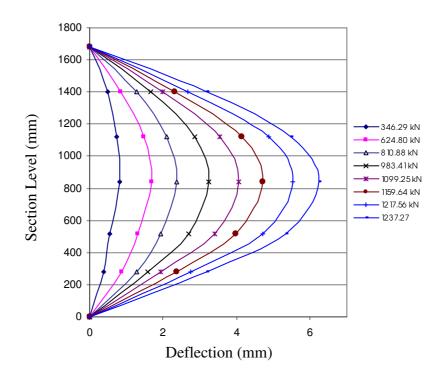


Figure B.2.4 Deflected Shape of Column GCII-1

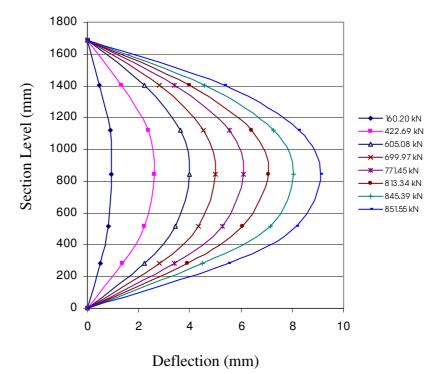


Figure B.2.5 Deflected Shape of Column GCII-2

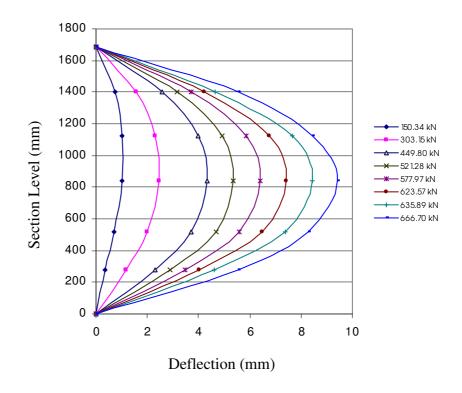


Figure B.2.6 Deflected Shape of Column GCII-3

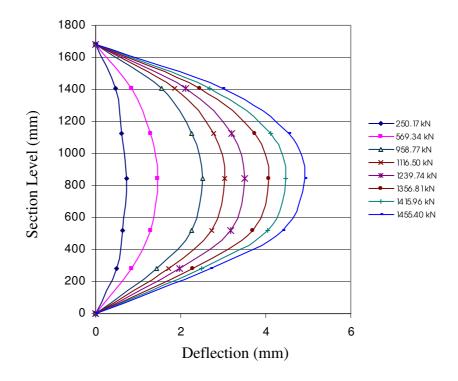


Figure B.2.7 Deflected Shape of Column GCIII-1

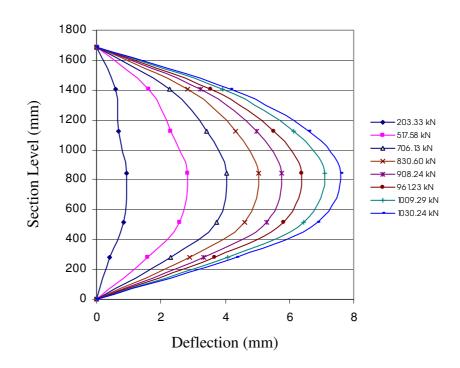


Figure B.2.8 Deflected Shape of Column GCIII-2

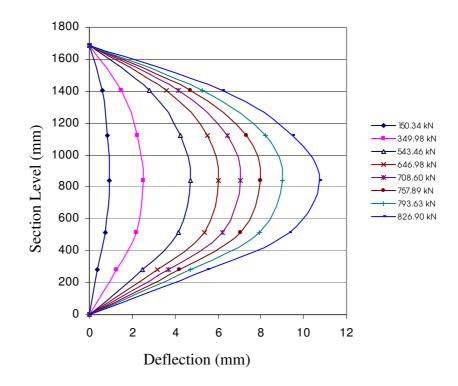


Figure B.2.9 Deflected Shape of Column GCIII-3

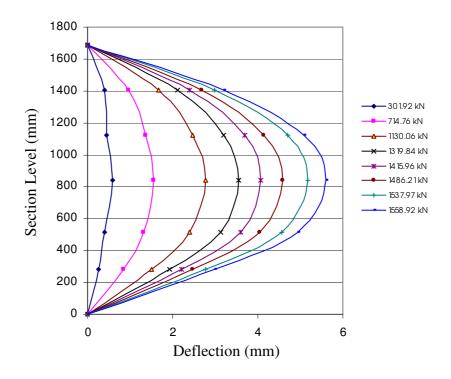


Figure B.2.10 Deflected Shape of Column GCIV-1

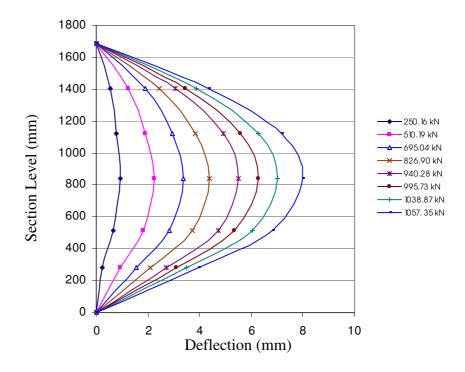


Figure B.2.11 Deflected Shape of Column GCIV-2

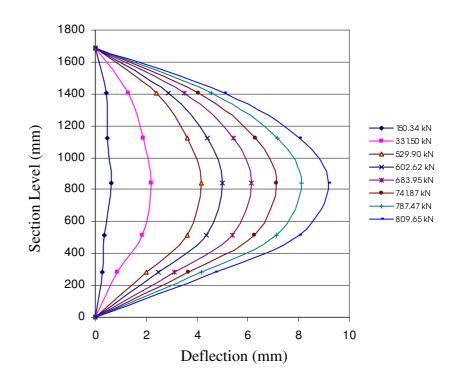


Figure B.2.12 Deflected Shape of Column GCIV-3

APPENDIX C DATA USED IN CALCULATIONS

C.1 Beams

Beam	ρ (%)	A _{sc} (mm ²)	A _{st} (mm ²)	d _{sc} (mm)	d _{st} (mm)	f _{sy} (MPa)	f _c (MPa)	E _c (GPa)	ε _{cs} (mm/mm) x 10 ⁻⁶	Modulus of Rupture (MPa) $\vec{f}_r=0.6\sqrt{\vec{f}_c}$	Failure Load (kN)	Mid-span Deflection at Failure Load (mm)
1	2	3	4	5	6	7	8	9	10	12	13	14
GBI-1	0.64	226	339	43	257	550	37	21.0	62.5	3.65	112.6	56.63
GBI-2	1.18	226	603	43	255	560	42	22.5	67.5	3.90	175.3	46.01
GBI-3	1.84	226	942	43	253	560	42	22.5	67.5	3.90	233.7	27.87
GBI-4	2.69	226	1356	43	251	557	37	21.0	62.5	3.65	325.0	29.22
GBII-1	0.64	226	339	43	257	550	46	23.5	72.0	4.07	116.7	54.27
GBII-2	1.18	226	603	43	255	560	53	24.4	79.0	4.37	181.1	47.20
GBII-3	1.84	226	942	43	253	560	53	24.4	79.0	4.37	238.0	30.01
GBII-4	2.69	226	1356	43	251	557	46	23.5	72.0	4.07	337.4	27.47
GBIII-1	0.64	226	339	43	257	550	76	28.6	104.0	5.23	129.8	69.75
GBIII-2	1.18	226	603	43	255	560	72	27.9	99.0	5.09	185.8	40.69
GBIII-3	1.84	226	942	43	253	560	72	27.9	99.0	5.09	253.6	34.02
GBIII-4	2.69	226	1356	43	251	557	76	28.6	104.0	5.23	359.89	35.85

Table	C.1.1	Beam Data

Note:

Column-9 : Modulus of Elasticity of concrete, E_{c} , was taken from Hardjito and Rangan (2005) measured data; Interpolation was made as necessary to suit the given compressive strength

Column-10 : Shrinkage strain, ε_{cs} , was taken from test data reported by Wallah and Rangan (2006); Interpolation was made as necessary

C.2 Columns

Table C.2.1Column Data

Column	ρ (%)	e (mm)	$\begin{array}{c} \mathbf{A_{st}}=\mathbf{A_{sc}}\\ (\mathbf{mm}^2) \end{array}$	d _{sc} (mm)	d _{st} (mm)	f _{sy} (MPa)	f _c ' (MPa)	Mid-height Deflection at Failure Load (mm)	Failure Load (kN)
1	2	3	4	5	6	7	8	10	11
GCI-1	1.47	15	226	21	154	519	42	5.44	940
GCI-2	1.47	35	226	21	154	519	42	8.02	674
GCI-3	1.47	50	226	21	154	519	42	10.31	555
GCII-1	2.95	15	339	21	154	519	43	6.24	1237
GCII-2	2.95	35	339	21	154	519	43	9.08	852
GCII-3	2.95	50	339	21	154	519	43	9.40	666
GCIII-1	1.47	15	226	21	154	519	66	4.94	1455
GCIII-2	1.47	35	226	21	154	519	66	7.59	1030
GCIII-3	1.47	50	226	21	154	519	66	10.70	827
GCIV-1	2.95	15	339	21	154	519	59	5.59	1559
GCIV-2	2.95	35	339	21	154	519	59	7.97	1057
GCIV-3	2.95	50	339	21	154	519	59	9.18	810