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Abstract

New approaches and algorithms are developed for the identification and estima-

tion of low order models that represent multipath channel effects in Code Division

Multiple Access (CDMA) communication systems. Based on these parsimonious

channel models, low complexity receivers such as RAKE receivers are considered

to exploit these propagation effects and enhance the system performance.

We consider the scenario where multipath is frequency selective slowly fading and

where the channel components including delays and attenuation coefficients are

assumed to be constant over one or few signalling intervals. We model the chan-

nel as a long FIR-like filter (or a tapped delay line filter) with the number of taps

related to the ratio between the channel delay-spread and the chip duration. Due

to the high data rate of new CDMA systems, the channel length in terms of the

chip duration will be very large. With classical channel estimation techniques this

will result in poor estimates of many of the channel parameters where most of

them are zero leading to a reduction in the system performance. Unlike classi-

cal techniques which estimate directly the channel response given the number of

taps or given an estimate of the channel length, the proposed techniques in this

work will firstly identify the significant multipath parameters using model selec-

tion techniques, then estimate these identified parameters.

Statistical tests are proposed to determine whether or not each individual param-

eter is significant. A low complexity RAKE receiver is then considered based

on estimates of these identified parameters only. The level of significance with

which we will make this assertion will be controlled based on statistical tests such

as multiple hypothesis tests. Frequency and time domain based approaches and

model selection techniques are proposed to achieve the above proposed objectives.
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Abstract vi

The frequency domain approach for parsimonious channel estimation results in

an efficient implementation of RAKE receivers in DS-CDMA systems.

In this approach, we consider a training based strategy and estimate the channel

delays and attenuation using the averaged periodogram and modified time de-

lay estimation techniques. We then use model selection techniques such as the

sphericity test and multiple hypotheses tests based on F-Statistics to identify the

model order and select the significant channel paths. Simulations show that for

a pre-defined level of significance, the proposed technique correctly identifies the

significant channel parameters and the parsimonious RAKE receiver shows im-

proved statistical as well as computational performance over classical methods.

The time domain approach is based on the Bootstrap which is appropriate for the

case when the distribution of the test statistics required by the multiple hypothesis

tests is unknown. In this approach we also use short training data and model

the channel response as an FIR filter with unknown length. Model parameters

are then estimated using low complexity algorithms in the time domain. Based

on these estimates, bootstrap based multiple hypotheses tests are applied to iden-

tify the non-zero coefficients of the FIR filter. Simulation results demonstrate

the power of this technique for RAKE receivers in unknown noise environments.

Finally we propose adaptive blind channel estimation algorithms for CDMA sys-

tems. Using only the spreading code of the user of interest and the received data

sequence, four different adaptive blind estimation algorithms are proposed to es-

timate the impulse response of frequency selective and frequency non-selective

fading channels. Also the idea is based on minimum variance receiver techniques.

Tracking of a frequency selective varying fading channel is also considered. A

blind based hierarchical MDL model selection method is also proposed to select

non-zero parameters of the channel response. Simulation results show that the

proposed algorithms perform better than previously proposed algorithms. They

have lower complexity and have a faster convergence rate. The proposed algo-

rithms can also be applied to the design of adaptive blind channel estimation

based RAKE receivers.
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Chapter 1

Introduction

Direct Sequence Code Division Multiple Access (DS-CDMA) communication sys-

tems have attracted considerable attention for third-generation (3G) mobile sys-

tems. They have the ability to suppress a wide variety of interfering signals

including Narrow-Band Interference (NBI), Multiple-Access Interference (MAI),

and Multipath Interference (MPI) [1] [2] [3].

Multipath effects are one of the major factors that limit system performance.

Depending on the channel characteristics, multipath can result in either frequency

selective or in some cases can be approximated as a frequency non-selective (flat)

fading [4].

Compensation of multipath is possible through the use of RAKE receivers that

use several baseband correlators to coherently process the multipath components

and exploit their diversity advantages. In the presence of fading, the capacity of

the system can be improved through multipath diversity gained by utilizing an

appropriately designed RAKE receiver [4] [5]. RAKE receiver correlators can be

implemented as Tapped Delay Lines (TDL) or FIR filter-like which have complex

structures if the number of taps necessary to accurately model the channel is

high. For example, in 3G UMTS systems [6] [7], the delay spread can be up to 75

chips in a in a 3.84 Megachip per second (Mcps) chip-rate system, thus requiring

a RAKE receiver covering a delay of 75 chip duration.

However, several distinct paths typically dominate the channel, hence only a few

taps, or, in other words low order models, are necessary to capture most of the

1
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signal energy. If all taps are used in the RAKE structure, even though most do

not correspond to an actual signal path, channel noise would ensure any linear

estimate of their tap weights would produce non-zero weights. This leads not only

to undue complexity, but also reduces system performance. By discarding those

taps with a non-significant contribution to the channel model, it is possible to

simultaneously reduce system complexity and improve the performance [4] [5] [8].

There has been intensive research on the performance of RAKE receivers us-

ing different channel models, system models, and analytical techniques. In [9]

Subspace Maximum-Likelihood and Euclidean Norm based methods have been

proposed for channel estimation, however they assume the noise distribution to

be Gaussian and are also computationally expensive. A discrete time multipath

channel model was used in [10], where it is assumed that the temporal separation

between each multipath component is greater than the chip duration so that the

signals received at each tap are mutually independent. A Tap Delay Line (TDL)

channel model was used in [4] [11], under the assumption that the bandwidth

of the transmitted signal is limited to the inverse of the chip duration, and the

number of required taps is equal to the maximum delay of the channel divided

by the chip duration. This model is inappropriate for cases where some or most

of the multipath attenuation coefficients are zeros. In [12], a RAKE receiver that

uses more taps with reduced tap spacing was considered, while in [13] and [14],

the optimum RAKE structure was found by searching in a window of potential

delays for the finger positions combination that maximizes the Signal-to-Noise

Ratio (SNR). In [15], model selection criteria such as Rissanen’s Minimum De-

scription Length (MDL) [16] [17] and subspace techniques were used to estimate

and identify the channel, but the techniques do not provide a level of significance.

In this work we propose new algorithms and approaches for the identification and

estimation of the significant channel parameters. This will include low complexity

time and frequency domain based methods. For a given level of significance, we

construct statistical tests to identify whether the path parameters are significant

or not. Finally, the identified parameters are used to construct a parsimonious

RAKE receiver structure to enhance the system performance.
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1.1 Aims and Objectives

The broad aim of this thesis is to develop new approaches and algorithms for

the identification and estimation of low order models that represent multipath

channel effects in CDMA communication systems. Based on these low order

channel models, parsimonious receivers such as RAKE receivers are considered

to exploit these propagation effects and enhance the system performance. More

specifically, the aims and objectives of this thesis are,

1. To model the multipath channel propagations in CDMA systems

2. To propose statistical tests for low order model selection

3. To propose low complexity algorithms to estimate the model parameters

4. To design parsimonious receivers such as RAKE receivers based on the

estimated parameters.

5. To enhance the CDMA system performance which includes low Bit Error

Rate (BER).

1.2 Contributions

The original contributions made in this thesis include

1. Model selection algorithms based on the MDL, AIC, F-Statistics, sphericity

tests, multiple hypothesis tests and the bootstrap.

2. A frequency domain sphericity test and F-Statistics based approach for the

identification and estimation of significant multipath components.

3. Time domain bootstrap based approaches for the identification and estima-

tion of significant multipath components where there is minimal knowledge

about the test statistics.

4. Low computation complexity blind adaptive channel estimation and track-

ing algorithms.
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5. A blind based hierarchical MDL model selection method is proposed to

identify non-zero parameters of the channel response.

1.3 Scope and Overview

Chapter 2. Review of Multiple Access Techniques: This chapter reviews digital

modulation techniques and the evolution of mobile communication systems.

Chapter 3. DS-CDMA Signals Over Multipath Fading Channels: This chapter

describes the characteristics of multipath propagation effects on CDMA

systems.

Chapter 4. DS-CDMA RAKE Receivers: This chapter discusses the modeling

of multipath propagation effects and the use of RAKE receivers to exploit

these effects.

Chapter 5. Model Selection Techniques: This chapter covers different model

selection techniques that will be used to estimate low order channel models.

Chapter 6. Channel Estimation and Identification Using Frequency Domain

Sphericity Test and F-Statistics Based Approaches: This chapter presents a

frequency domain approach for channel estimation combined with a spheric-

ity test or F-Statistics for the identification of the significant multipath

parameters given the statistical test distribution.

Chapter 7. Channel Estimation and Identification Using Time Domain Boot-

strap Based Approaches: This chapter presents proposed time domain boot-

strap approaches for the identification and estimation of the significant mul-

tipath parameters. In this approach the bootstrap is used to estimate the

statistical test distribution.

Chapter 8. Blind Adaptive Channel Estimation Approaches: In this chapter we

propose four low complexity blind adaptive channel estimation algorithms

based on minimum variance receivers. A blind based hierarchical MDL
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model selection method is also proposed to identify non-zero parameters of

the channel response.

Chapter 9. Conclusions and future directions.



Chapter 2

Review of Multiple Access

Techniques

2.1 Introduction

Advancement in communication and information processing technologies creates

more new applications and products. In particular, the demand for wireless com-

munication services has increased rapidly and the trend is expected to continue.

Therefore, stringent requirements on the capacity of communication systems are

needed in terms of the number of users a system can serve simultaneously. In

other and more appropriate words, as much information as possible should be

transferred. Multiple Access refers to a technique that enable sharing a com-

mon communication channel between multiple users. The freedom in use when

designing multiuser communication systems include space, time and frequency.

The time and frequency domains are dual of each other via the Fourier transform

so that the actual options to use are, space domain and time-frequency domain

designs. In the space domain users can be separated by making their distance

large enough or in other words by assigning different channel for different user.

An example is to use different cables for each user to separate signals in wire-lines

communication. More advanced techniques include Polarization Division Multi-

ple Access (PDMA) and Space Division Multiple Access (SDMA) [18] [19]. In

6
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PDMA two users can be separated by using electromagnetic waves with different

polarization but in SDMA sectorized antennas are usually applied to separate

users at the same frequency. In time domain, different time slot can be assigned

to different user where in frequency domain different frequency band can be as-

signed to different user and then all user’s signals are linearly combined to form

one signal. Spread spectrum multiple access communication is a driving technol-

ogy behind the rapidly advancing personal communications industry [4] [5], each

user’s transmitted data is modulated by a unique signature waveform then all

user’s signals are linearly combined to form one signal. Various signature wave-

form designs result in multiple access techniques, but to retrieve each user’s data

again , the signature waveforms must be known at the receiver. In the follow-

ing sections we review the most famous multiple access systems followed by the

evolution of communication systems.

2.2 Frequency Division Multiple Access (FDMA)

The oldest multiple access technique is Frequency Division Multiple Access (FDMA).

In FDMA each user’s waveform occupies its own frequency band and the receiver

can separate each user by simple bandpass filtering, so that FDMA can be used

in analog and digital modulation depending on the input data signal. The FDMA

system is shown in Fig. 2.1.

���������������������������� ���������������������������� ��������������������
��������������������

	�	�		�	�	
�
�

�
�


��������������������
f

Figure 2.1: Frequency Division Multiple Access (FDMA) system
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2.2.1 Advantages of FDMA

• Reducing the information bit rate and using efficient digital codes can in-

crease the capacity.

• As FDMA systems use low bit rates (large symbol time) compared to av-

erage delay spread, they reduce the cost, and there is low Inter Symbol

Interference (ISI).

• There is hardly any equalization required.

• Technological advances required for implementation are simple. A system

can be configured so that improvements in terms of speech coder bit-rate

reduction could be readily incorporated.

• Since the transmission is continuous, less number of bits are needed for

synchronization and framing.

2.2.2 Disadvantages of FDMA

• It does not differ significantly from analog systems; capacity improvement

depends on reducing signal to interference ratio, or signal to noise ratio

(SNR).

• The maximum bit rate per channel is fixed and small.

• The guard bands between each two users result in wastage of capacity.

• Hardware involves narrow band filters, which cannot be realized in VLSI

and thus increase cost.

2.3 Time Division Multiple Access (TDMA)

The introduction of digital modulation enabled the appearance of Time Division

Multiple Access (TDMA). TDMA is digital transmission technology that allows

a number of users to access a single Radio-Frequency (RF) channel without inter-

ference by allocating unique time slots to each user within each channel as shown
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in Fig. 2.2.

TDMA is relatively simple to implement and is very flexible for providing variable

bit rates. Increasing the bit rate can be implemented by assigning to a user more

transmission intervals. However, the transmission of all users must be exactly

synchronized to each other.
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Figure 2.2: Time Division Multiple Access (TDMA) system

2.3.1 Advantages of TDMA

• Permits flexible bit rates by assigning more slots per frame to a certain user.

• Can support bursts or variable bit rate traffic.

• No guard bands required for wideband system.

• No narrowband filters required for wideband system.

2.3.2 Disadvantages of TDMA

• The high bit rates of wideband systems require complex equalization.

• Because of burst mode of operation, a large number of overhead bits for

synchronization and framing are required.

• Guard time between each two users is required in each slot to accommodate

time inaccuracies because of clock instability.
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• Electronics operating at high bit rates increase power consumption.

• Complex signal processing is required for synchronize within a short slot

time.

2.4 Code Division Multiple Access (CDMA)

The invention of spread spectrum techniques for communication systems with

anti-jamming and low probability of undesired interception capabilities lead to

the idea of Code Division Multiple Access (CDMA). CDMA systems can be imple-

mented in numerous ways including Frequency Hopping (FH-CDMA), Time Hop-

ping (TH-CDMA), Direct Sequence (DS-CDMA) spread spectrum techniques,

and new systems such as Multi-Carrier (MC-CDMA) techniques.

TH-CDMA is a spread spectrum system in which the period and duty cycle of a

pulsed RF carrier are varied in a pseudo random manner under the control of a

coded sequence Fig. 2.3. Time hopping is often used effectively with frequency

hopping to form a hybrid multiple access (TDMA) spread spectrum system.

Delay

generator
PN

tProgrammable

Figure 2.3: TH-CDMA system

In FH-CDMA user’s signature waveforms are centered on different carrier fre-

quencies at different time intervals, the hopping from a frequency to another is

controlled according to pseudo random spreading sequences [5] [19] [20], as shown

in Fig. 2.4.

In DS-CDMA systems each user’s signal is modulated by a unique signature
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Figure 2.4: FH-CDMA system

known as spreading sequence. These signatures are continuous in the time do-

main and have a relatively flat spectrum, Fig. 2.5 shows an example of the system.

Therefore, in DS-CDMA systems, users are separated neither in time nor in fre-

��������������������PN generator

PN generator

PN generator

Figure 2.5: DS-CDMA system

quency, but all signature waveforms occupy the whole frequency band allocated

for the transmission at all times. However the data of each user can be separated

in the receivers using the same unique spreading code of that user. One of the

famous receivers is known as RAKE receivers.

Fig. 2.6 describes the difference between TDMA, FDMA and CDMA systems.

In multicarrier modulation MC-CDMA each user’s data is first modulated by

its spreading code and then transmitted using different carrier frequencies called
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sub-carriers [21].
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Figure 2.6: TDMA, FDMA and CDMA systems

2.4.1 Advantages of CDMA

• CDMA can support many users in the same channel, i.e., a high capacity.

• Lower mobile transmit power, i.e., longer battery life and better power

control.

• Improved performance in multipath environments, RAKE receivers can be

used to improve signal reception by exploiting diversity.

• Soft handoffs can be used. Mobiles can switch base stations without switch-

ing carriers. Two base stations receive the mobile signal and the mobile is

receiving from two base stations.

• High peak data rates can be accommodated.

• Burst transmission - reduces interference.

2.4.2 Disadvantages of CDMA

• The code length has to be carefully selected. A large code length can induce

delay or even cause interference.

• CDMA requires tight power control as it suffers for far-near effect.
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• Time synchronization is necessary.

• Soft handoff increases use of radio resources and hence can reduce capacity.

• As the sum of the power received at and transmitted from a base station

has to be constant, a tight power control is needed. This can result in more

handoffs.

2.5 Evolution of Mobile Communication Systems

This section reviews the evolution of mobile communication systems. It will cover

briefly the period between 1971 to 2005. For more details about these systems

see [22] [23] [24] [25] [26] [27].

2.5.1 Zeroth generation

0G refers to pre-cellphone mobile technology, such as radio telephones that some

had in cars before the advent of cellphones. One such technology is the Au-

toradiopuhelin (ARP) launched in 1971 in Finland as the country’s first public

commercial mobile phone network.

2.5.1.1 ARP

Autoradiopuhelin (ARP) or Car Radio Phone in English was the first commer-

cially operated public mobile phone network in Finland around 1970. The sys-

tem operated on 150 MHz frequency (147.9 - 154.875 MHz). Transmission power

ranged from 1 watt to 5 watts. It used half-duplex transmission, meaning that

receiving and transmitting voice could not happen at the same time. Being ana-

log, it had no encryption and calls could be listened to with scanners. It started

as a manually switched service, but was fully automatated in 1990 although by

that time the number of subscribers had dwindled down to 980 users. ARP did

not support handover, so calls would disconnect when moving to a new cell area.

Cell size was approximately 30 km. ARP mobile terminals were extremely large
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for the time and could only be fitted in cars’ trunks, with a handset near the

driver’s seat. ARP was also expensive.

2.5.2 First generation

1G (or 1-G) is a short term for first-generation wireless technology, cellphones.

These are the analog cellphone standards that were introduced in the 80’s and

continued until being replaced by 2G digital cellphones. One such standard is

Nordic Mobile Telephone (NMT), used in Nordic countries, Eastern Europe and

Russia. Another is Advanced Mobile Phone System (AMPS) used in the United

States.

2.5.2.1 NMT

Nordisk Mobil Telefon (Nordic Mobile Telephony in English) is a mobile phone

system that was created in 1981 as a response to the increasing congestion and

heavy requirements of the ARP mobile phone network. It is based on analog

technology (first generation or 1G) and two variants exist: NMT450 and NMT900.

The numbers indicate the frequency bands uses. NMT900 was introduced in 1986

because it carries more channels than the previous NMT450 network.

Compared to the previous ARP network, NMT had automatic switching built

into the standard from the beginning. Additionally, the NMT standard specified

billing and roaming. A disadvantage of the original NMT specification is that

traffic was not encrypted. So anyone willing to listen in would just have to buy

a scanner and tune it to the correct frequency but later versions of the NMT

specifications defined optional analog encryption which was based on two-band

audio frequency inversion. NMT also supported a primitive data transfer mode

called DMS or NMT-Text, which used the network’s signalling channel for data

transfer. Transfer speeds vary between 600 and 1200 bits per second, using Fast

Frequency Shift Keying (FFSK) modulation. Another data transfer mode was

called NMT Mobidigi with transfer speeds of 380 bits per second.
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2.5.2.2 AMPS

Advanced Mobile Phone System or AMPS is the analog mobile phone system

standard, introduced in the Americas during the early 1980s. It was a first-

generation technology, using FDMA but due to security reasons it was later re-

placed by the newer Digital TDMA system which brought improved security as

well as increased capacity.

For the systems frequency bands, each network is authorized to use 416 channels

in the 800 MHz band. Each channel is composed of 2 frequencies. 416 of these

are in the 824-849 MHz range for transmissions from mobile stations to the base

stations, paired with 416 frequencies in the 869-894 MHz range for transmissions

from base stations to the mobile stations. Each cell site uses a subset of these

channels, and must use a different set than neighboring cells to avoid interfer-

ence. This significantly reduces the number of channels available at each site in

real-world systems. The Band Width (BW) of each AMPS frequency is 30kHz

wide.

2.5.2.3 TAC

Total Access Communication System or TACS is the European version of AMPS.

ETACS was an extended version of TACS with more channels. TACS and ETACS

are now obsolete in Europe, having been replaced by the more scalable and all-

digital GSM system.

2.5.3 Second generation

2G (or 2-G) is a short term for second-generation wireless telephone technology.

It cannot normally transfer data, such as email or software, other than the digital

voice call itself, and other basic ancillary data such as time and date. Neverthe-

less, Short Message Service (SMS) messaging is also available as a form of data

transmission for some standards. 2G services are frequently referred as Personal

Communications Service or PCS in the US. 2G technologies can be divided into

TDMA-based and CDMA-based standards depending on the type of multiplexing
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used. The main 2G standards are:

• GSM, TDMA-based

• iDEN, TDMA-based

• IS-136 (D-AMPS), TDMA-based

• IS-95 (cdmaOne), CDMA-based

• PDC (TDMA-based)

2.5.3.1 GSM

Global System for Mobile Communications (GSM) is the most popular standard

for mobile phones in the world introduced around 1982 and used from 1990. GSM

is a cellular network, which means that mobile phones connect to it by seaching

for cells in the immediate vicinity. GSM networks can operate at various radio

frequencies. Currently it uses dual, Tri and quad bands. GSM phones are used

by over a billion people across more than 200 countries. The ubiquity of the

GSM standard makes international roaming very easy with roaming agreements

between mobile phone operators. GSM differs significantly from its predecessors

in that both signalling and speech channels are digital, which means that it is

seen as 2G mobile phone system. This fact has also meant that data communi-

cation was built into the system from very early on. GSM is an open standard

which is developed by the 3rd Generation Partnership Project (3GPP).

One of the key features of GSM is the Subscriber Identity Module (SIM), com-

monly known as a SIM card. The card is a detachable smartcard containing the

user’s subscription information and phonebook. This allows the user to retain

his information while switching handsets. Alternatively, the user can also change

operators while retaining the handset simply by changing the SIM. Some opera-

tors will block this by allowing the phone to use only a single SIM card, or only

a SIM card issued by them; this practice is known as SIM locking. There are

four different cell sizes in a GSM network macro, micro, pico and umbrellacells.

The coverage area of each cell is different in different environments. Macro cells
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can be regarded as cells where the base station antenna is installed in a mast or

a building above the average roof top level. However, micro cells are cells where

the antenna height is under the average roof top level and they are typically used

in urban areas. Picocells are small cells whose diameter is a few dozen metres

and are mainly used indoors. On the other hand, umbrellacells are used to cover

shadow regions of smaller cells and fill in gaps in coverage between those cells.

2.5.3.2 iDEN

Integrated Digital Enhanced Network (iDEN) is a mobile communications tech-

nology, developed by Motorola, which provides its users the benefits of a trunked

radio and a cellular phone based on a TDMA digital systems. The iDEN has six

communication channels that share a 25 kHz space, some competing technologies

place only one channel in 12.5 kHz. The new generation of the iDEN systems

support voice communication, paging, text messaging and a medium speed down-

loads, but there is no path for high speed wireless data.

2.5.3.3 D-AMPS

IS-54 and IS-136 are 2G mobile phone systems, known as Digital AMPS (D-

AMPS). It is used throughout the United States and Canada. D-AMPS is known

as a TDMA based system but currently the system is being replaced by new

systems such as GSM/GPRS and cdma2000 technologies.

D-AMPS uses existing AMPS channels and allows for smooth transition between

digital and analog systems in the same area. Capacity was increased over the

preceding analog design by dividing each 30 kHz channel pair into three time slots

and digitally compressing the voice data, yielding three times the call capacity

in a single cell. A digital system also made calls more secure because analog

scanners could not access digital signals. Calls were encrypted, although the

algorithm used (CMEA) was later found to be weak.

IS-136 added a number of features to the original IS-54 specification, including

text messaging, Circuit Switched Data (CSD), and an improved compression

protocol. SMS and CSD were both available as part of the GSM protocol, and
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IS-136 implemented them in a nearly identical fashion.

2.5.3.4 cdmaOne

Interim Standard 95 (IS-95), is the first CDMA-based digital cellular standard

pioneered by Qualcomm. The brand name for IS-95 is cdmaOne. IS-95 is also

known as TIA-EIA-95. It is now being supplanted by IS-2000. The system

is widely used around the world specially in the US and Korea. The CDMA

technology used in IS-95 is in technical competition with the TDMA technology

used in GSM.

2.5.3.5 PDC

Personal Digital Cellular (PDC) is a 2G mobile phone based on TDMA standard

developed and used exclusively in Japan. PDC uses 25 kHz carrier, 3 time slots,

π/4-DQPSK modulation and low bit-rate 11.2 kbit/s and 5.6 kbit/s (half-rate)

voice codecs. PDC is implemented in the 800 MHz (downlink 810-888 MHz,

uplink 893-958 MHz), and 1.5 Ghz (downlink 1477-1501 MHz, uplink 1429-1453

MHz) bands. The services include voice (full and half-rate), supplementary ser-

vices (call waiting, voice mail, three-way calling, call forwarding , and so on),

data service (up to 9.6 kbit/s CSD), and packet-switched wireless data (up to

28.8 kbit/s PDC-P).

2.5.3.6 2.5G

2.5G is a stepping stone between 2G and 3G cellular wireless technologies. The

term ”second and a half generation” is used to describe 2G-systems that have

implemented a packet switched domain in addition to the circuit switched domain.

It does not necessarily provide faster services because bundling of timeslots is used

for circuit switched data services (HSCSD) as well. While the terms 2G and 3G

are officially defined, 2.5G is not. It was invented for marketing purposes only.

2.5G provides some of the benefits of 3G (e.g. it is packet-switched) and can

use some of the existing 2G infrastructure in GSM and CDMA networks. The

commonly known 2.5G technique is GPRS.
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• (GPRS)

General Packet Radio Service (GPRS) is a mobile data service which was

available to users of GSM mobile phones around 1997. It provides moderate

speed data transfer, by using unused TDMA channels in the GSM network.

GPRS is packet-switched which means that multiple users share the same

transmission channel, only transmitting when they have data to send. This

means that the total available bandwidth can be immediately dedicated to

those users who are actually sending at any given moment, providing higher

utilization where users only send or receive data intermittently. Web brows-

ing, receiving e-mails as they arrive and instant messaging are examples of

uses that require intermittent data transfers, which benefit from sharing the

available bandwidth. A consequence of this is that packet switched data has

a poor bit rate in busy cells. The theoretical limit for packet switched data

is approx. 170 kbit/s. A realistic bit rate is 30-70 kbit/s. GPRS upgrades

GSM data services by providing:

– Point-to-point (PTP) service: internetworking with the Internet (IP

protocols) and X.25 networks.

– Point-to-multipoint (PT2MP) service: point-to-multipoint multicast

and point-to-multipoint group calls.

– SMS

– Anonymous service: anonymous access to predefined services.

– Future enhancements: flexible to add new functions, such as more

capacity, more users, new accesses, new protocols, new radio networks

2.5.3.7 2.75G

The term 2.75G has not been officially defined anywhere, but as of 2004 is begin-

ning to be used quite often in media reports. 2.75G is the term which has been

decided on for systems which do not meet the 3G requirements but are marketed

as if they do (e.g. CDMA-2000 without multi-carrier) or which do, just, meet the

requirements but are not strongly marketed as such. (e.g. EDGE systems).
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• EDGE

Enhanced Data Rates for GSM Evolution (EDGE) is a digital mobile phone

technology which acts as a bolt-on enhancement to 2G and 2.5G (GPRS)

networks. This technology works in TDMA and GSM networks. EDGE

uses the same spectrum allocated for GSM850, GSM900, GSM1800 and

GSM1900 operation.

In addition to Gaussian minimum-shift keying (GMSK), EDGE uses 8PSK

(8 Phase Shift Keying) for its upper five of the nine modulation and coding

schemes. EDGE produces a 3bit word for every change in carrier phase.

This effectively triples the gross data rate offered by GSM. EDGE, like

GPRS, uses a rate adaptation algorithm that adapts the modulation and

coding scheme (MCS) used for the quality of the radio channel, and thus the

bit rate and robustness of data transmission. It introduces a new technology

not found in GPRS, Incremental Redundancy, which, instead of retransmit-

ting disturbed packets, sends more redundancy information to be combined

in the receiver. This increases the probability of correct decoding.

2.5.4 Third generation

3G (or 3-G) is short for third-generation mobile phone technology. 3G systems

have a high degree of commonality of design worldwide, compatibility of services.

They also allow use of many application such as:

• Small pocket terminals with worldwide roaming capability

• Internet and other multimedia applications

• Wide range of services and terminals.

• The ability to transfer both voice data such as phone call and non-voice data

such as downloading information, exchanging email, and instant messaging.

Originally, 3G was supposed to be a single, unified, worldwide standard, but in

practice, the 3G world has been split into three camps.
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2.5.4.1 W-CDMA

Wideband Code Division Multiple Access (W-CDMA), a wideband spread-spectrum

3G mobile communication technology that utilizes CDMA, is a 3G mobile com-

munications standard allied with the GSM standard. W-CDMA uses 5 MHZ

channels according to the International Telecommunication Union (ITU) and the

International Mobile Telecommunications-2000 IMT-2000 standards. The system

is more than a multiplexing standard, it is a complete set of specifications, a de-

tailed protocol that defines how a mobile phone communicates with the tower,

how signals are modulated, how data are structured.

• UMTS

Universal Mobile Telecommunications System (UMTS) or sometime marked

as 3GSM is one of the 3G mobile phone technologies. UMTS is the Euro-

pean 3G mobile communications standard. It uses W-CDMA as the under-

lying standard by the 3GPP.

UMTS offers mobile operators significant capacity and broadband capabil-

ities to support greater numbers of voice and data customers especially in

urban centers plus higher data rates at lower incremental cost than 2G.

Making use of radio spectrum in bands identified by the ITU for 3G IMT-

2000 mobile services and subsequently licensed to operators, UMTS employs

a 5 MHz channel carrier width to deliver significantly higher data rates and

increased capacity compared with second generation networks. This 5 MHz

channel carrier provides optimum use of radio resources, especially for oper-

ators who have been granted large, contiguous blocks of spectrum typically

ranging from 2x10 MHz up to 2x20 MHz to reduce the cost of deploying

3G networks.

UMTS has been specified as an integrated solution for mobile voice and

data with wide area coverage. Universally standardized via the 3GPP and

using globally harmonized spectrum in paired and unpaired bands, UMTS

in its initial phase offers theoretical bit rates of up to 384 kbps in high

mobility situations, rising as high as 2 Mbps in stationary/nomadic user
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environments. In the early standardization of 3GPP, several different chip

rates were considered. These included multiples of the basic chip rate 1x,

2x and 4x or approximately 4 Mcps, 8 Mcps and 16Mcps. The limited

amount of spectrum available in the core UMTS bands forced a choice of

the lowest chip rate which ultimately became 3.84 Mcps. However it was

the assumption that higher chip rates would not be precluded from future.

The specific frequency bands originally defined by the UMTS standard are

1885-2025 MHz for uplink and 2110-2200 MHz for downlink. Symmetry be-

tween uplink and downlink data rates when using paired (FDD) spectrum

also means that UMTS is ideally suited for applications such as real-time

video telephony, in contrast with other technologies such as ADSL where

there is a pronounced asymmetry between uplink and downlink throughput

rates. Specified and implemented as an end-to-end mobile system, UMTS

also features the additional benefits of automatic international roaming plus

integral security and billing functions, allowing operators to migrate from

2G to 3G while retaining many of their existing back-office systems. Offer-

ing increased capacity and speed at lower incremental cost compared with

second generation mobile systems.

• FOMA

FOMA or Freedom of Mobile Multimedia Access, is the brand name for

the 3G services being offered by Japanese mobile phone operator NTT Do-

CoMo. FOMA was the world’s first WCDMA 3G service when launched

in 2001. However, FOMA’s variant of the technology is currently incom-

patible with standard UMTS, and hence does not provide global roaming.

Originally FOMA handsets were big, had poor battery life and the network

had poor coverage. Unsurprisingly it was not widely used. With the in-

troductions of attractive handsets and better coverage, the use of FOMA

based technologies has increased and as of January 2005, FOMA has close

to 10 million subscribers and is the fastest growing cellphone network in

Japan.
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2.5.4.2 CDMA2000

CDMA2000 is a 3G mobile telecommunications standard, one of the approved

radio interfaces for the ITU’s IMT-2000 standard, and a successor to 2G CDMA

(IS-95, branded cdmaOne). The underlying signaling standard is known as IS-

2000. CDMA2000 is an incompatible competitor of the other major 3G stan-

dard W-CDMA. CDMA2000 is a registered trademark of the Telecommunica-

tions Industry Association (TIA-USA) in the United States, not a generic term

like CDMA. TIA has branded their 2G CDMA standard (IS-95) as cdmaOne.

There are many different types of CDMA2000. In order of increasing complexity:

• CDMA2000 1x (3G1x or 1xRTT), 1.25 MHz radio channels. It supports up

to 144kbit/s

• CDMA2000 1xEV, a High Data Rate capability (HDR). It supports up to

3.1 Mbit/s for downloading uplink and 1.8 Mbit/s for uplink.

• CDMA2000 3x (MC-CDMA) a 3.75 MHz radio channels. Very good system,

but has not been deployed yet.

2.5.4.3 TD-SCDMA

Time Division Synchronous Code Division Multiple Access (TD-SCDMA) is a

3G mobile telecommunications standard, being pursued in the People’s Republic

of China by the Chinese Academy of Telecommunications Technology (CATT),

Datung and Siemens, in an attempt to develop home-grown technology and not

be dependent on Western technology. It is based on spread spectrum CDMA

technology. The launch of an operational system is projected by 2005.

2.5.4.4 3.5G

High-Speed Downlink Packet Access or (HSDPA) is a mobile telephony protocol

also called 3.5G. High Speed Downlink Packet Access (HSDPA) is a packet-

based data service in W-CDMA downlink with data transmission up to 8-10

Mbit/s (and 20 Mbit/s for MIMO systems) over a 5MHz bandwidth in WCDMA
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downlink. HSDPA implementations includes Adaptive Modulation and Coding

(AMC), multiple Input multiple Output (MIMO), Hybrid Automatic Request

(HARQ), fast cell search, and advanced receiver design. In 3GPP standards,

Release 4 specifications provide efficient IP support enabling provision of services

through an all-IP core network and Release 5 specifications focus on HSDPA

to provide data rates up to approximately 10 Mbit/s to support packet-based

multimedia services. MIMO systems are the work item in Release 6 specifications,

which will support even higher data transmission rates up to 20 Mbit/s. HSDPA

is evolved from and backward compatible with Release 99 WCDMA systems.

2.5.5 Fourth Generation

4G (or 4-G) is a short term for fourth-generation, the successor of 3G and is a

wireless access technology. It describes two different but overlapping ideas.

• High-speed mobile wireless access with a very high data transmission speed,

of the same order of magnitude as a local area network connection (10

Mbits/s and up). It has been used to describe wireless LAN technologies

like Wi-Fi, as well as other potential successors of the current 3G mobile

telephone standards.

• Pervasive networks. An amorphous and presently entirely hypothetical con-

cept where the user can be simultaneously connected to several wireless

access technologies and can seamlessly move between them. These access

technologies can be Wi-Fi, UMTS, EDGE or any other future access tech-

nology. Included in this concept is also smart-radio technology to efficiently

manage spectrum use and transmission power as well as the use of mesh

routing protocols to create a pervasive network.



Chapter 3

DS-CDMA Signals Over Multipath

Fading Channels

3.1 Introduction

Fading and multipath occur in many radio communication systems. In mobile

communication systems, the mobile or the base station unit is often surrounded

by various objects, such as buildings, trees, etc. These objects produce more

than one path over which the signal can travel between the transmitter and the

receiver.

In a multipath situation, the signals arriving along different paths will have dif-

ferent attenuation, delays and Direction Of Arrivals (DOA). They might add at

the receiving antenna either constructively or destructively depending on their

phases, resulting in phenomena known as fading [4] [8]. If the path length and/or

the geometry change due to variations in the transmission medium or due to rel-

ative motion between the transmitter and receiver antennas, the signal level will

exhibit some changes subjected to random fluctuations.

To become familiar with the effects of the multipath propagation, let us consider

the following situations.

If we transmit say a short duration pulse to represent a digital sequence, due

to reflections, the received signal may appear as a number of pulses with dif-

25
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Figure 3.1: A simple multipath channel

ferent attenuation and delays. Also, if we repeat and transmit another pulse,

attenuation and delays will be different from the previous case and the received

number of pulses does quite often changes, see Fig. 3.2. Hence the first two char-

acteristic of the channel are the time spread introduced in the signal and the

channel medium structure is also time varying. Moreover, the time variation of

the channel is unpredictable to the channel user. In some situations and due

to the nature of the reflecting objects, the duration of the received pulses may

also change and this will create other problems such as scattering, dispersion and

frequency distortion [4] [8].
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Figure 3.2: Multipath effects
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3.2 Characteristics of Multipath Propagation

In this section we study the characteristics of the multipath propagation from

signal processing point of view. Hence, let us consider the situation where a

signal x(t) is transmitted over a multipath channel. For continuous multipath

propagation, the equivalent base-band response of the channel define g(τ, t) can

be defined as a function of two variables, τ and t. The variable τ is considered to

represent the effect of the channel delay and t is to represent the time variation

nature. The received signal r(t) as shown in Fig. 3.3, can then be defined as,

r(t) =

∞∫

−∞

g(τ, t)x(t− τ) dτ + v(t) (3.1)

where v(t) represents the channel noise.

x(t) r(t)g(τ, t)

v(t)

+

Figure 3.3: General system model for multipath fading channel

Due to the random nature of g(τ, t), in practice the channel effects can be charac-

terized by four important factors: the multipath delay spread, Tm, the coherence

time, ∆tc, the coherence bandwidth, ∆fc, and finally the Doppler spread, βd.

Given information about these factors, one can assume the situation over which

the transmitted signal x(t) can be affected then a specific or an approximated

channel model can be considered [4] [5] [18].

To become familiar with the meaning of each of the above factors, we will briefly

summarize some important functions of the channel g(τ, t).

The channel response, g(τ, t) is characterized in [4] as a wide-sense-stationary

complex-valued random process with the autocorrelation function,

ϕ(τ1; τ2, ∆t) =
1

2
E{g∗(τ1, t)g(τ2, t + ∆t)} . (3.2)
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In most radio transmission media, the attenuation and phase shift of the channel

associated with the delay τ1 is uncorrelated with the one presented at delay τ2,

then it follows from the above equation that,

1

2
E{g∗(τ1, t)g(τ2, t + ∆t)} = ϕ(τ1 − τ2, ∆t).δ(τ1 − τ2) (3.3)

If we replace ∆t = 0, the resulting autocorrelation function, ϕ(τ ′) = ϕ(τ ′, 0) is

known as the multipath intensity profile of the channel. The range of values of

τ over which ϕ(τ ′) 6= 0 is called the multipath delay spread of the channel and

denoted by Tm (see Fig. 3.4).

Define the Fourier transform G(f, t) of the channel response g(τ, t) with respected

to (w.r.t) the delay τ ,

G(f, t) =

∞∫

−∞

g(τ, t) e−j2πfτdτ (3.4)

Since the Fourier transform will not change the wide-sense-stationary properties,

then we can also define another function know as the spaced-time spaced-frequency

correlation function of the channel,

φ(∆f, ∆t) =
1

2
E{G∗(f, t)G(f + ∆f, t + ∆t)} . (3.5)

After some manipulations one can show that φ(∆f, ∆t) is the Fourier transform

of the multipath intensity profile function, ϕ(τ ′, ∆t) w.r.t τ ′ (see Fig. 3.4).

Using some practical measurements [4], it has been found that the relation be-

tween the coherence bandwidth ∆fc and the multipath delay spread Tm can be

approximated by,

∆fc ≈
1

Tm

. (3.6)

In order to see the effect of the time variation of the channel, define the Fourier

transform of φ(∆f, ∆t) w.r.t the variable ∆t to be the function S(∆f, λ),

S(∆f, λ) =

∞∫

−∞

φ(∆f, ∆t) e−j2πλ∆td∆t (3.7)

This function gives us information about the relation between the channel time

variation and the channel Doppler effects. With ∆f = 0 the function S(λ) =
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S(0, λ) is known as the Doppler power spectrum of the channel (see Fig. 3.4).

The range of values of λ over which S(λ) 6= 0 is called the Doppler spread of the

channel, βd. The reciprocal of βd is a measure of another factor known as the

coherence time of the channel,

∆tc ≈
1

βd

. (3.8)

A summary of the previous channel factors is as follows,

• Tm : The multipath delay spread of the channel

• ∆fc ≈ 1
Tm

: The coherence bandwidth of the channel

• βd : The Doppler spread of the channel

• ∆tc ≈ 1
βd

: The coherence time of the channel

According to the above channel factors one can assume the situation over which

the transmitted signal can be modelled then a proper channel model can be

considered. In the following sections we summarize some of these situations.

Tm

4tc ≈ 1
Bd

4fc ≈ 1
Tm

Bd

Multipath intensity profile

Doppler power spectrum Spaced-time corr-function

Spaced-frequency corr-function

ϕ(τ)

S(λ)

λ

Fourier

Transform

Fourier

Transform

∆fτ

φ(∆t)

φ(∆f)

∆t

Figure 3.4: Characteristic functions of multipath fading channel
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3.3 Frequency Variations of Multipath Fading Chan-

nels

3.3.1 Frequency non-selective fading channels

When the bandwidth of the transmitted signal, W , is smaller than the coherence

bandwidth of the channel ∆fc i.e.

W < ∆fc (3.9)

the channel in this case is defined as a frequency non-selective fading channel.

Furthermore, the condition that the channel fades slowly implies that the multi-

plicative process or the channel effects can be regarded constant during at least

one or few signaling intervals. In other words, the channel characteristics are the

same over all the spectrum. In this case the signal will suffer simple amplitude

changes, but there is no delay distortions i.e. no Inter-Symbol Interference (ISI).

3.3.2 Frequency selective fading channels

When the bandwidth of the transmitted signal, W is larger than the coherence

bandwidth of the channel, ∆fc i.e.

W > ∆fc, (3.10)

the channel is defined as frequency selective fading channel. This case happens

due to motion of the mobile unit or changing of the path length due to motion of

the object that the reflected signals come from. The channel characteristics in this

case are different over all the spectrum and in some cases can be represented by

time-varying random variables. Also, the signal will suffer amplitude distortion

and there will be delay distortions i.e. ISI.
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3.4 Time Variations of Multipath Fading Channels

3.4.1 Flat fading channels

When the pulse duration of the transmitted signal, T , is larger than the coherence

time of the channel, ∆tc or in other words the Doppler spread is small compared

to the system rate, i.e.,

T > ∆tc, (3.11)

the channel is defined as a flat or slowly fading channel. In other words, all

spectral components are attenuated equally.

3.4.2 Fast fading channels

When the pulse duration of the transmitted signal, T is smaller than the coherence

time of the channel, ∆tc i.e.,

T < ∆tc, (3.12)

the channel is defined as a fast fading channel or sometimes termed as time-

selective fading channel. In this case, the time variation of the channel has to be

taken into account.

3.5 Modeling Multipath Fading Channels

There are several models for multipath fading channels, each model depends on

whether the signal is transmitted over a frequency selective, non-selective, fast or

slowly fading channel.

Let us consider the general case system in Eqn. 3.1 and shown in Fig. 3.3 where

the signal at the receiver r(t) can be represented as,

r(t) =

∞∫

−∞

g(τ, t)x(t− τ) dτ + v(t) (3.13)

Although radio transmissions are often continuous-time passband signals centered

around the carrier frequencies, it is often conceptually convenient to work with
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an equivalent discrete-time baseband model, i.e.

r(n) =
∑

l

g(l, n)x(n− l) + v(n). (3.14)

Accurate and tractable channel modeling is critical for reliable and efficient signal

processing algorithms for transceiver design. The wireless channel is particularly

challenging in this regard, since the orientation and material properties of the

obstacles between transmitter and receiver are unknown in advance, or may be

time varying. It is common to use statistical models for the fading channels

in system design and performance evaluations. Our work is based on the well

known frequency selection slowly Rayleigh fading channel model, where the fading

coefficient g(τ, t) is modelled as zero mean, complex Gaussian random variable

with variance σ2
g , which is in general a function of τ and t. The phase of g(τ, t) is

therefore uniformly distributed in [0, 2π) and the amplitude |g(τ, t)| is a Rayleigh

distributed Random Variable (RV) with density,

p|g|(x) =
2x

σ2
g

e
−x2

σ2
g . (3.15)

3.5.1 The channel response as an FIR filter

In some situations where the channel time variation is not presenting or slow,

one can then regard the channel response g(τ, t) as g(τ) over a certain interval

t ∈ [0, T ]. This assumption can be considered for situations such as: flat fading,

frequency non-selective and frequency selective slowly fading channel. In these

cases, one can model the channel response as a TDL or FIR filter then based on

this model a proper receiver can be considered to overcome the channel effects.

Over the interval [0, T ], the received signal in (3.14) can then be simplified by,

r(n) =
∑

l

g(l)x(n− l) + v(n). (3.16)

3.6 Simulation of Multipath Fading Channels

The channel characteristics can be represented by a complex time-varying random

variable, g(t) = g(τo, t). In some cases the channel is called time non-selective
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channel. There are two famous models for this case, a complex Gaussian model

and sum of sinusoids (SOS) Jakes model.

3.6.1 Gaussian model

Gaussian model is a simple one where two independent normally distributed

random variables can be generated then passed through a low pass filter whose

power spectral density (PSD) is given by,

|H(f)|2 =







Ep

4πfm

1
√

1−( f−fc
fm

)
|f − fc| ≤ fm

0 otherwise

(3.17)

where,

Ep is the channel power, fc is the signal carrier frequency and fm is the channel

maximum Doppler spread. The model block diagram is shown in Fig. 3.5.

−fm
fm

S(λ)

H(ω)

H(ω)

∑

j

v1(t)

v2(t)

g(t)

Figure 3.5: Gaussian model for multipath fading channel

It has been shown in [28, 29] that this model can be approximated by an AR(2)

process,

g(t) = gI(t) + jgQ(t) (3.18)

where,

gI(t) = a1gI(t− 1) + a2gI(t− 2) + v1(t)

and

gQ(t) = a1gQ(t− 1) + a2gQ(t− 2) + v2(t)

(3.19)

and a1 = 2rd cos (2πfmT ), a2 = −r2
d which reflects the damping, v1(t) and v2(t)

are two independent zero mean Gaussian noise.



3.6 Simulation of Multipath Fading Channels 34

3.6.2 Jakes model

The Jakes’ model [30] is a sum of sinusoids (SOS) based fading channel simulator,

which implements the channel as a superposition of a finite number of sinusoids.

It has been widely used to approximate isotropic scattering environments. In

general, a frequency selective and non-selective fading process of the based model

is given by,

g(t) =

√

2

N

N∑

n=1

cos (ωmt cos(αn) + θn) (3.20)

where, ωm = v
c
ωc represents the maximum Doppler spread, v is the mobile speed,

ωc is the carrier frequency, and finally αn and θn are two independent random

variable uniformly distributed between [0, 2π) representing the angle of incoming

ray and the initial phase associated with the nth propagation path.

To reduce the number of distinct Doppler frequency shifts, Jakes uses the follow-

ing parameters,

αn = 2πn
N

, n = 1, 2, . . . , N

No = N−2
4

(3.21)

Thus the base-band equivalent fading channel can be constructed through only

(No + 1) low-frequency oscillators. With Jakes’ simulator, the output signal in

terms of quadrature components can be expressed as

g(t) = gI(t) + gQ(t) (3.22)

where

gI(t) = 2√
2
cos(ωmt + θNo+1) cos(α) + 2

No∑

n=1

cos(ωnt + θn) cos(βn)

and

gQ(t) = 2√
2
cos(ωmt + θNo+1) sin(α) + 2

No∑

n=1

cos(ωnt + θn) sin(βn)

(3.23)

where, fn = fmcos(2πn/N), n = 1, 2, . . . , No represents the Doppler shift of

the nth component, α = 0 or π/4 and βn = πn/(No + 1), n = 1, 2, . . . , No.

The complete model block diagram is shown in Fig. 3.6. In Fig 3.7 a typical

simulated fading envelope is obtained by choosing No = 16, fc = 1 GHZ for

frequency selective Raleigh fading where the speed v = 50 Km/h and frequency
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non-selective slowly fading channels where v = 1 Km/h. Another simulation

for frequency selective slowly fading channel is also shown in Fig 3.8 for v = 10

Km/h.

cos(ω1t + θ1)

1√
2

cos(ωmt + θNo+1)

j

g(t)

gQ(t) gI(t)

2 sin(β1)

2 sin(α)

cos(ωNo
t + θNo

)

∑ ∑

2 sin(βNo)

2 cos(β1)

2 cos(βNo)

2 cos(α)

∑

Figure 3.6: Jakes model for multipath fading channel
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Chapter 4

DS-CDMA RAKE Receivers

4.1 Introduction

Advancement of new technologies in wireless communication has increased rapidly

since the proposed third and fourth generations of mobile communication sys-

tems. With these new technologies, mobile systems will operate in more diverse

environmental conditions and they should be able to cope with the transmission

medium effects such as multipath fading and channel noise. In this chapter we

discuss some techniques which have been used in CDMA systems to overcome the

multipath propagation effects and mitigate the channel noise. These techniques

are based on the use of a well known CDMA receivers known as RAKE receivers.

The chapter also presents a data model for the DS-CDMA system, this model

will form the main bases for the work in this research.

4.2 DS-CDMA System Model

Consider the baseband model of a K user in DS-CDMA system shown in Fig. 4.1

operating with a coherent binary data modulation format. The kth user’s con-

tinuous time baseband transmitted signal is modelled as:

xk(t) =
N∑

i=1

Akbk(i) sk(t− iTs) , t ∈ R, (4.1)

37
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ck(t)

Tc

y(t)

v(t)

xk(t)bk

Ts

Other users

y(n)
gk(τ, t)p(t)

Figure 4.1: DS-CDMA data model

where Ak represents the kth user’s amplitude, bk(i) ∈ {+1,−1} is the kth user

data block with length N symbols, and Ts is the symbol period. The normalized

waveform signature sk(t) is

sk(t) =
1√
M

M∑

m=1

ck(m)p(t− (m− 1)Tc) , t ∈ R, (4.2)

where M is the processing gain, ck(m) ∈ {+1,−1}, m = 1, 2, . . . ,M is the

signature for user k, p(t) is the chip waveform with chip duration Tc = Ts

M
and is

assumed to be a raised cosine with a certain roll-off factor.

For a channel with a maximum duration of τkdk
, i.e.,

gk(τkl, t) = 0 for τkl > τkdk
(4.3)

where dk represents the maximum delay index so that the continuous-time asyn-

chronous baseband signal at the receiver is given by

y(t) =
K∑

k=1

dk∑

l=1

gk(τkl, t) xk(t− τkl) + v(t), t ∈ R, (4.4)

where v(t) represents the channel additive noise.

We consider a frequency selective slowly fading propagation (see chapter 3, sec-

tion 3.3) then one can regard the multipath delays τkl(t) ≈ τkl and attenuation

gk(τkl, t) ≈ gk(τkl) during at least one or few signaling intervals [4], that is,

y(t) =
K∑

k=1

dk∑

l=1

gk(τkl) xk(t− τkl) + v(t), 0 ≤ t ≤ T , T = Ts + τkdk
, (4.5)
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After sampling with a rate (r/Tc), r ≥ 1, then gk(τkl) can be simplified as = gk(l)

and we obtain at the receiver

y(n) =
K∑

k=1

dk∑

l=1

gk(l) xk

(

n− rτkl

Tc

)

+v(n), n = 0, .., rM−1, M = M +

⌊
τkdk

Tc

⌋

(4.6)

In the above equation, we consider the problem in its general form. In other

words, we consider different delay and different attenuation for each path in each

user so that the data model can cover the up-link systems. In case of down-link

systems, delays and attenuation will be same for all users.

4.2.1 Research Primary Objectives

The primary objective of this work is to compensate for the effects of the mul-

tipath propagation gk(τkl) for each user k; In other words, it is to retrieve the

transmitted symbols bk(l) from the baseband signal in Eqn. (4.6) using a parsi-

monious receiver which is based on an estimates of gk(τkl). This receiver will be

only given the observations y(n) and in some cases the training sequences xk(n),

for k = 1, . . . , K, n = 0, . . . , rM− 1, is also available. For the the design of such

receiver we assume that xk(n), and the complex noise process v(n) are stationary

and independent with E{v(n)} = 0 and Var{v(n)} <∞.

4.3 RAKE Receivers

The word ”RAKE” is not an acronym and, in fact, is not always capitalized as it

is in this writing. RAKE derives its name from its inventors Price and Green in

1958. For direct sequence spread spectrum modulation, the RAKE receiver is an

indirect way of performing matched filtering to reduce the multipath effects. The

received signal y(t) as shown in Eqn. (4.6) is the summation of the delayed time

arrivals of the transmitted signal. The RAKE receiver captures separately the

multipath components of each user in y(t) by exploiting the correlation properties

of the spreading codes, ck(t). Specifically, if the arrivals are separated in time

by more than one chip duration τkl ≥ Tc, the different paths can be resolved. A



4.3 RAKE Receivers 40

path designed to extract one specific delay is referred to as a finger or correlator.

Each finger despreads the signal, and the outputs of the respective fingers are

weighted by the parameter ĝ∗
k(l) which is the complex conjugate of the estimated

coefficient of the channel and combined to produce a final signal estimate. A

RAKE receiver usually employs a number of fingers to cover the delay spread

of the channel. In IS-95, 1999 version, the base station combines the outputs

of its RAKE receiver fingers incoherently. i.e. the outputs are added in power.

The mobile receiver combines its RAKE receiver finger outputs coherently, i.e.,

the outputs are added in voltage. Currently, mobile receivers and base station

receivers have between four to eight fingers, depending on the equipment manu-

facturer [6] [32] [33]. There are two primary methods used to combine the RAKE

receiver finger outputs. One method weights each output equally and is, there-

fore, called Equal-Gain Combining (EGC). The second method uses the received

data to estimate weights which maximize the SNR of the combined output. This

technique is known as Maximal-Ratio Combining (MRC). In practice, but un-

der some conditions [34] [35], it is not unusual for both combining techniques

to have a close performance. In Fig. 4.2 a MRC-based RAKE receiver with L

fingers is shown. Each finger is in charge of compensating one of the multipath

components. Here ĝ∗
k(l) is the complex conjugate of an estimate of the lth path

parameter of user k, gk(l).

In practical RAKE receivers, the following functionality for symbol estimation

and synchronization are needed:

1. Channel response acquisition and scanning to allocate RAKE fingers

2. Channel delay tracking to fine-adjust and track multipath components

3. Complex channel coefficient tracking to obtain coherent reception

4. Automatic Gain Control (AGC) to keep the receiver output within the

dynamic range of the A/D converter

5. Automatic Frequency Control (AFC) to compensate for the drift of the

local oscillator and possibly to compensate for high Doppler shifts
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Figure 4.2: A single user MRC based RAKE receiver with L taps

4.4 Research Main Objectives

RAKE receivers as we mentioned above are used to overcome the effect of multi-

path propagation effects. However, it is not only important to design such receiver

in its classical ways but also is to optimize its structure. Accordingly, the main

objectives of this thesis is propose algorithms and techniques that can be used

for the design of parsimonious structure RAKE receivers.

4.4.1 Parsimonious structure RAKE receivers

As the chip duration, Tc, becomes very short in new high rate systems such as

3G UMTS systems [6] [7], the channel delay becomes very long when expressed

in chips. Since the number of significant paths and the order do are unknowns,

in theory the number of fingers or taps of decorrelator receivers is limited to

L = b τmax

Tc
c > do � dk, where τmax represents the maximum delay-spread of

the channel [4] and dk is the number of the significant parameters which is 5

in Fig. 4.3. Consequently, this direct implementation of a RAKE receiver will
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require many fingers to be implemented and many coefficients to be estimated.
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Figure 4.3: A sharp multipath propagation in a high SNR channel

In reality most of these coefficients are either zero or insignificant and this will

lead to:

• Poor estimates of the channel response gk = [gk(1) gk(2) .... gk(L)]T

• Decorrelation of undesired signals through spurious fingers

• Increase in the RAKE receiver complexity and reduction in performance

• Loss of synchronization

The solution to this problem is to identify and estimate at once the non-zero or

significant parameters gk(l) and delays τkl, for k = 1, . . . , K, l = 1, . . . , L, which

also require estimation of the channel true length, do = b τ
kdk

Tc
c and the number of

these significant parameters, dk.

Once these goals are achieved,the RAKE receiver will have a minimal structure

with only number of fingers much less than L and less than dk itself.

The identification of the significant parameters can be achieved using model selec-

tion techniques based on statistical tests. For this goal, model selection techniques

will be covered in the following chapter.



Chapter 5

Model Selection Techniques

5.1 Introduction

Model selection is a fundamental problem in many data analysis tasks. It has

applications such as system identification, wireless communication systems, net-

works, radar and sonar [36] [37] [38]. Over the past two decades, many model

selection techniques have been developed such as Akaike Information Criterion

(AIC) or Rissanen’s principle of Minimum Description Length (MDL) [16] [17] [39].

The widespread use of these criteria is mainly due to their intrinsic simplicity.

Due to their better accuracy in estimating the correct model, other methods such

as Forward or Backward Elimination (FE)(BE), sphericity test and F -statistic

have also become widely used [40] [41] [42]. Recently, it has been proposed that

bootstrap techniques can also be applied to model selection [38] [43] [44]. The

main advantage of the bootstrap over classical statistical methods is that, it can

be applied with minimal assumptions to scenarios where minimal information

about the underlying distributions involved is available [45]. Although there ex-

ist many model selection techniques, the development of new techniques that

outperform the popular ones is still ongoing.

In this chapter we present different model selection methods. These methods will

be used to identify the significant multipath components for parsimonious DS-

CDMA RAKE receivers. The chapter is organized as follows: In Section 5.2, we

43
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introduce the model of interest and assumptions. In Section 5.3, we discuss the

principles of the MDL, AIC and F-statistic. In Section 5.4, we present solutions

to the full model selection problem. In Section 5.5 we summarize the proposed

methods before we conclude in Section 5.6.

5.2 Data Model and Assumptions

Consider the following discrete signal model,

y(n) =
d∑

l=1

g(l) x(n, l) + v(n), n = 1, ..., N (5.1)

where y(n) represents the received signal, g = [g(1) g(2) · · · g(d)]T represents the

model parameters, x(n) is the model input signal and v(n) is the additive noise.

In matrix form,

y = Xg + v. (5.2)

where, without loss of generality,

X =











x(1, 1) x(1, 2) · · · x(1, d)

x(2, 1) x(2, 2) · · · x(2, d)
...

...
...

...

x(N, 1) x(N, 2) · · · x(N, d)











, y =











y(1)

y(2)
...

y(N)











, v =











v(1)

v(2)
...

v(N)











.

5.2.1 Objectives

The objective is to use statistical tests to identify the non-zero parameters in the

model g = [g(1) g(2) . . . g(d)]T and the order d itself, given observations y(n)

and in some cases the sequence x(n) for n = 1, . . . , N or in general y and X.

We will assume that x(n) and v(n) are stationary and independent. Minimal

assumption will be considered for the noise v(n) but in some cases we will make

no assumption on its distribution except for E{v(n)} = 0 and Var{v(n)} <∞.
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5.3 Model Selection Methods

5.3.1 The AIC and MDL criteria

The AIC and MDL criteria are two well known methods for model selection.

They are mainly applied by evaluating two terms: a data term which requires

the maximization of the likelihood function and a penalty term which is a function

of the complexity of the model [16] [17].

For a model with parameters g of length L assigns the likelihood f(y/g) to a

given set of observed data y, the AIC and the MDL criteria can be defined by,

AIC(k) = − log(f(y/ĝ)) + pAIC(N, k)

MDL(k) = − log(f(y/ĝ)) + pMDL(N, k)
(5.3)

where ĝ is an estimate of the model parameters that maximize the likelihood, k

is the number of parameters in the model, N is the sample size and pAIC(N, k)

and pMDL(N, k) represent the penalty terms for the AIC and the MDL criteria

respectively.

For the model given in Sec. 5.2, the AIC and the MDL criteria can be directly

described by the following equations:

AIC(k) = log(σ2
vr

) + 2(k−1)
N

MDL(k) = log(σ2
vr

) + k
N

log(N)
(5.4)

where, k and L are the suggested model order and the maximum model order

respectively, log(σ2
vr

) represents maximization of the likelihood term, pAIC(N, k) =

2(k−1)
N

, pMDL(N, k) = k
N

log(N) and residual errors vr(n) is defined by,

vr(n) = y(n)−
k∑

l=1

ĝ(l) x(n, l), n = 1, ..., N (5.5)

where, without loss of generality, ĝ = [XHX]−1XH y, represents the LSE of g.

Estimates of g can also be found using any other methods such as correlation and

cross-correlation based methods. In that case X and y will be replaced by the

correlation and cross-correlation matrices Rxx and Ryx respectively. Finally an

estimate of the model order d̂ using, say, the MDL method can then be determined
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Estimate the model parameters

set k = k − 1

k > 1

No

Stop

Set k = L

vr(n)

Start

Find Residuals

Yes

MDL(k) or AIC(k)

Find d̂ = k which gives min MDL/AIC

Figure 5.1: MDL/AIC algorithm for model order estimation

by,

d̂ = argmin
k∈{1,2,...,L}

MDL(k) (5.6)

The order estimation algorithm shown in Fig. 5.1 summarizes the two methods.

5.3.2 AIC/MDL sphericity test based method

The sphericity test is one of the well known tests which can be used to check

the multiplicity of a certain subject. In some cases it is known as the vari-

ance/covariance homogeneity test [46][47]. To become familiar with the test, let

us consider the model in Sec. 5.2 in its matrix form, i.e.,

y = Xg + v. (5.7)

To apply the test, first we define the correlation matrix,

R = E
{
yyH

}
= AggHAH + σ2

v I. (5.8)

Since the true number of parameters, dk, is unknown we assume that R is a

rank-L matrix.



5.3 Model Selection Methods 47

The next step is to find the eigenvalues of R and sort them such that, λ1 >

λ2 > . . . > λL. These eigenvalues are biased and mutually correlated. Their

finite sample joint distribution is known in the Gaussian case and is represented

as a series of zonal polynomials [47][48]. A mathematically tractable form for

their asymptotic joint distribution does exist in the Gaussian case [49], although

it may be unreliable for small sample sizes. In addition, this joint distribution

is sensitive to departures from Gaussianity [50]. Once the eigenvalues are found

then the sphericity test (ratio) of a k-parameter model, Tsph(k) is defined by,

Tsph(k) =








L∏

l=k+1

λ
1/(L−k)
l

1
L−k

L∑

l=k+1

λl








(5.9)

where the numerator and the denominator parts represent the geometric and the

arithmetic means respectively. When Tsph(k) = 1, it means that the geometric

mean is the same as the arithmetic mean or in other words λk+1 = λk+2 = . . . =

λL. This suggests the matrix R has a rank (k + 1) and d̂t = k . Since the test

requires an estimate of the eigenvalues λ’s, which are biased, then in some cases

Tsph(k) will be approximately close to one and it can occur at different values of

k. Whereupon, the true number of parameters d̂t will then be taken to be the

smallest k. Due to the previous problem, one can fix it by using the MDL or the

AIC criterion.

The AIC and MDL criteria use Tsph(k) as the likelihood function, in other words,

AIC(k) = −2 log





L∏

l=k+1

λ
1/(L−k)
l

1
L−k

L∑

l=k+1
λl





(L−k)N

+ 2k(2L− k)

and

MDL(k) = − log





L∏

l=k+1
λ
1/(L−k)
l

1
L−k

L∑

l=k+1

λl





(L−k)N

+ 1
2
k(2L− k) log(N)

(5.10)
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An estimate of the principal number of parameters in the model d̂t is k over which

the AIC or the MDL function is minimized, i.e.,

d̂t = argmin
k∈{1,2,...,L}

AIC(k)

d̂t = argmin
k∈{1,2,...,L}

MDL(k)
(5.11)

5.4 Full Identification of Significant Model Param-

eters

In the previous section we showed how to estimate the order of a certain channel

model. In CDMA systems, when dealing with multipath propagation, estimation

of the channel order is not sufficient for low order channel models. It is also

important to check the significance of each individual parameter in the model. For

example, in new high rate systems such as 3G UMTS DS-CDMA systems [6] [7],

the short chip duration, Tc, results in a very long model order, L =
⌊

τmax

Tc

⌋

,

where τmax is the maximum delay-spread of the channel [4]. The problem is that

most of the model parameters are either zero or non-significant. If one considers

only the channel order then he/she will end up with a high complexity RAKE

receiver. Moreover, this receiver will also be based on poor estimates of the

channel parameters.

In this section we proposed different model selection methods that can be used

not only to estimate the model order but also to check the significance of each

individual parameter in that model. Once this is done then low order estimates

of the channel will be achieved and a parsimonious RAKE receiver based on these

estimates can be considered.

5.4.1 Hierarchical MDL/AIC based method

In standard model selection and regression problems, it is important to decide

how many parameters or predictors to enter. In hierarchical-based methods,

it is not only how many parameters to enter but also the order in which they

enter is important. Usually, the order of entry is based on logical or theoretical
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considerations. In hierarchical BE multiple regression analysis, the number of

parameters to be selected and the order of entry are both decided by statistical

measures such as entry or removal criterion [41] [42].

In this hierarchical procedure we begin with the full model (parent model) that

includes all parameters from ĝ(1) to ĝ(L). Define p as the parent hierarchical

code at this step, p = [1 1 . . . 1](L×1). That means we have to use the full LSE

matrix X in Sec. 5.3 to find the LSE ĝp of the parent model. From the parent

hierarchical code p, one can generate the child hierarchical codes c1, c2, . . . cL

and estimate their LSEs, ĝc1 , ĝc2 , . . . ĝcL
.

A zero element in any code means a removal of its corresponding parameter and

a removal of its corresponding column in the matrix X. The next step is then to

compare the MDL or AIC value of each child model and select the child which

has the smallest value. If this child’s MDL value is less than or equal to its parent

one then we replace the parent code with the child code and continue; otherwise

we keep it and stop.

In Table 5.1 and 5.2 two iterations for L = 4 describe how to generate the

hierarchical codes and their corresponding models to be tested. The complete

model selection procedure is shown in Fig. 5.2, and also summarized in Table 5.3.

Table 5.1: Iteration # 1

Item Code Parameters MDL

p 1 1 1 1 g(1) g(2) g(3) g(4) vp

c1 0 1 1 1 0 g(2) g(3) g(4) vc1

c2 1 0 1 1 g(1) 0 g(3) g(4) vc2

c3 1 1 0 1 g(1) g(2) 0 g(4) vc3

c4 1 1 1 0 g(1) g(2) g(3) 0 vc4

vc2
≤ vp ⇒ Yes, then p = c2
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Table 5.2: Iteration # 2

Item Code Parameters MDL

p 1 0 1 1 g(1) 0 g(3) g(4) vp

c1 0 0 1 1 0 0 g(3) g(4) vc1

c2 1 0 0 1 g(1) 0 0 g(4) vc2

c3 1 0 1 0 g(1) 0 g(3) 0 vc3

ĝc1 , ĝc2 , . . . , ĝcL

Find vp, Parent model

vm ≤ vp

Model code = p

p = [1 1 ... 1]

Generate the child H. codes

Estimate the child models

Est. d̂, let L = d̂

models MDL or AIC values

Stop

L
←

(L
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1
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Figure 5.2: Hierarchical BE based method for model selection
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Table 5.3: The hierarchical MDL/AIC based procedure

Step 1: Use the MDL or the AIC to estimate the model order, d̂

Step 2: Set L = d̂ and start the parent with the full code p = [1 1 . . . 1]L×1.

Step 3: Estimate the parent model ĝp = [ĝ(1) ĝ(2) · · · ĝ(L)]T , then calculate

its MDL/AIC value vp given by Sec. 5.3.

Step 4: Generate the child hierarchical codes c1, c2, . . . cL, remove from the

LSE matrix X, columns corresponding to zero locations of each code, then

estimate each code’s model ĝcl
, l = 1, 2, .., L.

Step 5: For each child model ĝcl
, l = 1, 2, .., L, calculate the MDL/AIC

value, v = [vc1
, vc2

, . . . vcL
].

Step 6: Find the minimum MDL/AIC value among the child models vm =

min{v}, where m is the index, then compare vm with the parent one vp.

Step 7: If vk ≤ vp, replace the Parent code p by ck then return to Step 3.

otherwise Stop and p will be then the procedure decision about the model.

5.4.2 F -statistic

The F-statistic or F-test is one of the most widely known methods for model

selection. The mathematical definition of the F-test is in general,

Fo =
um/m

vn/n
(5.12)

where um and vn are two independent χ2 distributed random variables with de-

grees of freedom (DF) m and n respectively. The F-statistic here will be formu-

lated in a way which is different from some other methods given by [40] [41].

To understand the test let us consider this example where we have N samples of

the linear model y(n) = g(0) + g(1)x(n, 1) + g(2)x(n, 2) + . . . + g(L)x(n, L). The

question is, under a specific level of significance γ, does the term g(l)x(n, l) add

a significant contribution to the model, i.e., is g(l) = 0? The answer is to apply
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the F-test for g(l) = 0 between the full and reduced models,

yf (n) =
L∑

i=0

g(i)x(n, i)

and

yr(n) =
L∑

i=0,i6=l

g(i)x(n, i)

(5.13)

In other words, we need to test simultaneously for l = 1, . . . , L the hypothesis,

Hl : g(l) = 0

against

Kl : g(l) 6= 0

(5.14)

To do that, we define the following,

• SS stands for sum of squares and DF for degree of freedom.

• SST =
N∑

n=1

|yf (n)− ȳf |2, SS total with DFf = N − 1, ȳf is the mean value

of yf (n).

• SSEf =
∑

n=1N

|yf − ŷf |2, SS of the residual error for the full model:

– yf (n) =
L∑

i=0

g(i)x(n, i) with DFr = N − 1− L

• SSEr =
∑ |yr(n)− ŷr|2, SS of the residual errors for the reduced model:

– yr(n) =
L∑

i=0,i6=l

g(i)x(n, i) with DFm = N − 1− (L− 1),

• SSRf = SST − SSEf Regression SS with DFf = L, (full model).

• SSRr = SST − SSEr Regression SS with DFr = L− 1, (reduced model).

• MSEf =
SSEf

N−1−L
Mean squared error with DF = N − 1− L.

• Fl =
(SSRf−SSRr)/(DFf−DFr)

MSEf
∼ F (DFf −DFr, DFm).

• Define P-value, Pl = Pr{f > Fl}, where f ∼ F (DFf −DFr, DFm).

• Test hypothesis [Hl : g(l) = 0] against [Kl : g(l) 6= 0]. In other words as

shown in Fig. 5.3,
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if Pl > γ ⇒ g(l) = 0

if Pl ≤ γ ⇒ g(l) 6= 0

Fl

γ

Pl < γ

Fl

Pl > γ

The test pdf

Figure 5.3: Comparing the F-statistic P-value with γ

5.4.2.1 BE method based on F-statistic

This procedure begins with the full model that includes all considered parameters

from g(1) to g(L). It then attempts to remove one parameter at a time by

determining whether the least significant variable currently in the model can be

removed or not because its P-value is greater or less than the user-specified or

default level of significance γ. Once a variable has been removed from the model

it cannot re-enter at subsequent steps. The procedure is shown in Fig. 5.4 and is

summarized in Table 5.4 as follows,

5.4.3 The bootstrap based method

For the given channel model in Section 5.2, the model length L can be very large,

but usually only a few channel parameters or paths are non-zero. The objective

is to identify the non-zero or significant channel parameters for an arbitrary large

L < N , given observations y(n) and x(n). In other words, under a global level of

significance γ, we need to test simultaneously for l = 1, . . . , L the hypothesis,
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Table 5.4: The F-statistic based procedure

Step 1: Assume the model length L and then estimate the full model parameters

ĝ = [ĝ(1) ĝ(2) · · · ĝ(L)]T .

Step 2: Use the F-statistic described before, find the P-values, P1, P2, . . .PL

for each parameter.

Step 3: Remove from the model the parameter that is insignificant, i.e Pl > γ

and has the highest P-value (one parameter at a time).

Step 4: Re-estimate the new model and again the parameter that is insignificant

and has the highest P-value is deleted.

Step 5: Continue until all remaining parameters are significant.

γ

1 2 3 L4

P1

P4

Set L

Start

Yes Any

P-value > γ

No

Use F-testRemove parameter

Estimate the model

find P-values

parameters

with maximum P-value

Stop

Figure 5.4: BE F-statistic based method

Hl : g(l) = 0

against

Kl : g(l) 6= 0

(5.15)

When there is minimal assumption about the additive noise, it is important to

use a good statistical technique to estimate the test distribution. The bootstrap

is a good technique that can be considered for these problems [38] [45]. The
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bootstrap is a recently developed statistical method that has many attractive

properties such as, it is a powerful technique for assessing the accuracy of a

parameter estimator in situations where conventional techniques are not valid.

Unlike the previous section which was based on a predefined F -statistic, this

section we use the bootstrap multiple hypotheses test to identify the significant

model parameters. The test can be summarized as follows.

First, we find the LSE ĝ of the parameters and form the test statistics,

T̂l =
|ĝ(l)|
σĝ(l)

, l = 1, ..., L. (5.16)

Then we calculate the residuals vr(n) as given by Eqn. 5.5, and draw resampled

data v?
r(n), using either the classical iid bootstrap or the surrogate data bootstrap

as shown in Figure 5.5.

Unlike with the classical bootstrap where we draw at random with replacement

samples or data blocks from vr(n), with surrogate data methods, we take the

Fourier transform of the residuals vr(n) and modulate them with a random phase,

distributed uniformly on [−π, π), then inverse Fourier transform to generate the

resampled v?
r(n) [51].

replacement
with
Draw

a) Classical Bootstrap.

Bootstrap

Data

Original

Data

Randomization
Fourier

Transform

b) Surrogate Bootstrap.

Phase
Fourier

Transform

Invers Surrogate

Data
Data

Original

Figure 5.5: Bootstrap randomization techniques

The last step is to calculate the bootstrap data y?(n) and re-compute the boot-

strap channel estimates ĝ? = [ĝ(1)? ĝ(2)? . . . ĝ(L)?]T . Repeating the procedure

B times leads to an approximate distribution of the test statistics, given by the

bootstrap statistics.

T̂ ?
l =
|ĝ(l)? − ĝ(l)|

σĝ(l)?

, l = 1, ..., L. (5.17)
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With T̂ ?
l and T̂l the P-values are calculated (see Fig. 5.6),

Pl =
1

B
#{T̂ ?

l ≥ T̂l} (5.18)

Then we check,

T̂l

γ

Pl < γ

T̂l

Pl > γ

The test pdf

Figure 5.6: Comparing bootstrap statistical test P-value with γ

if [Pl > γ] ⇒ g(l) = 0

if [Pl ≤ γ] ⇒ g(l) 6= 0.

The full procedure is summarized in Table 5.5.

5.4.4 Classical and Sequentially Rejective Bonferroni tests

In the previous hypothesis test, we test the null hypothesis Hl : g(l) = 0 against

the alternative Kl : g(l) 6= 0 w.r.t several parameters. When performing L multi-

ple independent tests H1,H2, . . . ,HL each at the γ level, the Family Wise Error,

FWE, which is the probability of making at least one Type I error (rejecting the

null hypothesis inappropriately) is 1− (1− γ)L which is � γ. However, in order

to maintain an FWE at a chosen level γ, if each hypothesis is tested separately

using tests with level γ
L
, then it follows immediately from the Boole inequality

that the probability of rejecting any true hypothesis is less than or equal to γ.

This constitutes a multiple test procedure with the global level of significance

γ for free combinations. The classical test is depicted in Fig. 5.8. In this test
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the hypotheses H1,H2, . . . ,HL, are assumed to be independent. For dependent

hypotheses the test becomes overly conservative and is less powerful [52][53][54].

A more powerful test is the Sequentially Rejective Bonferroni (SRB)test, which

can be used when the hypothesis tests are dependent [40]. Since the SRB test

requires only the P-values, then it can be used with the F -test or the bootstrap.

First we sort the P-values such that, P(1) < P(2) < . . . < P(L) and then to identify

the significant model parameters we follow the algorithm shown in Fig. 5.7.

Table 5.5: The bootstrap procedure

Step 1: Calculate,

The model LSE, ĝ = [ĝ(1) ĝ(2) ... ĝ(L)]T

The parameter variances, σ2
ĝ =diag{[XTX]−1σ̂2

y}

where, σ̂2
y ≈ 1

N−1

N∑

n=1

[

y(n)− 1
N

N∑

n=1

y(n)

]2

Step 2: Define the test statistic, T̂l = |ĝ(l)|
σĝ(l)

, l = 1, . . . , L.

Step 3: Calculate the residuals vr(n) and remove its mean value,

vr(n) = y(n)−
L∑

l=1

ĝ(l) x(n, l), n = 1, . . . , N

Step 4: From vr(n) draw the bootstrap resampled data v?
r(n), then calculate the

bootstrap data,

y?(n) =
L∑

l=1

ĝ(l) x(n, l) + v?
r(n), n = 1, ..., N

Then use y?(n) instead of y(n) as in Step 1: to find the bootstrap LSE ĝ? and

their σ2
ĝ?

Step 5: Define the bootstrap test statistic, T̂ ?
l = |ĝ(l)?−ĝ(l)|

σĝ(l)?
, l = 1, ..., L

Step 6: Repeat steps (4 and 5) B times to obtain T̂? where,

T̂? = [T̂?
1 T̂?

2 . . . , T̂?
L],

T̂?
l = [T̂ ?

l (1) T̂ ?
l (2) . . . T̂ ?

l (B)]T

Step 7: For a global level of significance, γ equal say 5%, estimate the P-values,

Pl = 1
B

#{T̂?
l ≥ T̂l} and compare,

if Pl > γ ⇒ retain Hl : g(l) = 0

if Pl ≤ γ ⇒ reject Hl : g(l) = 0
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Figure 5.7: Sequentially Rejective Bonferroni

tests (SRB)

No

Yes

Pi ≤ γ
L

Reject Hi
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Figure 5.8: Classical Bonferroni

test

5.5 Summary

The MDL and the AIC based methods are known to be simple techniques for

model selection. In some situations, they can have better performance over other

methods. However, some of the disadvantages of the MDL and the AIC are that,

(1) both are based on the Gaussianity assumption (2) they over/under estimate

the model order, also (3) they cannot control the level of significance. If one wants

to control the level of significance then it is better to use either the F-statistic or

the bootstrap based model selection techniques. The F-statistic and the bootstrap

can use the Sequential Rejective Bonferroni test which is a powerful technique

to control the global level of significance γ. In summary, one can choose any of

the above methods to identify the non-zero parameters of a certain model. This

selection of any method can be based on issues such as the the model selection
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accuracy, the hardware and software implementations.

5.6 Conclusion

In this chapter we addressed the problem of model selection. Four different ap-

proaches for model selection are presented. In these approaches low computation

complexity algorithms are developed based on the MDL, the AIC, F-statistic and

the bootstrap. The MDL and AIC based methods can normally used when the

model additive noise is Gaussian, but they do not control the level of significance.

Under some assumptions, the F-statistic based methods can identify the signifi-

cant model parameters and consider the level of significance. The performances

of the F-statistic based method are better when the additive noise is Gaussian.

Under minimal assumptions about the noise distribution and for a pre-defined

level of significance, the bootstrap technique is a powerful technique to identify

the significant model parameters.

Finally, all of the above model selection approaches are found to be capable of

identifying the principle (the MDL and AIC cases) or the significant (F -test

and bootstrap cases) model parameters with high probabilities. In the coming

chapters, we use the above model selection techniques to identify the significant

multipath parameters for parsimonious CDMA RAKE receivers.



Chapter 6

Channel Estimation and

Identification Using Frequency

Domain Sphericity Test and

F-Statistics Based Approaches

6.1 Introduction

This chapter presents a frequency domain based approach for channel estimation

resulting in an implementation of parsimonious DS-CDMA RAKE receivers. We

consider frequency selective slowly fading channels (see Chapter 3. We estimate

the channel delays and attenuation coefficients using the averaged periodogram

and modified time delay estimation techniques. We then use model selection

techniques to identify the model order and select the significant channel parame-

ters. These techniques include the use of the MDL sphericity test based method

and the multiple hypothesis tests F-Statistics based method discussed in Chap-

ter 5. Simulations show that for a pre-defined level of significance, the proposed

techniques correctly identify the significant channel parameters and the parsimo-

nious RAKE receiver shows improved performance over the ones derived using

the classical methods. The chapter is organized as follows. In Section 6.2, we in-

60
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troduce the model and assumptions. In Section 6.3, we describe RAKE receivers.

In Section 6.4, we present the estimation procedure. In Section 6.5 and 6.6, we

consider the classification of significant channel parameters. In Section 6.7, we

present simulation results before we conclude in Section 6.8.

6.2 Data Model

Consider K users in a baseband DS-CDMA up-link system operating with a

coherent binary data modulation format, where the kth user’s continuous time

baseband transmitted tarining signal is modelled as:

xk(t) =
N∑

i=1

Akbk(i) sk(t− iTs) , t ∈ R, (6.1)

where Ak represents the kth user’s amplitude, bk(i) ∈ {+1,−1} is the data block

with length N symbols and Ts is the symbol period. The normalized waveform

signature sk(t) is

sk(t) =
1√
M

M∑

m=1

ck(m)p(t− (m− 1)Tc) , t ∈ R, (6.2)

where M is the processing gain, ck(m) ∈ {+1,−1}, m = 1, 2, . . . ,M is the sig-

nature for user k. p(t) is the chip waveform with chip duration Tc = Ts

M
and is

assumed, without loss of generality, to be a raised cosine with roll off factor 0.35.

We consider frequency selective slowly fading channels (see Section 3.3) with a

maximum duration of τkdk
where dk represents the maximum delay index so that

the continuous-time asynchronous baseband signal at the receiver is given by

y(t) =
K∑

k=1

dk∑

l=1

gk(τkl, t) xk(t− τkl) + v(t), t ∈ R. (6.3)

Where, v(t) is a complex-valued additive Gaussian noise of calN (0, σ2
v) is indepen-

dent with the channel response. Herein, one can regard the multipath parameters

τkl nearly constant and gk(τkl, t) ≈ gk(τkl) during at least one signaling interval

[4], that is,

y(t) =
K∑

k=1

dk∑

l=1

gk(τkl) xk(t− τkl) + v(t), 0 ≤ t ≤ T , T = Ts + τkdk
, (6.4)
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After sampling with rate (r/Tc), r ≥ 1, then gk(τkl) can be written as gk(l). We

obtain at the receiver

y(n) =
K∑

k=1

dk∑

l=1

gk(l) xk

(

n− rτkl

Tc

)

+ v(n), n = 0, .., rM− 1, M = M + bτkdk

Tc

c

(6.5)

6.2.1 Objectives

The objective is to retrieve the transmitted symbols bk(i) from the baseband

signal in Eqn. (6.5) using a parsimonious RAKE receiver (see Fig. 6.1), given only

observations y(n) and training sequences xk(n) for k = 1, . . . , K, n = 0, . . . , rM−
1. We will assume that xk(n) and the additive noise v(n) are stationary and

independent under some regularity conditions for large rM.

ĝ∗k(2)

Tc TcTc Tc

∑

v(t)

∫
b̂k

p(t)

bk

ck(t)

ck(t)

ĝ∗k(4)

sig{<}

ĝ∗k(L)

Multipath

users

Other

ĝ∗k(3)ĝ∗k(1)

Figure 6.1: A single-user MRC based RAKE receiver with L taps
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6.3 Parsimonious RAKE Receivers

As the chip duration, Tc, is shortened, in new high rate systems such as 3G UMTS

systems (see Section 2.5.4), the maximum delay spread will be very long when

expressed in chips. Since the number of significant channel paths, dk is unknown,

then in theory the number of fingers, or taps, of decorrelator receivers such as the

RAKE receiver (see Chapter 4) will be limited to L = b τmax

Tc
c � dk, where τmax

is the maximum delay-spread of the channel [4]. In some situations L is greater

than the channel length itself which is do =
⌊

τkdk

Tc

⌋

. Consequently, this direct

implementation of a RAKE receiver will require many fingers to be implemented

and many coefficients to be estimated. In reality most of these coefficients are

either zero or insignificant as shown in Fig. 6.2, and this will lead to:

• Poor estimates of the channel response gk = [gk(1) gk(2) .... gk(L)]T

• Decorrelation of undesired signals through spurious fingers

• Increase in RAKE receiver complexity and reduction in performance

• Loss of synchronization

6.3.1 Solution

The solution to the above problem is to identify and estimate the non-zero or

significant parameters gk(l) and delays τkl, for k = 1, . . . , K, l = 1, . . . , L. This

will also require estimation of the channel length, define do and the number of

these significant parameters dk which is 5 true paths in the example shown in

Fig. 6.2.

Once these goals are achieved then, the RAKE receiver will have a minimal struc-

ture with number of fingers much less than L and less than do. The identification

of the principle or significant parameters can be achieved using model selection

techniques.

In this work we model the problem in the frequency domain, then for the iden-

tification of the significant parameters we use two different model selection tech-

niques:
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Figure 6.2: A scattered multipath propagation in a high SNR channel

• An MDL sphericity test based technique.

• A multiple hypothesis F -Statistics based technique.

Each technique requires an initial estimate of the channel parameters and this

will be covered in the following section.

6.4 Channel Estimation: A Frequency Domain Based

Approach

Consider user k to be the user of interest. After some manipulations, one can show

from Eqns. (6.1) and (6.4) that the cross spectral density between the training
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sequence xk(t) and the observed signal y(t) is given by

Cyxk
(ω) = Cxkxk

(ω)
dk∑

l=1

gk(l)e
−jωτkl + CR(ω),

where

CR(ω) =
K∑

k′=1,k′ 6=k

[

Cxk′xk
(ω)

dk′∑

l=1

gk′(l)e−jωτk′l

]

+ Cvxk
(ω)

(6.6)

Define Ĉyxk
(ω) and Ĉxkxk

(ω) as estimates for Cyxk
(ω) and Cxkxk

(ω), respectively.

Using the averaged periodogram [55] with length M to obtain Ĉyxk
(ω) and

Ĉxkxk
(ω), we establish the regression at discrete frequencies ωm = 2πm

M .

Gk(m) = Ĉyxk
(ωm)/Ĉxkxk

(ωm)

=
dk∑

l=1

gk(l)e
−j 2πm

M
τkl + εk(m), m = 0, . . . ,M− 1

(6.7)

where

εk(m) = ĈR(ωm)/Ĉxkxk
(ωm) (6.8)

are estimation errors due to noise and the cross spectra term. Herein εk(m), m =

0, . . . ,M− 1 is assumed to be independent and identically distributed, which is

valid asymptotically for large M under some regularity conditions (chapter 2)

in [56].

6.4.1 The estimation procedure

From Eqn. (6.7), since dk is unknown we assume the physical length L > dk

paths, we consider the frequency domain model

Gk(m) =
L∑

l=1

gk(l)e
−jΩklm + εk(m), m = 0, . . . ,M− 1 (6.9)

where, Ωkl = 2πτkl

M , l = 1, · · · , L are the unknown ”frequencies” to be estimated,

from which τkl, l = 1, · · · , L are found.

In (6.9) one can see that finding Ωkl is a frequency estimation problem. Solution

to this problem can be performed using methods such as MUSIC, ROOTMUSIC

or ESPRIT [58] [59] [60]. However, one can also use other different methods

to estimate these ”frequencies”. The estimation procedure based on the above

mentioned methods is summarized in Table 6.1.
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Table 6.1: Delays detection and estimation procedure
Step 1:

For a normalized sampling rate of r/Tc = 1, N training symbols, and

given the training sequence xk(n) and observations y(n), n = 0, . . . , NM− 1,

compute Ĉyxk
(ωm), Ĉxkxk

(ωm) using the averaged periodogram with lengthM
Step 2

Find Gk(m) = Ĉyxk
(ωm)/Ĉxkxk

(ωm), ωm = 2πm
M , m = 0, . . . ,M− 1.

Step 3:

Use MUSIC, ROOTMUSIC or ESPRIT techniques to estimate location of

peaks of Gk(m), Ωkl, then estimate the delays τkl = MΩkl

2π

Step 4:

Use LSE to estimate the multipath parameters for user k,

ĝk = [ĝk(1) ĝk(2) . . . ĝk(L)]T ,

ĝk =
[
AHA

]−1
AHGk

where,

(A)ml = e−jΩklm,m = 0, . . . ,M− 1, l = 1, . . . , L

Gk = [Gk(0) Gk(1) · · · Gk(M− 1)]T(M×1).

6.4.2 Remarks on the estimation procedure

By using directly the previous algorithm, we will end up with L different ”fre-

quencies” for each user, i.e., KL for all users. This will lead to a very long KL

channel parameters, where most of them are either zero or non-significant. Thus,

model selection techniques are required to decide which of these parameters are

to be consider in the model, in other words, which parameter is significant. In

the coming section we proposed two different approaches for this task, the first is

an MDL sphericity test based approach and the second is a multiple hypothesis

test F -Statistics based approach.
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6.5 An MDL Sphericity Test Based Approach

The MDL criteria has a widespread use in model selection techniques mainly

due to their intrinsic simplicity (see Chapter 5). The MDL criteria are mainly

applied by evaluating two terms: a data term which requires the maximization

of the log-likelihood and a penalty term which is a function of the complexity of

the model [16] [17].

For the proposed model in Eqn. (6.9) with parameters gk assigns the likelihood

f(Gk/gk) to the set of observed data Gk. The full form of the MDL measure for

such a model family is given as,

MDL(d) = − log(f(Gk/ĝk)) + p(d,M) (6.10)

where ĝk is an estimate of the parameters that maximize the likelihood, d is the

number of parameters in the model,M is the sample size and p(d,M) represents

the MDL penalty term. In this approach we use the sphericity test to represent

the likelihood function f(Gk/gk).

6.5.1 The sphericity test

The sphericity test (ratio) is a simple and powerful test for model selection [46],

the main use of this test is to check for variance or covariance multiplicity. To be

familiar with the test let us consider the model in Eqn. (6.9) expressed in matrix

notation,

Gk = Agk + εk (6.11)

where, Gk = [Gk(0) Gk(1) . . . Gk(M− 1)]T ,

A is anM× L matrix with Aml = e−jΩklm,

gk = [gk(1) gk(2) . . . gk(L)]T ,

εk = [εk(0) εk(1) . . . εk(M− 1)]T .

Define the covariance matrix R = E
{
GkG

H
k

}
,

R = Agkg
H
k AH + σ2

εk
I (6.12)

Since the true number of parameters, d, is unknown then we assume that R is a

rank-L matrix.
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The next step is then to use the SVD to find the eigenvalues of R and sort them

such that, λ(1) > λ(2) > . . . > λ(L).

These eigenvalues are biased and mutually correlated. Their finite sample joint

distribution is known in the Gaussian case and is represented as a series of zonal

polynomials [47] [48]. A mathematically tractable form for their asymptotic joint

distribution does exist in the Gaussian case [49], although it may be unreliable

for the small sample sizes considered here. In addition, this joint distribution is

sensitive to departures from Gaussianity [50].

Once the eigenvalues are found then the sphericity test, Tsph(d) is defined by,

Tsph(d) =








L∏

l=d+1

λ
1/(L−d)
(l)

1
L−d

L∑

l=d+1

λ(l)








(6.13)

where the numerator and the denumerator parts represent the geometric mean

and the the arithmetic mean respectively. When Tsph(d) ≈ 1, it means that the

geometric mean is the same as the arithmetic mean or in other words λ(d+1) =

λ(d+2) = . . . = λ(L) = σ2
εk

, i.e., the matrix R has a rank (d + 1) and the model

has only d principle parameters instead of L (see Chapter 5 for more details).

6.5.2 MDL based on the sphericity test

The MDL criteria use Tsph(d) as the likelihood function, then it can defined by,

MDL(d) = − log [Tsph(d)](L−d)N + p(d,M)

i.e.,

MDL(d) = − log





L∏

l=d+1
λ
1/(L−d)
(l)

1
L−d

L∑

l=d+1
λ(l)





(L−d)M

+ 1
2
d(2L− d) log(M)

(6.14)

and finally, an estimate of the number of principle parameters is given by,

d̂ = argmin
d∈{1,2,...,L}

MDL(d) (6.15)

Once d̂ is estimated, which obviously will be much less than L, then the fol-

lowing procedure can be followed to estimate the channel principle parameters

and based on these estimates, obtain parsimonious receivers. The estimation and

identification procedure is summarized in Table 6.2.
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Table 6.2: The MDL spherecity based estimation and identification procedure

Step 1: Select the user of interest say the k’th user and compute Ĉyxk
(ωm),

Ĉxkxk
(ωm) by the averaged periodogram technique over the symbol length M

given the training sequence xk(n) and observations y(n), n = 0, · · · , NM− 1.

Step 2: Find Gk(m) = Ĉyxk
(ωm)/Ĉxkxk

(ωm), ωm = 2πm
M , m = 0, ..,M− 1.

Step 3: Estimate the frequency domain covariance matrix R, and sort its

eigenvalues such that λ(1) > λ(2) > . . . > λ(L)

Step 4: For d = 1, 2, . . . , L use the MDL sphericity based method in Eqn (6.14)

to estimate the true number of delays (parameters), d̂.

Step 5: Supply the estimated number of delays d̂ and the covariance matrix

R to say the ROOTMUSIC algorithm and estimate the true channel delays.

Step 6: For each identified delay, estimate non-zero multipath parameters,

ĝk =
[
AHA

]−1
AHGk

where,

(A)ml = e−jΩklm, m = 0, . . . ,M − 1 and Ωkl = 2πτkl

M are identified delays only,

Gk = [Gk(0) Gk(1) · · · Gk(M− 1)]T .

6.6 Hypothesis Tests F -Statistics Based Approach

Assume the model in Eqn. (6.5) where for each user k there are L channel parame-

ters, gk = [gk(1) gk(2) . . . gk(L)]T . We need to identify whether a path parameter,

say, g(l) = gk(l), is significant in the model or not, i.e., we wish to test at a specific

level of significance γ the hypothesis

Hl : g(l) = 0

versus

Kl : g(l) 6= 0

(6.16)

where Hl represents the null hypothesis that there is no significant path parame-

ter at the corresponding delay τl and Kl is the alternative hypothesis that there

is a significant path at that delay.

To implement this test, first we define a test statistic, T , then we find the distri-
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bution of T under the null hypothesis Hl.

For each parameter, we calculate the probability values (P-values),

Pl = Pr(T ≥ Tg(l)|Hl), l = 1, 2, . . . , L (6.17)

where Tg(l) is the threshold for the parameter g(l) under the null hypothesis Hl,

see Fig. 6.3. The P-values are then compared to the level of significant γ such

that if Pl > γ , then we retain Hl, and if Pl ≤ γ we reject Hl

Tg(l)|Hl

γ

Pl < γ

Tg(l)|Hl

Pl > γ

The test pdf

Figure 6.3: Testing the probability value of g(l)

6.6.1 Classical and Sequentially Rejective Bonferroni tests

In the above hypothesis test just described, one can see that the test is to be

performed with respect to several parameters. When performing L multiple in-

dependent tests H1,H2, . . . ,HL each at the γ level of significance, the Family

Wise Error, FWE, which is the probability of making at least one Type I error

(rejecting the null hypothesis inappropriately) is 1 − (1 − γ)L is � γ. However,

in order to maintain an FWE at a chosen level γ, if each hypothesis is tested

separately using tests with level γ
L
, then it follows immediately from the Boole

inequality that the probability of rejecting any true hypothesis is less than or

equal to γ. This constitutes a multiple test procedure with the global level of
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significance γ for free combinations. The classical test is depicted in Fig. 6.5.

In this test the hypotheses H1,H2, . . . ,HL are assumed to be independent. For

dependent hypotheses the test becomes overly conservative and is less power-

ful [52] [54] [53].

A more powerful test is the Sequentially Rejective Bonferroni (SRB) test, which

can be used when the hypothesis tests are dependent. In this work we use a

SRB test based on F -Statistics [40] [51]. First we sort the P-values such that,

P(1) < P(2) < . . . < P(L). Then we follow the algorithm shown in Fig. 6.4 to

identify the significant model parameters.

Reject H(1)

Reject H(L)

No

No

No

Yes

Yes

Yes

Stop

P(1) ≤ γ
L

Reject H(2)

P(2) ≤ γ
L−1

P(L) ≤ γ
1

Sort P values

Start

Stop

Stop

StopRetain H(L)

Retain H(2), .., H(L)

Retain H(1), .., H(L)

Figure 6.4: Sequentially Rejective Bonferroni

tests (SRB)

No

Yes

Pl ≤ γ
L

Reject Hl

Start

Retain Hl

Figure 6.5: Classical Bonferroni

test
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6.6.2 Backward Elimination

Using the P-values, the Backward Elimination (BE) method can also be used

to identify the significant model parameters. The procedure begins with the full

model that includes all considered parameters from g(1) to g(L). It then attempts

to remove one parameter at a time by determining whether the least significant

parameter currently in the model can be removed or not because its P-value is

greater or less than the level of significance γ. Once a variable has been removed

from the model it cannot re-enter at a subsequent step. The procedure is shown

in Fig. 6.6 and can be summarized in Table 6.3 as follows,

Table 6.3: The Backward Elimination based method
Step 1: Set the model length L and then estimate the full model parameters

ĝk = [ĝk(1) ĝk(2) · · · ĝk(L)]T .

Step 2: Use a pre-defined statistical test, find the parameters

P-values,P1,P2, . . . ,PL.

Step 3: Remove from the model the parameter that is insignificant, i.e., Pl > γ

and has the highest P-value (one parameter at a time).

Step 4: Re-estimate the new model and again the parameter that is insignificant

and has the highest P-value is deleted.

Step 5: Continue until all remaining parameters are significant.

To construct the statistical test mentioned in this section and find the P-values

that Section 6.6.1 and Section 6.6.2 require, we need to consider the test statistics

distribution T under the null hypothesis Hl, i.e., the pdf of T |Hl. This task will

be addressed in the following section.

6.6.3 Calculation of the P-values

Suppose channel parameters have been estimated. The next step is to find the

P-values so that one can apply the BE or the SRBT as described in Section 6.6.

In this section we follow an F-Statistic to find the P-values see (Chapter 5

and [40] [41] [51]).
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Set L

Yes Any

P-value > γ

No

Find

Stop

with max P-value

parameters
Estimate the model

Start

P-values
Remove parameter

Figure 6.6: Backward Elimination based method for model selection

Assume we haveM samples of the linear model given in Eqn. (6.9). When com-

paring two models one of which is a reduced from the other, we consider the

following test statistic for T in Section 6.6,

T =
(SSRf − SSRr)/(DFf −DFr)

SSEf/DFm

, (6.18)

where

• SSRf and DFf are the Regression Sum Squared Error (SSR) and the num-

ber of degree of freedom (DF) of the full model respectively

• SSRr and DFr are SSR and DF of the reduced model respectively

• SSEf is the full model Sum Squared Error (SSE) with degree of freedom

DFm

Assume that the distribution of the model residual error is complex Gaussian for

a large data size under some regularity conditions [57]. The test statistic, T then

becomes a ratio between two χ2 distributions with DF equal to (DFf −DFr) and

DFm respectively, which corresponds to an F -distribution with DF (DFf −DFr)

and DFm, (see [41] [51] and Chapter 5 for more details), i.e.,

T ∼ F (DFf −DFr, DFm) (6.19)
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For calculation of the P-values, we reduce the full model by one parameter at a

time say gk(l), then we find the parameter’s P-value,

Pl = Pr
(
T > Fgk(l)|Hl

)
(6.20)

where Fgk(l) is calculated using Eqn. (6.18) for a model which does not include

the parameter gk(l).

Once one has found the full model P-values, P1,P2, . . . ,PL, then either the BE

or the SRBT in Section 6.6 based on the F -Statistics above can be used to find

the best fit model. Obviously this model includes only the significant parameters.

6.7 Simulation Results

The following examples demonstrate the performance of the delay estimation

algorithm in Section 6.4.1, the SRB test in section 6.6.1, and the performance

of the proposed minimal complexity RAKE receiver. In each example, the kth

user’s training data xk(t) is generated using Eqn. (1). Each symbol is modulated

by a Maximum Length Binary Sequence (MLBS) spreading code sk(t). In all

examples we show the first user results where dk represents the true number

of paths, do represents the channel length,L represents the physical number of

paths and Mg is the maximum lag which is used in MUSIC, ROOTMUSIC and

ESPRIT covariance matrices. Finally, the channel attenuation gk(t) corresponds

to a frequency selective slowly fading channel (see Section 3.3) and v(t) is a zero

mean complex Gaussian noise process. The SNR is the value of Es

σ2
n

in dB, where

Es represents the Energy per symbol and σ2
v is the noise power. The channel

response is generated such that each user’s channel response has a unit norm,

i.e., the SNR all multipaths/symbol.

6.7.1 The estimation approach performance

6.7.1.1 Example 1

This example investigates the proposed algorithm in Table 6.1 for delay detection

and estimation. It also considers the effect of increasing the number of users in
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the estimation results, the Multiple Access Cross Spectral Interference (MACSI)

contribution. The input settings and the channel parameters for this case are

given in Table 6.4. Simulation results for delay estimation are shown in Fig. 6.7

and Table 6.5.

6.7.1.2 Discussion of Example 1

In Example 1, we applied the estimation algorithm for K = 8 users. Results by

MUSIC, ROOTMUSIC and ESPRIT given in Fig. 6.7 and Table 6.5 show that

the contribution of the noise and the MACSI term, εk(m) clearly has a significant

effect. They produced undesired false peaks with semi-significant amplitudes for

delays τ > 10Tc. Results of this example show that, with these conditions, the

algorithm successfully estimated the channel delays. Since the results in Table 6.5

are quite similar when rounded for the RAKE receiver, then any of the frequency

estimation methods can be used. In this work, we use the MUSIC algorithm.

Table 6.4: Input settings and multipath parameters for Example 1

Input settings

K 8

N 64

M 32

do 10

dk 5

L 16

Mg 16

SNR(dB) 4

Delay τ1l Multipath parameters g1(l)

Tc −0.0027− j0.2281

2Tc 0

3Tc 0.2584 + j0.4406

4Tc −0.0078− j0.4460

5Tc 0

6Tc 0

7Tc 0

8Tc 0.3534− j0.0768

9Tc 0.0900− j0.2823
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Figure 6.7: Example 1: Delay estimation using MUSIC

Table 6.5: Example 1: Detection results

True Delays τk(l)/Tc 1 3 4 8 9

MUSIC 1.00 3.00 4.00 8.00 9.00 13.75 16.25 . . .

RMUSIC 1.0193 2.9705 3.9887 7.9949 9.0183 13.0457 16.2345 . . .

ESPRIT 1.0115 2.9592 3.9565 7.9833 9.0619 13.5788 16.5174 . . .

6.7.1.3 Example 2

This example consider the case where some delays are closer enough such that

the algorithm cannot correctly identify them. The input data and the channel

parameters are given in Table 6.6, simulation results are also shown Fig. 6.8 and

Table 6.7.

6.7.1.4 Discussion of Example 2

In situations where the channel delays are close enough or the MACSI has highly

significant effects, the algorithm may fail to detect one or more of the channel
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delays. This situation is presented in this example when the algorithm failed to

detect the channel delays at 3Tc and 6Tc. To overcome this problem one can either

increases the signal power (SNR), the training symbols and/or the sampling rate.

Table 6.6: Input settings and multipath parameters for Example 2

Input settings

K 8

N 64

M 32

do 10

dk 7

L 16

Mg 16

SNR(dB) 4

Delay τ1l Multipath parameters g1(l)

2Tc −0.5611 + j0.1865

3Tc −0.2246 + j0.2523

4Tc −0.2246 + j0.2523

5Tc 0.1649 + j0.1218

6Tc −0.1327− j0.4014

7Tc −0.2246 + j0.2523

8Tc 0

9Tc −0.2717− j0.0298
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Figure 6.8: Example 2: Delay estimation using MUSIC
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Table 6.7: Example 2: Detection results

True Delays τ1l/Tc 2.0 3.0 4.0 5.0 6.0 7.0 9.0

MUSIC 2.0000 3.7500 5.5000 6.7500 9.0000 16.2500 . . .

RMUSIC 2.0379 3.6943 5.3761 6.7405 8.9671 10.0804 . . .

ESPRIT 1.3019 2.1470 3.8838 5.5505 6.8140 8.9793 17.0152 . . .

6.7.2 Identification performance

6.7.2.1 Example 3

This example demonstrates the use of the MDL sphericity test described in Sec-

tion 6.5 and the SRB F -Statistics based test in Section 6.6.1 and Section 6.6.3

in identifying the significant channel parameters of a frequency selective slowly

fading channel introduced in a K = 1, 2, 3, 4 users system with maximum channel

length of do = 10 with dk = 3 significant paths, L = 16 required physical taps,

M = 32 chips and N = 32, 64, 96 and 128 symbols.The channel components are

given in Table 6.8. Let pk(l) be the probability of identifying each individual path

parameter gk(l) correctly, then one can show that the probability of identifying

the full channel parameters of user k correctly pf can be given by,

pf =
L∏

l=1

pk(l) (6.21)

Results are shown in Fig. 6.9, Fig. 6.10 and Fig. 6.11, Fig. 6.12 for γ = 0.05.

6.7.2.2 Discussion of Example 3

From the results, one can see that both of the identification tests work well at

a low SNR and short N compared with many techniques that are based on an

N ≥ 512 symbols. For example when N = 32 it is better to run the system

with an SNR > 4 dB and for N ≥ 64 symbols the system can run over an SNR

> 2 dB. In practice, many wireless communication systems operate with SNRs

greater than 8 dB. If the system is running at SNRs less than 4 dB, a longer

training sequence is then required. Using the averaged periodogram, long train-

ing sequences will reduce the effect of MACSI and the detection rate will be then
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Table 6.8: Input settings and multipath parameters for Example 3

Delay Multipath parameters gk(l) for

τ1l User 1 User 2 User 3 User 4

Tc -0.0207 - j0.4087 0 0 -0.2290 + j0.1217

2Tc 0 0.0347 + j0.4313 0.1423 -j0.0278 0.1732 - j0.2147

3Tc 0 0 0 -0.4983 - j0.1737

4Tc 0 0.0347 + j0.4313 -0.4201 + j0.4713 0

5Tc 0.5350 + j0.0278 0 0.6119 + j0.4301 0

6Tc 0.6730 + j0.3042 -0.5138 - j0.1791 0 -0.2825 + j0.4796

7Tc 0 -0.0842 - j0.3971 0 -0.3364 + j0.3774

8Tc 0 0 0 -0.0598 - j0.0957

9Tc 0 -0.0842 - j0.3971 0.1423 - j0.0278 0

10Tc 0 0 0 0
...

...
...

...
...

16Tc 0 0 0 0

enhanced. It is also clear that the F-Statistics SRB test based method has a

better performance over the MDL sphericity test based method. For a certain

level of significance, the F-Statistics based method can check separately the sig-

nificance of each individual parameter where the MDL method does not have a

level of significance also the full algorithm also gave the over all number of paths

instead of identifying each individual path. However both methods can be used

for the identification of the channel non-zero parameters with high probabilities

as shown in Figs. 6.10 and Figs. 6.12.

In Fig. 6.9 it is also clear that the MDL based method can correctly identify

the true number of paths and in Fig. 6.11 one can see that at low SNR’s the

F-Statistics SRB test can easily identify the channel zero or non-significant pa-

rameters with high probabilities.
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Figure 6.9: The probability of correctly detecting user’s one true delays (paths),

MDL method
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Figure 6.10: The probability of detecting all users delays (paths), MDL method
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Figure 6.11: The probability of correctly detecting user’s one non-zero parame-

ters (paths), SRB test
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6.7.3 System performance

To assess the performance of the proposed RAKE receiver which is based on the

identified parameters, the following examples compare the Bit Error Rate (BER)

when:

(1) Perfect knowledge of the channel, gP is used

(2) Channel estimated with the same known length do, ĝdo

(3) Channel estimated with length L, ĝL

(4) Channel estimated using the new frequency based approach, ĝn

The channel is assumed to be a frequency selective slowly fading channel with

parameters chosen randomly from the Rayleigh distribution. A summary of the

comparison procedure is shown in Table 6.9.

6.7.3.1 Example 4:

In this simulation we apply the procedure in Table 6.9 and the MDL sphericity

test based approach to calculate the performance of two different systems over

a frequency selective slowly fading channel. The first system has K = 2 users,

M = 32 chips, length do = 8 paths, L = 16 taps and N = 32 symbols, where the

second has K = 4 users, M = 32 chips, length do = 8 paths, L = 16 taps and

N = 32 symbols. In both cases the channel has dk = 3 significant paths. Results

are shown in Fig. 6.13 and Fig. 6.14 respectively for the first user.

6.7.3.2 Discussion of Example 4:

In Fig. 6.13 and Fig. 6.14. Simulation BERs show that the performance of the

proposed frequency domain MDL sphericity test based RAKE receiver is much

improved over other classical methods such as direct implementation and or when

the channel order is known. For K = 2 or 4 users, the new approach has the

smallest BER except for, when the channel is known exactly. Using a few training

symbols, N = 32, and increasing the number of users to 4, as in Fig. 6.14,

the MACSI reduces the quality of the estimated parameters which reduces the

performance of all methods.
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Table 6.9: The performance comparison procedure

• For k = 1, .., K, define the channel parameters:

1- gP for perfect channel.

2- ĝdo estimated with the same channel length do.

3- ĝL estimated with direct implementation of length L.

4- ĝn identified and estimated using the proposed frequency domain

approach.

• Let b = [b1 b2 . . . bK ]T(K×1) be the transmitted symbols

• Compute

- S = [s1 s2 . . . sK ](M×K), the normalized signature matrix.

- R = STS, the signature covariance matrix

• Consider the BER for the channel case, say, ĝL,

- ĝL = [ĝ1 ĝ2 . . . ĝK ](L×K),

- ĝk = [ĝk(1) ĝk(2) . . . ĝk(L)]T

- Find D = R−1WH

where,

W = [w1 w2 . . . wK ](M×K),

wk =











sk(1) 0

...
. . . sk(1)

sk(M)
...

0
. . . sk(M)











(M×L)

×











ĝk(1)

ĝk(2)
...

ĝk(L)











(L×1)

• Estimate the transmitted symbols,

- b̂ = sgn{<(D y)}
- y = [y(0) y(2) . . . y(M− 1)]T(M×1)

• Choose another estimated channel and compare the BER for each case.
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Figure 6.13: Example 4: BER in the case of 2 users, MDL sphericity test
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Figure 6.14: Example 4: BER in the case of 4 users, MDL sphericity test .
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6.7.3.3 Example 5

In this simulation we apply the previous procedure and the F-Statistics SRB

test based method to calculate the performance of two different systems over a

frequency selective slowly fading channel. In this simulation the channel response

is more difficult than the previous example since it has more users and more

significant channel paths. The first system has K = 8 users, M = 32 chips,

length do = 10 paths, L = 16 taps and N = 64 symbols, where the second has

K = 16 users, M = 32 chips, length do = 10 paths, L = 16 taps and N = 64

symbols. In both cases the channel has dk = 6 significant paths. Results are

shown in Fig. 6.15 and Fig. 6.16 respectively for the first user.

6.7.3.4 Discussion of Example 5:

In Fig. 6.15 and Fig. 6.16, simulation BERs show that the performance of the

proposed frequency domain based RAKE receiver is much improved over other

classical methods such as direct implementation and or when the channel order

is known. For K = 8 or 16 users, the new approach has the smallest BER except

for when the channel is known exactly. Using a few training symbols, N = 128,

and increasing the number of users to 16, as in Fig. 6.16, the MACSI reduced

the quality of the estimated parameters which reduced the performance of all

methods.

6.7.4 Structure limitation

When implementing RAKE receivers, there is a limitation to the number of fingers

that can be used. A practical RAKE receiver is usually a combination of a

software and hardware circuits that covers a certain delay range. According to

the estimated channel delays, the software part controls certain digital switches on

or off such that only these delays that are significant are considered. However in

rare situations the number of identified significant paths dk or the channel length

do itself, can be greater than the number of the implemented RAKE fingers. In

this situation we have to modify the algorithm such that it will only choose the
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Figure 6.15: Example 5: BER in the case of 8 users, F-Statistics SRB test
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Figure 6.16: Example 5: BER in the case of 16 users, F-Statistics SRB test.
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most significant paths. This task can be accomplished using each path’s P-value.

For clarification, let df be the number of the implemented RAKE fingers, then

one can stop the SRB test given before when the decision involves only the df

most significant paths. To become familiar with this situation let us consider the

following example.

6.7.4.1 Example 6

This example considers the above structure limitation for K = 4 and K = 2

users, N = 128 symbols, M = 32 chips, L = 12, df = 4 fingers do = 10 and

dk = 6 significant paths. In Fig. 6.17 the channel response is chosen so that one

of the six paths is very less significant, but in Fig. 6.18 all of the channel paths

are significant.

6.7.4.2 Discussion of Example 6

Due to some practical limitations, one may not be able to consider all identified

paths. Fig. 6.17 and Fig. 6.18 show the BERs of two RAKE receivers that consider

only df = 4 fingers out of the required 6 fingers of the full model. In Fig. 6.17 the

performance of the practical 4 fingers RAKE receiver is close to the new proposed

method than the classical method or the known length one. This situation can

happen when one or more paths are weak or not significant. In Fig. 6.18 where all

the channel paths are significant, the performance of the practical RAKE receiver

is still better than the direct method with L fingers, but not as good as the case

where dk fingers are considered or the fully identified channel.

6.8 Conclusion

This chapter addressed the problem of minimizing the RAKE receiver structure

complexity and enhancing its performance over classical methods. This is done

through the identification and estimation of the significant channel parameters.

A frequency domain based delay estimation approach is first proposed to esti-

mate the channel delays and attenuation. Then two model selection approaches
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Figure 6.17: Example 6: BER for K = 4, df = 4, dk = 6 with a weak path
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Figure 6.18: Example 6: BER for K = 2, df = 4, dk = 6 with no weak path
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including the MDL sphericity test based approach and the multiple hypothesis

F-Statistics based tests were used to achieve the identification goal. Both ap-

proaches are low in computation complexity since they only involves the FFT

to estimate the spectra. The F-Statistics SRB based approach is found to be

more robust than the MDL based method, firstly because it can control the level

of significance and secondly because it uses the SVD only once for the calcula-

tion of the channel delays using MUSIC algorithm. The identification and BER

simulation results support the claim that with short training data, the structure

complexity of the RAKE receiver is reduced and the system performance is also

enhanced. The usage of the significant multipath components only is strongly

recommended based on our findings.



Chapter 7

Channel Estimation and

Identification Using Time Domain

Bootstrap Based Approaches

7.1 Introduction

In this chapter we consider two bootstrap based approaches for the design of

parsimonious DS-CDMA RAKE receivers. We consider the case where the mul-

tipath propagation channels are frequency selective slowly fading. A training

based strategy is proposed to identify low order estimates of the channel param-

eters. This task is done in the situation where there are minimal information

about the noise distribution, in other words, no specific distribution of the sta-

tistical test as in Chapter 6 is considered. In this approach, we first model the

channel as an FIR filter with length related to the maximum delay spread of the

channel. Then with low complexity, we estimate the model parameters directly

in the time domain. Finally, based on the estimates, bootstrap based multiple

hypothesis tests are then applied to identify the non-zero coefficients of the FIR

filter, i.e., low order estimates of the channel response. The main advantage of us-

ing the bootstrap over other classical statistical methods is that, it can be applied

with minimal assumptions, to scenarios where no information is available about

90
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the underlying distributions [45]. Simulation results demonstrate the power of us-

ing this technique in identifying significant channel parameters for parsimonious

RAKE receivers in unknown noise environments.

The chapter is organized as follows. In Section 7.2, we introduce the model and

assumptions. In Section 7.3, we discuss the time domain based approach. In Sec-

tion 7.4 we discuss the bootstrap based multiple hypothesis tests. In Section 7.5

we give simulation results and discussion before we conclude in Section 7.6.

7.2 Data Model

The data model is the same model in Chapter 6. Thus, the baseband discrete

time received signal of a K users’ DS-CDMA up-link system operating with a

binary data modulation format is given by,

y(n) =
K∑

k=1

dk∑

l=1

gk(l) xk

(

n− rτkl

Tc

)

+v(n), n = 0, .., rM−1, M = M +

⌊
τkdk

Tc

⌋

(7.1)

where, xk(n) represents the training signals for k = 1, 2, . . . , K and gk(l), k =

1, 2, . . . , K, l = 1, 2, . . . , L represent the channel attenuation coefficients.

7.2.1 Objectives

By using only observations y(n) and training sequences xk(n) for k = 1, . . . , K, n =

0, . . . , rM− 1, the objective is to retrieve the transmitted symbols bk(i) from the

baseband received signal in Eqn. (7.1) using parsimonious CDMA RAKE re-

ceivers. Since CDMA RAKE receivers are based on estimates of the channel

response, then this approach can be translated as to identify and estimate only

the significant parameters of the channel. We will assume that xk(n) and the

complex noise process v(n) are stationary and independent with E{v(n)} = 0

and Var{v(n)} < ∞. Unlike the proposed methods in Chapter 6, where the

noise distribution and/or the statistical test distribution is known, the proposed

bootstrap method in this chapter will estimate the statistical test distribution

distributions under minimal assumption about the additive noise v(n).
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7.3 A Structured FIR Filter Model

Referring to Eqn. (7.1) and for a sampling ratio of r = 1, if we assume that the

channel delays, τkl are integer multiple of the chip duration Tc, i.e., τkl = lTc then

one can model the channel as an FIR filter,

y(n) =
K∑

k=1

L∑

l=1

gk(l)xk(n− l + 1) + v(n), n = 1, . . . ,M (7.2)

Since the true number of paths, dk is unknown, we assume the FIR model has

L taps where, L = b τmax

Tc
c � dk and τmax is the maximum delay-spread of the

channel [4]. Due the higher data rates in latest generation of mobile systems such

as UMTS, the length L will be very large. This length will lead to a very long

channel order with many parameters where only a few of them are non-zero or

significant. With short training sequences this will also lead to poor estimates of

the channel response and low system performance. Thus, under a certain level

of significance we need to identify and estimate these non-zero parameters gk(l)

for an arbitrary large L < M , given observations y(n) and the training sequences

xk(n), k = 1, ..., K , n = 1, . . . ,M .

In other words for a global level of significance, γ, we need to test simultaneously

for l = 1, . . . , L, k = 1, . . . , K,

Hk(l) : gk(l) = 0

against

Kk(l) : gk(l) 6= 0

(7.3)

whereHk(l) represents the null hypothesis that there is no significant path param-

eter gk(l) at the corresponding delay τkl, and Kk(l) is the alternative hypothesis

that there is a significant path at that delay.

To implement this test, first for each parameter gk(l), we define a test statistic,

Tkl. Then we find the distribution of Tkl under the null hypothesis Hk(l), i.e., the

pdf of Tkl|Hk(l).

Since the noise distribution is not known, we use the bootstrap technique to find

the above test distribution and construct the multiple hypothesis tests. These

tests require an estimate of the channel parameters gk(l). This is covered in the

following sections.
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7.3.1 Estimation of channel parameters

In this section we present two different methods to estimate the channel response,

gk(l), k = 1, . . . , K, l = 1, . . . , L. Since we previously assumed that the channel

delays, τkl are multiple integers of the chip duration, i.e., τkl = lTc then one can

use the following LSE based methods to estimate the channel response.

7.3.1.1 First method: Estimation based on signals

The first method is a straight forward LSE based on the training and the observed

signals which is given by,

ĝ =
[
XHX

]−1
XH y (7.4)

where,

ĝ =
[
ĝT

1 ĝT
2 . . . ĝT

K

]T
, ĝk =

[

ĝk(1)ĝ
(
k1) . . . ĝ

(
kL)

]T

,

y = [y(1) y(2) . . . y(M)]T ,

X = [X1 X2 ... XK ],

Xk =











xk(1) 0

...
. . . xk(1)

xk(M)
...

0
. . . xk(M)











(M×L)

7.3.1.2 Second method: Estimation based on cross-correlations

After some manipulations, one can show from Eqn. (7.2) that the cross-correlation

Ryxk
(m) between, say, the training sequence of user k, xk(n), and the observed

signal y(n) at a lag m, is given by,

Ryxk
(m) =

L∑

l=1

gk(l)Rxkxk
(m− l + 1) + εk(m), m = −Mg, . . . ,Mg

where,

εk(m) =
K∑

k′=1,k′ 6=k

[
L∑

l=1

gk(l)Rx′
kxk

(m− l)

]

+ Rvxk
(m)

(7.5)
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εk(m) are estimation errors due to the noise and the MAI terms. We assume

they are identically and independently distributed under some regularity condi-

tion [57].

In matrix form Eqn. (7.5) becomes,

Ryxk
= Rxkxk

gk + εk (7.6)

where Rxkxk
is the correlation matrix of dimension (2Mg + 1)× (L + 1), Ryxk

=

[Ryxk
(−Mg : Mg)]

T is the cross-correlation vector, Mg is the maximum lag and

gk = [gk(1) . . . gk(L)]T .

Define estimates R̂yxk
(m) and R̂xkxk

(m) for Ryxk
(m) and Rxkxk

(m) respectively.

Using the average techniques in [55] with length equal toM samples for R̂yxk
(m)

and R̂xkxk
(m), the channel response for user k is given by the LSE,

ĝk =
[
RH

xkxk
Rxkxk

]−1
RH

xkxk
Ryxk

(7.7)

Using either of the estimators in Eqn. (7.4) or Eqn. (7.7) one can estimate the

channel response. Once these estimates are available the next step is then to

construct the multiple hypothesis tests in Eqn. (7.3) to identify the significant

model parameters. In the following section we use the bootstrap technique for

that goal.

7.4 Bootstrap Based Multiple Hypothesis Tests

To form the hypothesis test given in Eqn. (7.3), we define the test statistics,

T̂kl =
|ĝk(l)|
σĝk(l)

, k = 1, ..., K, l = 1, ..., L. (7.8)

where σĝk(l) is the standard deviation of the parameter ĝk(l). Since the distribu-

tion of T̂kl is unknown then the bootstrap is an appropriate technique for this

task. The technique is simple and attractive. It starts first with the calculation

of the residual errors,

vr(n) = y(n)−
K∑

k=1

L∑

l=1

ĝk(l)xk(n− l + 1), n = 1, . . . ,M (7.9)
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We then draw the resampled data v?
r(n), n = 1, . . . ,M, using either the classical

iid bootstrap or the surrogate data bootstrap as shown in Fig 7.1. For more

details and see Chapter 5and [61] [62].
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Figure 7.1: Bootstrap randomization techniques.

With each resampled data we calculate the bootstrap signal, or the bootstrap

cross-correlations,

y∗(n) =
K∑

k=1

L∑

l=1

ĝk(l)xk(n− l + 1) + v?
r(n), n = 1, . . . ,M

or,

Ry?xk
(m) =

L∑

l=1

ĝk(l)Rxkxk
(m− l) + ε?

k(m), m = −Mg, . . . ,Mg

(7.10)

The bootstrap LSE ĝ?
k(l) is then calculated,

ĝ? =
[
XHX

]−1
XH y?

where,

ĝ? = [ĝ?
1; ĝ?

2; . . . ; ĝ
?
K ]

(7.11)

or by cross-correlation,

ĝ?
k =

[
RH

xkxk
Rxkxk

]−1
RH

xkxk
Ry?xk

(7.12)

Repeating the procedure say B times leads to an approximate distribution of the

test statistics, given by the bootstrap,

T̂ ?
kl =

|ĝ?
k(l)− ĝk(l)|

σĝ?
k(l)

, l = 1, ..., L , k = 1, ..., K. (7.13)

where the parameter variances σĝ?
k

=
[
σĝ?

k(1) σĝ?
k(2) . . . σĝ?

k(L)

]T
can be found, based

on how the channel parameters are estimated in Eqn. (7.11) and Eqn. (7.12).
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Based on the first estimator in Eqn. (7.11), the parameter variances can be esti-

mated by,

σ2
ĝ? = diag

([
XHX

]−1
σ̂2

y?

)

. (7.14)

For the second estimator in Eqn. (7.12), since the statistical properties of the

correlation and the cross-correlation functions Rxkxk
(m) and Ryxk

(m) and the

cross-correlation errors εk(m) are not the same as the signals x(n) and y(n) and

the noise v(n), the above variance expression will not hold. In this case, we can

also use the bootstrap to estimate these variances. In contrast, this task can be

done by resampling again from each bootstrap data v?
r(n) another new bootstrap

data v??
r (n). Repeating this procedure say Bσ time will lead to the bootstrap

estimates ĝ??
k (l)q, ĝ??

k (l)(q+1), . . . , ĝ??
k (l)#Bσ , where q represents the resampling

index number and

ĝ??
k =

[
RH

xkxk
Rxkxk

]−1
RH

xkxk
Ry??xk

,

ĝ??
k = [ĝ??

k (1) ĝ??
k (1) . . . ĝ??

k (L) ]T .
(7.15)

Finally the variances can be estimated by,

σ2
ĝ?(l) =

1

Bσ

Bσ∑

q=1

(

ĝ??
k (l)q − ĝ??

k (l)
) (

ĝ??
k (l)q − ĝ??

k (l)
)†

(7.16)

where † represents the complex conjugate and the mean is defined by,

ĝ??
k (l) =

1

Bσ

Bσ∑

q=1

ĝ??
k (l)q (7.17)

With T̂ ?
kl and T̂kl the probability values, P-values clarified by Fig. 7.2 are calcu-

lated,

Pkl =
1

B
#{T̂?

kl ≥ T̂kl} (7.18)

where, T̂?
kl = [T̂ ?

kl(1) T̂ ?
kl(2) . . . T̂ ?

kl(B)]T , k = 1, ..., K, l = 1, ..., L and finally to

control the global level of significance, the Bonferroni multiple hypothesis test is

used [52]. The full procedures are summarized in Table 7.1, Table 7.2 and shown

in Fig. 7.3, Fig. 7.4 and Fig. 7.5.
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Table 7.1: The bootstrap test procedure for the first method

Step 1: Given xk(n) and y(n), n = 1, · · · ,M calculate the channel LSE and its

variance,

ĝ =
[
XHX

]−1
XH y

σ2
ĝ = diag

([
XHX

]−1
σ̂2

y

)

where,

σ̂2
y = 1

M−1

M∑

n=1

[

y(n)− 1
M

M∑

n=1

y(n)

]2

X and y are the same as given before in sec. 7.3.1.1.

Step 2: Define the test statistic,

T̂kl = |ĝk(l)|
σĝk(l)

, k = 1, . . . , K, l = 1, . . . , L.

Step 3: Calculate the residual errors,

vr(n) = y(n)−
K∑

k=1

L∑

l=1

ĝk(l) xk(n− l + 1) , n = 1, · · · ,M
and remove the mean value of vr(n).

Step 4: From vr(n) draw the resampled data v?
r(n) [62], and calculate the boot-

strap data,

y?(n) =
K∑

k=1

L∑

l=1

ĝk(l) xk(n− l + 1) + v?
r(n), n = 1, · · · ,M

Then find the bootstrap LSE and its variance

ĝ? =
[
XHX

]−1
XH y?

σ2
ĝ? = diag

([
XHX

]−1
σ2

y?

)

Step 5: Define the bootstrap test statistics,

T̂ ?
kl =

|ĝ?
k(l)−ĝk(l)|

σĝ?
k
(l)

, k = 1, ..., K, l = 1, ..., L

Step 6: Repeat steps (4 to 5) B times to obtain T̂ ?
kl such that,

T̂?
kl = [T̂ ?

kl(1) T̂ ?
kl(2) . . . T̂ ?

kl(B)]T , k = 1, ..., K, l = 1, ..., L

Step 7: Calculate the P-values, Pkl = 1
B

#{T̂?
kl ≥ T̂kl} and for a global level of

significance γ, say 5%, construct the Bonferroni tests as shown in Fig. 7.4 and

Fig. 7.5 (see Chapter 5 for more details).

Step 8: Using the multiple hypothesis test with Bonferroni test results in Step

7:, identify the model order and the non-zero parameters and then re-estimate

the significant channel parameters with the new low order estimate.
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Table 7.2: The bootstrap test procedure for the second method

Step 1: Given xk(n) and y(n), n = 1, · · · ,M calculate the channel LSE,

ĝk =
[
RH

xkxk
Rxkxk

]−1
RH

xkxk
Ryxk

Step 2: Calculate the residual errors,

vr(n) = y(n)−
K∑

k=1

L∑

l=1

ĝk(l) xk(n− l + 1) , n = 1, · · · ,M
Step 3: From vr(n) draw the resampled data v?

r(n) and calculate the bootstrap

data,

y?(n) =
K∑

k=1

L∑

l=1

ĝk(l) xk(n− l + 1) + v?
r(n), n = 1, · · · ,M

then find the bootstrap LSE,

ĝ?
k =

[
RT

xkxk
Rxkxk

]−1
RH

xkxk
Ry?xk

Step 4: For q = 1, 2, . . . Bσ repeat Step 3, then find the parameter variances

using the bootstrap procedure in Eqn. (7.16) and Eqn. (7.17).

σ2
ĝ(l) = 1

Bσ

Bσ∑

q=1

(

ĝ?
k(l)q − ĝ?

k(l)
) (

ĝ?
k(l)q − ĝ?

k(l)
)†

,

ĝ?
k(l) = 1

Bσ

Bσ∑

q=1

ĝ?
k(l)q

Step 5: Define the test statistic,

T̂kl = |ĝk(l)|
σĝk(l)

, k = 1, . . . , K, l = 1, . . . , L.

Step 6: Resample as Step 3: and find the bootstrap LSE,

ĝ?
k =

[
RH

xkxk
Rxkxk

]−1
RH

xkxk
Ry?xk

Step 6-1: For each resample in Step 6, resample a new Bσ times from the

bootstrap residuals v?
r(n) a new bootstrap data v??

r (n) then find the bootstrap

parameter variances using the bootstrap procedure in Eqn. (7.16) and 7.17.

Step 7: Define the bootstrap test statistics,

T̂ ?
kl =

|ĝ?
k(l)−ĝk(l)|

σĝ?
k
(l)

, k = 1, ..., K, l = 1, ..., L

Step 8: Repeat steps (6 to 7) B times to obtain T̂ ?
kl such that,

T̂?
kl = [T̂ ?

kl(1) T̂ ?
kl(2) . . . T̂ ?

kl(B)]T , k = 1, ..., K, l = 1, ..., L

Step 9: Calculate the P-values, Pkl = 1
B

#{T̂?
kl ≥ T̂kl} and for a global level of

significance γ, say 5%, construct the Bonferroni tests as shown in Fig. 7.4 and

Fig. 7.5.

Step 10: Using results of Step 9, identify and estimate the significant channel

parameters.
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7.5 Simulation Results

7.5.1 Estimation and identification performances

To check the accuracy of the statistical bootstrap techniques, the following sim-

ulations are conducted in a DS-CDMA system with K = 4 users. The training

signals xk(t) are assumed to be sequences of random symbols bk(j) ∈ {+1,−1}
modulated by a maximum length binary sequence (MLBS) as spreading codes

waveform, sk(t) ∈ {+1,−1}. These signals are transmitted over a frequency-

selective slowly fading channel of length do = 6 and with parameters shown in

Table 7.3, and additive circular Gaussian noise.

Table 7.3: Multipath parameters for Example 1

gl1 gl2 gl3 gl4

-1.163-j0.917 1.133-j0.956 0.637+0.385 0.303+1.816

-0.071-j0.701 0 0.374-j0.235 -0.656-j1.640

-0.052+j0.277 0 0 0.015+j0.360

0 -0.319+j0.204 1.775-j0.769 -0.925-j0.091

-0.227+j0.490 -0.071-j0.703 0 0.205+j0.630

1.774-j0.769 -0.925-j0.092 0.478-j0.025 -0.656-j1.640

7.5.1.1 Example 1

To check how powerful is the bootstrap technique in estimating the distribution of

a certain estimated parameter, the bootstrap randomization methods mentioned

in Section 7.4 are used to estimate the mean ĝk(l) and the variance Var{ĝk(l)} =

σ2
ĝk(l) of two parameters, g1(1) = −1.163− j0.917 and g3(2) = 0. The mean and

variance based on the bootstrap estimates can be defined by,

ĝk(l) = E{ĝ?
k(l)}

and

σ2
ĝk(l) = E

{(

ĝ?
k(l)− ĝk(l)

) (

ĝ?
k(l)− ĝk(l)

)†
}

(7.19)
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Repeating the bootstrap randomization B times, this can be approximated by,

ĝk(l) ≈ 1
B

B∑

q=1

ĝ?
k(l)q

and

σ2
ĝk(l) ≈ 1

B

B∑

q=1

(

ĝ?
k(l)q − ĝk(l)

)(

ĝ?
k(l)q − ĝk(l)

)†

(7.20)

where, ĝ?
k(l)q is the bootstrap estimates at a randomization index number q.

Fig. 7.6 and Fig. 7.7 present histograms of the estimated ĝ1(1), Fig. 7.8 and

Fig. 7.9 present histograms of the estimated ĝ3(2) using the bootstrap when

M = 32, N = 64 symbols, B = 100 at SNR=4dB for the following two different

noise cases:

• Uncorrelated zero mean circular complex Gaussian noise with a unity vari-

ance.

• Correlated zero mean circular complex Gaussian noise generated by passing

a zero mean circular complex Gaussian noise with a unit variance through

an AR process of order 8 with parameters, a1 = −3.4846, a2 = 7.3032, a3 =

−10.4278, a4 = 10.9317, a5 = −8.4956, a6 = 4.7928, a7 = −1.8176, a8 =

0.3749.

7.5.1.2 Discussion of Example 1

In the results shown in Fig. 7.6, 7.7, 7.8 and 7.9, one can see that the bootstrap

techniques can give sufficient statistics such as the mean and the variance of the

estimated parameters. These results are obvious when the parameter is significant

as shown in Fig. 7.6 for ĝ1(1) or when the parameter is not significant or zero as

shown in Fig 7.8 for ĝ3(2). The results in Fig. 7.7 and Fig. 7.9 also show that the

technique is not affected by the situation when the additive noise is correlated.

In conclusion, one can see that the bootstrap is a good technique for estimating

the mean and the variance which are the two important factors for the required

statistical test in Eqn (7.13).
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7.5.1.3 Example 2

Using the input data of Example #1, Table 7.4 compares the percentages of

correct identification of the exact order and the channel non-zero parameters

using the classical iid bootstrap and surrogate bootstrap methods. Techniques

used for comparison are:

• Classical Bonferroni test based on Classical iid Bootstrap (CBCB)

• Classical Bonferroni test based on Surrogate Bootstrap (CBSB)

• Sequentially Rejective Bonferroni test based on Classical iid Bootstrap (SR-

BCB)

• Sequentially Rejective Bonferroni test based on Surrogate Bootstrap (SRBSB).

The classical Bonferroni test can be used when the statistical tests are indepen-

dent. Otherwise the SRB test is used. The two procedures are shown in Fig. 7.3

and Fig. 7.4.

7.5.1.4 Discussion of Example 2

The results in Table 7.4 show that the performance of the classical and the se-

quential Rejective Bonferroni tests is almost the same. This is valid for both

randomization methods, the classical iid and the surrogate data bootstrap. This

situation can happen when the multiple hypothesis tests are independent. Re-

sults also show that the iid bootstrap resampling method performs better than

the surrogate data bootstrap method. At larger SNR, clearly, the percentage of

correct identification is increased.

7.5.1.5 Example 3

This example demonstrates the use of the bootstrap SRB test in identifying

the significant channel parameters of a frequency selective slowly fading channel

introduced in a K = 1, 2, 3, 4 users system with maximum channel length of

do = 10, dk = 3 significant paths, L = 16 required physical taps, M = 32
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Table 7.4: Percentage of correct identification in (%)

Case SNR in dB CBCB CBSB SRBCB SRBSB

0 82 84 81 81

2 95 94 95 86

Uncorrelated 4 98 91 96 87

6 99 93 95 85

8 99 94 95 89

10 98 91 96 87

0 82 75 78 72

2 92 83 86 77

Correlated 4 89 86 84 76

6 93 83 85 74

8 92 84 85 75

10 94 85 84 77

chips and N = 32, 64, 96 and 128 symbols. The channel components are given

in Table 7.5. Let pk(l) be the probability of identifying each individual path

parameter gk(l) correctly, then one can show that the probability of identifying

the full channel parameters of user k correctly pf can be given by,

pf =
L∏

l=1

pk(l) (7.21)

The results are shown in Fig. 7.10 and Fig. (7.11) for γ = 0.05.

7.5.1.6 Discussion of Example 3

From the results, one can see that the bootstrap SRB test is a powerful statistical

test in identifying the significant and the nonsignificant channel parameters with

high probability. The identification test works well at low SNRs and short N

symbols compared with many other techniques that are based on larger number

of symbols and/or with pre-defined statistical tests. In Fig. 7.10 and 7.11 one can
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see that, for a better performance, say, when N = 32 symbols, it is better to run

the system with an SNR > 4 dB, and for N ≥ 64 symbols the system can run

over an SNR > 2 dB . In practice, many wireless communication systems operate

with SNRs greater than 8 dB but if the system is running at SNRs less than 4

dB, a longer training sequence is then required or a higher level of significance

can be assumed.

Table 7.5: Multipath parameters for Example 3.

Delay Multipath parameters gk(l) for

τ1l User 1 User 2 User 3 User 4

0 0 0 0 0

Tc -0.0207 - j0.4087 0 0 -0.2290 + j0.1217

2Tc 0 0.0347 + j0.4313 0.1423 -j0.0278 0.1732 - j0.2147

3Tc 0 0 0 -0.4983 - j0.1737

4Tc 0 0.0347 + j0.4313 -0.4201 + j0.4713 0

5Tc 0.5350 + j0.0278 0 0.6119 + j0.4301 0

6Tc 0.6730 + j0.3042 -0.5138 - j0.1791 0 -0.2825 + j0.4796

7Tc 0 -0.0842 - j0.3971 0 -0.3364 + j0.3774

8Tc 0 0 0 -0.0598 - j0.0957

9Tc 0 -0.0842 - j0.3971 0.1423 - j0.0278 0

10Tc 0 0 0 0
...

...
...

...
...

16Tc 0 0 0 0
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7.5.2 System performance

To assess the performance of the proposed RAKE receiver which is based on the

identified parameters, the following examples compares the Bit Error Rate (BER)

for systems with:

• Perfect knowledge of the channel

• Channel estimated with known length do

• Channel estimated with length L

• Channel identified and estimated using the proposed bootstrap approach.

The comparison algorithm is summarized in Table 7.6. In the following simula-

tions the channel is assumed to be a frequency selective slowly fading channel

with parameters chosen randomly from the Rayleigh distribution.

7.5.2.1 Example 4:

In this simulation we apply the full bootstrap procedure to calculate the perfor-

mance of two different systems over a frequency selective slowly fading channel.

The first system has K = 4 users, M = 32 chips, length do = 8 paths, L = 16

taps and N = 64 symbols, while the second has K = 8 users, M = 32 chips,

length do = 8 paths, L = 16 taps and N = 64 symbols. In both cases the channel

has dk = 4 significant paths. The results are shown in Fig. 7.12 and Fig. 7.13

respectively for the first user.

7.5.2.2 Discussion of Example 4

In Fig. 7.12 and Fig. 7.13, simulation BERs show that the performance of the

proposed frequency domain based RAKE receiver is much improved over other

classical methods such as direct implementation based RAKE and/or when the

channel order is known. For K = 4 or 8 users, the new approach has the smallest

BER except for when the channel is known exactly. Using a few training symbols,

N = 64, and increasing the number of users to 8, as in Fig. 7.13, the MAI reduced
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Table 7.6: System performance

For k = 1, . . . , K, define the channel parameters:

1- gP for perfect channel.

2- ĝdo estimated with the true channel length do.

3- ĝL estimated with direct implementation of length L.

4- ĝB estimated using the proposed bootstrap approach.

• Let b = [b1 b2 . . . bK ]T(K×1) be the transmitted symbols

• Calculate

- S = [s1 s2 . . . sK ](M×K), the normalized signature matrix.

- R = STS, the signature covariance matrix

• Consider the BER for one of the channel cases say ĝL,

- ĝL = [ĝ1 ĝ2 . . . ĝK ](L×K)

- ĝk = [ĝk(1) ĝk(2) . . . ĝk(L)]T

- Find D = R−1GH

where

G = [G1 G2 . . . GK ](M×K),

Gk =











sk(1) 0

...
. . . sk(1)

sk(M)
...

0
. . . sk(M)











(M×L)

×











ĝk(1)

ĝk(2)
...

ĝk(L)











(L×1)

Estimate the transmitted symbols,

- b̂ = sgn{<(D y)}
where,

- y = [y(1) y(2) . . . y(M− 1)]T(M×1)

• Choose another estimated channel and compare the BER for each case.
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the quality of the estimated parameters which reduced the performance of all

methods.
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Figure 7.12: BER in the case of 4 users
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Figure 7.13: BER in the case of 8 users
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7.6 Conclusion

A bootstrap time-domain based approach is proposed for the identification and es-

timation of the significant multipath parameters in multiuser DS-CDMA systems.

The approach is used to enhance the RAKE receiver performance over other clas-

sical methods. The proposed approach used the bootstrap resampling techniques

to estimate the unknown distribution of the test statistic. The bootstrap is found

to be more flexible than classical statistical methods as it is able to compute a

statistic and estimate its sampling distribution without any assumption on the

model or knowledge of the noise distribution. Two different bootstrap resampling

techniques are used: the classic bootstrap and the surrogate data bootstrap. The

approach is also simple since it assumes the channel as an FIR filter with taps

located at multiple integers of the chip duration. Results show that with the

proposed approach the performance of the parsimonious RAKE receiver can in-

creased substantially with a small processing gain. Increasing the processing gain

or at higher SNR, the accuracy of the estimates obviously increases.



Chapter 8

Blind Adaptive Channel Estimation

Approaches

.

8.1 Introduction

Channel propagation effects dominate as one of the major factors that limit sys-

tem performance. These effects can result in many different type of fading such

frequency selective and frequency non-selective fading [4]. Compensation of chan-

nel fading due to multipath propagation as discussed in the previous chapters,

is possible through the use of decorrelator receivers such as the RAKE receiver.

These receivers require estimation of the channel response.

There has been and still intensive research on channel estimation. Some are

training based methods, while others are blind or semi-blind methods [63]-[84].

However, more attention is being paid to blind and semi-bind channel estimation

techniques since they reduce the complexity of the system, increase its capacity

and minimize the amount of data checking between the transmitters and the

receivers. The presence of multipath delays, unfortunately, destroys the assumed

orthogonality between the users’ spreading codes. As a result, the accuracy of

training based estimators is severely limited by the cross interference between

data and pilot symbols.

113
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Our goals in this chapter are first to derive low computational complexity blind

adaptive channel estimation algorithms. We then use these algorithms to im-

plement low complexity receivers such as RAKE receivers for multiuser CDMA

systems. This will be achieved by employing constrained optimization techniques

based on minimum variance (MV) receivers [63] [64]. We recursively minimize

the output variance of the received signal subject to some constraints which are

also jointly updated. Four different algorithms are proposed in this chapter from

different viewpoints, then the results are compared with some previously pro-

posed algorithms [63] [64] [65] [66] [67]. Finally the new algorithms are used to

track frequency selective varying fading channels. The proposed algorithms are

applied to the design of adaptive blind estimation based RAKE receivers.

The chapter is organized as follows. In Section 8.2, we introduce the model

and assumptions. In Section 8.3, we discuss the MV receivers. In Section 8.4

we review some of the current existing blind channel estimation algorithms. In

Section 8.5 we present the new algorithms. In Section 8.7 we present simulation

results and a discussion and finally we we conclude in Section 8.8.

8.2 Data Model

Consider the up-link received signal of a K-user DS-CDMA system shown in

Fig. 8.1.

bk

v(t)

yk(t)

ck(t)

Ts

Tc

gk(t)
sk(t)

Figure 8.1: Data model

Herein, and after sampling,

y(n) =
K∑

k=1

yk(n) + v(n) (8.1)
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where

yk(n) =
∞∑

m=−∞
bk(m)sk(n−mTs) (8.2)

is the k’th user received complex signal, bk(m) ∈ {1,−1} is the transmitted

symbol, Ts is the symbol duration, and sk(n) is given by

sk(n) =
∞∑

l=−∞
gk(l)ck(n− lTc) (8.3)

where gk(n) is the channel response, ck(n) is the k’th user unit energy spreading

code of length N and Tc = Ts

N
is the chip duration.

Let user k be the user of interest. Then,

y(n) = s
(n)
k bk(n) + s

(n−1)
k bk(n− 1) + s

(n+1)
k bk(n + 1)

︸ ︷︷ ︸

ISI

+
K∑

k′=1,k′ 6=k

{

s
(n)
k′ bk′(n) + s

(n−1)
k′ bk′(n− 1) + s

(n+1)
k′ bk′(n + 1)

}

︸ ︷︷ ︸

MAI

+v(n).

(8.4)

i.e.,

y(n) = s
(n)
k bk(n) + ISI + MAI + v(n), (8.5)

where for q different paths,

y(n) = [y(1) y(2) · · · y(N + q − 1)]T

s
(n)
k = Ckgk

Ck =











ck(1) 0

...
. . . ck(1)

ck(N)
...

0
. . . ck(N)











(N+q−1)×q

gk =











gk(1)

gk(2)
...

gk(q)











(q×1)

s
(n−1)
k = [sk(N) · · · sk(N + q − 1) 0 · · · 0]T

s
(n+1)
k = [0 · · · 0 sk(1) · · · sk(q)]

T

v(n) is the complex noise process with E{v(n)} = 0 and Var{v(n)} < ∞ is

assumed independent with sk(n).



8.3 Minimum Variance Receivers 116

8.3 Minimum Variance Receivers

The idea of estimating the transmitted symbols bk(n) is to find a complex vector

f of length (N + q − 1) such that

b̂k(n) = fHy(n) (8.6)

For MV receivers [63] [64], it has been shown that the vector f can be found by

minimizing the variance of the zero mean output symbols b̂k(n), or in other words

minimizing the cost function ζ given by,

ζ = E
{

||b̂k(n)||2
}

= fHRyf

where

Ry = E
{
y(n)yH(n)

}

(8.7)

The minimization of ζ is subject to the constraint that the response of the user

of interest, k, has to be constant, i.e.,

fHCkgk = 1 (8.8)

Since the solution of Eqn. (8.8) includes a scaling factor and a phase ambiguity

in g, then assuming that gHg = 1, Eqn. (8.8) becomes

CH
k f = gk (8.9)

8.3.1 Optimum solution

Using Lagrange multipliers, it has been shown in [63] that for a given unknown

channel response g = gk with toeplitz spreading matrix C = Ck, the optimum

solution to the vector f is

fopt = R−1
y C

(
CHR−1

y C
)−1

g. (8.10)

This optimum solution leads to the minimum output variance,

ζopt = fH
optRyfopt = gH

(
CHR−1

y C
)−1

g (8.11)
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8.4 Existing Algorithms

8.4.1 Adaptive LMS algorithms

In [64] [65] [68], different adaptive algorithms are proposed for the estimation of

f and g. The first three LMS algorithms are based on the following similar cost

functions,

ζ1 = fHRyf + λH
(
CHf − g

)
+ λ

(
fHC− gH

)
+ ρ

(
gHg − 1

)
, (8.12)

ζ2 = fHRyf + λH
(
CHf − g

)
+ λ

(
fHC− gH

)
, (8.13)

ζ3 = gH
(
CHC

)−1
CHRyC

(
CHC

)−1
g + uHCH

n RyCnu

−gH
(
CHC

)−1
CHRyCnu− uHCH

n RyC
(
CHC

)−1
g.

(8.14)

The main idea of estimating f and g using the above cost functions was to mini-

mize any of them w.r.t f and maximize it w.r.t g.

Firstly one initializes f and g with certain values, then when a new symbol arrives

at the instant (n+1), their values can be updated according to the following LMS

algorithm,

fn+1 = fn − µf∇f∗ζ (8.15)

gn+1 = gn + µg∇g∗ζ (8.16)

and for the third cost function ζ3

fn+1 = C
(
CHC

)−1
gn+1 −Cnun+1

where

un+1 = un − µu∇u∗ζ, (8.17)

∇x∗ζ is the partial gradient vector of ζ w.r.t the vector x∗, or ∇x∗ζ = ∂ζ
∂x∗ .

8.4.2 Adaptive RLS algorithm

In [64] [69] an RLS algorithm was also used. In this algorithm the channel

parameters g is found as the eigenvector which corresponds to the minimum

eigenvalue of the quadratic function CHR−1
y C.

The main problem with this method was the calculation of R−1
y where, a Kalman
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RLS recursive algorithm was used. After initializing R−1
y (n − 1), the algorithm

can be summarized as follows,

k(n) =
R̂−1

y (n− 1)y(n)

v + yH(n)R̂−1
y (n− 1)y(n)

(8.18)

R̂−1
y (n) =

1

v
R̂−1

y (n− 1)
[
I− k(n)yH(n)

]
(8.19)

gopt = argmin
||g||=1

gHCHR−1
y (n)Cg (8.20)

It has been suggested that if q, the length of g is small enough then the SVD

method can be applied to estimate gopt.

The optimum response gopt is considered as the eigenvector which corresponds to

the minimum eigenvalue of the quadratic matrix
[
CHR−1

y (n)C
]

(q×q)

8.4.3 A subspace based algorithm

In [65] [66] [67] [68], the optimum channel parameters gopt are determined by

gopt = argmin
||g||=1

gHCHR−m
y Cg (8.21)

The difference between this algorithm and the previous RLS algorithm is that,

R−m
y is found using the subspaced Eigen Value Decomposition (EVD) technique.

First the covariance matrix Ry is decomposed by EVD as

Ry = [Us Un]




Λs + σ2

vI 0

0 σ2
vI








UH

s

UH
n



 (8.22)

where Λs = diag{λ2
1, . . . , λ

2
q} , Us and Un represent the signal and noise subspaces

respectively. R−m
y is determined using the noise subspace as

σ2m
v R−m

y = UnU
H
n + Us diag

{(
σ2

v

λi + σ2
v

)m}

UH
s (8.23)

Since
(

σ2
v

λi+σ2
v

)m

< 1

lim
m→∞

σ2m
v R−m

y = UnU
H
n (8.24)

Once Un is found, gopt can be estimated as the eigenvector which corresponds to

the minimum eigenvalue of the quadratic matrix CHUnU
H
n C.
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8.4.4 Disadvantages of the existing methods

In the previous algorithms there are some disadvantages that can be summarized

as follows,

• In [64], the three LMS cost functions gave the same results. So one can

consider only the low costs one.

• Cost functions in the previous approaches depend on the true error terms,

for example the term

λH
(
CHf − g

)
+ λ

(
fHC− gH

)
+ ρ

(
gHg − 1

)
in ζ1 and similar terms in ζ2

and ζ3. In adaptive LMS algorithms [70], it is better to consider the square

of the error rather than the error itself specially when the additive noise is

Gaussian. Using the error squares will also speed up the convergence rate

• From costs and estimation quality point of views

– The vector f or u has the same dimension (N + q− 1) as the received

vector y(n) in [64] and this will increase the computation costs

– For each received symbol, the adaptation of f and g will require around

(N + q − 1) and (q × 1) processing cycles respectively

– In each adaptation cycle we need as well a (q× 1) λ’s to be calculated

– In case of long spreading code systems such as UMTS [6], calculations

of fwill slow down the convergence rate

– The LMS algorithms require estimation of two dependent vectors f

and g

– In new higher bit rate CDMA systems such as 3G, the channel physical

length q is large and this makes the SVD techniques costly

– Calculation of R−1
y , R−m

y or using SVD techniques in [64]-[68] obvi-

ously require heavy computation.
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8.5 New Proposed Algorithms

In CDMA systems, since the spreading code of each user, ck(n), is known to both,

the transmitter and the receiver, then in order to reduce the system complexity

and enhance the accuracy of the estimated channel parameters, we consider the

adaptive based RAKE receiver shown in Fig. 8.2, where the vector f in Eqn. (8.6)

is replaced by,

f(n) = c(n) ∗ h(n) or f = Ch (8.25)

where C is the same Toeplitz spreading matrix as before and the vector h contains

the RAKE finger taps for user k.

h2 hq

Tc TcTc Tc

∑

b̂

c(t)

Other

h3 h4 hq−1

p(t)

algorithm

Adaptive

sgn{<}
∫

h1

users v(t)

y(t)
b

Multi-

path

Sampling

Spreading code

f

Figure 8.2: A blind adaptive based RAKE receiver

Since C is known, then one can see that instead of estimating an (N + q − 1)

parameters, f as in [64], we need to estimate only a q parameters vector, h.

Clearly this will reduce the system complexity and give better estimates.

With this definition, the constraint in Eqn. (8.8) CHf = gH becomes,

hHCHC = gH , gHg = 1 (8.26)

The interesting point about Eqn. (8.26) is that the term CHC ≈ Iq×q. For

example for q = 4 in a maximum length binary sequence (MLBS) spreading code
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based system with N = 32 chips,

CHC =











1.0000 −0.0312 −0.0000 0.0312

−0.0312 1.0000 −0.0312 −0.0000

−0.0000 −0.0312 1.0000 −0.0312

0.0312 −0.0000 −0.0312 1.0000











(8.27)

Obviously the off-diagonal elements are very small compared to the diagonal el-

ements.

Under this assumption, Eqn. (8.26) then becomes hH ≈ gH . With gHg = 1 we

can enforce it with the original cost function in Eqn. (8.11) such that hHh = 1

as gHg = 1.

Therefore, let us consider the optimum solution, hopt which is the Lagrange mul-

tipliers given in Section 8.3 by,

hopt = argmin
||h||=1

hHCHR−1
y Ch. (8.28)

Using the SVD, R−1
y can be expressed by,

R−1
y = U S V (8.29)

where, U and V are the two SVD unitary matrices such that UHU = I and

VHV = I and the eigenvalues matrix S = diag(λl) , l = 1, 2, . . . , q.

Eqn. (8.28) then becomes,

hopt = argmin
||h||=1

hHU′ S V′h. (8.30)

where U′ = CHU and V′ = CHV.

Under the assumption that CHC ≈ I one can show that U′ and V′ are also

approximately unitary matrices, in other words,

U′U′H = CHUUHC

= CHC

≈ I

(8.31)

and,

V′V′H = CHVVHC

= CHC

≈ I

(8.32)
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Using matrix proparties, the optimum channel response hopt can then also be

found by,

hopt = argmax
||h||=1

hHU′ S V′h (8.33)

i.e.,

hopt = argmax
||h||=1

hH
(
CHRyC

)
h (8.34)

8.5.1 Advantages of the new methods

In [64], channel estimation requires minimization of the cost function w.r.t f

and maximization w.r.t g. In this approach, obviously the optimum solution in

Eqn. (8.34) is less complex, does not require estimation of the two vectors, and

requires only one vector, hopt. Also in the equation, one can see that finding

hopt does not require the estimation of R−1
y or R−m

y compared to the solution

proposed by [64]-[68].

Estimation of hopt in this work will be determined by,

1. A fast adaptive LMS algorithm

2. A low cost SVD algorithm

3. A maximum (dominant) eigenvalue power based algorithm

The three methods can be summarized as follows,

8.5.2 Proposed adaptive LMS algorithm

8.5.2.1 First adaptive LMS algorithm

In this algorithm we use a cost function similar to the one in [65]. Our cost

function will be low in complexity, also it will not assume that CCH ≈ I. Since

we assumed that f = Ch, then based on the optimization problem in Eqns. (8.10)

and (8.11), one can estimate the channel response g by minimizing the following

cost function ζ w.r.t h and maximizing it w.r.t g such that the norm of g remain

constant. The cost function ζ is given by,
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ζ =
[
fHRyf + λ

(
CHf − g

) (
fHC− gH

)]

f=Ch

i.e.,

ζ = hH
(
CHRyC

)
h + λ

(
CHCh− g

) (
hHCHC− gH

)
(8.35)

With the previous cost function one can gain the following,

• Instead of adaptively estimating (N + q − 1) parameters, f as in [64], we

only need to estimate 2q parameters, g and h.

• The process requires a single λ instead of a (q × 1) vector

• The error will be minimized in a square sense instead and this will enhance

the convergence rate.

By using the cost function in Eqn. (8.35) and the LMS techniques, both h and g

can be estimated by minimizing ζ in Eqn. (8.35) w.r.t h and maximizing it w.r.t

g, i.e.,

hn+1 = hn − µh∇h∗ζ (8.36)

gn+1 = gn + µg∇g∗ζ (8.37)

Since Pgn =
[

I− gn gH
n

gH
n gn

]

is orthogonal to gn, one can also use

gn+1 = gn + µgPgn∇g∗ζ (8.38)

where,

∇h∗ζ = 2
(
CHRyC

)
hn + 2λn

(
CHC

) (
CHChn − gn

)
(8.39)

∇g∗ζ = −2λn

(
CHChn − gn

)
(8.40)

By using Eqn. (8.9) and enforcing the constraint of h as
(
CHC

)
hn+1 = gn , one

can solve for λn.

With a simple manipulation one can show that λn is the smallest or the least

square solution of Aλn = B, where

A = −2µh

(
CHC

) (
CHChn − gn

)

B =
(
CHC

)−1
gn − hn + 2µh

(
CHRyC

)
hn

(8.41)

The algorithm shown in Table 8.1 summarizes the full procedure.
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Table 8.1: First proposed LMS algorithm
Step 1: At n = 0 initialize hn and gn and choose the step sizes µh and µg, 0 < µg, µh <

1

Step 2: Compute
(
CHC

)
and

(
CHC

)−1

Step 3: For n = 1, 2, . . .

1. Find λn, using Anλn = Bn ,

An = −2µh

(
CHC

) (
CHChn − gn

)
,

Bn =
(
CHC

)−1
gn − hn + 2µh

(
CHy(n)yH(n)C

)
hn

2. Find the gradients,

∇h∗ζ = 2
(
CHy(n)yH(n)C

)
hn + 2λn

(
CHC

) (
CHChn − gn

)

∇g∗ζ = −2λn

(
CHChn − gn

)

3. Update hn and gn,

hn+1 = hn − µh∇h∗ζ

gn+1 = gn + µg

[

I− gn gH
n

gH
n gn

]

∇g∗ζ

4. Normalize gn+1 such that gn+1 = gn+1

||gn+1|| becomes a unity norm vector

5. Continue until convergence

8.5.2.2 Second adaptive LMS algorithm

In this algorithm the estimation of the optimum response hopt will be based on

Eqn. (8.34) and the assumption that CCH ≈ I. For each incoming data vector

y(n), hopt can be found by maximizing ζ = hH
(
CHRyC

)
h w.r.t h according to

the gradient search algorithm,

hn+1 = hn + µh∇h∗
n
ζ (8.42)

where,

∇h∗
n
ζ = 2

(
CHRy(n)C

)
hn (8.43)

This is followed by normalizing the vector hn+1 by its norm so that the constraint

||hn+1|| = 1 is valid. The full algorithm is shown in Table 8.2.
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Table 8.2: Second proposed LMS algorithm

Step 1: Initialize hn and choose a step size 0 < µh < 1

Step 2: Let Ry(n − 1) = 0 and choose the correlation matrix updating factor

0.9 ≤ β < 1

Step 3: For n = 1, 2, . . .

1. Ry(n) = β Ry(n− 1) + y(n)yH(n)

2. ∇ζ/h∗
n

= 2
(
CHRyC

)
hn

3. Update: hn+1 = hn + µh∇ζ/h∗
n

4. Normalize hn+1 so that hn+1 = hn+1

||hn+1|| becomes a unity norm vector

5. Continue until convergence

8.5.3 Proposed SVD algorithm

It is well known that the SVD based techniques require heavy computation. In

this method we also used SVD to estimate the channel response, but with less

calculations than the method given in [64] [65], as the new proposed method

here does not involve the estimation of R−1
y using a Kalman filter or R−m

y as

in [66] [67] [68] using two successive SVD operations, the first is to find the noise

subspace of Ry, Un, and the second is to find the eigenvalues and eigenvectors of

CHUnU
H
n C.

In this method, using the same assumption as before that CHC ≈ Iq×q, the opti-

mum response hopt is found as the eigenvector which corresponds to the maximum

eigenvalue of CHRyC. The SVD based algorithm in Table 8.3 can be applied for

the estimation of hopt.

8.5.4 Proposed power algorithm

The eigenvectors or characteristic vectors of an (L × L) matrix A are the set of

L-vectors x = ui , i = 1, · · · , L , uHu = 1 which are the non-trivial solutions of

Ax = λx i.e., Aui = λiui (8.44)
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Table 8.3: Proposed SVD based algorithm

Step 1: Let Ry(n − 1) = 0 and choose the correlation matrix updating factor

0.9 ≤ β < 1

Step 2: For n = 1, 2, . . .

1. Ry(n) = β Ry(n− 1) + y(n)yH(n)

2. Use SVD to find hn+1 = eigenvector{CHRyC} which corresponds to the

maximum eigenvalue

3. Normalized hn+1 so that hn+1 = hn+1

||hn+1|| becomes a unity norm vector

4. Continue until convergence

Any vector x can be expressed in terms of these orthonormal sets as,

x = a1u1 + a1u1 + · · ·+ aLuL (8.45)

where the orthonormal sets u1,u1, . . . , aLuL are also called eigenvectors. If we

assume there is a unique (only one) largest eigenvector say λ1 > λ2 > . . . > λL

then, we can find λ1 and its corresponding eigenvector u1 of the matrix A by

the power method [71]. The method can be described by the following iterative

equations.

λ1 = lim
n→∞

||xn+1||
||xn||

u1 = lim
n→∞

xn+1

||xn+1||
(8.46)

where,

xn+1 = Axn (8.47)

The previous iterative method is only valid for an initial choice of xn which is not

orthogonal to the matrix A, otherwise the method will fail. The iterative steps

shown in Table 8.4. clarify Eqn. (8.46).

Since hopt is the eigenvector which corresponds to the maximum eigenvalue of

CHRyC, then based on the previous power method the algorithm shown in Ta-

ble 8.5 can be used to estimate the channel response.
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Table 8.4: Fining the dominant eigenvalue and eigenvector using power method

• Choose an initial guess of x0, which mathematically represents,

x0 = a1u1 + a2u2 + · · ·+ aLuL

• Find x1 = Ax0 = a1Au1 + a2Au2 + · · ·+ aLAuL

i.e., x1 = a1λ1u1 + a2λ2u2 + · · ·+ aLλLuL

• Find x2 = Ax1

i.e., x2 = a1λ
2
1u1 + a2λ

2
2u2 + · · ·+ a2

LλLuL

• ...

• xn+1 = Axn

i.e., xn+1 = a1λ
n
1u1 + a2λ

n
2u2 + · · ·+ aLλn

LuL

• Since λ1 is the largest eigenvalue, eventually xn+1 ≈ a1λ
n
1u1 and xn ≈

a1λ
n−1
1 u1

• For large n, λ1 = ||xn+1||
||xn|| and u1 = xn+1

||xn+1||

Table 8.5: The proposed power method based algorithm

Step 1: Initialize hn

Step 2: Let Ry(n − 1) = 0 and choose the correlation matrix updating factor

0.9 ≤ β < 1

Step 3: For n = 1, 2, . . .

1. Ry(n) = β Ry(n− 1) + y(n)yH(n)

2. hn+1 = CHRy(n)Chn

3. Normalize hn+1 = hn+1

||hn+1||

4. Continue until convergence

8.5.5 Remarks on the case when CHC 6= I

In the previous algorithms we assumed that CHC ≈ I, this can be valid only

for some spreading codes. In an N = 31 chip Gold code system with q = 4
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multipaths, one may find,

CHC =











1.0000 0.2581 −0.0323 −0.3226

0.2581 1.0000 0.2581 −0.0323

−0.0323 0.2581 1.0000 0.2581

−0.3226 −0.0323 0.2581 1.0000











(8.48)

It is clear that CHC 6= I. Then we cannot neglect the effect of off-diagonal

elements. By returning back to the constraint in Eqn. (8.26) where, hHCHCg =

1, one will find the resultant estimated parameters of the previous algorithms will

no longer be h. These parameters let us call them hb will then be biased by the

term CHC.

To validate Eqn. (8.26) and the minimization constraint that hH
b hb = 1, the

unbiased parameters hub which represent an estimate of g are then determined

by,

hub =
(
CHC

)−1
hb (8.49)

Clearly we can still use the previous algorithms. We calculate the term CHC

once and fix the biased parameters hb at each iteration. The algorithm shown in

Table 8.6 summarizes the method,

Table 8.6: The proposed algorithm for the case when CHC 6= I

Step 1: Initialize hbn , the biased estimator

Step 2: Let Ry(n − 1) = 0 and choose the correlation matrix updating factor

0.9 ≤ β < 1

Step 3: For n = 1, 2, . . .

1. Ry(n) = β Ry(n− 1) + y(n)yH(n)

2. Determine hbn+1 using any of the previous algorithms in Tables 8.2, 8.3, 8.5

3. Normalize hbn+1 =
hbn+1

||hbn+1
||

4. Find the unbiased parameters hubn+1 =
(
CHC

)−1
hbn+1

5. Continue until convergence
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8.6 Identification of Significant Channel Parame-

ters

In the current high data rate systems, the shortened chip duration made the chan-

nel length required for RAKE receivers or equalization very long (see Chapter 4

for more details). If one uses this length for channel parameters estimation,then

he/she will end up with estimating many parameters where most of them are zero.

In this section we use the above blind channel estimation techniques combined

with a Hierarchical MDL based model selection method in Chapter 5 method to

identify only non-zero parameters of the channel response.

8.6.1 The identification based criteria

For the k’th user model, say g = gk in Section. 8.2 with L complex parameters,

the MDL criteria is given by,

MDL(L) = log(σ2
er

) + 2
L

N log(N ) (8.50)

where N = N +L−1 and σ2
er

represent the observed data length and the residual

errors variance respectively.

Since the optimum response gopt is the vector which minimize the variance

σ2 = gHCHR−1
y (n)Cg (8.51)

i.e.,

gopt = argmin
||g||=1

gHCHR−1
y (n)Cg (8.52)

Then, if we assume that the residual errors, say, er which correspond to the

optimum response gopt are Gaussian, then one can replace the variance σ2
er

in

Eqn. (8.50) by

σ2
er

= gH
optC

HR−1
y (n)Cgopt (8.53)

At this stage the MDL criteria in Eqn. (8.50) can be used to choose between

different models with different number of parameters, in other words to select the

best fit model. However, using this directly, we will end up with
(
2L

)
different
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models to compare.

In this work we use the hierarchical MDL model selection procedure we proposed

in Chapter 5 to choose the best fit model. The order of entry in our method

is based on some logical and theoretical considerations and that will lead us to

compare between L differnet models only (see Chapter 5). The decision of the

best fit model in our method can occur within one to
(

L(L+1)
2
− 1

)

cycle(s) only.

8.6.2 The identification procedure

In this hierarchical procedure we begin with the full model (parent model) that

includes all parameters from ĝk(1) to ĝk(L) where L is the channel length. Then

we, define p as the parent hierarchical code at this step, p = [1 1 . . . 1](L×1) and

this means we have to estimate the full model (parent model) g
p
opt.

From the parent hierarchical code p, one can generate the child hierarchical

codes c1, c2, . . . cL and estimate their model parameters, gc1
opt, gc2

opt, . . . g
cL
opt. For

example, if one uses the SVD to estimate the above model parameters then the

optimum solution of, say, the model corresponds to the code cl can be found as

the non-trivial eigenvector which corresponds to the minimum eigenvalue (greater

than zero) of the cost function

ζl = (C diag(cl))
H

R−1
y (n) (C diag(cl)) (8.54)

The final step is then to compare the MDL value based on Eqns. (8.50) and (8.53)

of each child model and select the child which has the smallest value. If this child’s

MDL value is less than or equal to its parent one then we replace the parent code

with the child code and continue, otherwise we keep it and stop.

The complete model selection procedure is shown in Fig. 8.3, and also summarized

in Table 8.7.
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Figure 8.3: Hierarchical BE based method for model selection
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Table 8.7: The hierarchical MDL based model selection procedure
Step 1:

Set the channel length L and/or use the MDL to estimate the model order,

L = d̂

Step 2:

Start the parent with the full code p = [1 1 . . . 1]L×1.

Step 3:

Estimate the parent model g
p
opt using SVD based on Eqn. (8.54) and calculate

its MDL value vp based on Eqns. (8.50) and (8.53).

Step 4:

Generate the child hierarchical codes c1, c2, . . . cL then use SVD based on

Eqn. (8.54) to estimate each code’s optimum model, g
cl
opt, l = 1, 2, .., L.

Step 5:

For each child estimated model g
cl
opt, l = 1, 2, .., L, calculate the MDL values,

v = [vc1
, vc2

, . . . vcL
].

Step 6:

Find the minimum MDL value among the child’s values, i.e., find vm =

min{v}, where m is the index, then compare vm with the parent one vp.

Step 7:

If vk ≤ vp, replace the parent code p by ck then return to Step 3. otherwise

Stop and p will be then the procedure decision about the model. One means

a non-zero parameter and zero means a zero-parameter.
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8.7 Simulation Results

In the following examples, we show the following,

• First we compare the performance of one of the new proposed algorithms

with the algorithms in [64]-[68] that have the lowest MSE.

– the proposed algorithm of Section 8.5.2.1 is compared with the RLS

one of Section 8.4.1 proposed by [64] [65]

– the proposed algorithm of Section 8.5.2.2 is compared with the SVD

one of Section 8.4.1 proposed by [64]-[67]

• Simulation results for the new proposed methods,

– the LMS algorithm in Section 8.5.2.2

– the SVD algorithm in Section 8.5.3

– the Power algorithm in Section 8.5.4

• MSE calculation

– due to the scaling factor and phase ambiguity, the estimated vectors f

, g and h in each case are normalized by their first parameters

– for comparisons, the optimum solution go and ho are estimated us-

ing the SVD technique calculated using an estimate of the correlation

matrix Ry using the full signal length.

– the MSE is then calculated as the MSE between the optimum solution

and the estimated vector.

• Simulation for channel tracking

In this simulation we track slow and frequency selective Rayleigh fading

channels as follows,

– the normalized second element say h(2)
h(1)

of each estimated channel is

compared with the normalized second element of the optimum and the

true channel
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– The proposed algorithm in Section 8.5.2.1 and 8.5.2.2 are used to

track frequency selective varying fading channels

• In all examples MLBS spreading codes are used except when mentioned,

MC represents the number of Monte Carlo runs

8.7.1 Convergence rate performance

8.7.1.1 Example 1

In this example we compare the MSE between a channel which is estimated using

the first proposed LMS algorithm given in Section 8.5.2.1 and the lowest MSE

LMS algorithm presented by [64] in Section 8.4.1. The step size of each algorithm

is chosen so that it gave the lowest MSE. The example input settings is given in

Table 8.8 and the results are shown in Fig. 8.4

Table 8.8: Input settings for Example 1

Method K N q µf µg µh SNR MC

Ref. [64] 16 32 4 0.0009 0.02 - 6 dB 50

Section 8.5.2.1 16 32 4 - 0.01 0.0001 6 dB 50

8.7.1.2 Discussion of Example 1

Fig 8.4 compares the MSE between the blind adaptive LMS algorithm in [64] and

the proposed LMS algorithm in Section 8.5.2.1. Simulation results show that, the

proposed approach has a lower MSE and a faster convergence rate than the one

in [64]. The proposed approach also required adaptation of (2q + 1) parameters

only, (h, g and λ) where the other approach required adaptation of (N + 3q− 1)

parameters, (f , g and λ). Obviously the estimation and the adaptation of a

shorter length vector such as h in the proposed approach will be more accurate

and faster than the longer length vector f as in [64].
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Figure 8.4: MSE in case of 16 users, first LMS algorithm

8.7.1.3 Example 2

In this example we compare the MSE between a channel which is estimated using

the proposed LMS, SVD and power algorithms given in Sections 8.5.2.1, Sec-

tions 8.5.2.2, Sections 8.5.3 and Sections 8.5.4 and the adaptive RLS algorithm in

Section 8.4.1 chosen to be the one which has the best performance in [64] [65] [66].

The input settings are given in Table 8.9 and the results are shown in Fig. 8.5.

Table 8.9: Input settings for Example 2

Method K N q µf µg µh SNR MC

Ref. [64] 16 32 4 0.0009 0.02 - 6 dB 50

Section 8.5.2.2 16 32 4 - - 0.01 6 dB 50
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Figure 8.5: MSE in case of 16 users, second LMS algorithm

8.7.1.4 Discussion of Example 2

Fig 8.5 compares the MSE between the blind adaptive RLS algorithm in [64] and

the three proposed algorithms in Section 8.5.2.2, Section 8.5.3 and Section 8.5.4.

Simulation results show that, the proposed algorithms performed much better

than the RLS algorithm in [64] [66]. The proposed algorithms complexity are

also much cheaper than the RLS algorithms in [64] [66] which use Kalman filters

for the estimation of R−1
y or R−m

y .

8.7.1.5 Example 3

In this example we show the performance of the SVD algorithm given in Sec-

tion 8.5.3 using the assumption that CHC ≈ I. The algorithm is applied to a

system with K = 16 users, N = 32 chips, q = 8 paths. Results in Fig. 8.6

compares the MSE between:

• the estimated and the optimum channels, h and go
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• the estimated and the true channels, h and g
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Figure 8.6: MSE between optimum, true and estimated channels, 16 users

8.7.1.6 Discussion of Example 3

Using the assumption that the term CHC ≈ I, simulation results in Fig 8.6 show

that the proposed adaptive SVD algorithm converges very fast to the optimum

solution, also the MSE between the estimated channel, h and the true channel,

g is small compared with MSE of the methods in [64] [67] [68]. The algorithm

is low in complexity since it does not require the estimation of R−1
y or R−m

y as

in [64] [67] [68] or the noise subspace as in [65]-[68].

8.7.1.7 Example 4

In this example we use the proposed power algorithms given in Section 8.5.4 to

the case where CHC 6= I. The algorithm is applied to the case when K = 16

users, N = 32 chips, q = 8 paths. The MSE is compared as shown in Fig. 8.7

between:
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• the biased optimum and the biased estimated channels, go and hb

• the unbiased optimum and the unbiased estimated channels,
(
CHC

)−1
go

and
(
CHC

)−1
hb

• the true and the biased estimated channels, g and hb

• the true and the unbiased estimated channels g and
(
CHC

)−1
hb
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Figure 8.7: MSE between, optimum, true and estimated channels , 16 users,

CHC 6= I

8.7.1.8 Discussion of Example 4

In this example we used the proposed power algorithms in Section 8.5.4 and

the algorithm in Section 8.5.5 for the case when CHC 6= I. Simulation results

in Fig 8.7 show that the MSE between the true channel response g and the

biased estimated response hb is high. After fixing hb using, hub =
(
CHC

)−1
hb in

Section 8.5.5, the MSE between g and hub become very small, i.e., the algorithm

succeeded in estimating the channel response.
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8.7.2 Channel tracking performance

8.7.2.1 Example 5

In this example we use the proposed LMS algorithm in Section 8.5.2.2 to track

the transient response of a time varying fading channel where the channel param-

eters are generated from a Rayleigh distribution and the channels vary each 200

symbols. The algorithm is applied to the case with K = 4 users, N = 32 chips,

q = 8 paths, µh = 0.01 at SNR = 6 dB and MC=20 runs. The results are shown

in Fig. 8.8.
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Figure 8.8: Tracking of a time varying fading channel

8.7.2.2 Discussion of Example 5

In the previous Examples 1-4, it is obvious that the convergence rate of the

proposed blind adaptive algorithms is fast. Within 100 or 200 symbols any of the

proposed algorithm can reach the optimum solution. In this example we used the

proposed LMS algorithm to track a varying fading channel. Simulation results
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support the claim that, within a few number of symbols the proposed algorithms

can track the change in a varying fading channel with good quality estimates for

the real and imaginary parts. Also it is clear that the algorithm can track a faster

channel with 100 symbols. In the case of high SNRs a smaller number of symbols

is then required.

8.7.2.3 Example 6

In this example we use the proposed LMS algorithm in Section 8.5.2.2 to track

a time varying channel where the channel parameters are generated using the

SOS Jakes model (see chapter 3). The mobile speed v = 20 Km/h, the carrier

frequency, fc = 1 GHz and No = 16 Oscillators. The algorithm is applied to the

case where K = 1 users, N = 32 chips, q = 4 paths, µh = 0.01 at SNR = 6 dB

and MC=20 runs. Results are shown in Fig. 8.9.
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Figure 8.9: Tracking of a time varying fading SOS Jakes channel model
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8.7.2.4 Discussion of Example 6

In this example we used the proposed LMS algorithm to track a strong time

varying fading channel generated using the SOS Jakes model, which is used to

represent a realstic channel response. Simulation results show clearly that the

proposed algorithm can easily track the variations of the channel response.

8.7.3 Identification performance

8.7.3.1 Example 7

This example demonstrates the use of the Hierachial MDL based model selection

method described in Section 5.4.1 and Chapter 5 in identifying the significant

channel parameters of a frequency selective slowly fading channel introduced in

a K = 1, 2, 3, 4 users system with maximum channel length of do = 10,L =

16 required physical taps, with d1 = 3 significant paths, N = 32 chips and

length M = 64, 96, 128 and 160 symbols. The channel components are given in

Table 8.10. The results are shown in Fig. 8.10 and Fig. 8.11. Let pk(l) be the

probability of identifying each individual path parameter gk(l) correctly, then one

can show that the probability of identifying the full channel parameters of user

k correctly pf can be given by,

pf =
L∏

l=1

pk(l) (8.55)
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Table 8.10: Input settings and multipath parameters for Example 7

Delay Multipath parameters gk(l) for

τ1l User 1 User 2 User 3 User 4

0 0 0 0 0

Tc -0.0207 - j0.4087 0 0 -0.2290 + j0.1217

2Tc 0 0.0347 + j0.4313 0.1423 -j0.0278 0.1732 - j0.2147

3Tc 0 0 0 -0.4983 - j0.1737

4Tc 0 0.0347 + j0.4313 -0.4201 + j0.4713 0

5Tc 0.5350 + j0.0278 0 0.6119 + j0.4301 0

6Tc 0.6730 + j0.3042 -0.5138 - j0.1791 0 -0.2825 + j0.4796

7Tc 0 -0.0842 - j0.3971 0 -0.3364 + j0.3774

8Tc 0 0 0 -0.0598 - j0.0957

9Tc 0 -0.0842 - j0.3971 0.1423 - j0.0278 0

10Tc 0 0 0 0
...

...
...

...
...

16Tc 0 0 0 0
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8.7.3.2 Discussion of Example 7

From the results, one can see that the proposed model selection method works

well when number of symbols M is greater than 96 symbols. For example it is

better if one runs the system with N ≥ 128 symbols for SNRs ≥ 4 dB . However,

in practice, many wireless communication systems operate with SNRs greater

than 8 dB. If the system is running at SNRs less than 4 dB, a longer sequence

length such as M ≥ 160 symbols is then required.

8.8 Conclusion

The problem of blind channel estimation and tracking in CDMA systems is con-

sidered. Using only the spreading code of the user of interest and the received data

sequence, four low complexity algorithms are proposed to estimate and track the

impulse response of the multipath channel. While existing blind methods suffer

from high computational complexity, due to large SVDs and matrices inversion,

the proposed methods overcome both problems. The computation complexity of

the new algorithms are less in comparison with the existing approaches. Simula-

tion results show that, the proposed algorithms’ convergence rates are fast and

their estimation accuracy are much better. The proposed approaches are also

able to track the variation of frequency selective varying fading channels. The al-

gorithms can be implemented as blind adaptive based RAKE receivers in CDMA

systems.



Chapter 9

Conclusions and Future Directions

9.1 Conclusion

In this thesis we developed new approaches and algorithms for the identification

and estimation of low order models that represent multipath propagation effects

in CDMA communication systems. Based on these parsimonious channel mod-

els, low complexity receivers such as the RAKE receivers are considered. RAKE

receivers were able to exploit the multipath channel propagation effects to en-

hance the system performance. We considered three different cases of channel

propagation:

1. Flat fading channels where the channel attenuation and delays are constant

over the full signaling intervals

2. Frequency selective slowly fading channels where the channel attenuation

and delays are constant over a few signaling intervals

3. Frequency selective varying fading channels where the channel attenuation

and delays can vary over each signaling interval

We modeled the above channel effects in the frequency and time domains as

follows:

1. In the frequency domain: as complex attenuated exponentials

145
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2. In the time domain: as an FIR-like filter (or a tapped delay line filter)

The number of taps of each model was related to the ratio between the channel

delay-spread and the chip duration. Unlike classical techniques which estimate

directly the channel response given the number of taps or given an estimate of the

channel true length, the proposed techniques in this work firstly used model selec-

tion techniques to identify only the significant parameters of the channel model.

Specifically, under a certain level of significance, statistical tests are proposed to

determine whether or not each individual parameter is significant. The level of

significance with which we made this assertion was controlled based on statistical

tests such as the multiple hypothesis tests. Three training and a low complex-

ity blind channel estimation based algorithms are then used to estimate only

the identified or classified significant parameters. Finally, parsimonious RAKE

receivers are then considered based on these low order models. The proposed

receivers are found to have a better BERs over the classical receivers. The usage

of the significant multipath components only is strongly recommended based on

our findings. A full conclusion about these approaches are summarized as follows:

• Chapter 5: We addressed the problem of model selection. Four differ-

ent approaches for model selection are presented. In these approaches low

computation complexity algorithms are developed based on model selection

methods such as MDL, AIC, F-statistic and the bootstrap techniques. The

MDL and AIC based methods are normally used when the model additive

noise is Gaussian, but they do not control the level of significance. They are

nevertheless still widely used in many different areas in signal processing.

Under some assumptions, the F-statistic based methods can identify the

significant model parameters and consider the level of significance. The

performances of the F-statistic based method is found to be better when

the additive noise is Gaussian.

Under minimal assumptions about the noise distribution and for a pre-

defined level of significance, the bootstrap technique is a powerful technique

to identify the significant model parameters.
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Finally, all of the above model selection approaches are found to be capa-

ble of identifying the principle (the MDL and AIC cases) or the significant

(F -test and bootstrap cases) model parameters with high probabilities.

• Chapter 6: A frequency domain based approach is proposed to estimate

the channel delays and attenuation coefficients. Then two model selec-

tion approaches including the MDL sphericity test based approach and the

multiple hypothesis F-statistic based tests were used to achieve the identifi-

cation goal. Both approaches are low in computation complexity since they

only involve the FFT to estimate the spectra. The F-statistic SRB based

approach is found to be more robust than the MDL one, firstly because it

can control the approach level of significance and secondly because it uses

the EVD only once for the calculation of the channel delays using MUSIC

algorithm. The identification and BER simulation results support the claim

that with a short training data the structure complexity of the proposed

RAKE receiver is reduced and the system performance is also enhanced.

• Chapter 7: Two bootstrap time domain based approaches are proposed for

the identification and estimation of the significant multipath parameters in

multiuser DS-CDMA systems. The approach is used to enhance the RAKE

receiver performance over other classical methods. Unlike the proposed ap-

proach in Chapter 6 where the statistical test distribution is known, this

approach used the bootstrap resampling techniques to estimate the un-

known distribution of the test statistic. The bootstrap is found to be more

flexible than classical statistical methods as it is able to compute a statis-

tic and estimate its sampling distribution without any assumption on the

model or knowledge of the noise distribution. Two different bootstrap re-

sampling techniques are used: the classic bootstrap and the surrogate data

bootstrap. The approach model is also simple since it assumes the channel

as an FIR filter with taps located at multiple integers of the chip dura-

tion. Results show that with the proposed approach the performance of

the parsimonious RAKE receiver can increased substantially with a small
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processing gain. Increasing processing gain or at higher SNRs, the accuracy

of the estimates obviously increases.

• Chapter 8: The problem of blind channel estimation and tracking in CDMA

systems is considered. Using only the spreading code of the user of inter-

est and the received data sequence, four low computation complexity al-

gorithms are proposed to estimate and track the impulse response of the

multipath channel. While existing blind methods suffer from high compu-

tation complexity, due to large SVDs and matrix inversions, the proposed

methods overcome both problems. The computation complexity of the new

algorithms are less in comparison with the existing approaches. Also a

low computation complexity blind hierarchical MDL model selection based

method is proposed to select non-zero parameters of the channel response.

Simulation results show that, the proposed algorithms convergence rates

are fast and their estimation accuracy are much better. The proposed ap-

proaches are also used to track the variation a frequency selective varying

fading channels. The algorithms can be used to implement blind adaptive

based RAKE receivers in CDMA systems.

9.2 Future Work

The following points summarize some future research directions:

• DS-CDMA communication systems have attracted considerable attention

for 3G mobile systems. They have the ability to suppress a wide variety

of interfering signals including narrow-band interference (NBI), MAI, and

MPI. However, the need for higher capacity systems has resulted in the

duration of the transmitted symbols being shorter compared to the channel

time dispression. Accordingly, the ISI is increased and the CDMA system

performance is reduced. Around 1993, MC-CDMA systems are proposed to

overcome this ISI problem and add more orthogonality between users. This

is done by splitting the fast data rate (stream) into N low-rate sub-streams,
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where N is the number of sub-carrier. Thus, the data symbol rate per car-

rier is reduced by a factor N in other words the ISI is reduced. As the

ISI become less, this can be interprated as the channel fading become flat.

Thus, one can use the frequency domain approach proposed in Chapter 6 for

channel estimation in MC-CDMA system. In case of flat fading channel, the

frequency approach can estimate the channel response with low computa-

tion complexity in the frequency domain and less estimation errors. OFDM

is a form of MC-CDMA modulation, it can be generated as MC DS-CDMA

modulation where all users simultaneously share the available BW and the

separation of the users’ signal is carried out in the code domain similar to

DS-CDMA. The channel response of OFDM systems is been regarded as flat

fading, i.e., the frequency approach can also be used for channel estimation.

• The channel Doppler spread is one of the big issues which affects the RAKE

receiver performance if not considered. The proposed RAKE in this thesis

was based on a certain number of fingers (taps) where each of them has

an estimate of the corresponding path attenuation presented at a certain

delay, say, τ . The performance of such RAKE will be reduced if the presense

of the channel Doppler spread is significant. One of the solutions to such

problem is knows as time-frequency RAKE. In time-frequency RAKE each

tap will not only consider a single attenuation coefficient at τ but also

considers what is know as the side band attenuation. In other words, if

the channel Doppler frequency is fD then the tap L coefficient at τ can

be model as
M∑

m=−M

glm(τ)ej 2πm
M

fD . The interesting thing about this model

is that, glm(τ) can be consider flat over the signaling interval. Thus, the

proposed algorithms in this can also be used to estimated and identify the

significant parameters for parsimonious time-frequency RAKEs.

• In this thesis we considered only a single antenna based RAKE receiver.

As a new task, one can consider multiple antennas based RAKE receiver

which is known as 2D-RAKE or Space-Time RAKE. The concept of a 2D-
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RAKE is that a beam be formed toward each multipath of the desired

user using an antenna array and the resultant combined using a 1D-RAKE

receiver (time-only Rake). Thus, instead of using only the RAKE receiver

time diversity, space diversity can also be used. Based on that the channel

estimation and identification algorithms proposed in Chapters 6, 7 and 8

will have a better performance in estimating and identifying the significant

channel parameters in case of multiple antenna.
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Vision without action is dreaming.

Action without vision is passing the time.

Action with vision can change the world.
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