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Abstract 

 

Introduction:  Meta-analysis of study-level data is now a common tool for gathering 

insights within a research field.  “Recurrent events” characterises the data for a range 

of outcomes that may be encountered in clinical practice.  Methods to conduct meta-

analyses using study-level data from investigations where recurrent events are of 

interest are yet to be specifically developed.  This study seeks to examine whether 

existing study-level data meta-analysis approaches can be used to produce unbiased 

and precise effect estimates relative to meta-analyses conducted using patient level 

data where a recurrent event is the outcome of interest. 

 

Method:  Data from two studies focussing on the prevention of falls in the hospital 

setting (n=1838 total) was divided into the three hospital sites from which they were 

collected.  Outcome data was considered as recurrent event survival data, single event 

survival data, count data, rate data and binary data.  Analysis approaches including 

Andersen-Gill recurrent events survival analysis, Cox single event survival analysis, 

negative binomial regression, bootstrap resampling, relative risk and modified relative 

risk, and logistic regression were investigated.   

 

Results:  Andersen-Gill, negative binomial, bootstrap resampling and modified 

relative risk analysis approaches produced congruous point estimates of effect, though 

modified relative risk analysis produced 95% confidence intervals much narrower 

than other approaches.  Pooling data using these analysis approaches resulted in 

biased and imprecise effect estimates when using study-level data as opposed to 

patient-level data. 



 

Conclusion:  Meta-analysis using study-level data may produce unbiased and precise 

estimates of effect where statistical heterogeneity is not present, where other forms of 

heterogeneity are not present, and where data has been presented using either 

Andersen-Gill or negative binomial regression approaches.  When these conditions 

are not met it is recommended (?preferable) that researchers present results from 

individual studies rather than presenting a pooled effect estimate from study-level 

data.  

 



Introduction  

 

Meta-analysis is an increasingly popular tool that can be used to investigate a number 

of issues including the strength of association between a risk factor and a disease, the 

accuracy of a screening instrument, or the efficacy of a treatment protocol.  The 

importance of this tool is highlighted by the eminence afforded to results generated 

using this approach.  When evaluating the efficacy of treatment protocols, some rating 

scales of evidence for clinical practice place the results of meta-analysis above that 

gleaned from individual randomised controlled trials,1 though other scales place 

results from high quality individual randomised trials on par with meta-analyses.2, 3 

Meta-analysis has not been without its critics and several strategies for improving the 

validity of findings derived from meta-analysis have previously been suggested.4 

 

Two levels of data can be used to conduct a meta-analysis.  More commonly, 

researchers use summative data from published literature (meta-analysis literature – 

MAL) to construct their pooled estimates of effect.  Less frequent are investigations 

that utilise individual patient level-data (meta-analysis patient – MAP).  Key reasons 

for MAL to be used preferentially to MAP include the difficulty in attaining 

individual patient level data with which to conduct MAP, and the considerably greater 

time and resource required to conduct MAP.5  However, MAP is the gold standard 

approach to meta-analysis6 making it the approach of choice where either a MAL or 

MAP could feasibly be conducted,  

 

Previous authors have sought to compare the results of MAP and MAL within a 

particular field and in simulation studies.  Several have found discordance between 



the two approaches though this has frequently been attributable to different sets of 

patients and / or studies being included.7  Another investigation of the risk of 

epithelial ovarian cancer from use of the oral contraceptive pill found these 

approaches to be concordant, though had to exclude studies identified as being 

sources of heterogeneity before being able to do so.5  Other investigators 

demonstrated that MAP was mathematically identical to MAL for a model comparing 

multiple treatments to a control for a continuous outcome under the assumptions of 

fixed effects.8  If MAL is able to produce equivalent results to MAP, then the time 

and resource savings associated with this approach would clearly make MAL the 

approach of preference.  However, it also follows that if MAP is unable to be 

undertaken and MAL does not produce equivalent results to MAP, then it is 

questionable as to whether a meta-analysis should be pursued at all. 

 

One area where it is unclear whether MAL produces equivalent results to MAP is the 

study of diseases that may recur (e.g. episodes of cancer, urinary tract infections, 

epileptic seizures), particularly where the rate of disease occurrence is of primary 

importance.  One field where this is certainly the case is the prevention of accidental 

falls in hospitals.  It has previously been argued that the rate of falls (number of falls 

by a patient divided by the length of time they are observed) is of greater importance 

in this field than the proportion of patients who experience one or more falls, or even 

the sum total number of falls because of the varied total length of  the observation 

period for the participants in studies conducted in this field.  The time period in falls 

studies is a natural variation due to variations in each patient’s length of stay in 

hospital.  An added contextual factor in this field is that this style of data can be 

handled in several different ways and that a range of analysis approaches could 



potentially be used..  For example, in three recent randomised trials of targeted, 

multifactorial intervention programs, falls rate data has been considered as simple rate 

data (number of events divided by observation period) analysed using an adaptation of 

the relative risk calculation in one,10 and by XXX in another, and recurrent events 

survival data in another.11 This ‘statistical analysis approach’ heterogeneity may 

further threaten the validity of a MAL in this field.   

 

In this study, we are concerned with determining whether a MAL, for evaluation of 

either risk factors or interventions, is able to be validly undertaken within a field 

where the primary outcome of interest is the rate of a disease that can recur.  We first 

use a MAP approach to compare the findings of a range of analysis approaches to a 

gold standard for considering this style of data (aim 1).  We argue that if an approach 

produces biased or imprecise effect size estimates using a MAP approach, then a 

MAL using this approach will also produce biased or imprecise effect size estimates 

and will be unsuitable for practical use.  Second, we consider whether a MAL using a 

uniform approach to analysis of individual studies produces a precise and unbiased 

pooled effect estimate as that derived from a MAP using the same analysis approach 

(aim ii).  Third we consider what the differential effect on a pooled effect estimate 

would be if a MAL was attempted using study-level data comprising heterogenous 

analysis approaches (aim iii).   

 

Method 

 

Design:  



Meta-analysis (both MAL and MAP) utilising prospectively collected falls data from 

two large randomised controlled trials of falls prevention interventions conducted 

across three hospital sites. 

 

Participants and setting: 

The first trial, conducted between 2002 and 2003 took place on three subacute 

rehabilitation wards at the Peter James Centre, Melbourne, Australia.  This study had 

n=626 participants and further details of this study have been published elsewhere.11  

The second, conducted between 2008 and 2009 took place on three geriatric 

assessment and rehabilitation wards, two acute orthopaedic wards, and one acute 

medicine / respiratory ward at the Princess Alexandra Hospital, Brisbane, Australia, 

and one medical and one surgical ward of the Swan Districts Hospital, Perth, 

Australia. This study had n=1206 participants in total, however data from n=1202 was 

used in this analysis (n=350 from Swan Districts Hospital, Perth, n=852 from Princess 

Alexandra Hospital, Brisbane) due to outliers still remaining in the study at the time 

of this analysis.  Further information regarding this study has been published 

elsewhere.12 

 

Measurements: 

The primary outcome measure in both of these studies was in-hospital falls.  In both 

studies, falls data was collated using local hospital incident reporting systems along 

with individual patient medical record review.  In the first study staff were provided 

with a standardised definition of a fall.11 In the second study, staff were provided with 

video-based training in how to apply a standardised definition of a fall,13 and falls data 



was additionally captured using weekly patient interview with a research assistant 

blinded to group allocation. 

 

Three independent variables were selected for examination in this study; participant 

gender, age, and admission diagnosis of stroke versus ‘not stroke’.  The median age of 

participants was 78 years, so this variable was converted to a dummy variable of 

young (<78 years) versus old (>78 years).  These three dichotomous variables were 

specifically selected on the basis of one having variable relationships with the raw 

number of falls and length of stay in hospital.  Participant gender had a strong 

relationship with falls but not patient length of stay in hospital.  Participant admission 

diagnosis of stroke had a strong relationship with both falls and length of stay in 

hospital.  Participant age did not have a strong relationship with either variable.  

 

Analysis: 

Aim i) 

In addressing this aim we considered a range of analysis approaches that a researcher 

might encounter when attempting a meta-analysis in this field and analysis approaches 

that they could potentially encounter.  A description of each approach and justification 

for selection is presented (table 1). 

 

A MAP was undertaken for each approach with the combined dataset for the exposure 

variable to examine the relative bias and precision each approach had relative to the 

Andersen-Gill version of Cox semi-parametric survival analysis for recurrent events 

and negative binomial regression approaches.  Previous authors have advocated use of 

the Andersen-Gill approach for recurrent events data,14 while others have advocated 



use of negative binomial regression approach ahead of the Andersen-Gill survival 

approach due to the ease of computation of the former and the risk of violating the 

proportional hazards assumption in the latter.15  Thus we also checked the assumption 

of proportional hazards for each of the predictor variables (both visually and using the 

Schoenfeld residuals test16) and found no violations of the proportional hazards 

assumption. 

  

Aim ii) 

Analysis approaches identified from aim i) to produce relatively unbiased estimates of 

treatment effect from MAP were then used in MAL for each of the exposure 

variables.  The combined dataset was broken down into three separate studies 

according to site of data collection (Melbourne: n=626, Brisbane: n=852, Perth, 

n=350).  The Generic Inverse Variance Method was used in each case for undertaking 

the MAL.  Application of the Generic Inverse Variance Method requires two numbers 

from each study: an effect estimate and its standard error. The effect estimate 

summarises the treatment effect in a clinical trial or epidemiologic investigation (for 

example, an odds ratio or hazard ratio).  The standard error summarises the precision 

of the effect estimate.  The Generic Inverse Variance Method is available in the 

statistical program RevMan (version 5).  As the data analysis approaches considered 

in this study are ratios, using the Generic Inverse Variance Method required data to be 

entered as natural logarithms of the effect estimate (e.g. the natural logarithm of the 

hazard ratio) and standard errors of the natural logarithm of the effect estimate. 

Standard errors of the natural logarithm of the effect estimate were calculated using 

the difference between the natural logarithms of the upper and lower 95% confidence 

limits divided by 3.92 (a 95% confidence interval is 3.92 standard errors wide).  Both 



fixed and random effects analyses were undertaken, however results for the fixed 

effect analysis were only presented when I2=0.  

 

In addition to Generic Inverse Variance Method analyses, a “dichotomous data” MAL 

approach was employed entering the number of falls in the exposed and unexposed 

groups as the “events” for these groups, and the amount of participant observed time 

in the exposed and unexposed groups as the “total number of patients” data for these 

groups (Rate 5).  Days were used as the unit of measure of time.  A “Peto - observed 

minus expected” analysis was also considered for the pooling of survival analysis 

(first event) data.  This approach can only be used for this type of analysis, and 

requires effect sizes to be close to 1.0, and even numbers in the groups being 

compared to produced unbiased results.17  However this approach was not considered 

further as these three criteria were unlikely to be met in this field.   

  

Aim iii) A strength of the Generic Inverse Variance Method is that it can be employed 

in fields where results have been analysed and presented using a variety of 

approaches.  This approach weights the results of each study using the inverse of the 

variance of the effect estimate.  Therefore, the standard errors derived from the three 

separate site analyses for each exposure variable were contrasted to determine which 

approach would most strongly influence the MAL results.  Only the analysis 

approaches retained for examination in aim ii) were examined in aim iii). 

 

Estimates of effect size were calculated using STATA I/C version 10.0.  MAL were 

conducted using Review Manager (RevMan) version 5.0. 

 



Results 

 

The distribution of exposure, outcome and study observation period variables for the 

combined sample and each individual site are presented (table 2).     

 

Aim i)  The results of the MAP for each of the analysis approaches examined are 

presented (figure 1).  It is apparent across all three exposure variables that the 

“Survival 1” Andersen-Gill recurrent events survival analysis, the “Count” negative 

binomial regression, the “Rate 1 & 2” bootstrap simulation approaches to calculating 

a relative rate, and the “Rate 3” relative rate calculation using the modified relative 

risk formula (days as unit of time measure) produced congruous point estimates of 

effect.  The 95% confidence intervals were relatively narrow using the “Rate 3” 

approach, followed by the “Count” approach.  The “Survival 1” and “Rate 1 & 2” 

approaches produced 95% confidence intervals of similar width in each circumstance.   

The remaining analysis approaches did not produce unbiased estimates of effect 

across the three exposure variables. 

 

Aim ii) The subset of analysis approaches that produced relatively unbiased effect 

estimates were then used in Generic Inverse Variance Measure MAL, the results of 

which (as opposed to their MAP results) are presented (figure 2).  Included in this 

figure also are the results from the modified “dichotomous data” MAL (Rate 5).  This 

figure demonstrates consistent incongruity between the MAP and MAL approaches 

for the gender and age exposure variables.  It is possible that this may be due to the 

higher levels of statistical heterogeneity across the three sites for these variables, as 

demonstrated by the higher I2 values.  Noticeable also for these two exposure 



variables were the considerably wider confidence intervals attained through the MAL 

analyses relative to their respective MAP.  None of the MAL analysis approaches 

were able to produce unbiased effect estimates across all three exposure variables in 

comparison to the MAP effect estimates generated through “Survival 1”, “Count”, and 

“Rate 1, 2 &3” approaches, though the degree of bias was not excessive.  The 

magnitude of effect was overstated in the MAL approaches for the gender and age 

exposure variables, and marginally understated for the stroke exposure variable.  

 

Aim iii)  The standard errors of the natural logarithm of the effect estimates generated 

through the analysis of individual site data for each exposure variable are presented 

(figure 3).  It is evident that the “Rate 3” approach produced consistently smaller 

standard errors of the natural logarithm of the rate ratio, and the bootstrap simulation 

approach the largest.  Hence, if combining data from any of these approaches into the 

one Generic Inverse Variance Method MAL, the results from the study employing the 

“Rate 3” approach will more heavily weighted, and those from the “Rate 1 & 2” 

bootstrap approach less heavily weighted, than if these studies had used the “Count” 

negative binomial regression or “Survival 1” Andersen-Gill survival analysis 

approach. 

 

Discussion 

 

Meta-analysis is a tool that has frequently been demonstrated to provide valuable 

insights across a range of fields and has been recommended as a means of reducing 

bias.  However for the particular case of falls in hospitals, the utility of available 

meta-analysis instruments is less clear.  The nature of the outcome being count data 



and the inconsistency of follow-up duration in this setting as a natural consequence of 

patients’ varied length’s of stay in hospital complicates the pooling of data from 

separate studies.  This study has demonstrated that several analysis approaches are 

available that can produce relatively unbiased estimates of effect within an individual 

study.  Despite this, no currently available MAL approach was able to produce effect 

estimates that were congruent with those derived from MAP analyses.  This was 

particularly the case with greater levels of statistical heterogeneity within the data. 

 

Our initial research question confirmed the arguments put forward by previous 

authors that falls need to be modelled using approaches that treat them as events over 

time that may recur.15, 18, 19  It was clear from our data that dichotomising data into 

groupings of fallers versus non-fallers or multiple fallers versus non multiple fallers 

were poor surrogates for examining the rate of falls, even when adjusting for length of 

observation.   

 

Concerns previously raised that using a modified version of the relative risk formula 

produces variable results depending on the units that time is measured in were again 

confirmed.20  However, it should be noted that using the modified relative risk 

formula with time measured in days consistently produced relatively unbiased point 

estimates of the relative rate of falls.  This is notable as this is approach could be used 

in a MAL where individual studies have not presented an effect estimate but the 

relative number of falls and length of observation from exposed and unexposed 

groups can be gleaned.  The confidence intervals from this approach were 

considerably narrower than those gleaned from the “Survival 1” Andersen-Gill 

recurrent events, “Count” negative binomial regression and “Rate 1 & 2” bootstrap 



approaches indicating that use of these confidence intervals in a MAL could lead to 

spurious significant findings.  This is not surprising as the application of the relative 

risk formula to this data in no way permits acknowledgement of the dependence of 

falls or time data within individual patients.   

 

The bootstrap simulation approaches in contrast did produce conservative (possibly 

overly-conservative) 95% confidence intervals and unbiased effect point estimates, 

and were not affected by whether time data were measured in units of days or years.   

It was also notable that the bootstrap simulation approaches, which directly model the 

ratio of rate of falls between groups over the length of the study, produced point 

estimates of effect more consistent with the “Survival 1” Andersen-Gill approach than 

with the “Count” negative binomial regression approach, though the differences 

between these approaches was relatively small.  The disadvantage of this approach 

relative to the “Rate 3” modified relative risk calculation is that it cannot be executed 

without full access to individual patient level data.    

 

Contrasting the MAP and MAL findings where data has been analysed using a 

uniform approach demonstrated that pooled effect estimates using the MAL approach 

produced either biased or imprecise effect estimates relative to the MAP findings 

where statistical heterogeneity between study results was observed.  This raises the 

spectre of misleading pooled results from a MAL in such circumstances.  If different 

analysis approaches have been used, pooling of hazard ratios derived from Andersen-

Gill analyses and Incidence Rate Ratios derived from negative binomial regression 

appears reasonable given their proximity of effect point estimates and comparable 

standard errors.  Including data from bootstrap analysis or modified relative risk 



calculations (where time is measured in days) will under or over influence the pooled 

effect estimate due to the relative size of their standard errors, though could always be 

acknowledged in the discussion and considered by readers if the number of studies 

contributing data in this way was very small.  

 

For a researcher seeking to conduct a meta-analysis in the field of falls prevention in 

the hospital setting, several factors need to be considered.  A MAL may produce 

unbiased and precise effect estimates if there is no heterogeneity in study findings and 

the effect estimates in individual studies have been presented using Andersen-Gill 

survival analysis (or other recurrent events survival analysis approaches demonstrated 

to produce equivalent results18), negative binomial regression, or bootstrap simulation 

approaches to calculation of a relative rate.  Inclusion of data from a relative rate 

derived through modification of the relative risk formula (where time is measured in 

days) may also be considered, though is likely to overly influence the pooled effect 

point estimate and produce confidence intervals that are too narrow.  In this field, 

heterogeneity in study results, even amongst the small number of large randomised 

trials to date, is likely.10, 11, 21, 22  This study also demonstrated statistical heterogeneity 

in MAL of two out of three risk factors considered.   

 

Given the likely difficulty in attaining individual patient level data in this field, a 

researcher seeking to conduct a meta-analysis has limited options.  We would suggest 

systematic review and presentation of individual results rather than seeking to 

calculate a pooled effect estimate.  This would also negate other serious concerns such 

as pooling data from interventions that by their content are heterogenous, from risk 

factors where exposure has been measured inconsistently, and studies that have used 



varying patient populations.  Meta-analysis can provide profound insight into a 

research field, however, in our opinion, should only be conducted when the results are 

expected to provide greater clarity than what is already afforded by individual study 

results.  Heterogeneity of all forms, and difficulties in using a MAL approach that can 

produce a precise and unbiased pooled effect estimate are serious concerns that all 

authors, reviewers, and readers need to give greater attention to when considering 

results of a meta-analysis where the outcome of interest is a recurrent event.   

 

This study had several limitations, principally, the number of factors and number of 

studies considered was small.  Greater subtlety in strengths and limitations of the 

MAL approaches investigated could be revealed by examining a greater number and 

combinations of factors (eg.e.g. nNumber of studies, size of studies, strength of effect, 

statistical heterogeneity between studies) that may impact upon its accuracy.  Other 

forms of recurrent events data will have data distributions different to those of the 

falls dataset examined in the present study warranting replication of this study with 

other clinical data distribution examples to determine consistency of results with the 

present study.  There were also other approaches for analysis of recurrent events data 

(eg. Conditional survival analysis models) that were not investigated in the present 

study that could also be the focus of further investigation.



Table 1.  Description and justification of analysis approaches used to address aim i). 

 

Treatment of falls 

data 

Description Justification 

Survival; time to 

event data (1) 

Andersen-Gill survival analysis for recurrent events, using robust 

variance estimates to account for dependency of events within an 

individual. Effect estimate referred to as Hazard Ratio. 

Recognised by previous authors as an appropriate 

approach for analysing recurrent event and 

specifically falls rate data.14, 15, 18, 19 

Survival; time to 

event data (2) 

Cox semi-parametric survival analysis, time until first event 

(ignores participant data after the first event). Effect estimate 

referred to as Hazard Ratio. 

Time to first event analysis approach previously 

used to analyse fall risk factors amongst stroke 

patients.31 

Count (quasi-rate) 

data 

Negative binomial regression, a form of Poisson regression for 

overdispersed count data (where the outcome mean is exceeded by 

the standard deviation).  Adjusting for individual participant 

period of observation in the study effectively makes this a 

comparison of rate data. Effect estimate referred to as Incidence 

Recognised by previous authors as an appropriate 

standard for analysing falls rate data.15, 18, 19 



Rate Ratio. 

Rate data (1) Bootstrap simulation for calculation of a rate ratio and normal-

based 95% confidence intervals. Rate ratio calculated as (total falls 

in exposed group / total time in exposed group) / (total falls in 

unexposed group / total time in unexposed group).  Time 

measured in days. 

Has been used to calculate confidence intervals in 

evaluations of falls risk screening tools and falls 

risk factors in the hospital setting.9, 23, 24 

Rate data (2) As above however time measured in years. The Cochrane Collaboration raises concern that 

changing the units that time is measured in 

changes the results.17 

Rate data (3) Calculation of a relative rate using the formula for relative risk 

whereby the number of falls in exposed / unexposed groups 

substitutes for the number of participants with the disease in these 

groups, and the amount of observed participant time in exposed / 

unexposed groups substitutes for the number of participants 

without the disease in these groups.  Time measured in days. 

Previously used to evaluate the effectiveness of a 

multi-factorial intervention program to reduce 

falls in this setting.10 



Rate data (4) As above however time measured in years. It has previously been demonstrated that 

changing the units that time is measured in 

changes the results when relative rate is 

calculated in this way.20 

Binary data (1) Logistic regression classifying all patients experiencing one or 

more falls as a faller as opposed to being a non-faller. Effect 

estimate referred to as Odds Ratio. 

Frequently presented data in epidemiologic and 

experimental studies in this setting. An analysis 

option forwarded by the Cochrane Collaboration 

for considering count data where a minority of 

participants have the event and the counts for 

those who do are mostly low.17 

Binary data (2) As above however including adjustment for participant period of 

observation in the study. 

Adjusting for participant exposure may 

compensate for insensitivity of the analysis 

approach above to variation in patient length of 

stay in hospital. 

Binary data (3) Logistic regression classifying all patients experiencing two or Frequently presented data in falls prevention 



more falls as a multiple faller as opposed to being a non-multiple 

faller. 

studies more broadly. 

Binary data (4) As above however including adjustment for participant period of 

observation in the study. 

Adjusting for participant exposure may 

compensate for insensitivity of the analysis 

approach above to variation in patient length of 

stay in hospital. 

Binary data (5) Relative risk analysis classifying all patients experiencing one or 

more falls as a faller as opposed to being a non-faller. Effect 

presented as Relative Risk.32 

Previously used to evaluate the effectiveness of a 

multi-factorial intervention program to reduce 

falls in this setting.11 

 

 



Table 2. Distribution of exposure, outcome and participant observation variables for the combined dataset and each site. 

 

 Complete dataset Melbourne Brisbane Perth 

n 1828 626 852 350 

Gender; male – n (%) 767 (42%) 206 (33%) 426 (50%) 135 (39%) 

Age – mean (sd) 76.7 (10.7) 79.8 (9.3) 73.2 (11.4) 79.5 (8.5) 

Admission diagnosis stroke – n (%) 170 (9%) 72 (12%) 65 (8%) 33 (9%) 

Falls; total 497 254 177 66 

Fallers; 1 or more falls – n (%) 275 (15%) 125 (20%) 105 (12%) 45 (13%) 

Multi-fallers; 2 or more falls – n (%) 89 (5%) 41 (7%) 34 (4%) 14 (4%) 

Length of observation; mean (sd) per patient 25.6 (26.2) 29.7 (22.2) 26.0 (30.7) 17.2 (18.0) 

 



Figure 1.  MAP pooled effect estimates with 95% CIs utilising each analysis approach described for each exposure variable.  Effect estimates >1 

indicate males, people with stroke and older patients at higher risk for falls. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2.  MAP versus MAL pooled effect estimates (95% CIs), and I2 values (for MAL analyses) for each exposure variable.  Effect estimates 

>1 indicate males, people with stroke and older patients at higher risk for falls. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3. Standard errors of the natural logarithm of the effect estimates by site and 

exposure variable. 
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